WO2021139066A1 - 一种用于塑件的激光透射焊接方法 - Google Patents

一种用于塑件的激光透射焊接方法 Download PDF

Info

Publication number
WO2021139066A1
WO2021139066A1 PCT/CN2020/091058 CN2020091058W WO2021139066A1 WO 2021139066 A1 WO2021139066 A1 WO 2021139066A1 CN 2020091058 W CN2020091058 W CN 2020091058W WO 2021139066 A1 WO2021139066 A1 WO 2021139066A1
Authority
WO
WIPO (PCT)
Prior art keywords
plastic part
plastic
laser
metal
welded
Prior art date
Application number
PCT/CN2020/091058
Other languages
English (en)
French (fr)
Inventor
欧阳德钦
刘敏秋
阮双琛
Original Assignee
深圳技术大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳技术大学 filed Critical 深圳技术大学
Publication of WO2021139066A1 publication Critical patent/WO2021139066A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1635Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding
    • B29C65/1638Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding focusing the laser beam on the interface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1677Laser beams making use of an absorber or impact modifier
    • B29C65/168Laser beams making use of an absorber or impact modifier placed at the interface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/733General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the optical properties of the material of the parts to be joined, e.g. fluorescence, phosphorescence
    • B29C66/7336General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the optical properties of the material of the parts to be joined, e.g. fluorescence, phosphorescence at least one of the parts to be joined being opaque, transparent or translucent to visible light
    • B29C66/73365General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the optical properties of the material of the parts to be joined, e.g. fluorescence, phosphorescence at least one of the parts to be joined being opaque, transparent or translucent to visible light at least one of the parts to be joined being transparent or translucent to visible light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic

Definitions

  • the invention relates to the technical field of laser welding, in particular to a laser transmission welding method for plastic parts.
  • Plastic products are usually composed of two or more parts. Assemble these parts together, usually in three ways: mechanical fixing, adhesive connection, and thermal welding.
  • the mechanical fixing and adhesive connection processing procedures are more complicated, and may produce impurities that are potentially threatening to human health, which are not allowed in some industries such as the medical and food industries.
  • Friction welding ultrasonic welding, vibration welding, spin welding, etc.
  • electrofusion welding hot plate welding and other thermal welding without adding foreign substances are commonly used connection methods for plastic products in these fields, but friction welding, electrofusion welding and The machining accuracy of hot plate welding and other methods is relatively rough, and it is generally suitable for low-precision welding occasions.
  • laser welding has many advantages: (1) Non-contact welding; (2) The beam shape and size can be adjusted, which can reduce the heat-affected zone and weld width, and reduce thermal stress; (3) The welding speed is fast and the efficiency is high; (4) The welding seam has high strength, no residue, and has a good appearance. Therefore, laser welding technology can not only meet high-precision processing requirements, but also ensure high-strength connection requirements.
  • the laser welding method of optically transparent plastic in the prior art has three steps : (1) Coat the upper surface of the lower plastic uniformly with powder or liquid light absorber; (2) Use a special clamping device to clamp the two plastics; (3) Use a laser beam for welding.
  • the laser beam is transmitted through the upper layer of plastic, absorbed by the absorbent coated on the upper surface of the lower layer of plastic, and converted into heat.
  • the heat melts the lower layer of plastic, and at the same time enters the upper layer of plastic through heat transfer, and melts the upper layer of plastic.
  • the laser radiation is fused and cooled to form a weld.
  • the laser welding method for optically transparent plastics in the prior art has obvious defects: (1)
  • the coated light absorber is usually carbon black, resin, metal oxide, alloy powder, Clearweld and other powdery or liquid substances. These physical properties Unstable substances are easy to diffuse outside the welding area and cause pollution to the welding parts. This is not allowed in some high-cleanliness industries (such as medical, food, precision electronics, etc.); (2) Some commercial special absorbents The price is more expensive, and the use of these absorbents will increase the cost of welding; (3)
  • the general coating process is: dissolve the absorbent with a solvent, stir the mixture evenly and coat the surface of the plastic, wait for the solvent to evaporate and dry before welding.
  • the entire coating process is relatively cumbersome and takes a long time, resulting in lower welding efficiency; (4) At present, most coating processes are manual coating, and the coating quality depends heavily on the technical level of the operator. If the technical level is poor, it is easy to cause Poor welding quality due to uneven coating; (5) The absorbent at the interface will hinder the molecular diffusion and entanglement between the upper and lower plastics, reducing the bonding force of the two plastics; (6) Plastic and absorbent The thermal conductivity is very poor, if the absorbent coating is uneven or the laser power is unstable, it is easy to cause the plastic to be locally burnt due to excessive energy.
  • the purpose of the present invention is to provide a laser transmission welding method for plastic parts, which uses a metal absorber instead of dye as an absorber to improve its welding efficiency and quality.
  • a laser transmission welding method for plastic parts is used for laser welding between a first plastic part and a second plastic part.
  • the first plastic part is an optically transparent thermoplastic plastic part and includes the following steps:
  • the laser beam generated by the laser irradiates the part to be welded on the first plastic part one or more times.
  • the laser beam passes through the first plastic part and is aimed at the metal absorber. Under the action of the laser beam energy, the laser beam nears the metal absorber The plastic is melted, and the gap between the first plastic part and the second plastic part is fused, so that the first plastic part and the second plastic part are welded together.
  • the step of placing the metal absorbent directly on the part to be welded of the second plastic part, or placing a groove on the part to be welded of the second plastic part before placing the metal absorbent in the groove further includes:
  • the metal absorbent is a metal wire, a metal film or a metal sheet.
  • the width of the metal wire is 0.2-1.0 mm, and the thickness is 0.1-0.5 mm.
  • both the metal film and the metal sheet are arranged in a rectangular, circular or other irregular shape with a plurality of through holes.
  • both the metal film and the metal sheet are made by laser cutting, chemical etching, and punching.
  • the metal absorbents are all made of iron, aluminum, copper or alloys thereof with good thermal conductivity.
  • the second plastic part is a thermoplastic.
  • the first plastic part and the second plastic part are clamped between two quartz glass plates that are highly transparent to the laser beam and resistant to high temperatures, and are clamped by two three-bar cylinders with adjustable air pressure valves. .
  • the laser is a continuous near-infrared semiconductor laser, and the diameter or width of the laser beam is larger than the width of the metal absorbent.
  • the metal absorbent has stable physical properties, does not produce particle impurities, does not pollute the welded parts, maintains aesthetics, and can be used in industries with high cleanliness requirements;
  • Metal absorbents can be common metals such as iron, aluminum or copper and their alloys, with a wide range of sources and low prices;
  • the metal absorber has good thermal conductivity. If the laser power is too high for an instant, the metal can diffuse the excessive heat in time to buffer and prevent the plastic from scorching.
  • Fig. 1 is an exploded view of plastic welding in the prior art.
  • Figure 2 is a schematic view of the structure of plastic welding in the prior art.
  • Fig. 3 is an exploded view of a preferred embodiment of the laser transmission welding method for plastic parts in the present invention.
  • FIG. 4 is a schematic structural view of a preferred embodiment of the laser transmission welding method for plastic parts in the present invention.
  • Fig. 5 is an exploded view of another preferred embodiment of the laser transmission welding method for plastic parts in the present invention.
  • Fig. 6 is a schematic structural view of another preferred embodiment of the laser transmission welding method for plastic parts in the present invention.
  • the first plastic part is an optically transparent thermoplastic plastic part, which includes the following step:
  • the laser beam generated by the laser radiates one or more times to the part to be welded of the first plastic part.
  • the laser beam passes through the first plastic part and is aimed at the metal absorber.
  • the metal absorber is acted on by the energy of the laser beam
  • the nearby plastic is melted, and the gap between the first plastic part and the second plastic part is fused, so that the first plastic part and the second plastic part are welded together.
  • This method uses metal absorbent instead of traditional dye as absorbent, and the welding surface between two plastic parts does not need to be coated with powder or liquid absorbent, but metal wire, metal film or metal sheet can be placed instead.
  • the large-diameter laser beam does not need to be rigorously shaped by an optical lens to form the required small-diameter beam, but is directly radiated on the metal absorbent.
  • the light absorption rate of metal is generally greater than that of plastic, so metal heats up faster than plastic.
  • the plastic near the metal absorbent is first melted and fused, and after cooling, welds are formed. These welds connect the first plastic part and the second plastic part. The gaps between the pieces fuse together.
  • the plastic in other parts is irradiated by the laser, because of its low light absorption rate, most of the laser passes through the plastic directly and is not absorbed and converted into heat, so the plastic will not form a weld if it is not melted.
  • the metal absorbent is directly placed on the to-be-welded part of the second plastic part, or the metal absorbent is placed in the groove after slotting on the to-be-welded part of the second plastic part before the inside also includes:
  • S400 Use alcohol to remove oil stains and dirt on the surfaces of the first plastic part and the second plastic part. This can effectively avoid the influence of impurities on welding quality.
  • the metal absorbent is a metal wire, a metal film or a metal sheet, and the metal wire has a width of 0.2-1.0 mm and a thickness of 0.1-0.5 mm.
  • the metal absorbent can also be made into a sheet or film form.
  • the metal film and the metal sheet are provided with a plurality of polygons with through holes. These metal films and metal sheets will absorb the laser beam in the metal part, and in the metal-free part, most of the laser beam will directly pass through the second plastic.
  • the metal film and the metal sheet can also be arranged in a circular shape or other irregular shapes with several through holes.
  • the metal wire, metal film and metal sheet are all made of iron, aluminum, copper or their alloys with good thermal conductivity.
  • the second plastic part is a thermoplastic.
  • the first plastic part may be PET, and the second plastic part may be PET, PC, PP, PVC, PMMA, PE, POM or PETG.
  • the laser is a continuous near-infrared semiconductor laser with a laser wavelength range of 793-1064 nm, the continuous near-infrared semiconductor laser is output by a fiber collimator, and the continuous near-infrared semiconductor laser is The maximum output power is 50W;
  • the first plastic part and the second plastic part are clamped between two quartz glass plates that are highly transparent to the laser beam and resistant to high temperatures, and pass through two adjustable air pressure valves.
  • the three-rod cylinder is clamped, and the cylinder diameter is 25mm.
  • the diameter or width of the laser beam is larger than the width of the metal absorbent.
  • the laser transmission welding method for plastic parts includes the following steps: directly placing a metal absorbent on the part to be welded on the second plastic part, or on the part to be welded on the second plastic part After the upper slot is placed, the metal absorbent is placed in the groove; the welded part of the first plastic part is pressed against the metal absorbent and then overlapped on the welded part of the second plastic part, and the first plastic part and the second plastic part The two plastic parts are clamped; the laser beam generated by the laser radiates one or more times to the part to be welded on the first plastic part.
  • the laser beam passes through the first plastic part and is aligned with the metal absorber, which plays a role in the laser beam energy
  • the plastic near the lower metal absorbent melts, and the gap between the first plastic part and the second plastic part is fused, so that the first plastic part and the second plastic part are welded together, which effectively improves the welding efficiency and quality. At the same time, it can maintain the beautiful appearance, the welding cost is low, and the plastic will not be burnt.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Laser Beam Processing (AREA)

Abstract

本申请公开了一种用于塑件的激光透射焊接方法,用于第一塑件与第二塑件之间的激光焊接,所述第一塑件为光学透明热塑性塑件,其包括如下步骤:在第二塑件的待焊接部位上直接放置金属吸收剂,或在第二塑件的待焊接部位上开槽后将金属吸收剂放置于槽内;将第一塑件的待焊接部位压住金属吸收剂后搭接在第二塑件的待焊接部位上,并用夹具将第一塑件、第二塑件夹紧;激光器产生的激光光束对第一塑件的待焊接部位进行一次或多次辐射,所述激光光束穿过第一塑件并对准金属吸收剂,在激光光束能量的作用下金属吸收剂附近的塑料熔化,所述第一塑件与第二塑件之间的缝隙熔合,从而将第一塑件与第二塑件焊接起来。本申请能够有效的保持焊接的美观性,提高焊接质量和效率,同时,还能避免塑件烧焦。

Description

一种用于塑件的激光透射焊接方法 技术领域
本发明涉及激光焊接技术领域,尤其涉及的是一种用于塑件的激光透射焊接方法。
背景技术
塑料产品通常由两个或两个以上部件组合而成,将这些部件组装在一起,常用到机械固定、粘合剂连接、热焊接等三种方式。机械固定、粘合剂连接加工程序较为复杂,同时可能产生对人类身体健康有潜在威胁的杂质,在一些诸如医疗、食品行业中是不允许的。摩擦焊(超声焊、振动焊、旋转焊等)、电熔焊、热板焊等多种无须添加外来物质的热焊接是这些领域中塑料产品常用的连接方法,但摩擦焊、电熔焊和热板焊等方法的加工精度较为粗糙,一般适用于低精度的焊接场合。
激光焊接作为相对新的焊接技术,具有诸多的优势:(1)非接触式焊接;(2)光束形状和尺寸可调控,可减小热影响区和焊缝宽度,减少热应力;(3)焊接速度快及效率高;(4)焊缝强度高、无残渣、具有良好外观等。因此激光焊接技术不仅能够满足高精密加工要求,而且能够保证高强度连接要求。
随着激光器成本的下降,激光焊接技术逐渐应用于塑料焊接的领域中。目前市场上的塑料激光焊接设备大都是将波长≤1200nm的近红外激光作为光源,而绝大多数光学透明热塑性塑料本身对近红外激光的吸收较弱(10%,1mm厚样品),一般不能直接焊接。所以在当前的塑料激光透射焊接技术中,为提高塑料对激光的吸收率,人们往往在两光学透明塑料中添加光吸收剂。如图1和2所示,图中1表示上层塑料,2表示下层塑料,3表示光吸收剂,4表示激光光束,5表示焊缝,现有技术中的光学透明塑料激光焊接方法有三个步骤:(1)在下层塑料上表面均匀涂覆粉末状或液态的光吸收剂;(2)使用专门夹持装置夹紧两塑料;(3)使用激光光束进行焊接。焊接时,激光光束透射过上层塑料,被下层塑料上表面涂覆的吸收剂的吸收,转化成热量,热量熔化下层塑料,同时通过热传递作用进入上层塑料,熔化上层塑料,于是两层塑料在激光辐射处熔合、冷却,形成焊缝。
现有技术中的光学透明塑料激光焊接方法存在明显的缺陷:(1)涂覆的光吸收剂通常为碳黑、树脂、金属氧化物、合金粉末、Clearweld等粉末状或液状物质,这些物理性能不稳定的物质易扩散到焊接区域外,对焊接件造成污染,这在一些高清洁度行业中(比如医疗、食品、精密电子等)是不允许的;(2)一些商业化的特殊吸收剂价格较为昂贵,使用这些吸收剂会造成焊接成本增加;(3)一般涂覆工艺为:用溶剂溶解吸收剂,将混合液搅拌均匀再涂覆于塑料表面,等溶剂蒸发干后再进行焊接。整个涂覆工艺过程较为繁琐,时间较长,导致焊接效率降低;(4)目前涂覆工艺大都为人工涂覆,涂覆质量严重依赖于操作者的技术水平,若技术水平差,则易导致因涂覆不均匀而造成的焊接质量不佳;(5)在界面间的吸收剂会阻碍上下层塑料间的分子扩散和缠结,降低了两塑料的结合力;(6)塑料和吸收剂的导热性很差,若吸收剂涂覆不均匀或激光功率不稳定,则易造成塑料局部因能量过高而瞬间烧焦。
因此,现有技术还有待于改进和发展。
技术问题
鉴于上述现有技术的不足,本发明的目的在于提供一种用于塑件的激光透射焊接方法,采用金属吸收剂代替染料作为吸收剂,提高其焊接效率和质量。
技术解决方案
本发明的技术方案如下:
一种用于塑件的激光透射焊接方法,用于第一塑件与第二塑件之间的激光焊接,所述第一塑件为光学透明热塑性塑件,其包括如下步骤:
在第二塑件的待焊接部位上直接放置金属吸收剂,或在第二塑件的待焊接部位上开槽后将金属吸收剂放置于槽内;
将第一塑件的待焊接部位压住金属吸收剂后搭接在第二塑件的待焊接部位上,并用夹具将第一塑件、第二塑件夹紧;
激光器产生的激光光束对第一塑件的待焊接部位进行一次或多次辐射,所述激光光束穿过第一塑件并对准金属吸收剂,在激光光束能量的作用下金属吸收剂附近的塑料熔化,所述第一塑件与第二塑件之间的缝隙熔合,从而将第一塑件与第二塑件焊接起来。
优选地,所述在第二塑件的待焊接部位上直接放置金属吸收剂,或在第二塑件的待焊接部位上开槽后将金属吸收剂放置于槽内之前还包括:
用酒精去除第一塑件和第二塑件表面的油渍和污物。
优选地,所述金属吸收剂为金属丝、金属膜或金属片。
优选地,所述金属丝的宽度为0.2-1.0 mm,厚度为0.1-0.5 mm。
优选地,所述金属膜和金属片都设置成带有若干个通孔的长方形、圆形或其它不规则形状。
优选地,所述金属膜和金属片都通过激光切割、化学腐蚀、冲床冲压加工制成。
优选地,所述金属吸收剂都由导热性良好的铁、铝、铜或其合金制造而成。
优选地,所述第二塑件为热塑性塑料。
优选地,所述第一塑件和第二塑件被夹持在两块对激光光束高透且耐高温的石英玻璃板之间,并通过两个带可调气压阀的三杆气缸夹紧。
优选地,所述激光器为连续近红外半导体激光器,所述激光光束的直径或宽度大于金属吸收剂的宽度。
有益效果
与现有技术相比,本申请实施例主要有以下有益效果:
(1)金属吸收剂的物理性能稳定,不会产生颗粒杂质,不会污染焊接件,保持美观性,可应用于有高清洁度要求的行业;
(2)金属吸收剂可为常见的铁、铝或铜等金属及其合金,来源广泛、价格便宜;
(3)焊接时,操作者直接将金属吸收剂置于焊接部位即可焊接,操作简单、效率较高;
(4)操作者不需要长时间培训即可熟练操作,不存在涂覆不均匀的问题,焊接质量稳定;
(5)焊缝内没有外来的颗粒杂质影响分子扩散和缠结,焊接强度高;
(6)金属吸收剂导热性良好,若发生激光功率瞬间过高,则金属可及时扩散瞬间过多的热量,起缓冲作用,避免塑料烧焦。
附图说明
为了更清楚地说明本申请的方案,下面将对实施例描述中所需要使用的附图作一个简单介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是现有技术中的塑料焊接的分解图。
图2是现有技术中的塑料焊接的结构示意图。
图3是本发明中的用于塑件的激光透射焊接方法较佳实施例的分解图。
图4是本发明中的用于塑件的激光透射焊接方法较佳实施例的结构示意图。
图5是本发明中的用于塑件的激光透射焊接方法又一较佳实施例的分解图。
图6是本发明中的用于塑件的激光透射焊接方法又一较佳实施例的结构示意图。
本发明的实施方式
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请技术领域的技术人员通常理解的含义相同;本文中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
如图3至6所示,图中6表示第一塑件,7表示第二塑件,8表示金属吸收剂,9表示激光光束,10表示焊缝。结合附图具体说明一种用于塑件的激光透射焊接方法,用于第一塑件与第二塑件之间的激光焊接,所述第一塑件为光学透明热塑性塑件,其包括如下步骤:
S100、在第二塑件的待焊接部位上直接放置金属吸收剂,或在第二塑件的待焊接部位上开槽后将金属吸收剂放置于槽内;
S200、将第一塑件的待焊接部位压住金属吸收剂后搭接在第二塑件的待焊接部位上,并用夹具将第一塑件、第二塑件夹紧;
S300、激光器产生的激光光束对第一塑件的待焊接部位进行一次或多次辐射,所述激光光束穿过第一塑件并对准金属吸收剂,在激光光束能量的作用下金属吸收剂附近的塑料熔化,所述第一塑件与第二塑件之间的缝隙熔合,从而将第一塑件与第二塑件焊接起来。
本方法采用金属吸收剂代替传统染料作吸收剂,两个塑件之间的焊接面无须涂覆粉末状或液状吸收剂,而放置金属丝、金属膜或金属片代替它即可。采用该方法焊接时,大直径激光光束不需要经过光学透镜严格整形以形成所需的小直径光束,而是直接辐射在金属吸收剂上。金属的光吸收率一般大于塑料的,所以金属的升温速度快于塑料,在金属吸收剂附近的塑料最先熔化、熔合,冷却后形成焊缝,这些焊缝将第一塑件与第二塑件之间的缝隙熔合起来。其它部位的塑料虽受到激光辐射,但因其光吸收率低,大部分激光直接透过塑料,未被吸收转化成热量,所以塑料未熔化不会形成焊缝。
本发明进一步较佳实施例中,所述S100、在第二塑件的待焊接部位上直接放置金属吸收剂,或在第二塑件的待焊接部位上开槽后将金属吸收剂放置于槽内之前还包括:
S400、用酒精去除第一塑件和第二塑件表面的油渍和污物。这样能够有效的避免杂质对焊接质量的影响。
本发明进一步较佳实施例中,所述金属吸收剂为金属丝、金属膜或金属片,所述金属丝宽度为0.2-1.0 mm,厚度为0.1-0.5 mm。
为适应不同形状的塑料焊接件,金属吸收剂除了使用金属丝外,还可以制成片状或薄膜状的形式。如图5和6所示,所述金属膜和金属片上都设置有若干个通孔的多边形。这些金属膜和金属片在有金属的部位激光光束会被吸收,而在没有金属的部位,大部分激光光束直接透过第二塑料。当然所述金属膜和金属片还可以设置成具有若干个通孔的圆形或其他不规则形状。
本发明进一步较佳实施例中,所述金属丝、金属膜和金属片都由导热性良好的铁、铝、铜或其合金制造而成。
本发明进一步较佳实施例中,所述第二塑件为热塑性塑料。所述第一塑件可以为PET,所述第二塑件为PET、PC、PP、PVC、PMMA、PE、POM或PETG。
本发明进一步较佳实施例中,所述激光器为连续近红外半导体激光器,激光波长范围为793-1064 nm,所述连续近红外半导体激光器采用光纤准直器输出,所述连续近红外半导体激光器的最高输出功率为50W;
本发明进一步较佳实施例中,所述第一塑件和第二塑件被夹持在两块对激光光束高透且耐高温的石英玻璃板之间,并通过两个带可调气压阀的三杆气缸夹紧,该气缸的缸径为25mm。
本发明进一步较佳实施例中,所述激光光束的直径或宽度大于金属吸收剂的宽度。
综上所述,本发明所提供的用于塑件的激光透射焊接方法,包括如下步骤:在第二塑件的待焊接部位上直接放置金属吸收剂,或在第二塑件的待焊接部位上开槽后将金属吸收剂放置于槽内;将第一塑件的待焊接部位压住金属吸收剂后搭接在第二塑件的待焊接部位上,并用夹具将第一塑件、第二塑件夹紧;激光器产生的激光光束对第一塑件的待焊接部位进行一次或多次辐射,所述激光光束穿过第一塑件并对准金属吸收剂,在激光光束能量的作用下金属吸收剂附近的塑料熔化,所述第一塑件与第二塑件之间的缝隙熔合,从而将第一塑件与第二塑件焊接起来,有效地提高了其焊接效率和质量,同时,能够保持美观,焊接成本低,不会烧焦塑料。
显然,以上所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例,附图中给出了本申请的较佳实施例,但并不限制本申请的专利范围。本申请可以以许多不同的形式来实现,相反地,提供这些实施例的目的是使对本申请的公开内容的理解更加透彻全面。尽管参照前述实施例对本申请进行了详细的说明,对于本领域的技术人员来而言,其依然可以对前述各具体实施方式所记载的技术方案进行修改,或对其中部分技术特征进行等效替换。凡是利用本申请说明书及附图内容所做的等效结构,直接或间接运用在其他相关的技术领域,均同理在本申请专利保护范围之内。

Claims (10)

  1. 一种用于塑件的激光透射焊接方法,用于第一塑件与第二塑件之间的激光焊接,所述第一塑件为光学透明热塑性塑件,其特征在于,所述用于塑件的激光透射焊接方法包括如下步骤:
    在第二塑件的待焊接部位上直接放置金属吸收剂,或在第二塑件的待焊接部位上开槽后将金属吸收剂放置于槽内;
    将第一塑件的待焊接部位压住金属吸收剂后搭接在第二塑件的待焊接部位上,并用夹具将第一塑件、第二塑件夹紧;
    激光器产生的激光光束对第一塑件的待焊接部位进行一次或多次辐射,所述激光光束穿过第一塑件并对准金属吸收剂,在激光光束能量的作用下金属吸收剂附近的塑料熔化,所述第一塑件与第二塑件之间的缝隙熔合,从而将第一塑件与第二塑件焊接起来。
  2. 根据权利要求1所述的用于塑件的激光透射焊接方法,其特征在于,所述在第二塑件的待焊接部位上直接放置金属吸收剂,或在第二塑件的待焊接部位上开槽后将金属吸收剂放置于槽内之前还包括:
    用酒精去除第一塑件和第二塑件表面的油渍和污物。
  3. 根据权利要求2所述的用于塑件的激光透射焊接方法,其特征在于,所述金属吸收剂为金属丝、金属膜或金属片。
  4. 根据权利要求3所述的用于塑件的激光透射焊接方法,其特征在于,所述金属丝的宽度为0.2-1.0 mm,厚度为0.1-0.5 mm。
  5. 根据权利要求3所述的用于塑件的激光透射焊接方法,其特征在于,所述金属膜和金属片都设置成带有若干个通孔的长方形、圆形或其它不规则形状。
  6. 根据权利要求5所述的用于塑件的激光透射焊接方法,其特征在于,所述金属膜和金属片都通过激光切割、化学腐蚀、冲床冲压加工制成。
  7. 根据权利要求1所述的用于塑件的激光透射焊接方法,其特征在于,所述金属吸收剂都由导热性良好的铁、铝、铜或其合金制造而成。
  8. 根据权利要求1所述的用于塑件的激光透射焊接方法,其特征在于,所述第二塑件为热塑性塑料。
  9. 根据权利要求1所述的用于塑件的激光透射焊接方法,其特征在于,所述第一塑件和第二塑件被夹持在两块对激光光束高透且耐高温的石英玻璃板之间,并通过两个带可调气压阀的三杆气缸夹紧。
  10. 根据权利要求1所述的用于塑件的激光透射焊接方法,其特征在于,所述激光器为连续近红外半导体激光器,所述激光光束的直径或宽度大于金属吸收剂的宽度。
PCT/CN2020/091058 2020-01-10 2020-05-19 一种用于塑件的激光透射焊接方法 WO2021139066A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010027861.4 2020-01-10
CN202010027861.4A CN111002591A (zh) 2020-01-10 2020-01-10 一种用于塑件的激光透射焊接方法

Publications (1)

Publication Number Publication Date
WO2021139066A1 true WO2021139066A1 (zh) 2021-07-15

Family

ID=70121038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/091058 WO2021139066A1 (zh) 2020-01-10 2020-05-19 一种用于塑件的激光透射焊接方法

Country Status (2)

Country Link
CN (1) CN111002591A (zh)
WO (1) WO2021139066A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116373313A (zh) * 2023-03-15 2023-07-04 苏州大学 一种陶瓷与透明塑料焊接的方法、设备及陶瓷塑料焊接件

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111002591A (zh) * 2020-01-10 2020-04-14 深圳技术大学 一种用于塑件的激光透射焊接方法
CN113681909B (zh) * 2021-08-20 2024-07-02 深圳技术大学 一种激光焊接装置及焊接方法
CN113787255A (zh) * 2021-09-30 2021-12-14 苏州大学 一种透明塑料薄膜的激光焊接方法
CN114454498A (zh) * 2021-12-30 2022-05-10 深圳泰德激光技术股份有限公司 一种塑料的激光焊接方法及塑料制品
CN115157690A (zh) * 2022-05-31 2022-10-11 苏州大学 双波长激光协同实现异种透明塑料连接的方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0158528A2 (en) * 1984-04-09 1985-10-16 Toyota Jidosha Kabushiki Kaisha A process for joining different kinds of synthetic resins
CN102950766A (zh) * 2012-10-31 2013-03-06 温州大学 一种热塑性塑料的激光透射焊接方法
JP2015160334A (ja) * 2014-02-26 2015-09-07 一般財団法人近畿高エネルギー加工技術研究所 樹脂部材の接合方法と検査用ウェルチップの製造方法
CN108407307A (zh) * 2012-07-05 2018-08-17 旭化成株式会社 焊接方法及焊接体
CN110466162A (zh) * 2019-08-28 2019-11-19 中南大学 一种双层透明塑料板激光焊接方法
CN111002591A (zh) * 2020-01-10 2020-04-14 深圳技术大学 一种用于塑件的激光透射焊接方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0158528A2 (en) * 1984-04-09 1985-10-16 Toyota Jidosha Kabushiki Kaisha A process for joining different kinds of synthetic resins
CN108407307A (zh) * 2012-07-05 2018-08-17 旭化成株式会社 焊接方法及焊接体
CN102950766A (zh) * 2012-10-31 2013-03-06 温州大学 一种热塑性塑料的激光透射焊接方法
JP2015160334A (ja) * 2014-02-26 2015-09-07 一般財団法人近畿高エネルギー加工技術研究所 樹脂部材の接合方法と検査用ウェルチップの製造方法
CN110466162A (zh) * 2019-08-28 2019-11-19 中南大学 一种双层透明塑料板激光焊接方法
CN111002591A (zh) * 2020-01-10 2020-04-14 深圳技术大学 一种用于塑件的激光透射焊接方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116373313A (zh) * 2023-03-15 2023-07-04 苏州大学 一种陶瓷与透明塑料焊接的方法、设备及陶瓷塑料焊接件

Also Published As

Publication number Publication date
CN111002591A (zh) 2020-04-14

Similar Documents

Publication Publication Date Title
WO2021139066A1 (zh) 一种用于塑件的激光透射焊接方法
Huang et al. Optimization of weld strength for laser welding of steel to PMMA using Taguchi design method
JP3682620B2 (ja) 溶接方法
CN108453374B (zh) 一种铝合金的双光束激光焊接方法及装置
CN110524107A (zh) 一种提高铝钢异种金属激光熔钎焊搭接接头强度的方法
JP2007530219A5 (zh)
KR860000920A (ko) 플루오로폴리머 파이프 및 부착물의 용접방법
US11059233B2 (en) Laser welding system and method using cooling mask to control the width of the weld
JP4490582B2 (ja) レーザー光による熱可塑性合成物質の溶接のための方法と装置
JP4104073B2 (ja) レーザを用いた部材の接合方法及び接合形成認識装置
Liu et al. Clear plastic transmission laser welding using a metal absorber
CN107382044A (zh) 一种透明薄玻璃激光透射焊接的方法
CN110814518A (zh) 一种激光塑料焊接夹具及激光焊接方法
JP2006205515A (ja) 樹脂被覆鋼管の接続部の被覆装置および被覆方法
Nguyen et al. Absorber-free quasi-simultaneous laser welding for microfluidic applications
CN109128507A (zh) 利用激光实现异种金属蜂窝板结构的扩散焊连接方法
US20060283543A1 (en) Pseudo-transmission method of forming and joining articles
JPH04102580A (ja) フッ素樹脂フィルムの突き合せ継目部の溶融接着方法
Sari et al. Applications of laser transmission processes for the joining of plastics, silicon and glass micro parts
CN211028554U (zh) 一种激光塑料焊接夹具
JPH06114943A (ja) フッ素樹脂フィルムの溶融接着方法
Knapp et al. Laser-bonding of long fiber thermoplastic composites for structural assemblies
Kurosaki Radiative heat transfer in plastic welding processes
CN210390151U (zh) 一种热塑性塑料焊接设备
CN112739527B (zh) 激光焊接系统和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20912869

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20912869

Country of ref document: EP

Kind code of ref document: A1