WO2021136417A1 - 一种测量干扰的站点、接入点及方法 - Google Patents

一种测量干扰的站点、接入点及方法 Download PDF

Info

Publication number
WO2021136417A1
WO2021136417A1 PCT/CN2020/141573 CN2020141573W WO2021136417A1 WO 2021136417 A1 WO2021136417 A1 WO 2021136417A1 CN 2020141573 W CN2020141573 W CN 2020141573W WO 2021136417 A1 WO2021136417 A1 WO 2021136417A1
Authority
WO
WIPO (PCT)
Prior art keywords
station
link
interference
measurement
measurement result
Prior art date
Application number
PCT/CN2020/141573
Other languages
English (en)
French (fr)
Inventor
周逸凡
郭宇宸
于健
李云波
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021136417A1 publication Critical patent/WO2021136417A1/zh
Priority to US17/853,056 priority Critical patent/US20220330065A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/345Interference values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/24Monitoring; Testing of receivers with feedback of measurements to the transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the field of communication technology of the present application particularly relates to a station, access point, and method for measuring interference.
  • next-generation wireless local area network WLAN
  • EHT Extremely High Throughput
  • the Access Point (AP) that supports multi-link operation may be connected to different stations (Station) on different links. ). These sites may be close in physical distance, or because the working links are very close in frequency, which will cause interference to each other. The AP or site cannot know these possible interference conditions, which affects the normal reception of data. As a result, different stations interfere with each other during the data exchange process with the AP.
  • the technical problem to be solved by the embodiments of the present application is to provide a station, access point, and method for measuring interference, so as to reduce the collision probability of interfering stations when interacting with AP data and improve the overall throughput of the system.
  • an embodiment of the present application provides a site, which may include:
  • a transceiver unit configured to receive, on the second link, the measurement signal sent by the first station on the first link;
  • the processing unit is used to generate a measurement result according to the received measurement signal
  • the transceiver unit is also used to send the measurement result to the access point.
  • the measurement result includes the following fields:
  • the measurement result further includes one or more of the following fields:
  • the transmission power size is used to indicate the transmission power of the measurement signal sent by the first station
  • the received power level is used to indicate the received power at which the second station receives the measurement signal.
  • the measurement signal is any data packet sent by the first station on the first link
  • the measurement signal is a measurement signal sent on the first link after the first station receives the interference measurement notification frame broadcast by the access point.
  • the transceiver unit is further configured to:
  • the interference measurement notification frame carries a feedback indication for instructing the station to feedback a measurement result
  • the number of the stations is greater than or equal to one, and when the number of the stations is greater than one, the transceiving unit is further configured to receive interference information of other stations sent by the access point.
  • the station measures interference according to a preset period.
  • the embodiment of the present application provides a site, which may include:
  • a processing unit for instructing the transceiver unit to send a measurement signal on the first link
  • the transceiving unit is configured to receive interference information sent by the access point, where the interference information is generated by the access point according to a measurement result sent by a second station, and the measurement result is generated by the second station in the second station.
  • the measurement signal is received and generated on the second link.
  • the interference information includes:
  • the measurement signal is any data packet sent by the station on the first link
  • the measurement signal is a measurement signal sent by the station on the first link after receiving the interference measurement notification frame broadcast by the access point.
  • the processing unit is further configured to instruct the transceiver unit to send an interference information request frame to request the access point to send the interference information.
  • an access point which may include:
  • the transceiver unit is configured to receive a measurement result sent by the second station, and the measurement result is generated by the second station receiving, on the second link, the measurement signal sent by the first station on the first link.
  • the access point further includes:
  • a processing unit configured to generate interference information according to the measurement result, and instruct the transceiver unit to send the interference information to the first station;
  • the interference information includes: a first link identifier; a second link identifier; a second site identifier; whether there is cross-link interference and/or cross-link signal attenuation.
  • the measurement result includes the following fields:
  • the measurement result further includes one or more of the following fields:
  • the transmission power size is used to indicate the transmission power of the measurement signal sent by the first station
  • the received power level is used to indicate the received power at which the second station receives the measurement signal.
  • the measurement signal is any data packet sent by the first station on the first link
  • the transceiver unit is further configured to broadcast an interference measurement notification frame, where the interference measurement notification frame is used to instruct the first station to send the measurement signal on the first link.
  • the transceiver unit is further configured to:
  • the interference measurement notification frame includes the following fields:
  • the first station identifier and/or the first link identifier; the transmission power size is used to indicate the transmission power at which the first station sends the measurement signal; the second station identifier and/or the second link identifier.
  • the interference measurement notification frame further includes one or more of the following fields:
  • the feedback link identifier is used to indicate the link through which the second station feeds back the measurement result
  • the feedback time is used to indicate the time for the second station to feed back the measurement result
  • the received power feedback threshold is used to indicate the threshold of the received power fed back by the second station
  • the feedback type is used to indicate the type of information that the second station feeds back the size of the cross-link interference.
  • the access point is also used to measure interference according to a preset period.
  • the processing unit is further configured to select a time and a link, and send the interference information to the first station; or, the transceiver unit is further configured to receive a transmission from the first station To send the interference information to the first station.
  • the number of the second sites is greater than or equal to one, and when the number of the second sites is greater than one, the access point is also used to communicate with one or more other second sites.
  • the station sends the interference information.
  • an embodiment of the present application provides a method for measuring interference, which may include:
  • the second station receives, on the second link, the measurement signal sent by the first station on the first link;
  • the second station sends the measurement result to the access point.
  • the measurement result includes the following fields:
  • the measurement result further includes one or more of the following fields:
  • the transmission power size is used to indicate the transmission power of the measurement signal sent by the first station
  • the received power level is used to indicate the received power at which the second station receives the measurement signal.
  • the measurement signal is any data packet sent by the first station on the first link
  • the measurement signal is a measurement signal sent on the first link after the first station receives the interference measurement notification frame broadcast by the access point.
  • the method before the second station sends the measurement result to the access point, the method is further used to:
  • the second station receives a feedback measurement result notification frame sent by the access point, where the feedback measurement result notification frame is used to notify the second station to feedback a measurement result.
  • an embodiment of the present application provides a site, which may include:
  • a processor, a memory, and a bus The processor and the memory are connected by a bus, wherein the memory is used to store a set of program codes, and the processor is used to call the program codes stored in the memory to perform operations such as the fourth aspect Or the method of any one of the fourth aspect.
  • an embodiment of the present application provides a method for measuring interference, which may include:
  • the first station sends a measurement signal on the first link
  • the first station receives the interference information sent by the access point, the interference information is generated by the access point according to the measurement result sent by the second station, and the measurement result is generated by the second station on the second link.
  • the measurement signal generation is received on the road.
  • the interference information includes:
  • the measurement signal is any data packet sent by the station on the first link
  • the measurement signal is a measurement signal sent by the station on the first link after receiving the interference measurement notification frame broadcast by the access point.
  • an embodiment of the present application provides a site, which may include:
  • a processor, a memory, and a bus The processor and the memory are connected by a bus, wherein the memory is used to store a set of program codes, and the processor is used to call the program codes stored in the memory to perform operations such as the sixth aspect Or the method described in any implementation manner of the sixth aspect.
  • an embodiment of the present application provides a method for measuring interference, which may include:
  • the access point receives the measurement result sent by the second station, and the measurement result is generated by the second station receiving, on the second link, the measurement signal sent by the first station on the first link.
  • the method further includes:
  • the interference information includes: a first link identifier; a second link identifier; a second site identifier; whether there is cross-link interference and/or cross-link signal attenuation.
  • the measurement result includes the following fields:
  • the measurement result further includes one or more of the following fields:
  • the transmission power size is used to indicate the transmission power of the measurement signal sent by the first station
  • the received power level is used to indicate the received power at which the second station receives the measurement signal.
  • the measurement signal is any data packet sent by the first station on the first link
  • the method further includes: the access point broadcasting an interference measurement notification frame, where the interference measurement notification frame is used to instruct the first station to send the measurement signal on the first link.
  • the method further includes:
  • the access point carries a feedback indication for instructing the second station to feed back a measurement result in the interference measurement notification frame
  • the access point sends a feedback measurement result notification frame to the second station, where the feedback measurement result notification frame is used to notify the second station to feedback the measurement result.
  • the interference measurement notification frame includes the following fields:
  • the first station identifier and/or the first link identifier; the transmission power size is used to indicate the transmission power at which the first station sends the measurement signal; the second station identifier and/or the second link identifier.
  • the interference measurement notification frame further includes one or more of the following fields:
  • the feedback link identifier is used to indicate the link through which the second station feeds back the measurement result
  • the feedback time is used to indicate the time for the second station to feed back the measurement result
  • the received power feedback threshold is used to indicate the threshold of the received power fed back by the second station
  • the feedback type is used to indicate the type of information that the second station feeds back the magnitude of cross-link interference.
  • an access point which may include:
  • a processor, a memory, and a bus The processor and the memory are connected by a bus.
  • the memory is used to store a set of program codes, and the processor is used to call the program codes stored in the memory to execute the eighth aspect. Or the method described in any implementation manner of the eighth aspect.
  • an embodiment of the present application provides a device.
  • the device provided in the present application has the function of realizing the behavior of the access point or the station in the above method, and it includes means for executing the steps or functions described in the above method.
  • the steps or functions can be realized by software, or by hardware (such as a circuit), or by a combination of hardware and software.
  • the foregoing device includes one or more processors and communication units.
  • the one or more processors are configured to support the apparatus to perform corresponding functions of the terminal in the above method.
  • the device may further include one or more memories, where the memory is used for coupling with the processor and stores necessary program instructions and/or data for the device.
  • the one or more memories may be integrated with the processor, or may be provided separately from the processor. This application is not limited.
  • the device may be a communication server.
  • the communication unit may be a transceiver or a transceiver circuit.
  • the transceiver may also be an input/output circuit or interface.
  • the device may also be a communication chip.
  • the communication unit may be an input/output circuit or interface of a communication chip.
  • the above device includes a transceiver, a processor, and a memory.
  • the processor is used to control the transceiver or the input/output circuit to send and receive signals
  • the memory is used to store a computer program
  • the processor is used to run the computer program in the memory so that the device executes any one of the eighth aspect or the eighth aspect It is possible to implement the method completed by the access point in the manner.
  • the foregoing device includes one or more processors and communication units.
  • the one or more processors are configured to support the apparatus to perform the corresponding functions of the station in the above method.
  • the apparatus may further include one or more memories, where the memories are configured to be coupled with the processor and store necessary program instructions and/or data for the network device.
  • the one or more memories may be integrated with the processor, or may be provided separately from the processor. This application is not limited.
  • the device may be a computer, a smart terminal or a wearable device, etc.
  • the communication unit may be a transceiver or a transceiver circuit.
  • the transceiver may also be an input/output circuit or interface.
  • the device may also be a communication chip.
  • the communication unit may be an input/output circuit or interface of a communication chip.
  • the above device includes a transceiver, a processor, and a memory.
  • the processor is used to control the transceiver or the input/output circuit to send and receive signals
  • the memory is used to store a computer program
  • the processor is used to run the computer program in the memory so that the device can execute any one of the fourth aspect or the fourth aspect.
  • a system which includes the above-mentioned access point and two types of stations.
  • a computer-readable storage medium for storing a computer program, and the computer program includes instructions for executing the fourth aspect or the method in any one of the possible implementation manners of the fourth aspect.
  • a computer-readable storage medium for storing a computer program, and the computer program includes instructions for executing the method in the sixth aspect or any one of the possible implementation manners of the sixth aspect.
  • a computer-readable storage medium for storing a computer program, and the computer program includes instructions for executing the eighth aspect or the method in any one of the eighth aspect.
  • a computer program product comprising: computer program code, which when the computer program code runs on a computer, causes the computer to execute any one of the above-mentioned fourth aspect or the fourth aspect One of the possible implementation methods.
  • a computer program product comprising: computer program code, when the computer program code runs on a computer, the computer executes any one of the sixth aspect and the sixth aspect.
  • a computer program product comprising: computer program code, when the computer program code runs on a computer, the computer executes any one of the eighth aspect and the eighth aspect described above.
  • FIG. 1 is a schematic diagram of the architecture of a communication system provided by an embodiment of this application.
  • FIG. 2 is a schematic flowchart of a method for measuring interference provided by an embodiment of this application.
  • FIG. 3 is a schematic diagram of a frame structure of the fields included in the measurement result
  • FIG. 4 is a schematic diagram of another frame structure of the fields included in the measurement result
  • FIG. 5 is a schematic diagram of a frame structure of fields included in an interference measurement notification frame
  • FIG. 6 is a schematic diagram of another frame structure of the fields included in the interference measurement notification frame
  • FIG. 7 is a schematic diagram of a frame structure of fields included in interference information
  • FIG. 8 is a schematic flowchart of another method for measuring interference provided by an embodiment of the application.
  • FIG. 9 is a schematic flowchart of another method for measuring interference provided by an embodiment of this application.
  • FIG. 10 is a schematic diagram of the composition of a site provided by an embodiment of the application.
  • FIG. 11 is a schematic diagram of the composition of another site provided by an embodiment of this application.
  • FIG. 12 is a schematic diagram of the composition of a site provided by an embodiment of this application.
  • FIG. 13 is a schematic diagram of the composition of another site provided by an embodiment of the application.
  • FIG. 14 is a schematic diagram of the composition of an access point provided by an embodiment of the application.
  • FIG. 15 is a schematic diagram of the composition of another access point provided by an embodiment of the application.
  • FIG. 1 is a schematic diagram of the architecture of a communication system provided by an embodiment of this application.
  • FIG. 1 is a schematic diagram of the architecture of a communication system provided by an embodiment of this application.
  • the communication between the entry point and the site will be illustrated with examples. It is understandable that in actual scenarios, multiple sites or multiple access points may also be included.
  • Site-to-site communication In addition to the communication between the access point and the site, it is also applicable to the communication between the access point and the access point. Site-to-site communication.
  • the embodiments of this application do not make any limitation.
  • FIG. 1 Under the architecture shown in FIG. 1, it is composed of an access point 10, a first station 20 and a third station 30.
  • the access point 10 refers to a device that accesses the network for a wireless local area network (WLAN) user terminal (including the first station 20 and the second station 30). It can be a communication server, router, switch, network bridge, computer, mobile phone, etc.
  • WLAN wireless local area network
  • the first site 20 and the second site 30 may be user terminals that need to communicate with the network.
  • User terminals can also be called mobile terminals, terminal devices, user equipment, etc., which can be computers, mobile phones, tablet computers, handheld devices, augmented reality (Augmented Reality, AR) devices, virtual reality (Virtual Reality, VR devices for short) , Machine type communication terminal or other devices that can access the network.
  • augmented reality Augmented Reality, AR
  • virtual reality Virtual Reality, VR devices for short
  • Machine type communication terminal or other devices that can access the network.
  • the first station 20 and the second station 30 are located within the signal coverage area of the access point, and the three may be located within a basic service set (Basic Service Set, BSS for short). Since the locations of the two sites are close or the frequencies of the working links are similar, when the two sites communicate with the access point at the same time, they will interfere with each other. Therefore, reasonable scheduling is needed to avoid or reduce interference.
  • BSS Basic Service Set
  • FIG. 2 is a schematic flowchart of a method for measuring interference according to an embodiment of the application; specifically, it includes the following steps:
  • the second station receives, on the second link, the measurement signal sent by the first station on the first link.
  • the measurement signal may be any data packet sent by the first station on the first link; the second station may choose to receive a data packet on the second link according to a preset period.
  • a data packet can also be randomly selected to perform interference measurement, which is not limited in the embodiment of the present application.
  • the measurement signal may be a measurement signal sent on the first link after the first station receives the interference measurement notification frame broadcast by the access point.
  • step S200 may be included.
  • the access point broadcasts an interference measurement notification frame, notifies the first station to send a measurement signal on the first link, and notifies the second station to listen on the second link.
  • the measurement signal may be a measurement signal sent on the first link after the first station receives the interference measurement notification frame broadcast by the access point.
  • step S200 may be included.
  • the access point broadcasts an interference measurement notification frame, notifies the first station to send a measurement signal on the first link, and notifies the second station to listen on the second link.
  • the measurement signal may be a measurement signal sent on the first link after the first station receives the interference measurement notification frame broadcast by the access point.
  • the second link is a broad concept used to distinguish it from the first link, and it can specifically be any link except the first link.
  • the link used by the second station to listen to the measurement signal can be collectively referred to as the receiving link used for testing.
  • the access point may designate one or more second stations to be prepared to receive the measurement signal, or may not designate, if not designated, the second station may independently decide whether to perform measurement.
  • the interference measurement notification frame may be a newly defined frame or reuse an existing frame in the protocol (for example, a Null Data Packet Announcement (NDPA) frame).
  • NDPA Null Data Packet Announcement
  • the second station generates a measurement result according to the received measurement signal.
  • Figure 3 is a schematic diagram of a frame structure of the fields included in the measurement result, which may specifically include the following fields:
  • whether there is cross-link interference is used to qualitatively indicate whether there is interference on the two links between two sites. It can be a Boolean variable, for example, using 1 to indicate that there is interference, and 0 to indicate that there is no interference, which can be specifically obtained by comparing the received power level with the interference suppression capability of the site equipment itself.
  • the first station ID specifies the station that sends the measurement signal
  • the first link ID specifies the link on which the first station sends the measurement signal (the two pieces of information may have a one-to-one correspondence, and only one of them may be included)
  • the second station The identifier specifies the station that needs to receive the measurement signal
  • the second link identifier specifies the link on which the second station receives the measurement signal (the two pieces of information may have a one-to-one correspondence, and only one of them may be included).
  • the link identification can be set as a link address or other forms of identification information such as integers.
  • its link address is the same as the station address, and its link ID can also be the same as the station ID (or it can be set as a mapping relationship).
  • the site identification and link identification can be sent at the same time; another possibility is that the link addresses under the sites that support multi-link operation are different. At this time, the site identification and link identification can be sent (for example, you can The link identifier is set to the link address) to distinguish different links.
  • the cross-link signal attenuation is used to indicate the measured signal attenuation from the first link of the first site to the second link of the second site.
  • the received power of the measurement signal can be obtained, so that it can be determined whether there is cross-link interference based on the received power and the interference cancellation capability of the second station itself.
  • the second station to determine whether an external signal, such as the measurement signal in this application, interferes with the device, it is necessary to calculate the ratio of the transmission power of the second station itself to the received power of the interference signal (ie, calculate the signal-to-interference and noise ratio). ), and compare it with the anti-interference threshold of the second station itself. If it is greater than the threshold, it is determined that the interference does not affect the normal transceiver function, otherwise it will affect.
  • the second station when it obtains the transmission power of the measurement signal on the first link, it may also determine the cross-link signal attenuation in combination with the received power. If you know the transmit power of the measured signal on the first link, you can divide the transmit power by the receive power. The ratio of the two powers is the attenuation (assuming L). In wireless communication, L is usually (10*logL). Convert the decibel (dB) unit. For example, if the ratio is 100, the attenuation is 20dB.
  • the second station may also receive the measurement signal on the first link.
  • the cross-link signal attenuation is determined according to the received power obtained on the first link and the inter-link loss data pre-stored on the second site.
  • the second site pre-stores the inter-link loss data (assuming that the loss value of the first link and the second link is 20dB, that is, the signal power needs to be divided by 100 across the links), according to the reception on the first link
  • the power (assumed to be 1W) can be divided by 100 to get the equivalent received power of 0.01W on the second link. Then use the ratio of the transmit power to the equivalent receive power to calculate the cross-link signal attenuation.
  • the access point can learn whether there is interference and the magnitude of the interference when the two stations communicate on the first link and the second link at the same time. Therefore, it is possible to reduce the collision probability of the two through reasonable arrangements during scheduling, and improve the overall throughput of the communication system.
  • FIG. 4 is a schematic diagram of another frame structure of the fields included in the measurement result, which may specifically include one or more of the following fields:
  • the transmission power size is used to indicate the transmission power of the measurement signal sent by the first station
  • the received power level is used to indicate the received power at which the second station receives the measurement signal.
  • the three information fields of the second link identification, received power size, and the ratio of received power to transmit power can contain multiple information fields.
  • the multiple sets of information corresponding to the link correspond to the measurement results of the second station on the multiple links. For example, on the second link 1, it corresponds to the second link identifier 1, the received power level is 1, and the ratio of the received power to the transmit power is 1, and the second link 2 corresponds to the second link identifier 2, and the received power level is 2. And, the ratio of the received power to the transmitted power 2.
  • the second station sends the measurement result to the access point.
  • the method may further include:
  • the second station receives a feedback measurement result notification frame sent by the access point, where the feedback measurement result notification frame is used to notify the second station to feedback a measurement result.
  • the access point may carry a feedback indication in the interference measurement notification frame.
  • the feedback mode such as feedback link, feedback time, and feedback type
  • the second station can feed back the measurement result to the access point in the specified way. If there are multiple second stations, one interference measurement notification frame can be sent to each second station, and each second station can feed back its own measurement results in a respective designated manner.
  • the same interference measurement notification frame can be sent to all second stations, specifying the link and time for different second stations to send the measurement results; optionally, the second station conducts channel competition on a freely selected link, and The measurement result is fed back to the access point, and the measurement result fed back to the access point by a different second station may be sent at the same time or not at the same time.
  • the access point may also send a feedback measurement result notification frame to the second station to notify the second station to feed back the measurement result.
  • the access point may send a feedback measurement result notification frame to each second station to request the measurement result.
  • the interference measurement notification frame may include the following fields:
  • the first station identifier and/or the first link identifier; the transmission power size is used to indicate the transmission power at which the first station sends the measurement signal; the second station identifier and/or the second link identifier.
  • the interference measurement notification frame further includes one or more of the following fields:
  • the feedback link identifier is used to indicate the link through which the second station feeds back the measurement result
  • the feedback time is used to indicate the time for the second station to feed back the measurement result
  • the received power feedback threshold is used to indicate the threshold of the received power fed back by the second station
  • the feedback type is used to indicate the type of information that the second station feeds back the magnitude of cross-link interference.
  • the second station identifier, the second link identifier, the feedback link identifier, and the feedback time may include multiple sets of information, corresponding to the receiving mode and feedback mode of the multiple second stations.
  • the second station identifier specifies the station that needs to receive the measurement signal
  • the second link identifier specifies the link on which the second station receives the measurement signal (the two pieces of information may have a one-to-one correspondence, and the interference measurement notification frame may only Including one)
  • the feedback link identifier specifies the link on which the second station feedbacks the measurement result
  • the feedback time specifies the time point at which the second station feedbacks the measurement result; the access point can use the second station identification field
  • a special value such as 0 specifies that all second stations receive measurement signals.
  • the special value of the receiving link identification field such as 0, specifies that the corresponding second station receives measurement signals on all links; the received power feedback threshold field specifies the current The minimum value of the received signal power of the second station. When the received power is less than the feedback threshold, the second station does not feed back the specific received power; the feedback type field specifies the indication span that the second station will feed back to the access point after receiving the measurement signal.
  • the information type of the link interference level can be the absolute value of the received power of the measured signal or the relative value of the received power to the sent power of the measured signal, or a Boolean value that identifies whether there is cross-link interference.
  • the access point may generate interference information according to the measurement result, and send the interference information to the first station.
  • the access point can extract the information related to the cross-link interference between the second station and the first station in the measurement result, and send it to the first station.
  • the access point can send the information to the first station.
  • the information related to cross-link interference between each second site and the first site is separately extracted and sent to the first site, or information related to cross-link interference between multiple second sites and the first site Collect them and send them to the first site.
  • the access point may select the time and link (ensure that the first station can normally receive the interference information on the selected time and link), and send the interference information to the first station;
  • the access point receives the interference information request frame sent by the first station, and sends the interference information to the first station.
  • the interference information may include the following fields:
  • the method further includes:
  • the access point sends the interference information to one or more other second stations.
  • the second station may measure interference according to a preset period. By periodically measuring the interference and updating the information, the long-term stable operation of the system can be ensured.
  • the access point by measuring and reporting cross-link interference, the access point can save the interference on different links between all associated stations, and the station can also save the cross-link interference with itself. Other site information and the corresponding interference level.
  • the access point can avoid sending data packets to two stations that interfere with each other at the same time.
  • each station detects that its interfering station is sending data to the access point, it should also avoid sending data packets to the access point at this time. Send data at the entry point. Thereby reducing the collision probability of data transmission from different sites, thereby improving the overall throughput and improving the efficiency of system operation.
  • FIG. 8 is a schematic flowchart of another method for measuring interference provided by an embodiment of this application; it may include the following steps:
  • the access point broadcasts the interference measurement notification frame to the first station and the second station.
  • the first station sends a measurement signal on the first link.
  • the measurement signal may be any data packet sent by the first station on the first link.
  • the second station receives the measurement signal on the second link, and generates a measurement result according to the received power of the received measurement signal.
  • the received power can be fed back directly in the measurement result, and the access point can determine whether there is cross-link interference or calculate the cross-link signal attenuation according to the received power and the measured signal transmission power, or the second The station determines whether there is cross-link interference or calculates the attenuation of the cross-link signal according to the received power and transmission power of the measured signal. S804. The second station feeds back the measurement result obtained by receiving the measurement signal to the access point.
  • the access point generates interference information according to the measurement result.
  • the access point sends interference information to the first station.
  • FIG. 9 is a schematic flowchart of another method for measuring interference provided by an embodiment of the application; in this embodiment, the following steps may be included:
  • the access point broadcasts the interference measurement notification frame to the first station and the second station.
  • the first station sends a measurement signal on the first link.
  • the second station receives the measurement signal on the first link, and obtains a measurement result according to the received power of the received measurement signal and pre-stored inter-link loss data.
  • the inter-link loss data can be pre-stored on the second station.
  • the second station can convert the magnitude of the same-link interference into the magnitude of cross-link interference through internal processing.
  • the second station feeds back the measurement result obtained by receiving the measurement signal to the access point.
  • the access point generates interference information according to the measurement result.
  • the access point sends interference information to the first station.
  • FIG. 10 is a schematic diagram of the composition of a site provided in an embodiment of this application; it may include:
  • the transceiver unit 100 is configured to receive, on the second link, the measurement signal sent by the first station on the first link;
  • the processing unit 200 is configured to generate a measurement result according to the received measurement signal
  • the transceiver unit 100 is further configured to send the measurement result to the access point.
  • the measurement result includes the following fields:
  • the measurement result further includes one or more of the following fields:
  • the transmission power size is used to indicate the transmission power of the measurement signal sent by the first station
  • the received power level is used to indicate the received power at which the second station receives the measurement signal.
  • the measurement signal is any data packet sent by the first station on the first link
  • the measurement signal is a measurement signal sent on the first link after the first station receives the interference measurement notification frame broadcast by the access point.
  • the transceiver unit 100 is further configured to:
  • the interference measurement notification frame carries a feedback indication for instructing the station to feed back a measurement result
  • FIG. 11 is a schematic diagram of the composition of another station provided in this embodiment of the present application; the station may include a processor 110, a memory 120 and a bus 130.
  • the processor 110 and the memory 120 are connected by a bus 130.
  • the memory 120 is used to store instructions, and the processor 110 is used to execute the instructions stored in the memory 120 to implement the steps in the method corresponding to FIG. 2 and FIG. 8-9 above. .
  • the station may also include an input port 140 and an output port 150.
  • the processor 110, the memory 120, the input port 140, and the output port 150 may be connected by a bus 130.
  • the processor 110 is configured to execute instructions stored in the memory 120 to control the input port 140 to receive signals, and to control the output port 150 to send signals, so as to complete the steps performed by the second station in the foregoing method.
  • the input port 140 and the output port 150 may be the same or different physical entities. When they are the same physical entity, they can be collectively referred to as input and output ports.
  • the memory 120 may be integrated in the processor 110, or may be provided separately from the processor 110.
  • the functions of the input port 140 and the output port 150 may be implemented by a transceiver circuit or a dedicated chip for transceiver.
  • the processor 110 may be implemented by a dedicated processing chip, a processing circuit, a processor, or a general-purpose chip.
  • a general-purpose computer may be considered to implement the terminal provided in the embodiment of the present application.
  • the program codes for realizing the functions of the processor 110, the input port 140 and the output port 150 are stored in the memory.
  • the general-purpose processor implements the functions of the processor 110, the input port 140 and the output port 150 by executing the code in the memory.
  • FIG. 12 is a schematic diagram of the composition of a site provided in an embodiment of this application; it may include:
  • the processing unit 300 is configured to instruct the transceiver unit to send a measurement signal on the first link;
  • the transceiving unit 400 is configured to receive interference information sent by the access point, where the interference information is generated by the access point according to a measurement result sent by a second station, and the measurement result is generated by the second station at The measurement signal generation is received on the second link.
  • the interference information includes:
  • the measurement signal is any data packet sent by the station on the first link
  • the measurement signal is a measurement signal sent by the station on the first link after receiving the interference measurement notification frame broadcast by the access point.
  • FIG. 13 is a schematic diagram of the composition of another site provided in this embodiment of the application; the site may include a processor 210, a memory 220, and a bus 230.
  • the processor 210 and the memory 220 are connected by a bus 230.
  • the memory 220 is used to store instructions, and the processor 210 is used to execute the instructions stored in the memory 220 to implement the first method in the method corresponding to FIG. 2 and FIG. 8-9 above. Steps performed by the site.
  • the station may also include an input port 240 and an output port 250.
  • the processor 210, the memory 220, the input port 240, and the output port 250 may be connected through the bus 230.
  • the processor 210 is configured to execute instructions stored in the memory 220 to control the input port 240 to receive signals, and to control the output port 250 to send signals, so as to complete the steps performed by the first station in the foregoing method.
  • the input port 240 and the output port 250 may be the same or different physical entities. When they are the same physical entity, they can be collectively referred to as input and output ports.
  • the memory 220 may be integrated in the processor 210, or may be provided separately from the processor 210.
  • the functions of the input port 240 and the output port 250 may be implemented by a transceiver circuit or a dedicated chip for transceiver.
  • the processor 210 may be implemented by a dedicated processing chip, a processing circuit, a processor, or a general-purpose chip.
  • a general-purpose computer may be considered to implement the site provided in the embodiment of the present application.
  • the program codes for realizing the functions of the processor 210, the input port 240 and the output port 250 are stored in the memory.
  • the general purpose processor implements the functions of the processor 210, the input port 240 and the output port 250 by executing the code in the memory.
  • FIG. 14 is a schematic diagram of the composition of an access point provided by an embodiment of this application; it may include:
  • the transceiver unit 500 is configured to receive a measurement result sent by a second station, and the measurement result is generated by the second station receiving, on the second link, the measurement signal sent by the first station on the first link.
  • the access point further includes:
  • the processing unit 600 is configured to generate interference information according to the measurement result, and instruct the transceiver unit 500 to send the interference information to the first station;
  • the interference information includes: a first link identifier; a second link identifier; a second site identifier; whether there is cross-link interference and/or cross-link signal attenuation.
  • the measurement result includes the following fields:
  • the measurement result further includes one or more of the following fields:
  • the transmission power size is used to indicate the transmission power of the measurement signal sent by the first station
  • the received power level is used to indicate the received power at which the second station receives the measurement signal.
  • the measurement signal is any data packet sent by the first station on the first link
  • the transceiver unit is further configured to broadcast an interference measurement notification frame, where the interference measurement notification frame is used to instruct the first station to send the measurement signal on the first link.
  • the transceiving unit 500 is further configured to:
  • the interference measurement notification frame includes the following fields:
  • the first station identifier and/or the first link identifier; the transmission power size is used to indicate the transmission power at which the first station sends the measurement signal; the second station identifier and/or the second link identifier.
  • the interference measurement notification frame further includes one or more of the following fields:
  • the feedback link identifier is used to indicate the link through which the second station feeds back the measurement result
  • the feedback time is used to indicate the time for the second station to feed back the measurement result
  • the received power feedback threshold is used to indicate the threshold of the received power fed back by the second station
  • the feedback type is used to indicate the type of information that the second station feeds back the magnitude of cross-link interference.
  • FIG. 15 is a schematic diagram of the composition of another access point provided in this embodiment of the application; the access point may include a processor 310, a memory 320, and a bus 330.
  • the processor 310 and the memory 320 are connected by a bus 330.
  • the memory 320 is used to store instructions, and the processor 310 is used to execute the instructions stored in the memory 320 to implement the access in the method corresponding to FIG. 2 and FIG. 8-9 above. Click the steps to be performed.
  • the access point may also include an input port 340 and an output port 350.
  • the processor 310, the memory 320, the input port 340, and the output port 350 may be connected through the bus 230.
  • the processor 310 is configured to execute instructions stored in the memory 320 to control the input port 340 to receive signals, and to control the output port 350 to send signals, so as to complete the steps performed by the access point in the foregoing method.
  • the input port 340 and the output port 350 may be the same or different physical entities. When they are the same physical entity, they can be collectively referred to as input and output ports.
  • the memory 320 may be integrated in the processor 310, or may be provided separately from the processor 310.
  • the functions of the input port 340 and the output port 350 may be implemented by a transceiver circuit or a dedicated chip for transceiver.
  • the processor 310 may be implemented by a dedicated processing chip, a processing circuit, a processor, or a general-purpose chip.
  • a general-purpose computer can be considered to implement the access point provided in the embodiments of the present application.
  • the program codes for realizing the functions of the processor 310, the input port 340, and the output port 350 are stored in the memory.
  • the general-purpose processor implements the functions of the processor 310, the input port 340 and the output port 350 by executing the code in the memory.
  • the memory may also be referred to as a storage medium or a storage device, etc., which is not limited in the embodiment of the present application.
  • the processor may be a central processing unit (Central Processing Unit, CPU for short), and the processor may also be other general-purpose processors, digital signal processors (Digital Signal Processing, DSP for short), Application Specific Integrated Circuit (ASIC), Field-Programmable Gate Array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • CPU Central Processing Unit
  • DSP Digital Signal Processing
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • the memory may include a read-only memory and a random access memory, and provides instructions and data to the processor.
  • a part of the memory may also include a non-volatile random access memory.
  • the bus may also include a power bus, a control bus, and a status signal bus.
  • a power bus may also include a power bus, a control bus, and a status signal bus.
  • various buses are marked as buses in the figure.
  • each step of the above method can be completed by an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the steps of the method disclosed in combination with the embodiments of the present application may be directly embodied as execution and completion by a hardware processor, or execution and completion by a combination of hardware and software modules in the processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the embodiment of the present application also provides a system, which includes the aforementioned access point and two types of stations.
  • the size of the sequence number of the above-mentioned processes does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, and should not correspond to the implementation process of the embodiments of the present application. Constitute any limitation.
  • ILB illustrative logical blocks
  • steps described in the embodiments disclosed herein can be implemented by electronic hardware or a combination of computer software and electronic hardware. achieve. Whether these functions are executed by hardware or software depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium, (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state hard disk).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种测量干扰站点、接入点及方法,该方法包括:第二站点在第二链路上接收第一站点在第一链路上发送的测量信号;所述第二站点根据接收到的测量信号生成测量结果;所述第二站点将所述测量结果发送给接入点。采用本申请实施例,可利于接入点调度不同站点之间的通信,降低相互存在干扰的站点之间的碰撞几率,提升系统整体吞吐量。

Description

一种测量干扰的站点、接入点及方法
本申请要求于2019年12月30日提交中国专利局、申请号为201911398248.7、申请名称为“一种测量干扰的站点、接入点及方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请通信技术领域,尤其涉及一种测量干扰的站点、接入点及方法。
背景技术
随着越来越多的应用流量由无线网络承载,高速率始终是无线高保真(Wireless Fidelity,简称WiFi)系统的演进目标。为了提升站点的峰值速率,多链路聚合已经成为下一代无线局域网(Wireless Local Area Network,简称WLAN)技术的备选特性。在下一代WLAN技术即极高吞吐量(Extremely High Throughput,简称EHT)系统中,支持多链路操作的接入点(Access Point,简称AP)可能在不同链路上连接着不同的站点(Station)。这些站点可能因为物理距离很近,也可能因为工作链路在频率上距离很近,将会互相产生临带干扰,AP或站点由于无法获知这些可能存在干扰的情况,从而影响数据的正常接收,导致不同站点在和AP的数据交互过程中存在相互干扰。
发明内容
本申请实施例所要解决的技术问题在于,提供一种测量干扰的站点、接入点及方法,以降低存在干扰的站点在和AP数据交互时的碰撞几率,提升系统的整体吞吐率。
第一方面,本申请的实施例提供了一种站点,可包括:
收发单元,用于在第二链路上接收第一站点在第一链路上发送的测量信号;
处理单元,用于根据接收到的测量信号生成测量结果;
所述收发单元还用于将所述测量结果发送给接入点。
在一种可能的实现方式中,所述测量结果包括以下字段:
第一站点标识和/第一链路标识;第二站点标识和/或第二链路标识;是否存在跨链路干扰和/或跨链路信号衰减大小。
在一种可能的实现方式中,所述测量结果还包括以下字段中的一个或多个:
发送功率大小,用于指示所述第一站点发送所述测量信号的发送功率;
接收功率大小,用于指示所述第二站点接收所述测量信号的接收功率。
在一种可能的实现方式中,所述测量信号为所述第一站点在所述第一链路上发送的任意一个数据包;
或者,所述测量信号为所述第一站点接收所述接入点广播的干扰测量通知帧后,在所述第一链路上发送的测量信号。
在一种可能的实现方式中,所述收发单元还用于:
接收所述接入点广播的干扰测量通知帧,所述干扰测量通知帧中携带用于指示所述站 点反馈测量结果的反馈指示;
或者,接收所述接入点发送的反馈测量结果通知帧,所述反馈测量结果通知帧用于通知所述站点反馈测量结果。
在一种可能的实现方式中,所述站点的数量大于或等于一个,当所述站点的数量大于一个时,所述收发单元还用于接收所述接入点发送的其他站点的干扰信息。
在一种可能的实现方式中,所述站点根据预设周期测量干扰。
第二方面,本申请的实施例提供了一种站点,可包括:
处理单元,用于指示收发单元在第一链路上发送测量信号;
所述收发单元,用于接收所述接入点发送的干扰信息,所述干扰信息由所述接入点根据第二站点发送的测量结果生成,所述测量结果由所述第二站点在第二链路上接收所述测量信号生成。
在一种可能的实现方式中,所述干扰信息包括:
第一链路标识;第二链路标识;第二站点标识;是否存在跨链路干扰和/或跨链路信号衰减大小。
在一种可能的实现方式中,所述测量信号为所述站点在所述第一链路上发送的任意一个数据包;
或者,所述测量信号为所述站点接收所述接入点广播的干扰测量通知帧后,在所述第一链路上发送的测量信号。
在一种可能的实现方式中,所述处理单元还用于指示所述收发单元发送干扰信息请求帧,请求所述接入点发送所述干扰信息。
第三方面,本申请的实施例提供了一种接入点,可包括:
收发单元,用于接收第二站点发送的测量结果,所述测量结果由所述第二站点在第二链路上接收第一站点在第一链路上发送的测量信号生成。
在一种可能的实现方式中,所述接入点还包括:
处理单元,用于根据所述测量结果生成干扰信息,指示所述收发单元将所述干扰信息发送给所述第一站点;
所述干扰信息包括:第一链路标识;第二链路标识;第二站点标识;是否存在跨链路干扰和/或跨链路信号衰减大小。
在一种可能的实现方式中,所述测量结果包括以下字段:
第一站点标识和/第一链路标识;第二站点标识和/或第二链路标识;是否存在跨链路干扰和/或跨链路信号衰减大小。
在一种可能的实现方式中,所述测量结果还包括以下字段中的一个或多个:
发送功率大小,用于指示所述第一站点发送所述测量信号的发送功率;
接收功率大小,用于指示所述第二站点接收所述测量信号的接收功率。
在一种可能的实现方式中,所述测量信号为所述第一站点在所述第一链路上发送的任意一个数据包;
或者,所述收发单元还用于广播干扰测量通知帧,所述干扰测量通知帧用于指示所述第一站点在所述第一链路上发送所述测量信号。
在一种可能的实现方式中,所述收发单元还用于:
在所述干扰测量通知帧中携带用于指示所述第二站点反馈测量结果的反馈指示;
或者,向所述第二站点发送反馈测量结果通知帧,所述反馈测量结果通知帧用于通知所述第二站点反馈测量结果。
在一种可能的实现方式中,所述干扰测量通知帧包括以下字段:
第一站点标识和/或第一链路标识;发送功率大小,用于指示所述第一站点发送所述测量信号的发送功率;第二站点标识和/或第二链路标识。
在一种可能的实现方式中,所述干扰测量通知帧还包括以下字段中的一个或多个:
反馈链路标识,用于指示所述第二站点反馈所述测量结果的链路;
反馈时间,用于指示所述第二站点反馈所述测量结果的时间;
接收功率反馈门限,用于指示所述第二站点反馈接收功率的门限值;
反馈类型,用于指示所述第二站点反馈跨链路干扰大小的信息类型。
在一种可能的实现方式中,所述接入点还用于根据预设周期测量干扰。
在一种可能的实现方式中,所述处理单元还用于选择时间和链路,向所述第一站点发送所述干扰信息;或者,所述收发单元还用于接收所述第一站点发送的干扰信息请求帧,向所述第一站点发送所述干扰信息。
在一种可能的实现方式中,所述第二站点的数量大于或等于一个,当所述第二站点的数量大于一个时,所述接入点还用于向一个或多个的其他第二站点发送所述干扰信息。
第四方面,本申请实施例提供了一种测量干扰的方法,可包括:
第二站点在第二链路上接收第一站点在第一链路上发送的测量信号;
所述第二站点根据接收到的测量信号生成测量结果;
所述第二站点将所述测量结果发送给接入点。
在一种可能的实现方式中,所述测量结果包括以下字段:
第一站点标识和/第一链路标识;第二站点标识和/或第二链路标识;是否存在跨链路干扰和/或跨链路信号衰减大小。
在一种可能的实现方式中,所述测量结果还包括以下字段中的一个或多个:
发送功率大小,用于指示所述第一站点发送所述测量信号的发送功率;
接收功率大小,用于指示所述第二站点接收所述测量信号的接收功率。
在一种可能的实现方式中,所述测量信号为所述第一站点在所述第一链路上发送的任意一个数据包;
或者,所述测量信号为所述第一站点接收所述接入点广播的干扰测量通知帧后,在所述第一链路上发送的测量信号。
在一种可能的实现方式中,在所述第二站点将所述测量结果发送给接入点之前,所述方法还用于:
所述第二站点接收所述接入点广播的干扰测量通知帧,所述干扰测量通知帧中携带用于指示所述第二站点反馈测量结果的反馈指示;
或者,所述第二站点接收所述接入点发送的反馈测量结果通知帧,所述反馈测量结果通知帧用于通知所述第二站点反馈测量结果。
第五方面,本申请实施例提供了一种站点,可包括:
处理器、存储器和总线,所述处理器和存储器通过总线连接,其中,所述存储器用于存储一组程序代码,所述处理器用于调用所述存储器中存储的程序代码,执行如第四方面或第四方面任一项所述的方法。
第六方面,本申请实施例提供了一种测量干扰的方法,可包括:
第一站点在第一链路上发送测量信号;
所述第一站点接收所述接入点发送的干扰信息,所述干扰信息由所述接入点根据第二站点发送的测量结果生成,所述测量结果由所述第二站点在第二链路上接收所述测量信号生成。
在一种可能的实现方式中,所述干扰信息包括:
第一链路标识;第二链路标识;第二站点标识;是否存在跨链路干扰和/或跨链路信号衰减大小。
在一种可能的实现方式中,所述测量信号为所述站点在所述第一链路上发送的任意一个数据包;
或者,所述测量信号为所述站点接收所述接入点广播的干扰测量通知帧后,在所述第一链路上发送的测量信号。
第七方面,本申请实施例提供了一种站点,可包括:
处理器、存储器和总线,所述处理器和存储器通过总线连接,其中,所述存储器用于存储一组程序代码,所述处理器用于调用所述存储器中存储的程序代码,执行如第六方面或第六方面任一实现方式所述的方法。
第八方面,本申请实施例提供了一种测量干扰的方法,可包括:
接入点接收第二站点发送的测量结果,所述测量结果由所述第二站点在第二链路上接收第一站点在第一链路上发送的测量信号生成。
在一种可能的实现方式中,所述方法还包括:
所述接入点根据所述测量结果生成干扰信息,将所述干扰信息发送给所述第一站点;
所述干扰信息包括:第一链路标识;第二链路标识;第二站点标识;是否存在跨链路干扰和/或跨链路信号衰减大小。
在一种可能的实现方式中,所述测量结果包括以下字段:
第一站点标识和/第一链路标识;第二站点标识和/或第二链路标识;是否存在跨链路干扰和/或跨链路信号衰减大小。
在一种可能的实现方式中,所述测量结果还包括以下字段中的一个或多个:
发送功率大小,用于指示所述第一站点发送所述测量信号的发送功率;
接收功率大小,用于指示所述第二站点接收所述测量信号的接收功率。
在一种可能的实现方式中,所述测量信号为所述第一站点在所述第一链路上发送的任意一个数据包;
或者,所述方法还包括:所述接入点广播干扰测量通知帧,所述干扰测量通知帧用于指示所述第一站点在所述第一链路上发送所述测量信号。
在一种可能的实现方式中,所述方法还包括:
所述接入点在所述干扰测量通知帧中携带用于指示所述第二站点反馈测量结果的反馈指示;
或者,所述接入点向所述第二站点发送反馈测量结果通知帧,所述反馈测量结果通知帧用于通知所述第二站点反馈测量结果。
在一种可能的实现方式中,所述干扰测量通知帧包括以下字段:
第一站点标识和/或第一链路标识;发送功率大小,用于指示所述第一站点发送所述测量信号的发送功率;第二站点标识和/或第二链路标识。
在一种可能的实现方式中,所述干扰测量通知帧还包括以下字段中的一个或多个:
反馈链路标识,用于指示所述第二站点反馈所述测量结果的链路;
反馈时间,用于指示所述第二站点反馈所述测量结果的时间;
接收功率反馈门限,用于指示所述第二站点反馈接收功率的门限值;
反馈类型,用于指示所述第二站点反馈跨链路干扰大小的信息类型。
第九方面,本申请实施例提供了一种接入点,可包括:
处理器、存储器和总线,所述处理器和存储器通过总线连接,其中,所述存储器用于存储一组程序代码,所述处理器用于调用所述存储器中存储的程序代码,执行如第八方面或第八方面任一实现方式所述的方法。
第十方面,本申请实施例提供了一种装置。本申请提供的装置具有实现上述方法方面中接入点或站点行为的功能,其包括用于执行上述方法方面所描述的步骤或功能相对应的部件(means)。所述步骤或功能可以通过软件实现,或硬件(如电路)实现,或者通过硬件和软件结合来实现。
在一种可能的设计中,上述装置包括一个或多个处理器和通信单元。所述一个或多个处理器被配置为支持所述装置执行上述方法中终端相应的功能。可选的,所述装置还可以包括一个或多个存储器,所述存储器用于与处理器耦合,其保存装置必要的程序指令和/或数据。所述一个或多个存储器可以和处理器集成在一起,也可以与处理器分离设置。本申请并不限定。
所述装置可以为通信服务器。路由器、交换机、计算机或智能终端等,所述通信单元可以是收发器,或收发电路。可选的,所述收发器也可以为输入/输出电路或者接口。
所述装置还可以为通信芯片。所述通信单元可以为通信芯片的输入/输出电路或者接口。
另一个可能的设计中,上述装置,包括收发器、处理器和存储器。该处理器用于控制收发器或输入/输出电路收发信号,该存储器用于存储计算机程序,该处理器用于运行该存储器中的计算机程序,使得该装置执行第八方面或第八方面中任一种可能实现方式中接入点完成的方法。
在一种可能的设计中,上述装置包括一个或多个处理器和通信单元。所述一个或多个处理器被配置为支持所述装置执行上述方法中站点相应的功能。可选的,所述装置还可以包括一个或多个存储器,所述存储器用于与处理器耦合,其保存网络设备必要的程序指令和/或数据。所述一个或多个存储器可以和处理器集成在一起,也可以与处理器分离设置。本申请并不限定。
所述装置可以为计算机、智能终端或可穿戴设备等,所述通信单元可以是收发器,或收发电路。可选的,所述收发器也可以为输入/输出电路或者接口。
所述装置还可以为通信芯片。所述通信单元可以为通信芯片的输入/输出电路或者接口。
另一个可能的设计中,上述装置,包括收发器、处理器和存储器。该处理器用于控制收发器或输入/输出电路收发信号,该存储器用于存储计算机程序,该处理器用于运行存储器中的计算机程序,使得该装置执行第四方面或第四方面中任一种可能实现方式中站点完成的方法,或者执行第六方面或第六方面中任一种可能实现方式中站点完成的方法。
第十一方面,提供了一种系统,该系统包括上述接入点和两种类型的站点。
第十二方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序包括用于执行第四方面或第四方面中任一种可能实现方式中的方法的指令。
第十三方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序包括用于执行第六方面或第六方面中任一种可能实现方式中的方法的指令。
第十四方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序包括用于执行第八方面或第八方面中任一种可能实现方式中的方法的指令。
第十五方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述第四方面或第四方面中任一种可能实现方式中的方法。
第十六方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述第六方面及第六方面中任一种可能实现方式中的方法。
第十七方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述第八方面及第八方面中任一种可能实现方式中的方法。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1为本申请实施例提供的一种通信系统的架构示意图;
图2为本申请实施例提供的一种测量干扰的方法的流程示意图;
图3为测量结果包含的字段的一种帧结构示意图;
图4为测量结果包含的字段的另一种帧结构示意图;
图5为干扰测量通知帧包含的字段的一种帧结构示意图;
图6为干扰测量通知帧包含的字段的另一种帧结构示意图;
图7为干扰信息包括的字段的一种帧结构示意图;
图8为本申请实施例提供的另一种测量干扰的方法的流程示意图;
图9为本申请实施例提供的又一种测量干扰的方法的流程示意图;
图10为本申请实施例提供的一种站点的组成示意图;
图11为本申请实施例提供的另一种站点的组成示意图;
图12为本申请实施例提供的一种站点的组成示意图;
图13为本申请实施例提供的另一种站点的组成示意图;
图14为本申请实施例提供的一种接入点的组成示意图;
图15为本申请实施例提供的另一种接入点的组成示意图。
具体实施方式
下面结合本申请实施例中的附图对本申请的实施例进行描述。
本申请的说明书和权利要求书及上述附图中的术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
请参照图1,为本申请实施例提供的一种通信系统的架构示意图,为了便于描述和理解,在图1所示的架构中仅示出了一个接入点和两个站点,并以接入点与站点之间的通信进行举例说明。可以理解的是,在实际场景中,还可以包括多个站点或多个接入点,除了接入点与站点之间的通信之外,也可适用于接入点与接入点之间,站点与站点之间的通信。本申请实施例不作任何限定。
在图1所示架构下,由接入点10,第一站点20和第三站点30组成。
其中,接入点10是指为无线局域网(WLAN)用户终端(包括第一站点20和第二站点30)接入网络的设备。其可以是通信服务器、路由器、交换机、网桥、计算机、手机等。
第一站点20和第二站点30可以是需要与网络通信的用户终端。用户终端又可以称为移动终端、终端设备、用户设备等,其可以是计算机、手机、平板型电脑、手持设备、增强现实(Augmented Reality,简称AR)设备、虚拟现实(Virtual Reality,简称VR设备、机器类型通信终端或是其他可以接入网络的设备。
在本申请实施例中,第一站点20和第二站点30位于接入点的信号覆盖范围内,三者可以位于一个基本服务集(Basic Service Set,简称BSS)内。由于两个站点的位置较近或工作链路的频率相近,当二者同时与接入点进行通信时,将会相互的干扰。因此需要进行合理的调度来避免或减少干扰。
下面结合图2-图5对本申请测量干扰的方法进行详细描述。
请参见图2,图2为本申请实施例提供的一种测量干扰的方法的流程示意图;具体包括如下步骤:
S201.第二站点在第二链路上接收第一站点在第一链路上发送的测量信号。
可选地,所述测量信号可以为所述第一站点在所述第一链路上发送的任意一个数据包;第二站点可以根据预设周期选择在第二链路上接收一个数据包来进行干扰测量,也可以随机的任意选择一个数据包来进行干扰测量,本申请实施例不作任何限定。
或者,所述测量信号可以为所述第一站点接收所述接入点广播的干扰测量通知帧后,在所述第一链路上发送的测量信号。此时,在步骤S201之前,还可以包括步骤S200,接入点广播干扰测量通知帧,通知第一站点在第一链路上发送测量信号,并通知第二站点在 第二链路上侦听所述测量信号。
其中,第二链路为一个广泛的概念,用于与第一链路进行区别,其具体可以是除第一链路外的任意一条链路。在本质上,第二站点用于侦听测量信号的链路可统称为用于测试的接收链路。
可选地,接入点可以指定一个或多个第二站点准备接收测量信号,或者也可以不指定,如果不指定,则第二站点可以自主决定是否进行测量。该干扰测量通知帧可以是一种新定义的帧,或重用协议中已有的帧(比如非数据通知(Null Data Packet Announcement,简称NDPA)帧)。
S202.所述第二站点根据接收到的测量信号生成测量结果。
请参见图3,图3为测量结果包含的字段的一种帧结构示意图,具体可包括如下字段:
第一站点标识和/第一链路标识;第二站点标识和/或第二链路标识;是否存在跨链路干扰和/或跨链路信号衰减大小。
其中,是否存在跨链路干扰,用于定性的指示两个站点之间的两条链路上是否存在干扰。其可以是一个布尔型变量例如用1表示存在干扰,用0表示不存在干扰,具体可以通过接收功率大小和站点设备自身的去干扰能力比较得到。
第一站点标识指定发送测量信号的站点,第一链路标识指定第一站点在哪个链路上发送测量信号(这两项信息可能存在一一对应关系,可以只包含其一),第二站点标识指定需要接收测量信号的站点,第二链路标识指定第二站点在哪条链路上接收测量信号(这两项信息可能存在一一对应关系,可以只包含其一)。链路标识可以设置为链路地址或其他形式的标识信息如整数等。对于一个仅支持单链路操作的站点,它的链路地址和站点地址相同,它的链路标识也可以和站点标识相同(或者也可以设置为映射关系),此时,可在链路标识和站点标识中选择一个发送即可;对于一个支持多链路操作的站点,它的所有链路地址可以和站点地址相同,因此,在这种情况下需要利用链路标识来区分不同的链路,此时,可同时发送站点标识和链路标识;另一种可能是支持多链路操作的站点下的链路地址各不相同,此时可发送站点标识,以及链路标识(例如可将链路标识设为链路地址),即可区分不同的链路。
跨链路信号衰减大小,用于指示从第一站点的第一链路到第二站点的第二链路之间的测量信号衰减大小。
当第二站点接收到测量信号之后,可以获得测量信号的接收功率的大小,从而可以根据接收功率的大小和第二站点自身的去干扰能力比较确定是否存在跨链路干扰。具体地,对于第二站点,判断一个外来信号如本申请中的测量信号是否干扰本设备,需要计算第二站点自身的发送功率大小和干扰信号的接收功率大小的比值(即计算信号干扰噪声比),并和第二站点自身的抗干扰门限值进行比较,如果大于门限值则判断该干扰并不影响正常收发功能,否则影响。
或者,当第二站点获取到测量信号在第一链路上的发送功率时,还可以结合接收功率来确定跨链路信号衰减大小。如果知道测量信号在第一链路上的发送功率,可以用发送功率除以接收功率,两个功率的比值即衰减大小(假设为L),无线通信中通常将L进行(10*logL)数值变换成分贝(dB)单位。比如,若比值为100,则衰减大小为20dB。
当然,第二站点除了在第二链路接收测量信号之外,还可以在第一链路接收测量信号。并根据在第一链路上得到的接收功率与第二站点上预存储的链路间损耗数据来确定跨链路信号衰减大小。例如,第二站点预存储了链路间损耗数据(假设第一链路和第二链路的损耗值为20dB,即信号功率跨链路需要除以100),根据第一链路上的接收功率(假设为1W),可以除以100得到第二链路上的等效接收功率0.01W。再利用发送功率与等效接收功率的比值计算得到跨链路信号衰减大小。
通过上述字段,接入点便可以获知到两个站点在第一链路和第二链路同时进行通信时是否存在干扰以及干扰的大小。从而可以在调度时,通过合理安排,降低二者的碰撞几率,提升通信系统的整体吞吐量。
可选地,请参见图4,为测量结果包含的字段的另一种帧结构示意图,具体可包括以下字段中的一个或多个:
发送功率大小,用于指示所述第一站点发送所述测量信号的发送功率;
接收功率大小,用于指示所述第二站点接收所述测量信号的接收功率。
当第二站点在多条链路上进行测量信号的接收和测试时,上述的第二链路标识,接收功率大小,以及,接收功率和发送功率的比值这三个信息字段可以包含与多条链路相对应的多组信息,以对应第二站点在多条链路上的测量结果。例如在第二链路1上对应第二链路标识1,接收功率大小1,以及,接收功率和发送功率的比值1,在第二链路2上对应第二链路标识2,接收功率大小2,以及,接收功率和发送功率的比值2。
S203.所述第二站点将所述测量结果发送给接入点。
可选地,在所述第二站点将所述测量结果发送给接入点之前,所述方法还可以包括:
所述第二站点接收所述接入点广播的干扰测量通知帧,所述干扰测量通知帧中携带用于指示所述第二站点反馈测量结果的反馈指示;
或者,所述第二站点接收所述接入点发送的反馈测量结果通知帧,所述反馈测量结果通知帧用于通知所述第二站点反馈测量结果。
为了通知第二站点反馈测量结果,所述接入点可以在所述干扰测量通知帧中携带反馈指示。通过该反馈指示,可以指定第二站点的反馈方式(如反馈链路,反馈时间及反馈类型),第二站点可以按照指定的方式将测量结果反馈给接入点。如果存在多个第二站点时,可以向每个第二站点发送一个干扰测量通知帧,每个第二站点可以按照各自指定的方式来反馈各自的测量结果。或者也可以向所有第二站点发送相同的干扰测量通知帧,指定不同的第二站点发送测量结果的链路和时间;可选地,第二站点在自由选择的链路上进行信道竞争,将测量结果反馈给接入点,不同第二站点反馈给接入点的测量结果可以是同时发送或者非同时发送。
除了在干扰测量通知帧中进行指示之外,或者,所述接入点也可以向所述第二站点发送反馈测量结果通知帧,通知所述第二站点反馈测量结果。当存在多个第二站点时,可选地,接入点可以向每个第二站点分别发送一个反馈测量结果通知帧来请求测量结果。
可选地,参照图5,为干扰测量通知帧包含的字段的一种帧结构示意图,所述干扰测量通知帧可以包括以下字段:
第一站点标识和/或第一链路标识;发送功率大小,用于指示所述第一站点发送所述测 量信号的发送功率;第二站点标识和/或第二链路标识。
可选地,参照图6,为干扰测量通知帧包含的字段的另一种帧结构示意图,所述干扰测量通知帧还包括以下字段中的一个或多个:
反馈链路标识,用于指示所述第二站点反馈所述测量结果的链路;
反馈时间,用于指示所述第二站点反馈所述测量结果的时间;
接收功率反馈门限,用于指示所述第二站点反馈接收功率的门限值;
反馈类型,用于指示所述第二站点反馈跨链路干扰大小的信息类型。
其中,当存在多个第二站点时,第二站点标识,第二链路标识,反馈链路标识和反馈时间可以包含多组信息,对应多个第二站点的接收方式和反馈方式。其中,第二站点标识指定需要接收测量信号的站点,第二链路标识指定第二站点在哪条链路上接收测量信号(这两项信息可能存在一一对应关系,干扰测量通知帧可能只包含其一),反馈链路标识指定该第二站点在哪条链路上反馈测量结果,反馈时间指定该第二站点在哪个时间点反馈测量结果;接入点可以用第二站点标识字段的特殊值如0指定所有第二站点都接收测量信号,也可以使用接收链路标识字段的特殊值如0指定对应的第二站点在所有链路上接收测量信号;接收功率反馈门限字段指定了当第二站点接收信号功率大小的最小值,当接收功率小于反馈门限时,第二站点不反馈具体的接收功率大小;反馈类型字段指定第二站点完成测量信号接收后向接入点反馈的指示跨链路干扰大小的信息类型,该反馈类型可以是测量信号接收功率的绝对值或是接收功率相对测量信号发送功率的相对值,又或者是标识是否存在跨链路干扰的布尔值。
当接入点接收到第二站点反馈的测量结果之后,接入点可以根据所述测量结果生成干扰信息,将干扰信息发送给所述第一站点。例如,接入点可以提取测量结果中与第二站点和第一站点之间的跨链路干扰相关的信息,来发送给第一站点,当存在多个第二站点时,接入点可以将每个第二站点和第一站点之间的跨链路干扰相关的信息单独提取并发送给第一站点,也可以对多个第二站点和第一站点之间的跨链路干扰相关的信息进行汇总,再发送给第一站点。
可选地,可以由所述接入点选择时间和链路(确保第一站点可以在选择的时间和链路上能够正常接收到干扰信息),向所述第一站点发送所述干扰信息;
或者,也可以是所述接入点接收所述第一站点发送的干扰信息请求帧,向所述第一站点发送所述干扰信息。
参照图7,为干扰信息包括的字段的一种帧结构示意图,所述干扰信息可以包括以下字段:
第一链路标识;第二链路标识;第二站点标识;是否存在跨链路干扰和/或跨链路信号衰减大小。
需要说明的是,图3-图7所示的帧结构并不限定各个字段的排列顺序。
此外,所述第二站点的数量大于或等于一个,当所述第二站点的数量大于一个时,所述方法还包括:
所述接入点将所述干扰信息发送给其他的一个或多个第二站点。
当存在多个接入点时,测量干扰的方法类似,此处不再赘述。
需要说明的是,由于接入点或站点的物理位置或工作链路的频率可能发生变化,因此,所述第二站点测量干扰,可以根据预设周期进行。通过周期性的测量干扰并更新信息,可以确保系统长期稳定的运行。
在本申请实施例中,通过对跨链路干扰的测量及结果上报,可以使得接入点能够保存所有关联站点间不同链路上的干扰情况,站点也可以保存与自身存在跨链路干扰的其他站点信息以及相应的干扰水平。当已知这些干扰情况后,接入点可以避免给相互干扰的两个站点同时发送数据包,每个站点在检测到其干扰站点正在向接入点发送数据时,此时也应该避免向接入点发送数据。从而减少不同站点数据发送的碰撞概率,从而提升总体的吞吐量,提高了系统运行的效率。
请参见图8,为本申请实施例提供的另一种测量干扰的方法的流程示意图;可包括如下步骤:
S801.接入点向第一站点和第二站点广播干扰测量通知帧。
S802.第一站点在第一链路上发送测量信号。
可选地,当不存在步骤S301时,测量信号可以是第一站点在第一链路上发送的任意一个数据包。
S803.第二站点在第二链路上接收所述测量信号,根据接收所述测量信号的接收功率生成测量结果。
例如,可以直接在测量结果反馈接收功率的大小,由接入点根据接收功率的大小和测量信号发送功率的大小确定是否存在跨链路干扰或计算跨链路信号衰减大小,也可以由第二站点根据测量信号的接收功率与发送功率确定是否存在跨链路干扰或计算跨链路信号衰减大小。S804.第二站点向接入点反馈接收所述测量信号得到的测量结果。
S805.接入点根据测量结果生成干扰信息。
S806.接入点向第一站点发送干扰信息。
本实施例中涉及的概念以及各个概念包含的含义和内容可以参照图2所示实施例的描述,此处不再赘述。
请参见图9,图9为本申请实施例提供的又一种测量干扰的方法的流程示意图;在本实施例中,可包括如下步骤:
S901.接入点向第一站点和第二站点广播干扰测量通知帧。
S902.第一站点在第一链路上发送测量信号。
S903.第二站点在第一链路上接收所述测量信号,根据接收所述测量信号的接收功率和预存储的链路间损耗数据得到测量结果。
其中,链路间损耗数据可以预存储在第二站点上,参见图2实施例中的描述,第二站点可以通过内部处理将同链路干扰大小转换成跨链路干扰大小。
S904.第二站点向接入点反馈接收所述测量信号得到的测量结果。
S905.接入点根据测量结果生成干扰信息。
S906.接入点向第一站点发送干扰信息。
本实施例中涉及的概念以及各个概念包含的含义和内容可以参照图2所示实施例的描述,此处不再赘述。
请参照图10,为本申请实施例提供的一种站点的组成示意图;可包括:
收发单元100,用于在第二链路上接收第一站点在第一链路上发送的测量信号;
处理单元200,用于根据接收到的测量信号生成测量结果;
所述收发单元100还用于将所述测量结果发送给接入点。
可选地,所述测量结果包括以下字段:
第一站点标识和/第一链路标识;第二站点标识和/或第二链路标识;是否存在跨链路干扰和/或跨链路信号衰减大小。
可选地,所述测量结果还包括以下字段中的一个或多个:
发送功率大小,用于指示所述第一站点发送所述测量信号的发送功率;
接收功率大小,用于指示所述第二站点接收所述测量信号的接收功率。
可选地,所述测量信号为所述第一站点在所述第一链路上发送的任意一个数据包;
或者,所述测量信号为所述第一站点接收所述接入点广播的干扰测量通知帧后,在所述第一链路上发送的测量信号。
可选地,所述收发单元100还用于:
接收所述接入点广播的干扰测量通知帧,所述干扰测量通知帧中携带用于指示所述站点反馈测量结果的反馈指示;
或者,接收所述接入点发送的反馈测量结果通知帧,所述反馈测量结果通知帧用于通知所述站点反馈测量结果。
该站点所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法实施例中关于第二站点相关内容的描述,此处不做赘述。
请参照图11,为本申请实施例提供的另一种站点的组成示意图;该站点可以包括处理器110、存储器120和总线130。处理器110和存储器120通过总线130连接,该存储器120用于存储指令,该处理器110用于执行该存储器120存储的指令,以实现如上图2,图8-图9对应的方法中的步骤。
进一步的,该站点还可以包括、输入口140和输出口150。其中,处理器110、存储器120、输入口140和输出口150可以通过总线130相连。
处理器110用于执行该存储器120存储的指令,以控制输入口140接收信号,并控制输出口150发送信号,完成上述方法中第二站点执行的步骤。其中,输入口140和输出口150可以为相同或者不同的物理实体。为相同的物理实体时,可以统称为输入输出口。所述存储器120可以集成在所述处理器110中,也可以与所述处理器110分开设置。
作为一种实现方式,输入口140和输出口150的功能可以考虑通过收发电路或者收发的专用芯片实现。处理器110可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。
作为另一种实现方式,可以考虑使用通用计算机的方式来实现本申请实施例提供的终端。即将实现处理器110,输入口140和输出口150功能的程序代码存储在存储器中,通用处理器通过执行存储器中的代码来实现处理器110,输入口140和输出口150的功能。
该站点所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于第二站点相关内容的描述,此处不做赘述。
请参照图12,为本申请实施例提供的一种站点的组成示意图;可包括:
处理单元300,用于指示收发单元在第一链路上发送测量信号;
所述收发单元400,用于接收所述接入点发送的干扰信息,所述干扰信息由所述接入点根据第二站点发送的测量结果生成,所述测量结果由所述第二站点在第二链路上接收所述测量信号生成。
可选地,所述干扰信息包括:
第一链路标识;第二链路标识;第二站点标识;是否存在跨链路干扰和/或跨链路信号衰减大小。
可选地,所述测量信号为所述站点在所述第一链路上发送的任意一个数据包;
或者,所述测量信号为所述站点接收所述接入点广播的干扰测量通知帧后,在所述第一链路上发送的测量信号。
该站点所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于第一站点相关内容的描述,此处不做赘述。
请参照图13,为本申请实施例提供的另一种站点的组成示意图;该站点可以包括处理器210、存储器220和总线230。处理器210和存储器220通过总线230连接,该存储器220用于存储指令,该处理器210用于执行该存储器220存储的指令,以实现如上图2,图8-图9对应的方法中第一站点执行的步骤。
进一步的,该站点还可以包括、输入口240和输出口250。其中,处理器210、存储器220、输入口240和输出口250可以通过总线230相连。
处理器210用于执行该存储器220存储的指令,以控制输入口240接收信号,并控制输出口250发送信号,完成上述方法中第一站点执行的步骤。其中,输入口240和输出口250可以为相同或者不同的物理实体。为相同的物理实体时,可以统称为输入输出口。所述存储器220可以集成在所述处理器210中,也可以与所述处理器210分开设置。
作为一种实现方式,输入口240和输出口250的功能可以考虑通过收发电路或者收发的专用芯片实现。处理器210可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。
作为另一种实现方式,可以考虑使用通用计算机的方式来实现本申请实施例提供的站点。即将实现处理器210,输入口240和输出口250功能的程序代码存储在存储器中,通用处理器通过执行存储器中的代码来实现处理器210,输入口240和输出口250的功能。
该站点所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于第一站点相关内容的描述,此处不做赘述。
请参照图14,为本申请实施例提供的一种接入点的组成示意图;可包括:
收发单元500,用于接收第二站点发送的测量结果,所述测量结果由所述第二站点在第二链路上接收第一站点在第一链路上发送的测量信号生成。
可选地,所述接入点还包括:
处理单元600,用于根据所述测量结果生成干扰信息,指示所述收发单元500将所述干扰信息发送给所述第一站点;
所述干扰信息包括:第一链路标识;第二链路标识;第二站点标识;是否存在跨链路 干扰和/或跨链路信号衰减大小。
可选地,所述测量结果包括以下字段:
第一站点标识和/第一链路标识;第二站点标识和/或第二链路标识;是否存在跨链路干扰和/或跨链路信号衰减大小。
可选地,所述测量结果还包括以下字段中的一个或多个:
发送功率大小,用于指示所述第一站点发送所述测量信号的发送功率;
接收功率大小,用于指示所述第二站点接收所述测量信号的接收功率。
可选地,所述测量信号为所述第一站点在所述第一链路上发送的任意一个数据包;
或者,所述收发单元还用于广播干扰测量通知帧,所述干扰测量通知帧用于指示所述第一站点在所述第一链路上发送所述测量信号。
可选地,所述收发单元500还用于:
在所述干扰测量通知帧中携带用于指示所述第二站点反馈测量结果的反馈指示;
或者,向所述第二站点发送反馈测量结果通知帧,所述反馈测量结果通知帧用于通知所述第二站点反馈测量结果。
可选地,所述干扰测量通知帧包括以下字段:
第一站点标识和/或第一链路标识;发送功率大小,用于指示所述第一站点发送所述测量信号的发送功率;第二站点标识和/或第二链路标识。
可选地,所述干扰测量通知帧还包括以下字段中的一个或多个:
反馈链路标识,用于指示所述第二站点反馈所述测量结果的链路;
反馈时间,用于指示所述第二站点反馈所述测量结果的时间;
接收功率反馈门限,用于指示所述第二站点反馈接收功率的门限值;
反馈类型,用于指示所述第二站点反馈跨链路干扰大小的信息类型。
该接入点所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于接入点相关内容的描述,此处不做赘述。
请参照图15,为本申请实施例提供的另一种接入点的组成示意图;该接入点可以包括处理器310、存储器320和总线330。处理器310和存储器320通过总线330连接,该存储器320用于存储指令,该处理器310用于执行该存储器320存储的指令,以实现如上图2,图8-图9对应的方法中接入点执行的步骤。
进一步的,该接入点还可以包括、输入口340和输出口350。其中,处理器310、存储器320、输入口340和输出口350可以通过总线230相连。
处理器310用于执行该存储器320存储的指令,以控制输入口340接收信号,并控制输出口350发送信号,完成上述方法中接入点执行的步骤。其中,输入口340和输出口350可以为相同或者不同的物理实体。为相同的物理实体时,可以统称为输入输出口。所述存储器320可以集成在所述处理器310中,也可以与所述处理器310分开设置。
作为一种实现方式,输入口340和输出口350的功能可以考虑通过收发电路或者收发的专用芯片实现。处理器310可以考虑通过专用处理芯片、处理电路、处理器或通用芯片实现。
作为另一种实现方式,可以考虑使用通用计算机的方式来实现本申请实施例提供的接 入点。即将实现处理器310,输入口340和输出口350功能的程序代码存储在存储器中,通用处理器通过执行存储器中的代码来实现处理器310,输入口340和输出口350的功能。
该站点所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于接入点相关内容的描述,此处不做赘述。
本领域技术人员可以理解,为了便于说明,图11、图3和图15中仅示出了一个存储器和处理器。在实际的控制器中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
应理解,在本申请实施例中,处理器可以是中央处理单元(Central Processing Unit,简称CPU),该处理器还可以是其他通用处理器、数字信号处理器(Digital Signal Processing,简称DSP)、专用集成电路(Application Specific Integrated Circuit,简称ASIC)、现成可编程门阵列(Field-Programmable Gate Array,简称FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。
该存储器可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。
该总线除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
根据本申请实施例提供的方法,本申请实施例还提供一种系统,其包括前述的接入点和两种类型的站点等。
在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各种说明性逻辑块(illustrative logical block,简称ILB)和步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘)等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (38)

  1. 一种用于通信的装置,其特征在于,包括:
    收发单元,用于在第二链路上接收第一站点在第一链路上发送的测量信号;
    处理单元,用于根据接收到的测量信号生成测量结果;
    所述收发单元还用于将所述测量结果发送给接入点。
  2. 根据权利要求1所述的装置,其特征在于,所述测量结果包括以下字段:
    第一站点标识和/第一链路标识;第二站点标识和/或第二链路标识;是否存在跨链路干扰和/或跨链路信号衰减大小。
  3. 根据权利要求2所述的装置,其特征在于,所述测量结果还包括以下字段中的一个或多个:
    发送功率大小,用于指示所述第一站点发送所述测量信号的发送功率;
    接收功率大小,用于指示所述第二站点接收所述测量信号的接收功率。
  4. 根据权利要求1-3任一项所述的装置,其特征在于,所述测量信号为所述第一站点在所述第一链路上发送的任意一个数据包;
    或者,所述测量信号为所述第一站点接收所述接入点广播的干扰测量通知帧后,在所述第一链路上发送的测量信号。
  5. 根据权利要求4所述的装置,其特征在于,所述收发单元还用于:
    接收所述接入点广播的干扰测量通知帧,所述干扰测量通知帧中携带用于指示所述站点反馈测量结果的反馈指示;
    或者,接收所述接入点发送的反馈测量结果通知帧,所述反馈测量结果通知帧用于通知所述站点反馈测量结果。
  6. 一种用于通信的装置,其特征在于,包括:
    处理单元,用于指示收发单元在第一链路上发送测量信号;
    所述收发单元,用于接收所述接入点发送的干扰信息,所述干扰信息由所述接入点根据第二站点发送的测量结果生成,所述测量结果由所述第二站点在第二链路上接收所述测量信号生成。
  7. 根据权利要求5所述的装置,其特征在于,所述干扰信息包括:
    第一链路标识;第二链路标识;第二站点标识;是否存在跨链路干扰和/或跨链路信号衰减大小。
  8. 根据权利要求5或6所述的装置,其特征在于,所述测量信号为所述站点在所述第 一链路上发送的任意一个数据包;
    或者,所述测量信号为所述站点接收所述接入点广播的干扰测量通知帧后,在所述第一链路上发送的测量信号。
  9. 一种用于通信的装置,其特征在于,包括:
    收发单元,用于接收第二站点发送的测量结果,所述测量结果由所述第二站点在第二链路上接收第一站点在第一链路上发送的测量信号生成。
  10. 根据权利要求9所述的装置,其特征在于,所述接入点还包括:
    处理单元,用于根据所述测量结果生成干扰信息,指示所述收发单元将所述干扰信息发送给所述第一站点;
    所述干扰信息包括:第一链路标识;第二链路标识;第二站点标识;是否存在跨链路干扰和/或跨链路信号衰减大小。
  11. 根据权利要求9或10所述的装置,其特征在于,所述测量结果包括以下字段:
    第一站点标识和/第一链路标识;第二站点标识和/或第二链路标识;是否存在跨链路干扰和/或跨链路信号衰减大小。
  12. 根据权利要求11所述的装置,其特征在于,所述测量结果还包括以下字段中的一个或多个:
    发送功率大小,用于指示所述第一站点发送所述测量信号的发送功率;
    接收功率大小,用于指示所述第二站点接收所述测量信号的接收功率。
  13. 根据权利要求9-12任一项所述的装置,其特征在于,所述测量信号为所述第一站点在所述第一链路上发送的任意一个数据包;
    或者,所述收发单元还用于广播干扰测量通知帧,所述干扰测量通知帧用于指示所述第一站点在所述第一链路上发送所述测量信号。
  14. 根据权利要求13所述的装置,其特征在于,所述收发单元还用于:
    在所述干扰测量通知帧中携带用于指示所述第二站点反馈测量结果的反馈指示;
    或者,向所述第二站点发送反馈测量结果通知帧,所述反馈测量结果通知帧用于通知所述第二站点反馈测量结果。
  15. 根据权利要求13或14所述的装置,其特征在于,所述干扰测量通知帧包括以下字段:
    第一站点标识和/或第一链路标识;发送功率大小,用于指示所述第一站点发送所述测量信号的发送功率;第二站点标识和/或第二链路标识。
  16. 根据权利要求15所述的装置,其特征在于,所述干扰测量通知帧还包括以下字段中的一个或多个:
    反馈链路标识,用于指示所述第二站点反馈所述测量结果的链路;
    反馈时间,用于指示所述第二站点反馈所述测量结果的时间;
    接收功率反馈门限,用于指示所述第二站点反馈接收功率的门限值;
    反馈类型,用于指示所述第二站点反馈跨链路干扰大小的信息类型。
  17. 一种测量干扰的方法,其特征在于,包括:
    第二站点在第二链路上接收第一站点在第一链路上发送的测量信号;
    所述第二站点根据接收到的测量信号生成测量结果;
    所述第二站点将所述测量结果发送给接入点。
  18. 根据权利要求17所述的方法,其特征在于,所述测量结果包括以下字段:
    第一站点标识和/第一链路标识;第二站点标识和/或第二链路标识;是否存在跨链路干扰和/或跨链路信号衰减大小。
  19. 根据权利要求18所述的方法,其特征在于,所述测量结果还包括以下字段中的一个或多个:
    发送功率大小,用于指示所述第一站点发送所述测量信号的发送功率;
    接收功率大小,用于指示所述第二站点接收所述测量信号的接收功率。
  20. 根据权利要求17-19任一项所述的方法,其特征在于,所述测量信号为所述第一站点在所述第一链路上发送的任意一个数据包;
    或者,所述测量信号为所述第一站点接收所述接入点广播的干扰测量通知帧后,在所述第一链路上发送的测量信号。
  21. 根据权利要求20所述的方法,其特征在于,在所述第二站点将所述测量结果发送给接入点之前,所述方法还用于:
    所述第二站点接收所述接入点广播的干扰测量通知帧,所述干扰测量通知帧中携带用于指示所述第二站点反馈测量结果的反馈指示;
    或者,所述第二站点接收所述接入点发送的反馈测量结果通知帧,所述反馈测量结果通知帧用于通知所述第二站点反馈测量结果。
  22. 一种测量干扰的方法,其特征在于,包括:
    第一站点在第一链路上发送测量信号;
    所述第一站点接收所述接入点发送的干扰信息,所述干扰信息由所述接入点根据第二站点发送的测量结果生成,所述测量结果由所述第二站点在第二链路上接收所述测量信号生成。
  23. 根据权利要求22所述的方法,其特征在于,所述干扰信息包括:
    第一链路标识;第二链路标识;第二站点标识;是否存在跨链路干扰和/或跨链路信号衰减大小。
  24. 根据权利要求22或23所述的站方法,其特征在于,所述测量信号为所述站点在所述第一链路上发送的任意一个数据包;
    或者,所述测量信号为所述站点接收所述接入点广播的干扰测量通知帧后,在所述第一链路上发送的测量信号。
  25. 一种测量干扰的方法,其特征在于,包括:
    接入点接收第二站点发送的测量结果,所述测量结果由所述第二站点在第二链路上接收第一站点在第一链路上发送的测量信号生成。
  26. 根据权利要求25所述的方法,其特征在于,所述方法还包括:
    所述接入点根据所述测量结果生成干扰信息,将所述干扰信息发送给所述第一站点;
    所述干扰信息包括以下字段:第一链路标识;第二链路标识;第二站点标识;是否存在跨链路干扰和/或跨链路信号衰减大小。
  27. 根据权利要求25或26所述的方法,其特征在于,所述测量结果包括以下字段:
    第一站点标识和/第一链路标识;第二站点标识和/或第二链路标识;是否存在跨链路干扰和/或跨链路信号衰减大小。
  28. 根据权利要求27所述的方法,其特征在于,所述测量结果还包括以下字段中的一个或多个:
    发送功率大小,用于指示所述第一站点发送所述测量信号的发送功率;
    接收功率大小,用于指示所述第二站点接收所述测量信号的接收功率。
  29. 根据权利要求25-28任一项所述的方法,其特征在于,所述测量信号为所述第一站点在所述第一链路上发送的任意一个数据包;
    或者,所述方法还包括:所述接入点广播干扰测量通知帧,所述干扰测量通知帧用于指示所述第一站点在所述第一链路上发送所述测量信号。
  30. 根据权利要求29所述的方法,其特征在于,所述方法还包括:
    所述接入点在所述干扰测量通知帧中携带用于指示所述第二站点反馈测量结果的反馈指示;
    或者,所述接入点向所述第二站点发送反馈测量结果通知帧,所述反馈测量结果通知帧用于通知所述第二站点反馈测量结果。
  31. 根据权利要求29或30所述的方法,其特征在于,所述干扰测量通知帧包括以下字段:
    第一站点标识和/或第一链路标识;发送功率大小,用于指示所述第一站点发送所述测量信号的发送功率;第二站点标识和/或第二链路标识。
  32. 根据权利要求31所述的方法,其特征在于,所述干扰测量通知帧还包括以下字段中的一个或多个:
    反馈链路标识,用于指示所述第二站点反馈所述测量结果的链路;
    反馈时间,用于指示所述第二站点反馈所述测量结果的时间;
    接收功率反馈门限,用于指示所述第二站点反馈接收功率的门限值;
    反馈类型,用于指示所述第二站点反馈跨链路干扰大小的信息类型。
  33. 一种用于通信的装置,其特征在于,包括:
    处理器、存储器和总线,所述处理器和存储器通过总线连接,其中,所述存储器用于存储一组程序代码,所述处理器用于调用所述存储器中存储的程序代码,执行如权利要求17-21任一项所述的方法。
  34. 一种计算机可读存储介质,其特征在于,包括:
    所述计算机可读存储介质中存储有指令,当其在计算机上运行时,实现如权利要求17-21任一项所述的方法。
  35. 一种用于通信的装置,其特征在于,包括:
    处理器、存储器和总线,所述处理器和存储器通过总线连接,其中,所述存储器用于存储一组程序代码,所述处理器用于调用所述存储器中存储的程序代码,执行如权利要求22-24任一项所述的方法。
  36. 一种计算机可读存储介质,其特征在于,包括:
    所述计算机可读存储介质中存储有指令,当其在计算机上运行时,实现如权利要求22-24任一项所述的方法。
  37. 一种用于通信的装置,其特征在于,包括:
    处理器、存储器和总线,所述处理器和存储器通过总线连接,其中,所述存储器用于存储一组程序代码,所述处理器用于调用所述存储器中存储的程序代码,执行如权利要求25-32任一项所述的方法。
  38. 一种计算机可读存储介质,其特征在于,包括:
    所述计算机可读存储介质中存储有指令,当其在计算机上运行时,实现如权利要求25-32任一项所述的方法。
PCT/CN2020/141573 2019-12-30 2020-12-30 一种测量干扰的站点、接入点及方法 WO2021136417A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/853,056 US20220330065A1 (en) 2019-12-30 2022-06-29 Interference measurement station, access point, and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911398248.7 2019-12-30
CN201911398248.7A CN113133044A (zh) 2019-12-30 2019-12-30 一种测量干扰的站点、接入点及方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/853,056 Continuation US20220330065A1 (en) 2019-12-30 2022-06-29 Interference measurement station, access point, and method

Publications (1)

Publication Number Publication Date
WO2021136417A1 true WO2021136417A1 (zh) 2021-07-08

Family

ID=76687332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/141573 WO2021136417A1 (zh) 2019-12-30 2020-12-30 一种测量干扰的站点、接入点及方法

Country Status (3)

Country Link
US (1) US20220330065A1 (zh)
CN (1) CN113133044A (zh)
WO (1) WO2021136417A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106416412A (zh) * 2014-05-26 2017-02-15 韦勒斯标准与技术协会公司 用于同时数据传送和接收的无线通信方法及使用该方法的无线通信装置
US20190007114A1 (en) * 2017-06-30 2019-01-03 Qualcomm Incorporated Throughput optimization by guard interval selection from beamforming feedback
CN109150338A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 信号传输方法、相关装置及系统
CN110049510A (zh) * 2018-01-16 2019-07-23 中国移动通信有限公司研究院 交叉链路干扰测量通知方法、网络侧设备及移动通信终端

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9480069B2 (en) * 2013-02-14 2016-10-25 Qualcomm Incorporated Receiver measurement assisted access point control

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106416412A (zh) * 2014-05-26 2017-02-15 韦勒斯标准与技术协会公司 用于同时数据传送和接收的无线通信方法及使用该方法的无线通信装置
CN109150338A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 信号传输方法、相关装置及系统
US20190007114A1 (en) * 2017-06-30 2019-01-03 Qualcomm Incorporated Throughput optimization by guard interval selection from beamforming feedback
CN110049510A (zh) * 2018-01-16 2019-07-23 中国移动通信有限公司研究院 交叉链路干扰测量通知方法、网络侧设备及移动通信终端

Also Published As

Publication number Publication date
US20220330065A1 (en) 2022-10-13
CN113133044A (zh) 2021-07-16

Similar Documents

Publication Publication Date Title
RU2768848C2 (ru) Способ подстройки луча и соответствующее устройство
WO2019096237A1 (zh) 一种参考信号的处理方法和网络设备以及终端设备
US11711711B2 (en) Method for configuring measurement gap, access network device and terminal
WO2018176502A1 (zh) 频率选择方法、随机接入方法和装置
WO2022143350A1 (zh) 信道状态信息上报方法、资源配置方法、通信节点及存储介质
US11638226B2 (en) Method and device for processing synchronization signal block information and communication device
JP2023546847A (ja) パラメータフィードバック、更新、関連方法、通信ノード、通信システムおよび媒体
CN109587734B (zh) 一种双频中继器的通信方法及装置
WO2021008492A1 (zh) 一种切换方法以及通信装置
US20220052772A1 (en) Atmospheric duct interference elimamating scheme
US20200374872A1 (en) Data transmission method and related apparatus
WO2021047666A1 (zh) 一种探测参考信号传输的方法、相关设备以及存储介质
US11121802B2 (en) CSI obtaining method, server, terminal, and AP
JP2022543525A (ja) 条件付きハンドオーバ方法および装置
JP2023532803A (ja) ビーム指示方法、ネットワークデバイス、端末、装置及び記憶媒体
WO2021136417A1 (zh) 一种测量干扰的站点、接入点及方法
CN110324901B (zh) 级联ap的通信方法、无线接入点及存储介质
WO2022206660A1 (zh) 一种干扰处理的方法,相关装置以及设备
US20150347332A1 (en) A common public radio interface lane controller
WO2019080455A1 (zh) 一种消息处理方法和接入点设备以及消息处理设备
WO2020199046A1 (zh) 一种Wi-Fi通信方法及装置
WO2024021981A1 (zh) 一种通信方法及装置
TWI809842B (zh) 非同時收發能力的指示方法、裝置及系統
WO2023051258A1 (zh) 物理随机接入信道处理方法及装置
WO2023179767A1 (zh) 信息处理方法及相关装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20909912

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20909912

Country of ref document: EP

Kind code of ref document: A1