WO2021137607A1 - Anti-vibration material using metal material by-product, having spiral structure - Google Patents

Anti-vibration material using metal material by-product, having spiral structure Download PDF

Info

Publication number
WO2021137607A1
WO2021137607A1 PCT/KR2020/019371 KR2020019371W WO2021137607A1 WO 2021137607 A1 WO2021137607 A1 WO 2021137607A1 KR 2020019371 W KR2020019371 W KR 2020019371W WO 2021137607 A1 WO2021137607 A1 WO 2021137607A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
isolators
product
vibration isolators
metal material
Prior art date
Application number
PCT/KR2020/019371
Other languages
French (fr)
Korean (ko)
Inventor
박준홍
성연욱
이동현
안상기
Original Assignee
한양대학교산학협력단
주식회사 씨앤스파트너스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교산학협력단, 주식회사 씨앤스파트너스 filed Critical 한양대학교산학협력단
Publication of WO2021137607A1 publication Critical patent/WO2021137607A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems

Definitions

  • Embodiments of the present invention relate to a vibration-proof material, and more particularly, a spiral-structured metal material for reducing noise and vibration by using a spiral structure vibration isolator and a rubber pad recycled by-products generated in the metal material manufacturing and processing step. It relates to a dustproof material using by-products.
  • the performance is excellent at the beginning of use, but over time, moisture in the air penetrates into the inside of the mount, or volatile substances inside the mount fly into the air, causing corrosion or deterioration of ductility and cracking like crumbs. It becomes difficult to show
  • the wire-type mount has excellent performance and because it uses a stainless steel material, it has a very long lifespan and can achieve very good performance by using a friction damper.
  • a spiral vibration isolator implemented using a by-product of a metal material is formed to be superimposed on each other in a plurality of arrangements, and a lower frequency vibration is generated due to the friction force between the arrangement of the vibration isolator according to the degree of overlapping.
  • a vibration-proof material using a metal material by-product of a spiral structure is implemented in a spiral along the longitudinal direction in a plurality of arrangements, and a plurality of reducing vibrations generated from a vibration source due to friction between each arrangement of a vibration isolator, and a rubber pad coupled to at least one of both surfaces of the plurality of vibration isolators, wherein the plurality of vibration isolators have a structure overlapping each other along the longitudinal direction of each arrangement.
  • the plurality of vibration isolators according to an embodiment of the present invention may be implemented using a by-product of a metal material.
  • the plurality of vibration isolators according to an embodiment of the present invention may have a structure in which they are superimposed on each other by Equation 1 below.
  • d is the length of the overlapping area of the vibration isolator
  • r is the distance from the center to the peripheral surface based on the vertical section of the vibration isolator.
  • the plurality of vibration isolators according to an embodiment of the present invention may have a structure in which they are superimposed on each other according to Equation 2 below.
  • d is the length of the overlapping area of the vibration isolator
  • r is the distance from the center to the peripheral surface based on the vertical section of the vibration isolator.
  • the frequency of the reduced vibration may increase.
  • the rubber pad according to an embodiment of the present invention is coupled to both surfaces of the plurality of vibration isolators, and the plurality of vibration isolators may be stacked in the form of multiple layers.
  • the plurality of vibration isolators according to an embodiment of the present invention may be arranged in parallel to face the same direction for each layer.
  • the plurality of vibration isolators according to an embodiment of the present invention may form an irregular arrangement to face different directions for each layer.
  • the frequency of the reduced vibration may be lowered.
  • FIG. 1 is a view illustrating a vibration-proof material having a spiral structure according to an embodiment of the present invention.
  • FIG. 2 is an enlarged view of a part of FIG. 1 .
  • FIG. 3 is a diagram illustrating a structure in which a plurality of vibration isolators are superimposed in one embodiment of the present invention.
  • FIG. 4A is a diagram illustrating an embodiment of FIG. 3 .
  • FIG. 4B is a diagram illustrating another embodiment of FIG. 3 .
  • FIG. 5 is a diagram illustrating a modified example of a vibration-proof material having a spiral structure according to an embodiment of the present invention.
  • FIG. 6 is a view for explaining another modified example of the vibration-proof material having a spiral structure according to an embodiment of the present invention.
  • Figure 7a is a graph for comparing the transfer function of the anti-vibration mount of the present invention is used and the general industrial anti-vibration mount.
  • Figure 7b is a view showing the general industrial anti-vibration mount of Figure 7a.
  • FIG. 1 is a view illustrating a vibration-proof material having a spiral structure according to an embodiment of the present invention
  • FIG. 2 is an enlarged view of a part of FIG. 1
  • FIG. 3 is an embodiment of the present invention
  • FIG. 4a is a diagram illustrating an embodiment for FIG. 3
  • FIG. 4b is a diagram to explain another embodiment of
  • FIG. 5 is a diagram illustrating a modified example of a vibration-proof material having a spiral structure in an embodiment of the present invention
  • FIG. 6 is a spiral structure in an embodiment of the present invention. It is a diagram illustrating another modified example of the vibration-proof material.
  • the vibration-proof material having a spiral structure may include a plurality of vibration-proof bodies and rubber pads.
  • Conventional anti-vibration materials generally use synthetic materials and are not eco-friendly materials in most cases, and as time passes, major chemical materials volatilize into the air or moisture is absorbed into the air. There was a problem in that it could not perform as it is.
  • a plurality of vibration isolators can be utilized as eco-friendly materials in that they use industrial waste, which is a by-product from the processing of machine tools.
  • a plurality of vibration isolators may be implemented using by-products of metal materials.
  • the plurality of vibration isolators may be formed in a plurality of arrangements and spirally formed along the longitudinal direction.
  • a plurality of vibration isolators may be arranged side by side in one direction with the vibration isolators having the same length.
  • the present invention is not limited thereto, and the plurality of vibration isolators may be arranged in various arrangements, such as the vibration isolators having different lengths are arranged to cross each other.
  • the plurality of vibration isolators may have a predetermined length and may be implemented in a spiral helix structure along the longitudinal direction.
  • a plurality of vibration isolators is a by-product having a twist-shaped spiral structure that occurs in the processing steps such as chamfering and hole drilling using a rotating body drill when manufacturing industrial steel materials such as steel for construction and steel for ships. It can be implemented as a by-product. .
  • the plurality of vibration isolators may have a structure overlapping each other along the longitudinal direction of each arrangement.
  • each of the vibration isolators arranged side by side in one direction may be implemented such that the surfaces overlapped on both sides or one side are in contact with each other.
  • the vibration isolators located inside the array may overlap other vibration isolators adjacent to both sides, and the vibration isolators located outside the array, that is, at the edge, may overlap with the other vibration isolators adjacent to one side.
  • the plurality of vibration isolators may have a structure that is superimposed on each other by Equation 1 below.
  • d is the length of the overlapping area of the vibration isolator
  • r is the distance from the center to the peripheral surface based on the vertical section of the vibration isolator.
  • the vibration reduction effect of the vibration isolator can be implemented based on the length (d) of the area of the overlapping part as the two adjacent vibration isolators are overlapped.
  • FIG. 4A it corresponds to a case in which the length d of the area is greater than a value of 0 and smaller than the distance from the center to the circumferential surface based on the vertical section of the vibration isolator.
  • the plurality of vibration isolators may have a structure in which they are superimposed on each other according to Equation 2 below.
  • d is the length of the overlapping area of the vibration isolator
  • r is the distance from the center to the peripheral surface based on the vertical section of the vibration isolator.
  • the vibration reduction effect of the vibration isolator can be realized based on the length (d) of the area of the overlapping part.
  • FIG. 4B it corresponds to the case where the length d of the area is equal to the distance r from the center to the circumferential surface with respect to the vertical section of the vibration isolator.
  • the frictional force between the overlapping vibration isolators is heightened, so that the vibration reduction effect can be maximized.
  • a plurality of vibration isolators can reduce vibrations generated from vibration sources due to friction between the respective arrays.
  • the rubber pad may be coupled to at least one of both surfaces of the plurality of vibration isolators.
  • the rubber pad may be combined with one surface of the plurality of vibration isolators as shown in FIG. 1 , and may be combined with both surfaces of the plurality of vibration isolators as shown in FIG. 5 .
  • the rubber pad supports the plurality of vibration isolators from one side or both sides, effectively binding the vibration isolators, but allowing the friction between the vibration isolators to be transmitted well to each other.
  • the frequency of the reduced vibration may increase. Accordingly, it is preferable to reduce the frequency band of vibration by implementing a relatively small thickness of the rubber pad based on the thickness of the plurality of vibration isolators.
  • the rubber pad may be implemented with a material such as styrofoam or urethane, and may be implemented by combining with a material such as foamed concrete or lightweight concrete used for floor insulation.
  • a plurality of vibration isolators may be stacked in the form of multiple layers.
  • rubber pads are combined on both sides of a plurality of vibration isolators to implement a vibration protection mount of a sandwich structure.
  • the frequency of the reduced vibration may be lowered.
  • the thickness of the vibration isolators included in the vibration protection mount implemented in multiple layers is greater than in the case of the vibration mount implemented in a single layer, it can be effective in reducing vibration in a low frequency band.
  • the plurality of vibration isolators may be arranged in parallel to face the same direction for each layer.
  • the plurality of vibration isolators may be arranged irregularly to face different directions for each layer.
  • the plurality of vibration isolators may be arranged irregularly in a direction crossing each other for each layer, a random direction, or the like, or may be irregularly overlapped and stacked.
  • the friction between the vibration isolators is greater when the plurality of vibration isolators are arranged in parallel than when the plurality of vibration isolators are arranged in an irregular arrangement, so that the vibration reduction performance can be increased.
  • Figure 7a is a graph for comparing the transfer function of the anti-vibration mount and the general industrial anti-vibration mount using the dust-proof material of the present invention
  • Figure 7b is a view showing the general industrial anti-vibration mount of Figure 7a.
  • Figure 7a shows a black mount, a yellow mount, a light blue mount, and a general industrial anti-vibration mount corresponding to a white mount, and when vibration is transmitted to the anti-vibration material having a spiral structure of the present invention implemented using one rubber plate and both rubber plates, respectively. It is a graph showing the degree of vibration reduction that appears for each frequency with respect to the transfer function.
  • the general industrial anti-vibration mount shows a reduction performance in a relatively high frequency region as a peak value appears in the range of 100 to 200 Hz
  • the anti-vibration mount of the present invention shows a peak value in the range of 100 Hz or less. Accordingly, it can be confirmed that the reduction performance appears in a relatively low frequency region.
  • FIG. 8 is a sample (single-layer chip) implemented as a single layer of the vibration-proof material of the present invention and a multi-layered sample (multi-layered chip, grid array) and a multi-layered sample in which the interlayer arrangement of the vibration isolator is implemented as a lattice array It is a graph showing the degree of vibration reduction for a sample (multi-layer chip, parallel array) in which the interlayer arrangement of is implemented as a parallel arrangement for each frequency with respect to the transfer function.
  • the frequency range of the reduced vibration decreases as the thickness of the vibration isolator increases.
  • the reduction performance is much better as the peak value in the low frequency band is lower.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

An anti-vibration material using a metal material by-product, having a spiral structure, according to one embodiment of the present invention, comprises: a plurality of vibration isolators formed in a plurality of arrays and implemented in a spiral shape along the longitudinal direction, and reducing vibration generated from a vibration source due to friction between the respective arrays; and a rubber pad coupled to at least one surface of both surfaces of the plurality of vibration isolators, wherein the plurality of vibration isolators have a structure overlapping each other along the longitudinal direction of each array.

Description

나선형 구조의 금속자재 부산물을 활용한 방진소재Anti-vibration material using spiral structure metal by-products
본 발명의 실시예들은 방진소재에 관한 것으로, 더욱 상세하게는 금속자재 제작가공 단계에서 발생하는 부산물을 재활용한 나선형 구조의 방진체와 고무패드를 이용하여 소음진동을 저감시키기 위한 나선형 구조의 금속자재 부산물을 활용한 방진소재에 관한 것이다.Embodiments of the present invention relate to a vibration-proof material, and more particularly, a spiral-structured metal material for reducing noise and vibration by using a spiral structure vibration isolator and a rubber pad recycled by-products generated in the metal material manufacturing and processing step. It relates to a dustproof material using by-products.
종래의 방진 기술들은 성능은 우수하지만, 단점은 크게 2가지로 친환경적 소재가 아니라는 것과 수명이 길지 않다는 점이다. Conventional anti-vibration technologies have excellent performance, but there are two major drawbacks: they are not eco-friendly materials and their lifespan is not long.
더 뛰어난 성능을 나타내기 위해서 다양한 소재를 사용하긴 하지만, 친환경적인 소재가 아닐뿐더러 비싼 소재를 사용하기도 하고 무게 또한 무거울 수 있다. Although various materials are used to show superior performance, it is not an eco-friendly material, and it uses expensive materials and may be heavy.
또한, 사용 초기에는 성능이 우수하지만 시간이 지나면서 공기 중의 수분이 마운트 내부로 침투하거나 마운트 내부에 있는 휘발성 물질들이 공기 중으로 날아가 부식되거나 연성이 떨어지게 되고 부스러기처럼 갈라져버리는 현상이 일어나고 초기의 기계적 성능을 나타내기 어려워진다.In addition, the performance is excellent at the beginning of use, but over time, moisture in the air penetrates into the inside of the mount, or volatile substances inside the mount fly into the air, causing corrosion or deterioration of ductility and cracking like crumbs. It becomes difficult to show
한편, 와이어형식의 마운트는 성능이 뛰어나고 스테인리스 소재를 이용하였기 때문에 수명은 매우 길고 마찰댐퍼를 이용하여 아주 좋은 성능을 낼 수 있다.On the other hand, the wire-type mount has excellent performance and because it uses a stainless steel material, it has a very long lifespan and can achieve very good performance by using a friction damper.
하지만 와이어로프 형태로 만들기 위해 추가적인 제작 공정이 필요하고 와이어 자체를 생산하기 위해서는 많은 공정과정을 거쳐야 하며 따라서 단가가 매우 비싸다는 단점이 있다.However, there is a disadvantage that an additional manufacturing process is required to make the wire rope form, and many processes are required to produce the wire itself, and thus the unit price is very expensive.
관련 선행기술로는, 대한민국 등록특허공보 제10-1806016호가 있다.As a related prior art, there is Korean Patent Registration No. 10-1806016.
본 발명의 일 실시예는 금속자재의 부산물을 이용하여 구현된 나선형의 방진체가 다수의 배열을 이루며 서로 포개어지도록 형성되어, 포개어지는 정도에 따른 방진체의 배열 간 마찰력으로 인해 보다 낮은 주파수의 진동을 저감시키기 위한 나선형 구조의 금속자재 부산물을 활용한 방진소재를 제공한다.In one embodiment of the present invention, a spiral vibration isolator implemented using a by-product of a metal material is formed to be superimposed on each other in a plurality of arrangements, and a lower frequency vibration is generated due to the friction force between the arrangement of the vibration isolator according to the degree of overlapping. To provide a vibration-proof material using a by-product of a metal material having a spiral structure to reduce it.
본 발명이 해결하고자 하는 과제는 이상에서 언급한 과제(들)로 제한되지 않으며, 언급되지 않은 또 다른 과제(들)은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The problem to be solved by the present invention is not limited to the problem(s) mentioned above, and another problem(s) not mentioned will be clearly understood by those skilled in the art from the following description.
본 발명의 일 실시예에 따른 나선형 구조의 금속자재 부산물을 활용한 방진소재는 다수의 배열을 이루며 길이 방향을 따라 나선형으로 구현되고, 각 배열 간의 마찰로 인해 진동원으로부터 발생되는 진동을 저감시키는 다수의 방진체, 및 상기 다수의 방진체의 양면 중 적어도 일면과 결합되는 고무패드를 포함하고, 상기 다수의 방진체는 각 배열의 길이방향을 따라 서로 포개어지는 구조를 가진다.A vibration-proof material using a metal material by-product of a spiral structure according to an embodiment of the present invention is implemented in a spiral along the longitudinal direction in a plurality of arrangements, and a plurality of reducing vibrations generated from a vibration source due to friction between each arrangement of a vibration isolator, and a rubber pad coupled to at least one of both surfaces of the plurality of vibration isolators, wherein the plurality of vibration isolators have a structure overlapping each other along the longitudinal direction of each arrangement.
또한, 본 발명의 일 실시예에 따른 상기 다수의 방진체는 금속자재의 부산물을 이용하여 구현될 수 있다.In addition, the plurality of vibration isolators according to an embodiment of the present invention may be implemented using a by-product of a metal material.
또한, 본 발명의 일 실시예에 따른 상기 다수의 방진체는 하기 수학식 1에 의해 서로 포개어지는 구조를 가질 수 있다.In addition, the plurality of vibration isolators according to an embodiment of the present invention may have a structure in which they are superimposed on each other by Equation 1 below.
[수학식 1][Equation 1]
0 < d <= r0 < d <= r
여기서, d는 상기 방진체가 포개어지는 면적에 대한 길이, r은 상기 방진체의 수직단면을 기준으로 중심부에서 둘레면까지의 거리를 의미함.Here, d is the length of the overlapping area of the vibration isolator, and r is the distance from the center to the peripheral surface based on the vertical section of the vibration isolator.
또한, 본 발명의 일 실시예에 따른 상기 다수의 방진체는 하기 수학식 2에 의해 서로 포개어지는 구조를 가질 수 있다.In addition, the plurality of vibration isolators according to an embodiment of the present invention may have a structure in which they are superimposed on each other according to Equation 2 below.
[수학식 2][Equation 2]
d = rd = r
여기서, d는 상기 방진체가 포개어지는 면적에 대한 길이, r은 상기 방진체의 수직단면을 기준으로 중심부에서 둘레면까지의 거리를 의미함.Here, d is the length of the overlapping area of the vibration isolator, and r is the distance from the center to the peripheral surface based on the vertical section of the vibration isolator.
또한, 본 발명의 일 실시예에 따른 상기 고무패드의 두께가 커질수록 상기 저감되는 진동의 주파수는 높아질 수 있다.In addition, as the thickness of the rubber pad according to an embodiment of the present invention increases, the frequency of the reduced vibration may increase.
또한, 본 발명의 일 실시예에 따른 상기 고무패드는 상기 다수의 방진체의 양면과 결합되며, 상기 다수의 방진체는 복층의 형태로 적층될 수 있다.In addition, the rubber pad according to an embodiment of the present invention is coupled to both surfaces of the plurality of vibration isolators, and the plurality of vibration isolators may be stacked in the form of multiple layers.
또한, 본 발명의 일 실시예에 따른 상기 다수의 방진체는 각 층마다 동일한 방향을 향하도록 평행한 배열을 이룰 수 있다.In addition, the plurality of vibration isolators according to an embodiment of the present invention may be arranged in parallel to face the same direction for each layer.
또한, 본 발명의 일 실시예에 따른 상기 다수의 방진체는 각 층마다 서로 상이한 방향을 향하도록 불규칙한 배열을 이룰 수 있다.In addition, the plurality of vibration isolators according to an embodiment of the present invention may form an irregular arrangement to face different directions for each layer.
또한, 본 발명의 일 실시예에 따른 상기 다수의 방진체가 적층되는 층의 개수가 많아질수록 상기 저감되는 진동의 주파수는 낮아질 수 있다.In addition, as the number of layers on which the plurality of vibration isolators are stacked increases, the frequency of the reduced vibration may be lowered.
기타 실시예들의 구체적인 사항들은 상세한 설명 및 첨부 도면들에 포함되어 있다.The details of other embodiments are included in the detailed description and accompanying drawings.
본 발명의 실시예들에 따르면, 다수의 배열을 이루며 서로 포개어지도록 형성되는 나선형의 방진체를 구현함에 따라, 보다 낮은 주파수의 진동을 저감시킬 수 있어 회전기계나 충격성 진동에 매우 높은 저항성을 가질 수 있다.According to embodiments of the present invention, by implementing a spiral vibration isolator formed to be overlapped with each other in a plurality of arrangements, it is possible to reduce vibration of a lower frequency, so that it can have very high resistance to a rotating machine or impact vibration. have.
또한, 본 발명의 실시예들에 따르면, 공작기계의 가공으로 인한 산업 생산과정에서 발생되는 금속자재의 부산물을 활용하여 방진체를 구현함으로써, 친환경적인 소재를 사용함에 따른 단가 절감 및 수명 연장에 효과적일 수 있다.In addition, according to embodiments of the present invention, it is effective in reducing unit cost and extending life by using eco-friendly materials by implementing a vibration-proof body by utilizing by-products of metal materials generated in the industrial production process due to machining of machine tools. can be
도 1은 본 발명의 일 실시예에 따른 나선형 구조를 가지는 방진소재를 설명하기 위해 도시한 도면이다.1 is a view illustrating a vibration-proof material having a spiral structure according to an embodiment of the present invention.
도 2는 도 1의 일부를 확대한 도면이다.FIG. 2 is an enlarged view of a part of FIG. 1 .
도 3은 본 발명의 일 실시예에 있어서, 다수의 방진체가 포개어진 구조를 설명하기 위해 도시한 도면이다.3 is a diagram illustrating a structure in which a plurality of vibration isolators are superimposed in one embodiment of the present invention.
도 4a는 도 3에 대한 일 실시예를 설명하기 위해 도시한 도면이다.FIG. 4A is a diagram illustrating an embodiment of FIG. 3 .
도 4b는 도 3에 대한 다른 실시예를 설명하기 위해 도시한 도면이다.FIG. 4B is a diagram illustrating another embodiment of FIG. 3 .
도 5는 본 발명의 일 실시예에 있어서, 나선형 구조를 가지는 방진소재의 변형예를 설명하기 위해 도시한 도면이다.5 is a diagram illustrating a modified example of a vibration-proof material having a spiral structure according to an embodiment of the present invention.
도 6은 본 발명의 일 실시예에 있어서, 나선형 구조를 가지는 방진소재의 다른 변형예를 설명하기 위해 도시한 도면이다.6 is a view for explaining another modified example of the vibration-proof material having a spiral structure according to an embodiment of the present invention.
도 7a는 본 발명의 방진소재가 사용된 방진 마운트와 일반산업용 방진 마운트의 전달함수를 비교하기 위한 그래프이다.Figure 7a is a graph for comparing the transfer function of the anti-vibration mount of the present invention is used and the general industrial anti-vibration mount.
도 7b는 도 7a의 일반산업용 방진 마운트를 나타낸 도면이다.Figure 7b is a view showing the general industrial anti-vibration mount of Figure 7a.
도 8은 본 발명의 일 실시예에 있어서, 방진소재의 적층 및 배열 형태에 따른 진동저감 성능을 비교하기 위한 그래프이다.8 is a graph for comparing vibration reduction performance according to the stacking and arrangement of vibration-proof materials in an embodiment of the present invention.
*도면 중 주요 부호에 대한 설명*Description of major symbols in the drawing
10 : 방진소재10: dustproof material
110 : 다수의 방진체110: a number of vibration isolators
120 : 고무패드120: rubber pad
d : 다수의 방진체가 포개어지는 면적에 대한 길이d: the length of the area where multiple vibration isolators are superimposed
r : 다수의 방진체의 수직단면을 기준으로 중심부에서 둘레면까지의 거리r : Distance from the center to the periphery based on the vertical section of multiple vibration isolators
본 발명의 이점 및/또는 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성요소를 지칭한다.Advantages and/or features of the present invention, and methods of achieving them, will become apparent with reference to the embodiments described below in detail in conjunction with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but will be implemented in various different forms, and only these embodiments allow the disclosure of the present invention to be complete, and common knowledge in the art to which the present invention pertains It is provided to fully inform those who have the scope of the invention, and the present invention is only defined by the scope of the claims. Like reference numerals refer to like elements throughout.
이하에서는 첨부된 도면을 참조하여 본 발명의 실시예들을 상세히 설명하기로 한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 일 실시예에 따른 나선형 구조를 가지는 방진소재를 설명하기 위해 도시한 도면이고, 도 2는 도 1의 일부를 확대한 도면이고, 도 3은 본 발명의 일 실시예에 있어서, 다수의 방진체가 포개어진 구조를 설명하기 위해 도시한 도면이고, 도 4a는 도 3에 대한 일 실시예를 설명하기 위해 도시한 도면이고, 도 4b는 도 3에 대한 다른 실시예를 설명하기 위해 도시한 도면이고, 도 5는 본 발명의 일 실시예에 있어서, 나선형 구조를 가지는 방진소재의 변형예를 설명하기 위해 도시한 도면이고, 도 6은 본 발명의 일 실시예에 있어서, 나선형 구조를 가지는 방진소재의 다른 변형예를 설명하기 위해 도시한 도면이다.1 is a view illustrating a vibration-proof material having a spiral structure according to an embodiment of the present invention, FIG. 2 is an enlarged view of a part of FIG. 1, and FIG. 3 is an embodiment of the present invention , is a diagram illustrating a structure in which a plurality of vibration isolators are superimposed, FIG. 4a is a diagram illustrating an embodiment for FIG. 3, and FIG. 4b is a diagram to explain another embodiment of FIG. 5 is a diagram illustrating a modified example of a vibration-proof material having a spiral structure in an embodiment of the present invention, and FIG. 6 is a spiral structure in an embodiment of the present invention. It is a diagram illustrating another modified example of the vibration-proof material.
도 1 및 도 2를 참조하면, 본 발명의 일 실시예에 따른 나선형 구조를 가지는 방진소재는 다수의 방진체와 고무패드를 포함하여 구성될 수 있다. 1 and 2 , the vibration-proof material having a spiral structure according to an embodiment of the present invention may include a plurality of vibration-proof bodies and rubber pads.
종래의 방진소재는 일반적으로 합성 소재를 사용하여 친환경 소재가 아닌 경우가 대부분이며, 시간이 지날수록 주요 화학 소재가 공기 중으로 휘발되거나 공기 중으로 수분이 흡수되면서 소재의 구성, 성분 등이 변화하면서 본 성능을 그대로 발휘하지 못하는 문제점이 있었다.Conventional anti-vibration materials generally use synthetic materials and are not eco-friendly materials in most cases, and as time passes, major chemical materials volatilize into the air or moisture is absorbed into the air. There was a problem in that it could not perform as it is.
이에, 본 발명에 따르면, 다수의 방진체는 공작기계의 가공으로부터 나오는 부산물인 산업 폐기물을 사용한다는 점에서 친환경 소재로서 활용될 수 있다. 구체적으로, 본 발명에서 다수의 방진체는 금속자재의 부산물을 이용하여 구현될 수 있다.Accordingly, according to the present invention, a plurality of vibration isolators can be utilized as eco-friendly materials in that they use industrial waste, which is a by-product from the processing of machine tools. Specifically, in the present invention, a plurality of vibration isolators may be implemented using by-products of metal materials.
다수의 방진체는 다수의 배열을 이루며 길이 방향을 따라 나선형으로 구현될 수 있다.The plurality of vibration isolators may be formed in a plurality of arrangements and spirally formed along the longitudinal direction.
일 실시예로, 다수의 방진체는 도 1에 도시된 바와 같이 동일한 길이를 가지는 방진체가 일 방향을 따라 나란하게 배열될 수 있다. 그러나, 이에 한정되지 않고, 다수의 방진체는 서로 다른 길이를 가지는 방진체가 교차되게 배열되는 등의 다양한 배열을 이룰 수 있다.In one embodiment, as shown in FIG. 1 , a plurality of vibration isolators may be arranged side by side in one direction with the vibration isolators having the same length. However, the present invention is not limited thereto, and the plurality of vibration isolators may be arranged in various arrangements, such as the vibration isolators having different lengths are arranged to cross each other.
다수의 방진체는 소정의 길이를 가지며 길이 방향을 따라 나선형의 헬릭스(helix) 구조로 구현될 수 있다. 구체적으로, 다수의 방진체는 건축용 강재, 선박용 강재 등의 산업용 강재 제작 시, 회전체 드릴을 사용하여 모따기, 구멍뚫기 등의 가공단계에서 발생하는 꽈배기 형상의 나선형 구조를 가지는 부산물로 구현될 수 있다.The plurality of vibration isolators may have a predetermined length and may be implemented in a spiral helix structure along the longitudinal direction. Specifically, a plurality of vibration isolators is a by-product having a twist-shaped spiral structure that occurs in the processing steps such as chamfering and hole drilling using a rotating body drill when manufacturing industrial steel materials such as steel for construction and steel for ships. It can be implemented as a by-product. .
다수의 방진체는 각 배열의 길이방향을 따라 서로 포개어지는 구조를 가질 수 있다. The plurality of vibration isolators may have a structure overlapping each other along the longitudinal direction of each arrangement.
즉, 일 방향을 따라 나란하게 배열되는 각각의 방진체는 양측 또는 일측으로 포개어지는 면이 서로 접촉되도록 구현될 수 있다.That is, each of the vibration isolators arranged side by side in one direction may be implemented such that the surfaces overlapped on both sides or one side are in contact with each other.
예컨대, 배열의 내측에 위치하는 방진체는 양측에 인접한 타 방진체와 서로 겹쳐질 수 있으며, 배열의 외측 즉, 가장자리에 위치하는 방진체는 일측에 인접한 타 방진체와 서로 겹쳐질 수 있다.For example, the vibration isolators located inside the array may overlap other vibration isolators adjacent to both sides, and the vibration isolators located outside the array, that is, at the edge, may overlap with the other vibration isolators adjacent to one side.
일 실시예로, 다수의 방진체는 하기 수학식 1에 의해 서로 포개어지는 구조를 가질 수 있다.In one embodiment, the plurality of vibration isolators may have a structure that is superimposed on each other by Equation 1 below.
[수학식 1][Equation 1]
0 < d <= r0 < d <= r
여기서, d는 방진체가 포개어지는 면적에 대한 길이, r은 방진체의 수직단면을 기준으로 중심부에서 둘레면까지의 거리를 의미함.Here, d is the length of the overlapping area of the vibration isolator, and r is the distance from the center to the peripheral surface based on the vertical section of the vibration isolator.
수학식 1에 의하면, 서로 인접한 두 방진체가 포개어짐에 따라 겹쳐지는 부분에 대한 면적의 길이(d)를 기준으로 방진체의 진동 저감 효과를 구현할 수 있다.According to Equation 1, the vibration reduction effect of the vibration isolator can be implemented based on the length (d) of the area of the overlapping part as the two adjacent vibration isolators are overlapped.
예컨대, 도 4a를 참조하면, 상기 면적의 길이(d)가 0의 값보다 크고 방진체의 수직단면을 기준으로 중심부에서 둘레면까지의 거리보다는 작은 경우에 해당한다.For example, referring to FIG. 4A , it corresponds to a case in which the length d of the area is greater than a value of 0 and smaller than the distance from the center to the circumferential surface based on the vertical section of the vibration isolator.
일 실시예로, 다수의 방진체는 하기 수학식 2에 의해 서로 포개어지는 구조를 가질 수 있다.In one embodiment, the plurality of vibration isolators may have a structure in which they are superimposed on each other according to Equation 2 below.
[수학식 2][Equation 2]
d = rd = r
여기서, d는 방진체가 포개어지는 면적에 대한 길이, r은 방진체의 수직단면을 기준으로 중심부에서 둘레면까지의 거리를 의미함.Here, d is the length of the overlapping area of the vibration isolator, and r is the distance from the center to the peripheral surface based on the vertical section of the vibration isolator.
수학식 2에 의하면, 서로 인접한 두 방진체가 포개어짐에 따라 겹쳐지는 부분에 대한 면적의 길이(d)를 기준으로 방진체의 진동 저감 효과를 구현할 수 있다.According to Equation 2, as the two adjacent vibration isolators are superimposed, the vibration reduction effect of the vibration isolator can be realized based on the length (d) of the area of the overlapping part.
예컨대, 도 4b를 참조하면, 상기 면적의 길이(d)가 방진체의 수직단면을 기준으로 중심부에서 둘레면까지의 거리(r)와 동일한 경우에 해당한다. 이러한 경우, 포개어지는 방진체 간의 마찰력이 고조되어 진동 저감 효과를 극대화시킬 수 있다.For example, referring to FIG. 4B , it corresponds to the case where the length d of the area is equal to the distance r from the center to the circumferential surface with respect to the vertical section of the vibration isolator. In this case, the frictional force between the overlapping vibration isolators is heightened, so that the vibration reduction effect can be maximized.
한편, 상기 면적의 길이(d)가 방진체의 수직단면을 기준으로 중심부에서 둘레면까지의 거리(r) 보다 커지는 경우, 방진체 간 결속력이 커지게 되어 마찰력이 저하됨에 따라 진동 저감 효과가 감소될 수 있다.On the other hand, when the length (d) of the area is greater than the distance (r) from the center to the circumferential surface based on the vertical section of the vibration isolator, the binding force between the vibration isolators increases and the frictional force decreases, thereby reducing the vibration reduction effect. can be
다수의 방진체는 각 배열 간의 마찰로 인해 진동원으로부터 발생되는 진동을 저감시킬 수 있다.A plurality of vibration isolators can reduce vibrations generated from vibration sources due to friction between the respective arrays.
고무패드는 다수의 방진체의 양면 중 적어도 일면과 결합될 수 있다.The rubber pad may be coupled to at least one of both surfaces of the plurality of vibration isolators.
예컨대, 고무패드는 도 1에 도시된 바와 같이 다수의 방진체의 일면과 결합될 수 있고, 도 5에 도시된 바와 같이 다수의 방진체의 양면과 모두 결합될 수 있다.For example, the rubber pad may be combined with one surface of the plurality of vibration isolators as shown in FIG. 1 , and may be combined with both surfaces of the plurality of vibration isolators as shown in FIG. 5 .
이로 인해, 고무패드가 다수의 방진체를 일측 또는 양측에서 지지해줌으로써, 방진체들을 효과적으로 결속하되 방진체 간 마찰이 상호 간 잘 전달되도록 할 수 있다.For this reason, the rubber pad supports the plurality of vibration isolators from one side or both sides, effectively binding the vibration isolators, but allowing the friction between the vibration isolators to be transmitted well to each other.
일 실시예로, 고무패드의 두께가 커질수록 저감되는 진동의 주파수는 높아질 수 있다. 이에 따라, 다수의 방진체의 두께를 기준으로 고무패드의 두께를 상대적으로 작게 구현하여 진동의 주파수 대역을 낮추는 것이 바람직하다.In one embodiment, as the thickness of the rubber pad increases, the frequency of the reduced vibration may increase. Accordingly, it is preferable to reduce the frequency band of vibration by implementing a relatively small thickness of the rubber pad based on the thickness of the plurality of vibration isolators.
참고로, 고무패드는 스티로폼, 우레탄 등의 재료로 구현될 수 있으며, 바닥단열을 위해 사용되는 기포가 포함된 기포 콘크리트, 경량의 콘크리트 등의 재료와 복합하여 구현될 수도 있다.For reference, the rubber pad may be implemented with a material such as styrofoam or urethane, and may be implemented by combining with a material such as foamed concrete or lightweight concrete used for floor insulation.
도 6을 참조하면, 다수의 방진체는 복층의 형태로 적층될 수 있다.Referring to FIG. 6 , a plurality of vibration isolators may be stacked in the form of multiple layers.
즉, 다수의 방진체의 양면에 고무패드가 결합되어 샌드위치 구조의 방진 마운트를 구현할 수 있다. That is, rubber pads are combined on both sides of a plurality of vibration isolators to implement a vibration protection mount of a sandwich structure.
이러한 경우, 다수의 방진체가 적층되는 층의 개수가 많아질수록 상기 저감되는 진동의 주파수는 낮아질 수 있다. 다시 말해, 단층으로 구현된 방진 마운트의 경우보다 복층으로 구현된 방진 마운트에 포함된 방진체들의 두께가 커져 저주파수 대역의 진동을 저감시키는데 효과를 발휘할 수 있다.In this case, as the number of layers on which a plurality of vibration isolators are stacked increases, the frequency of the reduced vibration may be lowered. In other words, since the thickness of the vibration isolators included in the vibration protection mount implemented in multiple layers is greater than in the case of the vibration mount implemented in a single layer, it can be effective in reducing vibration in a low frequency band.
일 실시예로, 다수의 방진체는 각 층마다 동일한 방향을 향하도록 평행한 배열을 이룰 수 있다.In an embodiment, the plurality of vibration isolators may be arranged in parallel to face the same direction for each layer.
다른 실시예로, 다수의 방진체는 각 층마다 서로 상이한 방향을 향하도록 불규칙한 배열을 이룰 수 있다. 다시 말해, 다수의 방진체는 각 층마다 서로 교차하는 방향, 랜덤의 방향 등으로 불규칙하게 배열되거나, 불규칙하게 겹쳐져 적층될 수 있다.In another embodiment, the plurality of vibration isolators may be arranged irregularly to face different directions for each layer. In other words, the plurality of vibration isolators may be arranged irregularly in a direction crossing each other for each layer, a random direction, or the like, or may be irregularly overlapped and stacked.
본 실시예에서, 다수의 방진체는 불규칙한 배열을 이루는 경우에 비해 평행한 배열을 이루는 경우에 보다 방진체 간 마찰이 크게 일어나 진동 저감 성능이 커질 수 있다.In the present embodiment, the friction between the vibration isolators is greater when the plurality of vibration isolators are arranged in parallel than when the plurality of vibration isolators are arranged in an irregular arrangement, so that the vibration reduction performance can be increased.
이로써, 본 발명의 실시예들에 따르면, 다수의 배열을 이루며 서로 포개어지도록 형성되는 나선형의 방진체를 구현함에 따라, 보다 낮은 주파수의 진동을 저감시킬 수 있어 회전기계나 충격성 진동에 매우 높은 저항성을 가질 수 있다.Accordingly, according to embodiments of the present invention, by implementing a spiral vibration isolator formed to be overlapped with each other in a plurality of arrangements, it is possible to reduce vibrations of lower frequencies, and thus very high resistance to rotating machines or impact vibrations. can have
뿐만 아니라, 본 발명의 실시예들에 따르면, 공작기계의 가공으로 인한 산업 생산과정에서 발생되는 금속자재의 부산물을 활용하여 방진체를 구현함으로써, 친환경적인 소재를 사용함에 따른 단가 절감 및 수명 연장에 효과적일 수 있다.In addition, according to the embodiments of the present invention, by implementing a vibration isolator by utilizing the by-product of the metal material generated in the industrial production process due to the processing of the machine tool, it is possible to reduce the unit cost and extend the lifespan by using an eco-friendly material. It can be effective.
도 7a는 본 발명의 방진소재가 사용된 방진 마운트와 일반산업용 방진 마운트의 전달함수를 비교하기 위한 그래프이고, 도 7b는 도 7a의 일반산업용 방진 마운트를 나타낸 도면이다.Figure 7a is a graph for comparing the transfer function of the anti-vibration mount and the general industrial anti-vibration mount using the dust-proof material of the present invention, Figure 7b is a view showing the general industrial anti-vibration mount of Figure 7a.
도 7a는 검은색 마운트, 노란색 마운트, 하늘색 마운트, 흰색 마운트에 해당하는 일반산업용 방진 마운트와 한쪽 고무판 및 양쪽 고무판을 각각 사용하여 구현된 본 발명의 나선형 구조를 가지는 방진소재에 대하여 진동이 전달될 때 나타나는 진동 저감 정도를 전달함수에 대해 주파수 별로 나타낸 그래프이다. Figure 7a shows a black mount, a yellow mount, a light blue mount, and a general industrial anti-vibration mount corresponding to a white mount, and when vibration is transmitted to the anti-vibration material having a spiral structure of the present invention implemented using one rubber plate and both rubber plates, respectively. It is a graph showing the degree of vibration reduction that appears for each frequency with respect to the transfer function.
도 7a를 참조하면, 일반산업용 방진 마운트에 비해 본 발명의 방진 마운트의 경우 보다 낮은 주파수 대역에서 저감 성능이 나타나는 것을 알 수 있다.Referring to Figure 7a, it can be seen that the reduction performance appears in a lower frequency band than in the case of the anti-vibration mount of the present invention compared to the general-purpose anti-vibration mount.
구체적으로, 일반산업용 방진 마운트는 100 내지 200 Hz 범위에서 피크값이 나타남에 따라 상대적으로 높은 주파수 영역에서 저감 성능이 나타나는 반면에, 본 발명의 방진 마운트는 100 Hz 이하의 범위에서 피크값이 나타남에 따라 상대적으로 낮은 주파수 영역에서 저감 성능이 나타나는 것을 확인할 수 있다.Specifically, the general industrial anti-vibration mount shows a reduction performance in a relatively high frequency region as a peak value appears in the range of 100 to 200 Hz, whereas the anti-vibration mount of the present invention shows a peak value in the range of 100 Hz or less. Accordingly, it can be confirmed that the reduction performance appears in a relatively low frequency region.
한편, 본 발명의 경우, 한쪽 고무판을 사용한 경우보다 양쪽 고무판을 사용한 경우에 더 낮은 피크값을 나타내고 있어 저주파수 대역에서의 저감 성능이 훨씬 뛰어남을 알 수 있다.On the other hand, in the case of the present invention, it can be seen that a lower peak value is shown when both rubber plates are used than when one rubber plate is used, so that the reduction performance in the low frequency band is much superior.
도 8은 본 발명의 일 실시예에 있어서, 방진소재의 적층 및 배열 형태에 따른 진동저감 성능을 비교하기 위한 그래프이다.8 is a graph for comparing vibration reduction performance according to the stacking and arrangement of vibration-proof materials in an embodiment of the present invention.
도 8은 본 발명의 방진소재를 단층으로 구현한 샘플(단층 Chip)과 복층으로 구현하되 방진체의 층 간 배열을 격자 배열로 구현한 샘플(복층 Chip, Grid 배열)과 복층으로 구현하되 방진체의 층 간 배열을 평행한 배열로 구현한 샘플(복층 Chip, 평행 배열)에 대해 나타나는 진동 저감 정도를 전달함수에 대해 주파수 별로 나타낸 그래프이다.8 is a sample (single-layer chip) implemented as a single layer of the vibration-proof material of the present invention and a multi-layered sample (multi-layered chip, grid array) and a multi-layered sample in which the interlayer arrangement of the vibration isolator is implemented as a lattice array It is a graph showing the degree of vibration reduction for a sample (multi-layer chip, parallel array) in which the interlayer arrangement of is implemented as a parallel arrangement for each frequency with respect to the transfer function.
도 8을 참조하면, 단층으로 구현한 샘플에 비해 복층으로 구현한 샘플의 경우, 방진체의 두께가 커짐에 따라 저감되는 진동의 주파수 범위가 감소하는 것을 알 수 있다. 또한, 복층으로 구현한 샘플 중에서 격자 배열로 구현한 샘플에 비해 평행한 배열로 구현한 샘플의 경우, 저주파수 대역에서의 피크값이 낮게 나타남에 따라 저감 성능이 훨씬 뛰어남을 확인할 수 있다.Referring to FIG. 8 , it can be seen that in the case of a sample implemented as a multi-layer compared to a sample implemented as a single layer, the frequency range of the reduced vibration decreases as the thickness of the vibration isolator increases. In addition, in the case of a sample implemented in a parallel arrangement compared to a sample implemented in a lattice arrangement among samples implemented as multiple layers, it can be confirmed that the reduction performance is much better as the peak value in the low frequency band is lower.
지금까지 본 발명에 따른 구체적인 실시예에 관하여 설명하였으나, 본 발명의 범위에서 벗어나지 않는 한도 내에서는 여러 가지 변형이 가능함은 물론이다. 그러므로, 본 발명의 범위는 설명된 실시예에 국한되어 정해져서는 안 되며, 후술하는 특허 청구의 범위뿐 아니라 이 특허 청구의 범위와 균등한 것들에 의해 정해져야 한다.Although specific embodiments according to the present invention have been described so far, various modifications are possible without departing from the scope of the present invention. Therefore, the scope of the present invention should not be limited to the described embodiments, but should be defined by the claims described below as well as the claims and equivalents.
이상과 같이 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 이는 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. 따라서, 본 발명 사상은 아래에 기재된 특허청구범위에 의해서만 파악되어야 하고, 이의 균등 또는 등가적 변형 모두는 본 발명 사상의 범주에 속한다고 할 것이다.As described above, although the present invention has been described with reference to the limited examples and drawings, the present invention is not limited to the above examples, which are various modifications and variations from these descriptions by those of ordinary skill in the art to which the present invention pertains. Transformation is possible. Accordingly, the spirit of the present invention should be understood only by the claims described below, and all equivalents or equivalent modifications thereof will fall within the scope of the spirit of the present invention.

Claims (10)

  1. 다수의 배열을 이루며 길이 방향을 따라 나선형으로 구현되고, 각 배열 간의 마찰로 인해 진동원으로부터 발생되는 진동을 저감시키는 다수의 방진체; 및A plurality of vibration isolators that form a plurality of arrays and are spirally implemented along the longitudinal direction and reduce vibrations generated from vibration sources due to friction between the respective arrays; and
    상기 다수의 방진체의 양면 중 적어도 일면과 결합되는 고무패드를 포함하고,a rubber pad coupled to at least one of both surfaces of the plurality of vibration isolators;
    상기 다수의 방진체는 각 배열의 길이방향을 따라 서로 포개어지는 구조를 가지는 것을 특징으로 하는 나선형 구조의 금속자재 부산물을 활용한 방진소재.The plurality of vibration isolators is a vibration-proof material using a metal material by-product of a spiral structure, characterized in that it has a structure that is superimposed on each other along the longitudinal direction of each arrangement.
  2. 제1항에 있어서,According to claim 1,
    상기 다수의 방진체는 금속자재의 부산물을 이용하여 구현되는 것을 특징으로 하는 나선형 구조의 금속자재 부산물을 활용한 방진소재.The plurality of vibration isolators is a vibration-proof material using a by-product of a metal material having a spiral structure, characterized in that it is implemented using a by-product of a metal material.
  3. 제1항에 있어서,According to claim 1,
    상기 다수의 방진체는 하기 수학식 1에 의해 서로 포개어지는 구조를 가지는 것을 특징으로 하는 나선형 구조의 금속자재 부산물을 활용한 방진소재.The vibration-proof material using a metal material by-product of a spiral structure, characterized in that the plurality of vibration isolators have a structure that is superimposed on each other by Equation 1 below.
    [수학식 1][Equation 1]
    0 < d <= r0 < d <= r
    여기서, d는 상기 방진체가 포개어지는 면적에 대한 길이, r은 상기 방진체의 수직단면을 기준으로 중심부에서 둘레면까지의 거리를 의미함.Here, d is the length of the overlapping area of the vibration isolator, and r is the distance from the center to the circumferential surface based on the vertical section of the vibration isolator.
  4. 제3항에 있어서,4. The method of claim 3,
    상기 다수의 방진체는 하기 수학식 2에 의해 서로 포개어지는 구조를 가지는 것을 특징으로 하는 나선형 구조의 금속자재 부산물을 활용한 방진소재.The plurality of vibration isolators is a vibration-proof material using a metal material by-product of a spiral structure, characterized in that it has a structure that is superimposed on each other by the following Equation (2).
    [수학식 2][Equation 2]
    d = rd = r
    여기서, d는 상기 방진체가 포개어지는 면적에 대한 길이, r은 상기 방진체의 수직단면을 기준으로 중심부에서 둘레면까지의 거리를 의미함.Here, d is the length of the overlapping area of the vibration isolator, and r is the distance from the center to the peripheral surface based on the vertical section of the vibration isolator.
  5. 제1항에 있어서,According to claim 1,
    상기 고무패드의 두께가 커질수록 상기 저감되는 진동의 주파수는 높아지는 것을 특징으로 하는 나선형 구조의 금속자재 부산물을 활용한 방진소재.As the thickness of the rubber pad increases, the frequency of the reduced vibration increases.
  6. 제1항에 있어서,According to claim 1,
    상기 고무패드는 상기 다수의 방진체의 양면과 결합되며,The rubber pad is coupled to both surfaces of the plurality of vibration isolators,
    상기 다수의 방진체는 복층의 형태로 적층되는 것을 특징으로 하는 나선형 구조의 금속자재 부산물을 활용한 방진소재.A vibration-proof material using a metal material by-product of a spiral structure, characterized in that the plurality of vibration isolators are stacked in the form of multiple layers.
  7. 제6항에 있어서,7. The method of claim 6,
    상기 고무패드는 스티로폼 또는 우레탄 재료로 구현 가능하며, 소정 크기의 기포를 포함하는 기포 콘크리트 또는 경량의 콘크리트 재료와 복합하여 구현 가능한 것을 특징으로 하는 나선형 구조의 금속자재 부산물을 활용한 방진소재.The rubber pad can be implemented with Styrofoam or urethane material, and can be implemented by combining with aerated concrete or lightweight concrete material containing air bubbles of a predetermined size.
  8. 제6항에 있어서,7. The method of claim 6,
    상기 다수의 방진체는 각 층마다 동일한 방향을 향하도록 평행한 배열을 이루는 것을 특징으로 하는 나선형 구조의 금속자재 부산물을 활용한 방진소재.The vibration-proof material using a metal material by-product of a spiral structure, characterized in that the plurality of vibration isolators are arranged in parallel to face the same direction for each layer.
  9. 제6항에 있어서,7. The method of claim 6,
    상기 다수의 방진체는 각 층마다 서로 상이한 방향을 향하도록 불규칙한 배열을 이루는 것을 특징으로 하는 나선형 구조의 금속자재 부산물을 활용한 방진소재.The vibration-proof material using a metal material by-product of a spiral structure, characterized in that the plurality of vibration isolators are irregularly arranged to face different directions for each layer.
  10. 제6항에 있어서,7. The method of claim 6,
    상기 다수의 방진체가 적층되는 층의 개수가 많아질수록 상기 저감되는 진동의 주파수는 낮아지는 것을 특징으로 하는 나선형 구조의 금속자재 부산물을 활용한 방진소재.As the number of layers in which the plurality of vibration isolators are stacked increases, the frequency of the reduced vibration is lowered.
PCT/KR2020/019371 2019-12-30 2020-12-30 Anti-vibration material using metal material by-product, having spiral structure WO2021137607A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190178570A KR102121218B1 (en) 2019-12-30 2019-12-30 Vibration absorber using by-product of metal material with spiral structure
KR10-2019-0178570 2019-12-30

Publications (1)

Publication Number Publication Date
WO2021137607A1 true WO2021137607A1 (en) 2021-07-08

Family

ID=71087314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/019371 WO2021137607A1 (en) 2019-12-30 2020-12-30 Anti-vibration material using metal material by-product, having spiral structure

Country Status (2)

Country Link
KR (1) KR102121218B1 (en)
WO (1) WO2021137607A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102121218B1 (en) * 2019-12-30 2020-06-10 한양대학교 산학협력단 Vibration absorber using by-product of metal material with spiral structure
KR102552318B1 (en) * 2021-10-05 2023-07-07 한양대학교 산학협력단 Anti vibration pad

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990000427U (en) * 1997-06-10 1999-01-15 이종석 Spring dustproof
KR100523348B1 (en) * 2002-10-21 2005-10-24 주식회사 원진 The insulation and vibration-absorption material made of polystyrene foam chips, and the manufacturing method of it
KR100600668B1 (en) * 2004-10-18 2006-07-13 한국과학기술연구원 Air foil bearing having a porous foil
JP4956873B2 (en) * 2001-07-02 2012-06-20 東洋製罐株式会社 Vibration isolator, method for manufacturing the vibration isolator, and apparatus for manufacturing the vibration isolator
CN110529537A (en) * 2019-09-18 2019-12-03 中国人民解放军陆军工程大学 A kind of endless metal rubber-stranded wire helical spring combined shock absorber
KR102121218B1 (en) * 2019-12-30 2020-06-10 한양대학교 산학협력단 Vibration absorber using by-product of metal material with spiral structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990000427U (en) * 1997-06-10 1999-01-15 이종석 Spring dustproof
JP4956873B2 (en) * 2001-07-02 2012-06-20 東洋製罐株式会社 Vibration isolator, method for manufacturing the vibration isolator, and apparatus for manufacturing the vibration isolator
KR100523348B1 (en) * 2002-10-21 2005-10-24 주식회사 원진 The insulation and vibration-absorption material made of polystyrene foam chips, and the manufacturing method of it
KR100600668B1 (en) * 2004-10-18 2006-07-13 한국과학기술연구원 Air foil bearing having a porous foil
CN110529537A (en) * 2019-09-18 2019-12-03 中国人民解放军陆军工程大学 A kind of endless metal rubber-stranded wire helical spring combined shock absorber
KR102121218B1 (en) * 2019-12-30 2020-06-10 한양대학교 산학협력단 Vibration absorber using by-product of metal material with spiral structure

Also Published As

Publication number Publication date
KR102121218B1 (en) 2020-06-10

Similar Documents

Publication Publication Date Title
WO2021137607A1 (en) Anti-vibration material using metal material by-product, having spiral structure
WO2011129580A2 (en) Fit-together wall body having improved sound absorbing and screening performance and a fitted-together structure comprising the same
WO2012091262A1 (en) Double-sided cutting insert
WO2022164252A1 (en) Member for preventing noise between floors, having pentawall vibration-proofing structure
WO2014185574A1 (en) Method of improving weldability of hot stamping parts
WO2013187650A1 (en) Touch panel
DE69014954T2 (en) Layered ceramic arrangement and method for its production.
WO2020180052A1 (en) Case for secondary battery, and secondary battery
WO2018048165A1 (en) Stacked electrode assembly and flexible secondary battery comprising same
CN1396501A (en) Electronic equipment
WO2012173393A2 (en) Sleeve support module for transmission line
WO2015084025A1 (en) Non-adhesive type vibration reduction apparatus
WO2014104431A1 (en) Support pad for drill for processing deep hole
WO2014133202A1 (en) Vibration reduction device of muffler tail-pipe for construction equipment
CN212751336U (en) Novel female overlap joint structure of arranging of stromatolite
WO2016167472A1 (en) Cutting insert
WO2016167497A1 (en) Honeycomb structure having crack resistance
WO2023080315A1 (en) Insulating cover device of pipe-insulating structure, and manufacturing method therefor
WO2021162361A1 (en) Secondary battery pressurization device and pressurization method
WO2023074923A1 (en) Robot spindle adapter for high rigidity and vibration damping, and machining robot equipped with same
WO2019037709A1 (en) Cable gland
US20030211283A1 (en) Stacked sheet shock absorbing elastomeric device
WO2024063196A1 (en) Floor impact sound isolation matereial for preventing inter-floor noise
WO2023239066A1 (en) Busbar frame assembly and battery module comprising same
WO2022231201A1 (en) Heat dissipation member and battery pack including same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20910845

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20910845

Country of ref document: EP

Kind code of ref document: A1