WO2021136305A1 - 光纤信号模式转换装置、转换方法及光纤传输系统 - Google Patents

光纤信号模式转换装置、转换方法及光纤传输系统 Download PDF

Info

Publication number
WO2021136305A1
WO2021136305A1 PCT/CN2020/141092 CN2020141092W WO2021136305A1 WO 2021136305 A1 WO2021136305 A1 WO 2021136305A1 CN 2020141092 W CN2020141092 W CN 2020141092W WO 2021136305 A1 WO2021136305 A1 WO 2021136305A1
Authority
WO
WIPO (PCT)
Prior art keywords
mode
optical fiber
fiber
signal
coupling
Prior art date
Application number
PCT/CN2020/141092
Other languages
English (en)
French (fr)
Inventor
喻寒琛
殷祥
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2022540386A priority Critical patent/JP7317240B2/ja
Priority to EP20910073.4A priority patent/EP4075174A4/en
Publication of WO2021136305A1 publication Critical patent/WO2021136305A1/zh
Priority to US17/855,110 priority patent/US20220334311A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/14Mode converters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12133Functions
    • G02B2006/12152Mode converter
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2821Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using lateral coupling between contiguous fibres to split or combine optical signals

Definitions

  • This application relates to the field of optical communication technology, and in particular to an optical fiber signal mode conversion device, an optical fiber signal mode conversion method, and an optical fiber transmission system.
  • the embodiments of the present application provide an optical fiber signal mode conversion device, an optical fiber signal mode conversion method, and an optical fiber transmission system, and the main purpose is to provide an optical fiber signal mode conversion device that can convert one mode to another mode.
  • the present application provides an optical fiber signal mode conversion device for converting a first mode into a second mode, including: non-single-mode optical fiber, the non-single-mode optical fiber includes a first mode channel and a second mode channel, the first The mode channel is used to transmit the signal of the first mode, and the second mode channel is used to transmit the signal of the second mode; the single-mode fiber, along the transmission direction of the signal in the non-single-mode fiber, forms the first coupling zone with the non-single-mode fiber And the second coupling zone; wherein the effective refractive index of the fundamental mode signal of the single-mode fiber in the first coupling zone is equal to the effective refractive index of the first mode signal, and the first mode signal can be coupled to the fundamental mode channel of the single-mode fiber The effective refractive index of the fundamental mode signal of the single-mode fiber in the second coupling zone is equal to the effective refractive index of the second mode signal, and the fundamental mode signal of the single-mode fiber can be coupled to
  • the effective refractive index of the fundamental mode signal in the first coupling zone and the second coupling zone of the single-mode fiber is set to be different, so that the fundamental mode signal decoupled to the single-mode fiber is transmitted to the second coupling zone.
  • the effective refractive index of the fundamental mode signal changes, and finally the fundamental mode signal coupled with the second mode is coupled to the second mode channel of the optical fiber to realize the conversion of the first mode to the second mode.
  • the non-single-mode optical fiber includes a first optical fiber, the first coupling area is formed between the single-mode optical fiber and the first optical fiber, and the second coupling area is formed between the single-mode optical fiber and the first optical fiber. .
  • the first mode can be converted to the second mode on the same fiber.
  • the non-single-mode optical fiber includes a first optical fiber and a second optical fiber, the first coupling zone is formed between the single-mode optical fiber and the first optical fiber, and the second coupling zone is formed between the single-mode optical fiber and the first optical fiber. Between two optical fibers.
  • the converted second mode can be converted to another optical fiber, which can be used in mode add/drop multiplexing scenarios.
  • the non-single-mode fiber and the single-mode fiber are arranged in parallel, and the cladding of the fiber is fused with the cladding of the single-mode fiber, and the non-single-mode fiber is fused in the second coupling zone.
  • Mode fiber and single-mode fiber are laid in parallel and the cladding of the fiber is fusion spliced with the cladding of the single-mode fiber.
  • the value range of the distance d between the core center of the non-single-mode fiber and the core center of the single-mode fiber is : D ⁇ [R f1 +R s1 ,R f2 +R s2 ]; where: R f1 is the radius of the core of the non-single-mode fiber; R s1 is the radius of the core of the single-mode fiber; R f2 is the non-single-mode fiber The radius of the cladding of the optical fiber; R s2 is the radius of the cladding of the single-mode optical fiber.
  • the refractive index of the core of the single-mode fiber in the first coupling zone is the first refractive index
  • the refractive index of the core of the single-mode fiber in the second coupling zone is the second refractive index
  • the refractive index of the core of the single-mode fiber in the non-coupling zone between the first coupling zone and the second coupling zone is the third refractive index
  • the third refractive index is between the first refractive index and the second refractive index .
  • the first mode and the second mode are two modes in a degenerate mode; the effective refractive index of the fundamental mode signal of the single-mode fiber in the first coupling zone is equal to the single-mode signal in the second coupling zone.
  • the effective refractive index of the fundamental mode signal of the single-mode fiber in the first coupling zone is equal to the fundamental mode signal of the single-mode fiber in the second coupling zone.
  • the angle between the first straight line and the second straight line is equal to the phase difference between the first mode and the second mode, the first mode and the second mode of the degenerate mode can be converted. Therefore, this The application embodiment realizes the conversion of the degenerate intra-mode mode, and expands the application scenarios of the optical fiber signal mode conversion device.
  • the second mode is a degenerate mode, and the second mode includes a first sub-mode and a second sub-mode;
  • the optical fiber signal mode conversion device is used to convert the first mode to the first sub-mode,
  • the effective refractive index of the fundamental mode signal of the single-mode fiber in the second coupling zone is n1
  • the optical fiber signal mode conversion device is also used to convert the first mode into the second sub-mode, and the fundamental mode signal of the single-mode fiber in the second coupling zone
  • the optical fiber signal mode conversion device is used to convert the first mode into the first sub-mode, and the cross section of the non-single-mode fiber is along the cross-section of the non-single-mode fiber in the second coupling zone.
  • the second mode includes two sub-modes that are degenerate modes
  • the first mode can be converted into the first sub-mode in the degenerate mode or the first mode can be converted into the second sub-mode, so as to realize the differentiation of the modes in the degenerate mode.
  • the optical fiber signal mode conversion device is used to convert N modes, where N is an integer greater than or equal to 2; the non-single-mode optical fiber includes N mode channels, N mode channels and N modes One-to-one correspondence of modes; single-mode fiber has N, any single-mode fiber and non-single-mode fiber have a first coupling zone and a second coupling zone; the mode of non-single-mode fiber coupling to any single-mode fiber is N The mode of any single-mode fiber coupled to the non-single-mode fiber is one of the N modes, and the mode of the non-single-mode fiber coupled to any single-mode fiber is coupled to the single-mode fiber The mode of non-single-mode fiber is different.
  • the optical fiber signal mode conversion device can form a cyclic mode conversion device.
  • it can realize the cyclic conversion of the signal mode. If it is used in the mode cyclic conversion , Can realize the compensation of the differential mode group delay, but also reduce the signal crosstalk.
  • a plurality of first coupling regions are arranged in sequence along the axial direction of the optical fiber, and a plurality of second coupling regions are arranged in sequence along the axial direction of the optical fiber.
  • the present application also provides an optical fiber signal mode conversion method, which is applied to the above optical fiber signal mode conversion device, including: when the signal of the first mode in the non-single-mode optical fiber is transmitted to the first coupling zone, the first The signal of the mode is decoupled to the fundamental mode channel of the single-mode fiber and is transmitted as the fundamental mode signal in the single-mode fiber; when the fundamental mode signal in the single-mode fiber is transmitted to the second coupling zone, the fundamental mode signal of the single-mode fiber is coupled The second mode channel to the non-single-mode fiber, and the second mode is transmitted in the non-single-mode fiber.
  • the effective refractive index of the fundamental mode signal of the single-mode fiber in the first coupling zone is equal to the effective refractive index of the signal of the first mode
  • the signal of the first mode is decoupled to the fundamental mode channel of the single-mode fiber, and is transmitted with the fundamental mode signal in the single-mode fiber.
  • the effective refractive index of the fundamental mode signal of the single-mode fiber is equal to the effective refractive index of the signal of the second mode.
  • the present application also provides an optical fiber transmission system, including: a transmission fiber, the transmission fiber includes a first transmission fiber and a second transmission fiber, and both the first transmission fiber and the second transmission fiber include a first mode channel and a second transmission fiber.
  • Two-mode channel the node between the first transmission fiber and the second transmission fiber is provided with the aforementioned optical fiber signal mode conversion device; the light inlet of the non-single-mode fiber is opposite to the light outlet of the first transmission fiber, and the non-single-mode fiber The light exit of the optical fiber is opposite to the light entrance of the second transmission fiber.
  • the optical fiber transmission system is used to transmit signals in N modes, and N is an integer greater than or equal to 2; the transmission fiber has N segments, and the axial length of the N segments of the transmission fiber is equal.
  • the transmission optical fiber has N mode channels, and the N mode channels correspond to the N modes one-to-one; the optical fiber signal mode conversion device includes N-1, and a fiber signal mode conversion device is arranged at the node between the two transmission fibers.
  • the optical fiber transmission system can realize the compensation of the differential mode group delay.
  • FIG. 1 is a structural block diagram of an optical fiber transmission system according to an embodiment of the application
  • Fig. 7a is a schematic structural diagram of an optical fiber signal mode conversion device according to an embodiment of the application.
  • Fig. 7b is a schematic cross-sectional view of the first coupling region of Fig. 7a;
  • Fig. 7c is a schematic cross-sectional view of the second coupling region of Fig. 7a;
  • FIG. 8a is a schematic structural diagram of an optical fiber signal mode conversion device according to an embodiment of the application.
  • Fig. 8b is a schematic cross-sectional view of the second coupling region of Fig. 8a;
  • FIG. 10 is a structural block diagram of an optical fiber transmission system according to an embodiment of the application.
  • 16 is a structural block diagram of an optical fiber transmission system according to an embodiment of the application.
  • FIG. 18 is a schematic structural diagram of an optical fiber signal mode conversion device according to an embodiment of the application.
  • the embodiments of the application relate to an optical fiber transmission system, an optical fiber signal mode conversion device, and an optical fiber signal mode conversion method.
  • the optical fiber transmission system, an optical fiber signal mode conversion device, and an optical fiber signal mode conversion method are described in detail below with reference to the accompanying drawings.
  • non-single mode includes few mode and multimode.
  • the following embodiments take few-mode fiber and few-mode signal transmission as examples.
  • the optical fiber transmission system includes a first transmission fiber 21 and a second transmission fiber 22. Both the first transmission fiber 21 and the second transmission fiber 22 include a first mode channel and The second mode channel, the first mode channel is used to transmit the first mode signal, the second mode channel is used to transmit the second mode signal, the node between the first transmission fiber 21 and the second transmission fiber 22 is provided with an optical fiber
  • the signal mode conversion device 1 and the optical fiber signal mode conversion device 1 are used to convert the first mode into the second mode.
  • the mode matching condition is satisfied in 14, and then the signal of the fundamental mode in the single-mode fiber 12 is coupled to the second mode channel of the at least mode fiber 11, and is transmitted in the second mode in the few-mode fiber 11, thereby realizing the conversion of the first mode into The second mode.
  • the optical fiber signal mode conversion device When the optical fiber signal mode conversion device provided in this embodiment is used in an optical fiber transmission system, it can realize all-fiber transmission (the transmission fiber and the mode conversion device are both optical fibers), and is well compatible with the optical fiber transmission system.
  • the mode fiber 11 and a single mode fiber 12 can convert one mode into another mode, and the structure is simple, which greatly reduces the cost of the transmission system.
  • a few-mode optical fiber 11 and a single-mode optical fiber 12 only form two coupling regions, and the insertion loss is small.
  • the optical fiber signal mode conversion device as shown in Figure 2 is used to convert the M 1 mode into the M 2 mode (the light inlet of the few-mode fiber 11 is M 1 +M 3 + ⁇ +M n , and the The light exit port is M 2 +M 3 + ⁇ +M n ), then the few-mode fiber 11 includes M 1 mode channel, M 2 mode channel, M 3 mode channel, and so on, until the Mn mode channel, the first coupling zone 13 is equal to the effective refractive index n M1 signals and the effective refractive index of the fundamental mode M 1 mode signal is single mode fiber 12, and the mode signal M 1 may be coupled to the fundamental mode of single mode fiber channel 12, a second coupling region
  • the effective refractive index of the fundamental mode signal of the single-mode optical fiber 12 in 14 is equal to the effective refractive index n M2 of the M 2 mode signal, and the fundamental mode signal of the single-mode optical fiber 12 can be coupled to the M 2 mode channel. In this way, the optical fiber signal mode conversion device can convert the M 1 mode to
  • the single-mode fiber 12a, the single-mode fiber 12b, and the single-mode fiber 12c form a first coupling zone and a second coupling zone with the few-mode fiber 11, the effective refractive index is equal to the effective refractive index n M1 signal with the M 1 group mode signal mode to the first single-mode fiber coupling region 12a, and the mode signal M 1 may be coupled to a single mode fiber the fundamental mode of the channel 12a, the first
  • the effective refractive index of the fundamental mode signal of the single-mode fiber 12a in the second coupling region is equal to the effective refractive index n M4 of the signal of the M 4 mode, and the fundamental mode signal of the single-mode fiber 12a can be coupled to the M 4 mode channel; It is equal to the effective refractive index n M2 signal M 2 and the effective refractive index of the fundamental mode signal pattern region 12b of the single-mode fiber, and the mode signal M 2 group can be coupled to single-mode fiber mode channel 12b of the second coupling region
  • the optical fiber signal mode conversion device shown in FIG. 3a is not limited to the above conversion method, but may also be: the effective refractive index of the fundamental mode signal of the single-mode fiber 12a, 12b, 12c in the first coupling zone is respectively equal to M 1.
  • the effective refractive indexes of the signals of the M 2 , M 3 modes are equal, and the effective refractive indexes of the fundamental mode signals of the single-mode fibers 12a, 12b, 12c in the second coupling zone are respectively the same as those of the M 5 , M 6 , and M 4 modes.
  • the effective refractive index is equal.
  • the embodiment of the present application provides an optical fiber signal mode conversion device, as shown in FIG. 3b.
  • the business requirement is to convert the M 1 , M 2 and M 3 modes to M 4 , M 5 and M 6 modes (the light inlet of the few-mode fiber 11 is M 1 + M 2 + M 3 + M 7 ⁇ + M n , the light exit port of the few-mode fiber 11 is M 4 +M 5 +M 6 +M 7 ⁇ +M n ), then the few-mode fiber 11 includes M 1 , M 2 , M 3 , up to the M n mode channel .
  • Single-mode fiber includes single-mode fiber 12a, single-mode fiber 12b, single-mode fiber 12c, single-mode fiber 12d, single-mode fiber 12e, and single-mode fiber 12f.
  • M 1 is equal to the effective refractive index of the fundamental mode signal Mode to the first single-mode fiber coupling region 12a of the effective refractive index n M1 signal, and the mode signal M 1 may be coupled to the fundamental mode of a single mode fiber channel 12a; first is equal to the effective refractive index n M2 signal M 2 and the effective refractive index of the fundamental mode signal of mode coupling region of a single mode optical fiber 12b, and the mode signal M 2 group can be coupled to single-mode fiber 12b mode channel; a first the effective refractive index n M3 is equal to the effective index of the fundamental mode signal coupling region 12c of the single-mode fiber with a mode signal M 3, M 3 and the signal pattern group can be coupled to single-mode fiber mode channel 12c.
  • the effective refractive index of the fundamental mode signal of the single-mode optical fiber 12d in the second coupling region is equal to the effective refractive index n M4 of the signal of the M 4 mode, and the fundamental mode signal of the single-mode optical fiber 12d can be coupled to the M 4 mode channel;
  • second The effective refractive index of the fundamental mode signal of the single-mode fiber 12e in the coupling region is equal to the effective refractive index n M5 of the signal of the M 5 mode, and the fundamental mode signal of the single-mode fiber 12e can be coupled to the M 5 mode channel;
  • the effective refractive index of the fundamental mode signal of the inner single-mode fiber 12f is equal to the effective refractive index n M6 of the M 6 mode signal, and the fundamental mode signal of the single mode fiber 12f can be coupled to the M 6 mode channel.
  • a dynamic optical switching device 31 whose function is to exchange the optical signals transmitted in each of the single-mode fibers 12a, 12b, or 12c.
  • the optical fiber signal mode conversion device can convert the M 1 mode, M 2 mode or M 3 mode to M 4 mode, M 5 mode or M 6 mode respectively, and the corresponding relationship of the mode conversion can be real-time or higher frequency. Dynamic changes.
  • the dynamic optical switching device 31 when the dynamic optical switching device 31 is in working state 1, the M 1 mode is switched to M 4 mode, the M 2 mode is switched to M 5 mode, and the M 3 mode is switched to M 6 mode; the dynamic optical switching device 31 is switched to working dynamically After state 2, the M 1 mode is converted to the M 5 mode, the M 2 mode is converted to the M 6 mode, and the M 3 mode is converted to the M 4 mode.
  • the optical fiber signal mode conversion device shown in FIG. 3b is not limited to the conversion between the above three pairs of modes at the same time, and can also perform the conversion between 2 pairs, 4 pairs or more pairs of modes at the same time.
  • the refractive index of the core in the uncoupling zone of the single-mode optical fiber 12 is between the refractive index of the core in the two coupling zones. Assuming that the refractive index of the core of the single-mode fiber 12 in the first coupling region is the first refractive index, the refractive index of the core of the single-mode fiber 12 in the second coupling region is the second refractive index, and the single-mode fiber 12 is located in the first refractive index.
  • the refractive index of the core in the non-coupling region between a coupling region and a second coupling region is a third refractive index, and the third refractive index is between the first refractive index and the second refractive index.
  • the length L of the second coupling zone 14 should also be controlled to be equal to the coupling length of the fundamental mode signal of the single-mode fiber to the second mode channel.
  • the coupling length is when the optical signal energy is completely transferred from the single-mode fiber 12 to the at least mode fiber 11 for the first time.
  • the shortest coupling length is when the optical signal energy is completely transferred from the single-mode fiber 12 to the at least mode fiber 11 for the first time.
  • the single-mode optical fiber 12 and the few-mode optical fiber 11 involved include a core, a cladding, and a coating layer arranged in order from the inside to the outside.
  • the fiber core completes the transmission of the optical signal
  • the cladding has a different refractive index from the core.
  • the optical signal is enclosed in the core for transmission and protects the core.
  • the coating layer serves as a protective structure for the core and the cladding.
  • the embodiment of the present invention also provides a method for forming the coupling region.
  • the few-mode fiber 11 and the single-mode fiber 12 are arranged in parallel, and the cladding of the few-mode fiber 11 and the cladding of the single-mode fiber 12 are fused, or bonded by side polishing; in the second coupling zone, The few-mode fiber 11 and the single-mode fiber 12 are also arranged in parallel, and the cladding of the few-mode fiber 11 and the cladding of the single-mode fiber 12 are fused, or bonded by side throwing.
  • the few-mode optical fiber 11 and the single-mode optical fiber 12 may also be connected by other structures.
  • the distance between the center of the core 11-2 of the few-mode fiber 11 and the center of the core 12-2 of the single-mode fiber 12 is d, and its value range is usually : D ⁇ [R f1 +R s1 ,R f2 +R s2 ]; where: R f1 is the radius of the core 11-2 of the few-mode fiber 11; R s1 is the radius of the core 12-2 of the single-mode fiber 12 R f2 is the radius of the cladding 11-1 of the few-mode optical fiber 11; R s2 is the radius of the cladding 12-1 of the single-mode optical fiber 12.
  • the maximum coupling efficiency during decoupling in the first coupling zone is determined according to the first mode to be converted, and then the first coupling zone is determined according to the maximum coupling efficiency.
  • the core center of the few-mode fiber and the core of the single-mode fiber are determined according to the maximum coupling efficiency.
  • the distance d between the centers, and then the coupling length of the first coupling zone is determined according to the value of d.
  • determine the maximum coupling efficiency during decoupling in the second coupling zone according to the second mode to be converted and then determine the difference between the core center of the fiber in the second coupling zone and the core center of the single-mode fiber according to the maximum coupling efficiency.
  • the coupling length of the second coupling zone is determined according to the value of d. The specific parameter design will not be repeated.
  • the embodiment of the present invention also provides a mode conversion method.
  • the few-mode fiber includes a first few-mode fiber 111 and a second few-mode fiber 112, and the first coupling region 13 is formed on the single-mode fiber 12 and the first few-mode fiber.
  • the second coupling region 14 is formed between the single-mode optical fiber 12 and the second few-mode optical fiber 112.
  • the converted second mode can be converted to another few-mode fiber, which can be used in mode add/drop multiplexing scenarios.
  • the few-mode fiber includes a first few-mode fiber 111, a second few-mode fiber 112, and a third few-mode fiber 113
  • the single-mode fiber includes a single-mode fiber 121, a single-mode fiber 122, a single-mode fiber 123, and a single-mode fiber.
  • the optical fiber signal mode conversion device provided in the embodiment of the present application can still convert the first mode into the second mode, and the first coupling region 13
  • the effective refractive index of the fundamental mode signal of the single-mode optical fiber 12 is equal to the effective refractive index of the fundamental mode signal of the single-mode optical fiber 12 in the second coupling zone 14.
  • the angle between the first straight line and the second straight line is equal to the phase difference between the first mode and the second mode. It does not only mean that the angle between the first straight line and the second straight line is exactly equal to that of the first mode and the second mode.
  • the phase difference, the angle between the first straight line and the second straight line is close to the phase difference between the first mode and the second mode is also within the protection scope of the present application.
  • the optical fiber signal mode conversion device is used to convert the M 1a mode to the M 1b mode
  • the M 1a mode and the M 1b mode are two modes in the degenerate mode M 1
  • the effective refractive index of the fundamental mode signal of the single-mode fiber 12 in the first coupling region 13 is equal to the effective refractive index of the fundamental mode signal of the single-mode fiber 12 in the second coupling region 14, and both are equal to the signal of the M 1 mode
  • the effective refractive index (n M1a n M1b ); the cross-section of the fiber along the first coupling zone 13, referring to Fig.
  • the center of the core 11-2 of the few-mode fiber 11 and the core 12 of the single-mode fiber 12 The center of -2 is on the first straight line L3, and the cross section of the optical fiber is along the cross section of the second coupling region 14.
  • Fig. 7c the center of the core 11-2 of the few-mode fiber 11 and the core 12 of the single-mode fiber 12
  • the second mode is a degenerate mode
  • the second mode includes the first sub-mode and the second sub-mode
  • the second coupling zone The effective refractive index of the fundamental mode signal of the single-mode fiber is n 1
  • the optical fiber signal mode conversion device is used to convert the first mode into the second sub-mode
  • the effective refractive index of the fundamental mode signal of the single-mode fiber in the second coupling zone is n 2
  • n 1 n 2
  • the optical fiber signal mode conversion device is used to convert the first mode to the first sub-mode
  • the second coupling zone is along the cross section of the optical fiber, and the center of the fiber core is the same as the single mode
  • the center of the core of the optical fiber is on the third straight line
  • the optical fiber signal mode conversion device is used to convert the first mode into the second sub-mode.
  • the optical fiber signal mode conversion device provided in the embodiment of the present application can realize the distinction of degenerate intra mode conversion.
  • the angle between the third straight line and the fourth straight line is equal to the phase difference between the first sub-mode and the second sub-mode. It does not only mean that the angle between the third straight line and the fourth straight line is exactly equal to the first sub-mode and the second sub-mode. The phase difference of the modes, and the angle between the third straight line and the fourth straight line is close to the phase difference between the first sub-mode and the second sub-mode, which is also within the protection scope of the present application.
  • the optical fiber signal mode conversion device provided in the embodiments of the present application can also implement mode cyclic conversion applications, and then be used in a few-mode and multi-mode optical fiber transmission systems.
  • the transmission system transmits signals of N modes, and N is greater than 1.
  • the transmission fiber in the transmission system has N sections, and the axial lengths of the N sections of transmission fibers are equal, and each section of the transmission fiber has There are N mode channels, and the N mode channels correspond to the N modes in a one-to-one manner.
  • the few-mode fiber 11 of each optical fiber signal mode conversion device includes N mode channels, and the N mode channels correspond to the N modes one to one; the single-mode fiber 12 has N, and any single-mode fiber and the few-mode fiber 11 are formed There are a first coupling zone and a second coupling zone; the mode of the few-mode fiber 11 coupled to any single-mode fiber is one of the N modes, and the mode of the fiber coupled to the N single-mode fibers is different; either The mode of the single-mode fiber coupled to the fiber is one of the N modes, and the modes of the N single-mode fibers coupled to the fiber are all different, and the mode of the few-mode fiber 11 coupled to any single-mode fiber is the same as that of the single-mode fiber.
  • the mode of fiber coupling to the fiber is different, thus forming a cyclic conversion.
  • the following describes an optical fiber transmission system with an optical fiber signal mode conversion device through an example.
  • the optical fiber transmission system is used to transmit signals in LP 01 , LP 11 , LP 21 and LP 02 modes.
  • the transmission fiber includes a first transmission fiber 211, a second transmission fiber 212, a third transmission fiber 213, and a second transmission fiber.
  • the transmission fiber 214, and the axial lengths of the first transmission fiber 211, the second transmission fiber 212, the third transmission fiber 213, and the second transmission fiber 214 are all equal, the optical fiber signal mode conversion device 1 has three, and the first transmission fiber 211
  • An optical fiber signal mode conversion device 1 is installed at the node of the second transmission fiber 212, an optical fiber signal mode conversion device 1 is installed at the node of the second transmission fiber 212 and the third transmission fiber 213, the third transmission fiber 213 and the fourth transmission fiber
  • An optical fiber signal mode conversion device 1 is provided at the node of the optical fiber 214, and the three optical fiber signal mode conversion devices 1 have the same structure.
  • Figure 11 shows the optical fiber signal mode conversion device of one structure.
  • the single-mode optical fiber includes single-mode optical fibers 121, 122, 123, and 124, all of which form a first coupling zone and a second coupling zone with the few-mode optical fiber 11.
  • the optical fiber transmission system of the optical fiber signal mode conversion device shown has undergone three-cycle mode conversion, and the signal of each mode has undergone equidistant transmission of the four modes of LP 01 mode, LP 11 mode, LP 21 mode and LP 02 mode. Therefore, the optical fiber transmission system can realize differential mode group delay compensation.
  • the optical fiber transmission system realizes a mode cycle different from that of Fig. 10.
  • the optical fiber signal mode conversion device shown in FIG. 13 realizes the conversion of LP 01 mode ⁇ LP 21 mode, LP 21 mode ⁇ LP 02 mode, LP 02 mode ⁇ LP 11 mode, and LP 11 mode ⁇ LP 01 mode.
  • the optical fiber transmission system using the optical fiber signal mode conversion device shown in Figure 12 and Figure 13 after three-cycle mode conversion, the signal of each mode has passed the LP 01 mode, LP 11 mode, LP 21 mode and LP
  • the four modes of the 02 mode are equidistant transmission, so the optical fiber transmission system can realize the compensation of the group delay of the differential mode.
  • the optical fiber transmission system is used to transmit the signal in the LP 01 mode, the signal in the LP 11a mode, and the signal in the LP 11b mode.
  • the LP 11a mode and the LP 11b mode are two modes in the degenerate mode.
  • the transmission fiber includes a fifth transmission fiber 215, a sixth transmission fiber 216, and a seventh transmission fiber 217, and the axial lengths of the fifth transmission fiber 215, the sixth transmission fiber 216, and the seventh transmission fiber 217 are all equal, and the fiber signal mode is converted
  • the device 1 has two devices.
  • a fiber signal mode conversion device 1 is provided at the nodes of the fifth transmission fiber 21 and the sixth transmission fiber 216, and a fiber signal mode conversion device is provided at the nodes of the sixth transmission fiber 216 and the seventh transmission fiber 217. 1.
  • the structure of the two optical fiber signal mode conversion devices 1 is the same.
  • the effective refractive indexes of the fundamental mode signals of the single-mode fibers 125, 126, and 127 in the two coupling regions are respectively equal to the effective refractive indexes n LP11a , n LP11b, and n LP01 of the signals in the LP 11a , LP 11b , and LP 01 modes.
  • the optical fiber signal mode conversion device realizes the conversion of LP 01 mode ⁇ LP 11a mode, LP 11a mode ⁇ LP 11b mode, LP 11b mode ⁇ LP 01 mode, so the optical fiber signal mode conversion shown in Figure 14 and Figure 15a is adopted.
  • the optical fiber transmission system of the device has undergone two cyclic mode conversions, and the signal of each mode has been transmitted equidistantly in three modes of LP 01 mode, LP 11a mode and LP 11b mode. Therefore, the optical fiber transmission system can realize differential mode. Compensation for group delay.
  • the phase difference between LP 11a mode and LP 11b mode is 15b and 15c, the first coupling region of the single-mode fiber 126, along the cross section of the few-mode fiber 11, the center of the core 11-2 of the few-mode fiber 11 and the core 126- of the single-mode fiber 126
  • the center of 2 is on the fifth straight line, in the second coupling zone, along the cross section of the few-mode fiber 11, the center of the core 11-2 of the few-mode fiber 11 and the center of the core 126-2 of the single-mode fiber 126
  • the angle between the fifth straight line and the sixth straight line is equal to the phase difference between the LP 11a mode and the LP 11b mode.
  • the optical fiber transmission system achieves a mode cycle different from that of Figure 14.
  • the optical fiber signal mode conversion device shown in FIG. 17 realizes the conversion from LP 01 mode ⁇ LP 11b mode, LP 11b mode ⁇ LP 11a mode, and LP 11a mode ⁇ LP 01 mode.
  • the optical fiber signal mode conversion device provided by the embodiment of the present application can also be used in the scenario of mode add/drop multiplexing.
  • the LP 01 mode transmitted by the few-mode fiber 111 is decoupled to the single-mode fiber 121, and finally converted to the few-mode fiber.
  • signal transmission 112 LP 11 mode, at least 111 transmission mode LP 11 mode optical fiber to single-mode fiber decoupler 122, is converted to the final few mode fiber 113 in the LP 21 mode of signal transmission, i.e., to realize the different fiber
  • the exchange of mode signals realizes add/drop multiplexing of mode multiplexed signals.
  • the embodiment of the present application also provides an optical fiber signal mode conversion method.
  • the optical fiber signal mode conversion method is applied to the above optical fiber signal mode conversion device and includes the following steps:

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Communication System (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

一种光纤信号模式转换装置、光纤信号模式转换方法和光纤传输系统,涉及光通信技术领域。光纤信号模式转换装置包括非单模光纤和单模光纤,非单模光纤包括第一模式信道和第二模式信道;单模光纤,沿着非单模光纤内信号的传输方向,与非单模光纤形成第一耦合区和第二耦合区;其中,第一耦合区内单模光纤的基模信号的有效折射率与第一模式信号的有效折射率相等,且第一模式信号可耦合至单模光纤的基模信道;第二耦合区内单模光纤的基模信号的有效折射率与第二模式信号的有效折射率相等,且单模光纤的基模信号可耦合至第二模式信道。从而实现了模式转换,提高光长途传输能力。

Description

光纤信号模式转换装置、转换方法及光纤传输系统
本申请要求于2019年12月30日提交中国国家知识产权局、申请号为201911405404.8、发明名称为“光纤信号模式转换装置、转换方法及光纤传输系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光通信技术领域,尤其涉及一种光纤信号模式转换装置、光纤信号模式转换方法和光纤传输系统。
背景技术
随着信息传输需求的爆炸式增长,传统单模光纤逐渐逼近传输极限,以少模复用和多模复用为代表的新方式得到广泛关注,例如,少模复用技术是利用少模光纤中独立的正交模式作为传输信道,能成倍提升光传输容量。
少模光纤通信的核心问题之一是模式转换,模式转换主要包含两类:一类是模式的复用和解复用,模式的复用即将多个单模光纤中的基模信号复用至少模光纤中以基模信号和高阶模信号传输(少模光纤中的基模信号和高阶模信号合成为少模复用信号),模式的解复用即将少模复用信号解复用至多个单模光纤中的基模信号传输;另一类是将少模复用信号中的任意一个模式转换成另外一个模式传输,或者将少模复用信号中的多个模式转换成另外多个模式传输。其中,第二类模式转换在模式循环转换、模式分插复用等场景中具有重要应用。
发明内容
本申请的实施例提供一种光纤信号模式转换装置、光纤信号模式转换方法和光纤传输系统,主要目的是提供一种可实现一种模式转换为另一种模式的光纤信号模式转换装置。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,本申请提供了光纤信号模式转换装置,用于将第一模式转换为第二模式,包括:非单模光纤,非单模光纤包括第一模式信道和第二模式信道,第一模式信道用于传输第一模式的信号,第二模式信道用于传输第二模式的信号;单模光纤,沿着非单模光纤内信号的传输方向,与非单模光纤形成第一耦合区和第二耦合区;其中,第一耦合区内单模光纤的基模信号的有效折射率与第一模式信号的有效折射率相等,且第一模式信号可耦合至单模光纤的基模信道;第二耦合区内单模光纤的基模信号的有效折射率与第二模式信号的有效折射率相等,且单模光纤的基模信号可耦合至第二模式信道。
本申请实施例提供的光纤信号模式转换装置,单模光纤和光纤形成有第一耦合区和第二耦合区,由于第一耦合区内单模光纤的基模信号的有效折射率与第一模式的信号的有效折射率相等,非单模光纤的第一模式的信号可耦合至单模光纤的基模信道;又因为第二耦合区内单模光纤的基模信号的有效折射率与第二模式的信号的有效折射率相等,单模光纤的基模信 号可耦合至光纤的第二模式信道。所以,本申请实施例通过将单模光纤的第一耦合区和第二耦合区的基模信号的有效折射率设置不同,以使解耦至单模光纤的基模信号在传输至第二耦合区时,基模信号的有效折射率变化,最终将与第二模式相耦合的基模信号耦合至光纤的第二模式信道,实现第一模式转换为第二模式。
在第一方面可能的实现方式中,非单模光纤包括第一光纤,第一耦合区形成在单模光纤和第一光纤之间,第二耦合区形成在单模光纤和第一光纤之间。也就是说,可以在同一根光纤上将第一模式转换为第二模式。
在第一方面可能的实现方式中,非单模光纤包括第一光纤和第二光纤,第一耦合区形成在单模光纤和第一光纤之间,第二耦合区形成在单模光纤和第二光纤之间。也就是说,可以将转换的第二模式转换至另外一个光纤上,这样可使用于模式分插复用场景。
在第一方面可能的实现方式中,第一耦合区的长度等于第一模式的信号耦合至单模光纤的基模信道的耦合长度。由于第一耦合区的长度等于第一模式的信号耦合至单模光纤的基模信道的耦合长度,这样相比将第一耦合区的长度等于第一模式的信号耦合至单模光纤的基模信道的耦合长度的大于1的整数倍,会明显的减小光纤的长度,对于全光纤传输系统,也就会有效减小整个全光纤传输系统的长度。
在第一方面可能的实现方式中,第二耦合区的长度等于单模光纤的基模信号耦合至第二模式信道的耦合长度。由于第二耦合区的长度等于单模光纤的基模信号耦合至第二模式信道的耦合长度,这样相比将第二耦合区的长度等于单模光纤的基模信号耦合至第二模式信道的耦合长度的大于1的整数倍,会明显的减小光纤的长度,对于全光纤传输系统,也就会有效减小整个全光纤传输系统的长度。
在第一方面可能的实现方式中,第一耦合区内,非单模光纤和单模光纤相平行布设且光纤的包层与单模光纤的包层相熔接,第二耦合区内,非单模光纤和单模光纤相平行布设且光纤的包层与单模光纤的包层相熔接,非单模光纤的纤芯中心与单模光纤的纤芯中心之间的距离d的取值范围为:d∈[R f1+R s1,R f2+R s2];其中:R f1为非单模光纤的纤芯的半径;R s1为单模光纤的纤芯的半径;R f2为非单模光纤的包层的半径;R s2为单模光纤的包层的半径。
在第一方面可能的实现方式中,第一耦合区内单模光纤的纤芯的折射率为第一折射率,第二耦合区内单模光纤的纤芯的折射率为第二折射率,单模光纤的位于第一耦合区和第二耦合区之间的非耦合区内的纤芯的折射率为第三折射率,第三折射率介于第一折射率和第二折射率之间。
由于第三折射率介于第一折射率和第二折射率之间,在加工制作单模光纤时,相比第三折射率时而超出第一折射率,时而超出第二折射率,会明显的降低单模光纤的加工难度。
在第一方面可能的实现方式中,第一模式和第二模式为简并模内的两个模式;第一耦合区内单模光纤的基模信号的有效折射率等于第二耦合区内单模光纤的基模信号的有效折射率;第一耦合区内,沿着非单模光纤的横截面,非单模光纤的纤芯中心与单模光纤的纤芯中心处于第一直线上,第二耦合区内,沿着非单模光纤的横截面,非单模光纤的纤芯中心与单模光纤的纤芯中心处于第二直线上,第一直线与第二直线的夹角等于第一模式和第二模式的相位差。
当第一模式和第二模式为简并模内的两个模式时,通过将第一耦合区内单模光纤的基模信号的有效折射率等于第二耦合区内单模光纤的基模信号的有效折射率,且第一直线与第二 直线的夹角等于第一模式和第二模式的相位差,就可将为简并模的第一模式和第二模式进行转换,所以,本申请实施例实现了简并模内模式的转换,扩大了该光纤信号模式转换装置的应用场景。
在第一方面可能的实现方式中,第二模式为简并模,第二模式包括第一子模式和第二子模式;光纤信号模式转换装置用于将第一模式转换为第一子模式,第二耦合区内单模光纤的基模信号的有效折射率为n1,光纤信号模式转换装置还用于将第一模式转换为第二子模式,第二耦合区内单模光纤的基模信号的有效折射率为n2,且n1=n2;光纤信号模式转换装置用于将第一模式转换为第一子模式,第二耦合区内沿着非单模光纤的横截面,非单模光纤的纤芯中心与单模光纤的纤芯中心处于第三直线上,光纤信号模式转换装置还用于将第一模式转换为第二子模式,第二耦合区内沿着非单模光纤的横截面,非单模光纤的纤芯中心与单模光纤的纤芯中心处于第四直线上,第三直线与第四直线的夹角等于第一子模式和第二子模式的相位差。
当第二模式包括为简并模的两个子模式时,通过在第二耦合区内,n1=n2,且第三直线与第四直线的夹角等于第一子模式和第二子模式的相位差,这样就可将第一模式转换为简并模中的第一子模式或者将第一模式转换为第二子模式,以实现简并模内模式的区分。
在第一方面可能的实现方式中,光纤信号模式转换装置用于对N种模式进行转换,N为大于或者等于2的整数;非单模光纤包括N个模式信道,N个模式信道与N种模式一一对应;单模光纤具有N个,任一个单模光纤和非单模光纤均形成有第一耦合区和第二耦合区;非单模光纤耦合至任一单模光纤的模式为N种模式中的一种;任一个单模光纤耦合至非单模光纤的模式为N种模式中的一种,且非单模光纤耦合至任一单模光纤的模式与该单模光纤耦合至非单模光纤的模式不同。
当采用上述技术方案的光纤信号模式转换装置时,该光纤信号模式转换装置就可形成循环模式转换装置,适用于光纤传输系统时,就可实现信号模式的循环转换,若应用在模式循环转换时,可以实现差分模式群延时的补偿,还可降低信号串扰。
在第一方面可能的实现方式中,多个第一耦合区沿光纤的轴向依次布设,多个第二耦合区沿光纤的轴向依次布设。
第二方面,本申请还提供了一种光纤信号模式转换方法,应用于上述光纤信号模式转换装置,包括:所述非单模光纤内第一模式的信号传输至第一耦合区时,第一模式的信号解耦至单模光纤的基模信道,并在单模光纤内以基模信号传输;单模光纤内的基模信号传输至第二耦合区时,单模光纤的基模信号耦合至非单模光纤的第二模式信道,并在非单模光纤内以第二模式传输。
本申请实施例提供的光纤信号模式转换方法,由于第一耦合区内单模光纤的基模信号的有效折射率与第一模式的信号的有效折射率相等,当光纤内传输的第一模式的信号传输至第一耦合区内时,根据模式匹配条件,第一模式的信号解耦至单模光纤的基模信道,并在单模光纤内与基模信号传输,又由于第二耦合区内单模光纤的基模信号的有效折射率与第二模式的信号的有效折射率相等,单模光纤内的基模信号传输至第二耦合区时,根据模式匹配条件,单模光纤的基模信号耦合至光纤的第二模式信道,进而将第一模式转换为第二模式。
第三方面,本申请还提供了一种光纤传输系统,包括:传输光纤,传输光纤包括第一传输光纤和第二传输光纤,第一传输光纤和第二传输光纤均包括第一模式信道和第二模式信道; 第一传输光纤和第二传输光纤之间的节点处设置有前述的光纤信号模式转换装置;非单模光纤的进光口与第一传输光纤的出光口相对,非单模光纤的出光口与第二传输光纤的进光口相对。
本申请实施例提供的光纤传输系统,由于包括上述任一技术方案的光纤信号模式转换装置,这样通过光纤信号模式转换装置就可将第一传输光纤上的第一模式的信号转换至第二传输光纤的第二模式信道,并在第二传输光纤内以第二模式传输,且本申请实施例提供的光纤传输系统与上述技术方案所述的光纤信号模式转换装置能够解决相同的技术问题,并达到相同的预期效果。
在第三方面可能的实现方式中,光纤传输系统用于传输N种模式的信号,N为大于或者等于2的整数;传输光纤具有N段,N段传输光纤的轴向长度均相等,每一段传输光纤具有N个模式信道,N个模式信道与N种模式一一对应;光纤信号模式转换装置包括N-1个,两段传输光纤之间的节点处设置有一个光纤信号模式转换装置。光纤传输系统可实现差分模式群延时的补偿。
附图说明
图1为本申请实施例光纤传输系统的结构框图;
图2为本申请实施例光纤信号模式转换装置的结构示意图;
图3a为本申请实施例光纤信号模式转换装置的结构示意图;
图3b为本申请实施例光纤信号模式转换装置的结构示意图;
图4a为本申请实施例单模光纤的折射率的分布示意图;
图4b为本申请实施例单模光纤的折射率的分布示意图;
图5a为本申请实施例光纤信号模式转换装置的局部示意图;
图5b为图5a的耦合区的横截面示意图;
图6a为本申请实施例光纤信号模式转换装置的结构示意图;
图6b为本申请实施例光纤信号模式转换装置的结构示意图;
图7a为本申请实施例光纤信号模式转换装置的结构示意图;
图7b为图7a的第一耦合区横截面示意图;
图7c为图7a的第二耦合区横截面示意图;
图8a为本申请实施例光纤信号模式转换装置的结构示意图;
图8b为图8a的第二耦合区横截面示意图;
图9a为本申请实施例光纤信号模式转换装置的结构示意图;
图9b为图9a的第二耦合区横截面示意图;
图10为本申请实施例光纤传输系统的结构框图;
图11为图10中光纤信号模式转换装置的结构示意图;
图12为本申请实施例光纤传输系统的结构框图;
图13为图12中光纤信号模式转换装置的结构示意图;
图14为本申请实施例光纤传输系统的结构框图;
图15a为图14中光纤信号模式转换装置的结构示意图;
图15b为图15a的耦合区横截面示意图;
图15c为图15a的耦合区横截面示意图;
图16为本申请实施例光纤传输系统的结构框图;
图17为图16中光纤信号模式转换装置的结构示意图;
图18为本申请实施例光纤信号模式转换装置的结构示意图。
具体实施方式
本申请实施例涉及光纤传输系统、光纤信号模式转换装置及光纤信号模式转换方法,下面结合附图对光纤传输系统、光纤信号模式转换装置及光纤信号模式转换方法进行详细描述。
本发明实施例中,非单模包括少模和多模。下面的实施例以少模光纤和少模信号传输为例。
本申请实施例提供了一种光纤传输系统,参照图1,光纤传输系统包括第一传输光纤21和第二传输光纤22,第一传输光纤21和第二传输光纤22均包括第一模式信道和第二模式信道,第一模式信道用于传输第一模式的信号,第二模式信道用于传输第二模式的信号,第一传输光纤21和第二传输光纤22之间的节点处设置有光纤信号模式转换装置1,光纤信号模式转换装置1用于将第一模式转换为第二模式。
本申请实施例提供了一种光纤信号模式转换装置,参照图2,光纤信号模式转换装置1包括:少模光纤11和单模光纤12,少模光纤11包括第一模式信道和第二模式信道,第一模式信道用于传输第一模式的信号,第二模式信道用于传输第二模式的信号;沿着少模光纤11内信号的传输方向,单模光纤12和少模光纤11形成有第一耦合区13和第二耦合区14,第一耦合区13内单模光纤12的基模信号的有效折射率与第一模式的信号的有效折射率相等,且第一模式的信号可耦合至单模光纤12的基模信道,第二耦合区14内单模光纤12的基模信号的有效折射率与第二模式的信号的有效折射率相等,且单模光纤12的基模信号可耦合至第二模式信道。
由于第一耦合区13内单模光纤12的基模信号的有效折射率与第一模式的信号的有效折射率相等,第一模式的信号可耦合至单模光纤12的基模信道,这样少模光纤11的第一模式和单模光纤12的基模在第一耦合区13内满足模式匹配条件,少模光纤11中的第一模式的信号就可解耦至单模光纤12,并在单模光纤12中以基模传输;又因为单模光纤12的第一耦合区13的基模信号的有效折射率与第二耦合区14内的基模信号的有效折射率不同,且第二耦合区14内单模光纤12的基模信号的有效折射率与第二模式的信号的有效折射率相等,这样单模光纤12的基模和少模光纤11的第二模式在第二耦合区14内满足模式匹配条件,进而单模光纤12中基模的信号耦合至少模光纤11的第二模式信道,并在少模光纤11中以第二模式传输,从而实现了将第一模式转换为第二模式。
本实施例提供的光纤信号模式转换装置应用在光纤传输系统中时,可实现全光纤传输(传输光纤和模式转换装置均为光纤),且能够很好的兼容光纤传输系统,仅通过一根少模光纤11和一根单模光纤12就可将一种模式转换为另一种模式,结构简单,极大降低了传输系统成本。同时,一根少模光纤11和一根单模光纤12仅形成两个耦合区,插损少。
如图2所述的光纤信号模式转换装置用于将M 1模式转换为M 2模式(少模光纤11的进光口为M 1+M 3+···+M n,少模光纤11的出光口为M 2+M 3+···+M n),则少模光纤11包括M 1 模式信道、M 2模式信道、M 3模式信道、依次类推,直至Mn模式信道,第一耦合区13内单模光纤12的基模信号的有效折射率与M 1模式的信号的有效折射率n M1相等,且M 1模式的信号可耦合至单模光纤12的基模信道,第二耦合区14内单模光纤12的基模信号的有效折射率与M 2模式的信号的有效折射率n M2相等,且单模光纤12的基模信号可耦合至M 2模式信道。这样该光纤信号模式转换装置就可将M 1模式转换为M 2模式。
在一些场景中,需要将多种模式转换为多种模式。本申请实施例提供了一种光纤信号模式转换装置,如图3a所示。业务需求为将M 1、M 2和M 3模式转换为M 4、M 5和M 6模式(少模光纤11的进光口为M 1+M 2+M 3+M 7····+M n,少模光纤11的出光口为M 4+M 5+M 6+M 7···+M n),则少模光纤11包括M 1、M 2、M 3,直至Mn模式信道。单模光纤包括单模光纤12a、单模光纤12b和单模光纤12c,单模光纤12a、单模光纤12b和单模光纤12c均与少模光纤11形成第一耦合区和第二耦合区,第一耦合区内单模光纤12a的基模信号的有效折射率与M 1模式的信号的有效折射率n M1相等,且M 1模式的信号可耦合至单模光纤12a的基模信道,第二耦合区内单模光纤12a的基模信号的有效折射率与M 4模式的信号的有效折射率n M4相等,且单模光纤12a的基模信号可耦合至M 4模式信道;第一耦合区内单模光纤12b的基模信号的有效折射率与M 2模式的信号的有效折射率n M2相等,且M 2模式的信号可耦合至单模光纤12b的基模信道,第二耦合区内单模光纤12b的基模信号的有效折射率与M 5模式的信号的有效折射率n M5相等,且单模光纤12b的基模信号可耦合至M 5模式信道;第一耦合区内单模光纤12c的基模信号的有效折射率与M 3模式的信号的有效折射率n M3相等,且M 3模式的信号可耦合至单模光纤12c的基模信道,第二耦合区内单模光纤12c的基模信号的有效折射率与M 6模式的信号的有效折射率n M6相等,且单模光纤12c的基模信号可耦合至M 6模式信道,这样该光纤信号模式转换装置就可将M 1模式、M 2模式和M 3模式转换为M 4模式、M 5模式和M 6模式。
需要说明的是:如图3a所示的光纤信号模式转换装置不限于上述转换方式,也可以是:第一耦合区内单模光纤12a、12b、12c的基模信号的有效折射率分别与M 1、M 2、M 3模式的信号的有效折射率相等,第二耦合区内单模光纤12a、12b、12c的基模信号的有效折射率分别与M 5、M 6、M 4模式的信号的有效折射率相等。
在一些场景中,需要实时或较高频次地动态将多种模式转换为多种模式,且前后次动态转换时,多种模式与多种模式的转换对应关系不同。本申请实施例提供了一种光纤信号模式转换装置,如图3b所示。业务需求为将M 1、M 2和M 3模式转换为M 4、M 5和M 6模式(少模光纤11的进光口为M 1+M 2+M 3+M 7····+M n,少模光纤11的出光口为M 4+M 5+M 6+M 7···+M n),则少模光纤11包括M 1、M 2、M 3,直至M n模式信道。单模光纤包括单模光纤12a、单模光纤12b、单模光纤12c、单模光纤12d、单模光纤12e和单模光纤12f,单模光纤12a、单模光纤12b和单模光纤12c均与少模光纤11形成第一耦合区,单模光纤12d、单模光纤12e和单模光纤12f均与少模光纤11形成第二耦合区。第一耦合区内单模光纤12a的基模信号的有效折射率与M 1模式的信号的有效折射率n M1相等,且M 1模式的信号可耦合至单模光纤12a的基模信道;第一耦合区内单模光纤12b的基模信号的有效折射率与M 2模式的信号的有效折射率n M2相等,且M 2模式的信号可耦合至单模光纤12b的基模信道;第一耦合区内单模光 纤12c的基模信号的有效折射率与M 3模式的信号的有效折射率n M3相等,且M 3模式的信号可耦合至单模光纤12c的基模信道。第二耦合区内单模光纤12d的基模信号的有效折射率与M 4模式的信号的有效折射率n M4相等,且单模光纤12d的基模信号可耦合至M 4模式信道;第二耦合区内单模光纤12e的基模信号的有效折射率与M 5模式的信号的有效折射率n M5相等,且单模光纤12e的基模信号可耦合至M 5模式信道;第二耦合区内单模光纤12f的基模信号的有效折射率与M 6模式的信号的有效折射率n M6相等,且单模光纤12f的基模信号可耦合至M 6模式信道。在单模光纤12a、12b、12c和单模光纤12d、12e、12f之间为动态光交换装置31,其功能为将单模光纤12a、12b或12c中每根光纤内传输的光信号分别交换至单模光纤12d、12e或12f中,且其交换对应关系可以实时或较高频次地动态变化。这样该光纤信号模式转换装置就可将M 1模式、M 2模式或M 3模式分别转换为M 4模式、M 5模式或M 6模式,且模式的转换对应关系可以实时或较高频次地动态变化。例如,动态光交换装置31在工作状态1时,M 1模式转换为M 4模式、M 2模式转换为M 5模式、M 3模式转换为M 6模式;动态光交换装置31在动态切换到工作状态2后,M 1模式转换为M 5模式、M 2模式转换为M 6模式、M 3模式转换为M 4模式。需要说明的是:如图3b所示的光纤信号模式转换装置不限于同时进行上述3对模式之间的转换,也可以同时进行2对、4对或更多对模式之间的转换。
一般单模光纤12的非耦合区内纤芯的折射率介于两个耦合区内纤芯的折射率之间。设第一耦合区内单模光纤12的纤芯的折射率为第一折射率,第二耦合区内单模光纤12的纤芯的折射率为第二折射率,单模光纤12的位于第一耦合区和第二耦合区之间的非耦合区内的纤芯的折射率为第三折射率,第三折射率介于第一折射率和第二折射率之间。
第三折射率介于第一折射率和第二折射率之间,具有多种实施方式,参照图4a和图4b,当第一耦合区内单模光纤的纤芯的第一折射率大于第二耦合区内单模光纤的纤芯的第二折射率时,第三折射率呈渐变趋势,例如,可以是呈线性渐变(图4a直线1),可以是非线性渐变(图4a曲线2和曲线3),也可以是呈台阶式渐变如图4b。
为了缩短少模光纤11的长度尺寸以减小转换装置体积,参照图5a,第一耦合区13的长度L等于第一模式的信号耦合至单模光纤的基模信道的耦合长度,耦合长度指光信号能量第一次从少模光纤11完全转移至单模光纤12时的最短的耦合长度。通过将第一耦合区13的长度L控制等于第一模式的信号耦合至单模光纤的基模信道的耦合长度,而不是耦合长度的大于1的整数倍,这样就可缩短光纤的长度尺寸,尤其是具有多个第一耦合区时,缩短光纤的长度尺寸的效果更加明显。
第二耦合区14的长度L同样应控制等于单模光纤的基模信号耦合至第二模式信道的耦合长度,耦合长度为光信号能量第一次从单模光纤12完全转移至少模光纤11时的最短的耦合长度。
本申请实施例中,沿光纤的径向方向,涉及的单模光纤12和少模光纤11包括由内至外依次设置的纤芯、包层和涂覆层。纤芯完成光信号的传输,包层与纤芯的折射率不同,将光信号封闭在纤芯中传输并起到保护纤芯的作用,涂覆层作为纤芯和包层的保护结构。
本发明实施例还提供耦合区的形成方式。第一耦合区内,少模光纤11和单模光纤12相平行布设且少模光纤11的包层与单模光纤12的包层相熔接,或者通过侧抛粘结;第二耦合 区内,少模光纤11和单模光纤12也相平行布设且少模光纤11的包层与单模光纤12的包层相熔接,或者通过侧抛粘结。当然,少模光纤11和单模光纤12也可通过其他结构连接。
参照图5b,为耦合区的横截面示意图,少模光纤11的纤芯11-2的中心与单模光纤12的纤芯12-2的中心之间的距离为d,其取值范围通常为:d∈[R f1+R s1,R f2+R s2];其中:R f1为少模光纤11的纤芯11-2的半径;R s1为单模光纤12的纤芯12-2的半径;R f2为少模光纤11的包层11-1的半径;R s2为单模光纤12的包层12-1的半径。
通常,根据需转换的第一模式确定在第一耦合区内解耦时的最大耦合效率,再根据最大耦合效率确定第一耦合区内,少模光纤的纤芯中心与单模光纤的纤芯中心之间的距离d,然后根据d值确定第一耦合区的耦合长度。同样,根据需转换成的第二模式确定在第二耦合区内解耦时的最大耦合效率,再根据最大耦合效率确定第二耦合区内光纤的纤芯中心与单模光纤的纤芯中心之间的距离d,然后根据d值确定第二耦合区的耦合长度。具体参数设计不再赘述。
本发明实施例还提供一种模式转换方式,参照图6a,少模光纤包括第一少模光纤111和第二少模光纤112,第一耦合区13形成在单模光纤12和第一少模光纤111之间,第二耦合区14形成在单模光纤12和第二少模光纤112之间。也就是说,可以将转换的第二模式转换至另外一根少模光纤上,这样可使用于模式分插复用场景。
一根少模光纤中2个以上的多个模式,也可以动态转换到另外2个以上多根少模光纤中的多个模式。例如,参照图6b,少模光纤包括第一少模光纤111、第二少模光纤112和第三少模光纤113,单模光纤包括单模光纤121、单模光纤122、单模光纤123和单模光纤124,在单模光纤121、122和单模光纤123、124之间为动态光交换装置31,其功能为将单模光纤121或122中每根光纤内传输的光信号分别交换至单模光纤123或124中,且其交换对应关系可以实时或较高频次地动态变化。这样该光纤信号模式转换装置就可将第一少模光纤111中的M 1模式或M 2模式分别转换为第二少模光纤112中的M 3模式或第三少模光纤113中的M 4模式,且模式的转换对应关系可以实时或较高频次地动态变化。也就是说,可以将一根少模光纤中的多个模式,动态转换到另外多根少模光纤中的多个模式,可使用于动态模式可调的模式分插复用场景。
当第一模式和第二模式为一组简并模式内的两个模式时,本申请实施例提供的光纤信号模式转换装置依然可以将第一模式转换为第二模式,第一耦合区13内单模光纤12的基模信号的有效折射率等于第二耦合区14内单模光纤12的基模信号的有效折射率,同时,第一耦合区13内沿着光纤的横截面,少模光纤11的纤芯中心与单模光纤12的纤芯中心处于第一直线上,第二耦合区14内沿着少模光纤11的横截面,少模光纤11的纤芯中心与单模光纤12的纤芯中心处于第二直线上,第一直线与第二直线的夹角等于第一模式和第二模式的相位差。从而,本申请实施例提供的光纤信号模式转换装置实现了简并模内模式的转换。
需要说明的是:第一直线与第二直线的夹角等于第一模式和第二模式的相位差不仅指第一直线与第二直线的夹角恰好等于第一模式和第二模式的相位差,第一直线与第二直线的夹角接近第一模式和第二模式的相位差也在本申请的保护范围之内。
参照图7a,光纤信号模式转换装置用于将M 1a模式转换为M 1b模式,M 1a模式和M 1b模 式为简并模M 1内的两个模式,且M 1a模式和M 1b模式的相位差
Figure PCTCN2020141092-appb-000001
为45°,第一耦合区13内单模光纤12的基模信号的有效折射率等于第二耦合区14内单模光纤12的基模信号的有效折射率,且均等于M 1模式的信号的有效折射率(n M1a=n M1b);第一耦合区13内沿着光纤的横截面,参照图7b,少模光纤11的纤芯11-2的中心与单模光纤12的纤芯12-2的中心处于第一直线L3上,第二耦合区14内沿着光纤的横截面,参照图7c,少模光纤11的纤芯11-2的中心与单模光纤12的纤芯12-2的中心处于第二直线L4上,第一直线L3与第二直线L4的夹角α2等于M 1a模式和M 1b模式的相位差
Figure PCTCN2020141092-appb-000002
即α2=45°。
对于第二模式为简并模,且第二模式包括第一子模式和第二子模式的情况,光纤信号模式转换装置用于将第一模式转换为第一子模式时,第二耦合区内单模光纤的基模信号的有效折射率为n 1,光纤信号模式转换装置用于将第一模式转换为第二子模式,第二耦合区内单模光纤的基模信号的有效折射率为n 2,且n 1=n 2,光纤信号模式转换装置用于将第一模式转换为第一子模式时,第二耦合区内沿着光纤的横截面,光纤的纤芯的中心与单模光纤的纤芯的中心处于第三直线上,光纤信号模式转换装置用于将第一模式转换为第二子模式,第二耦合区内沿着光纤的横截面,光纤的纤芯的中心与单模光纤的纤芯的中心处于第四直线上,第三直线与第四直线的夹角等于第一子模式和第二子模式的相位差。所以,本申请实施例提供的光纤信号模式转换装置能够实现简并模内模式转换的区分。
需要说明的是:第三直线与第四直线的夹角等于第一子模式和第二子模式的相位差不仅指第三直线与第四直线的夹角恰好等于第一子模式和第二子模式的相位差,第三直线与第四直线的夹角接近第一子模式和第二子模式的相位差也在本申请的保护范围之内。
参照图8a,光纤信号模式转换装置用于将M 1模式转换为M 2a模式(M 2a模式和M 2b模式为简并模M 2内的两种模式,M 2a模式和M 2b模式的相位差
Figure PCTCN2020141092-appb-000003
为90°),第二耦合区内单模光纤的基模信号的有效折射率等于M 2a模式的信号的有效折射率n M2a,参照图9a光纤信号模式转换装置用于将M 1模式转换为M 2b模式,第二耦合区内单模光纤的基模信号的有效折射率为n M2b,n M2a=n M2b
参照图8b,图8a所示的第二耦合区内沿着光纤的横截面,光纤的纤芯11-2的中心与单模光纤的纤芯12-2的中心处于第三直线L1上,参照图9b,图9a所示的第二耦合区内沿着光纤的横截面,光纤的纤芯11-2的中心与单模光纤的纤芯12-2的中心处于第四直线L2上,第三直线L1与第四直线L2的夹角α1等于M 2a模式和M 2b模式的相位差
Figure PCTCN2020141092-appb-000004
即α1=90°。
本申请实施例提供的光纤信号模式转换装置还可实现模式循环转换应用,进而用于少模和多模光纤传输系统中。例如,传输系统传输N种模式的信号,N大于1,为了实现差分模式时延的补偿,传输系统中的传输光纤具有N段,N段传输光纤的轴向长度均相等,每一段传输光纤具有N个模式信道,N个模式信道与N种模式一一对应。传输系统中有N-1个光纤信号模式转换装置,两段传输光纤之间的节点处设置有一个光纤信号模式转换装置。每个光纤信号模式转换装置的少模光纤11包括N个模式信道,N个模式信道与N种模式一一对应;单模光纤12具有N个,任一个单模光纤和少模光纤11均形成有第一耦合区和第二耦合区;少模光纤11耦合至任一单模光纤的模式为N种模式中的一种,且光纤耦合至N个单模光纤的模式均不相同;任一个单模光纤耦合至光纤的模式为N种模式中的一种,且N个单模光纤 耦合至光纤的模式均不相同,且少模光纤11耦合至任一单模光纤的模式与该单模光纤耦合至光纤的模式不同,从而形成循环转换。
下述通过例子对具有光纤信号模式转换装置的光纤传输系统进行说明。
如图10所示,光纤传输系统用于传输LP 01、LP 11、LP 21和LP 02模式的信号,传输光纤包括第一传输光纤211、第二传输光纤212、第三传输光纤213和第二传输光纤214,且第一传输光纤211、第二传输光纤212、第三传输光纤213和第二传输光纤214的轴向长度均相等,光纤信号模式转换装置1具有三个,第一传输光纤211和第二传输光纤212的节点处设置一个光纤信号模式转换装置1,第二传输光纤212和第三传输光纤213的节点处设置一个光纤信号模式转换装置1,第三传输光纤213和第四传输光纤214的节点处设置一个光纤信号模式转换装置1,且三个光纤信号模式转换装置1的结构均相同。
如图11为其中一种结构的光纤信号模式转换装置,单模光纤包括单模光纤121、122、123和124,均与少模光纤11形成有第一耦合区和第二耦合区,第一耦合区内单模光纤121、122、123和124的基模信号的有效折射率分别与LP 01、LP 11、LP 21和LP 02模式的信号的有效折射率n LP01、n LP11、n LP21和n LP02相等,第二耦合区内单模光纤121、122、123和124的基模信号的有效折射率分别与LP 11模式的信号的有效折射率n LP11、n LP21、n LP02和n LP01相等,从而该光纤信号模式转换装置实现了LP 01模式→LP 11模式、LP 11模式→LP 21模式、LP 21模式→LP 02模式和LP 02模式→LP 01模式的转换,所以,采用如图11所示的光纤信号模式转换装置的光纤传输系统,经过三次循环模式的转换,每一个模式的信号均经过了LP 01模式、LP 11模式、LP 21模式和LP 02模式四个模式的等距传输,因此该光纤传输系统可实现差分模式群时延的补偿。
如图12所示,光纤传输系统实现了与图10顺序不同的模式循环。图13所示的光纤信号模式转换装置实现了LP 01模式→LP 21模式、LP 21模式→LP 02模式、LP 02模式→LP 11模式、和LP 11模式→LP 01模式的转换。同样,采用如图12和图13所示的光纤信号模式转换装置的光纤传输系统,经过三次循环模式的转换,每一个模式的信号均经过了LP 01模式、LP 11模式、LP 21模式和LP 02模式四个模式的等距传输,因此该光纤传输系统可实现差分模式群时延的补偿。
如图14所示,光纤传输系统用于传输LP 01模式的信号、LP 11a模式的信号和LP 11b模式的信号,LP 11a模式和LP 11b模式为简并模内的两种模式。传输光纤包括第五传输光纤215、第六传输光纤216和第七传输光纤217,且第五传输光纤215、第六传输光纤216和第七传输光纤217的轴向长度均相等,光纤信号模式转换装置1具有两个,第五传输光纤21和第六传输光纤216的节点处设置一个光纤信号模式转换装置1,第六传输光纤216和第七传输光纤217的节点处设置一个光纤信号模式转换装置1,且两个光纤信号模式转换装置1的结构均相同。
如图15a所示,本申请实施例提供了一种光纤信号模式转换装置,单模光纤包括单模光纤125、126和127,均与少模光纤11形成有第一耦合区和第二耦合区,第一耦合区内单模光纤125、126和127的基模信号的有效折射率分别与LP 01、LP 11a、LP 11b模式的信号的有效折射率n LP01、n LP11a和n LP11b相等,第二耦合区内单模光纤125、126和127的基模信号的有效折射率分别与LP 11a、LP 11b、LP 01模式的信号的有效折射率n LP11a、n LP11b和n LP01相等。该光纤信号模式转换装置实现了LP 01模式→LP 11a模式、LP 11a模式→LP 11b模式、LP 11b模式 →LP 01模式的转换,所以,采用如图14和图15a所示的光纤信号模式转换装置的光纤传输系统,经过两次循环模式的转换,每一个模式的信号均经过了LP 01模式、LP 11a模式和LP 11b模式三个模式的等距传输,因此该光纤传输系统可实现差分模式群时延的补偿。
因为LP 11a模式和LP 11b模式为简并模的两种模式,LP 11a模式和LP 11b模式的相位差为
Figure PCTCN2020141092-appb-000005
参照图15b和图15c,单模光纤126的第一耦合区内,沿着少模光纤11的横截面,少模光纤11的纤芯11-2的中心与单模光纤126的纤芯126-2的中心处于第五直线上,第二耦合区内,沿着少模光纤11的横截面,少模光纤11的纤芯11-2的中心与单模光纤126的纤芯126-2的中心处于第六直线上,第五直线与第六直线的夹角等于LP 11a模式和LP 11b模式的相位差。
如图16所示,光纤传输系统实现了与图14顺序不同的模式循环。图17所示的光纤信号模式转换装置实现了LP 01模式→LP 11b模式、LP 11b模式→LP 11a模式、LP 11a模式→LP 01模式的转换。同样,采用如图16和图17所示的光纤信号模式转换装置的光纤传输系统,经过两次循环模式的转换,每一个模式的信号均经过了LP 01模式、LP 11a模式和LP 11b模式三个模式的等距传输,因此该光纤传输系统可实现差分模式群时延的补偿。
本申请实施例提供的光纤信号模式转换装置还可用于模式分插复用的场景中,参照图18,少模光纤111传输的LP 01模式解耦至单模光纤121,最终转换为少模光纤112中的LP 11模式的信号传输,少模光纤111传输的LP 11模式解耦至单模光纤122,最终转换为少模光纤113中的LP 21模式的信号传输,即实现了不同光纤中的模式信号的交换,实现模式复用信号的分插复用。
本申请实施例还提供了一种光纤信号模式转换方法,该光纤信号模式转换方法应用于上述光纤信号模式转换装置,包括以下步骤:
S1:少模光纤11内第一模式的信号传输至第一耦合区13时,第一模式的信号解耦至单模光纤12的基模信道,并在单模光纤12内以基模信号传输;
S2:单模光纤12内的基模信号传输至第二耦合区14时,单模光纤12的基模信号耦合至少模光纤11的第二模式信道,并在少模光纤11内以第二模式传输。从而实现了将第一模式转换为第二模式。
在本说明书的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (16)

  1. 一种光纤信号模式转换装置,其特征在于,包括:
    非单模光纤,所述非单模光纤包括第一模式信道和第二模式信道,所述第一模式信道用于传输第一模式的信号,所述第二模式信道用于传输第二模式的信号;
    单模光纤,沿着所述非单模光纤内信号的传输方向,与所述非单模光纤形成第一耦合区和第二耦合区;其中,
    所述第一耦合区内所述单模光纤的基模信号的有效折射率与所述第一模式信号的有效折射率相等,且所述第一模式信号可耦合至所述单模光纤的基模信道;
    所述第二耦合区内所述单模光纤的基模信号的有效折射率与所述第二模式信号的有效折射率相等,且所述单模光纤的基模信号可耦合至所述第二模式信道。
  2. 根据权利要求1所述的光纤信号模式转换装置,其特征在于,所述非单模光纤包括第一光纤,所述第一耦合区形成在所述单模光纤和所述第一光纤之间,所述第二耦合区形成在所述单模光纤和所述第一光纤之间。
  3. 根据权利要求1所述的光纤信号模式转换装置,其特征在于,所述非单模光纤包括第一光纤和第二光纤,所述第一耦合区形成在所述单模光纤和所述第一光纤之间,所述第二耦合区形成在所述单模光纤和所述第二光纤之间。
  4. 根据权利要求3所述的光纤信号模式转换装置,其特征在于,所述光纤信号模式转换装置还包括动态光交换装置,所述第一光纤与M个所述单模光纤形成M个所述第一耦合区,并通过M个所述单模光纤连接到所述动态光交换装置的输入端;所述第二光纤包括M个,分别与M个所述单模光纤形成M个所述第二耦合区,并通过M个所述单模光纤连接到所述动态光交换装置的输出端;M为大于或等于2的整数。
  5. 根据权利要求1-4中任一项所述的光纤信号模式转换装置,其特征在于,所述第一耦合区的长度等于所述第一模式的信号耦合至所述单模光纤的基模信道的耦合长度。
  6. 根据权利要求1-5中任一项所述的光纤信号模式转换装置,其特征在于,所述第二耦合区的长度等于所述单模光纤的基模信号耦合至所述第二模式信道的耦合长度。
  7. 根据权利要求1-6中任一项所述的光纤信号模式转换装置,其特征在于,所述第一耦合区内,所述非单模光纤和所述单模光纤相平行布设且所述非单模光纤的包层与所述单模光纤的包层相熔接,在第二耦合区内,所述非单模光纤和所述单模光纤相平行布设且所述非单模光纤的包层与所述单模光纤的包层相熔接,所述非单模光纤的纤芯中心与所述单模光纤的纤芯中心之间的距离d的取值范围为:d∈[R f1+R s1,R f2+R s2];
    其中:R f1为所述非单模光纤的纤芯的半径;R s1为所述单模光纤的纤芯的半径;R f2为所述非单模光纤的包层的半径;R s2为所述单模光纤的包层的半径。
  8. 根据权利要求1-7中任一项所述的光纤信号模式转换装置,其特征在于,所述第一耦合区内所述单模光纤的纤芯的折射率为第一折射率,所述第二耦合区内所述单模光纤的纤芯的折射率为第二折射率,所述单模光纤的位于所述第一耦合区和所述第二耦合区之间的非耦合区内的纤芯的折射率为第三折射率,所述第三折射率介于所述第一折射率和所述第二折射率之间。
  9. 根据权利要求1-8中任一项所述的光纤信号模式转换装置,其特征在于,所述第一模式和所述第二模式为简并模内的两个模式;
    所述第一耦合区内单模光纤的基模信号的有效折射率等于所述第二耦合区内单模光纤的基模信号的有效折射率;
    所述第一耦合区内,沿着所述非单模光纤的横截面,所述非单模光纤的纤芯中心与所述单模光纤的纤芯中心处于第一直线上,所述第二耦合区内,沿着所述非单模光纤的横截面,所述非单模光纤的纤芯中心与所述单模光纤的纤芯中心处于第二直线上,所述第一直线与所述第二直线的夹角等于所述第一模式和所述第二模式的相位差。
  10. 根据权利要求1-8中任一项所述的光纤信号模式转换装置,其特征在于,所述第二模式为简并模,所述第二模式包括第一子模式和第二子模式;
    所述光纤信号模式转换装置用于将所述第一模式转换为所述第一子模式,所述第二耦合区内所述单模光纤的基模信号的有效折射率为n 1,所述光纤信号模式转换装置还用于将所述第一模式转换为所述第二子模式,所述第二耦合区内所述单模光纤的基模信号的有效折射率为n 2,且n 1=n 2
    所述光纤信号模式转换装置用于将所述第一模式转换为所述第一子模式,所述第二耦合区内沿着所述非单模光纤的横截面,所述非单模光纤的纤芯中心与所述单模光纤的纤芯中心处于第三直线上,所述光纤信号模式转换装置还用于将所述第一模式转换为所述第二子模式,所述第二耦合区内沿着所述非单模光纤的横截面,所述非单模光纤的纤芯中心与所述单模光纤的纤芯中心处于第四直线上,所述第三直线与所述第四直线的夹角等于所述第一子模式和所述第二子模式的相位差。
  11. 根据权利要求1-10中任一项所述的光纤信号模式转换装置,其特征在于,所述光纤信号模式转换装置用于对N种模式进行转换,N为大于或者等于2的整数;
    所述非单模光纤包括N个模式信道,所述N个模式信道与所述N种模式一一对应;
    所述单模光纤具有N个,任一个所述单模光纤和所述非单模光纤均形成有所述第一耦合区和所述第二耦合区;
    所述非单模光纤耦合至任一所述单模光纤的模式为所述N种模式中的一种;
    任一个所述单模光纤耦合至所述非单模光纤的模式为所述N种模式中的一种,且所述非单模光纤耦合至任一所述单模光纤的模式与该单模光纤耦合至所述非单模光纤的模式不同。
  12. 根据权利要求11所述的光纤信号模式转换装置,其特征在于,多个所述第一耦合区沿所述非单模光纤的轴向依次布设,多个所述第二耦合区沿所述非单模光纤的轴向依次布设。
  13. 根据权利要求11或12所述的光纤信号模式转换装置,其特征在于,所述光纤信号模式转换装置还包括动态光交换装置,所述动态光交换装置的N个输入端与N个所述第一耦合区通过N个所述单模光纤连接,所述动态光交换装置的N个输出端与N个所述第二耦合区通过N个所述单模光纤连接。
  14. 一种光纤信号模式转换方法,其特征在于,所述光纤信号模式转换方法应用于如权利要求1-13中任一项所述的光纤信号模式转换装置,包括:
    所述非单模光纤内第一模式的信号传输至第一耦合区时,所述第一模式的信号解耦至单模光纤的基模信道,并在所述单模光纤内以基模信号传输;
    所述单模光纤内的基模信号传输至第二耦合区时,所述单模光纤的基模信号耦合至所述非单模光纤的第二模式信道,并在所述非单模光纤内以第二模式传输。
  15. 一种光纤传输系统,其特征在于,包括:
    传输光纤,所述传输光纤包括第一传输光纤和第二传输光纤,所述第一传输光纤和所述第二传输光纤均包括第一模式信道和第二模式信道;
    所述第一传输光纤和所述第二传输光纤之间的节点处设置有如权利要求1~13中任一项所述的光纤信号模式转换装置;
    所述非单模光纤的进光口与所述第一传输光纤的出光口相对,所述非单模光纤的出光口与所述第二传输光纤的进光口相对。
  16. 根据权利要求15所述的光纤传输系统,其特征在于,所述光纤传输系统用于传输N种模式的信号,N为大于或者等于2的整数;
    所述传输光纤具有N段,N段所述传输光纤的轴向长度均相等,每一段所述传输光纤具有N个模式信道,所述N个模式信道与所述N种模式一一对应;
    所述光纤信号模式转换装置包括N-1个,两段所述传输光纤之间的节点处设置有一个所述光纤信号模式转换装置。
PCT/CN2020/141092 2019-12-30 2020-12-29 光纤信号模式转换装置、转换方法及光纤传输系统 WO2021136305A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022540386A JP7317240B2 (ja) 2019-12-30 2020-12-29 光ファイバ信号モード変換装置及び変換方法、及び、光ファイバ伝送システム
EP20910073.4A EP4075174A4 (en) 2019-12-30 2020-12-29 OPTICAL FIBER SIGNAL MODE CONVERSION DEVICE, OPTICAL FIBER SIGNAL MODE CONVERSION METHOD AND OPTICAL FIBER TRANSMISSION SYSTEM
US17/855,110 US20220334311A1 (en) 2019-12-30 2022-06-30 Optical fiber signal mode conversion apparatus and conversion method, and optical fiber transmission system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911405404 2019-12-30
CN201911405404.8 2019-12-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/855,110 Continuation US20220334311A1 (en) 2019-12-30 2022-06-30 Optical fiber signal mode conversion apparatus and conversion method, and optical fiber transmission system

Publications (1)

Publication Number Publication Date
WO2021136305A1 true WO2021136305A1 (zh) 2021-07-08

Family

ID=76687295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/141092 WO2021136305A1 (zh) 2019-12-30 2020-12-29 光纤信号模式转换装置、转换方法及光纤传输系统

Country Status (5)

Country Link
US (1) US20220334311A1 (zh)
EP (1) EP4075174A4 (zh)
JP (1) JP7317240B2 (zh)
CN (1) CN113126207A (zh)
WO (1) WO2021136305A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5048909A (en) * 1990-07-27 1991-09-17 At&T Bell Laboratories Adiabatic reflection apparatus
WO1999063375A1 (en) * 1998-06-04 1999-12-09 California Institute Of Technology Optical devices based on energy transfer between different modes in optical waveguide
CN103698848A (zh) * 2013-12-18 2014-04-02 江苏大学 一种光纤模式转换器
CN106556574A (zh) * 2015-09-24 2017-04-05 深圳先进技术研究院 在线双光束干涉型光纤折射率传感器及折射率检测装置
CN106842430A (zh) * 2017-04-05 2017-06-13 电子科技大学 一种非对称定向耦合器
CN207704070U (zh) * 2017-11-10 2018-08-07 深圳伊讯科技有限公司 一种单模、多模光纤模式转换装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0690338B2 (ja) * 1985-06-17 1994-11-14 日本電信電話株式会社 フアイバ形センサ
US4828350A (en) * 1986-01-17 1989-05-09 The Board Of Trustees Of The Leland Stanford Junior University Fiber optic mode selector
US5717798A (en) * 1996-09-12 1998-02-10 Lucent Technologies Inc. Optical waveguide system comprising a mode coupling grating and a mode discrimination coupler
US6907169B2 (en) * 2001-10-30 2005-06-14 Xponent Photonics Inc Polarization-engineered transverse-optical-coupling apparatus and methods
JP6653886B2 (ja) 2016-09-02 2020-02-26 日本電信電話株式会社 モード合分波器及びモード多重伝送システム
CN108519641B (zh) * 2018-05-11 2019-07-19 兰州大学 一种可重构的光模式转换器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5048909A (en) * 1990-07-27 1991-09-17 At&T Bell Laboratories Adiabatic reflection apparatus
WO1999063375A1 (en) * 1998-06-04 1999-12-09 California Institute Of Technology Optical devices based on energy transfer between different modes in optical waveguide
CN103698848A (zh) * 2013-12-18 2014-04-02 江苏大学 一种光纤模式转换器
CN106556574A (zh) * 2015-09-24 2017-04-05 深圳先进技术研究院 在线双光束干涉型光纤折射率传感器及折射率检测装置
CN106842430A (zh) * 2017-04-05 2017-06-13 电子科技大学 一种非对称定向耦合器
CN207704070U (zh) * 2017-11-10 2018-08-07 深圳伊讯科技有限公司 一种单模、多模光纤模式转换装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4075174A4

Also Published As

Publication number Publication date
EP4075174A1 (en) 2022-10-19
JP2023508708A (ja) 2023-03-03
JP7317240B2 (ja) 2023-07-28
CN113126207A (zh) 2021-07-16
US20220334311A1 (en) 2022-10-20
EP4075174A4 (en) 2023-06-14

Similar Documents

Publication Publication Date Title
JP6550061B2 (ja) マルチコアファイバおよびその製造方法
CN111239910B (zh) 一种光子灯笼型简并模组复用/解复用器及传输方法
US10784961B2 (en) Concentric fiber for space-division multiplexed optical communications and method of use
WO2010038861A1 (ja) 結合系マルチコアファイバ、結合モード合分波器、マルチコアファイバ伝送システム、およびマルチコアファイバ伝送方法
EP1279974A2 (en) Y-branched optical waveguide and multi-stage optical power splitter using the same
WO2018018666A1 (zh) 一种少模光纤器件
JP2023126651A (ja) マルチコア光ファイバ
CN108508539B (zh) 基于锥形非对称定向耦合器的硅基波分复用器
CN110542950B (zh) 一种基于空间三维波导的简并模式组的模式解复用器
JP6285842B2 (ja) 光伝送システム
CN107272115A (zh) 一种基于三芯光纤的模式复用器/解复用器
CN106772786A (zh) 一种支持多个线偏振模式与轨道角动量模式的少模光纤
WO2022134663A1 (zh) 一种多芯光纤、传输系统和多芯光纤扩容方法
JP6368438B2 (ja) 通信システム及びコネクタ
WO2021136305A1 (zh) 光纤信号模式转换装置、转换方法及光纤传输系统
US5175778A (en) Integrated optic waveguide coupler with reduced wavelength sensitivity
CN104730645A (zh) 一种用于模式复用-波分复用混合技术的复用-解复用器
JP6592247B2 (ja) 光伝送システム
CN113746555B (zh) 一种基于高速单模光模块的多模光纤传输系统
CN113568089B (zh) 一种基于多芯环形光子灯笼的模分复用器
WO2021136041A1 (zh) 一种通信系统
CN113346977A (zh) 一种少模光纤模分复用信号四模式循环转换系统
CN107290825B (zh) 基于双锥组合结构的模式转换器
JP6384871B2 (ja) モード合分波器
JPWO2002018995A1 (ja) 非対称型光カプラ、光送受信機、及び、波長多重化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20910073

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022540386

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020910073

Country of ref document: EP

Effective date: 20220715