WO2021136328A1 - 一种长余辉汽车尾气净化涂料及其制备方法和应用 - Google Patents

一种长余辉汽车尾气净化涂料及其制备方法和应用 Download PDF

Info

Publication number
WO2021136328A1
WO2021136328A1 PCT/CN2020/141167 CN2020141167W WO2021136328A1 WO 2021136328 A1 WO2021136328 A1 WO 2021136328A1 CN 2020141167 W CN2020141167 W CN 2020141167W WO 2021136328 A1 WO2021136328 A1 WO 2021136328A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
gas purification
exhaust gas
long afterglow
automobile exhaust
Prior art date
Application number
PCT/CN2020/141167
Other languages
English (en)
French (fr)
Inventor
裴建中
李阳
李蕊
张久鹏
吕磊
陈诗卉
Original Assignee
长安大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长安大学 filed Critical 长安大学
Publication of WO2021136328A1 publication Critical patent/WO2021136328A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/22Luminous paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/80Type of catalytic reaction
    • B01D2255/802Photocatalytic

Definitions

  • the invention belongs to the technical field of road engineering materials, and specifically relates to a long afterglow automobile tail gas purification coating, and a preparation method and application thereof.
  • the present invention provides a long afterglow automobile exhaust purification coating and a preparation method and application thereof.
  • Photocatalytic materials can be used in road pavement engineering to deal with air pollution, while using long afterglow materials , Can absorb light energy and continue to emit light in the dark or low light environment, so as to achieve all-weather purification of car exhaust, good purification efficiency, and provide night driving guidance.
  • a preparation method of a composite photocatalytic tail gas purification material includes the following steps:
  • the calcination temperature in the step 1a) is 550-580°C
  • the calcination time is 3-4h
  • the ultrasonic dispersion time in the step 3a) is 30-40min
  • the ultrasonic power is 300-600W. .
  • a composite photocatalytic tail gas purification material prepared by a method for preparing a composite photocatalytic tail gas purification material.
  • the composite photocatalytic exhaust gas purification material includes the following materials in parts by mass: 35-45 parts of melamine, 25-30 parts of absolute ethanol, 20-25 parts of deionized water, 5-8 parts of tourmaline powder, and BiVO 4 8-12 servings.
  • a long afterglow automobile exhaust purification coating prepared by a composite photocatalytic exhaust purification material including the following parts by mass: 20-26 parts of epoxy resin, 10-13 parts of epoxy resin diluent, 0.5 parts of defoamer, 2 parts -3 parts dispersant, 6-7 parts silane coupling agent, 2.5-3 parts talc powder, 2.5-3 parts calcium carbonate, 0.5 parts anti-settling agent fumed silica, 15 parts luminous powder, 5-20 parts composite light Catalytic exhaust gas purification material, 9-10 parts of film-forming aid alcohol ester twelve, 10-13 parts of epoxy resin curing agent and 1 part of defoamer.
  • a preparation method of long afterglow automobile exhaust gas purification coating includes the following steps:
  • step 2b) Add talc and calcium carbonate to step 1b) and stir;
  • step 2b continue to add anti-settling agent fumed silica, luminescent powder, composite photocatalytic exhaust gas purification material, film-forming assistant alcohol ester twelve and epoxy resin curing agent, and stir;
  • step 4b Drop the defoamer into step 3b), adjust the PH value, and stir to obtain the long afterglow automobile exhaust purification paint.
  • step 2b the mass ratio of talc and calcium carbonate is 1:1.
  • step 4b the pH is adjusted to 8-9 by ammonia water.
  • the long afterglow automobile exhaust purification paint when applied on the road surface, it can continue to emit light in a dark or low light environment, so as to realize all-weather purification of automobile exhaust.
  • the composite photocatalytic exhaust gas purification material prepared by the present invention utilizes the visible light activity and high light absorption rate of gC 3 N 4 , the preparation process is simple and recyclable, and bismuth vanadate (BiVO 4 ) and gC 3 N 4
  • the heterojunction formed by the composite helps to improve the photocatalytic degradation efficiency.
  • Tourmaline powder can improve the adsorption capacity of the composite photocatalytic exhaust gas purification material and the absorbance of the composite photocatalytic exhaust gas purification material, thereby greatly increasing the coating effect. Purification efficiency of car exhaust. Meanwhile, gC 3 N 4 / BiVO 4 / electric composite powder photocatalytic material is produced automobile exhaust purification pollution substances, polluting substances have no effect on surrounding roads and soil and water quality.
  • the road-use long afterglow automobile exhaust gas purification coating uses the film-forming assistant alcohol ester twelve, gC 3 N 4 /BiVO 4 /tourmaline powder composite photocatalytic material, luminescent powder, talc powder, and anti-settling agent gas phase Silica, silane coupling agent and epoxy resin diluent, etc. have a comprehensive effect, play the characteristics of each material, and form a road coating material with good road performance, strong adhesion to the road surface, and good weather resistance. , And the made paint can restore the purification efficiency of car exhaust through rain water and regular sprinkling.
  • the luminescent powder used in the road long afterglow automobile exhaust purification paint prepared by the present invention is a high-performance luminescent powder.
  • the high-performance luminescent powder can be used for driving on roads with no street lights or insufficient lighting. Provide guidance to ensure traffic safety, and high-performance luminescent powder can provide reaction conditions for photocatalytic degradation of automobile exhaust.
  • the road-use long afterglow automobile exhaust purification paint prepared by the present invention has low raw material cost and simple preparation process.
  • the coating on the road surface will not reduce the anti-skid function of the road surface, and the coating has an all-weather service cycle and is effective on the road surface.
  • the characteristics of strong adhesion and good weather resistance, and the coating material (paint) can be used in some specific scenes and other road ancillary facilities, and the application prospect is good.
  • Figure 1 is a schematic diagram of the composite photocatalytic exhaust gas purification material prepared in Example 1;
  • Example 2 is a scanning electron micrograph of the composite photocatalytic exhaust gas purification material prepared in Example 1;
  • Figure 3 shows the results of the purification effect of three materials on HC in Comparative Experiment 1;
  • Figure 4 shows the results of the CO purification effect of the three materials in Comparative Experiment 1;
  • Figure 5 is a graph of the experimental results of the purification effect of three materials on NO in Comparative Experiment 1.
  • the preparation method of the composite photocatalytic exhaust gas purification material includes the following steps:
  • the gC 3 N 4 /BiVO 4 /tourmaline powder composite photocatalytic exhaust gas purification material prepared in this example is shown in FIG. 1 for the preparation principle.
  • the composite photocatalytic exhaust gas purification material prepared in the example is scanned by electron microscope, and the results are shown in FIG. 2.
  • harmful oxides refer to NO and CO
  • organic pollutants refer to HC.
  • the heterojunction formed by the combination of bismuth vanadate (BiVO 4 ) and gC 3 N 4 helps to improve the efficiency of photocatalytic degradation.
  • Tourmaline powder can improve the adsorption capacity and adsorption capacity of the coating made of composite photocatalytic exhaust gas purification materials on automobile exhaust. The absorbance of the composite photocatalytic exhaust gas purification material greatly increases the purification efficiency of the paint for automobile exhaust gas.
  • the preparation method of the composite photocatalytic exhaust gas purification material includes the following steps:
  • the preparation method of the composite photocatalytic exhaust gas purification material includes the following steps:
  • the long afterglow automobile exhaust purification coating includes the following steps:
  • the long afterglow automobile exhaust purification coating includes the following steps:
  • the long afterglow automobile exhaust purification coating includes the following steps:
  • the long afterglow automobile exhaust purification coating includes the following steps:
  • Comparative group 1 gC 3 N 4 /BiVO 4 composite material
  • Comparative group 2 gC 3 N 4 material
  • comparative group 1 preparation method of gC 3 N 4 /BiVO 4 composite material:
  • Comparative test process The materials in the experimental group, comparison group 1 and comparison group 2 of the same quality were uniformly painted on the surface of the rut board (dimensions 300mm ⁇ 300mm ⁇ 50mm) formed indoors, and tested under visible light. Purification effect of HC, CO and NO. The results are shown in Figure 3, Figure 4, and Figure 5, respectively.
  • the composite photocatalytic exhaust gas purification material of gC 3 N 4 /BiVO 4 /tourmaline powder prepared in this embodiment has a good ability to purify NO in automobile exhaust gas.
  • the self-made automobile exhaust test device was tested in the oxidation blank group (there is no in the test device). Place the rut plate sample coated with purification material); the blank test is performed three times and the average value is taken. The test environment temperature is 25( ⁇ 2)°C, and the test device is shaded. The test results are shown in Table 1 below.
  • the long afterglow automobile exhaust purification paint prepared by the present invention is used to purify automobile exhaust, and the comparison with the blank group shows that the long afterglow automobile exhaust purification coating prepared by the present invention has a good purification effect on automobile exhaust.
  • the long afterglow tail gas purification paint prepared in Example 4 was evenly painted on the surface of the rut board (the size is 300mm ⁇ 300mm ⁇ 50mm) formed indoors, and the purification efficiency of the car exhaust gas under the condition of no light and visible light was tested, minus The average value of the purification efficiency of the blank group on automobile exhaust, and the purification rate of the long afterglow exhaust purification coating prepared in Example 4 on automobile exhaust was calculated. The results are shown in Table 2 below.
  • the long afterglow tail gas purification paint prepared in Example 5 was evenly painted on the surface of the rut board (the size is 300mm ⁇ 300mm ⁇ 50mm) formed indoors, and its purification efficiency on automobile exhaust gas under the condition of no light and visible light was tested. The average value of the purification efficiency of the blank group on the automobile exhaust was removed, and the purification rate of the automobile exhaust by the long afterglow exhaust purification coating prepared in Example 5 was calculated. The results are shown in Table 3 below.
  • the long afterglow tail gas purification paint prepared in Example 6 was evenly painted on the surface of the rut board (the size is 300mm ⁇ 300mm ⁇ 50mm) formed indoors, and the purification efficiency of the car exhaust gas under the condition of no light and visible light was tested, minus The average value of the purification efficiency of the blank group on automobile exhaust, and the purification rate of the long afterglow exhaust purification coating prepared in Example 6 on automobile exhaust was calculated. The results are shown in Table 4 below.
  • the long afterglow exhaust gas purification paint prepared in Example 7 was evenly painted on the surface of the rut board (the size is 300mm ⁇ 300mm ⁇ 50mm) formed indoors, and the purification efficiency of the automobile exhaust gas under the condition of no light and visible light was tested, minus The average value of the purification efficiency of the blank group on automobile exhaust, and the purification rate of the long afterglow exhaust purification coating prepared in Example 4 on automobile exhaust was calculated. The results are shown in Table 5 below.
  • the long afterglow tail gas purification coating After deducting the effect of the blank group, the long afterglow tail gas purification coating has a high purification efficiency for automobile exhaust under dark and visible light conditions.
  • the results are obtained based on the different ratios of long afterglow materials and photocatalytic tail gas purification materials Different long-afterglow tail gas purification coatings, as the mass ratio of photocatalytic tail gas purification materials in the long-afterglow tail gas purification coatings increase, the tail gas purification efficiency is also improved; in particular, the long-afterglow tail gas purification coatings prepared in Example 7 are more effective for HC and CO
  • the maximum purification efficiencies of NO and NO in 60 minutes can reach 13.68%, 17.39% and 57.16%, respectively, indicating that the photocatalytic exhaust purification material prepared by the present invention and the long afterglow exhaust purification coating prepared based on the photocatalytic exhaust purification material have a great effect on automobile exhaust. Good purification effect.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

一种复合光催化尾气净化材料的制备方法,包括,1a)将三聚氰胺经煅烧、冷却后得到淡黄色g-C 3N 4固体;2a)将得到的g-C 3N 4固体研磨形成细粉状g-C 3N 4;3a)在室温下,将得到的细粉状g-C 3N 4、电气石粉和BiVO 4溶于乙醇-水溶液中,进行超声分散处理得到分散混合物;4a)将经超声分散得到的分散混合物,搅拌得到深绿色溶液;5a)将得到的深绿色溶液,干燥后得到深绿色固体;6a)将得到的深绿色固体,经研磨后得到复合光催化尾气净化材料g-C 3N 4/BiVO 4/电气石粉;所述的复合光催化尾气净化材料可用于制备长余辉汽车尾气净化涂料;所述的净化涂料在遮光环境仍能够高效净化汽车尾气。

Description

一种长余辉汽车尾气净化涂料及其制备方法和应用 技术领域
本发明属于道路工程材料技术领域,具体涉及一种长余辉汽车尾气净化涂料及其制备方法和应用。
背景技术
随着经济的发展,我国汽车保有量持续增加,已经多年保持世界机动车产销量第一,汽车数量的增多导致了汽车尾气的大量排放,而石油燃料汽车排放的汽车尾气中含有大量有害气体,如未充分燃尽的碳氢化合物(HC),一氧化碳(CO)和一氧化氮(NO),这些有害气体不仅会影响空气质量,还会危害人们的健康。
目前,绿色可持续性将成为未来技术发展的主流,因此我国提倡绿色环保的发展方式,对汽车尾气的排放要求不断提高,并在各地提出了各种针对汽车尾气的治理方案,致力于缓解城市大气污染。汽车尾气的排放和车辆自身有直接关系,为减少汽车尾气的排放所产生的危害,造车企业已经做了大量的工作,但是效果仍不明显;道路是汽车尾气排放之后最先接触的地方,将尾气净化材料制备成路面涂料涂覆在路面是目前净化汽车尾气的有效办法之一;因此,道路领域的工作者希望将汽车尾气净化材料负载到道路表面来缓解城市大气污染,并且取得了一定成果。然而,将汽车尾气净化材料负载到道路表面存在如下缺点:
(1)净化效率低;由于现阶段应用广泛的TiO 2基光催化材料对太阳光波长利用范围仅限于能量极低的短波蓝紫光,导致TiO 2基光催化材料对汽车尾气的净化效率不高,且TiO 2基光催化材料对照明设施要求苛刻,在无光环境下TiO 2基光催化材料无法发挥对汽车尾气的净化作用。
(2)成本高且制备工艺复杂;现阶段各类半导体光催化材料制备工艺复杂,改性工艺更会提高成本,且各类半导体光催化材料加工成的涂料对光的吸收度低,影响对汽车尾气的净化效率。
(3)路用涂料对汽车尾气的吸附性能弱;现阶段研发的路用尾气净化涂料对汽车尾气的吸附性能低,造成汽车尾气与路面上的涂料的接触时间短,使得各类半导体光催化材料加工成的光催化尾气净化涂料分解汽车尾气中的有害气体的效率低。
(4)耐久性差;现阶段应用于道路工程的光催化尾气净化材料大部分是通过将涂料涂刷在道路表面的形式实现的,然而这种具有尾气净化作用的路面涂料在行车荷载和环境作用下容易积累灰尘,以致不能保持对汽车尾气长久的高效净化。
发明内容
针对现有技术中汽车尾气净化材料的不足,本发明提供一种长余辉汽车尾气净化涂料及其制备方法和应用,能在道路路面工程中应用光催化材料来应对空气污染,同时采用长余辉材料,可以吸收光能并在黑暗或弱光环境下继续发光,从而实现对汽车尾气的全天候净化、净化效率好,同时提供夜间行车指引作用。
为实现上述目的,本发明采用的技术方案是:
一种复合光催化尾气净化材料的制备方法,包括以下步骤:
1a)将三聚氰胺经煅烧、冷却后得到淡黄色g-C 3N 4固体;
2a)将得到的g-C 3N 4固体,经研磨后形成细粉状g-C 3N 4
3a)在室温下,将得到的细粉状g-C 3N 4、电气石粉和BiVO 4溶于乙醇-水溶 液中,进行超声分散处理得到分散混合物;
4a)将经超声分散得到的分散混合物,搅拌得到深绿色溶液;
5a)将得到的深绿色溶液,干燥后得到深绿色固体;
6a)将得到的深绿色固体,经研磨后得到复合光催化尾气净化材g-C 3N 4/BiVO 4/电气石粉。
进一步的,所述步骤1a)中煅烧温度为550-580℃,煅烧时间为3-4h,所述步骤3a)中超声分散时间为30-40min,超声波功率为300-600W。。
一种复合光催化尾气净化材料的制备方法所制备的复合光催化尾气净化材料。
进一步的,所述复合光催化尾气净化材料包括以下质量份的各物料:三聚氰胺35-45份、无水乙醇25-30份、去离子水20-25份、电气石粉5-8份以及BiVO 48-12份。
一种复合光催化尾气净化材料制备的长余辉汽车尾气净化涂料,包括以下质量份的各物料:20-26份环氧树脂、10-13份环氧树脂稀释剂、0.5份消泡剂、2-3份分散剂、6-7份硅烷偶联剂、2.5-3份滑石粉、2.5-3份碳酸钙、0.5份防沉剂气相二氧化硅、15份发光粉、5-20份复合光催化尾气净化材料、9-10份成膜助剂醇酯十二、10-13份环氧树脂固化剂和1份消泡剂。
一种长余辉汽车尾气净化涂料的制备方法,包括以下步骤:
1b)将环氧树脂、环氧树脂稀释剂、消泡剂、分散剂以及硅烷偶联剂,搅拌;
2b)向步骤1b)中再加入滑石粉和碳酸钙,搅拌;
3b)向步骤2b)中继续加入防沉剂气相二氧化硅,发光粉,复合光催化尾气净化材料,成膜助剂醇酯十二和环氧树脂固化剂,搅拌;
4b)向步骤3b)中滴入消泡剂,并调节PH值,搅拌后得到长余辉汽车尾气净化涂料。
进一步的,步骤2b)滑石粉和碳酸钙的质量比为1:1。
进一步的,步骤4b)中通过氨水调节PH为8-9。
一种长余辉汽车尾气净化涂料在路面上的应用。
进一步的,所述长余辉汽车尾气净化涂料在路面应用时,能在黑暗或弱光环境下继续发光,实现对汽车尾气的全天候净化。
本发明的有益效果是:
1、本发明制备的复合光催化尾气净化材料,利用了g-C 3N 4的可见光活性和较高的光吸收率,制备工艺简单且可循环利用,钒酸铋(BiVO 4)与g-C 3N 4复合形成的异质结有助于提高光催化降解效率,电气石粉可以提高复合光催化尾气净化材料制备成的涂料对汽车尾气的吸附能力和复合光催化尾气净化材料的吸光度,从而大幅增加涂料对汽车尾气的净化效率。同时,g-C 3N 4/BiVO 4/电气石粉复合光催化材料净化汽车尾气产生的是无污染物质,产生的无污染物质对道路及其周边土壤和水质无影响。
2、本发明提供的路用长余辉汽车尾气净化涂料,利用成膜助剂醇酯十二、g-C 3N 4/BiVO 4/电气石粉复合光催化材料、发光粉、滑石粉、防沉剂气相二氧化硅、硅烷偶联剂和环氧树脂稀释剂等产生综合作用,发挥各自材料的特性,形成了路用性能良好、对道路表面的粘附力强、耐候性能良好的路用涂层材料,且制作的涂料可经过雨水和定期洒水的方式恢复对汽车尾气的净化效率。
3、本发明制备的路用长余辉汽车尾气净化涂料中使用的发光粉是高性能发光粉,利用高性能发光粉的长余辉性能,在没有路灯或者照明不足的路段高性能发光粉能够为行车提供指引,保障交通安全,且高性能发光粉能为光催化降解汽车尾气提供反应条件。
4、本发明制备的路用长余辉汽车尾气净化涂料,原材料成本低、制备工艺简单,涂料涂刷在道路表面不会降低道路的表面抗滑功能,并且涂料具有全天候的使用周期、对道路表面的粘附力强及耐候性好的特点,且涂层材料(涂料)可以用于一些特定场景和其他道路附属设施,应用前景好。
附图说明
图1为实施例1制备的复合光催化尾气净化材料的原理图;
图2为实施例1制备的复合光催化尾气净化材料的扫描电镜图;
图3为对比试验1中三种材料对HC的净化效果试验结果图;
图4为对比试验1中三种材料对CO的净化效果试验结果图;
图5为对比试验1中三种材料对NO的净化效果试验结果图。
具体实施方式
现结合附图以及实施例对本发明做进一步说明。
实施例1
本实施例中,复合光催化尾气净化材料的制备方法包括以下步骤:
1a)常温下称取35份三聚氰胺,在580℃下煅烧3h,冷却至室温得到淡黄色g-C 3N 4固体,具体地,上述常温为25℃;
2a)将上述得到的g-C 3N 4固体在玛瑙研钵中磨细,再经过球磨机进一步磨细成粉;
3a)在温度20℃下,将上述得到的g-C 3N 4粉体、5份的电气石粉和10份的钒酸铋均溶于25份无水乙醇和25份去离子水混合后的溶液中得到混合物,将得到的混合物置于超声分散装置中进行超声分散处理40分钟得到分散混合物,超声分散装置进行超声分散处理时的超声功率为300W;
4a)将上述经过超声分散得到的分散混合物,在200r/min的转速下搅拌1h,得到深绿色溶液;
5a)将上述得到的深绿色溶液在80℃条件下的鼓风干燥15小时,得到深绿色固体;
6a)将上述得到的深绿色固体在球磨机内研磨30min后得到深绿色粉状g-C 3N 4/BiVO 4/电气石粉的复合光催化尾气净化材料。
本实施例制备的g-C 3N 4/BiVO 4/电气石粉复合光催化尾气净化材料,其制备的原理参见图1,对实施例制备的复合光催化尾气净化材料进行电镜扫描,结果参见图2。
结合图1和图2,由于g-C 3N 4是一种典型的聚合物半导体,其结构中的CN原子以sp2杂化形成高度离域的π共轭体系,g-C 3N 4作为新型非金属光催化材料,吸收光谱范围更宽,仅在普通可见光下就能起到光催化作用;g-C 3N 4更能有效活化分子氧以产生超氧自由基,产生的超氧自由基用于有害氧化物的净化和有机污染物的光催化降解,更适用于空气污染的治理和有机物的降解, 具体地,有害氧化物指NO和CO,有机污染物指HC。同时采用钒酸铋(BiVO 4)与g-C 3N 4复合形成的异质结有助于提高光催化降解效率,电气石粉可以提高复合光催化尾气净化材料制备成的涂料对汽车尾气的吸附能力和复合光催化尾气净化材料的吸光度,从而大幅增加涂料对汽车尾气的净化效率。
实施例2
本实施例中,复合光催化尾气净化材料的制备方法包括以下步骤:
1a)常温下称取30份三聚氰胺,在550℃下煅烧4h,冷却至室温得到淡黄色g-C 3N 4固体,具体地,上述常温为25℃;
2a)将上述得到的g-C 3N 4固体在玛瑙研钵中磨细,再经过球磨机进一步磨细成粉;
3a)在温度25℃下,将上述得到的g-C 3N 4粉体、8份的电气石粉和8份的钒酸铋均溶于30份无水乙醇和20份去离子水混合后的溶液中得到混合物,将得到的混合物置于超声分散装置中进行超声分散处理35分钟得到分散混合物,超声分散装置进行分散处理时的超声功率为450W;
4a)将上述经过超声分散得到的分散混合物,在160r/min的转速下搅拌2h,得到深绿色溶液;
5a)将得到的深绿色溶液在85℃条件下的鼓风干燥12小时,得到深绿色固体;
6a)将上述得到的深绿色固体在球磨机内研磨25min后得到深绿色粉状g-C 3N 4/BiVO 4/电气石粉的复合光催化尾气净化材料。
实施例3
本实施例中,复合光催化尾气净化材料的制备方法包括以下步骤:
1a)常温下称取40份三聚氰胺,在560℃下煅烧3.5h,冷却至室温得到淡黄色g-C 3N 4固体,具体地,上述常温为25℃;
2a)将上述得到的g-C 3N 4固体在玛瑙研钵中磨细,再经过球磨机进一步磨细成粉;
3a)在温度23℃下,将上述得到的g-C 3N 4粉体、7份的电气石粉和12份的钒酸铋均溶于22份无水乙醇与23份去离子水混合后的溶液中得到混合物,将得到的混合物置于超声分散装置中进行超声分散处理30分钟得到分散混合物,超声分散装置进行分散处理时的超声功率为600W;
4a)将上述经过超声分散得到的分散混合物,在180r/min的转速下搅拌1.5h,得到深绿色溶液;
5a)将得到的深绿色溶液在75℃条件下的鼓风干燥18小时,得到深绿色固体;
6a)将上述得到的深绿色固体在球磨机内研磨35min后得到深绿色粉状g-C 3N 4/BiVO 4/电气石粉的复合光催化尾气净化材料。
实施例4
本实施例中,长余辉汽车尾气净化涂料包括以下步骤:
(1)称取26份环氧树脂、13份环氧树脂稀释剂、0.5份消泡剂、3份分散剂和7份硅烷偶联剂,在110r/min的转速下搅拌10分钟;
(2)加入3份滑石粉和3份碳酸钙,在185r/min的转速下搅拌12分钟;
(3)加入0.5份防沉剂气相二氧化硅、15份发光粉、5份实施例1制备的复合光催化尾气净化材料、10份成膜助剂醇酯十二和13份环氧树脂固化剂,在100r/min的转速下搅拌15分钟;
(4)滴入1份消泡剂,并加入稀氨水调节PH值为8-9,在135r/min的转速下搅拌5分钟后得到长余辉汽车尾气净化涂料。
实施例5
本实施例中,长余辉汽车尾气净化涂料包括以下步骤:
(1)称取22份环氧树脂、11份环氧树脂稀释剂、0.5份消泡剂、3份分散剂和6份硅烷偶联剂,在85r/min的转速下搅拌12分钟;
(2)加入3份滑石粉和3份碳酸钙,在200r/min的转速下搅拌10分钟;
(3)加入0.5份防沉剂气相二氧化硅、15份发光粉、10份实施例2制备的复合光催化尾气净化材料、9份成膜助剂醇酯十二和11份环氧树脂固化剂,在120r/min的转速下搅拌12分钟;
(4)滴入1份消泡剂,并加入稀氨水调节PH值为8-9,在120r/min的转速下搅拌6分钟后得到长余辉汽车尾气净化涂料。
实施例6
本实施例中,长余辉汽车尾气净化涂料包括以下步骤:
(1)称取23份环氧树脂、11.5份环氧树脂稀释剂、0.5份消泡剂、2份分散剂和6份硅烷偶联剂,在120r/min的转速下搅拌8分钟;
(2)加入2.5份滑石粉和2.5份碳酸钙,在160r/min的转速下搅拌15分钟;
(3)加入0.5份防沉剂气相二氧化硅、15份发光粉、15份实施例3制备的复合光催化尾气净化材料、9份成膜助剂醇酯十二和11.5份环氧树脂固化剂,在80r/min的转速下搅拌18分钟;
(4)滴入1份消泡剂,并加入稀氨水调节PH值为8-9,在150r/min的转速下搅拌3分钟后得到长余辉汽车尾气净化涂料。
实施例7
本实施例中,长余辉汽车尾气净化涂料包括以下步骤:
(1)称取20份环氧树脂、10份环氧树脂稀释剂、0.5份消泡剂、3份分散剂和6份硅烷偶联剂,在110r/min的转速下搅拌9分钟;
(2)加入2.5份滑石粉和2.5份碳酸钙,在180r/min的转速下搅拌12分钟;
(3)加入0.5份防沉剂气相二氧化硅、15份发光粉、20份实施例2制备的复合光催化尾气净化材料、9份成膜助剂醇酯十二和10份环氧树脂固化剂,105r/min的转速下搅拌15分钟;
(4)滴入1份消泡剂,并加入稀氨水调节PH值为8-9,在130r/min的转速下搅拌5分钟后得到长余辉汽车尾气净化涂料。
为了说明本发明制备的g-C 3N 4/BiVO 4/电气石粉的复合光催化尾气净化材料对汽车尾气的净化作用,现进行对比试验1。
对比试验1
实验组:实施例制备的g-C 3N 4/BiVO 4/电气石粉的复合光催化尾气净化材料
对比组1:g-C 3N 4/BiVO 4复合材料
对比组2:g-C 3N 4材料
本对比试验中,对比组1:g-C 3N 4/BiVO 4复合材料的制备方法:
1a)常温下称取30份三聚氰胺,在550℃下煅烧4h,冷却至室温得到淡黄色g-C 3N 4固体,具体地,上述常温为25℃;
2a)将上述得到的g-C 3N 4固体在玛瑙研钵中磨细,再经过球磨机进一步磨细成粉;
3a)在温度20℃下,将上述得到的g-C 3N 4粉体和8份的钒酸铋溶于30份无水乙醇与20份去离子水混合后的溶液中得到混合物,将得到的混合物置于超声分散装置中进行超声分散处理35分钟得到分散混合物;
4a)将上述经过超声分散得到的分散混合物,在160r/min的转速下搅拌2h,得到混合溶液;
5a)将得到的混合溶液在85℃条件下的鼓风干燥12小时,得到固体半成品;
6a)将上述固体半成品在球磨机内研磨25min后得到g-C 3N 4/BiVO 4复合材料。
对比试验过程:将相同质量的实验组、对比组1和对比组2中的材料均匀涂刷在室内成型的车辙板(尺寸为300mm×300mm×50mm)表面,在可见光下测试其对汽车尾气中HC、CO和NO的净化效果。结果分别如图3、图4和图5所示。
实验结果:
从图3可知:采用实验组、对比组1和对比组2净化汽车尾气时,经过60min净化处理,HC的残留率分别为93%、91.5%和96%;
从图4可知:采用实验组、对比组1和对比组2净化汽车尾气时,经过60min净化处理,CO的残留率分别为93%、94.5%和95.5%;
从图5可知:采用实验组、对比组1和对比组2净化汽车尾气时,经过60min净化处理,NO的残留率分别为55%、74.5%和81%;
从对比结果可知,本实施例制备的g-C 3N 4/BiVO 4/电气石粉的复合光催化尾气净化材料对汽车尾气中的NO有很好的净化能力。
进一步的,为了说明本发明制备的长余辉汽车尾气净化涂料对汽车尾气的净化作用,进行汽车尾气净化性能试验。
空白对比试验
汽车尾气净化效率测试中为了避免汽车尾气中的有害气体在测试时间段内发生自然氧化而影响测试结果的准确性,所以对自制的汽车尾气测试装置进行了氧化空白组的测试(测试装置内没有放置涂有净化材料的车辙板试件);空白测试进行三次取平均值,测试环境温度为25(±2)℃,并对测试装置进行遮光处理,测试结果如下表1所示。
表1汽车尾气净化效率测试结果,
汽车尾气主 60分钟前后浓度差值 平均值
要成分 测试1 测试2 测试3  
HC(ppm) 60 54 56 56.67
CO(%) 0.53 0.52 0.52 0.52
NO(ppm) 29 31 29 29.67
采用本发明制备的长余辉汽车尾气净化涂料对汽车尾气进行净化,并与空白组进行对比,说明本发明制备的长余辉汽车尾气净化涂料对汽车尾气有很好的净化作用。
性能测试试验1
将实施例4制备的长余辉尾气净化涂料均匀涂刷在室内成型的车辙板(尺寸为300mm×300mm×50mm)表面,并测试其在无光和可见光条件下对汽车尾气的净化效率,减去空白组对汽车尾气的净化效率的平均值,并计算实施例4制备的长余辉尾气净化涂料对汽车尾气的净化率,结果如下表2所示。
表2实施例4制备的长余辉尾气净化涂料对汽车尾气的测试结果
Figure PCTCN2020141167-appb-000001
性能测试试验2
将实施例5制备的长余辉尾气净化涂料均匀涂刷在室内成型的车辙板(尺寸为300mm×300mm×50mm)表面,并测试其在无光和可见光条件下的对汽车尾 气的净化效率,减去空白组对汽车尾气的净化效率的平均值,并计算实施例5制备的长余辉尾气净化涂料对汽车尾气的净化率,结果如下表3所示。
表3实施例5制备的长余辉尾气净化涂料对汽车尾气的测试结果
Figure PCTCN2020141167-appb-000002
性能测试试验3
将实施例6制备的长余辉尾气净化涂料均匀涂刷在室内成型的车辙板(尺寸为300mm×300mm×50mm)表面,并测试其在无光和可见光条件下对汽车尾气的净化效率,减去空白组对汽车尾气的净化效率的平均值,并计算实施例6制备的长余辉尾气净化涂料对汽车尾气的净化率,结果如下表4所示。
表4实施例6制备的长余辉尾气净化涂料对汽车尾气的测试结果
Figure PCTCN2020141167-appb-000003
性能测试试验4
将实施例7制备的长余辉尾气净化涂料均匀涂刷在室内成型的车辙板(尺寸为300mm×300mm×50mm)表面,并测试其在无光和可见光条件下对汽车尾气的净化效率,减去空白组对汽车尾气的净化效率的平均值,并计算实施例4制备的长余辉尾气净化涂料对汽车尾气的净化率,结果如下表5所示。
表5实施例7制备的长余辉尾气净化涂料对汽车尾气的测试结果
汽车尾气主要 60分钟净化效率(%)
成分 黑暗 可见光
HC 5.06 13.68
CO 5.83 17.39
NO 22.68 57.16
扣除空白组的影响后长余辉尾气净化涂料在黑暗和可见光条件下对汽车尾气都具有较高的净化效率,实施例4~实施例7中根据长余辉材料和光催化尾气净化材料的比例不同得出了不同的长余辉尾气净化涂料,随着长余辉尾 气净化涂料中光催化尾气净化材料质量比的提高,其尾气净化效率也提高;特别是实施例7制备的长余辉尾气净化涂料对HC、CO和NO在60min的最大的净化效率分别可以达到13.68%、17.39%和57.16%,说明本发明制备的光催化尾气净化材料以及基于光催化尾气净化材料制备的长余辉尾气净化涂料对汽车尾气有很好的净化作用。

Claims (10)

  1. 一种复合光催化尾气净化材料的制备方法,其特征在于,包括以下步骤:
    1a)将三聚氰胺经煅烧、冷却后得到淡黄色g-C 3N 4固体;
    2a)将得到的g-C 3N 4固体,经研磨后形成细粉状g-C 3N 4
    3a)在室温下,将得到的细粉状g-C 3N 4、电气石粉和BiVO 4溶于乙醇-水溶液中,进行超声分散处理得到分散混合物;
    4a)将经超声分散得到的分散混合物,搅拌得到深绿色溶液;
    5a)将得到的深绿色溶液,干燥后得到深绿色固体;
    6a)将得到的深绿色固体,经研磨后得到复合光催化尾气净化材料g-C 3N 4/BiVO 4/电气石粉。
  2. 根据权利要求1所述的复合光催化尾气净化材料的制备方法,其特征在于,所述步骤1a)中煅烧温度为550-580℃,煅烧时间为3-4h;所述步骤3a)中超声功率为300-600W,超声分散时间为30-40min。
  3. 一种如权利要求1所述的复合光催化尾气净化材料的制备方法所制备的复合光催化尾气净化材料。
  4. 根据权利要求3所述的复合光催化尾气净化材料,其特征在于,所述复合光催化尾气净化材料包括以下质量份的各物料:三聚氰胺35-45份、无水乙醇25-30份、去离子水20-25份、电气石粉5-8份以及BiVO 48-12份。
  5. 一种采用权利要求3所述的复合光催化尾气净化材料制备的长余辉汽车尾气净化涂料,其特征在于,所述长余辉汽车尾气净化涂料包括以下质量份的各物料:20-26份环氧树脂、10-13份环氧树脂稀释剂、0.5份消泡剂、2-3份分散剂、6-7份硅烷偶联剂、2.5-3份滑石粉、2.5-3份碳酸钙、0.5份防沉剂气相二氧化硅、15份发光粉、5-20份复合光催化尾气净化材料、9-10份 成膜助剂醇酯十二、10-13份环氧树脂固化剂和1份消泡剂。
  6. 一种如权利要求5所述的长余辉汽车尾气净化涂料的制备方法,其特征在于,所述长余辉汽车尾气净化涂料的制备方法包括以下步骤:
    1b)将环氧树脂、环氧树脂稀释剂、消泡剂、分散剂以及硅烷偶联剂,搅拌;
    2b)向步骤1b)中再加入滑石粉和碳酸钙,搅拌;
    3b)向步骤2b)中继续加入防沉剂气相二氧化硅,发光粉,复合光催化尾气净化材料,成膜助剂醇酯十二和环氧树脂固化剂,搅拌;
    4b)向步骤3b)中滴入消泡剂,并调节PH值,搅拌后得到长余辉汽车尾气净化涂料。
  7. 根据权利要求6所述的长余辉汽车尾气净化涂料的制备方法,其特征在于,步骤2b)滑石粉和碳酸钙的质量比为1:1。
  8. 根据权利要求6所述的长余辉汽车尾气净化涂料的制备方法,其特征在于,步骤4b)中通过氨水调节PH为8-9。
  9. 一种如权利要求5所述的长余辉汽车尾气净化涂料在路面上的应用。
  10. 根据权利要求9所述的长余辉汽车尾气净化涂料在路面上的应用,其特征在于:所述长余辉汽车尾气净化涂料在路面应用时,能在黑暗或弱光环境下继续发光,实现对汽车尾气的全天候净化。
PCT/CN2020/141167 2019-12-30 2020-12-30 一种长余辉汽车尾气净化涂料及其制备方法和应用 WO2021136328A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911397926.8A CN111111442A (zh) 2019-12-30 2019-12-30 一种长余辉汽车尾气净化涂料及其制备方法和应用
CN201911397926.8 2019-12-30

Publications (1)

Publication Number Publication Date
WO2021136328A1 true WO2021136328A1 (zh) 2021-07-08

Family

ID=70505415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/141167 WO2021136328A1 (zh) 2019-12-30 2020-12-30 一种长余辉汽车尾气净化涂料及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN111111442A (zh)
WO (1) WO2021136328A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115491046A (zh) * 2022-08-26 2022-12-20 长安大学 具备长效自清洁功能的改性沥青、清洁改性剂及制备方法
CN115555003A (zh) * 2022-09-20 2023-01-03 江西联锴科技有限公司 一种二氧化硅-稀土复合型光催化材料及其制备方法与应用

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111111442A (zh) * 2019-12-30 2020-05-08 长安大学 一种长余辉汽车尾气净化涂料及其制备方法和应用
CN115011244B (zh) * 2022-06-08 2023-07-14 长安大学 自供氧自清洁型尾气降解路用涂料及其制备方法和应用
CN115260869A (zh) * 2022-08-03 2022-11-01 长安大学 一种用于隧道内壁的涂层材料及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104513592A (zh) * 2015-01-07 2015-04-15 山西省交通科学研究院 一种用于净化汽车尾气的路面涂料及其制备方法
CN107051567A (zh) * 2017-03-22 2017-08-18 陕西科技大学 一种氮化碳/(040)晶面钒酸铋异质结及其制备方法和应用
WO2019021189A1 (en) * 2017-07-27 2019-01-31 Sabic Global Technologies B.V. METHODS FOR PRODUCING A NANOCOMPOSITE HETEROGLASTING PHOYOCATALYST
CN109852209A (zh) * 2018-12-21 2019-06-07 浙江天池市政建设有限公司 一种去除汽车尾气的环保型城市道路
CN109985657A (zh) * 2019-04-30 2019-07-09 燕山大学 BiVO4/2D g-C3N4Z型异质结光催化剂的制备方法
CN111111442A (zh) * 2019-12-30 2020-05-08 长安大学 一种长余辉汽车尾气净化涂料及其制备方法和应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101254406A (zh) * 2007-12-06 2008-09-03 哈尔滨工业大学 一种汽车尾气降解材料及其应用
JP5528040B2 (ja) * 2008-10-03 2014-06-25 Dowaエレクトロニクス株式会社 排ガス浄化触媒用複合酸化物とその製造方法および排ガス浄化触媒用塗料とディーゼル排ガス浄化用フィルタ
CN103601162B (zh) * 2013-11-26 2015-05-13 天津大学 一种石墨型氮化碳纳米管的制备方法
CN104043320B (zh) * 2014-05-11 2016-07-06 郑巍 一种光催化等离子体结合超声波处理室内空气污染的方法
CN104530801B (zh) * 2014-12-16 2016-09-28 浙江理工大学 一种发光光催化涂料及其制备方法
CN109081631B (zh) * 2018-08-16 2021-08-20 南京林业大学 路面用多功能涂层制备及施工方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104513592A (zh) * 2015-01-07 2015-04-15 山西省交通科学研究院 一种用于净化汽车尾气的路面涂料及其制备方法
CN107051567A (zh) * 2017-03-22 2017-08-18 陕西科技大学 一种氮化碳/(040)晶面钒酸铋异质结及其制备方法和应用
WO2019021189A1 (en) * 2017-07-27 2019-01-31 Sabic Global Technologies B.V. METHODS FOR PRODUCING A NANOCOMPOSITE HETEROGLASTING PHOYOCATALYST
CN109852209A (zh) * 2018-12-21 2019-06-07 浙江天池市政建设有限公司 一种去除汽车尾气的环保型城市道路
CN109985657A (zh) * 2019-04-30 2019-07-09 燕山大学 BiVO4/2D g-C3N4Z型异质结光催化剂的制备方法
CN111111442A (zh) * 2019-12-30 2020-05-08 长安大学 一种长余辉汽车尾气净化涂料及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OU, MAN ET AL.: "Ultrasound assisted synthesis of heterogeneous g-C3N4/BiVO4 composites and their visible-light-induced photocatalytic oxidation of NO in gas phase", JOURNAL OF ALLOYS AND COMPOUNDS, vol. 626, 2 December 2014 (2014-12-02), XP029132294, ISSN: 0925-8388, DOI: 10.1016/j.jallcom.2014.11.148 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115491046A (zh) * 2022-08-26 2022-12-20 长安大学 具备长效自清洁功能的改性沥青、清洁改性剂及制备方法
CN115491046B (zh) * 2022-08-26 2023-06-27 长安大学 具备长效自清洁功能的改性沥青、清洁改性剂及制备方法
CN115555003A (zh) * 2022-09-20 2023-01-03 江西联锴科技有限公司 一种二氧化硅-稀土复合型光催化材料及其制备方法与应用

Also Published As

Publication number Publication date
CN111111442A (zh) 2020-05-08

Similar Documents

Publication Publication Date Title
WO2021136328A1 (zh) 一种长余辉汽车尾气净化涂料及其制备方法和应用
CN101177582B (zh) 一种能吸收分解汽车尾气的路面涂层及其制备方法
CN100429276C (zh) 一种可净化空气的沥青基地面材料
CN101177586A (zh) 一种用于隧道和地下停车场汽车尾气净化的涂料
CN105126924B (zh) 一种具有光催化降解功能的轻质沥青混合料制备方法
CN109622048A (zh) 一种光催化薄膜及其制备方法
CN102849988B (zh) 一种净化空气的改性沥青混凝土
WO2021174740A1 (zh) 一种臭氧净化催化剂及其制备方法和应用
CN103333381B (zh) 远红外节油橡胶复合材料的制备方法
CN110283503A (zh) 一种有效净化汽车尾气的公路护栏用涂料及其制备方法
CN105642271B (zh) 一种沥青路面负载纳米铋的光催化氮氧化物材料及其制备方法
CN113385164A (zh) 一种除甲醛的石墨烯纳米复合凝胶及其制备工艺
CN102895875B (zh) 一种降解路面汽车尾气的可见光催化复合粉的制备方法
CN106268780A (zh) 电厂脱硝催化剂原料、原料制备方法及催化剂制备方法
CN107353679B (zh) 一种高效清除灰霾涂层及其制备方法
CN111893833B (zh) 一种具有低噪抗滑功能的沥青路面及其制备方法
CN109852209B (zh) 一种去除汽车尾气的环保型城市道路
CN115445411A (zh) 一种水泥窑用固废粉体脱硫剂及其制备方法
CN117960045A (zh) 一种可用于弱光环境下的三元复合性机动车尾气降解路面涂料及其制备方法
CN110482963B (zh) 一种高强水泥基复合光催化材料及其制备方法
CN109081631A (zh) 路面用多功能涂层制备及施工方法
CN110256893A (zh) 可辅助净化汽车尾气的护栏用涂料添加剂及其制备方法
CN109748546A (zh) 具环保功能的稀浆混合料及其制备方法
Li et al. Application of TiO2 mixed epoxy resin technology for exhaust gas degradation
CN109403245A (zh) 道路护栏空气净化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20908791

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20908791

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 27.09.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20908791

Country of ref document: EP

Kind code of ref document: A1