WO2021137282A1 - 動力伝達装置 - Google Patents

動力伝達装置 Download PDF

Info

Publication number
WO2021137282A1
WO2021137282A1 PCT/JP2020/045424 JP2020045424W WO2021137282A1 WO 2021137282 A1 WO2021137282 A1 WO 2021137282A1 JP 2020045424 W JP2020045424 W JP 2020045424W WO 2021137282 A1 WO2021137282 A1 WO 2021137282A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
gear
rotation axis
box
wall portion
Prior art date
Application number
PCT/JP2020/045424
Other languages
English (en)
French (fr)
Inventor
健二郎 安井
隆義 漆畑
悠介 鈴木
Original Assignee
ジヤトコ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジヤトコ株式会社 filed Critical ジヤトコ株式会社
Priority to JP2021568460A priority Critical patent/JP7350459B2/ja
Publication of WO2021137282A1 publication Critical patent/WO2021137282A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/06Differential gearings with gears having orbital motion
    • F16H48/08Differential gearings with gears having orbital motion comprising bevel gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H57/021Shaft support structures, e.g. partition walls, bearing eyes, casing walls or covers with bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H57/037Gearboxes for accommodating differential gearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating

Definitions

  • the present invention relates to a power transmission device.
  • Patent Document 1 discloses a power transmission device for an electric vehicle having a bevel gear type differential mechanism and a planetary gear mechanism.
  • This planetary gear mechanism includes a stepped pinion gear having a large pinion gear and a small pinion gear.
  • the power transmission device in a certain aspect of the present invention is With a differential mechanism A case accommodating the differential mechanism and The pinion gear supported by the case and A wall portion that overlaps the case in the axial direction, A plate provided between the wall portion and the case in the axial direction, It has a guide member for guiding the lubricating oil from the case side to the wall portion side.
  • the stirring resistance associated with the revolution of the pinion gear can be reduced.
  • FIG. 1 is a skeleton diagram illustrating a power transmission device 1 according to the present embodiment.
  • FIG. 2 is a schematic cross-sectional view illustrating the power transmission device 1 according to the present embodiment.
  • FIG. 3 is an enlarged view around the planetary reduction gear 4 of the power transmission device 1.
  • FIG. 4 is an enlarged view of the power transmission device 1 around the differential mechanism 5.
  • the power transmission device 1 includes a motor 2 and a planetary reduction gear 4 (reduction mechanism) that decelerates the output rotation of the motor 2 and inputs it to the differential mechanism 5.
  • the power transmission device 1 also has a drive shaft 9 (9A, 9B) as a drive shaft and a park lock mechanism 3.
  • a park lock mechanism 3, a planetary reduction gear 4, a differential mechanism 5, and a drive shaft 9 (9A, 9B) are provided along the transmission path of the output rotation of the motor 2. There is.
  • the power transmission device 1 After the output rotation of the motor 2 is decelerated by the planetary reduction gear 4 and input to the differential mechanism 5, the power transmission device 1 is mounted via the drive shafts 9 (9A, 9B). It is transmitted to the left and right drive wheels W and W of the vehicle.
  • the planetary reduction gear 4 is connected to the downstream side of the motor 2.
  • the differential mechanism 5 is connected downstream of the planetary reduction gear 4.
  • the drive shafts 9 (9A, 9B) are connected downstream of the differential mechanism 5.
  • the main body box 10 of the power transmission device 1 has a first box 11 that houses the motor 2 and a second box 12 that is externally inserted into the first box 11.
  • the main body box 10 has a third box 13 assembled to the first box 11 and a fourth box 14 assembled to the second box 12.
  • the first box 11 has a cylindrical support wall portion 111 and a flange-shaped joint portion 112 provided at one end 111a of the support wall portion 111.
  • the first box 11 is provided with the support wall portion 111 oriented along the rotation axis X of the motor 2.
  • the motor 2 is housed inside the support wall portion 111.
  • the joint portion 112 is provided in a direction orthogonal to the rotation axis X.
  • the joint portion 112 is formed with an outer diameter larger than that of the support wall portion 111.
  • the second box 12 includes a cylindrical peripheral wall portion 121, a flange-shaped joint portion 122 provided at one end 121a of the peripheral wall portion 121, and a flange-shaped joint portion 123 provided at the other end 121b of the peripheral wall portion 121. ,have.
  • the peripheral wall portion 121 is formed with an inner diameter that can be extrapolated to the support wall portion 111 of the first box 11.
  • the first box 11 and the second box 12 are assembled to each other by externally inserting the peripheral wall portion 121 of the second box 12 into the support wall portion 111 of the first box 11.
  • the joint portion 122 on the one end 121a side of the peripheral wall portion 121 is in contact with the joint portion 112 of the first box 11 from the rotation axis X direction. These joints 122 and 112 are connected to each other by bolts (not shown).
  • a plurality of concave grooves 111b are provided on the outer periphery of the support wall portion 111.
  • the plurality of concave grooves 111b are provided at intervals in the rotation axis X direction.
  • Each of the concave grooves 111b is provided over the entire circumference in the circumferential direction around the rotation axis X.
  • the peripheral wall portion 121 of the second box 12 is externally inserted into the support wall portion 111 of the first box 11.
  • the opening of the concave groove 111b is closed by the peripheral wall portion 121.
  • a plurality of cooling passages CP through which cooling water flows are formed between the support wall portion 111 and the peripheral wall portion 121.
  • ring grooves 111c and 111c are formed on both sides of the region where the concave groove 111b is provided.
  • Seal rings 113 and 113 are fitted and attached to the ring grooves 111c and 111c. These seal rings 113 are pressed against the inner circumference of the peripheral wall portion 121 extrapolated to the support wall portion 111 to seal the gap between the outer circumference of the support wall portion 111 and the inner circumference of the peripheral wall portion 121.
  • the other end 121b of the second box 12 is provided with a wall portion 120 extending toward the inner diameter side.
  • the wall portion 120 is provided in a direction orthogonal to the rotation axis X.
  • An opening 120a through which the drive shaft 9A is inserted is provided in a region of the wall portion 120 that intersects with the rotation axis X.
  • a tubular motor support portion 125 surrounding the opening 120a is provided on the surface on the motor 2 side (right side in the drawing).
  • the motor support portion 125 is inserted inside the coil end 253b described later.
  • the motor support portion 125 faces the end portion 21b of the rotor core 21 with a gap in the rotation axis X direction.
  • the peripheral wall portion 121 of the second box 12 has a thicker radial thickness in the lower region than in the upper region in the vertical direction with respect to the mounted state of the power transmission device 1 in the vehicle.
  • An oil reservoir 128 is provided so as to penetrate in the rotation axis X direction in the thick region in the radial direction.
  • the oil reservoir 128 communicates with the axial oil passage 138 provided at the joint 132 of the third box 13 via the communication hole 112a.
  • the communication hole 112a is provided in the joint portion 112 of the first box 11.
  • the third box 13 has a wall portion 130 orthogonal to the rotation axis X.
  • a ring-shaped joint 132 is provided on the outer periphery of the wall 130 when viewed from the rotation axis X direction.
  • the third box 13 is located on the opposite side (right side in the drawing) of the differential mechanism 5 when viewed from the first box 11.
  • the joint portion 132 of the third box 13 is joined to the joint portion 112 of the first box 11 from the rotation axis X direction.
  • the third box 13 and the first box 11 are connected to each other by bolts (not shown). In this state, in the first box 11, the opening of the support wall portion 111 on the joint portion 122 side (right side in the drawing) is closed by the third box 13.
  • an insertion hole 130a for the drive shaft 9A is provided in the central portion of the wall portion 130.
  • a lip seal RS is provided on the inner circumference of the insertion hole 130a.
  • a lip portion (not shown) is elastically brought into contact with the outer circumference of the drive shaft 9A.
  • the gap between the inner circumference of the insertion hole 130a and the outer circumference of the drive shaft 9A is sealed by the lip seal RS.
  • a peripheral wall portion 131 surrounding the insertion hole 130a is provided on the surface of the wall portion 130 on the side of the first box 11 (left side in the drawing).
  • a drive shaft 9A is supported on the inner circumference of the peripheral wall portion 131 via a bearing B4.
  • a motor support portion 135 is provided on the motor 2 side (left side in the drawing) when viewed from the peripheral wall portion 131.
  • the motor support portion 135 has a tubular shape that surrounds the outer circumference of the rotating shaft X at intervals.
  • a cylindrical connecting wall 136 is connected to the outer circumference of the motor support portion 135.
  • the connecting wall 136 is formed with an outer diameter larger than that of the peripheral wall portion 131 on the wall portion 130 side (right side in the drawing).
  • the connection wall 136 is provided in a direction along the rotation axis X, and extends in a direction away from the motor 2.
  • the connection wall 136 connects the motor support portion 135 and the wall portion 130 of the third box 13.
  • the motor support portion 135 is supported by the third box 13 via the connecting wall 136.
  • One end 20a side of the motor shaft 20 penetrates the inside of the motor support portion 135 from the motor 2 side to the peripheral wall portion 131 side.
  • a bearing B1 is supported on the inner circumference of the motor support portion 135.
  • the outer circumference of the motor shaft 20 is supported by the motor support portion 135 via the bearing B1.
  • a lip seal RS is provided at a position adjacent to the bearing B1.
  • an oil hole 136a which will be described later, is opened on the inner circumference of the connecting wall 136.
  • the oil OL flows into the space (internal space Sc) surrounded by the connecting wall 136 from the oil hole 136a.
  • the lip seal RS is provided to prevent the oil OL in the connecting wall 136 from flowing into the motor 2 side.
  • the fourth box 14 has a peripheral wall portion 141 surrounding the outer periphery of the planetary reduction gear 4 and the differential mechanism 5, and a flange-shaped joint portion 142 provided at the end portion of the peripheral wall portion 141 on the second box 12 side. doing.
  • the fourth box 14 is located on the differential mechanism 5 side (left side in the drawing) when viewed from the second box 12.
  • the joint portion 142 of the fourth box 14 is joined to the joint portion 123 of the second box 12 from the rotation axis X direction.
  • the fourth box 14 and the second box 12 are connected to each other by bolts (not shown).
  • a motor chamber Sa accommodating the motor 2 and a gear chamber Sb accommodating the planetary reduction gear 4 and the differential mechanism 5 are formed inside the main body box 10 of the power transmission device 1.
  • the motor chamber Sa is formed inside the first box 11 between the wall portion 120 of the second box 12 and the wall portion 130 of the third box 13.
  • the gear chamber Sb is formed on the inner diameter side of the fourth box 14 between the wall portion 120 of the second box 12 and the peripheral wall portion 141 of the fourth box 14.
  • a plate member 8 is provided inside the gear chamber Sb.
  • the plate member 8 is fixed to the fourth box 14 with bolts B.
  • the plate member 8 divides the gear chamber Sb into a first gear chamber Sb1 accommodating the planetary reduction gear 4 and the differential mechanism 5 and a second gear chamber Sb2 accommodating the park lock mechanism 3.
  • the second gear chamber Sb2 is located between the first gear chamber Sb1 and the motor chamber Sa in the X direction of the rotation axis.
  • the motor 2 has a cylindrical motor shaft 20, a cylindrical rotor core 21 extrapolated to the motor shaft 20, and a stator core 25 that surrounds the outer circumference of the rotor core 21 at intervals.
  • bearings B1 and B1 are extrapolated and fixed on both sides of the rotor core 21.
  • the bearing B1 located on one end 20a side (right side in the drawing) of the motor shaft 20 as viewed from the rotor core 21 is supported on the inner circumference of the motor support portion 135 of the third box 13.
  • the bearing B1 located on the other end 20b side is supported on the inner circumference of the cylindrical motor support portion 125 of the second box 12.
  • the motor support portions 135 and 125 are arranged on the inner diameter side of the coil ends 253a and 253b, which will be described later, with one end 21a and the other end 21b of the rotor core 21 facing each other with a gap in the rotation axis X direction. ing.
  • the rotor core 21 is formed by laminating a plurality of silicon steel plates. Each of the silicon steel plates is extrapolated to the motor shaft 20 in a state where the relative rotation with the motor shaft 20 is restricted.
  • the silicon steel plate has a ring shape when viewed from the rotation axis X direction of the motor shaft 20. On the outer peripheral side of the silicon steel plate, magnets of N pole and S pole (not shown) are alternately provided in the circumferential direction around the rotation axis X.
  • the stator core 25 that surrounds the outer circumference of the rotor core 21 is formed by laminating a plurality of electromagnetic steel sheets.
  • the stator core 25 is fixed to the inner circumference of the cylindrical support wall portion 111 of the first box 11.
  • Each of the electrical steel sheets has a ring-shaped yoke portion 251 fixed to the inner circumference of the support wall portion 111, and a teeth portion 252 protruding from the inner circumference of the yoke portion 251 toward the rotor core 21.
  • the stator core 25 having a configuration in which the winding 253 is distributed and wound across a plurality of teeth portions 252 is adopted.
  • the stator core 25 is longer in the rotation axis X direction than the rotor core 21 by the amount of the coil ends 253a and 253b protruding in the rotation axis X direction.
  • stator core having a configuration in which windings are centrally wound may be adopted for each of the plurality of tooth portions 252 protruding toward the rotor core 21 side.
  • the wall portion 120 (motor support portion 125) of the second box 12 is provided with an opening 120a.
  • the other end 20b side of the motor shaft 20 penetrates the opening 120a to the differential mechanism 5 side (left side in the drawing) and is located in the fourth box 14.
  • the other end 20b of the motor shaft 20 faces the side gear 54A, which will be described later, with a gap in the rotation axis X direction inside the fourth box 14.
  • a step portion 201 is provided in a region located in the fourth box 14.
  • the step portion 201 is located in the vicinity of the motor support portion 125.
  • a lip seal RS supported on the inner circumference of the motor support portion 125 is in contact with the outer periphery of the region between the step portion 201 and the bearing B1.
  • the lip seal RS separates the motor chamber Sa accommodating the motor 2 and the gear chamber Sb in the fourth box 14.
  • An oil OL for lubricating the planetary reduction gear 4 and the differential mechanism 5 is sealed in the inner diameter side of the fourth box 14 (see FIG. 2).
  • the lip seal RS is provided to prevent the inflow of oil OL into the motor chamber Sa.
  • the region from the step portion 201 to the vicinity of the other end 20b is a fitting portion 202 provided with a spline on the outer periphery.
  • a park gear 30 and a sun gear 41 are spline-fitted on the outer circumference of the fitting portion 202.
  • one side surface of the park gear 30 in the X direction of the rotation axis is in contact with the step portion 201 (right side in the drawing).
  • One end 410a of the cylindrical base 410 of the sun gear 41 is in contact with the other side surface of the park gear 30 (left side in the figure).
  • a nut N screwed into the other end 20b of the motor shaft 20 is in pressure contact with the other end 410b of the base portion 410 from the rotation axis X direction.
  • the sun gear 41 and the park gear 30 are provided so as not to rotate relative to the motor shaft 20 in a state of being sandwiched between the nut N and the step portion 201.
  • the sun gear 41 has a tooth portion 411 on the outer periphery of the motor shaft 20 on the other end 20b side.
  • a large-diameter gear portion 431 of the stepped pinion gear 43 meshes with the outer periphery of the tooth portion 411.
  • the stepped pinion gear 43 has a large-diameter gear portion 431 that meshes with the sun gear 41 and a small-diameter gear portion 432 having a diameter smaller than that of the large-diameter gear portion 431.
  • the stepped pinion gear 43 is a gear component in which a large-diameter gear portion 431 and a small-diameter gear portion 432 are integrally provided side by side in the direction of the axis X1 parallel to the rotation axis X.
  • the large-diameter gear portion 431 is formed with an outer diameter R1 larger than the outer diameter R2 of the small-diameter gear portion 432.
  • the stepped pinion gear 43 is provided in a direction along the axis X1. In this state, the large-diameter gear portion 431 is positioned on the motor 2 side (right side in the figure).
  • the outer circumference of the small diameter gear portion 432 meshes with the inner circumference of the ring gear 42.
  • the ring gear 42 has a ring shape that surrounds the rotation shaft X at intervals.
  • a plurality of engaging teeth 421 protruding outward in the radial direction are provided on the outer periphery of the ring gear 42.
  • the plurality of engaging teeth 421 are provided at intervals in the circumferential direction around the rotation axis X.
  • the engaging teeth 421 provided on the outer circumference are spline-fitted to the tooth portions 146a provided on the support wall portion 146 of the fourth box 14.
  • the ring gear 42 is restricted from rotating around the rotation axis X.
  • the stepped pinion gear 43 has a through hole 430 that penetrates the inner diameter side of the large-diameter gear portion 431 and the small-diameter gear portion 432 in the axis X1 direction.
  • the stepped pinion gear 43 is rotatably supported on the outer circumference of the pinion shaft 44 penetrating the through hole 430 via needle bearings NB and NB.
  • an intermediate spacer MS is interposed between the needle bearing NB that supports the inner circumference of the large-diameter gear portion 431 and the needle bearing NB that supports the inner circumference of the small-diameter gear portion 432. ..
  • an in-shaft oil passage 440 is provided inside the pinion shaft 44.
  • the in-shaft oil passage 440 penetrates from one end 44a of the pinion shaft 44 to the other end 44b along the axis X1.
  • the pinion shaft 44 is provided with oil holes 442 and 443 that communicate the in-shaft oil passage 440 and the outer circumference of the pinion shaft 44.
  • the oil hole 443 opens in the region where the needle bearing NB that supports the inner circumference of the large-diameter gear portion 431 is provided.
  • the oil hole 442 is open in the region where the needle bearing NB that supports the inner circumference of the small diameter gear portion 432 is provided.
  • the oil holes 443 and 442 are opened in the region where the stepped pinion gear 43 is extrapolated.
  • the pinion shaft 44 is provided with an introduction path 441 for introducing the oil OL into the in-shaft oil passage 440.
  • the introduction path 441 is open to a region located in the support hole 71a of the second case portion 7, which will be described later.
  • the introduction path 441 communicates the in-shaft oil passage 440 with the outer circumference of the pinion shaft 44.
  • An oil passage 781 in the case is opened on the inner circumference of the support hole 71a.
  • the oil passage 781 in the case communicates the outer circumference of the guide portion 78 protruding from the base portion 71 of the second case portion 7 with the support hole 71a.
  • the oil passage 781 in the case is inclined with respect to the axis X1.
  • the oil passage 781 in the case is inclined toward the rotation axis X side toward the slit 710 provided in the base 71.
  • the oil OL scraped up by the differential case 50 flows into the oil passage 781 in the case.
  • the oil OL that moves to the outer diameter side flows into the oil passage 781 inside the case due to the centrifugal force generated by the rotation of the differential case 50.
  • the oil OL that has flowed from the oil passage 781 in the case into the introduction passage 441 flows into the in-shaft oil passage 440 of the pinion shaft 44.
  • the oil OL that has flowed into the in-shaft oil passage 440 is discharged radially outward from the oil holes 442 and 443.
  • the oil OL discharged from the oil holes 442 and 443 lubricates the needle bearing NB extrapolated to the pinion shaft 44.
  • a through hole 444 is provided on the other end 44b side of the region where the introduction path 441 is provided.
  • the through hole 444 penetrates the pinion shaft 44 in the diameter line direction.
  • the pinion shaft 44 is provided so that the through hole 444 and the insertion hole 782 on the second case portion 7 side, which will be described later, are in phase with each other around the axis X1.
  • the positioning pin P inserted into the insertion hole 782 penetrates the through hole 444 of the pinion shaft 44.
  • the pinion shaft 44 is supported on the second case portion 7 side in a state where rotation around the axis X1 is restricted.
  • the region protruding from the stepped pinion gear 43 is the first shaft portion 445.
  • the first shaft portion 445 is supported by a support hole 61a provided in the first case portion 6 of the differential case 50.
  • a region protruding from the stepped pinion gear 43 is the second shaft portion 446.
  • the second shaft portion 446 is supported by a support hole 71a provided in the second case portion 7 of the differential case 50.
  • the first shaft portion 445 means a region on the pinion shaft 44 on the one end 44a side where the stepped pinion gear 43 is not extrapolated.
  • the second shaft portion 446 means a region on the other end 44b side of the pinion shaft 44 where the stepped pinion gear 43 is not extrapolated.
  • the length of the second shaft portion 446 in the axis X1 direction is longer than that of the first shaft portion 445.
  • FIG. 5 is a perspective view of the differential mechanism 5 around the differential case 50.
  • FIG. 6 is an exploded perspective view of the differential mechanism 5 around the differential case 50.
  • the differential case 50 as a case accommodates the differential mechanism 5.
  • the differential case 50 is formed by assembling the first case portion 6 and the second case portion 7 in the rotation axis X direction.
  • the first case portion 6 and the second case portion 7 have a function as a carrier for supporting the pinion shaft 44 of the planetary reduction gear 4.
  • three pinion mate gears 52 and three pinion mate shafts 51 are provided between the first case portion 6 and the second case portion 7 of the differential case 50.
  • the pinion mate shafts 51 are provided at equal intervals in the circumferential direction around the rotation axis X (see FIG. 6).
  • the inner diameter side ends of each of the pinion mate shafts 51 are connected to a common connecting portion 510.
  • One pinion mate gear 52 is extrapolated to each of the pinion mate shaft 51.
  • Each of the pinion mate gears 52 is in contact with the connecting portion 510 from the radial outside of the rotating shaft X. In this state, each of the pinion mate gears 52 is rotatably supported by the pinion mate shaft 51.
  • a spherical washer 53 is extrapolated to the pinion mate shaft 51.
  • the spherical washer 53 is in contact with the spherical outer circumference of the pinion mate gear 52.
  • the side gear 54A is located on one side of the connecting portion 510 in the rotation axis X direction, and the side gear 54B is located on the other side.
  • the side gear 54A is rotatably supported by the first case portion 6.
  • the side gear 54B is rotatably supported by the second case portion 7.
  • the side gear 54A meshes with three pinion mate gears 52 from one side in the rotation axis X direction.
  • the side gear 54B meshes with the three pinion mate gears 52 from the other side in the rotation axis X direction.
  • FIG. 7 to 10 are views for explaining the first case portion 6.
  • FIG. 7 is a perspective view of the first case portion 6 as viewed from the second case portion 7 side.
  • FIG. 8 is a plan view of the first case portion 6 as viewed from the second case portion 7 side.
  • FIG. 9 is a schematic view of a cross section taken along the line AA in FIG.
  • FIG. 9 shows the arrangement of the pinion mate shaft 51 and the pinion mate gear 52 with virtual lines.
  • FIG. 10 is a schematic view of a cross section taken along the line AA in FIG. In FIG. 10, the arrangement of the side gear 54A, the stepped pinion gear 43, and the drive shaft 9A is shown by a virtual line while omitting the illustration of the connecting beam 62 on the back side of the paper.
  • the first case portion 6 has a ring-shaped base portion 61.
  • the base portion 61 is a plate-shaped member having a thickness W61 in the rotation axis X direction.
  • an opening 60 is provided in the central portion of the base portion 61.
  • a tubular wall portion 611 surrounding the opening 60 is provided on the surface of the base portion 61 opposite to the second case portion 7 (on the right side in the drawing). The outer circumference of the tubular wall portion 611 is supported by a plate member 8 via a bearing B3 (see FIG. 2).
  • Three connecting beams 62 extending to the second case portion 7 side are provided on the surface of the base portion 61 on the second case portion 7 side (left side in the drawing).
  • the connecting beams 62 are provided at equal intervals in the circumferential direction around the rotation axis X (see FIGS. 7 and 8).
  • the connecting beam 62 has a base portion 63 orthogonal to the base portion 61 and a connecting portion 64 wider than the base portion 63.
  • the tip surface 64a of the connecting portion 64 is a flat surface orthogonal to the rotation axis X, and the tip surface 64a is provided with a support groove 65 for supporting the pinion mate shaft 51. ..
  • the support groove 65 is formed in a straight line along the radius line L of the ring-shaped base portion 61 when viewed from the rotation axis X direction.
  • the support groove 65 crosses the central portion of the connecting portion 64 in the circumferential direction around the rotation axis X from the inner diameter side to the outer diameter side.
  • the support groove 65 has a semicircular shape along the outer diameter of the pinion mate shaft 51.
  • An arc portion 641 is formed on the inner diameter side (rotation shaft X side) of the connecting portion 64 in a shape along the outer circumference of the pinion mate gear 52.
  • the outer circumference of the pinion mate gear 52 is supported via the spherical washer 53.
  • an oil groove 642 is provided in a direction along the radius line L described above. The oil groove 642 is provided in a range from the support groove 65 of the pinion mate shaft 51 to the gear support portion 66 fixed to the inner circumference of the connecting portion 64.
  • the gear support portion 66 is connected to a boundary portion between the base portion 63 and the connecting portion 64.
  • the gear support portion 66 is provided in a direction orthogonal to the rotation axis X.
  • the gear support portion 66 has a through hole 660 in the central portion. As shown in FIG. 8, the outer circumference of the gear support portion 66 is connected to the inner circumference of the three connecting portions 64. In this state, the center of the through hole 660 is located on the rotation axis X.
  • the gear support portion 66 is provided with a recess 661 surrounding the through hole 660 on the surface opposite to the base portion 61 (left side in the drawing).
  • a ring-shaped washer 55 that supports the back surface of the side gear 54A is housed in the recess 661.
  • a cylindrical wall portion 541 is provided on the back surface of the side gear 54A. The washer 55 is extrapolated to the cylinder wall portion 541.
  • Three oil grooves 662 are provided on the surface of the gear support portion 66 on the recess 661 side when viewed from the rotation axis X direction.
  • the oil grooves 662 are provided at intervals in the circumferential direction around the rotation axis X.
  • the oil groove 662 extends from the inner circumference to the outer circumference of the gear support portion 66 along the radius line L described above.
  • the oil groove 662 communicates with the oil groove 642 on the arc portion 641 side described above.
  • a support hole 61a of the pinion shaft 44 is opened in the base portion 61.
  • the support holes 61a are open in the region between the connecting beams 62, 62 arranged at intervals in the circumferential direction around the rotation axis X.
  • the base portion 61 is provided with a boss portion 616 that surrounds the support hole 61a.
  • a washer Wc (see FIG. 10) extrapolated to the pinion shaft 44 comes into contact with the boss portion 616 from the rotation axis X direction.
  • an oil groove 617 is provided in a range from the central opening 60 to the boss portion 616.
  • the oil groove 617 is formed in a tapered shape in which the width in the circumferential direction around the rotation axis X becomes narrower as it approaches the boss portion 616.
  • the oil groove 617 is in contact with the oil groove 618 provided in the boss portion 616.
  • bolt holes 67 and 67 are provided on both sides of the support groove 65.
  • a connecting portion 74 on the side of the second case portion 7 is joined to the connecting portion 64 of the first case portion 6 from the rotation axis X direction.
  • bolts B penetrating the connecting portion on the second case portion 7 side are screwed into the bolt holes 67 and 67 and joined to each other.
  • FIG. 11 to 16 are views for explaining the second case portion 7.
  • FIG. 11 is a perspective view of the second case portion 7 as viewed from the first case portion 6 side.
  • FIG. 12 is a plan view of the second case portion 7 as viewed from the first case portion 6 side.
  • FIG. 13 is a schematic view of a cross section taken along the line AA in FIG.
  • FIG. 13 shows the arrangement of the pinion mate shaft 51 and the pinion mate gear 52 by a virtual line.
  • FIG. 14 is a schematic view of a cross section taken along the line AA in FIG. In FIG. 14, the arrangement of the side gear 54B, the stepped pinion gear 43, and the drive shaft 9B is shown by a virtual line while omitting the illustration of the connecting portion 74 on the back side of the paper.
  • FIG. 15 is a perspective view of the second case portion 7 as viewed from the side opposite to the first case portion 6.
  • FIG. 16 is a plan view of the second case portion 7 as viewed from the side opposite to
  • the second case portion 7 has a ring-shaped base portion 71.
  • the base portion 71 is a plate-shaped member having a thickness W71 in the rotation axis X direction.
  • a through hole 70 that penetrates the base portion 71 in the thickness direction is provided in the central portion of the base portion 71.
  • a protrusion 73a protruding toward the rotation axis X side is provided.
  • the protrusion 73a is provided over the entire circumference in the circumferential direction around the rotation axis X.
  • three support holes 71a of the pinion shaft 44 are opened on the outer diameter side of the peripheral wall portion 73.
  • the support holes 71a are provided at intervals in the circumferential direction around the rotation axis X.
  • On the inner diameter side of the peripheral wall portion 73 three slits 710 that penetrate the base portion 71 in the thickness direction are provided.
  • the slit 710 When viewed from the rotation axis X direction, the slit 710 has an arc shape along the inner circumference of the peripheral wall portion 73.
  • the slit 710 is formed in a predetermined angle range in the circumferential direction around the rotation axis X.
  • the slits 710 are provided at intervals in the circumferential direction around the rotation axis X. Each of the slits 710 is provided across the inner diameter side of the support hole 71a in the circumferential direction around the rotation axis X.
  • Three protruding walls 711 protruding toward the front side of the paper surface are provided between the slits 710 and 710 adjacent to each other in the circumferential direction around the rotation axis X.
  • the protruding wall 711 extends linearly in the radial direction of the rotation axis X.
  • the protruding wall 711 is provided so as to straddle the peripheral wall portion 73 on the outer diameter side and the tubular wall portion 72 on the inner diameter side.
  • the three protruding walls 711 are provided at intervals in the circumferential direction around the rotation axis X.
  • the protruding wall 711 is provided with the slit 710 having a phase shift of about 45 degrees in the circumferential direction around the rotation axis X.
  • bolt accommodating portions 76, 76 recessed on the inner side of the paper surface are provided between the support holes 71a, 71a adjacent to each other in the circumferential direction around the rotation axis X. These bolt accommodating portions 76, 76 are provided in a symmetrical positional relationship with a radius line L in between.
  • the bolt accommodating portion 76 is open to the outer circumference 71c of the base portion 71.
  • a bolt insertion hole 77 is opened inside the bolt accommodating portion 76. The insertion hole 77 penetrates the base 71 in the thickness direction (rotation axis X direction).
  • three connecting portions 74 projecting to the first case portion 6 side are provided on the surface of the base portion 71 on the first case portion 6 side (right side in the drawing).
  • the connecting portions 74 are provided at equal intervals in the circumferential direction around the rotation axis X.
  • the connecting portion 74 is formed with a width W7 in the same circumferential direction as the connecting portion 64 on the first case portion 6 side.
  • the tip surface 74a of the connecting portion 74 is a flat surface orthogonal to the rotation axis X.
  • the tip surface 74a is provided with a support groove 75 for supporting the pinion mate shaft 51.
  • the support groove 75 is formed linearly along the radius line L of the base 71 when viewed from the rotation axis X direction.
  • the support groove 75 is formed so as to cross the connecting portion 74 from the inner diameter side to the outer diameter side.
  • the support groove 75 has a semicircular shape along the outer diameter of the pinion mate shaft 51.
  • An arc portion 741 along the outer circumference of the pinion mate gear 52 is provided on the inner diameter side (rotation shaft X side) of the connecting portion 74.
  • the outer circumference of the pinion mate gear 52 is supported via the spherical washer 53 (see FIGS. 13 and 14).
  • the oil groove 742 is provided in the direction along the radius line L described above.
  • the oil groove 742 is provided in a range from the support groove 75 of the pinion mate shaft 51 to the base portion 71 located on the inner circumference of the connecting portion 74.
  • the oil groove 742 communicates with the oil groove 712 provided on the surface 71b of the base 71.
  • the oil groove 712 is provided along the radius line L when viewed from the rotation axis X direction, and is formed up to the through hole 70 provided in the base portion 71.
  • a ring-shaped washer 55 that supports the back surface of the side gear 54B is placed on the surface 71b of the base portion 71.
  • a cylindrical wall portion 540 is provided on the back surface of the side gear 54B. The washer 55 is extrapolated to the cylinder wall portion 540.
  • An oil groove 721 is formed at a position intersecting the oil groove 712 on the inner circumference of the tubular wall portion 72 surrounding the through hole 70. On the inner circumference of the cylinder wall portion 72, an oil groove 721 is provided along the rotation axis X over the entire length of the cylinder wall portion 72 in the rotation axis X direction.
  • a guide portion 78 is provided between the connecting portions 74 and 74 adjacent to each other in the circumferential direction around the rotation axis X.
  • the guide portion 78 projects toward the first case portion 6 side (front side of the paper surface).
  • the guide portion 78 has a tubular shape when viewed from the rotation axis X direction.
  • the guide portion 78 surrounds the support hole 71a provided in the base portion 71.
  • the outer peripheral portion of the guide portion 78 is cut along the outer peripheral portion 71c of the base portion 71.
  • the pinion shaft 44 is inserted into the support hole 71a of the guide portion 78 from the side of the first case portion 6 in the cross-sectional view along the axis X1.
  • the pinion shaft 44 is positioned in a state where rotation around the axis X1 is restricted by the positioning pin P. In this state, the small-diameter gear portion 432 of the stepped pinion gear 43 extrapolated to the pinion shaft 44 is in contact with the guide portion 78 from the axis X1 direction with the washer Wc sandwiched between them.
  • the bearing B2 is extrapolated to the cylinder wall portion 72 of the second case portion 7.
  • the bearing B2 extrapolated to the cylinder wall portion 72 is held by the support portion 145 of the fourth box 14.
  • the tubular wall portion 72 of the differential case 50 is rotatably supported by the fourth box 14 via the bearing B2.
  • a drive shaft 9B penetrating the opening 145a of the fourth box 14 is inserted into the support portion 145 from the rotation axis X direction.
  • the drive shaft 9B is rotatably supported by the support portion 145.
  • a lip seal RS is fixed to the inner circumference of the opening 145a.
  • a lip portion (not shown) of the lip seal RS is elastically in contact with the outer circumference of the cylinder wall portion 540 of the side gear 54B extrapolated to the drive shaft 9B. As a result, the gap between the outer circumference of the cylinder wall portion 540 of the side gear 54B and the inner circumference of the opening 145a is sealed.
  • the first case portion 6 of the differential case 50 is supported by the plate member 8 via the bearing B3 extrapolated to the cylinder wall portion 611 (see FIG. 2).
  • a drive shaft 9A penetrating the insertion hole 130a of the third box 13 is inserted from the direction of the rotation axis.
  • the drive shaft 9A is provided across the motor shaft 20 of the motor 2 and the inner diameter side of the sun gear 41 of the planetary reduction gear 4 in the rotation axis X direction.
  • side gears 54A and 54B are spline-fitted on the outer periphery of the tip of the drive shaft 9 (9A, 9B).
  • the side gears 54A and 54B and the drive shafts 9 (9A and 9B) are integrally rotatably connected around the rotation shaft X.
  • the side gears 54A and 54B are arranged to face each other at intervals in the rotation axis X direction, and the connecting portion 510 of the pinion mate shaft 51 is located between the side gears 54A and 54B.
  • a total of three pinion mate shafts 51 extend radially outward from the connecting portion 510.
  • a pinion mate gear 52 is supported on each of the pinion mate shafts 51.
  • the pinion mate gear 52 is assembled to the side gear 54A located on one side in the rotation axis X direction and the side gear 54B located on the other side in a state where the teeth are meshed with each other.
  • the lubricating oil OL is stored inside the fourth box 14.
  • the lower side of the differential case 50 is located in the stored oil OL.
  • the oil OL is stored up to the height at which the connecting beam 62 is located in the oil OL.
  • the stored oil OL is scraped up by the differential case 50 that rotates around the rotation axis X when the output rotation of the motor 2 is transmitted.
  • FIG. 17 to 22 are views for explaining the oil catch portion 15.
  • FIG. 17 is a plan view of the fourth box 14 as viewed from the third box 13 side.
  • FIG. 18 is a perspective view of the oil catch portion 15 shown in FIG. 17 as viewed from diagonally above.
  • FIG. 19 is a plan view of the fourth box 14 as viewed from the third box 13 side.
  • FIG. 19 shows a state in which the differential case 50 is arranged.
  • FIG. 20 is a perspective view of the oil catch portion 15 shown in FIG. 19 as viewed from diagonally above.
  • FIG. 21 is a schematic view of a cross section taken along the line AA in FIG. FIG.
  • FIG. 22 is a schematic view illustrating the positional relationship between the oil catch portion 15 and the differential case 50 (first case portion 6, second case portion 7) when the power transmission device 1 is viewed from above.
  • hatching is added to clarify the positions of the joint portion 142 of the fourth box 14 and the support wall portion 146.
  • the fourth box 14 when viewed from the rotation axis X direction is provided with a support wall portion 146 that surrounds the central opening 145a at intervals.
  • the inside of the support wall portion 146 (rotation axis X) is the accommodating portion 140 of the differential case 50 (see FIG. 19).
  • a space for the oil catch portion 15 and a space for the breather chamber 16 are formed in the upper part of the fourth box 14.
  • a communication port 147 for communicating the oil catch portion 15 and the accommodating portion 140 of the differential case 50 is provided in the region intersecting the vertical line VL.
  • the oil catch portion 15 and the breather chamber 16 are located on one side (left side in the figure) and the other side (right side in the figure) with a vertical line VL orthogonal to the rotation axis X, respectively. doing.
  • the oil catch portion 15 is arranged at a position offset from the vertical line VL passing through the rotation center (rotation axis X) of the differential case 50.
  • the vertical line VL is a vertical line VL based on the installation state of the power transmission device 1 in the vehicle.
  • the vertical line VL when viewed from the rotation axis X direction is orthogonal to the rotation axis X.
  • the horizon HL is a horizon HL based on the installation state of the power transmission device 1 in the vehicle.
  • the horizontal line HL when viewed from the rotation axis X direction is orthogonal to the rotation axis X (see FIG. 17).
  • the oil catch portion 15 is formed so as to extend to the back side of the paper surface from the support wall portion 146.
  • a support base portion 151 is provided on the lower edge of the oil catch portion 15 so as to project toward the front side of the paper surface.
  • the support base portion 151 is provided on the front side of the paper surface of the support wall portion 146 and in the range from the joint portion 142 of the fourth box 14 to the back side of the paper surface.
  • the oil catch portion 15 and the accommodating portion 140 of the differential case 50 communicate with each other on the vertical VL side (right side in the drawing) of the oil catch portion 15.
  • a mouth 147 is formed.
  • the communication port 147 is formed by cutting out a part of the support wall portion 146.
  • the communication port 147 is provided in a range that crosses the vertical line VL from the breather chamber 16 side (right side in the figure) to the oil catch portion 15 side (left side in the figure) when viewed from the rotation axis X direction.
  • the differential case 50 rotates in the counterclockwise direction CCW around the rotation axis X when viewed from the third box 13 side. .. Therefore, the oil catch portion 15 is located on the downstream side in the rotation direction of the differential case 50.
  • the width of the communication port 147 in the circumferential direction is wider on the left side of the vertical line VL than on the right side.
  • the left side of the vertical line VL is the downstream side in the rotation direction of the differential case 50, and the right side is the upstream side.
  • the outer peripheral position of the rotary orbit of the second shaft portion 446 of the pinion shaft 44 and the outer peripheral position of the rotary orbit of the large diameter gear portion 431 are offset in the radial direction of the rotary shaft X. ing.
  • the outer peripheral position of the rotary orbit of the second shaft portion 446 is located on the inner diameter side of the outer peripheral position of the rotary orbit of the large-diameter gear portion 431. Therefore, there is a space margin on the outer diameter side of the second shaft portion 446. By using this space and providing the oil catch portion 15, the space inside the main body box 10 can be effectively used.
  • the second shaft portion 446 projects toward the back side of the small diameter gear portion 432 when viewed from the motor 2.
  • the peripheral member of the second shaft portion 446 (for example, the guide portion 78 of the differential case 50 that supports the second shaft portion 446) is located close to the oil catch portion 15. Therefore, the oil OL (lubricating oil) can be smoothly supplied from the peripheral member to the oil catch portion 15.
  • an end portion on the outer diameter side of the oil hole 151a is opened on the inner side of the support base portion 151.
  • the oil hole 151a extends in the fourth box 14 toward the inner diameter side.
  • the inner diameter side end of the oil hole 151a is open to the inner circumference of the support portion 145.
  • the end portion on the inner diameter side of the oil hole 151a is opened between the lip seal RS and the bearing B2.
  • an oil guide 152 that functions as a guide member for the oil OL is placed on the support base portion 151.
  • the oil guide 152 has a catch portion 153 and a guide portion 154 extending from the catch portion 153 to the first box 11 side (the front side of the paper surface in FIG. 20).
  • the support base portion 151 is located on the radial outside of the rotation axis X at a position overlapping a part of the differential case 50 (first case portion 6, second case portion 7). It is provided so as to avoid interference with the attached pinion gear 43 (large diameter gear portion 431).
  • the catch portion 153 is provided at a position overlapping the second shaft portion 446 of the pinion shaft 44 when viewed from the radial direction of the rotation shaft X.
  • the guide portion 154 is provided at a position where it overlaps the first shaft portion 445 of the pinion shaft 44 and the large diameter gear portion 431.
  • a wall portion 153a extending in a direction away from the support base portion 151 (upward) is provided on the outer peripheral edge of the catch portion 153.
  • a part of the oil OL scraped up by the differential case 50 that rotates around the rotation axis X is stored in the oil guide 152.
  • a notch portion 155 is provided in the wall portion 153a. As shown in FIG. 22, the notch 155 is provided in a region facing the oil hole 151a. A part of the oil OL stored in the catch portion 153 is discharged from the notch portion 155 toward the oil hole 151a.
  • the guide portion 154 is inclined downward as the distance from the catch portion 153 increases.
  • wall portions 154a and 154a are provided on both sides of the guide portion 154 in the width direction.
  • the wall portions 154a and 154a are provided over the entire length of the guide portion 154 in the longitudinal direction.
  • the wall portions 154a and 154a are connected to the wall portion 153a surrounding the outer circumference of the catch portion 153. A part of the oil OL stored in the catch portion 153 is also discharged to the guide portion 154 side.
  • the guide portion 154 extends toward the second box 12 at a position where it avoids interference with the differential case 50.
  • the tip 154b of the guide portion 154 faces the oil hole 126a provided in the wall portion 120 of the second box 12 with a gap in the rotation axis X direction.
  • the tip 154b of the guide portion 154 functions as an oil discharge port of the oil guide 152.
  • a boss portion 126 surrounding the oil hole 126a is provided on the outer periphery of the wall portion 120. One end of the pipe 127 is fitted into the boss portion 126 from the rotation axis X direction.
  • the pipe 127 passes through the outside of the second box 12 and extends to the third box 13.
  • the other end of the pipe 127 communicates with an oil hole 136a (see FIG. 2) provided in the cylindrical connection wall 136 of the third box.
  • the third box 13 is provided with a radial oil passage 137 communicating with the internal space Sc.
  • the radial oil passage 137 extends radially downward from the internal space Sc.
  • the radial oil passage 137 communicates with the axial oil passage 138 provided in the joint portion 132.
  • the axial oil passage 138 communicates with the oil reservoir 128 provided at the lower part of the second box 12 via the communication hole 112a provided at the joint portion 112 of the first box 11.
  • the oil sump portion 128 penetrates the inside of the peripheral wall portion 121 in the rotation axis X direction.
  • the oil sump 128 is in contact with the gear chamber Sb provided in the fourth box 14.
  • the disk-shaped plate member 8 is provided in a direction orthogonal to the rotation axis X. As described above, the plate member 8 divides the gear chamber Sb in the fourth box 14 into the first gear chamber Sb1 on the differential case 50 side and the second gear chamber Sb2 on the motor 2 side.
  • the lower portion of the plate member 8 is provided with a gap between the power transmission device 1 and the peripheral wall portion 141 of the fourth box 14 in the vertical VL direction based on the mounted state of the power transmission device 1 in the vehicle.
  • the first gear chamber Sb1 located on one side of the plate member 8 and the second gear chamber Sb2 located on the other side communicate with each other at the lower part of the fourth box 14.
  • the plate member 8 is formed in a size that covers the side surface of the differential case 50 on the motor 2 side. The plate member 8 suppresses the inflow of the oil OL scraped up by the rotating differential case 50 to the second gear chamber Sb2 side.
  • FIG. 23 and 24 are views for explaining the plate member 8.
  • FIG. 23 is a plan view of the plate member 8 as viewed from the motor 2 side.
  • FIG. 24 is a schematic view of a cross section taken along the line AA in FIG. 23.
  • the plate member 8 has a ring-shaped base 80 when viewed from the motor 2 side.
  • a ring-shaped support portion 801 that surrounds the through hole 800 is provided in the central portion of the base portion 80.
  • a tubular wall portion 611 of the differential case 50 is supported on the inner circumference of the support portion 801 via a bearing B3.
  • connection pieces 81, 82, 83, 84 are provided on the outer peripheral edge 80c of the base 80.
  • Each of the connecting pieces 81, 82, 83, 84 extends radially outward from the outer peripheral edge 80c of the base 80.
  • Bolt holes 81a, 82a, 83a, 84a are provided in the connection pieces 81, 82, 83, and 84, respectively.
  • the connecting piece 81 is provided at a position intersecting the vertical straight line VL at the upper part of the plate member 8.
  • the connecting piece 81 extends along the vertical line VL in a direction away from the base 80.
  • connection piece 84 is provided below the horizontal line HL.
  • the connection piece 84 passes below the horizon HL and passes through the lower edge of the connection piece 83 described above.
  • the connecting piece 84 projects downward from a position intersecting a straight line HLa parallel to the horizontal line HL.
  • connection piece 85 On the other side of the vertical line VL (on the right side in FIG. 23), the connection piece 85 is provided above the horizontal line HL.
  • the connection piece 85 has a predetermined width in the circumferential direction around the rotation axis X.
  • a bolt hole 85a is provided at a position of the connecting piece 85 near the vertical line VL.
  • a support pin 85b is provided at a position closer to the horizon HL. The support pin 85b projects toward the front side of the paper surface.
  • a support boss 86 for a stopper pin 861, which will be described later, is provided on the surface 80a (see FIG. 24) of the plate member 8 on the motor 2 side.
  • the support boss 86 is located below the connection piece 81 located on the vertical line VL.
  • the support boss 86 is adjacent to the connection piece 81.
  • a mounting boss 87 is provided below the support boss 86.
  • the mounting boss 87 is provided at a position where it passes through the support pin 85b and intersects the straight line HLb parallel to the horizontal line HL described above.
  • the mounting boss 87 projects to the front side of the paper surface from the support boss 86 (see FIG. 24).
  • a mounting boss 88 paired with the mounting boss 87 is provided below the support pin 85b in the vertical VL direction.
  • a mounting portion 89 of the support 33 which will be described later, is provided on the side (left side in the drawing) opposite to the support pin 85b when viewed from the mounting boss 87.
  • the mounting portion 89 is provided with two bolt holes 89a and 89a adjacent to each other in the horizontal line HL direction.
  • FIG. 25 is a view of the fourth box 14 as viewed from the motor 2 side.
  • FIG. 25 shows the arrangement of the step portions 148d, 149d, and 17d that support the outer peripheral edge of the plate member 8.
  • FIG. 25 in order to clarify the positions of the peripheral wall portions 148, 149 and the arc-shaped wall portion 17, and the positions of the step portions 148d, 149d, and 17d, they are shown with hatching.
  • FIG. 26 is a view of the fourth box 14 as viewed from the motor 2 side.
  • FIG. 26 shows a state in which the plate member 8 is attached.
  • peripheral wall portions 148 and 149 are provided in the fourth box 14 when viewed from the rotation axis X direction. These peripheral wall portions 148 and 149 are located on the outer diameter side of the region of the support wall portion 146 where the tooth portions 146a are provided. The peripheral wall portions 148 and 149 are formed in an arc shape centered on the rotation axis X.
  • the peripheral wall portion 148 is located below the oil catch portion 15 described above in the vertical VL direction.
  • the peripheral wall portion 148 when viewed from the rotation axis X direction is provided in a range that crosses the horizontal line HL passing through the rotation axis X from the upper side to the lower side.
  • the upper end portion 148a of the peripheral wall portion 148 is located in the vicinity of the support base portion 151.
  • the lower end 148b of the peripheral wall portion 148 is located in the vicinity of the straight line HLa.
  • the inner circumference 148c of the peripheral wall portion 148 when viewed from the rotation axis X direction forms an arc shape along the outer circumference of the plate member 8 (base portion 80).
  • the inner diameter of the inner circumference 148c of the peripheral wall portion 148 with reference to the rotation axis X is slightly larger than the outer diameter with respect to the rotation axis X of the plate member 8.
  • a stepped portion 148d recessed on the back side of the paper surface is provided inside the peripheral wall portion 148.
  • boss portions 18 having bolt holes 18a are provided on the outside of the peripheral wall portion 148.
  • the boss portions 18 and 18 are integrally formed with the peripheral wall portion 148.
  • the boss portions 18 and 18 are provided in the vicinity of the upper end portion 148a side of the peripheral wall portion 148 and the lower end portion 148b, respectively.
  • the boss portions 18 and 18 project to the front side of the paper surface from the peripheral wall portion 148.
  • the peripheral wall portion 149 is located below the breather chamber 16.
  • the peripheral wall portion 149 is located on the back side of the paper surface with respect to the wall portion 160 forming the breather chamber 16.
  • the upper end portion 149a of the peripheral wall portion 149 when viewed from the rotation axis X direction is connected to the boss portion 18 on the vertical line VL.
  • a side wall portion 159 extending toward the oil catch portion 15 is further connected to the boss portion 18.
  • the lower end 149b of the peripheral wall portion 149 is connected to the peripheral wall portion 141 of the fourth box 14 on the lower side of the breather chamber 16.
  • the inner circumference 149c of the peripheral wall portion 149 when viewed from the rotation axis X direction forms an arc shape along the outer circumference of the plate member 8 (base portion 80).
  • the inner diameter of the inner circumference 149c of the peripheral wall portion 149 with reference to the rotation axis X is slightly larger than the outer diameter of the plate member 8 with reference to the rotation axis X.
  • a stepped portion 149d recessed on the back side of the paper surface is provided inside the peripheral wall portion 149.
  • Two boss portions 18 having bolt holes 18a are provided on the outside of the peripheral wall portion 149.
  • the boss portions 18 and 18 are integrally formed with the peripheral wall portion 149.
  • the boss portions 18 and 18 are provided at intervals in the circumferential direction around the rotation axis X.
  • the boss portions 18 and 18 are provided on the outer circumference of the upper end portion 148a of the peripheral wall portion 149 and the outer circumference of the region located below the breather chamber 16, respectively.
  • the boss portions 18 and 18 project to the front side of the paper surface from the peripheral wall portion 149.
  • an arcuate wall portion 17 is provided in a region below the breather chamber 16 and below the horizon HL.
  • the arc-shaped wall portion 17 is provided in a positional relationship that is approximately 180 ° out of phase with respect to the peripheral wall portion 148 in the circumferential direction around the rotation axis X.
  • the inner circumference 17c of the arcuate wall portion 17 when viewed from the rotation axis X direction forms an arc shape along the outer circumference of the plate member 8 (base portion 80).
  • the inner diameter of the inner circumference 17c of the arc-shaped wall portion 17 based on the rotation axis X is slightly larger than the outer diameter of the plate member 8 based on the rotation axis X.
  • a boss portion 18 having a bolt hole 18a is formed at a position intersecting the straight line HLa described above. The boss portion 18 projects toward the front side of the paper surface with respect to the arcuate wall portion 17.
  • a step portion 17d protrudes from the inner circumference of the boss portion 18 in the X direction of the rotation axis.
  • the outer peripheral edge of the plate member 8 (base 80) is attached to the peripheral wall portions 148, 149 step portions 148d, 149d, and the arc-shaped wall portion 17 step portion.
  • the 17d is brought into contact with the rotation axis X direction.
  • the plate member 8 is fixed to the fourth box 14 by screwing the bolt B penetrating the bolt holes 81a to 85a of the connecting pieces 81 to 85 into the bolt holes 18a of the corresponding boss portion 18 ( See FIG. 26).
  • the plate member 8 is formed of a constituent material having a density higher than that of the constituent material of the fourth box 14.
  • the main body box 10 (fourth box) of the power transmission device 1 is formed of a constituent material containing aluminum or magnesium as a main component in order to reduce the weight.
  • the plate member 8 is a constituent material containing iron or the like as a main component, and is formed of a constituent material having a higher density than the constituent material of the main body box 10.
  • FIG. 27 and 28 are views for explaining the park lock mechanism 3.
  • FIG. 27 is a perspective view of the fourth box 14 provided with the park lock mechanism 3 as viewed from diagonally above.
  • FIG. 28 is a plan view of the fourth box 14 provided with the park lock mechanism 3 as viewed from the motor 2 side.
  • 29 to 31 are views for explaining the park pole 31.
  • FIG. 29 is a plan view of the park pole 31 as viewed from the motor 2 side.
  • FIG. 30 is a perspective view of the park pole 31 as viewed from the motor 2 side.
  • FIG. 31 is a side view of the park pole 31 as viewed from the side of the rotation axis X side. In FIG. 29, the position of the holder 34 is shown by a virtual line.
  • FIG. 29 is a perspective view of the fourth box 14 provided with the park lock mechanism 3 as viewed from diagonally above.
  • FIG. 28 is a plan view of the fourth box 14 provided with the park lock mechanism 3 as viewed from the motor 2 side.
  • 29 to 31 are
  • FIG. 32 is a view of the park lock mechanism 3 as viewed from above.
  • FIG. 33 is a schematic view of a cross section taken along the line AA in FIG. 32.
  • FIG. 34 is a schematic view of a CC cross section in FIG. 33.
  • the park lock mechanism 3 includes a park gear 30, a park pole 31, a park rod 32, a support 33, a holder 34, a manual plate 35, a detent spring 36, a manual shaft 37, and the like. have.
  • the park gear 30, the park pole 31, the park rod 32, the support 33, and the holder 34 are located on the motor 2 side of the plate member 8, and the manual plate 35 and the detent are located on the opposite side.
  • the spring 36 and the manual shaft 37 are located.
  • the holder 34 is a plate-shaped member having a substantially rectangular shape when viewed from the rotation axis X direction.
  • the holder 34 includes a protrusion 341 for supporting the park pole 31.
  • the holder 34 is provided with bolt holes 34a and 34a on both sides in the longitudinal direction.
  • the holder 34 is attached to the mounting bosses 87 and 88 of the plate member 8 with bolts B and B. As shown in FIG. 27, the holder 34 is provided in a range from the upper side of the park gear 30 to the lower side of the breather chamber 16 when viewed from the rotation axis X direction.
  • the holder 34 is inclined downward in the vertical VL direction toward the breather chamber 16 side (right side in the drawing) when viewed from the rotation axis X direction.
  • the lower edge 342 of the holder 34 is inclined downward in the vertical line VL direction toward the breather chamber 16 side (right side in the drawing).
  • the park pole 31 is supported by the plate member 8 via the holder 34.
  • the park pole 31 is an integral part having a first plate-shaped portion 310 having an insertion hole 310d and a second plate-shaped portion 311 having a claw portion 311c.
  • a protrusion 341 on the holder 34 side is inserted into the insertion hole 310d of the park pole 31.
  • the park pole 31 is rotatably supported by the protrusion 341 and is rotatable around an axis X2 parallel to the rotation axis X.
  • the first plate-shaped portion 310 when viewed from the rotation axis X direction extends upward from the region supported by the protrusion 341 along the straight line Lx1 orthogonal to the axis X2.
  • the first plate-shaped portion 310 extends to a position substantially the same height as the support boss 86 of the plate member 8, and then bends in a direction away from the breather chamber 16 (to the left in the drawing).
  • the region beyond the bent portion 310e extends along the straight line Lx2, and the tip end side of this region serves as the operated portion 310c operated by the cam 320 of the park rod 32.
  • the operated portion 310c is mounted on the cam 320 supported by the support 33.
  • a claw portion 311c which is an engaging portion with the park gear 30 is provided in the lower portion of the second plate-shaped portion 311 when viewed from the rotation axis X direction.
  • the claw portion 311c is formed so as to bulge from the lower portion of the second plate-shaped portion 311 toward the rotation axis X side.
  • the claw portion 311c has a tapered shape in which the width Wp (see FIG. 29) becomes narrower as it approaches the rotation axis X.
  • a locking hole 310f is provided on the side of the insertion hole 310d.
  • One end of the spring Sp is engaged with the locking hole 310f (see FIG. 28).
  • the other end of the spring Sp is in pressure contact with the outer peripheral edge 80c of the plate member 8.
  • the spring Sp is extrapolated to the support pin 85b of the plate member 8. In this state, the spring Sp exerts an urging force on the park pole 31.
  • the park pole 31 is a urging force acting from the spring Sp, and is always urged in the direction in which the claw portion 311c is separated from the park gear 30 (counterclockwise direction in FIG. 28: see the arrow).
  • the park pole 31 can rotate around the axis X2 parallel to the rotation axis X.
  • the first plate-shaped portion 310 of the park pole 31 is arranged between the holder 34 and the plate member 8 in the rotation axis X direction.
  • the second plate-shaped portion 311 is located on the motor 2 side (right side in the drawing) with respect to the first plate-shaped portion 310, and extends downward on the inner diameter side of the holder 34.
  • the first plate-shaped portion 310 and the second plate-shaped portion 311 are offset in the axis X2 direction parallel to the rotation axis X.
  • the stepped portion 312 connecting the surfaces 310a and 311a on the holder 34 side and the stepped portion 313 connecting the surfaces 310b and 311b on the plate member 8 side. Is provided.
  • the surface 310a on the holder 34 side of the first plate-shaped portion 310 and the surface 311a on the holder 34 side of the second plate-shaped portion 311 are parallel to each other.
  • the surface 310b on the plate member 8 side of the first plate-shaped portion 310 and the surface 311b on the plate member 8 side of the second plate-shaped portion 311 are parallel to each other.
  • the step portion 312 and the step portion 313 are inclined with respect to the straight line Ly along the surface 310b on the plate member 8 side of the first plate-shaped portion 310 when viewed from the radial direction of the axis X2.
  • the angle ⁇ 2 formed by the straight line Ly and the step portion 312 is larger than the angle ⁇ 3 formed by the straight line Ly and the step portion 313.
  • the angle ⁇ 2 formed by the straight line Ly and the step portion 312 is an angle that can avoid interference with the holder 34.
  • the step portion 313 is provided not only on the holder 34 side but also on the side opposite to the holder 34 (plate member 8 side). As a result, the thicknesses of the first plate-shaped portion 310 and the second plate-shaped portion 311 in the axis X2 direction are the same.
  • the park rod 32 is provided in a direction along a straight line Lx3 passing above the horizontal line HL when viewed from the rotation axis X direction.
  • the park rod 32 is orthogonal to the rotation axis X.
  • the park rod 32 is provided with the tip side on which the cam 320 is extrapolated facing the park pole 31 side (breather chamber 16 side).
  • the cam 320 is inserted between the support 33 and the operated portion 310c of the park pole 31.
  • the support 33 has an arcuate bottom wall portion 331, side wall portions 332 and 333 extending upward from both sides of the bottom wall portion 331, and a connecting piece 334 extending downward from the bottom wall portion 331. And have.
  • the support 33 is fixed to the mounting portion 89 of the plate member 8 by a bolt B penetrating the connecting piece 334.
  • the support 33 is fixed to the plate member 8 in a state where one side wall portion 333 is in contact with the wall portion 120 of the second box 12. Further, the support 33 is provided with the other side wall portion 332 with a gap between the support 33 and the plate member 8.
  • the portion composed of the bottom wall portion 331 and the side wall portions 332 and 333 on both sides of the bottom wall portion 331 has a substantially U-shape in cross-sectional view.
  • the support 33 is provided with the opening of the substantially U-shaped portion facing upward.
  • a cam portion 335 is provided on the inner circumference of the breather chamber 16 side (right side in the drawing).
  • the upper surface 335a of the cam portion 335 is located above the upper surface 331a of the bottom wall portion 331.
  • the cam 320 is extrapolated on the tip 32a side. The cam 320 is urged toward the tip 32a by the urging force of a spring (not shown).
  • the park pole 31 of the present embodiment is a first-class lever-type park in which a rotation axis (axis line X2) serving as a fulcrum is located between the operated portion 310c, which is a force point, and the claw portion 311c, which is an action point.
  • a rotation axis axis line X2
  • Paul. Type 2 lever type in which the point of action is placed in the center and the point of effort and fulcrum are located outside the point of action (one side and the other side when viewed from the point of action), or the fulcrum is outside the point of effort and point of action and the point of effort. It is different from the type 3 lever type park pole placed near.
  • the first-class lever-type park pole 31 rotates around the axis X2 when an operating force (force) acts on the park rod 32 on the operated portion 310c, which is a force point. Then, due to the rotation of the park pole 31, the claw portion 311c located on the action point side moves to the engaging position where the park gear 30 is engaged.
  • force an operating force
  • the other end 32b of the park rod 32 is supported by the connecting portion 355 of the manual plate 35.
  • the park rod 32 is provided so as to be displaceable in the axial direction while being prevented from falling off from the connecting portion 355.
  • the manual plate 35 has a base portion 351 that is externally inserted into the manual shaft 37, and an arm portion 353 and an engaging portion 352 that extend in the radial direction of the rotation axis Y of the manual shaft 37 from the outer circumference of the base portion 351.
  • the base portion 351 is fixed to the manual shaft 37 in a state where the relative rotation with the manual shaft 37 is restricted.
  • the arm portion 353 extends from the outer circumference of the base portion 351 in a direction approaching the motor 2. When viewed from the radial direction of the rotation shaft X, the arm portion 353 crosses the outer diameter side of the plate member 8 toward the motor 2.
  • the tip end side of the arm portion 353 is bent to the lower side (rotational shaft) side, and then the connecting portion 355 is connected to the support portion 354 fixed to the upper surface.
  • the tip end side of the engaging portion 352 extending from the base portion 351 is formed to be wide with a predetermined range in the circumferential direction of the rotation axis Y.
  • a plurality of recesses continuous in the circumferential direction are provided on the outer periphery of this wide region.
  • a roller 365 (see FIG. 27) of the detent spring 36 is elastically engaged with one of these plurality of recesses.
  • the base end portion 361 of the detent spring 36 in the longitudinal direction is fixed to the fourth box 14 with bolts B.
  • the tip side on which the roller 365 is provided can be elastically displaced in the radial direction of the base portion 351 of the manual plate 35. Further, the tip side on which the roller 365 is provided is in pressure contact with the outer circumference (recess) of the base portion 351 of the manual plate 35.
  • the manual shaft 37 rotates around the rotation axis Y in conjunction with the switching of the traveling mode / parking mode of the vehicle equipped with the power transmission device 1.
  • the manual plate 35 fixed to the manual shaft 37 also rotates around the rotation axis Y.
  • the arm portion 353 extending from the base portion 351 of the manual plate 35 and the connecting portion 355 fixed to the support portion 354 at the tip of the arm portion 353 are displaced in the circumferential direction around the rotation axis Y.
  • the park rod 32 connected to the connecting portion 355 is also displaced in the longitudinal direction of the park rod 32.
  • FIG. 35 to 38 are views for explaining the operation of the park lock mechanism 3.
  • FIG. 35 is a diagram illustrating the arrangement of the park pole 31 and the park rod 32 when the vehicle equipped with the power transmission device 1 is in the traveling mode.
  • FIG. 36 is a diagram illustrating the arrangement of the park rod 32 and the manual plate 35 when the vehicle equipped with the power transmission device 1 is in the traveling mode.
  • FIG. 37 is a diagram illustrating the arrangement of the park pole 31 when the vehicle equipped with the power transmission device 1 is in the parking mode.
  • FIG. 38 is a diagram illustrating the arrangement of the park rod 32 and the manual plate 35 when the vehicle equipped with the power transmission device 1 is in the parking mode.
  • the manual shaft 37 is arranged at an angle position at which the roller 365 of the detent spring 36 is engaged with the recess 352b of the manual plate 35 (see FIG. 36).
  • the cam 320 of the park rod 32 is arranged at a position pulled out from between the support 33 and the operated portion 310c of the park pole 31.
  • the park pole 31 is arranged at a position where the claw portion 311c is separated from the park gear 30 (see FIG. 35). Therefore, the motor shaft 20 to which the park gear 30 is attached is in a state where rotation around the rotation shaft X is permitted, and the output rotation of the motor 2 can be transmitted to the drive wheels W and W, that is, a power transmission device.
  • the vehicle equipped with 1 is in a state where it can run.
  • the manual plate 35 rotates from the angular position shown in FIG. 36 to the angular position shown in FIG. 38.
  • the manual shaft 37 is arranged at an angle position at which the roller 365 of the detent spring 36 is engaged with the recess 352a of the manual plate 35 (see FIG. 38).
  • the cam 320 of the park rod 32 is arranged at a position inserted between the support 33 and the operated portion 310c of the park pole 31.
  • the park pole 31 is arranged at a position where the claw portion 311c is engaged with the park gear 30 (see FIG. 37). Therefore, the motor shaft 20 to which the park gear 30 is attached is restricted from rotating around the rotation shaft X. As a result, the output rotation of the motor 2 cannot be transmitted to the drive wheels W and W. That is, the vehicle equipped with the power transmission device 1 is in a state in which it cannot run (parked state).
  • the park pole 31, the park rod 32, the support 33, and the holder 34 of the park lock mechanism 3 are on the wall portion 120 side (motor 2 side) of the second box 12 when viewed from the plate member 8. Is located in.
  • the manual plate 35, the detent spring 36, and the manual shaft 37 are located on the side opposite to the wall portion 120 of the second box 12 (diff case 50, planetary reduction gear 4 side) when viewed from the plate member 8. That is, in FIG. 24, the park pole 31, the park rod 32, the support 33, and the holder 34 are arranged on the surface 80a side of the plate member 8 on the motor 2 side.
  • a manual shaft 37 and a detent mechanism are arranged on the surface 80b side of the plate member 8 on the differential case 50 side.
  • the components of the park lock mechanism 3 are distributed and arranged using the space on the motor 2 side with the plate member 8 sandwiched between them and the space on the differential case 50 side. Therefore, the components of the park lock mechanism 3 can be arranged while effectively utilizing the spare space in the fourth box 14. Therefore, when the park lock mechanism 3 is installed in the main body box 10, it is possible to suppress the increase in size of the main body box 10.
  • the park pole 31 of the park lock mechanism 3 is attached to the plate member 8 via the holder 34.
  • the support 33 on which the cam 320 of the park rod 32 is placed is attached to the plate member 8.
  • the plate member 8 is a fixed side member fixed to the fourth box 14 with bolts B. Therefore, the component members of the park lock mechanism 3 can be appropriately arranged by using the plate member 8.
  • the manual plate 35, the detent spring 36, and the manual shaft 37 are arranged by utilizing the space of the oil catch portion 15 formed in the upper part of the fourth box 14 in the vertical VL direction.
  • the components of the park lock mechanism 3 can be arranged by utilizing the spare space of the oil catch portion 15 in the fourth box 14 without increasing the size of the fourth box 14.
  • the planetary reduction gear 4 As shown in FIG. 1, in the power transmission device 1, the planetary reduction gear 4, the differential mechanism 5, and the drive shafts 9 (9A, 9B) are provided along the transmission path of the output rotation of the motor 2. ing. A park gear 30 of the park lock mechanism 3 is provided between the motor 2 and the planetary reduction gear 4 in the power transmission path.
  • the park pole 31 When the vehicle equipped with the power transmission device 1 is in the parking mode, the park pole 31 is arranged at a position where the claw portion 311c is engaged with the park gear 30 (see FIG. 37). Therefore, the motor shaft 20 to which the park gear 30 is attached is in a state in which the rotation around the rotation shaft X is restricted. In this state, the rotation of the drive wheels W and W is restricted, and the vehicle equipped with the power transmission device 1 is in a parked state.
  • the manual shaft 37 rotates around the rotation axis Y by the driving force of an actuator motor (not shown).
  • the manual shaft 37 has an angular position in which the roller 365 of the displacement spring 36 is engaged with the recess 352a of the manual plate 35 (see FIG. 38) to an angular position in which the roller 365 is engaged with the recess 352b (see FIG. 36). Displace to.
  • the rotation of the manual plate 35 around the rotation axis Y causes the park rod 32 to be displaced in the direction of pulling out the cam 320 from between the support 33 and the operated portion 310c of the park pole 31 (left direction in FIG. 38).
  • the park pole 31 is rotated around the axis X1 by the urging force of the spring Sp, and the claw portion 311c Departs from the outer circumference of the park gear 30 (see FIG. 35).
  • the motor shaft 20 to which the park gear 30 is attached is in a state where rotation around the rotation axis X is permitted.
  • the rotation of the drive wheels W and W is allowed, and the vehicle equipped with the power transmission device 1 is in a state in which it can travel.
  • the sun gear 41 is an input unit for the output rotation of the motor 2.
  • the differential case 50 that supports the stepped pinion gear 43 serves as an output unit for the input rotation.
  • the stepped pinion gear 43 (large diameter gear portion 431, small diameter gear portion 432) rotates around the axis X1 by the rotation input from the sun gear 41 side.
  • the small-diameter gear portion 432 of the stepped pinion gear 43 meshes with the ring gear 42 fixed to the inner circumference of the fourth box 14. Therefore, the stepped pinion gear 43 revolves around the rotation axis X while rotating around the axis X1. That is, the rotation shaft X is also the revolution shaft of the stepped pinion gear 43.
  • the outer diameter R2 of the small-diameter gear portion 432 of the stepped pinion gear 43 is smaller than the outer diameter R1 of the large-diameter gear portion 431 (see FIG. 3).
  • the differential case 50 first case portion 6, second case portion 7) that supports the stepped pinion gear 43 rotates around the rotation axis X at a rotation speed lower than the rotation input from the motor 2 side. Therefore, the rotation input to the sun gear 41 of the planetary reduction gear 4 is greatly reduced by the stepped pinion gear 43. The reduced rotation is output to the differential case 50 (differential mechanism 5).
  • the lubricating oil OL is stored inside the fourth box 14. Therefore, the stored oil OL is scraped up by the differential case 50 that rotates around the rotation axis X when the output rotation of the motor 2 is transmitted. Due to the oil OL scraped up, the meshing portion between the sun gear 41 and the large diameter gear portion 431, the meshing portion between the small diameter gear portion 432 and the ring gear 42, and the meshing portion between the pinion mate gear 52 and the side gears 54A and 54B. Is lubricated.
  • the differential case 50 rotates in the counterclockwise direction CCW around the rotation axis X when viewed from the third box 13 side.
  • An oil catch portion 15 is provided on the upper portion of the fourth box 14.
  • the oil catch portion 15 is located on the downstream side in the rotation direction of the differential case 50. Most of the oil OL scraped up by the differential case 50 flows into the oil catch portion 15.
  • an oil guide 152 mounted on the support base portion 151 is provided in the oil catch portion 15.
  • the guide portion 154 and the catch portion 153 of the oil guide 152 are located on the radial outside of the first case portion 6 of the differential case 50 and on the radial outside of the second case portion 7 of the differential case 50. Therefore, most of the oil that has been scraped up by the differential case 50 and has flowed into the oil catch portion 15 is captured by the oil guide 152.
  • a part of the oil OL captured by the oil guide 152 is discharged from the notch 155 provided in the wall portion 153a and flows into the oil hole 151a having one end opened on the upper surface of the support base portion 151.
  • the inner diameter side end of the oil hole 151a is open to the inner circumference of the support portion 145 (see FIG. 2). Therefore, the oil OL that has flowed into the oil hole 151a is discharged into the gap Rx between the inner circumference of the support portion 145 of the fourth box 14 and the cylinder wall portion 540 of the side gear 54B.
  • the oil OL that lubricates the bearing B2 moves to the outer diameter side by the centrifugal force due to the rotation of the differential case 50.
  • a slit 710 is provided along the inner circumference of the peripheral wall portion 73. Further movement of the oil OL to the outer diameter side is hindered by the peripheral wall portion 73.
  • the oil OL passes through the slit 710 toward the first case portion 6 side.
  • the oil passage 781 in the case is open on the inner circumference of the guide portion 78.
  • a part of the oil OL that has passed through the slit 710 flows into the oil passage 781 in the case due to the centrifugal force generated by the rotation of the differential case 50.
  • the oil OL that has flowed into the oil passage 781 in the case flows into the in-shaft oil passage 440 of the pinion shaft 44 through the introduction passage 441.
  • the oil OL that has flowed into the in-shaft oil passage 440 is discharged radially outward from the oil holes 442 and 443.
  • the discharged oil OL lubricates the needle bearing NB extrapolated to the pinion shaft 44.
  • a part of the oil OL discharged into the gap Rx passes through the oil groove 721 provided on the inner circumference of the cylinder wall portion 72 of the second case portion 7.
  • the oil OL that has passed through the oil groove 721 is supplied to the washer 55 that supports the back surface of the side gear 54B to lubricate the washer 55. Further, it passes through the oil groove 712 provided in the base portion 71 of the second case portion 7 and the oil groove 742 provided in the arc portion 741.
  • the oil OL that has passed through the oil groove 742 is supplied to the spherical washer 53 that supports the back surface of the pinion mate gear 52, and lubricates the spherical washer 53.
  • the oil OL that did not flow into the oil hole 126a travels along the wall portion 120 of the second box 12 and moves toward the lower side of the fourth box 14. As shown in FIG. 2, in the fourth box 14, the space between the wall portion 120 and the plate member 8 is the second gear chamber Sb2. The park gear 30 of the park lock mechanism 3 is located in the second gear chamber Sb2. Therefore, the oil OL that has not flowed into the oil hole 126a lubricates the park gear 30 when moving downward in the second gear chamber Sb2.
  • a boss portion 126 surrounding the oil hole 126a is provided on the outer periphery of the wall portion 120.
  • One end of the pipe 127 is fitted into the boss portion 126 from the rotation axis X direction. Therefore, the oil OL that has flowed into the oil hole 126a of the second box 12 flows into the pipe 127.
  • the pipe 127 passes through the outside of the second box 12 and extends to the third box 13.
  • the other end of the pipe 127 communicates with an oil hole 136a (see FIG. 2) provided in the cylindrical connecting wall 136 of the third box 13.
  • a part of the oil OL that has reached the oil catch portion 15 is supplied to the internal space Sc of the connection wall 136 through the guide portion 154 and the pipe 127.
  • the oil OL discharged from the oil hole 136a into the internal space Sc is stored in the internal space Sc.
  • the oil OL lubricates the bearing B4 supported by the peripheral wall portion 131 of the third box 13.
  • a part of the oil OL discharged into the internal space Sc moves to the other end 20b side of the motor shaft 20 through the gap between the outer circumference of the drive shaft 9A and the inner circumference of the motor shaft 20.
  • the other end 20b of the motor shaft 20 is inserted inside the tubular wall portion 541 of the side gear 54A.
  • a connecting path 542 communicating with the back surface of the side gear 54A is provided on the inner circumference of the cylinder wall portion 541. Therefore, a part of the oil OL that has moved to the other end 20b side of the motor shaft 20 and has been discharged to the inside of the cylinder wall portion 541 passes through the connecting path 542.
  • the oil OL that has passed through the communication passage 542 is supplied to the washer 55 on the back surface of the side gear 54A to lubricate the washer 55.
  • the oil OL that lubricates the washer 55 on the back surface of the side gear 54A passes through the oil groove 662 provided in the gear support portion 66 of the first case portion 6 and the oil groove 642 provided in the arc portion 641.
  • the oil OL that has passed through the oil groove 642 is supplied to the spherical washer 53 that supports the back surface of the pinion mate gear 52, and lubricates the spherical washer 53.
  • the internal space Sc of the third box 13 includes a radial oil passage 137, an axial oil passage 138, a communication hole 112a, and an oil reservoir provided at the lower part of the second box 12. It communicates with the second gear chamber Sb2 provided in the fourth box 14 via 128. Therefore, the oil OL in the internal space Sc is held at the same height position as the oil OL stored in the fourth box 14.
  • the oil OL scraped up by the differential case 50 that rotates around the rotation axis X is guided from the region on the differential case 50 side as viewed from the plate member 8 to the region on the wall portion 120 side and the internal space Sc. ..
  • the total amount of oil OL (lubricating oil) on the differential case 50 side when viewed from the plate member 8 can be reduced, so that the stirring resistance when the stepped pinion gear 43 revolves around the rotation axis X can be reduced.
  • the oil OL in the fourth box 14 is scraped up when the drive wheels W and W rotate, and is used for lubrication of the bearing, the park gear, and the meshing portion between the gears.
  • the oil OL used for lubrication is returned to the fourth box 14 so that it can be scraped up again.
  • the power transmission device 1 has the following configuration.
  • the power transmission device 1 is Differential mechanism 5 and A differential case 50 (case) accommodating the differential mechanism 5 and Stepped pinion gear 43 (pinion gear) supported by the differential case 50,
  • the differential case 50 and the wall portion 120 that overlaps the rotation axis X direction (axial direction),
  • a plate member 8 plate
  • It has an oil guide 152 (guide member) that guides the oil OL (lubricating oil) from the differential case 50 side to the wall portion 120 side.
  • the oil OL scraped up by the differential case 50 rotating around the rotation axis X is seen from the region on the differential case 50 side as viewed from the plate member 8 from the wall portion. It can be guided to the region on the 120 side. That is, by introducing the oil OL on the wall portion 120 side (back side) when viewed from the plate member 8, the total amount of oil OL (lubricating oil) on the differential case 50 side can be reduced. As a result, the stirring resistance when the stepped pinion gear 43 revolves around the rotation axis X can be reduced.
  • the power transmission device 1 has the following configuration. (2)
  • the wall portion 120 is provided with an oil hole 126a at a position facing the tip 154b of the guide portion 154, which is an oil discharge port of the oil guide 152.
  • Oil OL is vigorously discharged from the guide section 154. Therefore, by configuring as described above and providing the oil hole 126a at a position facing the tip 154b of the guide portion 154, oil is efficiently applied to other members in the power transmission device 1 through the oil hole 126a. OL (lubricating oil) can be supplied.
  • the power transmission device 1 has the following configuration. (3) A park gear 30 is arranged between the plate member 8 and the wall portion 120.
  • the oil OL captured by the oil guide 152 can be guided between the plate member 8 and the wall portion 120.
  • the oil level height of the oil OL (lubricating oil) in the region between the plate member 8 and the wall portion 120 can be increased. Therefore, by configuring as described above, the park gear 30 can be smoothly lubricated.
  • the power transmission device 1 has the following configuration. (4) The motor 2 is arranged upstream of the sun gear 41 that meshes with the stepped pinion gear 43 on the transmission path of the rotational driving force in the power transmission device 1.
  • the power transmission device 1 has a drive shaft 9 (9A, 9B) connected to the differential mechanism 5.
  • the drive shaft 9A penetrates the inner circumference of the sun gear 41 and the motor shaft 20 of the motor 2 in the rotation axis X direction.
  • the power transmission device 1 is a power transmission device for a single-axis electric vehicle, and can provide a compact power transmission device.
  • the motor 2 is arranged on the back side (right side in FIG. 2) of the wall portion 120 of the second box 12 when viewed from the plate member 8 is illustrated.
  • the motor 2 may be arranged on the front side (left side in FIG. 2) of the wall portion 120 of the second box 12.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Details Of Gearings (AREA)
  • Retarders (AREA)

Abstract

【課題】段付きピニオンギアの公転に伴う撹拌抵抗を減少させる。 【解決手段】動力伝達装置は、差動機構と、差動機構を収容するケースと、ケースに支持されたピニオンギアと、ケースと軸方向にオーバラップする壁部と、軸方向において壁部とケースとの間に設けられたプレートと、ケース側から壁部側に潤滑油をガイドするガイド部材と、を有する。

Description

動力伝達装置
 本発明は、動力伝達装置に関する。
 特許文献1には、傘歯車式の差動機構と、遊星歯車機構と、を有する電気自動車用の動力伝達装置が開示されている。この遊星歯車機構は、ラージピニオンギアとスモールピニオンギアとを有するステップドピニオンギアを備えている。
特開平8-240254号公報
 動力伝達装置において、ピニオンギアの公転に伴う撹拌抵抗を減少させることが求められている。
 本発明のある態様における動力伝達装置は、
 差動機構と、
 前記差動機構を収容するケースと、
 前記ケースに支持されたピニオンギアと、
 前記ケースと軸方向にオーバラップする壁部と、
 前記軸方向において前記壁部と前記ケースとの間に設けられたプレートと、
 前記ケース側から前記壁部側に潤滑油をガイドするガイド部材と、を有する。
 本発明のある態様によれば、ピニオンギアの公転に伴う撹拌抵抗を減少できる。
動力伝達装置のスケルトン図である。 動力伝達装置の断面の模式図である。 動力伝達装置の遊星減速ギア周りの拡大図である。 動力伝達装置の差動機構周りの拡大図である。 動力伝達装置の差動機構の斜視図である。 動力伝達装置の差動機構の分解斜視図である。 差動機構の第1ケース部を説明する図である。 差動機構の第1ケース部を説明する図である。 差動機構の第1ケース部を説明する図である。 差動機構の第1ケース部を説明する図である。 差動機構の第2ケース部を説明する図である。 差動機構の第2ケース部を説明する図である。 差動機構の第2ケース部を説明する図である。 差動機構の第2ケース部を説明する図である。 差動機構の第2ケース部を説明する図である。 差動機構の第2ケース部を説明する図である。 オイルキャッチ部を説明する図である。 オイルキャッチ部を説明する図である。 オイルキャッチ部を説明する図である。 オイルキャッチ部を説明する図である。 オイルキャッチ部を説明する図である。 オイルキャッチ部を説明する図である。 プレート部材を説明する図である。 プレート部材を説明する図である。 第4ボックスをモータ側から見た図である。 第4ボックスをモータ側から見た図である。 パークロック機構を説明する図である。 パークロック機構を説明する図である。 パークポールを説明する図である。 パークポールを説明する図である。 パークポールを説明する図である。 パークロック機構を説明する図である。 パークロック機構を説明する図である。 パークロック機構を説明する図である。 パークロック機構の動作を説明する図である。 パークロック機構の動作を説明する図である。 パークロック機構の動作を説明する図である。 パークロック機構の動作を説明する図である。
 以下、本発明の実施形態を、説明する。
 図1は、本実施形態にかかる動力伝達装置1を説明するスケルトン図である。
 図2は、本実施形態にかかる動力伝達装置1を説明する断面の模式図である。
 図3は、動力伝達装置1の遊星減速ギア4周りの拡大図である。
 図4は、動力伝達装置1の差動機構5周りの拡大図である。
 図1に示すように、動力伝達装置1は、モータ2と、モータ2の出力回転を減速して差動機構5に入力する遊星減速ギア4(減速機構)と、を有する。動力伝達装置1は、また、駆動軸としてのドライブシャフト9(9A、9B)と、パークロック機構3と、を有する。
 動力伝達装置1では、モータ2の出力回転の伝達経路に沿って、パークロック機構3と、遊星減速ギア4と、差動機構5と、ドライブシャフト9(9A、9B)と、が設けられている。
 動力伝達装置1では、モータ2の出力回転が、遊星減速ギア4で減速されて差動機構5に入力された後、ドライブシャフト9(9A、9B)を介して、動力伝達装置1が搭載された車両の左右の駆動輪W、Wに伝達される。
 ここで、遊星減速ギア4は、モータ2の下流に接続されている。差動機構5は、遊星減速ギア4の下流に接続されている。ドライブシャフト9(9A、9B)は、差動機構5の下流に接続されている。
 図2に示すように、動力伝達装置1の本体ボックス10は、モータ2を収容する第1ボックス11と、第1ボックス11に外挿される第2ボックス12と、を有する。本体ボックス10は、第1ボックス11に組み付けられる第3ボックス13と、第2ボックス12に組み付けられる第4ボックス14と、を有する。
 第1ボックス11は、円筒状の支持壁部111と、支持壁部111の一端111aに設けられたフランジ状の接合部112と、を有している。
 第1ボックス11は、支持壁部111をモータ2の回転軸Xに沿わせた向きで設けられている。支持壁部111の内側には、モータ2が収容される。
 接合部112は、回転軸Xに直交する向きで設けられている。接合部112は、支持壁部111よりも大きい外径で形成されている。
 第2ボックス12は、円筒状の周壁部121と、周壁部121の一端121aに設けられたフランジ状の接合部122と、周壁部121の他端121bに設けられたフランジ状の接合部123と、を有している。
 周壁部121は、第1ボックス11の支持壁部111に外挿可能な内径で形成されている。
 第1ボックス11と第2ボックス12は、第1ボックス11の支持壁部111に、第2ボックス12の周壁部121を外挿して互いに組み付けられている。
 周壁部121の一端121a側の接合部122は、回転軸X方向から、第1ボックス11の接合部112に当接している。これら接合部122、112は、ボルト(図示せず)で互いに連結されている。
 第1ボックス11では、支持壁部111の外周に複数の凹溝111bが設けられている。複数の凹溝111bは、回転軸X方向に間隔をあけて設けられている。凹溝111bの各々は、回転軸X周りの周方向の全周に亘って設けられている。
 第1ボックス11の支持壁部111に、第2ボックス12の周壁部121が外挿される。凹溝111bの開口が周壁部121で閉じられている。支持壁部111と周壁部121との間に、冷却水が通流する複数の冷却路CPが形成される。
 第1ボックス11の支持壁部111の外周では、凹溝111bが設けられた領域の両側に、リング溝111c、111cが形成されている。リング溝111c、111cには、シールリング113、113が外嵌して取り付けられている。
 これらシールリング113は、支持壁部111に外挿された周壁部121の内周に圧接して、支持壁部111の外周と、周壁部121の内周との間の隙間を封止する。
 第2ボックス12の他端121bには、内径側に延びる壁部120が設けられている。壁部120は、回転軸Xに直交する向きで設けられている。壁部120の回転軸Xと交差する領域に、ドライブシャフト9Aが挿通する開口120aが設けられている。
 壁部120では、モータ2側(図中、右側)の面に、開口120aを囲む筒状のモータ支持部125が設けられている。
 モータ支持部125は、後記するコイルエンド253bの内側に挿入されている。モータ支持部125は、ロータコア21の端部21bに回転軸X方向の隙間をあけて対向している。
 第2ボックス12の周壁部121は、動力伝達装置1の車両への搭載状態を基準とした鉛直線方向において、下側の領域の径方向の厚みが、上側の領域よりも厚くなっている。
 この径方向の厚みが厚い領域には、回転軸X方向に貫通してオイル溜り部128が設けられている。
 オイル溜り部128は、連通孔112aを介して、第3ボックス13の接合部132に設けた軸方向油路138に連絡している。連通孔112aは、第1ボックス11の接合部112に設けられている。
 第3ボックス13は、回転軸Xに直交する壁部130を有している。壁部130の外周部には、回転軸X方向から見てリング状を成す接合部132が設けられている。
 第1ボックス11から見て第3ボックス13は、差動機構5とは反対側(図中、右側)に位置している。第3ボックス13の接合部132は、第1ボックス11の接合部112に回転軸X方向から接合されている。第3ボックス13と第1ボックス11は、ボルト(図示せず)で互いに連結されている。この状態において第1ボックス11は、支持壁部111の接合部122側(図中、右側)の開口が、第3ボックス13で塞がれている。
 第3ボックス13では、壁部130の中央部に、ドライブシャフト9Aの挿通孔130aが設けられている。
 挿通孔130aの内周には、リップシールRSが設けられている。リップシールRSは、図示しないリップ部をドライブシャフト9Aの外周に弾発的に接触させている。挿通孔130aの内周と、ドライブシャフト9Aの外周との隙間が、リップシールRSにより封止されている。
 壁部130における第1ボックス11側(図中、左側)の面には、挿通孔130aを囲む周壁部131が設けられている。周壁部131の内周には、ドライブシャフト9AがベアリングB4を介して支持されている。
 周壁部131から見てモータ2側(図中、左側)には、モータ支持部135が設けられている。モータ支持部135は、回転軸Xの外周を間隔を空けて囲む筒状を成している。
 モータ支持部135の外周には、円筒状の接続壁136が接続されている。接続壁136は、壁部130側(図中、右側)の周壁部131よりも大きい外径で形成されている。接続壁136は、回転軸Xに沿う向きで設けられており、モータ2から離れる方向に延びている。接続壁136は、モータ支持部135と第3ボックス13の壁部130とを接続している。
 モータ支持部135は、接続壁136を介して第3ボックス13で支持されている。モータ支持部135の内側を、モータシャフト20の一端20a側が、モータ2側から周壁部131側に貫通している。
 モータ支持部135の内周には、ベアリングB1が支持されている。モータシャフト20の外周が、ベアリングB1を介してモータ支持部135で支持されている。
 ベアリングB1と隣り合う位置には、リップシールRSが設けられている。
 第3ボックス13では、接続壁136の内周に、後記する油孔136aが開口している。接続壁136で囲まれた空間(内部空間Sc)に、油孔136aからオイルOLが流入するようになっている。リップシールRSは、接続壁136内のオイルOLのモータ2側への流入を阻止するために設けられている。
 第4ボックス14は、遊星減速ギア4と差動機構5の外周を囲む周壁部141と、周壁部141における第2ボックス12側の端部に設けられたフランジ状の接合部142と、を有している。
 第4ボックス14は、第2ボックス12から見て差動機構5側(図中、左側)に位置している。第4ボックス14の接合部142は、第2ボックス12の接合部123に回転軸X方向から接合されている。第4ボックス14と第2ボックス12は、ボルト(図示せず)で互いに連結されている。
 動力伝達装置1の本体ボックス10の内部には、モータ2を収容するモータ室Saと、遊星減速ギア4と差動機構5を収容するギア室Sbとが形成されている。
 モータ室Saは、第1ボックス11の内側で、第2ボックス12の壁部120と、第3ボックス13の壁部130との間に形成されている。
 ギア室Sbは、第4ボックス14の内径側で、第2ボックス12の壁部120と、第4ボックス14の周壁部141との間に形成されている。
 ギア室Sbの内部には、プレート部材8が設けられている。
 プレート部材8は、第4ボックス14にボルトBで固定されている。
 プレート部材8は、ギア室Sbを、遊星減速ギア4と差動機構5を収容する第1ギア室Sb1と、パークロック機構3を収容する第2ギア室Sb2とに区画している。
 回転軸X方向において第2ギア室Sb2は、第1ギア室Sb1と、モータ室Saとの間に位置している。
 モータ2は、円筒状のモータシャフト20と、モータシャフト20に外挿された円筒状のロータコア21と、ロータコア21の外周を間隔をあけて囲むステータコア25とを、有する。
 モータシャフト20では、ロータコア21の両側に、ベアリングB1、B1が外挿されて固定されている。
 ロータコア21から見てモータシャフト20の一端20a側(図中、右側)に位置するベアリングB1は、第3ボックス13のモータ支持部135の内周に支持されている。他端20b側に位置するベアリングB1は、第2ボックス12の円筒状のモータ支持部125の内周に支持されている。
 モータ支持部135、125は、後記するコイルエンド253a、253bの内径側で、ロータコア21の一方の端部21aと他方の端部21bに、回転軸X方向の隙間をあけて対向して配置されている。
 ロータコア21は、複数の珪素鋼板を積層して形成したものである。珪素鋼板の各々は、モータシャフト20との相対回転が規制された状態で、モータシャフト20に外挿されている。
 モータシャフト20の回転軸X方向から見て、珪素鋼板はリング状を成している。珪素鋼板の外周側では、図示しないN極とS極の磁石が、回転軸X周りの周方向に交互に設けられている。
 ロータコア21の外周を囲むステータコア25は、複数の電磁鋼板を積層して形成したものである。ステータコア25は、第1ボックス11の円筒状の支持壁部111の内周に固定されている。
 電磁鋼板の各々は、支持壁部111の内周に固定されたリング状のヨーク部251と、ヨーク部251の内周からロータコア21側に突出するティース部252と、を有している。
 本実施形態では、巻線253を、複数のティース部252に跨がって分布巻きした構成のステータコア25を採用している。ステータコア25は、回転軸X方向に突出するコイルエンド253a、253bの分だけ、ロータコア21よりも回転軸X方向の長さが長くなっている。
 なお、ロータコア21側に突出する複数のティース部252の各々に、巻線を集中巻きした構成のステータコアを採用しても良い。
 第2ボックス12の壁部120(モータ支持部125)には、開口120aが設けられている。モータシャフト20の他端20b側は、開口120aを差動機構5側(図中、左側)に貫通して、第4ボックス14内に位置している。
 モータシャフト20の他端20bは、第4ボックス14の内側で、後記するサイドギア54Aに、回転軸X方向の隙間をあけて対向している。
 図3に示すように、モータシャフト20では、第4ボックス14内に位置する領域に、段部201が設けられている。段部201は、モータ支持部125の近傍に位置している。段部201とベアリングB1との間の領域の外周には、モータ支持部125の内周に支持されたリップシールRSが当接している。
 リップシールRSは、モータ2を収容するモータ室Saと、第4ボックス14内のギア室Sbとを区画している。
 第4ボックス14の内径側には、遊星減速ギア4と差動機構5を潤滑するためのオイルOLが封入されている(図2参照)。
 リップシールRSは、モータ室SaへのオイルOLの流入を阻止するために設けられている。
 図3に示すように、モータシャフト20では、段部201から他端20bの近傍までの領域が、外周にスプラインが設けられた嵌合部202となっている。
 嵌合部202の外周には、パークギア30とサンギア41がスプライン嵌合している。
 パークギア30は、回転軸X方向におけるパークギア30の一方の側面が、段部201に当接している(図中、右側)。パークギア30の他方の側面に、サンギア41の円筒状の基部410の一端410aが当接している(図中、左側)。
 基部410の他端410bには、モータシャフト20の他端20bに螺合したナットNが、回転軸X方向から圧接している。
 サンギア41とパークギア30は、ナットNと段部201との間に挟み込まれた状態で、モータシャフト20に対して相対回転不能に設けられている。
 サンギア41は、モータシャフト20の他端20b側の外周に、歯部411を有している。歯部411の外周には、段付きピニオンギア43の大径歯車部431が噛合している。
 段付きピニオンギア43は、サンギア41に噛合する大径歯車部431と、大径歯車部431よりも小径の小径歯車部432とを有している。
 段付きピニオンギア43は、大径歯車部431と小径歯車部432が、回転軸Xに平行な軸線X1方向で並んで、一体に設けられたギア部品である。
 大径歯車部431は、小径歯車部432の外径R2よりも大きい外径R1で形成されている。
 段付きピニオンギア43は、軸線X1に沿う向きで設けられている。この状態において大径歯車部431をモータ2側(図中、右側)に位置させている。
 小径歯車部432の外周は、リングギア42の内周に噛合している。リングギア42は、回転軸Xを間隔をあけて囲むリング状を成している。リングギア42の外周には、径方向外側に突出する複数の係合歯421が設けられている。複数の係合歯421は、回転軸X周りの周方向に間隔をあけて設けられている。
 リングギア42は、外周に設けた係合歯421を、第4ボックス14の支持壁部146に設けた歯部146aにスプライン嵌合している。リングギア42は、回転軸X回りの回転が規制されている。
 段付きピニオンギア43は、大径歯車部431と小径歯車部432の内径側を軸線X1方向に貫通した貫通孔430を有している。
 段付きピニオンギア43は、貫通孔430を貫通したピニオン軸44の外周で、ニードルベアリングNB、NBを介して回転可能に支持されている。
 ピニオン軸44の外周では、大径歯車部431の内周を支持するニードルベアリングNBと、小径歯車部432の内周を支持するニードルベアリングNBとの間には、中間スペーサMSが介在している。
 図4に示すように、ピニオン軸44の内部には、軸内油路440が設けられている。軸内油路440は、軸線X1に沿ってピニオン軸44の一端44aから、他端44bまで貫通している。
 ピニオン軸44には、軸内油路440とピニオン軸44の外周とを連通させる油孔442、443が設けられている。
 油孔443は、大径歯車部431の内周を支持するニードルベアリングNBが設けられた領域に開口している。
 油孔442は、小径歯車部432の内周を支持するニードルベアリングNBが設けられた領域に開口している。
 ピニオン軸44において油孔443、442は、段付きピニオンギア43が外挿された領域内に開口している。
 さらに、ピニオン軸44には、オイルOLを軸内油路440に導入するための導入路441が設けられている。
 ピニオン軸44の外周において導入路441は、後記する第2ケース部7の支持孔71a内に位置する領域に開口している。導入路441は、軸内油路440とピニオン軸44の外周とを連通させている。
 支持孔71aの内周には、ケース内油路781が開口している。ケース内油路781は、第2ケース部7の基部71から突出するガイド部78の外周と、支持孔71aとを連通させている。
 軸線X1に沿う断面視においてケース内油路781は、軸線X1に対して傾斜している。ケース内油路781は、回転軸X側に向かうにつれて、基部71に設けたスリット710に近づく向きで傾斜している。
 ケース内油路781には、後記するデフケース50が掻き上げたオイルOLが流入する。ケース内油路781には、デフケース50の回転による遠心力で外径側に移動するオイルOLが流入する。
 ケース内油路781から導入路441に流入したオイルOLは、ピニオン軸44の軸内油路440に流入する。軸内油路440に流入したオイルOLは、油孔442、443から径方向外側に排出される。油孔442、443から排出されたオイルOLは、ピニオン軸44に外挿されたニードルベアリングNBを潤滑する。
 ピニオン軸44では、導入路441が設けられた領域よりも他端44b側に、貫通孔444が設けられている。貫通孔444は、ピニオン軸44を直径線方向に貫通している。
 ピニオン軸44は、貫通孔444と、後記する第2ケース部7側の挿入穴782との軸線X1回りの位相を合わせて設けられている。挿入穴782に挿入された位置決めピンPが、ピニオン軸44の貫通孔444を貫通する。これによって、ピニオン軸44は、軸線X1回りの回転が規制された状態で、第2ケース部7側で支持される。
 図4に示すように、ピニオン軸44の長手方向の一端44a側では、段付きピニオンギア43から突出した領域が第1軸部445となっている。第1軸部445は、デフケース50の第1ケース部6に設けた支持孔61aで支持されている。
 ピニオン軸44の長手方向の他端44b側では、段付きピニオンギア43から突出した領域が第2軸部446となっている。第2軸部446は、デフケース50の第2ケース部7に設けた支持孔71aで支持されている。
 ここで、第1軸部445は、ピニオン軸44における段付きピニオンギア43が外挿されていない一端44a側の領域を意味する。第2軸部446は、ピニオン軸44における段付きピニオンギア43が外挿されていない他端44b側の領域を意味する。
 ピニオン軸44では、第1軸部445よりも第2軸部446のほうが、軸線X1方向の長さが長くなっている。
 以下、差動機構5の主要構成を説明する。
 図5は、差動機構5のデフケース50周りの斜視図である。
 図6は、差動機構5のデフケース50周りの分解斜視図である。
 図4から図6に示すように、ケースとしてのデフケース50は、差動機構5を収容する。デフケース50は、第1ケース部6と第2ケース部7を回転軸X方向で組み付けて形成される。本実施形態のデフケース50は、第1ケース部6と第2ケース部7が、遊星減速ギア4のピニオン軸44を支持するキャリアとしての機能を有している。
 図6に示すように、デフケース50の、第1ケース部6と第2ケース部7との間には、3つのピニオンメートギア52と、3つのピニオンメートシャフト51と、が設けられている。ピニオンメートシャフト51は、回転軸X周りの周方向に等間隔で設けられている(図6参照)。
 ピニオンメートシャフト51各々の内径側の端部は、共通の連結部510に連結されている。
 ピニオンメートギア52は、ピニオンメートシャフト51の各々に1つずつ外挿されている。ピニオンメートギア52の各々は、回転軸Xの径方向外側から、連結部510に接触している。
 この状態においてピニオンメートギア52の各々は、ピニオンメートシャフト51で回転可能に支持されている。
 図4に示すように、ピニオンメートシャフト51には、球面状ワッシャ53が外挿されている。球面状ワッシャ53は、ピニオンメートギア52の球面状の外周に接触している。
 デフケース50では、回転軸X方向における連結部510の一方側にサイドギア54Aが位置し、他方側にサイドギア54Bが位置する。サイドギア54Aは第1ケース部6で回転可能に支持される。サイドギア54Bは、第2ケース部7で回転可能に支持される。
 サイドギア54Aは、回転軸X方向における一方側から、3つのピニオンメートギア52に噛合している。サイドギア54Bは、回転軸X方向における他方側から、3つのピニオンメートギア52に噛合している。
 図7から図10は、第1ケース部6を説明する図である。
 図7は、第1ケース部6を第2ケース部7側から見た斜視図である。
 図8は、第1ケース部6を第2ケース部7側から見た平面図である。
 図9は、図8におけるA-A断面の模式図である。図9は、ピニオンメートシャフト51とピニオンメートギア52の配置を仮想線で示している。
 図10は、図8におけるA-A断面の模式図である。図10は、紙面奥側の連結梁62の図示を省略しつつ、サイドギア54Aと段付きピニオンギア43とドライブシャフト9Aの配置を仮想線で示している。
 図7および図8に示すように、第1ケース部6は、リング状の基部61を有している。基部61は、回転軸X方向に厚みW61を有する板状部材である。
 図9および図10に示すように、基部61の中央部には、開口60が設けられている。基部61における第2ケース部7とは反対側(図中、右側)の面には、開口60を囲む筒壁部611が設けられている。筒壁部611の外周は、ベアリングB3を介して、プレート部材8で支持されている(図2参照)。
 基部61における第2ケース部7側(図中、左側)の面には、第2ケース部7側に延びる3つの連結梁62が設けられている。
 連結梁62は、回転軸X周りの周方向に、等間隔で設けられている(図7および図8参照)。
 連結梁62は、基部61に対して直交する基部63と、基部63よりも幅広の連結部64と、を有している。
 図9に示すように、連結部64の先端面64aは、回転軸Xに直交する平坦面であり、先端面64aには、ピニオンメートシャフト51を支持するための支持溝65が設けられている。
 図8に示すように、回転軸X方向から見て支持溝65は、リング状の基部61の半径線Lに沿って、直線状に形成されている。支持溝65は、回転軸X周りの周方向における連結部64の中央部を、内径側から外径側に横断している。
 図9および図10に示すように、支持溝65は、ピニオンメートシャフト51の外径に沿う半円形を成している。支持溝65は、円柱状のピニオンメートシャフト51の半分を収容可能な深さで形成されている。すなわち、支持溝65は、ピニオンメートシャフト51の直径Daの半分(=Da/2)に相当する深さで形成されている。
 連結部64の内径側(回転軸X側)には、ピニオンメートギア52の外周に沿う形状で円弧部641が形成されている。
 円弧部641では、ピニオンメートギア52の外周が、球面状ワッシャ53を介して支持される。
 円弧部641では、前記した半径線Lに沿う向きで油溝642が設けられている。油溝642は、ピニオンメートシャフト51の支持溝65から、連結部64の内周に固定されたギア支持部66までの範囲に設けられている。
 ギア支持部66は、基部63と連結部64との境界部に接続されている。ギア支持部66は、回転軸Xに直交する向きで設けられている。ギア支持部66は、中央部に貫通孔660を有している。
 図8に示すように、ギア支持部66の外周は、3つの連結部64の内周に接続されている。この状態において貫通孔660の中心は、回転軸X上に位置している。
 図9および図10に示すように、ギア支持部66では、基部61とは反対側(図中、左側)の面に、貫通孔660を囲む凹部661が設けられている。凹部661には、サイドギア54Aの裏面を支持するリング状のワッシャ55が収容される。
 サイドギア54Aの裏面には、円筒状の筒壁部541が設けられている。ワッシャ55は筒壁部541に外挿されている。
 回転軸X方向から見て、ギア支持部66における凹部661側の面には、3つの油溝662が設けられている。油溝662は、回転軸X周りの周方向に間隔をあけて設けられている。
 油溝662は、前記した半径線Lに沿って、ギア支持部66の内周から外周まで及んでいる。油溝662は、前記した円弧部641側の油溝642に連絡している。
 図7および図8に示すように、基部61には、ピニオン軸44の支持孔61aが開口している。支持孔61aは、回転軸X周りの周方向で間隔をあけて配置された連結梁62、62の間の領域に開口している。
 基部61には、支持孔61aを囲むボス部616が設けられている。ボス部616には、ピニオン軸44に外挿されたワッシャWc(図10参照)が、回転軸X方向から接触する。
 基部61では、中央の開口60からボス部616までの範囲に、油溝617が設けられている。
 図8に示すように、油溝617は、ボス部616に近づくにつれて、回転軸X周りの周方向の幅が狭くなる先細り形状で形成されている。油溝617は、ボス部616に設けた油溝618に連絡している。
 連結部64では、支持溝65の両側に、ボルト穴67、67が設けられている。
 第1ケース部6の連結部64には、第2ケース部7側の連結部74が回転軸X方向から接合される。第1ケース部6と第2ケース部7は、第2ケース部7側の連結部を貫通したボルトBが、ボルト穴67、67に螺入されて、互いに接合される。
 図11から図16は、第2ケース部7を説明する図である。
 図11は、第2ケース部7を第1ケース部6側から見た斜視図である。
 図12は、第2ケース部7を第1ケース部6側から見た平面図である。
 図13は、図12におけるA-A断面の模式図である。図13は、ピニオンメートシャフト51とピニオンメートギア52の配置を仮想線で示している。
 図14は、図12におけるA-A断面の模式図である。図14は、紙面奥側の連結部74の図示を省略しつつ、サイドギア54Bと段付きピニオンギア43とドライブシャフト9Bの配置を仮想線で示している。
 図15は、第2ケース部7を第1ケース部6とは反対側から見た斜視図である。
 図16は、第2ケース部7を第1ケース部6とは反対側から見た平面図である。
 図13および図14に示すように、第2ケース部7は、リング状の基部71を有している。
 基部71は、回転軸X方向に厚みW71を有する板状部材である。
 基部71の中央部には、基部71を厚み方向に貫通する貫通孔70が設けられている。
 基部71における第1ケース部6とは反対側(図中、左側)の面には、貫通孔70を囲む筒壁部72と、筒壁部72を間隔をあけて囲む周壁部73が設けられている。
 周壁部73の先端には、回転軸X側に突出する突起部73aが設けられている。突起部73aは、回転軸X周りの周方向の全周に亘って設けられている。
 図16に示すように周壁部73の外径側には、ピニオン軸44の3つの支持孔71aが開口している。支持孔71aは、回転軸X周りの周方向に間隔をあけて設けられている。
 周壁部73の内径側には、基部71を厚み方向に貫通する3つのスリット710が設けられている。
 回転軸X方向から見てスリット710は、周壁部73の内周に沿う弧状を成している。スリット710は、回転軸X周りの周方向に所定の角度範囲で形成されている。
 第2ケース部7においてスリット710は、回転軸X周りの周方向に間隔をあけて設けられている。スリット710の各々は、支持孔71aの内径側を、回転軸X周りの周方向に横切って設けられている。
 回転軸X周りの周方向で隣り合うスリット710、710の間には、紙面手前側に突出した3つの突出壁711が設けられている。突出壁711は、回転軸Xの径方向に直線状に延びている。突出壁711は、外径側の周壁部73と内径側の筒壁部72とに跨がって設けられている。
 3つの突出壁711は、回転軸X周りの周方向に間隔をあけて設けられている。突出壁711は、スリット710に対して、回転軸X周りの周方向に大凡45度位相をずらして設けられている。
 周壁部73の外径側では、回転軸X周りの周方向で隣り合う支持孔71a、71aの間に、紙面奥側に窪んだボルト収容部76、76が設けられている。
 これらボルト収容部76、76は、半径線Lを間に挟んで対称となる位置関係で設けられている。ボルト収容部76は、基部71の外周71cに開口している。
 ボルト収容部76の内側には、ボルトの挿通孔77が開口している。挿通孔77は、基部71を厚み方向(回転軸X方向)に貫通している。
 図11および図12に示すように、基部71における第1ケース部6側(図中、右側)の面には、第1ケース部6側に突出する3つの連結部74が設けられている。
 連結部74は、回転軸X周りの周方向に、等間隔で設けられている。連結部74は、第1ケース部6側の連結部64と同じ周方向の幅W7で形成されている。
 図13に示すように、連結部74の先端面74aは、回転軸Xに直交する平坦面である。先端面74aには、ピニオンメートシャフト51を支持するための支持溝75が設けられている。
 図12に示すように、回転軸X方向から見て支持溝75は、基部71の半径線Lに沿って直線状に形成されている。支持溝75は、連結部74を内径側から外径側に横断して形成されている。
 図5に示すように、支持溝75は、ピニオンメートシャフト51の外径に沿う半円形を成している。
 図13に示すように、支持溝75は、円柱状のピニオンメートシャフト51の半分を収容可能な深さで形成されている。すなわち、支持溝75は、ピニオンメートシャフト51の直径Daの半分(=Da/2)に相当する深さで形成されている。
 連結部74の内径側(回転軸X側)には、ピニオンメートギア52の外周に沿う円弧部741が設けられている。
 円弧部741では、ピニオンメートギア52の外周が、球面状ワッシャ53を介して支持される(図13および図14参照)。
 円弧部741では、前記した半径線Lに沿う向きで油溝742が設けられている。油溝742は、ピニオンメートシャフト51の支持溝75から、連結部74の内周に位置する基部71までの範囲に設けられている。
 油溝742は、基部71の表面71bに設けた油溝712に連絡している。回転軸X方向から見て油溝712は、半径線Lに沿って設けられており、基部71に設けた貫通孔70まで形成されている。
 基部71の表面71bには、サイドギア54Bの裏面を支持するリング状のワッシャ55が載置される。サイドギア54Bの裏面には、円筒状の筒壁部540が設けられている。ワッシャ55は筒壁部540に外挿されている。
 貫通孔70を囲む筒壁部72の内周には、油溝712と交差する位置に油溝721が形成されている。筒壁部72の内周では、油溝721が、回転軸Xに沿う向きで、筒壁部72の回転軸X方向の全長に亘って設けられている。
 図11および図12に示すように、第2ケース部7の基部71では、回転軸X周りの周方向で隣り合う連結部74、74の間に、ガイド部78が設けられている。ガイド部78は、第1ケース部6側(紙面手前側)に突出している。
 回転軸X方向から見て、ガイド部78は筒状を成している。ガイド部78は、基部71に設けた支持孔71aを囲んでいる。ガイド部78の外周部は、基部71の外周71cに沿って切除されている。
 図13および図14に示すように、軸線X1に沿う断面視において、ガイド部78の支持孔71aには、第1ケース部6側からピニオン軸44が挿入される。ピニオン軸44は、位置決めピンPにより、軸線X1回りの回転が規制された状態で位置決めされている。
 この状態において、ピニオン軸44に外挿された段付きピニオンギア43の小径歯車部432が、ワッシャWcを間に挟んで、軸線X1方向からガイド部78に当接している。
 図4に示すように、デフケース50では、第2ケース部7の筒壁部72に、ベアリングB2が外挿されている。筒壁部72に外挿されたベアリングB2は、第4ボックス14の支持部145で保持されている。デフケース50の筒壁部72は、ベアリングB2を介して、第4ボックス14で回転可能に支持されている。
 支持部145には、第4ボックス14の開口部145aを貫通したドライブシャフト9Bが、回転軸X方向から挿入されている。ドライブシャフト9Bは、支持部145で回転可能に支持されている。
 開口部145aの内周には、リップシールRSが固定されている。リップシールRSの図示しないリップ部が、ドライブシャフト9Bに外挿されたサイドギア54Bの筒壁部540の外周に弾発的に接触している。
 これにより、サイドギア54Bの筒壁部540の外周と開口部145aの内周との隙間が封止されている。
 デフケース50の第1ケース部6は、筒壁部611に外挿されたベアリングB3を介して、プレート部材8で支持されている(図2参照)。
 第1ケース部6の内部には、第3ボックス13の挿通孔130aを貫通したドライブシャフト9Aが、回転軸方向から挿入されている。
 ドライブシャフト9Aは、モータ2のモータシャフト20と、遊星減速ギア4のサンギア41の内径側を回転軸X方向に横切って設けられている。
 図4に示すように、デフケース50の内部では、ドライブシャフト9(9A、9B)の先端部の外周に、サイドギア54A、54Bがスプライン嵌合している。サイドギア54A、54Bとドライブシャフト9(9A、9B)とが、回転軸X周りに一体回転可能に連結されている。
 この状態においてサイドギア54A、54Bは、回転軸X方向で間隔をあけて、対向配置されており、サイドギア54A、54Bの間に、ピニオンメートシャフト51の連結部510が位置している。
 本実施形態では、合計3つのピニオンメートシャフト51が、連結部510から径方向外側に延びている。ピニオンメートシャフト51の各々に、ピニオンメートギア52が支持されている。ピニオンメートギア52は、回転軸X方向の一方側に位置するサイドギア54Aおよび他方側に位置するサイドギア54Bに、互いの歯部を噛合させた状態で組み付けられている。
 図2に示すように、第4ボックス14の内部には、潤滑用のオイルOLが貯留されている。デフケース50の下部側は、貯留されたオイルOL内に位置している。
 本実施形態では、連結梁62が最も下部に位置した際に、連結梁62がオイルOL内に位置する高さまで、オイルOLが貯留されている。
 貯留されたオイルOLは、モータ2の出力回転の伝達時に、回転軸X回りに回転するデフケース50により掻き上げられる。
 図17から図22は、オイルキャッチ部15を説明する図である。
 図17は、第4ボックス14を第3ボックス13側から見た平面図である。
 図18は、図17に示したオイルキャッチ部15を斜め上方から見た斜視図である。
 図19は、第4ボックス14を第3ボックス13側から見た平面図である。図19は、デフケース50を配置した状態を示している。
 図20は、図19に示したオイルキャッチ部15を斜め上方から見た斜視図である。
 図21は、図19におけるA-A断面の模式図である。
 図22は、動力伝達装置1を上方から見た場合におけるオイルキャッチ部15と、デフケース50(第1ケース部6、第2ケース部7)との位置関係を説明する模式図である。
 尚、図17および図19では、第4ボックス14の接合部142と、支持壁部146の位置を明確にするために、ハッチングを付して示している。
 図17に示すように、回転軸X方向から見て第4ボックス14には、中央の開口部145aを間隔をあけて囲む支持壁部146が設けられている。支持壁部146の内側(回転軸X)が、デフケース50(図19参照)の収容部140となっている。
 第4ボックス14内の上部には、オイルキャッチ部15の空間と、ブリーザ室16の空間が形成されている。
 第4ボックス14の支持壁部146では、鉛直線VLと交差する領域に、オイルキャッチ部15と、デフケース50の収容部140とを連通させる連通口147が設けられている。
 図17に示すように、オイルキャッチ部15とブリーザ室16は、回転軸Xと直交する鉛直線VLを挟んだ一方側(図中、左側)と他方側(図中、右側)に、それぞれ位置している。
 オイルキャッチ部15は、デフケース50の回転中心(回転軸X)を通る鉛直線VLからオフセットした位置に配置されている。図22に示すように、上方からオイルキャッチ部15を見ると、オイルキャッチ部15は、デフケース50の真上からオフセットした位置に配置されている。
 ここで、鉛直線VLは、動力伝達装置1の車両での設置状態を基準とした鉛直線VLである。回転軸X方向から見て鉛直線VLは、回転軸Xと直交している。
 なお、以下の説明において水平線HLは、動力伝達装置1の車両での設置状態を基準とした水平線HLである。回転軸X方向から見て水平線HLは、回転軸Xと直交している(図17参照)。
 図18に示すように、オイルキャッチ部15は、支持壁部146よりも紙面奥側まで及んで形成されている。オイルキャッチ部15の下縁には、紙面手前側に突出して支持台部151が設けられている。支持台部151は、支持壁部146よりも紙面手前側であって、第4ボックス14の接合部142よりも紙面奥側までの範囲に設けられている。
 図17に示すように、回転軸X方向から見て、オイルキャッチ部15の鉛直線VL側(図中、右側)には、オイルキャッチ部15と、デフケース50の収容部140とを連通させる連通口147が形成されている。連通口147は、支持壁部146の一部を切り欠いて形成されている。
 回転軸X方向から見て連通口147は、鉛直線VLをブリーザ室16側(図中、右側)から、オイルキャッチ部15側(図中、左側)に横切る範囲に設けられている。
 図19に示すように、本実施形態では、動力伝達装置1を搭載した車両の前進走行時に、第3ボックス13側から見てデフケース50は、回転軸X周りの反時計回り方向CCWに回転する。
 そのため、オイルキャッチ部15は、デフケース50の回転方向における下流側に位置している。そして、連通口147の周方向の幅は、鉛直線VLを挟んだ左側のほうが、右側よりも広くなっている。鉛直線VLを挟んだ左側は、デフケース50の回転方向における下流側であり、右側は上流側である。これにより、回転軸X回りに回転するデフケース50で掻き上げられたオイルOLの多くが、オイルキャッチ部15内に流入できる。
 さらに、図22に示すように、前記したピニオン軸44の第2軸部446の回転軌道の外周位置と、大径歯車部431の回転軌道の外周位置は、回転軸Xの径方向でオフセットしている。第2軸部446の回転軌道の外周位置のほうが、大径歯車部431の回転軌道の外周位置よりも内径側に位置している。そのため、第2軸部446の外径側に空間的な余裕がある。この空間を利用して、オイルキャッチ部15を設けることで、本体ボックス10内の空間スペースの有効利用が可能となっている。
 そして、第2軸部446は、モータ2から見て小径歯車部432の奥側に突出している。第2軸部446の周辺部材(例えば、第2軸部446を支持するデフケース50のガイド部78)が、オイルキャッチ部15に近接した位置になる。
 よって、当該周辺部材からオイルキャッチ部15へのオイルOL(潤滑油)の供給をスムーズに行うことができる。
 図18に示すように、支持台部151の奥側には、油孔151aの外径側の端部が開口している。油孔151aは、第4ボックス14内を内径側に延びている。油孔151aの内径側の端部は、支持部145の内周に開口している。
 図2に示すように、支持部145において油孔151aの内径側の端部は、リップシールRSとベアリングB2との間に開口している。
 図20および図22に示すように、支持台部151には、オイルOLのガイド部材として機能するオイルガイド152が載置されている。
 オイルガイド152は、キャッチ部153と、キャッチ部153から第1ボックス11側(図20における紙面手前側)に延びるガイド部154とを有している。
 図22に示すように、上方から見て支持台部151は、回転軸Xの径方向外側で、デフケース50(第1ケース部6、第2ケース部7)の一部に重なる位置に、段付きピニオンギア43(大径歯車部431)との干渉を避けて設けられている。
 回転軸Xの径方向から見て、キャッチ部153は、ピニオン軸44の第2軸部446と重なる位置に設けられている。さらにガイド部154は、ピニオン軸44の第1軸部445と大径歯車部431と重なる位置に設けられている。
 そのため、デフケース50が回転軸X回りに回転する際に、デフケース50で掻き上げられたオイルOLが、キャッチ部153とガイド部154側に向けて移動する。
 図20に示すように、キャッチ部153の外周縁には、支持台部151から離れる方向(上方向)に延びる壁部153aが設けられている。回転軸X回りに回転するデフケース50で掻き上げられたオイルOLの一部は、オイルガイド152に貯留される。
 キャッチ部153の奥側(図20における紙面奥側)では、壁部153aに切欠部155が設けられている。
 図22に示すように、切欠部155は、油孔151aに対向する領域に設けられている。キャッチ部153に貯留されたオイルOLの一部は、切欠部155の部分から油孔151aに向けて排出される。
 図21に示すように、ガイド部154は、キャッチ部153から離れるにつれて下方に傾斜している。
 図20に示すように、ガイド部154の幅方向の両側には、壁部154a、154aが設けられている。壁部154a、154aは、ガイド部154の長手方向の全長に亘って設けられている。壁部154a、154aは、キャッチ部153の外周を囲む壁部153aに接続されている。
 キャッチ部153に貯留されたオイルOLの一部が、ガイド部154側にも排出される。
 図21に示すように、ガイド部154は、デフケース50との干渉を避けた位置を、第2ボックス12側に延びている。ガイド部154の先端154bは、第2ボックス12の壁部120に設けた油孔126aに、回転軸X方向の隙間を空けて対向している。ガイド部154の先端154bは、オイルガイド152のオイル排出口として機能する。
 壁部120の外周には、油孔126aを囲むボス部126が設けられている。ボス部126には、回転軸X方向から配管127の一端が嵌入している。
 配管127は、第2ボックス12の外側を通って第3ボックス13まで及んでいる。配管127の他端は、第3ボックスの円筒状の接続壁136に設けた油孔136a(図2参照)に連通している。
 図19に示すように、回転軸X回りに回転するデフケース50で掻き上げられたオイルOLの一部は、オイルキャッチ部15に到達する。図21に示すように、オイルOLは、ガイド部154と配管127を通って、接続壁136の内部空間Sc(図2参照)に供給される。
 図2に示すように、第3ボックス13には、内部空間Scに連通する径方向油路137が設けられている。
 径方向油路137は、内部空間Scから径方向下側に延びている。径方向油路137は、接合部132内に設けた軸方向油路138に連通している。
 軸方向油路138は、第1ボックス11の接合部112に設けた連通孔112aを介して、第2ボックス12の下部に設けたオイル溜り部128に連絡している。
 オイル溜り部128は、周壁部121内を回転軸X方向に貫通している。オイル溜り部128は、第4ボックス14に設けたギア室Sbに連絡している。
 ギア室Sbでは、円板状のプレート部材8が、回転軸Xに直交する向きで設けられている。前記したようにプレート部材8は、第4ボックス14内のギア室Sbを、デフケース50側の第1ギア室Sb1と、モータ2側の第2ギア室Sb2に区画している。
 動力伝達装置1の車両への搭載状態を基準とした鉛直線VL方向で、プレート部材8の下部は、第4ボックス14の周壁部141との間に隙間を空けて設けられている。
 プレート部材8の一方側に位置する第1ギア室Sb1と、他方側に位置する第2ギア室Sb2は、第4ボックス14の下部で互いに連通している。
 プレート部材8は、デフケース50のモータ2側の側面を覆う大きさで形成されている。プレート部材8は、回転するデフケース50が掻き上げたオイルOLの第2ギア室Sb2側への流入を抑制している。
 図23および図24は、プレート部材8を説明する図である。
 図23は、プレート部材8をモータ2側から見た平面図である。
 図24は、図23におけるA-A断面の模式図である。
 図23に示すように、モータ2側から見てプレート部材8は、リング状の基部80を有している。基部80の中央部には、貫通孔800を囲むリング状の支持部801が設けられている。
 図3に示すように支持部801の内周には、デフケース50の筒壁部611が、ベアリングB3を介して支持されている。
 図23に示すように、基部80の外周縁80cには、接続片81、82、83、84が設けられている。
 接続片81、82、83、84の各々は、基部80の外周縁80cから径方向外側に延出している。接続片81、82、83、84には、それぞれボルト孔81a、82a、83a、84aが設けられている。
 接続片81は、プレート部材8の上部において鉛直線VLと交差する位置に設けられている。接続片81は、鉛直線VLに沿って基部80から離れる方向に延びている。
 鉛直線VLの一方側(図23における左側)では、水平線HLを挟んだ上側と、下側に、それぞれ1つずつ接続片82、83が設けられている。これら接続片82、83もまた、基部80から離れる方向に延びている。
 鉛直線VLの他方側(図23における右側)では、水平線HLよりも下側に接続片84が設けられている。この接続片84は、水平線HLの下側で、前記した接続片83の下縁を通る。接続片84は、水平線HLに対して平行な直線HLaと交差する位置から下方に突出している。
 鉛直線VLの他方側(図23における右側)では、水平線HLよりも上側に接続片85が設けられている。接続片85は、回転軸X回りの周方向に所定の幅を有している。接続片85における鉛直線VL寄りの位置には、ボルト孔85aが設けられている。水平線HL寄りの位置には、支持ピン85bが設けられている。支持ピン85bは、紙面手前側に突出している。
 プレート部材8におけるモータ2側の面80a(図24参照)には、後記するストッパピン861の支持ボス86が設けられている。
 支持ボス86は、鉛直線VL上に位置する接続片81の下側に位置している。支持ボス86は、接続片81に隣接している。
 図23に示すように、支持ボス86の下側には、取付ボス87が設けられている。取付ボス87は、支持ピン85bを通り、前記した水平線HLに平行な直線HLbと交差する位置に設けられている。取付ボス87は、支持ボス86よりも紙面手前側まで突出している(図24参照)。
 さらに、鉛直線VL方向における支持ピン85bの下側には、取付ボス87と対になる取付ボス88が設けられている。
 取付ボス87から見て、支持ピン85bとは反対側(図中、左側)には、後記するサポート33の取付部89が設けられている。
 取付部89では、水平線HL方向で隣り合う2つのボルト孔89a、89aが設けられている。
 図25は、第4ボックス14をモータ2側から見た図である。図25では、プレート部材8の外周縁を支持する段部148d、149d、17dの配置を示している。
 なお、図25では、周壁部148、149、弧状壁部17の位置と、段部148d、149d、17dの位置を明確にするために、これらにハッチングを付して示している。
 図26は、第4ボックス14をモータ2側から見た図である。図26では、プレート部材8が取り付けられた状態を示している。
 図25に示すように、回転軸X方向から見て第4ボックス14には、周壁部148、149が設けられている。これら周壁部148、149は、支持壁部146における歯部146aが設けられた領域の外径側に位置している。
 周壁部148、149は、回転軸Xを中心とした円弧状に形成されている。
 周壁部148は、鉛直線VL方向において、前記したオイルキャッチ部15の下側に位置している。
 回転軸X方向から見て周壁部148は、回転軸Xを通る水平線HLを、上側から下側に横切る範囲に設けられている。
 周壁部148の上側の端部148aは、支持台部151の近傍に位置している。周壁部148の下側の端部148bは、直線HLaの近傍に位置している。
 図25に示すように、回転軸X方向から見て周壁部148の内周148cは、前記したプレート部材8(基部80)の外周に沿う円弧状を成している。周壁部148の内周148cの回転軸Xを基準とした内径は、プレート部材8の回転軸Xを基準とした外径よりもわずかに大きくなっている。
 周壁部148の内側には、紙面奥側に窪んだ段部148dが設けられている。
 プレート部材8を第4ボックス14に取り付けると、段部148dには、プレート部材8(基部80)の外周縁が当接する。プレート部材8(基部80)は、回転軸X方向から段部148dに当接する。
 周壁部148の外側には、ボルト孔18aを有するボス部18が2つ設けられている。ボス部18、18は、周壁部148と一体に形成されている。ボス部18、18は、周壁部148の上側の端部148a側と、下側の端部148bの近傍にそれぞれ設けられている。ボス部18、18は、周壁部148よりも紙面手前側まで突出している。
 周壁部149は、前記したブリーザ室16の下側に位置している。周壁部149は、ブリーザ室16を区画形成する壁部160よりも紙面奥側に位置している。
 回転軸X方向から見て周壁部149の上側の端部149aは、鉛直線VL上で、ボス部18に接続している。ボス部18には、オイルキャッチ部15側に延びる側壁部159がさらに接続されている。周壁部149の下側の端部149bは、ブリーザ室16の下側で第4ボックス14の周壁部141に接続されている。
 図25に示すように、回転軸X方向から見て周壁部149の内周149cは、前記したプレート部材8(基部80)の外周に沿う円弧状を成している。周壁部149の内周149cの回転軸Xを基準とした内径は、プレート部材8の回転軸Xを基準とした外径よりもわずかに大きくなっている。
 周壁部149の内側には、紙面奥側に窪んだ段部149dが設けられている。
 プレート部材8を第4ボックス14に取り付けると、段部149dには、プレート部材8(基部80)の外周縁が当接する。プレート部材8(基部80)は、回転軸X方向から段部149dに当接する。
 周壁部149の外側には、ボルト孔18aを有するボス部18が2つ設けられている。ボス部18、18は、周壁部149と一体に形成されている。ボス部18、18は、回転軸X回りの周方向に間隔をあけて設けられている。ボス部18、18は、周壁部149の上側の端部148aの外周と、ブリーザ室16の下側に位置する領域の外周にそれぞれ設けられている。
 ボス部18、18は、周壁部149よりも紙面手前側まで突出している。
 第4ボックス14では、ブリーザ室16の下側であって水平線HLよりも下側の領域に、弧状壁部17が設けられている。弧状壁部17は、回転軸X周りの周方向において、周壁部148に対して大凡180°位相をずらした位置関係で設けられている。
 図25に示すように、回転軸X方向から見て弧状壁部17の内周17cは、前記したプレート部材8(基部80)の外周に沿う円弧状を成している。弧状壁部17の内周17cの回転軸Xを基準とした内径は、プレート部材8の回転軸Xを基準とした外径よりもわずかに大きくなっている。
 弧状壁部17では、前記した直線HLaと交差する位置に、ボルト孔18aを有するボス部18が形成されている。ボス部18は、弧状壁部17よりも紙面手前側に突出している。
 ボス部18の内周には、回転軸X方向に段部17dが突出している。
 プレート部材8を第4ボックス14に取り付けると、段部17dには、プレート部材8(基部80)の外周縁が当接する。プレート部材8(基部80)は、回転軸X方向から段部17dに当接する。
 ここで、プレート部材8の第4ボックス14への取り付けは、はじめに、プレート部材8(基部80)の外周縁を、周壁部148、149の段部148d、149dと、弧状壁部17の段部17dに、回転軸X方向から当接させる。続いて、接続片81~85のボルト孔81a~85aを貫通したボルトBを、対応するボス部18のボルト孔18aに螺入することで、プレート部材8が第4ボックス14に固定される(図26参照)。
 ここで、プレート部材8は、第4ボックス14の構成材料の密度よりも大きい密度の構成材料で形成されている。
 具体的には、動力伝達装置1の本体ボックス10(第4ボックス)は、軽量化のために、アルミニウム又はマグネシウムを主成分とする構成材料で形成される。
 本実施形態では、プレート部材8は、鉄などを主成分とする構成材料であって、本体ボックス10の構成材料よりも高い密度を持つ構成材料で形成されている。
 図27および図28は、パークロック機構3を説明する図である。
 図27は、パークロック機構3が設けられた第4ボックス14を斜め上方から見た斜視図である。
 図28は、パークロック機構3が設けられた第4ボックス14をモータ2側から見た平面図である。
 図29から図31は、パークポール31を説明する図である。
 図29は、パークポール31をモータ2側から見た平面図である。
 図30は、パークポール31をモータ2側から見た斜視図である。
 図31は、パークポール31を回転軸X側の側方から見た側面図である。
 なお、図29では、ホルダ34の位置を仮想線で示している。図31では、プレート部材8とホルダ34の位置を仮想線で示している。
 図32から図34は、パークロック機構3を説明する図である。
 図32は、パークロック機構3を上方から見た図である。
 図33は、図32におけるA-A断面の模式図である。
 図34は、図33におけるC-C断面の模式図である。
 図27に示すように、パークロック機構3は、パークギア30と、パークポール31と、パークロッド32と、サポート33と、ホルダ34と、マニュアルプレート35と、ディテントスプリング36と、マニュアルシャフト37と、を有している。
 本実施形態では、プレート部材8のモータ2側に、パークギア30と、パークポール31と、パークロッド32と、サポート33と、ホルダ34が位置しており、反対側に、マニュアルプレート35と、ディテントスプリング36と、マニュアルシャフト37が位置している。
 ホルダ34は、回転軸X方向から見て略矩形形状を成す板状部材である。ホルダ34は、パークポール31を支持するための突起部341を備えている。ホルダ34では、長手方向の両側にボルト孔34a、34aが設けられている。
 ホルダ34は、ボルトB、Bで、プレート部材8の取付ボス87、88に取り付けられている。
 図27に示すように、回転軸X方向から見てホルダ34は、パークギア30の上方から、ブリーザ室16の下方までの範囲に設けられている。
 図26に示すように、回転軸X方向から見てホルダ34は、ブリーザ室16側(図中、右側)に向かうにつれて、鉛直線VL方向の下側に傾斜している。ホルダ34の下縁342は、ブリーザ室16側(図中、右側)に向かうにつれて、鉛直線VL方向の下側に傾斜している。
 図27に示すように、パークポール31は、ホルダ34を介してプレート部材8で支持されている。
 図28に示すように、パークポール31は、挿通孔310dを有する第1板状部310と、爪部311cを有する第2板状部311と、を有する一体部品である。
 パークポール31の挿通孔310dには、ホルダ34側の突起部341が挿入されている。パークポール31は、突起部341で回動可能に支持されており、回転軸Xに平行な軸線X2回りに回動可能である。
 図28に示すように、回転軸X方向から見て第1板状部310は、軸線X2に直交する直線Lx1に沿って、突起部341で支持された領域から上方側に延びている。
 第1板状部310は、プレート部材8の支持ボス86と略同じ高さ位置まで延びたのち、ブリーザ室16から離れる方向(図中、左方向)に屈曲している。
 第1板状部310では、屈曲部310eよりも先の領域が、直線Lx2に沿って延びており、この領域の先端側が、パークロッド32のカム320により操作される被操作部310cとなっている。
 被操作部310cは、サポート33で支持されたカム320に載置されている。
 図28に示すように、回転軸X方向から見て第2板状部311の下部には、パークギア30との係合部である爪部311cが設けられている。
 爪部311cは、第2板状部311の下部から回転軸X側に膨出して形成されている。爪部311cは、回転軸Xに近づくにつれて幅Wp(図29参照)が狭くなる先細り形状を有している。
 図30に示すように、パークポール31の第1板状部310では、挿通孔310dの側方に係止孔310fが設けられている。係止孔310fには、スプリングSpの一端が係合している(図28参照)。スプリングSpの他端は、プレート部材8の外周縁80cに圧接している。スプリングSpは、プレート部材8の支持ピン85bに外挿されている。この状態においてスプリングSpは、パークポール31に付勢力を作用させている。パークポール31は、スプリングSpから作用する付勢力で、爪部311cを、パークギア30から離間させる方向(図28では反時計回り方向:矢印参照)に常時付勢されている。
 前記したようにパークポール31は、回転軸Xに平行な軸線X2回りに回動可能である。
 図3に示すようにパークポール31の第1板状部310は、回転軸X方向において、ホルダ34とプレート部材8との間に配置されている。第2板状部311は、第1板状部310よりもモータ2側(図中、右側)に位置しており、ホルダ34の内径側を下方に延びている。
 図31に示すように、第1板状部310と第2板状部311は、回転軸Xに平行な軸線X2方向でオフセットしている。
 第1板状部310と第2板状部311との境界部では、ホルダ34側の面310a、311a同士を繋ぐ段差部312と、プレート部材8側の面310b、311b同士を繋ぐ段差部313が設けられている。
 第1板状部310のホルダ34側の面310aと、第2板状部311のホルダ34側の面311aは互いに平行である。
 第1板状部310のプレート部材8側の面310bと、第2板状部311のプレート部材8側の面311bは互いに平行である。
 段差部312と段差部313は、軸線X2の径方向から見て、第1板状部310のプレート部材8側の面310bに沿う直線Lyに対してそれぞれ傾斜している。
 直線Lyと段差部312との成す角θ2は、直線Lyと段差部313との成す角θ3よりも大きい。
 図31に示すように、本実施形態では、直線Lyと段差部312との成す角θ2は、ホルダ34との干渉を避けることができる角度になっている。
 さらに、本実施形態では、ホルダ34側だけでなく、ホルダ34とは反対側(プレート部材8側)にも段差部313を設けている。これにより、第1板状部310と第2板状部311の軸線X2方向の厚みが同じとなるようにしている。
 図28に示すように、回転軸X方向から見てパークロッド32は、水平線HLよりも上側を通る直線Lx3に沿う向きで設けられている。パークロッド32は、回転軸Xに直交する。
 パークロッド32は、カム320が外挿された先端側を、パークポール31側(ブリーザ室16側)に向けて設けられている。カム320は、サポート33と、パークポール31の被操作部310cとの間に挿入されている。
 図33に示すように、断面視においてサポート33は、弧状の底壁部331と、底壁部331の両側から上方に延びる側壁部332、333と、底壁部331から下方に延びる接続片334と、を有する。
 サポート33は、接続片334を貫通したボルトBにより、プレート部材8の取付部89に固定されている。
 図33に示すように、動力伝達装置1の内部においてサポート33は、一方の側壁部333を、第2ボックス12の壁部120に接触させた状態で、プレート部材8に固定されている。また、サポート33は、他方の側壁部332は、プレート部材8との間に隙間を空けて設けられている。
 サポート33において、底壁部331と、当該底壁部331の両側の側壁部332、333から構成される部分は、断面視において略U字形状を成している。サポート33は、略U字形状の部分の開口を上方に向けて設けられている。
 図34に示すように、サポート33では、ブリーザ室16側(図中、右側)の内周に、カム部335が設けられている。カム部335の上面335aは、底壁部331の上面331aよりも上方に位置している。
 パークロッド32では、先端32a側にカム320が外挿されている。
 カム320は、図示しないスプリングの付勢力で、先端32a側に付勢されている。
 パークロッド32が、サポート33とパークポール31の被操作部310cとの間にカム320を押し込む方向(図34における右方向)に変位すると、カム部335に乗り上げられたカム320が、被操作部310cを押し上げる。
 これにより、パークポール31は、図28における時計回り方向に回動して、爪部311cをパークギア30の外周に係合させた位置(係合位置:図37参照)に配置される。
 パークロッド32が、サポート33とパークポール31の被操作部310cとの間から引き抜かれる方向(図34における左方向)に変位すると、パークロッド32のカム320が、カム部335を降りて底壁部331の上面331aに到達する(図34における仮想線参照)。
 これにより、パークポール31は、スプリングSpの付勢力により、図28における反時計回り方向に回動して、爪部311cをパークギア30の外周から離脱させた位置(離脱位置)に配置される(図35参照)。
 本実施形態のパークポール31は、力点である被操作部310cと、作用点である爪部311cとの間に、支点となる回動軸(軸線X2)が位置する第1種てこ形式のパークポールである。
 作用点を中心に置き、力点と支点が作用点の外側(作用点から見て一方側と他方側)に位置する第2種てこ形式や、支点を、力点と作用点の外側で、かつ力点に近い場所に配置した第3種てこ形式のパークポールとは異なる。
 第1種てこ形式のパークポール31は、力点である被操作部310cに、パークロッド32に操作力(力)が作用することにより、軸線X2周りに回動する。そして、このパークポール31の回動により、作用点側に位置する爪部311cが、パークギア30に係合する係合位置に移動する。
 図32に示すように、パークロッド32の他端32bは、マニュアルプレート35の連結部355で支持されている。この状態においてパークロッド32は、連結部355からの脱落が阻止された状態で、軸方向に変位可能に設けられている。
 マニュアルプレート35は、マニュアルシャフト37に外挿される基部351と、基部351の外周から、マニュアルシャフト37の回転軸Yの径方向に延びる腕部353および係合部352を有している。
 基部351は、マニュアルシャフト37との相対回転が規制された状態で、マニュアルシャフト37に固定されている。
 腕部353は、基部351の外周からモータ2に近づく方向に延びている。回転軸Xの径方向から見て、腕部353は、プレート部材8の外径側をモータ2側に横切っている。
 図27に示すように、腕部の353の先端側は、下側(回転軸)側に折り曲げられたのち、連結部355が上面に固定された支持部354に接続している。
 また、図32に示すように、基部351から延びる係合部352の先端側は、回転軸Yの周方向に所定の範囲を持って幅広に形成されている。この幅広に形成された領域の外周には、周方向に連続する複数の凹部が設けられている。これら複数の凹部のうちの1つに、ディテントスプリング36のローラ365(図27参照)が弾発的に係合している。
 ディテントスプリング36は、長手方向の基端部361が、ボルトBで、第4ボックス14に固定されている。ローラ365が設けられた先端側は、マニュアルプレート35の基部351の径方向に弾性変位可能である。また、ローラ365が設けられた先端側は、マニュアルプレート35の基部351の外周(凹部)に圧接している。
 本実施形態では、動力伝達装置1を搭載した車両の走行モード/駐車モードの切り替えに連動して、マニュアルシャフト37が回転軸Y回りに回動する。
 マニュアルシャフト37が回動すると、マニュアルシャフト37に固定されたマニュアルプレート35もまた回転軸Y回りに回動する。そうすると、マニュアルプレート35の基部351から延びる腕部353と、腕部353の先端の支持部354に固定された連結部355が、回転軸Y回りの周方向に変位する。連結部355に連結されたパークロッド32もまた、当該パークロッド32の長手方向に変位する。
 図35から図38は、パークロック機構3の動作を説明する図である。
 図35は、動力伝達装置1を搭載した車両が走行モードであるときのパークポール31とパークロッド32の配置を説明する図である。
 図36は、動力伝達装置1を搭載した車両が走行モードであるときのパークロッド32とマニュアルプレート35の配置を説明する図である。
 図37は、動力伝達装置1を搭載した車両が駐車モードであるときのパークポール31の配置を説明する図である。
 図38は、動力伝達装置1を搭載した車両が駐車モードであるときのパークロッド32とマニュアルプレート35の配置を説明する図である。
 動力伝達装置1を搭載した車両が走行モードであるときには、マニュアルシャフト37は、マニュアルプレート35の凹部352bに、ディテントスプリング36のローラ365を係合させる角度位置に配置される(図36参照)。
 この状態では、パークロッド32のカム320が、サポート33と、パークポール31の被操作部310cとの間から引き抜かれた位置に配置される。
 この状態では、パークポール31は、爪部311cをパークギア30から離間した位置に配置されている(図35参照)。
 そのため、パークギア30が取り付けられたモータシャフト20は、回転軸X回りの回転が許容された状態となり、モータ2の出力回転の駆動輪W、Wへの伝達が可能な状態、すなわち、動力伝達装置1を搭載した車両が走行可能な状態となる。
 動力伝達装置1を搭載した車両において、走行モードから駐車モードに切り替えられると、マニュアルプレート35は、図36に示す角度位置から、図38に示す角度位置まで回動する。
 そうすると、マニュアルシャフト37は、マニュアルプレート35の凹部352aに、ディテントスプリング36のローラ365を係合させる角度位置に配置される(図38参照)。
 この状態では、パークロッド32のカム320が、サポート33と、パークポール31の被操作部310cとの間に挿入された位置に配置される。
 この状態では、パークポール31は、爪部311cをパークギア30に係合させた位置に配置されている(図37参照)。
 そのため、パークギア30が取り付けられたモータシャフト20は、回転軸X回りの回転が規制される。これにより、モータ2の出力回転の駆動輪W、Wへの伝達が不可能な状態となる。すなわち、動力伝達装置1を搭載した車両は、走行できない状態(駐車状態)となる。
 図36に示すように、パークロック機構3のパークポール31と、パークロッド32と、サポート33と、ホルダ34が、プレート部材8から見て第2ボックス12の壁部120側(モータ2側)に位置している。
 マニュアルプレート35と、ディテントスプリング36と、マニュアルシャフト37が、プレート部材8から見て第2ボックス12の壁部120とは反対側(デフケース50、遊星減速ギア4側)に位置している。
 すなわち、図24において、プレート部材8のモータ2側の面80a側に、パークポール31と、パークロッド32と、サポート33と、ホルダ34が配置されている。そして、プレート部材8のデフケース50側の面80b側に、マニュアルシャフト37と、ディテント機構(マニュアルプレート35、ディテントスプリング36)が配置されている。
 パークロック機構3の構成部品が、プレート部材8を間に挟んだモータ2側の空間と、デフケース50側の空間を利用して、分散配置されている。そのため、第4ボックス14内の余裕のある空間を有効に活用しつつ、パークロック機構3の構成部品を配置できる。よって、パークロック機構3を、本体ボックス10内に設置するに際し、本体ボックス10の大型化を抑制できる。
 パークロック機構3のパークポール31は、ホルダ34を介してプレート部材8に取り付けられている。パークロッド32のカム320が載置されるサポート33は、プレート部材8に取り付けられている。
 プレート部材8は、第4ボックス14にボルトBで固定される固定側部材である。よって、プレート部材8を利用して、パークロック機構3の構成部品を適切に配置できる。
 また、マニュアルプレート35、ディテントスプリング36及びマニュアルシャフト37を、鉛直線VL方向における第4ボックス14の上部に形成されたオイルキャッチ部15の空間を利用して配置している。これにより、第4ボックス14を大型化させることなく、第4ボックス14内で余裕のあるオイルキャッチ部15の空間を利用して、パークロック機構3の構成部品を配置できる。
 かかる構成の動力伝達装置1の作用を説明する。
 図1に示すように、動力伝達装置1では、モータ2の出力回転の伝達経路に沿って、遊星減速ギア4と、差動機構5と、ドライブシャフト9(9A、9B)と、が設けられている。
 そして、動力伝達経路におけるモータ2と遊星減速ギア4との間に、パークロック機構3のパークギア30が設けられている。
 動力伝達装置1を搭載した車両が駐車モードであるときには、パークポール31は、爪部311cをパークギア30に係合させた位置に配置されている(図37参照)。そのため、パークギア30が取り付けられたモータシャフト20は、回転軸X回りの回転が規制された状態となる。
 この状態では、駆動輪W、Wの回転が規制されており、動力伝達装置1を搭載した車両は駐車状態となる。
 動力伝達装置1を搭載した車両のモードが、駐車モードから走行モードに切り替えられると、マニュアルシャフト37は、図示しないアクチュエータモータの駆動力により、回転軸Y回りに回動する。
 これにより、マニュアルシャフト37は、ディテントスプリング36のローラ365を、マニュアルプレート35の凹部352aに係合させた角度位置(図38参照)から、凹部352bに係合させた角度位置(図36参照)まで変位する。
 そうすると、マニュアルプレート35の回転軸Y回りの回転により、パークロッド32が、サポート33とパークポール31の被操作部310cとの間からカム320を引き抜く方向(図38における左方向)に変位する。
 そうすると、カム320が、サポート33とパークポール31の被操作部310cとの間から引き抜かれた時点で、パークポール31がスプリングSpの付勢力により、軸線X1回りに回動して、爪部311cがパークギア30の外周から離脱する(図35参照)。
 そうすると、パークギア30が取り付けられたモータシャフト20は、回転軸X回りの回転が許容された状態となる。
 この状態では、駆動輪W、Wの回転が許容されており、動力伝達装置1を搭載した車両は走行可能な状態となる。
 図2に示すように、この状態において、モータ2が駆動されて、ロータコア21が回転軸X回りに回転すると、ロータコア21と一体に回転するモータシャフト20を介して、遊星減速ギア4のサンギア41に回転が入力される。
 図3に示すように、遊星減速ギア4では、サンギア41が、モータ2の出力回転の入力部となっている。段付きピニオンギア43を支持するデフケース50が、入力された回転の出力部となっている。
 サンギア41が入力された回転で回転軸X回りに回転すると、段付きピニオンギア43(大径歯車部431、小径歯車部432)が、サンギア41側から入力される回転で、軸線X1回りに回転する。
 ここで、段付きピニオンギア43の小径歯車部432は、第4ボックス14の内周に固定されたリングギア42に噛合している。そのため、段付きピニオンギア43は、軸線X1回りに自転しながら、回転軸X周りに公転する。すなわち、回転軸Xは、段付きピニオンギア43の公転軸でもある。
 ここで、段付きピニオンギア43の小径歯車部432の外径R2は、大径歯車部431の外径R1よりも小さくなっている(図3参照)。
 これにより、段付きピニオンギア43を支持するデフケース50(第1ケース部6、第2ケース部7)が、モータ2側から入力された回転よりも低い回転速度で回転軸X回りに回転する。
 そのため、遊星減速ギア4のサンギア41に入力された回転は、段付きピニオンギア43により、大きく減速される。減速された回転は、デフケース50(差動機構5)に出力される。
 そして、デフケース50が、入力された回転で回転軸X回りに回転することにより、デフケース50内で、ピニオンメートギア52と噛合するドライブシャフト9(9A、9B)が回転軸X回りに回転する。これにより動力伝達装置1が搭載された車両の左右の駆動輪W、W(図1参照)が、伝達された回転駆動力で回転する。
 図2に示すように、第4ボックス14の内部には、潤滑用のオイルOLが貯留されている。そのため、貯留されたオイルOLは、モータ2の出力回転の伝達時に、回転軸X回りに回転するデフケース50により掻き上げられる。
 掻き上げられたオイルOLにより、サンギア41と大径歯車部431との噛合部と、小径歯車部432とリングギア42との噛合部と、ピニオンメートギア52とサイドギア54A、54Bとの噛合部とが潤滑される。
 図19に示すように、第3ボックス13側から見てデフケース50は、回転軸X周りの反時計回り方向CCWに回転する。
 第4ボックス14の上部には、オイルキャッチ部15が設けられている。オイルキャッチ部15は、デフケース50の回転方向における下流側に位置している。デフケース50で掻き上げられたオイルOLの多くが、オイルキャッチ部15内に流入する。
 図22に示すように、オイルキャッチ部15内には、支持台部151に載置されたオイルガイド152が設けられている。
 デフケース50の第1ケース部6の径方向外側と、デフケース50の第2ケース部7の径方向外側に、オイルガイド152のガイド部154とキャッチ部153が位置している。
 そのため、デフケース50で掻き上げられてオイルキャッチ部15内に流入したオイルの多くが、オイルガイド152に捕捉される。
 オイルガイド152に捕捉されたオイルOLの一部は、壁部153aに設けた切欠部155から排出されて、支持台部151の上面に一端が開口した油孔151aに流入する。
 油孔151aの内径側の端部は、支持部145の内周に開口している(図2参照)。そのため、油孔151aに流入したオイルOLは、第4ボックス14の支持部145の内周と、サイドギア54Bの筒壁部540との間の隙間Rxに排出される。
 隙間Rxに排出されたオイルOLの一部は、支持部145で支持されたベアリングB2を潤滑する。ベアリングB2を潤滑したオイルOLは、デフケース50の回転による遠心力で外径側に移動する。デフケース50の外径側では、周壁部73の内周に沿ってスリット710が設けられている。オイルOLは、周壁部73により外径側への更なる移動が妨げられる。オイルOLは、スリット710を第1ケース部6側に通過する。
 スリット710の第1ケース部6側では、ガイド部78の内周において、ケース内油路781が開口している。スリット710を通過したオイルOLの一部は、デフケース50の回転による遠心力によりケース内油路781内に流入する。
 ケース内油路781に流入したオイルOLは、導入路441を通ってピニオン軸44の軸内油路440に流入する。軸内油路440に流入したオイルOLは、油孔442、443から径方向外側に排出される。排出されたオイルOLは、ピニオン軸44に外挿されたニードルベアリングNBを潤滑する。
 さらに、隙間Rxに排出されたオイルOLの一部は、図14に示すように、第2ケース部7の筒壁部72の内周に設けた油溝721を通る。油溝721を通ったオイルOLは、サイドギア54Bの裏面を支持するワッシャ55に供給されて、ワッシャ55を潤滑する。
 さらに、第2ケース部7の基部71に設けた油溝712と、円弧部741に設けた油溝742を通る。油溝742を通ったオイルOLは、ピニオンメートギア52の裏面を支持する球面状ワッシャ53に供給されて、球面状ワッシャ53を潤滑する。
 また、オイルキャッチ部15のオイルガイド152に捕捉されたオイルOLの一部は、ガイド部154側に排出される(図20参照)。ガイド部154の先端154bは、第2ボックス12の壁部120に設けた油孔126aに、回転軸X方向の隙間を空けて対向している(図21参照)。
 そのため、ガイド部154側に排出されたオイルOLの多くが、第2ボックス12の油孔126aに流入する。
 なお、油孔126aに流入しなかったオイルOLは、第2ボックス12の壁部120を伝って、第4ボックス14の下方に向けて移動する。
 図2に示すように、第4ボックス14では、壁部120とプレート部材8との間が、第2ギア室Sb2となっている。第2ギア室Sb2には、パークロック機構3のパークギア30が位置している。
 そのため、油孔126aに流入しなかったオイルOLは、第2ギア室Sb2内を下方に向けて移動する際に、パークギア30を潤滑する。
 図21に示すように、壁部120の外周には、油孔126aを囲むボス部126が設けられている。ボス部126には、回転軸X方向から配管127の一端が嵌入している。
 そのため、第2ボックス12の油孔126aに流入したオイルOLは、配管127内に流入する。
 配管127は、第2ボックス12の外側を通って第3ボックス13まで及んでいる。配管127の他端は、第3ボックス13の円筒状の接続壁136に設けた油孔136a(図2参照)に連通している。
 そのため、本実施形態では、オイルキャッチ部15に到達したオイルOLの一部が、ガイド部154と配管127を通って、接続壁136の内部空間Scに供給される。
 油孔136aから内部空間Scに排出されたオイルOLは、内部空間Scに貯留される。オイルOLは、第3ボックス13の周壁部131で支持されたベアリングB4を潤滑する。
 内部空間Scに排出されたオイルOLの一部は、ドライブシャフト9Aの外周とモータシャフト20の内周との隙間を通って、モータシャフト20の他端20b側まで移動する。
 図10に示すように、モータシャフト20の他端20bは、サイドギア54Aの筒壁部541の内側に挿入されている。筒壁部541の内周には、サイドギア54Aの裏面に連通する連絡路542が設けられている。
 そのため、モータシャフト20の他端20b側まで移動して、筒壁部541の内側に排出されたオイルOLの一部は、連絡路542を通る。連通路542を通ったオイルOLは、サイドギア54Aの裏面のワッシャ55に供給されて、ワッシャ55を潤滑する。
 さらに、サイドギア54Aの裏面のワッシャ55を潤滑したオイルOLは、第1ケース部6のギア支持部66に設けた油溝662と、円弧部641に設けた油溝642を通る。油溝642を通ったオイルOLはピニオンメートギア52の裏面を支持する球面状ワッシャ53に供給されて、球面状ワッシャ53を潤滑する。
 また、図2に示すように、第3ボックス13の内部空間Scは、径方向油路137と、軸方向油路138と、連通孔112aと、第2ボックス12の下部に設けたオイル溜り部128と、を介して、第4ボックス14に設けた第2ギア室Sb2に連絡している。
 そのため、内部空間Sc内のオイルOLは、第4ボックス14内に貯留されたオイルOLと同じ高さ位置に保持される。
 このように、回転軸X回りに回転するデフケース50で掻き上げられたオイルOLの多くが、オイルキャッチ部15内に流入する。オイルOLは、オイルキャッチ部15から、第4ボックス14の支持部145内に供給されてベアリングB2を潤滑する。オイルOLは、また、オイルキャッチ部15から、第3ボックス13内の内部空間Scに供給されてベアリングB4を潤滑する。そして、これらベアリングB2、B4を潤滑したオイルOLは、最終的に第4ボックス14内に戻されて、回転するデフケース50により掻き上げられる。
 さらに、オイルキャッチ部15に捕捉されたオイルOLの一部が、第2ギア室Sb2内に戻されて、第2ギア室Sb2内のパークギア30が潤滑される。
 このように、回転軸X回りに回転するデフケース50により掻き上げられたオイルOLが、プレート部材8から見てデフケース50側の領域から、壁部120側の領域や、内部空間Scに誘導される。これにより、プレート部材8から見てデフケース50側のオイルOL(潤滑油)の総量を減少させることができるので、段付きピニオンギア43が回転軸X周りに公転する際の撹拌抵抗を低減できる。
 よって、動力伝達装置1では、駆動輪W、Wの回転時に第4ボックス14内のオイルOLが掻き上げられて、ベアリング、パークギア、そしてギア同士の噛合部の潤滑に用いられる。潤滑に用いられたオイルOLは、第4ボックス14内に戻されて、再び掻き上げられるようになっている。
 以上の通り、本実施形態にかかる動力伝達装置1は、以下の構成を有している。
(1)動力伝達装置1は、
 差動機構5と、
 差動機構5を収容するデフケース50(ケース)と、
 デフケース50に支持された段付きピニオンギア43(ピニオンギア)と、
 デフケース50と回転軸X方向(軸方向)にオーバラップする壁部120と、
 回転軸X方向において壁部120とデフケース50との間に設けられたプレート部材8(プレート)と、
 デフケース50側から壁部120側にオイルOL(潤滑油)をガイドするオイルガイド152(ガイド部材)と、を有する。
 このように構成すると、プレート部材8を有する動力伝達装置1において、回転軸X回りに回転するデフケース50により掻き上げられたオイルOLを、プレート部材8から見てデフケース50側の領域から、壁部120側の領域に誘導できる。すなわち、プレート部材8から見て壁部120側(裏側)にオイルOLを導入することで、デフケース50側のオイルOL(潤滑油)の総量を減少させることができる。
 これにより、段付きピニオンギア43が回転軸X周りに公転する際の撹拌抵抗を低減できる。
 動力伝達装置1は、以下の構成を有している。
(2)壁部120には、オイルガイド152のオイル排出口となるガイド部154の先端154bと対向する位置に、油孔126aが設けられている。
 ガイド部154からは、オイルOLが勢いよく排出される。そこで、上記のように構成して、ガイド部154の先端154bに対向する位置に油孔126aを設けることで、当該油孔126aを介して、動力伝達装置1における他の部材に効率的にオイルOL(潤滑油)を供給することができる。
 動力伝達装置1は、以下の構成を有している。
(3)プレート部材8と壁部120との間に、パークギア30が配置されている。
 オイルガイド152(ガイド部材)が設けられていることにより、オイルガイド152に捕捉されたオイルOLを、プレート部材8と壁部120との間に誘導できる。これにより、プレート部材8と壁部120との間に領域におけるオイルOL(潤滑油)の油面高さを高くすることができる。
 そこで、上記のように構成することで、パークギア30の潤滑をスムーズに行うことができる。
 動力伝達装置1は、以下の構成を有している。
(4)動力伝達装置1における回転駆動力の伝達経路上で、段付きピニオンギア43と噛合するサンギア41の上流にモータ2が配置されている。
 動力伝達装置1は、差動機構5と接続されるドライブシャフト9(9A、9B)を有する。
 ドライブシャフト9Aは、サンギア41とモータ2のモータシャフト20の内周を、回転軸X方向に貫通している。
 動力伝達装置1は、1軸の電気自動車用の動力伝達装置であり、コンパクトな動力伝達装置を提供することができる。
 さらに、前記した実施形態では、プレート部材8から見て、第2ボックス12の壁部120の奥側(図2における右側)に、モータ2が配置されている場合を例示した。
 モータ2は、第2ボックス12の壁部120の手前側(図2における左側)に配置されていても良い。
 以上、本願発明の実施形態を説明したが、本願発明は、これら実施形態に示した態様のみに限定されるものではない。発明の技術的な思想の範囲内で、適宜変更可能である。
1    動力伝達装置
120  壁部
126a 油孔
152  オイルガイド(ガイド部材)
154  ガイド部
154b 先端(オイル排出口)
2    モータ
41   サンギア
43   段付きピニオンギア(ピニオンギア)
5    差動機構
50   デフケース(ケース)
8    プレート部材(プレート)
9(9A、9B)   ドライブシャフト(駆動軸)
OL   オイル(潤滑油)
X    回転軸

Claims (4)

  1.  差動機構と、
     前記差動機構を収容するケースと、
     前記ケースに支持されたピニオンギアと、
     前記ケースと軸方向にオーバラップする壁部と、
     前記軸方向において前記壁部と前記ケースとの間に設けられたプレートと、
     前記ケース側から前記壁部側に潤滑油をガイドするガイド部材と、を有する、動力伝達装置。
  2.  請求項1において、
     前記壁部には、前記ガイド部材のオイル排出口と対向する油孔が設けられている、動力伝達装置。
  3.  請求項1又は請求項2において、
     前記プレートと前記壁部との間にパークギアが配置されている、動力伝達装置。
  4.  請求項1乃至請求項3のいずれか一において、
     前記ピニオンギアと噛合するサンギアの上流に配置されるモータと、
     前記差動機構と接続される駆動軸と、を有し、
     前記駆動軸は、前記サンギア及び前記モータの内周を貫通する、動力伝達装置。
PCT/JP2020/045424 2019-12-30 2020-12-07 動力伝達装置 WO2021137282A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021568460A JP7350459B2 (ja) 2019-12-30 2020-12-07 動力伝達装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019240045 2019-12-30
JP2019-240045 2019-12-30

Publications (1)

Publication Number Publication Date
WO2021137282A1 true WO2021137282A1 (ja) 2021-07-08

Family

ID=76685911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/045424 WO2021137282A1 (ja) 2019-12-30 2020-12-07 動力伝達装置

Country Status (2)

Country Link
JP (1) JP7350459B2 (ja)
WO (1) WO2021137282A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012082930A (ja) * 2010-10-14 2012-04-26 Toyota Motor Corp 電気自動車用駆動装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012082930A (ja) * 2010-10-14 2012-04-26 Toyota Motor Corp 電気自動車用駆動装置

Also Published As

Publication number Publication date
JPWO2021137282A1 (ja) 2021-07-08
JP7350459B2 (ja) 2023-09-26

Similar Documents

Publication Publication Date Title
WO2021137285A1 (ja) 動力伝達装置
WO2021137283A1 (ja) 動力伝達装置
WO2021137289A1 (ja) 動力伝達装置
WO2021137284A1 (ja) 動力伝達装置
CN114901969B (zh) 动力传递装置
WO2021137282A1 (ja) 動力伝達装置
JP2021107737A (ja) 動力伝達装置
WO2021137286A1 (ja) パークポールおよび動力伝達装置
WO2021137291A1 (ja) 動力伝達装置
CN114901971A (zh) 动力传递装置
JP2021110333A (ja) 動力伝達装置
WO2021137288A1 (ja) 動力伝達装置
WO2021137287A1 (ja) 動力伝達装置
WO2021137280A1 (ja) 動力伝達装置
WO2021137290A1 (ja) 動力伝達装置
JP7375262B2 (ja) 動力伝達装置
WO2021137279A1 (ja) 動力伝達装置
JP7371310B2 (ja) 動力伝達装置
JP2021110334A (ja) 動力伝達装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20909404

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021568460

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20909404

Country of ref document: EP

Kind code of ref document: A1