WO2016167497A1 - Honeycomb structure having crack resistance - Google Patents

Honeycomb structure having crack resistance Download PDF

Info

Publication number
WO2016167497A1
WO2016167497A1 PCT/KR2016/003238 KR2016003238W WO2016167497A1 WO 2016167497 A1 WO2016167497 A1 WO 2016167497A1 KR 2016003238 W KR2016003238 W KR 2016003238W WO 2016167497 A1 WO2016167497 A1 WO 2016167497A1
Authority
WO
WIPO (PCT)
Prior art keywords
honeycomb structure
wall
present
blocks
honeycomb
Prior art date
Application number
PCT/KR2016/003238
Other languages
French (fr)
Korean (ko)
Inventor
이현재
올렌켄
Original Assignee
주식회사 엔바이온
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엔바이온 filed Critical 주식회사 엔바이온
Priority to CN201680018341.9A priority Critical patent/CN107532490B/en
Publication of WO2016167497A1 publication Critical patent/WO2016167497A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16SCONSTRUCTIONAL ELEMENTS IN GENERAL; STRUCTURES BUILT-UP FROM SUCH ELEMENTS, IN GENERAL
    • F16S3/00Elongated members, e.g. profiled members; Assemblies thereof; Gratings or grilles

Definitions

  • the present invention relates to a honeycomb structure of the present invention, and more particularly, to a honeycomb structure having high crack resistance.
  • a honeycomb structure is a structure in which a plurality of cells for fluid flow are formed in a honeycomb shape, and is used for various purposes such as heat storage material, diesel particulate filter (DPF), and catalyst carrier.
  • DPF diesel particulate filter
  • Ceramics-based honeycomb structure is manufactured by a molding method such as extrusion, injection, etc., there is a problem that it is difficult to expand to a large-size honeycomb structure because a crack occurs on the surface of the structure during the drying process after molding. Due to this problem, a method of stacking and bonding a small honeycomb structure to a large capacity fluid flow is used, but this method requires the design of additional processes such as lamination and bonding.
  • silicon carbide is easy to accumulate and thermally regenerate due to high thermal conductivity, so that the use of Regenerative Thermal Oxidation System (RTO) as a heat storage material is considered.
  • RTO Regenerative Thermal Oxidation System
  • silicon carbide has a high heat resistance and chemical resistance has been increasingly used as a filter such as DPF.
  • DPF filter
  • an object of the present invention is to provide a honeycomb structure having a structure effective to suppress crack generation in ceramic-based honeycomb structures such as silicon carbide, cordierite, alumina, mullite, and the like. .
  • an object of the present invention is to provide a honeycomb structure having crack resistance and easy capacity increase.
  • the present invention in the honeycomb structure including a plurality of cells extending in the longitudinal direction and partitioned by a partition to provide a channel for the flow of fluid, the outer wall surrounding the honeycomb structure And at least a portion of the outer wall is provided with a stress relief feature.
  • the stress relaxation feature may be implemented by the outer wall end portion.
  • the outer wall end portion may extend in the longitudinal direction of the honeycomb structure.
  • the outer wall termination portion may be implemented by opening at least a portion of at least one cell constituting the honeycomb structure.
  • the stress relaxation feature may be implemented by the outer wall bending portion.
  • the outer wall bending portion may have a notched surface shape.
  • the outer wall bending part may have a curvature recessed inward.
  • the honeycomb structure comprising a plurality of cells extending in the longitudinal direction and partitioned by a partition to provide a channel for the flow of fluid
  • the honeycomb includes a plurality of partitionable blocks, a boundary between the blocks, and an outer wall surrounding the structure, wherein the outer wall at a position corresponding to the boundary between the blocks is provided with at least one stress relieving feature.
  • the cell size of the boundary between the blocks is preferably smaller than the cell size inside the block.
  • the partition wall of the boundary between the blocks may have a larger thickness than the partition wall inside the block.
  • Honeycomb structure according to an embodiment of the present invention can be applied to heat storage material, diesel particulate filter, catalyst carrier and the like.
  • a channel may be formed at the center of the honeycomb structure by removing at least some of the partition walls.
  • the honeycomb structure of the present invention is easily scalable.
  • FIG. 1 is a view for explaining a honeycomb structure of the present invention.
  • FIG. 2 is a diagram schematically showing a cross-sectional structure of a honeycomb structure according to a first embodiment of the present invention.
  • FIG. 3 is a diagram schematically illustrating a cross-sectional structure of a honeycomb structure according to a second embodiment of the present invention.
  • FIG. 4 is a diagram schematically showing a cross-sectional structure of a honeycomb structure according to a third embodiment of the present invention.
  • Rf residual stress relaxation feature
  • FIG. 6 is a cross-sectional view for schematically illustrating a honeycomb structure according to a fourth embodiment of the present invention.
  • FIG. 7 is a cross-sectional view for schematically illustrating a honeycomb structure according to a fifth embodiment of the present invention.
  • FIG. 8 is a cross-sectional view for schematically illustrating a honeycomb structure according to a sixth embodiment of the present invention.
  • FIG. 9 is a view illustrating some components of FIG. 8 in detail.
  • FIG. 10 is a cross-sectional view for schematically illustrating a honeycomb structure according to a seventh embodiment of the present invention.
  • FIG. 11 is a view illustrating some components of FIG. 10 in detail.
  • FIG. 12 is a diagram schematically showing a honeycomb structure according to an eighth embodiment of the present invention.
  • FIG. 13 is a diagram schematically showing a honeycomb structure according to a ninth embodiment of the present invention.
  • FIG. 14 is an enlarged view of a portion of FIG. 13.
  • FIG. 15 is a view schematically showing a honeycomb product according to another embodiment of the present invention.
  • 1 is a view for explaining the structure of the honeycomb structure.
  • the honeycomb structure 10 includes a plurality of cells 12 partitioned in a lattice shape.
  • the cell 12 provides a channel for the flow of the fluid.
  • the cell 12 extends in the longitudinal direction of the honeycomb structure 10, and in some cases, one end of the cell 12 may be closed or both ends may be open.
  • Individual cells of the honeycomb structure 10 are partitioned by cell walls.
  • the inner wall 14 and outer wall 16 partition the cells of the honeycomb structure 10 and the thickness thereof can be appropriately designed.
  • the outer wall 16 is designed to have a larger thickness than the inner wall 14, and in some cases, the inner wall 14 may have a different thickness.
  • each cell is shown as having a cuboid shape in cross section in FIG. 1, the cross-sectional shape of the cell is merely exemplary.
  • the honeycomb structure may be made of various materials such as cordierite, alumina, mullite, and silicon carbide.
  • the honeycomb structure may be made of a porous material to facilitate fluid flow between each cell.
  • At least one selected from the group consisting of cordierite, alumina, mullite, and SiC is the main material, and as a molding aid, a raw material including an organic binder such as PVA and MC and an inorganic binder such as clay, alumina, and silica is blended. do.
  • paraffin wax steric acid, mineral oil or high boiling oil may be added to the raw material.
  • the blended raw material is kneaded uniformly in a kneader, aged for a certain period of time, and then extruded through an extruder.
  • the molded body extruded by the extruder is cut to a certain size and dried. Wet drying, vacuum drying and microwave drying may be used to make the drying speed uniform. If it dries to a certain strength, dry it for more than 12 hours at 50 ⁇ 150 °C. If much moisture is left in the drying process, the water evaporates rapidly during the sintering process and may cause cracks, thereby minimizing moisture in the molded body.
  • the sintering process is carried out after drying, and the optimum sintering conditions are set according to the sintering characteristics of the main material and the inorganic binder. Usually, the sintering process is performed at 800 to 1600 ° C. for 3 to 24 hours.
  • a porous honeycomb structure may be prepared by adding a pore former that can be oxidized or volatilized by heat treatment such as carbon component, starch, polymer beads, and the like.
  • the honeycomb structure shrinks upon drying after molding, and generally dries faster on the structure surface than inside. This causes a difference in the drying rate between the surface of the structure and the interior, and thus residual stress exists on the surface of the outer wall of the structure. This residual stress is the tensile stress caused by the internal structure constraining the contraction of the outer wall surface. Thus, the tensile stress remaining on the outer wall surface causes the generation and propagation of cracks beyond a certain magnitude that the structure can tolerate.
  • 1 illustrates a crack (C) generated during drying on the upper surface of the structure. Similar stresses and cracks can occur in cycles of heating and cooling during honeycomb structure operation.
  • the capacity of the honeycomb structure needs to be accompanied by a design considering resistance to cracks.
  • FIG. 2 is a view schematically showing a cross-sectional structure of the honeycomb structure according to an embodiment of the present invention.
  • the honeycomb structure 100 is exemplarily composed of a cell 112, an inner wall 114, and an outer wall 116 arranged in a lattice arrangement.
  • the honeycomb structure 100 has a residual stress relaxation characteristic Rf on the outer wall 116.
  • the residual stress relaxation feature Rf includes an outer wall termination that breaks continuity around the outer wall.
  • the outer wall end portion functions as a free end. That is, the outer wall is no longer continuous along the perimeter of the structure, and the cut off portion forms the outer wall free end.
  • outer wall end portion is shown as a gap in the figure, it extends in the longitudinal direction of the honeycomb structure, that is, the extending direction of the cell in three dimensions.
  • the outer wall end portion may extend throughout the longitudinal direction of the honeycomb structure, or alternatively may extend only partially in the longitudinal direction.
  • the outer wall end portion may be repeated, for example, a predetermined period or irregularly, based on the cell spacing.
  • the honeycomb structure can be manufactured by the following method.
  • the blended raw material is kneaded uniformly in a kneader, subjected to aging for a certain period of time, and then extruded through an extruder.
  • the mold of the extruder for the extrusion of the honeycomb structure of FIG. 2 may be provided with a honeycomb structure and a corresponding structure for forming the stress relief feature Rf.
  • the corresponding structure may have a negative shape relative to the stress relaxation feature Rf.
  • a protruding structure extending in the longitudinal direction may be formed at a corresponding position of the extrusion die in order to form the long slit-shaped outer wall end portion.
  • the molded body extruded by the extruder is cut to a certain size and dried. Wet drying, vacuum drying and microwave drying may be used to make the drying speed uniform. If it dries to a certain strength, dry it for more than 12 hours at 50 ⁇ 150 °C. If much moisture is left in the drying process, the water evaporates rapidly during the sintering process and may cause cracks, thereby minimizing moisture in the molded body.
  • the sintering process is carried out after drying, and the optimum sintering conditions are set according to the sintering characteristics of the main material and the inorganic binder. Usually, the sintering process is performed at 800 to 1600 ° C. for 3 to 24 hours.
  • honeycomb structured manufacturing method illustrated in FIG. 2 is exemplified above, the same method may be applied to the above manufacturing method except that the shape of the mold is changed.
  • FIG. 3 is a diagram schematically illustrating a cross-sectional structure of a honeycomb structure according to a second embodiment of the present invention.
  • the residual stress relief feature Rf of FIG. 3 is another implementation of the outer wall termination.
  • one cell does not have an outer wall and is exposed to the outside. Even in such a structure, the residual stress relaxation feature still breaks the continuity of the outer walls on the left and right sides of the cell.
  • FIG. 3 shows how to form an outer wall termination by exposing a cell, but those skilled in the art will appreciate that two or more cells adjacent to the outer wall surface or two or more cells adjacent in a direction perpendicular to the outer wall surface are shown in the art. It will be appreciated that they can be exposed in the same way.
  • FIG. 4 is a diagram schematically showing a cross-sectional structure of a honeycomb structure according to a third embodiment of the present invention.
  • the outer wall termination is implemented by removing some outer walls of two adjacent surface cells.
  • the inner wall intersection point (dashed circle) of the lower cell is exposed to the outside.
  • Rf residual stress relaxation feature
  • the residual tensile stress acts at any point P on the surface of the outer wall 116 as the dry shrinkage occurs.
  • This can be explained by the limitation of the structure on the contraction of the outer wall. That is, the outer wall cannot contract to the extent corresponding to drying and the corresponding tensile stress remains on the outer wall as a stress. This tensile stress generates and propagates surface cracks.
  • the deformation of the outer wall may be caused by the residual stress relaxation feature Rf such as the outer wall end portion. That is, the outer wall end portion functions as a free end, so that the structure portion adjacent thereto can be deformed in a direction to solve or alleviate the residual stress.
  • the outer wall adjacent to the free end of the outer wall can be relatively freely contracted, so that the residual stress is eliminated.
  • the residual stress relaxation characteristic Rf such as the free end may act as an obstacle to propagation of the crack. Cracks generated on the outer wall surface propagate the outer wall. However, when reaching the free end, which is a discontinuous section of the outer wall, the propagation energy of the crack is released and as a result, the stress at the free end can be relaxed. In this case, the propagation of cracks can be efficiently suppressed by arranging the plurality of stress relaxation features Rf at predetermined intervals on the outer circumferential surface of the structure.
  • FIG. 6 is a cross-sectional view for schematically illustrating a honeycomb structure according to a fourth embodiment of the present invention.
  • the honeycomb structure 100 has a residual stress relaxation characteristic Rf such as an outer wall bending portion.
  • the outer wall bending portion may have a negative curvature.
  • the stress is relaxed in the outer wall bend in a manner similar to that described with respect to FIG. 5.
  • the structure has an effect similar to the deformation at the free end. That is, the outer wall length corresponding to the cell increases while the outer wall thickness is kept substantially constant in the outer wall bending portion.
  • the increased outer wall length can serve as a buffer for outer wall deformation.
  • FIG. 7 is a cross-sectional view for schematically illustrating a honeycomb structure according to a fifth embodiment of the present invention.
  • the honeycomb structure 100 includes an outer wall bending portion as a residual stress relaxation characteristic Rf. Although the unit length of the outer wall increases in the outer wall bending portion, the outer shape is different in that the outer shape is notched, not negative curvature.
  • honeycomb structure 100 having an external appearance having a rectangular pillar shape has been described, but the honeycomb structure of the present invention is not limited thereto. It will be appreciated by those skilled in the art that, for example, a cylindrical honeycomb structure can be designed to have the stress relaxation features of the present invention. In this case, at least one stress relaxation feature may be arranged at predetermined intervals along the circumference of the honeycomb structure to extend in the longitudinal direction of the structure.
  • the honeycomb structure 100 according to the embodiment of the present invention can suppress crack generation and propagation. Accordingly, it is possible to implement a honeycomb structure having a large capacity and a large area.
  • the stress relaxation mechanism according to the embodiments of the present invention described above is for the purpose of understanding the present invention.
  • the honeycomb structure 100 of the present invention may suppress the generation and propagation of cracks by a stress relaxation mechanism different from the above, and such a mechanism naturally falls within the scope of the technical idea of the present invention.
  • FIG. 8 is a cross-sectional view for schematically illustrating a honeycomb structure according to a sixth embodiment of the present invention.
  • the honeycomb structure 200 includes a plurality of sub blocks 110.
  • Each sub block 110 may be approximately 7.5 cm long and 30 cm long, for example.
  • the cell size of the structure 200 is preferably 15 to 50 cpsi for the heat storage material, 25 to 100 cpsi for the DPF, and 50 to 400 cpsi for the catalyst carrier.
  • the cell size may be set to an appropriate size as required.
  • An outer wall 116 surrounds the circumference of the plurality of sub blocks 110.
  • Residual stress relaxation characteristics Rf are provided at predetermined points of the outer wall.
  • the residual stress relaxation feature Rf may be configured as an outer wall end portion or an outer wall bending portion as described above. As shown, the residual stress relaxation characteristic Rf may be formed at the boundary between the sub blocks, but the present invention is not limited thereto.
  • the residual stress relaxation feature Rf may be installed at an intermediate point of the outer wall of the sub block 110.
  • the number of residual stress relaxation characteristics Rf is not specifically limited. For example, a plurality of residual stress relief features may be installed at appropriate intervals on the upper surface of the structure 200.
  • FIG. 9A is a diagram illustrating the inside of the sub-block (part A) of FIG. 8 in detail.
  • the sub block is an aggregate of cells 112 spaced apart by the inner wall 114.
  • the thickness of the inner wall 114 in the sub-block may be maintained at a constant interval (d1).
  • FIG. 9B is a diagram illustrating in detail the boundary B between the subblocks of FIG. 8. As shown in FIG. 9B, it can be seen that the plurality of cells 112 partitioned by the inner wall 114 and the like continue in the sub-block boundary portion B as in the interior. In addition, FIG. 9B shows that the thickness d2 of the inner wall defining the boundary portion may be formed thicker than the thickness of the inner wall thickness d1 of other cells.
  • FIGS. 10 and 11 are cross-sectional views for schematically explaining a honeycomb structure according to a seventh embodiment of the present invention.
  • the honeycomb structure 300 is divided into sub blocks B1, B2, B3, and B4 similarly to FIG. 8.
  • each block is composed of a plurality of partitioned cells.
  • cells having a narrower width than the inside are arranged at the boundary portion 140 of the block, and the inner wall thickness d3 of the boundary portion 140 is the inner wall thickness d1 within the block. It is arranged to have a larger value. This complements the structure strength at the boundary.
  • the thickness and cell size of the inner wall constituting the block boundary 140 in the present embodiment can be appropriately adjusted according to design requirements.
  • FIG. 12 is a diagram schematically showing a honeycomb structure according to an eighth embodiment of the present invention.
  • the honeycomb structure 400 is composed of sixteen sub blocks 110.
  • four adjacent sub-block sets form a honeycomb structure having the structure as shown in FIG. 8, and four sub-block sets gather the boundary portion 140 at the boundary to form the entire honeycomb structure 400.
  • the outer wall of the honeycomb structure 400 is provided with a stress relaxation feature Rf at an appropriate position, for example, at the subblock boundary.
  • the stress relaxation feature Rf may be configured by an outer wall termination, an outer wall bending portion, or a combination thereof.
  • FIG. 13 is a diagram schematically showing a honeycomb structure according to a ninth embodiment of the present invention.
  • the honeycomb structure 500 is composed of 16 subblocks 110, and four sets of subblocks gather together at the boundary portion 140 to form a whole honeycomb structure. 400 is formed. 12, the stress relief feature Rf is provided on the outer wall of the honeycomb structure 500.
  • the structure of the honeycomb center portion is different from that of the structure of FIG.
  • the center portion Cf of the honeycomb structure 600 has a shape in which a partition wall partitioning some cells is removed. Such a center portion facilitates the supply of drying air along the center of the center during drying, and may act to relieve stress during shrinkage due to the drying of the center like the stress relaxation feature of the outer wall.
  • a cross-shaped channel is shown in FIG. 14, this is only an example of the present invention, and it will be appreciated by those skilled in the art that various channels such as ' ⁇ ' and ' ⁇ ' may be formed according to a method of removing the inner partition of the center part. will be.
  • the center portion structure such as the cruciform channel of the present embodiment can be similarly applied to the other honeycomb structures described herein.
  • the honeycomb structure is illustrated as having a hexagonal column shape, but the honeycomb product may be implemented in a cylindrical columnar shape.
  • 15 exemplarily shows a honeycomb product having a cylindrical columnar shape.
  • the honeycomb product 600 includes a plurality of sub blocks 110.
  • the honeycomb product 600 having such a structure may be implemented by variously combining the honeycomb structure of the present embodiment described above.
  • honeycomb structure described with reference to FIG. 8 may be used as the honeycomb structure 200 including four central sub-blocks 110.
  • the honeycomb structure 200 as illustrated in FIGS. 10 and 12 may be used as the honeycomb structure 200.
  • the eight sub-blocks 110 adjacent to the honeycomb structure 200 may be manufactured by joining a portion of a separate honeycomb structure to the honeycomb structure 200.
  • the central four sub-blocks 110 may be formed of a honeycomb structure 100 as shown in FIGS. 2 to 4, 6, and 7, respectively.
  • peripheral sub-blocks may be manufactured by bonding a portion of the honeycomb structure to the honeycomb structure 200.
  • honeycomb structure of the present invention can be used in various applications such as heat storage material, diesel particulate filter (DPF), catalyst carrier and the like.
  • DPF diesel particulate filter

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Filtering Materials (AREA)
  • Catalysts (AREA)
  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)

Abstract

Disclosed is a honeycomb structure having a high level of crack resistance. The present invention provides a honeycomb structure comprising a plurality of cells, which extend in the longitudinal direction, in order to provide a channel such that a fluid can flow along the same, and which are delimited by barriers, wherein the honeycomb structure comprises an outer wall that surrounds the same, and at least a part of the outer wall is provided with a stress relief feature. The present invention can provide a honeycomb structure that is scalable while suppressing generation and propagation of cracks efficiently.

Description

균열 저항성을 갖는 하니컴 구조체Honeycomb Structure with Crack Resistance
본 발명의 하니컴 구조체에 관한 것으로, 보다 상세하게는 균열 저항성이 높은 하니컴 구조체에 관한 것이다.The present invention relates to a honeycomb structure of the present invention, and more particularly, to a honeycomb structure having high crack resistance.
일반적으로, 하니컴 구조체는 유체의 유동을 위한 복수의 셀이 벌집 모양으로 형성된 구조체로서, 축열재, 디젤 매연 필터(DPF), 촉매 담체 등의 다양한 용도로 사용된다. In general, a honeycomb structure is a structure in which a plurality of cells for fluid flow are formed in a honeycomb shape, and is used for various purposes such as heat storage material, diesel particulate filter (DPF), and catalyst carrier.
세라믹스 기반의 하니컴 구조체는 압출, 사출 등의 성형 방식으로 제조되는데, 성형 후 건조 과정에서 구조체 표면에 균열(crack)이 발생하여 대용량의 하니컴 구조체로의 확장이 곤란하다는 문제점이 있다. 이러한 문제점으로 인하여, 대용량의 유체 유동을 위해서 소형의 하니컴 구조체를 적층 및 접착하여 모듈화하는 방식이 사용되고 있으나, 이 방식은 적층 및 접착 등 부가적인 공정의 설계가 필요하다.Ceramics-based honeycomb structure is manufactured by a molding method such as extrusion, injection, etc., there is a problem that it is difficult to expand to a large-size honeycomb structure because a crack occurs on the surface of the structure during the drying process after molding. Due to this problem, a method of stacking and bonding a small honeycomb structure to a large capacity fluid flow is used, but this method requires the design of additional processes such as lamination and bonding.
한편, 실리콘 카바이드는 높은 열전도율로 인하여 축열 및 열재생에 용이하여 축열 연소 시스템(Regenerative Thermal Oxidation System; RTO)의 축열재로의 사용이 고려되고 있다. 또한, 실리콘 카바이드는 높은 내열성과 내화학성을 구비하여 DPF와 같은 필터로도 사용이 증가하고 있다. 그러나, 높은 취성으로 인하여 대용량화시 성형 건조 과정에서 크랙의 발생이 필연적이고, 고온 동작 환경에서의 승온 및 냉각의 반복으로 인한 열충격에 노출된다는 문제점을 갖는다.On the other hand, silicon carbide is easy to accumulate and thermally regenerate due to high thermal conductivity, so that the use of Regenerative Thermal Oxidation System (RTO) as a heat storage material is considered. In addition, silicon carbide has a high heat resistance and chemical resistance has been increasingly used as a filter such as DPF. However, due to the high brittleness, cracks are inevitable in the molding and drying process at the time of large capacity, and have a problem of being exposed to thermal shock due to repeated heating and cooling in a high temperature operating environment.
상기 종래 기술의 문제점을 해결하기 위하여 본 발명은, 실리콘 카바이드, 코디어라이트, 알루미나, 뮬라이트 등의 세라믹스 기반의 하니컴 구조체에서 크랙 생성을 억제하는 데 효율적인 구조를 갖는 하니컴 구조체를 제공하는 것을 목적으로 한다.SUMMARY OF THE INVENTION In order to solve the problems of the prior art, an object of the present invention is to provide a honeycomb structure having a structure effective to suppress crack generation in ceramic-based honeycomb structures such as silicon carbide, cordierite, alumina, mullite, and the like. .
또한, 본 발명은 균열 저항성을 갖고 대용량화가 용이한 하니컴 구조체를 제공하는 것을 목적으로 한다.In addition, an object of the present invention is to provide a honeycomb structure having crack resistance and easy capacity increase.
상기 기술적 과제를 달성하기 위하여 본 발명은, 유체의 유동을 위한 채널을 제공하기 위하여 길이 방향으로 연장되며 격벽에 의해 구획되는 복수의 셀을 포함하는 하니컴 구조체에 있어서, 상기 하니컴 구조체를 둘러싸는 외벽을 포함하고, 상기 외벽의 최소한 일부에는 응력완화 특징이 구비된 것을 특징으로 하는 하니컴 구조체를 제공한다. In order to achieve the above technical problem, the present invention, in the honeycomb structure including a plurality of cells extending in the longitudinal direction and partitioned by a partition to provide a channel for the flow of fluid, the outer wall surrounding the honeycomb structure And at least a portion of the outer wall is provided with a stress relief feature.
여기서, 상기 응력완화 특징은 외벽 종단부에 의해 구현될 수 있다. 이 때, 상기 외벽 종단부는 상기 하니컴 구조체의 길이 방향으로 연장될 수 있다. 또한, 상기 외벽 종단부는 상기 하니컴 구조체를 구성하는 최소한 하나의 셀의 최소한 일부를 개방함으로써 구현될 수 있다. Here, the stress relaxation feature may be implemented by the outer wall end portion. At this time, the outer wall end portion may extend in the longitudinal direction of the honeycomb structure. In addition, the outer wall termination portion may be implemented by opening at least a portion of at least one cell constituting the honeycomb structure.
본 발명의 일실시예에서 상기 응력완화 특징은 외벽 벤딩부에 의해 구현될 수 있다. 이 때, 상기 외벽 벤딩부는 노치형의 표면 형상을 가질 수 있다. 이와 달리, 상기 외벽 벤딩부는 내부로 함몰된 곡률을 가질 수 있다. In one embodiment of the present invention the stress relaxation feature may be implemented by the outer wall bending portion. At this time, the outer wall bending portion may have a notched surface shape. On the contrary, the outer wall bending part may have a curvature recessed inward.
또한 상기 기술적 과제를 달성하기 위하여 본 발명의 일실시예에 따르면, 유체의 유동을 위한 채널을 제공하기 위하여 길이 방향으로 연장되며 격벽에 의해 구획되는 복수의 셀을 포함하는 하니컴 구조체에 있어서, 상기 하니컴 구조체는 구획 가능한 복수의 블록, 상기 블록 사이의 경계부 및 상기 구조체를 둘러싸는 외벽을 포함하고, 상기 블록 간의 경계부에 대응하는 위치의 외벽에는 최소한 하나의 응력 완화 특징이 구비된 것을 특징으로 하는 하니컴 구조체를 제공한다. In addition, according to an embodiment of the present invention to achieve the above technical problem, in the honeycomb structure comprising a plurality of cells extending in the longitudinal direction and partitioned by a partition to provide a channel for the flow of fluid, the honeycomb The structure includes a plurality of partitionable blocks, a boundary between the blocks, and an outer wall surrounding the structure, wherein the outer wall at a position corresponding to the boundary between the blocks is provided with at least one stress relieving feature. To provide.
본 발명의 일실시예에서, 상기 블록 사이 경계부의 셀 크기는 상기 블록 내부의 셀 크기보다 작은 것이 바람직하다. 또한, 이와 동시에 또는 이와 별도로 상기 블록 사이 경계부의 격벽은 상기 블록 내부의 격벽보다 두께가 크게 설정될 수 있다. In one embodiment of the present invention, the cell size of the boundary between the blocks is preferably smaller than the cell size inside the block. At the same time or separately, the partition wall of the boundary between the blocks may have a larger thickness than the partition wall inside the block.
본 발명의 일실시예에 따른 하니컴 구조체는 축열재, 디젤 매연 필터, 촉매 담체 등에 응용될 수 있다. Honeycomb structure according to an embodiment of the present invention can be applied to heat storage material, diesel particulate filter, catalyst carrier and the like.
본 발명의 일실시예에 따르면, 상기 하니컴 구조체의 중심부에는 최소한 일부의 격벽의 제거에 의해 채널이 형성될 수 있다.According to an embodiment of the present invention, a channel may be formed at the center of the honeycomb structure by removing at least some of the partition walls.
본 발명에 따르면, 균열 생성 및 전파을 억제하는 데 효율적인 구조를 갖는 하니컴 구조체를 제공할 수 있게 된다. 이에 따라, 본 발명의 하니컴 구조체는 대용량화(scalable)가 용이하게 된다.According to the present invention, it is possible to provide a honeycomb structure having a structure that is effective in suppressing crack generation and propagation. Accordingly, the honeycomb structure of the present invention is easily scalable.
도 1은 본 발명의 하니컴 구조체를 설명하기 위한 도면이다.1 is a view for explaining a honeycomb structure of the present invention.
도 2는 본 발명의 제1 실시예에 따른 하니컴 구조체의 단면 구조를 모식적으로 도시한 도면이다.2 is a diagram schematically showing a cross-sectional structure of a honeycomb structure according to a first embodiment of the present invention.
도 3은 본 발명의 제2 실시예에 따른 하니컴 구조체의 단면 구조를 모식적으로 도시한 도면이다. 3 is a diagram schematically illustrating a cross-sectional structure of a honeycomb structure according to a second embodiment of the present invention.
도 4는 본 발명의 제3 실시예에 따른 하니컴 구조체의 단면 구조를 모식적으로 도시한 도면이다.4 is a diagram schematically showing a cross-sectional structure of a honeycomb structure according to a third embodiment of the present invention.
도 5는 전술한 본 발명의 잔류응력 완화특징(Rf)의 응력 완화 메커니즘을 설명하기 위한 도면이다. 5 is a view for explaining the stress relaxation mechanism of the residual stress relaxation feature (Rf) of the present invention described above.
도 6은 본 발명의 제4 실시예에 따른 하니컴 구조체를 모식적으로 설명하기 위한 단면도이다.6 is a cross-sectional view for schematically illustrating a honeycomb structure according to a fourth embodiment of the present invention.
도 7은 본 발명의 제5 실시예에 따른 하니컴 구조체를 모식적으로 설명하기 위한 단면도이다.7 is a cross-sectional view for schematically illustrating a honeycomb structure according to a fifth embodiment of the present invention.
도 8은 본 발명의 제6 실시예에 따른 하니컴 구조체를 모식적으로 설명하기 위한 단면도이다. 8 is a cross-sectional view for schematically illustrating a honeycomb structure according to a sixth embodiment of the present invention.
도 9는 도 8의 일부 구성을 상세히 도시한 도면이다.FIG. 9 is a view illustrating some components of FIG. 8 in detail.
도 10은 본 발명의 제7 실시예에 따른 하니컴 구조체를 모식적으로 설명하기 위한 단면도이다.10 is a cross-sectional view for schematically illustrating a honeycomb structure according to a seventh embodiment of the present invention.
도 11은 도 10의 일부 구성을 상세히 도시한 도면이다.FIG. 11 is a view illustrating some components of FIG. 10 in detail.
도 12는 본 발명의 제8 실시예에 따른 하니컴 구조체를 모식적으로 도시한 도면이다. 12 is a diagram schematically showing a honeycomb structure according to an eighth embodiment of the present invention.
도 13은 본 발명의 제9 실시예에 따른 하니컴 구조체를 모식적으로 도시한 도면이다.13 is a diagram schematically showing a honeycomb structure according to a ninth embodiment of the present invention.
도 14는 도 13의 일부분을 확대 도시한 도면이다. 14 is an enlarged view of a portion of FIG. 13.
도 15는 본 발명의 다른 실시예에 따른 하니컴 제품을 모식적으로 도시한 도면이다. 15 is a view schematically showing a honeycomb product according to another embodiment of the present invention.
이하 도면을 참조하여 본 발명의 바람직한 실시예를 설명함으로써 본 발명을 상술한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
도 1은 하니컴 구조체의 구조를 설명하기 위한 도면이다. 1 is a view for explaining the structure of the honeycomb structure.
도 1을 참조하면, 하니컴 구조체(10)는 격자 모양으로 구획된 복수의 셀(12)을 구비하고 있다. Referring to FIG. 1, the honeycomb structure 10 includes a plurality of cells 12 partitioned in a lattice shape.
상기 셀(12)은 유체의 유동을 위한 채널을 제공한다. 상기 셀(12)은 하니컴 구조체(10)의 길이 방향으로 연장되며, 경우에 따라 상기 셀(12)의 일단이 폐쇄되거나 양단이 모두 개방된 형태로 설계될 수 있다. 상기 하니컴 구조체(10)의 개별 셀은 셀벽에 의해 구획된다. 도시된 바와 같이, 내벽(14) 및 외벽(16)은 상기 하니컴 구조체(10)의 셀을 구획하며 그 두께는 적절히 설계될 수 있다. 통상적으로 외벽(16)은 내벽(14)에 비해 두께가 크게 설계되며, 경우에 따라 내벽(14)의 두께도 서로 달라질 수 있다. 도 1에서 각 셀은 단면상 직육면체 형상을 갖는 것으로 도시되어 있지만, 셀의 단면 형상은 예시적인 것에 불과하다. The cell 12 provides a channel for the flow of the fluid. The cell 12 extends in the longitudinal direction of the honeycomb structure 10, and in some cases, one end of the cell 12 may be closed or both ends may be open. Individual cells of the honeycomb structure 10 are partitioned by cell walls. As shown, the inner wall 14 and outer wall 16 partition the cells of the honeycomb structure 10 and the thickness thereof can be appropriately designed. Typically, the outer wall 16 is designed to have a larger thickness than the inner wall 14, and in some cases, the inner wall 14 may have a different thickness. Although each cell is shown as having a cuboid shape in cross section in FIG. 1, the cross-sectional shape of the cell is merely exemplary.
상기 하니컴 구조체는 코디어라이트, 알루미나, 뮬라이트 및 실리콘 카바이드 등의 다양한 재질로 제조될 수 있다. 또한, 상기 하니컴 구조체는 각 셀간의 유체 유동이 용이하도록 다공성 재질로 제조될 수도 있다. The honeycomb structure may be made of various materials such as cordierite, alumina, mullite, and silicon carbide. In addition, the honeycomb structure may be made of a porous material to facilitate fluid flow between each cell.
이하에서는 축열재용 하니컴 구조체의 제조방법을 예시적으로 설명한다. Hereinafter, a method of manufacturing a honeycomb structure for heat storage material will be described.
코디어라이트, 알루미나, 뮬라이트 및 SiC로 이루어진 그룹 중에서 선택된 최소한 1종을 주재료로 하고, 여기에 성형 조제로 PVA, MC 등의 유기바인더와 점토, 알루미나, 실리카 등의 무기바인더를 포함하는 원료를 배합한다. At least one selected from the group consisting of cordierite, alumina, mullite, and SiC is the main material, and as a molding aid, a raw material including an organic binder such as PVA and MC and an inorganic binder such as clay, alumina, and silica is blended. do.
부가적으로, 원료물질에는 파라핀 왁스(parafin wax), 스테릭산(stearic acid), 미네랄 오일(mineral oil) 또는 고비점오일 등이 부가될 수 있다. In addition, paraffin wax, steric acid, mineral oil or high boiling oil may be added to the raw material.
배합된 원료를 혼련기에서 균일하게 혼련하여 일정기간 숙성을 거친 다음 압출기를 통해 압출한다. The blended raw material is kneaded uniformly in a kneader, aged for a certain period of time, and then extruded through an extruder.
압출기에서 압출한 성형체는 일정크기로 절단하여 건조한다. 건조속도를 균일하게 하기 위하여 습윤건조, 진공건조, 마이크로웨이브 건조과정을 거칠 수도 있다. 일정한 강도로 낼 수 있는 정도로 건조가 되면 50~150℃에서 12 시간이상 건조한다. 건조과정에서 수분이 많이 남아 있으면 소결과정에서 수분이 급격히 증발되어 크랙발생의 원인이 될 수 있어 성형체 내의 수분은 최소화된다.The molded body extruded by the extruder is cut to a certain size and dried. Wet drying, vacuum drying and microwave drying may be used to make the drying speed uniform. If it dries to a certain strength, dry it for more than 12 hours at 50 ~ 150 ℃. If much moisture is left in the drying process, the water evaporates rapidly during the sintering process and may cause cracks, thereby minimizing moisture in the molded body.
소결과정은 건조 이후에 이루어지게 되는데 주재료와 무기바인더의 소결 특성에 따라 최적의 소결조건을 설정하게 되는데, 통상적으로 800~1600 ℃ 정도에서 3 ~ 24시간 소결한다.The sintering process is carried out after drying, and the optimum sintering conditions are set according to the sintering characteristics of the main material and the inorganic binder. Usually, the sintering process is performed at 800 to 1600 ° C. for 3 to 24 hours.
한편, DPF 및 촉매 담체 응용의 경우, 탄소 성분, 스타크(starch), 고분자 비드 등 열처리에 의해 산화되거나 휘발될 수 있는 기공 형성제를 첨가하여 다공성 하니컴 구조체를 제조할 수도 있다. On the other hand, in the case of DPF and catalyst carrier applications, a porous honeycomb structure may be prepared by adding a pore former that can be oxidized or volatilized by heat treatment such as carbon component, starch, polymer beads, and the like.
하니컴 구조체는 성형 후 건조시 수축되는데, 일반적으로 내부보다 구조체 표면에서 보다 빨리 건조된다. 이로 인해 구조체 표면과 내부의 건조 속도의 차이가 발생하며, 이에 따라 구조체 외벽 표면에는 잔류응력이 존재한다. 이 잔류응력은 내부 구조물이 외벽 표면의 수축을 구속함으로써 나타나는 응력으로 인장응력이다. 따라서, 외벽 표면에 잔류하는 인장응력은 구조체가 감내할 수 있는 소정 크기를 초과하여 크랙의 생성 및 전파를 유발한다. 도 1의 구조체 상면에 건조시 발생하는 크랙(C)을 예시적으로 도시하였다. 이와 유사한 응력 및 크랙 발생은 허니컴 구조체 운전 중의 승온 및 냉각의 사이클에서도 발생할 수 있다.The honeycomb structure shrinks upon drying after molding, and generally dries faster on the structure surface than inside. This causes a difference in the drying rate between the surface of the structure and the interior, and thus residual stress exists on the surface of the outer wall of the structure. This residual stress is the tensile stress caused by the internal structure constraining the contraction of the outer wall surface. Thus, the tensile stress remaining on the outer wall surface causes the generation and propagation of cracks beyond a certain magnitude that the structure can tolerate. 1 illustrates a crack (C) generated during drying on the upper surface of the structure. Similar stresses and cracks can occur in cycles of heating and cooling during honeycomb structure operation.
단위 하니컴 구조체의 크기가 커질수록 구조체 내외부의 건조 속도의 차는 증가하며 이에 따라 외벽에 유발되는 응력의 크기도 증가한다. 그러므로, 하니컴 구조체의 대용량화시에는 크랙에 대한 저항을 고려한 설계가 수반되어야 할 필요가 있다. As the size of the unit honeycomb structure increases, the difference in drying rate inside and outside the structure increases, and accordingly, the magnitude of the stress induced on the outer wall also increases. Therefore, the capacity of the honeycomb structure needs to be accompanied by a design considering resistance to cracks.
도 2는 본 발명의 일실시예에 따른 하니컴 구조체의 단면 구조를 모식적으로 도시한 도면이다.2 is a view schematically showing a cross-sectional structure of the honeycomb structure according to an embodiment of the present invention.
도 2를 참조하면, 하니컴 구조체(100)는 예시적으로 격자 배열된 셀(112), 내벽(114) 및 외벽(116)으로 구성되어 있다. 본 발명에서 상기 하니컴 구조체(100)는 외벽(116)에 잔류응력 완화 특징(Rf)를 구비하고 있다. Referring to FIG. 2, the honeycomb structure 100 is exemplarily composed of a cell 112, an inner wall 114, and an outer wall 116 arranged in a lattice arrangement. In the present invention, the honeycomb structure 100 has a residual stress relaxation characteristic Rf on the outer wall 116.
본 발명의 일실시예로서, 상기 잔류응력 완화 특징(Rf)은 외벽 둘레의 연속성을 단절하는 외벽 종단부를 포함한다. 본 발명에서 상기 외벽 종단부는 자유단(free end)으로 기능한다. 즉, 외벽은 구조체 둘레를 따라 더 이상 연속적이지 않으며, 단절된 부분은 외벽 자유단을 형성한다. In one embodiment of the invention, the residual stress relaxation feature Rf includes an outer wall termination that breaks continuity around the outer wall. In the present invention, the outer wall end portion functions as a free end. That is, the outer wall is no longer continuous along the perimeter of the structure, and the cut off portion forms the outer wall free end.
도면 상에 상기 외벽 종단부는 틈으로 도시되어 있지만, 3차원적으로 볼 때 하니컴 구조체의 길이 방향 즉 셀의 연장 방향으로 연장된다. 상기 외벽 종단부는 하니컴 구조체의 길이 방향 전체에 걸쳐 연장될 수 있고, 이와 달리 길이 방향으로 일부분으로만 연장될 수도 있다. Although the outer wall end portion is shown as a gap in the figure, it extends in the longitudinal direction of the honeycomb structure, that is, the extending direction of the cell in three dimensions. The outer wall end portion may extend throughout the longitudinal direction of the honeycomb structure, or alternatively may extend only partially in the longitudinal direction.
또, 도시된 도면에는 하나의 자유단만이 도시되어 있지만, 본 발명에서 상기 외벽 종단부는 셀 간격을 기초로 반복, 예컨대 소정 주기 또는 불규칙적으로 반복될 수 있다. In addition, although only one free end is shown in the figure, in the present invention, the outer wall end portion may be repeated, for example, a predetermined period or irregularly, based on the cell spacing.
본 발명에서 상기 하니컴 구조체는 다음과 같은 방법으로 제조될 수 있다. In the present invention, the honeycomb structure can be manufactured by the following method.
먼저, 배합된 원료를 혼련기에서 균일하게 혼련하여 일정기간 숙성을 거친 다음 압출기를 통해 압출한다. 도 2의 하니컴 구조체의 압출을 위해 압출기의 금형은 하니컴 구조와 응력완화 특징(Rf)를 성형하기 위한 대응 구조가 구비될 수 있다. 예컨대, 대응 구조는 상기 응력완화 특징(Rf)에 대한 반대 형상(negative shape)을 가질 수 있다. 구체적으로, 도 2에 도시된 바와 같이 긴 슬릿 형상의 외벽 종단부를 형성하기 위하여 압출 금형의 대응 위치에는 길이 방향으로 연장되는 돌출 구조가 형성될 수 있다. First, the blended raw material is kneaded uniformly in a kneader, subjected to aging for a certain period of time, and then extruded through an extruder. The mold of the extruder for the extrusion of the honeycomb structure of FIG. 2 may be provided with a honeycomb structure and a corresponding structure for forming the stress relief feature Rf. For example, the corresponding structure may have a negative shape relative to the stress relaxation feature Rf. Specifically, as shown in FIG. 2, a protruding structure extending in the longitudinal direction may be formed at a corresponding position of the extrusion die in order to form the long slit-shaped outer wall end portion.
압출기에서 압출한 성형체는 일정크기로 절단하여 건조한다. 건조속도를 균일하게 하기 위하여 습윤건조, 진공건조, 마이크로웨이브 건조과정을 거칠 수도 있다. 일정한 강도로 낼 수 있는 정도로 건조가 되면 50~150℃에서 12 시간이상 건조한다. 건조과정에서 수분이 많이 남아 있으면 소결과정에서 수분이 급격히 증발되어 크랙발생의 원인이 될 수 있어 성형체 내의 수분은 최소화된다.The molded body extruded by the extruder is cut to a certain size and dried. Wet drying, vacuum drying and microwave drying may be used to make the drying speed uniform. If it dries to a certain strength, dry it for more than 12 hours at 50 ~ 150 ℃. If much moisture is left in the drying process, the water evaporates rapidly during the sintering process and may cause cracks, thereby minimizing moisture in the molded body.
소결과정은 건조 이후에 이루어지게 되는데 주재료와 무기바인더의 소결 특성에 따라 최적의 소결조건을 설정하게 되는데, 통상적으로 800~1600 ℃ 정도에서 3 ~ 24시간 소결한다. The sintering process is carried out after drying, and the optimum sintering conditions are set according to the sintering characteristics of the main material and the inorganic binder. Usually, the sintering process is performed at 800 to 1600 ° C. for 3 to 24 hours.
이상 도 2에 도시된 하니컴 구조체의 제조 방법을 예시하였지만, 위 제조 방법을 금형의 형상이 달라진다는 점을 제외하고는 마찬가지의 방법이 적용될 수 있다.Although the honeycomb structured manufacturing method illustrated in FIG. 2 is exemplified above, the same method may be applied to the above manufacturing method except that the shape of the mold is changed.
도 3은 본 발명의 제2 실시예에 따른 하니컴 구조체의 단면 구조를 모식적으로 도시한 도면이다. 3 is a diagram schematically illustrating a cross-sectional structure of a honeycomb structure according to a second embodiment of the present invention.
도 3의 잔류응력 완화 특징(Rf)은 외벽 종단부의 다른 구현 형태이다. 본 실시예에서 하나의 셀은 외벽을 구비하지 않으며, 외부에 노출되어 있다. 이와 같은 구조에서도 여전히 잔류응력 완화 특징은 해당 셀 좌우의 외벽의 연속성을 단절한다. The residual stress relief feature Rf of FIG. 3 is another implementation of the outer wall termination. In this embodiment, one cell does not have an outer wall and is exposed to the outside. Even in such a structure, the residual stress relaxation feature still breaks the continuity of the outer walls on the left and right sides of the cell.
도 3은 하나의 셀을 노출함으로써 외벽 종단부를 형성하는 방식을 보여주고 있지만 본 발명을 접하는 당업자라면 외벽 표면에 평행한 인접하는 둘 이상의 셀 또는 외벽 표면에 수직인 방향으로 인접하는 둘 이상의 셀이 이와 같은 방식으로 노출될 수 있음을 알 수 있을 것이다. FIG. 3 shows how to form an outer wall termination by exposing a cell, but those skilled in the art will appreciate that two or more cells adjacent to the outer wall surface or two or more cells adjacent in a direction perpendicular to the outer wall surface are shown in the art. It will be appreciated that they can be exposed in the same way.
도 4는 본 발명의 제3 실시예에 따른 하니컴 구조체의 단면 구조를 모식적으로 도시한 도면이다. 4 is a diagram schematically showing a cross-sectional structure of a honeycomb structure according to a third embodiment of the present invention.
도 4와 달리, 외벽 종단부는 인접하는 두 표면 셀의 일부 외벽을 제거함으로써 구현되어 있다. 이 경우, 하부 셀의 내벽 교차 지점(점선 원)이 외부로 노출된다. Unlike FIG. 4, the outer wall termination is implemented by removing some outer walls of two adjacent surface cells. In this case, the inner wall intersection point (dashed circle) of the lower cell is exposed to the outside.
도 5는 전술한 본 발명의 잔류응력 완화특징(Rf)의 응력 완화 메커니즘을 설명하기 위한 도면이다. 5 is a view for explaining the stress relaxation mechanism of the residual stress relaxation feature (Rf) of the present invention described above.
도 5의 (a)에 도시된 바와 같이, 건조 수축에 따라 외벽(116) 표면의 임의의 지점(P)에는 잔류 인장응력이 작용한다. 이것은 외벽의 수축에 대한 구조체의 제한으로 설명할 수 있다. 즉, 외벽은 건조에 대응하는 정도로 수축할 수 없고 그에 상응하는 인장 응력이 응력으로 외벽에 잔류한다. 이 인장 응력은 표면 크랙을 발생시키고 전파시킨다. As shown in FIG. 5A, the residual tensile stress acts at any point P on the surface of the outer wall 116 as the dry shrinkage occurs. This can be explained by the limitation of the structure on the contraction of the outer wall. That is, the outer wall cannot contract to the extent corresponding to drying and the corresponding tensile stress remains on the outer wall as a stress. This tensile stress generates and propagates surface cracks.
도 5의 (b)에 도시된 바와 같이, 외벽 종단부와 같은 잔류응력 완화특징(Rf)에 의해 외벽의 변형을 유발할 수 있다. 즉, 외벽 종단부는 자유단으로 기능하며, 이에 인접한 구조체 부분이 잔류응력을 해소 또는 완화하는 방향으로 변형 가능하게 한다. 예컨대, 외벽의 자유단에 인접한 외벽은 상대적으로 자유로운 수축이 가능하며, 이에 따라 잔류 응력은 해소된다. As shown in (b) of FIG. 5, the deformation of the outer wall may be caused by the residual stress relaxation feature Rf such as the outer wall end portion. That is, the outer wall end portion functions as a free end, so that the structure portion adjacent thereto can be deformed in a direction to solve or alleviate the residual stress. For example, the outer wall adjacent to the free end of the outer wall can be relatively freely contracted, so that the residual stress is eliminated.
추가적으로, 본 실시예에서 자유단과 같은 잔류응력 완화특징(Rf)은 크랙의 전파에 대한 장애물로 작용할 수 있다. 외벽 표면에 발생된 크랙은 외벽을 전파한다. 그러나, 외벽의 불연속 구간인 자유단에 이르면 크랙의 전파 에너지는 방출되며 그 결과 자유단에서 응력이 완화될 수 있다. 이 경우, 구조체의 외주면에 소정 간격으로 복수의 응력완화 특징(Rf)을 배열함으로써 크랙의 전파를 효율적으로 억제할 수 있다.In addition, in the present embodiment, the residual stress relaxation characteristic Rf such as the free end may act as an obstacle to propagation of the crack. Cracks generated on the outer wall surface propagate the outer wall. However, when reaching the free end, which is a discontinuous section of the outer wall, the propagation energy of the crack is released and as a result, the stress at the free end can be relaxed. In this case, the propagation of cracks can be efficiently suppressed by arranging the plurality of stress relaxation features Rf at predetermined intervals on the outer circumferential surface of the structure.
도 6은 본 발명의 제4 실시예에 따른 하니컴 구조체를 모식적으로 설명하기 위한 단면도이다. 6 is a cross-sectional view for schematically illustrating a honeycomb structure according to a fourth embodiment of the present invention.
도 6을 참조하면, 하니컴 구조체(100)는 외벽 벤딩부와 같은 잔류응력 완화특징(Rf)을 구비한다. Referring to FIG. 6, the honeycomb structure 100 has a residual stress relaxation characteristic Rf such as an outer wall bending portion.
도시된 바와 같이, 구조체의 소정 지점에서 외벽의 일부는 하니컴 구조체 내부로 벤딩되어 있다. 예시된 바와 같이, 상기 외벽 벤딩부는 음의 곡률을 가질 수 있다. 도 5와 관련하여 설명한 것과 유사한 방식으로 상기 외벽 벤딩부에서 응력은 완화된다. 상기 외벽 벤딩부에서는 구조체는 자유단에서의 변형과 유사한 효과를 나타낸다. 즉, 외벽 벤딩부에서 외벽 두께는 거의 일정하게 유지하면서 해당 셀에 대응하는 외벽 길이는 증가한다. 증가된 외벽 길이는 외벽 변형을 위한 버퍼로서 기능할 수 있다. As shown, at some point of the structure a portion of the outer wall is bent into the honeycomb structure. As illustrated, the outer wall bending portion may have a negative curvature. The stress is relaxed in the outer wall bend in a manner similar to that described with respect to FIG. 5. In the outer wall bending portion, the structure has an effect similar to the deformation at the free end. That is, the outer wall length corresponding to the cell increases while the outer wall thickness is kept substantially constant in the outer wall bending portion. The increased outer wall length can serve as a buffer for outer wall deformation.
도 7은 본 발명의 제5 실시예에 따른 하니컴 구조체를 모식적으로 설명하기 위한 단면도이다.7 is a cross-sectional view for schematically illustrating a honeycomb structure according to a fifth embodiment of the present invention.
도 6과 마찬가지로, 상기 하니컴 구조체(100)는 잔류응력 완화특징(Rf)으로 외벽 벤딩부를 구비하고 있다. 상기 외벽 벤딩부에서 외벽의 단위 길이는 증가하지만 다만 외형이 음의 곡률이 아닌 노치 형상인 점에서 상이하다. As in FIG. 6, the honeycomb structure 100 includes an outer wall bending portion as a residual stress relaxation characteristic Rf. Although the unit length of the outer wall increases in the outer wall bending portion, the outer shape is different in that the outer shape is notched, not negative curvature.
이상 예시적으로 사각 기둥 형상의 외관을 갖는 하니컴 구조체(100)를 설명하였지만 본 발명의 하니컴 구조체는 이에 한정되지 않는다. 예컨대 원기둥 형상의 하니컴 구조체가 본 발명의 응력완화 특징을 갖도록 설계될 수 있음은 당업자라면 누구나 알 수 있을 것이다. 이 경우, 하니컴 구조체의 원주 둘레를 따라 최소한 하나 이상의 응력완화 특징이 소정 간격으로 배열되어 구조체의 길이 방향으로 연장될 수 있을 것이다. As described above, the honeycomb structure 100 having an external appearance having a rectangular pillar shape has been described, but the honeycomb structure of the present invention is not limited thereto. It will be appreciated by those skilled in the art that, for example, a cylindrical honeycomb structure can be designed to have the stress relaxation features of the present invention. In this case, at least one stress relaxation feature may be arranged at predetermined intervals along the circumference of the honeycomb structure to extend in the longitudinal direction of the structure.
이상과 같이, 본 발명의 실시예에 따른 하니컴 구조체(100)는 크랙 발생 및 전파를 억제할 수 있다. 이에 따라, 대용량 및 대면적의 하니컴 구조의 구현이 가능하게 된다. 한편, 전술한 본 발명의 실시예들에 따른 응력완화 메커니즘은 본 발명의 이해를 도모하기 위한 것이다. 본 발명의 하니컴 구조체(100)는 전술한 것과 다른 응력완화 메커니즘에 의해 크랙의 생성 및 전파를 억제할 수도 있으며, 이러한 메커니즘은 자연히 본 발명의 기술적 사상의 범주에 속한다.As described above, the honeycomb structure 100 according to the embodiment of the present invention can suppress crack generation and propagation. Accordingly, it is possible to implement a honeycomb structure having a large capacity and a large area. On the other hand, the stress relaxation mechanism according to the embodiments of the present invention described above is for the purpose of understanding the present invention. The honeycomb structure 100 of the present invention may suppress the generation and propagation of cracks by a stress relaxation mechanism different from the above, and such a mechanism naturally falls within the scope of the technical idea of the present invention.
이하에서는 본 발명의 실시예에 따라 대용량의 하니컴 구조체의 구현예를 설명한다.Hereinafter will be described an embodiment of a large capacity honeycomb structure according to an embodiment of the present invention.
도 8은 본 발명의 제6 실시예에 따른 하니컴 구조체를 모식적으로 설명하기 위한 단면도이다. 8 is a cross-sectional view for schematically illustrating a honeycomb structure according to a sixth embodiment of the present invention.
도 8을 참조하면, 하니컴 구조체(200)는 복수의 서브 블록(110)으로 구성된다. 각 서브 블록(110)은 예컨대 대략 가로와 세로가 각각 7.5cm이고 길이가 30cm 일 수 있다. 이때 구조체(200)의 셀 사이즈는 축열재의 경우 15~50cpsi인 것이 바람직하며, DPF의 경우, 25~100cpsi인 것이 바람직하고, 촉매담체의 경우 50~400cpsi인 것이 바람직하다. 물론, 본 발명에서 셀 사이즈는 요구에 따라 적절한 크기로 설정될 수 있다. Referring to FIG. 8, the honeycomb structure 200 includes a plurality of sub blocks 110. Each sub block 110 may be approximately 7.5 cm long and 30 cm long, for example. In this case, the cell size of the structure 200 is preferably 15 to 50 cpsi for the heat storage material, 25 to 100 cpsi for the DPF, and 50 to 400 cpsi for the catalyst carrier. Of course, in the present invention, the cell size may be set to an appropriate size as required.
상기 복수의 서브 블록(110)의 둘레를 외벽(116)이 둘러싸고 있다. 상기 외벽의 소정 지점에 잔류응력 완화특징(Rf)이 구비된다. 상기 잔류응력 완화특징(Rf)은 전술한 바와 같은 외벽 종단부 또는 외벽 벤딩부로 구성될 수 있다. 도시된 바와 같이, 상기 잔류응력 완화특징(Rf)은 서브 블록 간의 경계에 형성될 수 있지만, 본 발명은 이에 한정되지 않는다. 예컨대, 상기 잔류응력 완화특징(Rf)은 서브 블록(110)의 외벽 중간 지점에 설치될 수도 있을 것이다. 또한, 잔류응력 완화특징(Rf)의 개수는 특별한 한정되지 않는다. 예컨대, 상기 구조체(200)의 상면에는 복수 개의 잔류응력 완화특징이 적절한 간격으로 설치될 수 있다. An outer wall 116 surrounds the circumference of the plurality of sub blocks 110. Residual stress relaxation characteristics Rf are provided at predetermined points of the outer wall. The residual stress relaxation feature Rf may be configured as an outer wall end portion or an outer wall bending portion as described above. As shown, the residual stress relaxation characteristic Rf may be formed at the boundary between the sub blocks, but the present invention is not limited thereto. For example, the residual stress relaxation feature Rf may be installed at an intermediate point of the outer wall of the sub block 110. In addition, the number of residual stress relaxation characteristics Rf is not specifically limited. For example, a plurality of residual stress relief features may be installed at appropriate intervals on the upper surface of the structure 200.
도 9의 (a)는 도 8의 서브 블록 내부(A 부분)를 상세히 도시한 도면이다. 도 9의 (a)에 도시된 바와 같이, 서브 블록은 내벽(114)에 의해 구획된 일정 간격의 셀(112)의 집합체이다. 도시된 바와 같이, 서브 블록 내에서 상기 내벽(114)의 두께는 일정한 간격(d1)으로 유지될 수 있다. FIG. 9A is a diagram illustrating the inside of the sub-block (part A) of FIG. 8 in detail. As shown in FIG. 9A, the sub block is an aggregate of cells 112 spaced apart by the inner wall 114. As shown, the thickness of the inner wall 114 in the sub-block may be maintained at a constant interval (d1).
한편, 도 9의 (b)는 도 8의 서브 블록간의 경계부(B)를 상세히 도시한 도면이다. 도 9의 (b)에 도시된 바와 같이, 서브 블록 경계부(B)에서 내부와 마찬가지로 내벽(114) 등에 의해 구획되는 복수의 셀(112)이 연속되고 있음을 알 수 있다. 부가적으로 도 9의 (b)는 경계부를 규정하는 내벽의 두께(d2)는 다른 셀 내벽 두께(d1) 보다 두껍게 형성될 수 있음을 보여주고 있다. 9B is a diagram illustrating in detail the boundary B between the subblocks of FIG. 8. As shown in FIG. 9B, it can be seen that the plurality of cells 112 partitioned by the inner wall 114 and the like continue in the sub-block boundary portion B as in the interior. In addition, FIG. 9B shows that the thickness d2 of the inner wall defining the boundary portion may be formed thicker than the thickness of the inner wall thickness d1 of other cells.
도 10 및 도 11은 본 발명의 제7 실시예에 따른 하니컴 구조체를 모식적으로 설명하기 위한 단면도이다.10 and 11 are cross-sectional views for schematically explaining a honeycomb structure according to a seventh embodiment of the present invention.
도 10을 참조하면, 도 8과 마찬가지로 허니컴 구조체(300)는 서브 블록(B1, B2, B3, B4)으로 구획되어 있다. Referring to FIG. 10, the honeycomb structure 300 is divided into sub blocks B1, B2, B3, and B4 similarly to FIG. 8.
도 11의 (a)에 도시된 바와 같이, 각 블록의 내부(A)는 구획된 복수의 셀로 구성된다. 다만, 도 10의 (b)에 도시된 바와 같이, 블록의 경계부(140)에는 내부보다 폭이 좁은 셀이 배열되며, 경계부(140)의 내벽 두께(d3)는 블록 내부의 내벽 두께(d1) 보다 큰 값을 갖도록 배열되어 있다. 이것은 경계부에서의 구조체 강도를 보완한다. As shown in Fig. 11A, the interior A of each block is composed of a plurality of partitioned cells. However, as shown in (b) of FIG. 10, cells having a narrower width than the inside are arranged at the boundary portion 140 of the block, and the inner wall thickness d3 of the boundary portion 140 is the inner wall thickness d1 within the block. It is arranged to have a larger value. This complements the structure strength at the boundary.
그러나, 본 실시예에서 블록 경계부(140)를 구성하는 내벽의 두께나 셀 크기는 설계 요구에 따라 적절히 조절 가능함은 당업자라면 누구나 알 수 있을 것이다. However, it will be appreciated by those skilled in the art that the thickness and cell size of the inner wall constituting the block boundary 140 in the present embodiment can be appropriately adjusted according to design requirements.
도 12는 본 발명의 제8 실시예에 따른 하니컴 구조체를 모식적으로 도시한 도면이다. 12 is a diagram schematically showing a honeycomb structure according to an eighth embodiment of the present invention.
도 12을 참조하면, 하니컴 구조체(400)는 16개의 서브 블록(110)으로 구성되어 있음을 알 수 있다. 또한 4개의 인접하는 서브 블록 세트는 도 8과 같은 구조의 하니컴 구조체를 형성하고, 4개의 서브 블록 세트가 경계부(140)를 경계로 모여 전체 하니컴 구조체(400)를 형성하고 있다. Referring to FIG. 12, it can be seen that the honeycomb structure 400 is composed of sixteen sub blocks 110. In addition, four adjacent sub-block sets form a honeycomb structure having the structure as shown in FIG. 8, and four sub-block sets gather the boundary portion 140 at the boundary to form the entire honeycomb structure 400.
상기 하니컴 구조체(400)의 외벽에는 적절한 위치 예컨대 서브 블록 경계부에 응력완화특징(Rf)이 구비되어 있다. 도시된 바와 같이, 응력완화특징(Rf)은 외벽 종단부, 외벽 벤딩부 또는 그의 조합에 의해 구성될 수 있다. The outer wall of the honeycomb structure 400 is provided with a stress relaxation feature Rf at an appropriate position, for example, at the subblock boundary. As shown, the stress relaxation feature Rf may be configured by an outer wall termination, an outer wall bending portion, or a combination thereof.
도 13은 본 발명의 제9 실시예에 따른 하니컴 구조체를 모식적으로 도시한 도면이다.13 is a diagram schematically showing a honeycomb structure according to a ninth embodiment of the present invention.
도 13을 참조하면, 도 12와 관련하여 설명한 것과 마찬가지로, 하니컴 구조체(500)는 16개의 서브 블록(110)으로 구성되어 있으며, 4개의 서브 블록 세트가 경계부(140)를 경계로 모여 전체 하니컴 구조체(400)를 형성하고 있다. 또한 도 12와 마찬가지 방식으로, 상기 하니컴 구조체(500)의 외벽에는 응력완화 특징(Rf)이 구비되어 있다. Referring to FIG. 13, as described with reference to FIG. 12, the honeycomb structure 500 is composed of 16 subblocks 110, and four sets of subblocks gather together at the boundary portion 140 to form a whole honeycomb structure. 400 is formed. 12, the stress relief feature Rf is provided on the outer wall of the honeycomb structure 500.
도 13의 구조체는 하니컴 센터부의 구조가 도 12의 구조체와는 상이하다. The structure of the honeycomb center portion is different from that of the structure of FIG.
도 14를 참조하면, 하니컴 구조체(600)의 센터부(Cf)는 일부 셀을 구획하는 격벽이 제거된 형상을 갖는다. 이와 같은 센터부는 건조시 센터 중심부를 따라 건조 공기의 공급을 원활하게 하며, 외벽의 응력완화 특징과 마찬가지로 센터부의 건조에 따른 수축시 응력을 완화하는 역할을 할 수 있다. 도 14에서는 십자형의 채널이 도시되어 있지만, 이것은 본 발명의 예시일 뿐이며 센터부 내부 격벽의 제거 방식에 따라 'ㅏ', 'ㅓ' 등의 다양한 채널이 형성될 수 있음은 당업자라면 누구나 알 수 있을 것이다. 또한, 본 실시예의 십자형 채널과 같은 센터부 구조는 본 명세서에서 설명되는 다른 하니컴 구조체에도 마찬가지로 적용될 수 있다. Referring to FIG. 14, the center portion Cf of the honeycomb structure 600 has a shape in which a partition wall partitioning some cells is removed. Such a center portion facilitates the supply of drying air along the center of the center during drying, and may act to relieve stress during shrinkage due to the drying of the center like the stress relaxation feature of the outer wall. Although a cross-shaped channel is shown in FIG. 14, this is only an example of the present invention, and it will be appreciated by those skilled in the art that various channels such as 'ㅏ' and 'ㅓ' may be formed according to a method of removing the inner partition of the center part. will be. In addition, the center portion structure such as the cruciform channel of the present embodiment can be similarly applied to the other honeycomb structures described herein.
이상 전술한 실시예들에서 하니컴 구조체는 육각 기둥 형상인 것을 예시하였으나, 하니컴 제품은 원통 기둥 형상으로 구현될 수도 있다. In the above-described embodiments, the honeycomb structure is illustrated as having a hexagonal column shape, but the honeycomb product may be implemented in a cylindrical columnar shape.
도 15는 원통 기둥 형상의 하니컴 제품을 예시적으로 도시한 도면이다. 15 exemplarily shows a honeycomb product having a cylindrical columnar shape.
도 15를 참조하면, 하니컴 제품(600)은 복수의 서브 블록(110)으로 구성되어 있다. 이와 같은 구조의 하니컴 제품(600)은 전술한 본 실시예의 하니컴 구조체를 다양하게 조합함으로써 구현될 수 있다. Referring to FIG. 15, the honeycomb product 600 includes a plurality of sub blocks 110. The honeycomb product 600 having such a structure may be implemented by variously combining the honeycomb structure of the present embodiment described above.
중앙의 4개의 서브 블록(110)으로 구성된 하니컴 구조체(200)로는 도 8과 관련하여 설명한 하니컴 구조체가 사용될 수 있다. 물론, 상기 하니컴 구조체(200)로는 도 10 및 도 12에 예시한 것과 같은 하니컴 구조체가 사용될 수 있음은 물론이다. 이 하니컴 구조체(200)에 인접하는 주변의 8개의 서브 블록(110)은 각각 별개의 하니컴 구조체의 일부를 상기 하니컴 구조체(200)에 접합함으로써 제조될 수 있다. The honeycomb structure described with reference to FIG. 8 may be used as the honeycomb structure 200 including four central sub-blocks 110. Of course, the honeycomb structure 200 as illustrated in FIGS. 10 and 12 may be used as the honeycomb structure 200. The eight sub-blocks 110 adjacent to the honeycomb structure 200 may be manufactured by joining a portion of a separate honeycomb structure to the honeycomb structure 200.
이와 달리, 중앙의 4개의 서브 블록(110)은 각각 도 2 내지 도 4, 도 6 및 도 7에 도시된 것과 같은 하니컴 구조체(100)로 이루어질 수 있다. 이 때, 주변의 서브 블록들은 하니컴 구조체의 일부를 상기 하니컴 구조체(200)에 접합함으로써 제조될 수 있다.Alternatively, the central four sub-blocks 110 may be formed of a honeycomb structure 100 as shown in FIGS. 2 to 4, 6, and 7, respectively. In this case, peripheral sub-blocks may be manufactured by bonding a portion of the honeycomb structure to the honeycomb structure 200.
본 발명의 하니컴 구조체는 축열재, 디젤 매연 필터(DPF), 촉매 담체 등의 다양한 용도에 사용될 수 있다.The honeycomb structure of the present invention can be used in various applications such as heat storage material, diesel particulate filter (DPF), catalyst carrier and the like.

Claims (14)

  1. 유체의 유동을 위한 채널을 제공하기 위하여 길이 방향으로 연장되며 격벽에 의해 구획되는 복수의 셀을 포함하는 하니컴 구조체에 있어서,In a honeycomb structure comprising a plurality of cells extending in the longitudinal direction and partitioned by a partition wall to provide a channel for the flow of fluid,
    상기 하니컴 구조체를 둘러싸는 외벽을 포함하고,An outer wall surrounding the honeycomb structure,
    상기 외벽의 최소한 일부에는 응력완화 특징이 구비된 것을 특징으로 하는 하니컴 구조체.Honeycomb structure, characterized in that at least a portion of the outer wall is provided with a stress relaxation feature.
  2. 제1항에 있어서,The method of claim 1,
    상기 응력완화 특징은 외벽 종단부를 포함하는 것을 특징으로 하는 하니컴 구조체.The stress relief feature is a honeycomb structure, characterized in that it comprises an outer wall end.
  3. 제2항에 있어서,The method of claim 2,
    상기 외벽 종단부는 상기 하니컴 구조체의 길이 방향으로 연장되는 것을 특징으로 하는 하니컴 구조체.And the outer wall end portion extends in the longitudinal direction of the honeycomb structure.
  4. 제2항에 있어서,The method of claim 2,
    상기 외벽 종단부는 상기 하니컴 구조체를 구성하는 최소한 하나의 셀의 최소한 일부를 개방하는 것을 특징으로 하는 하니컴 구조체. And the outer wall end portion opens at least a portion of at least one cell constituting the honeycomb structure.
  5. 제1항에 있어서,The method of claim 1,
    상기 응력완화 특징은 외벽 벤딩부를 포함하는 것을 특징으로 하는 하니컴 구조체.The stress relaxation characteristic is a honeycomb structure, characterized in that it comprises an outer wall bending portion.
  6. 제5항에 있어서,The method of claim 5,
    상기 외벽 벤딩부는 표면 형상이 노치 형상인 것을 특징으로 하는 하니컴 구조체.The outer wall bending portion honeycomb structure, characterized in that the surface shape of the notch shape.
  7. 제5항에 있어서,The method of claim 5,
    상기 외벽 벤딩부는 내부로 함몰된 곡률을 갖는 것을 특징으로 하는 하니컴 구조체.And the outer wall bending part has a curvature recessed therein.
  8. 제1항에 있어서,The method of claim 1,
    상기 하니컴 구조체의 중심부에는 최소한 일부의 격벽의 제거에 의해 채널이 형성되는 것을 특징으로 하는 하니컴 구조체.Honeycomb structure, characterized in that the channel is formed in the center of the honeycomb structure by removing at least a portion of the partition wall.
  9. 유체의 유동을 위한 채널을 제공하기 위하여 길이 방향으로 연장되며 격벽에 의해 구획되는 복수의 셀을 포함하는 하니컴 구조체에 있어서,In a honeycomb structure comprising a plurality of cells extending in the longitudinal direction and partitioned by a partition wall to provide a channel for the flow of fluid,
    상기 하니컴 구조체는 구획 가능한 복수의 블록, 상기 블록 사이의 경계부 및 상기 구조체를 둘러싸는 외벽을 포함하고,The honeycomb structure includes a plurality of partitionable blocks, a boundary between the blocks, and an outer wall surrounding the structure,
    상기 블록 간의 경계부에 대응하는 위치의 외벽에는 최소한 하나의 응력 완화 특징이 구비된 것을 특징으로 하는 하니컴 구조체.Honeycomb structure, characterized in that the outer wall at the position corresponding to the boundary between the blocks is provided with at least one stress relaxation feature.
  10. 제8항에 있어서,The method of claim 8,
    상기 블록 사이 경계부의 셀 크기는 상기 블록 내부의 셀 크기보다 작은 것을 특징으로 하는 하니컴 구조체.And the cell size of the boundary between the blocks is smaller than the cell size inside the block.
  11. 제8항에 있어서, The method of claim 8,
    상기 블록 사이 경계부의 격벽은 상기 블록 내부의 격벽보다 두께가 큰 것을 특징으로 하는 하니컴 구조체.The partition wall of the boundary between the blocks is larger than the partition wall inside the honeycomb structure, characterized in that.
  12. 제8항에 있어서, The method of claim 8,
    상기 하니컴 구조체의 중심부에는 최소한 일부의 격벽의 제거에 의해 채널이 형성되는 것을 특징으로 하는 하니컴 구조체.Honeycomb structure, characterized in that the channel is formed in the center of the honeycomb structure by removing at least a portion of the partition wall.
  13. 제1항 내지 제10항 중 어느 하나에 기재된 하니콤 구조체를 포함하는 축열재.The heat storage material containing the honeycomb structure as described in any one of Claims 1-10.
  14. 제1항 내지 제10항 중 어느 하나에 기재된 하니콤 구조체를 포함하는 디젤 매연 필터.A diesel particulate filter comprising the honeycomb structure according to any one of claims 1 to 10.
PCT/KR2016/003238 2015-04-16 2016-03-30 Honeycomb structure having crack resistance WO2016167497A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680018341.9A CN107532490B (en) 2015-04-16 2016-03-30 Honeycomb molded body with cracking resistance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150053846A KR101714363B1 (en) 2015-04-16 2015-04-16 Honeycomb Structures With Enhanced Crack Resistance
KR10-2015-0053846 2015-04-16

Publications (1)

Publication Number Publication Date
WO2016167497A1 true WO2016167497A1 (en) 2016-10-20

Family

ID=57127113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/003238 WO2016167497A1 (en) 2015-04-16 2016-03-30 Honeycomb structure having crack resistance

Country Status (3)

Country Link
KR (1) KR101714363B1 (en)
CN (1) CN107532490B (en)
WO (1) WO2016167497A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111237032A (en) * 2020-01-16 2020-06-05 常州浩蔚环保科技有限公司 Non-uniform thermal expansion coefficient distribution of particle traps
KR20210112583A (en) 2020-03-05 2021-09-15 (주)에이치에스패널 Honeycom Core for Composite Panel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10264274A (en) * 1997-03-28 1998-10-06 Ngk Insulators Ltd Ceramic honeycomb structure
JP4934056B2 (en) * 2006-01-18 2012-05-16 日本碍子株式会社 Honeycomb structure
JP2012170935A (en) * 2011-02-24 2012-09-10 Denso Corp Honeycomb structure
WO2013002395A1 (en) * 2011-06-30 2013-01-03 日本碍子株式会社 Heat exchange member
JP2013202531A (en) * 2012-03-28 2013-10-07 Kubota Corp Honeycomb filter

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11197519A (en) * 1998-01-08 1999-07-27 Honda Motor Co Ltd Metallic carrier for exhaust gas purifying catalyst
DE60323338D1 (en) * 2002-02-05 2008-10-16 Ibiden Co Ltd WAVE FILTER FOR EXHAUST GASIFICATION
CN101058049B (en) * 2002-06-17 2010-05-19 日立金属株式会社 Ceramic honeycomb structure, manufacturing method thereof, and coating used for the manufacture
WO2005064128A1 (en) * 2003-12-25 2005-07-14 Ibiden Co., Ltd. Exhaust gas purifying device and method for recovering exhaust gas purifying device
JP5919199B2 (en) * 2010-12-24 2016-05-18 日本碍子株式会社 Honeycomb structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10264274A (en) * 1997-03-28 1998-10-06 Ngk Insulators Ltd Ceramic honeycomb structure
JP4934056B2 (en) * 2006-01-18 2012-05-16 日本碍子株式会社 Honeycomb structure
JP2012170935A (en) * 2011-02-24 2012-09-10 Denso Corp Honeycomb structure
WO2013002395A1 (en) * 2011-06-30 2013-01-03 日本碍子株式会社 Heat exchange member
JP2013202531A (en) * 2012-03-28 2013-10-07 Kubota Corp Honeycomb filter

Also Published As

Publication number Publication date
KR20160124292A (en) 2016-10-27
CN107532490B (en) 2019-11-22
CN107532490A (en) 2018-01-02
KR101714363B1 (en) 2017-03-23

Similar Documents

Publication Publication Date Title
US9340463B2 (en) Honeycomb structure
WO2016167497A1 (en) Honeycomb structure having crack resistance
JP2007290945A (en) Honeycomb structure and method of producing the same
JP3777895B2 (en) Ceramic honeycomb structure
US10688483B2 (en) Honeycomb structure
US10710062B2 (en) Honeycomb structure
JP6562960B2 (en) Manufacturing method of honeycomb structure
US10905992B2 (en) Honeycomb structural body, method for manufacturing the same, and exhaust gas purification filter
US11156400B2 (en) Method for manufacturing honeycomb structure
US11573052B2 (en) Method for manufacturing honeycomb structure
US10479734B2 (en) Method and apparatus for thermally debindering a cellular ceramic green body
EP3484681B1 (en) System and methods of plugging ceramic honeycomb bodies
US11020733B2 (en) Honeycomb structure
US11046621B2 (en) Honeycomb structure
US11529624B2 (en) Honeycomb structure
KR20170010035A (en) Honeycomb Structures With Enhanced Crack Resistance
JP5478896B2 (en) Manufacturing method of joined honeycomb segment
US10173163B2 (en) Honeycomb structure
US11492295B2 (en) Method for producing honeycomb structure
US20190301801A1 (en) Heating furnace
JP2014046276A (en) Ceramic honeycomb structure and method for manufacturing the same
JP2008119666A (en) Manufacturing method of exhaust gas purifying filter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16780220

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16780220

Country of ref document: EP

Kind code of ref document: A1