WO2021139301A1 - 一种结构贴合的经导管主动脉瓣膜植入装置 - Google Patents

一种结构贴合的经导管主动脉瓣膜植入装置 Download PDF

Info

Publication number
WO2021139301A1
WO2021139301A1 PCT/CN2020/121635 CN2020121635W WO2021139301A1 WO 2021139301 A1 WO2021139301 A1 WO 2021139301A1 CN 2020121635 W CN2020121635 W CN 2020121635W WO 2021139301 A1 WO2021139301 A1 WO 2021139301A1
Authority
WO
WIPO (PCT)
Prior art keywords
support arm
tubular body
aortic valve
node
implantation device
Prior art date
Application number
PCT/CN2020/121635
Other languages
English (en)
French (fr)
Inventor
马琛明
Original Assignee
南京圣德医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京圣德医疗科技有限公司 filed Critical 南京圣德医疗科技有限公司
Priority to AU2020420975A priority Critical patent/AU2020420975B2/en
Priority to CA3156769A priority patent/CA3156769C/en
Priority to BR112022008343A priority patent/BR112022008343A2/pt
Priority to KR1020227026928A priority patent/KR20220123692A/ko
Priority to JP2022551425A priority patent/JP7407482B2/ja
Priority to EP20912827.1A priority patent/EP4042973A4/en
Priority to US17/758,270 priority patent/US20230040369A1/en
Publication of WO2021139301A1 publication Critical patent/WO2021139301A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2412Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with soft flexible valve members, e.g. tissue valves shaped like natural valves
    • A61F2/2418Scaffolds therefor, e.g. support stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2409Support rings therefor, e.g. for connecting valves to tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2442Annuloplasty rings or inserts for correcting the valve shape; Implants for improving the function of a native heart valve
    • A61F2/2463Implants forming part of the valve leaflets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2442Annuloplasty rings or inserts for correcting the valve shape; Implants for improving the function of a native heart valve
    • A61F2/2466Delivery devices therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2427Devices for manipulating or deploying heart valves during implantation
    • A61F2/2436Deployment by retracting a sheath
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0008Fixation appliances for connecting prostheses to the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0028Shapes in the form of latin or greek characters
    • A61F2230/0034D-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0036Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in thickness
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0039Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in diameter

Definitions

  • the invention belongs to the field of medical devices, and particularly relates to a structurally fitted transcatheter aortic valve implantation device, which can be implanted through the aorta or through the apex.
  • valve leaflet tissues for example, excessive tissue growth, tissue degradation or rupture, tissue hardening or calcification, or abnormal tissue ectopics throughout the cardiac cycle, that is, annular dilation and ventricular remodeling, thereby Lead to a decline in valve function, for example, leakage or blood return (i.e. valve insufficiency) or resistance to positive blood flow (i.e. valve stenosis).
  • CN107890382A discloses a positionable and retrievable transcatheter implantable aortic valve device.
  • the first flared structure of the valve stent is in contact with the left ventricular outflow tract and the aortic valve annulus to play a supporting role.
  • the positioning rod structure is used for axial positioning, and its principle is to fix it by the friction between the lower part of the valve stent and the surrounding tissues.
  • the object of the present invention is to provide an aortic valve implantation device that is delivered via a catheter and does not rely solely on frictional force fixation. It forms a structural fit with the existing blood vessels through a unique design, accurately controls the valve to be released at the position of the aortic valve annulus, avoids the existing adverse events caused by frictional fixation alone, and solves the aortic valve Lesions.
  • the present invention is realized through the following technical solutions:
  • the present invention provides a structurally fitted transcatheter aortic valve implantation device, which includes a valve stent, a valve leaflet, an inner skirt and an outer skirt.
  • the valve stent is radially compressible and re-expandable for implantation through the catheter device.
  • the valve stent includes a tubular body extending along a longitudinal axis with a circumference; a first longitudinal end, which faces the ascending aorta side of the original aortic valve in an implanted state; and a second longitudinal end , The second longitudinal end faces the ventricular side of the original aortic valve in the implanted state; and a middle part that connects the first longitudinal end and the second longitudinal end to each other, and the tubular body has The inner circumferential surface and the outer circumferential surface extend at least substantially concentrically with the longitudinal axis, the inner circumferential surface defines the inner cavity of the tubular body, the outer circumferential surface defines the outer surface of the tubular body, the tubular body
  • the first longitudinal end portion, the second longitudinal end portion and the middle portion are all made of a grid-like structure, and the middle portion of the tubular body is provided with a plurality of support arms, and the support arms surround The circumference of the tubular body is spaced apart from each other, the support arm is directly
  • the leaflets are fixed on the tubular body.
  • the inner skirt is fixed to the second longitudinal end of the inner cavity of the tubular body, and is fixedly connected to the valve leaflet, and the outer skirt is fixed to the tubular body
  • the second longitudinal end of the outer cavity is fixedly connected to the inner skirt, and the support arm is integrally formed, and is in a "D" shape after being fully opened. It is fixed on the narrowest part of the aorta near the heart and the main body. Between the narrowest part above the annulus of the aortic valve, the outer surface of the support arm and the surrounding tissues are fully attached.
  • the support arm includes a platform part, an upper support arm and a lower support arm.
  • the upper support arm and the The lower support arms are all formed in a tangential manner with a smooth transition.
  • the platform part is parallel to the blood flow and can contact the anatomical structure in the transition area of the blood vessel and the valve in a parallel manner, minimizing the impact on the blood flow.
  • the support arm is opened at the level of the aortic valve annulus, and the tubular body is raised in its expanded state. It moves in the direction of the aorta, moves above the aortic valve annulus under the action of squeezing force, and is fixed in the aorta near the narrowest part of the heart.
  • the upper support arm, the lower support arm and the platform portion are all provided with landing areas for obtaining greater tension and or pressure.
  • two curved parts are provided between the three landing areas, and the two curved parts have the same length and have a width smaller than the width of the landing area, so that the support The arm is easier to bend to form a "D"-shaped structure.
  • the maximum widths of the three landing areas of the support arm are equal.
  • the support arms are distributed equidistantly around the circumference of the tubular body, or distributed non-equally.
  • connection between the support arm and the tubular body presents a state where the bottom is thin and gradually widens toward the landing area.
  • the curved portion presents a state in which the middle portion is thin and gradually widens toward the landing area.
  • the tubular body and the support arm are formed by laser cutting.
  • the tubular body includes a plurality of mesh nodes, and the connecting parts between the mesh nodes are mesh units.
  • the difference in the position of the body axis direction is divided into a first node, a second node and a third node.
  • the two ends of the support arm are respectively connected to the first node and the second node.
  • the third node is located between the first node and the second node, and the grid unit between the first node and the second node of the support arm is connected to it.
  • the length is longer than the length of the grid unit between the first node and the second node on which the support arm is not connected.
  • the minimum width between the support arm and the adjacent grid unit can only accommodate one laser beam to pass through, so that all the support arms are The area of the landing zone is maximized.
  • the size and/or size of the valve stent described in this application generally refers to the free expansion state of the valve stent, that is, the expanded state outside of any contraction environment. Therefore, the size and/or location in the re-expanded implant state may be different due to the contraction provided by the surrounding tissue.
  • the advantage of the present invention is that through the support arm structure located on the middle part of the stent tubular body, the structural fit of the aortic valve implantation device during the operation is realized, and the fall-off, displacement or displacement during the implantation process is reduced. The risk of ejection increases the success of valve implantation.
  • Fig. 1 is a schematic structural diagram of the aortic valve implantation device of the present invention
  • Fig. 2 is a schematic diagram of a specific embodiment of the aortic valve implantation device of the present invention.
  • Fig. 3 is a detailed view of the supporting arm of the aortic valve implantation device of the present invention.
  • FIG. 4 Another detailed view of the supporting arm of the aortic valve implantation device of the present invention.
  • Fig. 5 is a schematic diagram of the overall function of the aortic valve implantation device of the present invention formed by a plurality of supporting arms;
  • Fig. 6 is a schematic diagram of a delivery device used in a transcatheter aortic valve implantation device of the present invention.
  • Fig. 7 is a schematic diagram of the two-dimensional plane processing process of the middle part and the support arm of the aortic valve implantation device of the present invention.
  • the valve stent 100 includes a tubular body 105.
  • the tubular body 105 is composed of three parts, namely a first longitudinal end 101, a middle part 102 and a second longitudinal end 103. The above three parts are all made of a mesh structure. to make.
  • the material of the tubular body 105 may be, for example, iron, nickel, aluminum, titanium, and/or alloys of these metals and other elements.
  • Reference numeral 111 indicates a transparent artificial leaflet, and each artificial leaflet 111 is connected to the inner cavity 90 of the tubular body 105.
  • the area between the two axial leaflet levels 111a and 111b spaced apart from each other in the longitudinal direction along the axis 60 of the tubular body 105 is the leaflet fixing area, wherein the axial leaflet level 111a faces the first longitudinal end 101, The axial leaflet level 111 b faces the second longitudinal end 103. The axial leaflet level 111a separates the first longitudinal end portion 101 from the intermediate portion 102.
  • An artificial leaflet outflow support portion 111c may be provided, which is connected to the corresponding mesh unit 80 in order to fix the artificial leaflet 111 on the tubular body 105.
  • the axial leaflet level 111 b may be located near the second longitudinal end 103.
  • the valve stent 100 may include an outer skirt and an inner skirt (not shown in the figure), and the outer skirt and the inner skirt are made of animal pericardium or artificial materials.
  • FIG. 2 shows a specific embodiment of the valve stent 100 used for the replacement of the native aortic valve of the human or animal heart. That is, the valve stent 100 can be used as a prosthetic valve, which allows blood to flow through the connecting channel generally in only one direction.
  • the blood flows from the left ventricle 21 to the aorta 16, and can prevent blood from flowing along from the aorta. 16 Leakage in the direction of the left ventricle 21.
  • the virtual longitudinal axis 30 is the longitudinal axis direction of the entire blood vessel.
  • the first longitudinal end 101 faces the aorta 16 and is on the same side as the ascending aorta 72, and the second longitudinal end 103 faces the left ventricle 21, and the original aorta
  • the aortic valve annulus 70 is on the same side.
  • the implanted valve stent 100 can move toward the aortic side 16 in its expanded state, and the support arm 50 thereon protrudes toward the outer surface 91 of the tubular body 105.
  • the support arm 50 moves longitudinally on the native aortic valve annulus 70 when it is compressed in the radial direction. Since the support arm 50 has a specific contour and has no hooks, barbs, kinks, etc., the support arm 50 will not be entangled with the inherent tissues of the human body during longitudinal movement, and will not cause tissue damage.
  • the valve stent 100 may include a plurality of support arms 50, such as 3, 6, 9, 12 or more.
  • the support arm 50 is integrally formed instead of being spliced by welding or other synthetic processes.
  • the support arms 50 may be circumferentially spaced from each other.
  • the supporting arms 50 may have the same circumferential distance, that is, equidistantly distributed around the circumference of the tubular body 105, or the supporting arms 50 may have different circumferential distances.
  • the overall shape of each support arm 50 is a "D" shape, and is composed of a platform part 51, an upper support arm 53, and a lower support arm 52.
  • the "D" shape design provides better integrity, and provides a structural fit anchoring function in the transition area of the blood vessel and the valve.
  • the upper support arm 53 and the lower support arm 52 are symmetrical to the center of the platform part 51.
  • the upper support arm 53 is connected to the middle part 102 facing the first longitudinal end 101
  • the lower support arm 52 is connected to the middle part 102 facing the second longitudinal end 103.
  • the upper and lower support arms are both formed in a tangential manner and have a smooth transition.
  • the platform part 51 is arranged in parallel with the blood flow direction, rather than perpendicular to the horizontal plane, and can contact the anatomical structures in the transition area between the blood vessel and the valve in a parallel manner, and minimize the influence on the blood flow.
  • the three-dimensional structure of the support arm involves two angles, namely the upper angle and the lower angle.
  • the upper and lower angles are of different sizes.
  • the lower angle ⁇ ranges from 45 degrees to 55 degrees. The choice of this angle is very important. , So that the support arm can obtain the maximum support force while obtaining the D-shaped structure.
  • the support arm 50 is further enlarged. It can be seen that the upper support arm 53, the lower support arm 52 and the platform part all have a landing area 54 for obtaining greater tension and or pressure when they are attached to the heart and blood vessels.
  • the connection 56 between the support arm 50 and the implanted valve stent 100 has a thinner bottom and gradually widens toward the landing area 54.
  • There are two bending parts 59 between the three landing areas 54 and the two parts have the same length, which makes the support arm 50 easier to bend, thereby creating a D-shaped structure of the support arm.
  • FIG. 5 schematically shows the overall function formed by a plurality of support arms 50.
  • the valve stent (not shown in the figure) passes through the landing zone 54 of the upper support arm 53 to form an upper structural fit with the aorta near the most narrow part 73 of the heart (such as the sinus tube junction, or other parts of the ascending aorta).
  • the valve stent (not shown in the figure) forms the lower structure through the landing area 54 of the lower support arm 52 and the narrowest part 74 above the aortic valve annulus (such as the free edge of the aortic valve leaflet or the stenosis structure of the valve leaflet) fit.
  • fixation problems such as displacement, falling off, and ejection.
  • the delivery device 80 of this embodiment of the invention includes a delivery head 81, a prosthesis loading area 82, a loading point 83, a delivery catheter 84 and a rotating handle 85.
  • the valve stent 100 is received into the prosthesis loading area 82.
  • the delivery catheter 84 will slowly advance (or retreat) to send out (or retract) the rotating grip, thereby completing the containment (or release) of the valve stent from the prosthesis loading area 82.
  • FIG. 7 is a schematic diagram of a two-dimensional planar processing process of the intermediate portion 102 of the tubular body and the support arm 50.
  • the tubular body 105 and the support arm 50 are processed by laser cutting.
  • the middle part 102 of the tubular body 105 is provided with a plurality of grid nodes, and the connecting part between the grid nodes is a grid unit, which is divided into a first node 61 and a second node according to the different axial positions.
  • the two ends of the support arm 50 are respectively connected to the first node 61 and the second node 62, the third node 63 is located between the first node and the second node, on which
  • the length of the mesh unit between the first node 61 and the second node 62 to which the support arm is connected is longer than the mesh unit between the first node 61 and the second node 62 to which the support arm is not connected
  • the length of the stent is longer.
  • the minimum width between the support arm 50 and the adjacent grid unit can only accommodate one laser beam to pass through, thereby maximizing the area of the landing zone 54 of the support arm 50.
  • the support arm 50 is designed such that the maximum widths of the three landing areas 54 are equal. This design makes it easier for the support arms on the valve stent 100 to naturally bend into a "D" shape after the valve stent 100 is deployed.

Landscapes

  • Health & Medical Sciences (AREA)
  • Cardiology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Transplantation (AREA)
  • Veterinary Medicine (AREA)
  • Prostheses (AREA)
  • Check Valves (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)
  • Valve Housings (AREA)
  • Lift Valve (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

一种经导管输送的,非单纯依赖摩擦力固定的主动脉瓣膜植入装置。该装置在管状体(105)的中间部(102)设置多个支撑臂(50),完全打开后呈"D"形,固定在主动脉近心脏最狭窄的部位(73)和主动脉瓣环(70)之上最狭窄的部位(74)之间,实现支撑臂(50)外表面与周围组织之间充分贴合,支撑臂(50)包括三个着落区(54)和两个弯曲部(59),能够准确控制瓣膜被释放在主动脉瓣环(70)位置,避免了现有的单纯通过摩擦力固定带来的不良事件,从而更好地解决主动脉瓣膜病变。

Description

一种结构贴合的经导管主动脉瓣膜植入装置
本申请要求2020年1月9日向中国国家知识产权局提交的,专利申请号为202010021982.8,发明名称为“一种结构贴合的经导管主动脉瓣膜植入装置”在先申请的优先权。该申请的全文通过引用的方式结合于本申请中。
技术领域
本发明属于医疗器械领域,特别是涉及一种结构贴合的经导管主动脉瓣膜植入装置,其可通过穿过主动脉的途径或通过经心尖的途径被植入。
背景技术
全世界每年约有30万人受到心脏瓣膜疾病的影响。这些疾病涉及异常的瓣叶组织,例如,过多的组织生长,组织降解或破裂,组织变硬或钙化,或者在整个心动周期中出现异常的组织异位,即环形扩张,心室重塑,从而导致瓣膜功能下降,例如,渗漏或血液回流(即瓣膜关闭不全)或对正向血流有阻力(即瓣膜狭窄)。
目前现有的经导管主动脉瓣膜植入瓣膜,都是依赖支架材质的特有特性,单纯通过摩擦力来固定植入的心脏瓣膜在原有的主动脉瓣膜位置。例如,CN107890382A公开了一种可定位可回收经导管植入式主动脉瓣膜装置,瓣膜支架的第一喇叭口结构与左室流出道和主动脉瓣环接触,起到支撑的作用,瓣膜支架的定位杆结构用于轴向定位,其原理是通过瓣膜支架下部与周围组织间的摩擦力进行固定。然而,因为疾病结构的复杂性,仅靠摩擦力对瓣膜支架定位和固定,会导致瓣膜植入后被原有结构牵拉挤压,产生不同轴,从而移位、脱落或者弹出的风险,从而导致瓣膜植入手术的失败。
发明内容
因此本发明的目的在于提供一种经导管输送的,非单纯依赖摩擦力固定的主动脉瓣膜植入装置。它通过特有的设计形成与现有血管之间的结构贴合,准确控制瓣膜被释放在主动脉瓣环位置,避免了现有的单纯通过摩擦力固定带来的不良事件,从而解决主动脉瓣膜病变。本发明通过如下技术方案实现:
本发明提供一种结构贴合的经导管主动脉瓣膜植入装置,包括瓣膜支架,瓣叶,内裙边和外裙边,所述瓣膜支架径向可压缩且可再膨胀以便通过导管装置植入,所述瓣膜支架包括具有圆周的沿纵向轴线延伸的管状体;第一纵向端部,所述第一纵向端部在植入状态面向原主动脉瓣的升主动脉侧;第二纵向端部,所述第二纵向端部在植入状态下面对原主动脉瓣的心室侧;以及中间部,所述中间部将第一纵向端部和第二纵向端部彼此连接,所述管状体具有内圆周面和外圆周面,至少基本上与纵向轴线同心地延伸,所述内圆周面限定所述管状体的内腔,所述外圆周面限定所述管状体的外表面,所述管状体的所述第一纵向端部和所述第二纵向端部以及所述中间部均由网格状结构制成,所述管状体的中间部上设有多个支撑臂,所述支撑臂围绕所述管状体的圆周彼此间隔设置,所述支撑臂直接成型于所述管状体上,不需要通过焊接或其他机械连接方式与所述管状体连接,所述瓣叶固定在所述管状体的内腔的中间部,所述内裙边固定在所述管状体的内腔的所述第二纵向端部,并与所述瓣叶固定连接,所述外裙边固定在所述管状体的外腔的所述第二纵向端部,并与所述内裙边固定连接,所述支撑臂为一体成型,完全打开后呈“D”形,固定在主动脉近心脏最狭窄的部位和主动脉瓣环之上最狭窄的部位之间,实现支撑臂外表面与周围组织之间充分贴合,所述支撑臂包括平台部分、上支撑臂和下支撑臂,所述上支撑臂和所述下支撑臂均以切线方式形成,具有平滑的过渡,所述平台部分与血液流动平行,能够以平行方式接触血管和瓣膜的过渡区域中的解剖结构,最大程度减少对血流的影响。
根据本发明的主动脉瓣膜植入装置,当使用经主动脉或者经心尖途径入路 完成植入过程时,所述支撑臂在主动脉瓣环水平打开,以其扩张状态将管状体朝着升主动脉的方向移动,在挤压力的作用下移动到主动脉瓣环上方,并且固定在主动脉近心脏最狭窄的部位。
根据本发明的主动脉瓣膜植入装置,所述上支撑臂、所述下支撑臂和所述平台部分均设有着落区,用于与心脏、血管发生贴合时获取更大的张力和或压力。
根据本发明的主动脉瓣膜植入装置,三个着落区之间设有两个弯曲部,所述两个弯曲部长度相同,且其宽度比所述着落区的宽度更小,使所述支撑臂更容易弯曲,以便形成“D”形结构。
根据本发明的主动脉瓣膜植入装置,所述支撑臂的三个着落区的最大宽度相等。
根据本发明的主动脉瓣膜植入装置,所述支撑臂围绕所述管状体的圆周等距分布,或者不等距分布。
根据本发明的主动脉瓣膜植入装置,所述支撑臂与所述管状体的连接处呈现底部较细并向所述着落区逐渐变宽的样态。
根据本发明的主动脉瓣膜植入装置,所述弯曲部呈现中部较细并向所述着落区逐渐变宽的样态。
根据本发明的主动脉瓣膜植入装置,所述管状体和所述支撑臂通过激光切割加工而成。
根据本发明的主动脉瓣膜植入装置,所述管状体包含多个网格结点,所述网格结点之间的连接部分为网格单元,在所述中间部,根据沿所述管状体轴线方向位置的不同,区分为第一结点、第二结点和第三结点,所述支撑臂两端分别与所述第一结点和所述第二结点相连接,所述第三结点位于所述第一结点和所述第二结点之间,其上连接有所述支撑臂的所述第一结点和所述第二结点之间的网格单元的长度比其上未连接有所述支撑臂的所述第一结点和所述第二结点之间的网格单元的长度更长。
根据本发明的主动脉瓣膜植入装置,在进行激光切割时,所述支撑臂和与其相邻的网格单元之间的最小宽度仅能容纳一个激光束通过,从而使得所述支撑臂的所述着落区面积最大化。
应当注意,在本申请中描述的用于瓣膜支架的尺寸和/或大小通常是指瓣膜支架的自由扩张状态,即在任何收缩环境之外的扩展状态。因此,由于周围组织提供的收缩,在重新扩张的植入状态下的尺寸和/或部位可能不同。
本发明的有益效果:
本发明的优点是,通过位于支架管状体的中间部上的支撑臂结构,实现了了主动脉瓣膜植入装置在手术过程中的结构贴合,减少了植入过程中的脱落、移位或者弹出风险,增加了瓣膜植入的成功性。
附图说明
图1本发明的主动脉瓣膜植入装置的结构示意图;
图2本发明的主动脉瓣膜植入装置的具体实施方式示意图;
图3本发明的主动脉瓣膜植入装置的支撑臂的详细视图;
图4本发明的主动脉瓣膜植入装置的支撑臂的另一详细视图;
图5本发明的主动脉瓣膜植入装置的由多个支撑臂形成的整体功能的示意图;
图6本发明的一种经导管主动脉瓣膜植入装置所用输送装置示意图;
图7本发明的主动脉瓣膜植入装置的中间部和支撑臂的二维平面加工工艺示意图。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,实施例仅用于说明本发明而不用于限制本发明的保护范围。此外,应理解,在阅读了本发明所公开的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本发明所限定的保护范围之内。
如图1所示,瓣膜支架100包括管状体105,管状体105由三部分组成, 即第一纵向端部101、中间部102及第二纵向端部103,上述三部分均由网状结构制成。管状体105的材料可以是例如铁、镍、铝、钛和/或这些金属的合金以及其它元素。附图标记111指示透明的人造瓣叶,各人造瓣叶111连接到管状体105的内腔90。在纵向上沿着管状体105的轴线60彼此间隔开的两个轴向瓣叶水平面111a和111b之间的区域为瓣叶固定区域,其中轴向瓣叶水平面111a朝向第一纵向端部101,轴向瓣叶水平面111b朝向第二纵向端部103。轴向瓣叶水平面111a将第一纵向端部101与中间部102间隔开。可以设置人造瓣叶流出支撑部分111c,其连接到相应的网格单元80以便将人造瓣叶111固定在管状体105上。轴向瓣叶水平面111b可以位于第二纵向端部103附近。瓣膜支架100可包括外裙边和内裙边(图中未示出),外裙边和内裙边由动物心包膜或人造材料制成。
图2示出了瓣膜支架100用于人或动物心脏的原生主动脉瓣的置换的具体实施方式。也就是说,瓣膜支架100可以用作人工瓣膜,其允许血液通常仅沿一个方向流过连接通道,本实施例中,血液从左心室21流到主动脉16,并且可以防止血液沿从主动脉16到左心室21方向的渗漏。虚拟纵轴30为整个血管的纵轴方向。当瓣膜支架100被植入时,即在其植入状态下,第一纵向端部101面向主动脉16,与升主动脉72同侧,第二纵向端部103面向左心室21,与原生主动脉瓣膜环70同侧。
植入的瓣膜支架100在其扩张状态下可朝着主动脉侧16的方向移动,其上的支撑臂50向管状体105的外表面91突起。由此支撑臂50在其径向受压的情况下在原生主动脉瓣膜环70上沿纵向移动。由于支撑臂50具有特定的轮廓,并且没有挂钩、倒钩、扭结等,因此支撑臂50在纵向移动时不会与人体固有组织纠缠,也不会造成组织损伤。
参考图3,瓣膜支架100可以包括多个支撑臂50,例如3个、6个、9个、12个或更多个。支撑臂50为一体成型,而非通过焊接或者其他合成工艺拼接而成。当瓣膜支架100膨胀时,支撑臂50可以彼此周向间隔。各支撑臂50之 间可以具有相同的圆周距离,即围绕管状体105的圆周等距分布,或者各支撑臂50之间可以具有不同的圆周距离。每个支撑臂50的整体形状呈“D”形,均由平台部分51,上支撑臂53,下支撑臂52三部分组成。“D”形设计提供了更好的整体性,并且在血管和瓣膜的过渡区域中提供了结构贴合的锚定功能。上支撑臂53、下支撑臂52与平台部分51中心对称。其中上支撑臂53与朝向第一纵向端部101的中间部102相连,下支撑臂52与朝向第二纵向端部103的中间部102相连,上下支撑臂均是以切线方式形成,具有平滑的过渡。平台部分51与血液流动方向平行设置,而非与水平面垂直设置,能够以平行方式接触血管和瓣膜的过渡区域中解剖结构,最大程度减少对血流的影响。
如图3所示,支撑臂的立体结构中涉及两个角度,分别为上角和下角,上角和下角大小不同,下角α的范围在45度到55度之间,该角度的选取很重要,使得支撑臂在获得D型结构的同时,可以获得最大支撑力。
如图4所示,为了更好地介绍结构贴合功能的形成,进一步放大支撑臂50。可见上支撑臂53、下支撑臂52和平台部分均有着落区54,用于与心脏、血管发生贴合时获取更大的张力和或压力。支撑臂50与植入瓣膜支架100的连接处56呈现底部较细,并向着陆区54逐渐变宽。三个着落区54之间有两个弯曲部59,两个部分长度相同,使支撑臂50更容易弯曲,从而产生了支撑臂的D形结构。
图5示意性地展示出由多个支撑臂50形成的整体的功能。瓣膜支架(图中未示出)通过上支撑臂53的着落区54与主动脉近心脏最狭窄的部位73(如窦管交界,或者升主动脉的其他部分)形成上部的结构贴合。瓣膜支架(图中未示出)通过下支撑臂52的着落区54与主动脉瓣环之上最狭窄的部位74(如主动脉瓣叶的游离缘或者瓣叶的狭窄结构)形成下部的结构贴合。这与目前的植入假体植入原理仅仅依靠在单纯的摩擦力来固定形成明显区别。通过结构贴合避免了因为固定问题导致的手术失败的巨大风险,例如移位、脱落和弹出。
参考图6是本发明的经导管植入式主动脉瓣膜装置所用输送装置200的示 意图。该发明实施例输送装置80包括:输送头部81、假体装载区域82、装载点83、输送导管84以及旋转手握85。通过装载点83和输送头部81的配合,将瓣膜支架100收容进假体装载区域82。通过旋转手握85缓慢旋转释放,输送导管84将会缓慢前进(或者后退),以送出(或收回)旋转手握,从而完成对瓣膜支架从假体装载区域82的收容(或者释放)。
图7是管状体的中间部102和支撑臂50的二维平面加工工艺示意图,管状体105和支撑臂50是通过激光切割加工而成。管状体105的中间部102上设有多个网格结点,网格结点之间的连接部分为网格单元,按照轴向位置的不同,分为第一结点61、第二结点62和第三结点63,支撑臂50的两端分别与第一结点61和第二结点62相连接,第三结点63位于第一结点和第二结点之间,其上连接有支撑臂的第一结点61和第二结点62之间的网格单元的长度比其上未连接有支撑臂的第一结点61和第二结点62之间的网格单元的长度更长,该工艺设计使得瓣膜支架100在展开后,其上的支撑臂50更易于自然弯曲成“D”形。
并且,在进行激光切割时,支撑臂50和与其相邻的网格单元之间的最小宽度仅能容纳一个激光束通过,从而使得支撑臂50的着落区54面积最大化。着落区54的面积越大,与血管和瓣膜的过渡区域中的解剖结构之间的接触面积越大,使得能够理想地分布张力,从而利于实现结构贴合。
将支撑臂50设计为三个着落区54的最大宽度相等,该设计使得瓣膜支架100在展开后,其上的支撑臂更易于自然弯曲成“D”形。
在管状体的网格结构中,根据所受径向力的不同,在不同的网格结点上设计不同的结构宽度。
以上,对本发明的实施方式进行了说明。但是,本发明不限定于上述实施方式。凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (11)

  1. 一种结构贴合的经导管主动脉瓣膜植入装置,包括瓣膜支架,瓣叶,内裙边和外裙边,其特征在于,所述瓣膜支架径向可压缩且可再膨胀以便通过导管装置植入,所述瓣膜支架包括具有圆周的沿纵向轴线延伸的管状体;
    第一纵向端部,所述第一纵向端部在植入状态面向原主动脉瓣的升主动脉侧;
    第二纵向端部,所述第二纵向端部在植入状态下面对原主动脉瓣的心室侧;
    以及中间部,所述中间部将第一纵向端部和第二纵向端部彼此连接,所述管状体具有内圆周面和外圆周面,至少基本上与纵向轴线同心地延伸,所述内圆周面限定所述管状体的内腔,所述外圆周面限定所述管状体的外表面;
    所述管状体的所述第一纵向端部和所述第二纵向端部以及所述中间部均由网格状结构制成,所述管状体的中间部上设有多个支撑臂,所述支撑臂围绕所述管状体的圆周彼此间隔设置,所述支撑臂直接成型于所述管状体上,不需要通过焊接或其他机械连接方式与所述管状体连接;
    所述瓣叶固定在所述管状体的内腔的中间部,所述内裙边固定在所述管状体的内腔的所述第二纵向端部,并与所述瓣叶固定连接,所述外裙边固定在所述管状体的外腔的所述第二纵向端部,并与所述内裙边固定连接,所述支撑臂为一体成型,完全打开后呈“D”形,固定在主动脉近心脏最狭窄的部位和主动脉瓣环之上最狭窄的部位之间,实现支撑臂外表面与周围组织之间充分贴合;
    所述支撑臂包括平台部分、上支撑臂和下支撑臂,所述上支撑臂和所述下支撑臂均以切线方式形成,具有平滑的过渡,所述平台部分与血液流动平行。
  2. 根据权利要求1所述的一种结构贴合的经导管主动脉瓣膜植入装置,其特征在于,当使用经主动脉或者经心尖途径入路完成植入过程时,所述支撑臂在主动脉瓣环水平打开,以其扩张状态将管状体朝着升主动脉的方向移动,在挤压力的作用下移动到主动脉瓣环上方,并且固定在主动脉近心脏最狭窄的部位。
  3. 根据权利要求2所述的一种结构贴合的经导管主动脉瓣膜植入装置,其特征在于,所述上支撑臂、所述下支撑臂和所述平台部分均设有着落区,用于与心脏、血管发生贴合时获取更大的张力和或压力。
  4. 根据权利要求3所述的一种结构贴合的经导管主动脉瓣膜植入装置,其特征在于,三个着落区之间设有两个弯曲部,所述两个弯曲部长度相同,且其宽度比所述着落区的宽度更小,使所述支撑臂更容易弯曲,以便形成“D”形结构。
  5. 根据权利要求4所述的一种结构贴合的经导管主动脉瓣膜植入装置,其特征在于,所述支撑臂的三个着落区的最大宽度相等。
  6. 根据权利要求5所述的一种结构贴合的经导管主动脉瓣膜植入装置,其特征在于,所述支撑臂围绕所述管状体的圆周等距分布,或者不等距分布。
  7. 根据权利要求6所述的一种结构贴合的经导管主动脉瓣膜植入装置,其特征在于,所述支撑臂与所述管状体的连接处呈现底部较细并向所述着落区逐渐变宽的样态。
  8. 根据权利要求7所述的一种结构贴合的经导管主动脉瓣膜植入装置,其特征在于,所述弯曲部呈现中部较细并向所述着落区逐渐变宽的样态。
  9. 根据权利要求1-8中任一项所述的一种结构贴合的经导管主动脉瓣膜植入装置,其特征在于,所述管状体和所述支撑臂通过激光切割加工而成。
  10. 根据权利要求1-9中任一项所述的一种结构贴合的经导管主动脉瓣膜植入装置,其特征在于,所述管状体包含多个网格结点,所述网格结点之间的连接部分为网格单元,在所述中间部,根据沿所述管状体轴线方向位置的不同,区分为第一结点、第二结点和第三结点,所述支撑臂两端分别与所述第一结点和所述第二结点相连接,所述第三结点位于所述第一结点和所述第二结点之间,其上连接有所述支撑臂的所述第一结点和所述第二结点之间的网格单元的长度比其上未连接有所述支撑臂的所述第一结点和所述第二结点之间的网格单元的长度更长。
  11. 根据权利要求1-10中任一项所述的一种结构贴合的经导管主动脉瓣膜植入装置,其特征在于,在进行激光切割时,所述支撑臂和与其相邻的网格单元之间的最小宽度仅能容纳一个激光束通过,从而使得所述支撑臂的所述着落区面积最大化。
PCT/CN2020/121635 2020-01-09 2020-10-16 一种结构贴合的经导管主动脉瓣膜植入装置 WO2021139301A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AU2020420975A AU2020420975B2 (en) 2020-01-09 2020-10-16 Structurally fitted transcatheter aortic valve implantation device
CA3156769A CA3156769C (en) 2020-01-09 2020-10-16 Structurally fitted transcatheter aortic valve implantation device
BR112022008343A BR112022008343A2 (pt) 2020-01-09 2020-10-16 Dispositivo de implantação de válvula aórtica transcateter
KR1020227026928A KR20220123692A (ko) 2020-01-09 2020-10-16 구조적으로 합착되는 트랜스카테터 대동맥 판막 이식 장치
JP2022551425A JP7407482B2 (ja) 2020-01-09 2020-10-16 構造がフィットする経カテーテル大動脈弁植え込み装置
EP20912827.1A EP4042973A4 (en) 2020-01-09 2020-10-16 STRUCTURALLY FITTED TRANS-CATHETER AORTIC VALVE IMPLANTATION DEVICE
US17/758,270 US20230040369A1 (en) 2020-01-09 2020-10-16 Structurally fitted transcatheter aortic valve implantation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010021982.8 2020-01-09
CN202010021982.8A CN111110402B (zh) 2020-01-09 2020-01-09 一种结构贴合的经导管主动脉瓣膜植入装置

Publications (1)

Publication Number Publication Date
WO2021139301A1 true WO2021139301A1 (zh) 2021-07-15

Family

ID=70488490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/121635 WO2021139301A1 (zh) 2020-01-09 2020-10-16 一种结构贴合的经导管主动脉瓣膜植入装置

Country Status (9)

Country Link
US (1) US20230040369A1 (zh)
EP (1) EP4042973A4 (zh)
JP (1) JP7407482B2 (zh)
KR (1) KR20220123692A (zh)
CN (1) CN111110402B (zh)
AU (1) AU2020420975B2 (zh)
BR (1) BR112022008343A2 (zh)
CA (1) CA3156769C (zh)
WO (1) WO2021139301A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230103109A (ko) * 2021-12-31 2023-07-07 전북대학교산학협력단 복수의 형상기억 와이어를 포함하는 재팽창 스텐트

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111110402B (zh) * 2020-01-09 2020-11-06 南京圣德医疗科技有限公司 一种结构贴合的经导管主动脉瓣膜植入装置
CN116869707A (zh) * 2023-08-17 2023-10-13 上海傲流医疗科技有限公司 一种新型瓣膜置换装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103892940A (zh) * 2013-12-02 2014-07-02 北京工业大学 一种充液型笼球式主动脉瓣支架系统
US20140243966A1 (en) * 2013-02-01 2014-08-28 Medtronic, Inc. Anti-Paravalvular Leakage Component for a Transcatheter Valve Prosthesis
WO2016055262A1 (en) * 2014-10-06 2016-04-14 Xpand Medical SAS Aortic valve replacement prosthesis
CN107405197A (zh) * 2015-03-18 2017-11-28 美敦力瓦斯科尔勒公司 具有一体化定心机构的瓣膜假体及其使用方法
CN107890382A (zh) 2017-12-20 2018-04-10 乐普(北京)医疗器械股份有限公司 可定位可回收经导管植入式主动脉瓣膜装置
CN207821949U (zh) * 2017-04-17 2018-09-07 乐普(北京)医疗器械股份有限公司 一种经导管植入式主动脉瓣膜装置
US20190209303A1 (en) * 2014-02-18 2019-07-11 St. Jude Medical, Cardiology Division, Inc. Bowed Runners and Corresponding Valve Assemblies for Paravalvular Leak Protection
CN209499982U (zh) * 2018-10-23 2019-10-18 中国医学科学院阜外医院 一种经外科途径植入的主动脉免缝合生物瓣膜
CN110393608A (zh) * 2013-03-15 2019-11-01 心脏结构导航公司 导管引导式瓣膜置换装置和方法
CN111110402A (zh) * 2020-01-09 2020-05-08 南京圣德医疗科技有限公司 一种结构贴合的经导管主动脉瓣膜植入装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8728154B2 (en) * 2007-08-24 2014-05-20 St. Jude Medical, Inc. Prosthetic aortic heart valves
US8784481B2 (en) * 2007-09-28 2014-07-22 St. Jude Medical, Inc. Collapsible/expandable prosthetic heart valves with native calcified leaflet retention features
US8454686B2 (en) * 2007-09-28 2013-06-04 St. Jude Medical, Inc. Two-stage collapsible/expandable prosthetic heart valves and anchoring systems
EP2611388B1 (en) * 2010-09-01 2022-04-27 Medtronic Vascular Galway Prosthetic valve support structure
CN102949253B (zh) * 2012-10-16 2015-12-30 北京迈迪顶峰医疗科技有限公司 一种支架瓣膜及其输送装置
US10524912B2 (en) * 2015-04-02 2020-01-07 Abbott Cardiovascular Systems, Inc. Tissue fixation devices and methods
CN208864574U (zh) * 2017-12-20 2019-05-17 乐普(北京)医疗器械股份有限公司 可定位可回收经导管植入式主动脉瓣膜装置
JP7109657B2 (ja) * 2018-05-23 2022-07-29 コーシム・ソチエタ・ア・レスポンサビリタ・リミタータ 心臓弁プロテーゼ

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140243966A1 (en) * 2013-02-01 2014-08-28 Medtronic, Inc. Anti-Paravalvular Leakage Component for a Transcatheter Valve Prosthesis
CN110393608A (zh) * 2013-03-15 2019-11-01 心脏结构导航公司 导管引导式瓣膜置换装置和方法
CN103892940A (zh) * 2013-12-02 2014-07-02 北京工业大学 一种充液型笼球式主动脉瓣支架系统
US20190209303A1 (en) * 2014-02-18 2019-07-11 St. Jude Medical, Cardiology Division, Inc. Bowed Runners and Corresponding Valve Assemblies for Paravalvular Leak Protection
WO2016055262A1 (en) * 2014-10-06 2016-04-14 Xpand Medical SAS Aortic valve replacement prosthesis
CN107405197A (zh) * 2015-03-18 2017-11-28 美敦力瓦斯科尔勒公司 具有一体化定心机构的瓣膜假体及其使用方法
CN207821949U (zh) * 2017-04-17 2018-09-07 乐普(北京)医疗器械股份有限公司 一种经导管植入式主动脉瓣膜装置
CN107890382A (zh) 2017-12-20 2018-04-10 乐普(北京)医疗器械股份有限公司 可定位可回收经导管植入式主动脉瓣膜装置
CN209499982U (zh) * 2018-10-23 2019-10-18 中国医学科学院阜外医院 一种经外科途径植入的主动脉免缝合生物瓣膜
CN111110402A (zh) * 2020-01-09 2020-05-08 南京圣德医疗科技有限公司 一种结构贴合的经导管主动脉瓣膜植入装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4042973A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230103109A (ko) * 2021-12-31 2023-07-07 전북대학교산학협력단 복수의 형상기억 와이어를 포함하는 재팽창 스텐트
KR102612056B1 (ko) 2021-12-31 2023-12-07 전북대학교산학협력단 복수의 형상기억 와이어를 포함하는 재팽창 스텐트

Also Published As

Publication number Publication date
CA3156769A1 (en) 2021-07-15
JP7407482B2 (ja) 2024-01-04
US20230040369A1 (en) 2023-02-09
AU2020420975A1 (en) 2022-07-28
KR20220123692A (ko) 2022-09-08
CN111110402A (zh) 2020-05-08
AU2020420975B2 (en) 2024-05-02
EP4042973A4 (en) 2022-11-23
JP2023500417A (ja) 2023-01-05
EP4042973A1 (en) 2022-08-17
BR112022008343A2 (pt) 2022-08-09
CN111110402B (zh) 2020-11-06
CA3156769C (en) 2023-08-01

Similar Documents

Publication Publication Date Title
US20210077256A1 (en) Stents for prosthetic heart valves
US20210052380A1 (en) Valve prosthesis and method for delivery
WO2021139301A1 (zh) 一种结构贴合的经导管主动脉瓣膜植入装置
JP6290860B2 (ja) 心臓弁補綴物
US10117743B2 (en) Hybrid orientation paravalvular sealing stent
AU2009271574B2 (en) Axially anchoring collapsible and re-expandable prosthetic heart valves for various disease states
EP3733130B1 (en) Cardiac valve prosthesis and stent thereof
CN216221867U (zh) 一种瓣膜支架和包括其的人工瓣膜装置
CN114191146A (zh) 一种瓣膜支架和包括其的人工瓣膜装置
CA3140732A1 (en) Stent of aortic valve

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20912827

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022551425

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3156769

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2020912827

Country of ref document: EP

Effective date: 20220422

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022008343

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2020420975

Country of ref document: AU

Date of ref document: 20201016

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227026928

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112022008343

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220429

NENP Non-entry into the national phase

Ref country code: DE