WO2021136086A1 - 参考信号发送方法和装置、参考信号接收方法和装置、通信节点及介质 - Google Patents

参考信号发送方法和装置、参考信号接收方法和装置、通信节点及介质 Download PDF

Info

Publication number
WO2021136086A1
WO2021136086A1 PCT/CN2020/139348 CN2020139348W WO2021136086A1 WO 2021136086 A1 WO2021136086 A1 WO 2021136086A1 CN 2020139348 W CN2020139348 W CN 2020139348W WO 2021136086 A1 WO2021136086 A1 WO 2021136086A1
Authority
WO
WIPO (PCT)
Prior art keywords
srs
resource
links
sending
srs resource
Prior art date
Application number
PCT/CN2020/139348
Other languages
English (en)
French (fr)
Inventor
王瑜新
鲁照华
吴昊
蒋创新
李永
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2021136086A1 publication Critical patent/WO2021136086A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated

Definitions

  • This application relates to a wireless communication network, for example, to a method and device for sending a reference signal, a method and device for receiving a reference signal, a communication node and a medium.
  • This application provides a method and device for sending a reference signal, a method and device for receiving a reference signal, a communication node and a medium, so as to improve the flexibility of sending a reference signal and the reliability of communication.
  • the instruction information is used to instruct the second communication node to send a reference signal
  • the instruction information includes at least one of Downlink Control Information (DCI) and high-level signaling; send according to the instruction information The reference signal.
  • DCI Downlink Control Information
  • the embodiment of the present application also provides a reference signal receiving device, including:
  • the embodiment of the present application also provides a computer-readable storage medium, and a computer program is stored on the computer-readable storage medium, and when the program is executed by a processor, the above-mentioned reference signal sending method or reference signal receiving method is implemented.
  • FIG. 2 is a schematic diagram of jointly triggering SRS and CSI-RS according to an embodiment
  • FIG. 3 is a schematic diagram of jointly triggering SRS and CSI-RS according to another embodiment
  • FIG. 5 is a flowchart of a method for receiving a reference signal according to an embodiment
  • FIG. 6 is a schematic structural diagram of a reference signal sending device provided by an embodiment
  • FIG. 7 is a schematic structural diagram of a reference signal receiving apparatus provided by an embodiment
  • FIG. 8 is a schematic diagram of the hardware structure of a communication node provided by an embodiment.
  • the first communication node can determine the channel state information of the second communication node according to the reference signal sent by the second communication node, and perform operations such as frequency domain selection scheduling and closed-loop power control based on this.
  • the second communication node may be configured with multiple antenna ports, or may send multiple reference signals through different time slots, and the communication environment and configuration conditions are complex and diverse. There is a lack of an effective mechanism for indicating reference signal transmission in related technologies.
  • This embodiment provides a reference signal sending method, which is applied to a second communication node.
  • the second communication node receives indication information through downlink control information or high-level signaling, and sends reference signals according to the indication information, which can adapt to different communication environments and configurations Circumstances, thereby improving the flexibility of sending reference signals and the reliability of wireless communication.
  • FIG. 1 is a flowchart of a method for sending a reference signal according to an embodiment. As shown in FIG. 1, the method provided in this embodiment includes step 110 and step 120.
  • the first communication node may configure or instruct the second communication node to send reference signals through downlink control information or higher layers signaling.
  • the first communication node may be a base station of a macro cell or a small cell (Small cell).
  • Base stations or transmission nodes evolved base stations (evolved-Node-B, eNB), sending nodes in a high-frequency communication system, sending nodes in an Internet of Things system, satellite nodes, etc.
  • the second communication node is, for example, user equipment (User Equipment) Equipment, UE), mobile phones, portable devices, automobiles, satellite nodes, and other communication systems.
  • the reference signal may be a sounding reference signal (Sounding Reference Signal, SRS), a channel state information reference signal (Channel State Information-Reference Signal), etc.
  • the indication information is used to jointly trigger the transmission of SRS and CSI-RS, and SRS and CSI-RS are used to measure the channel state information (Channel State Information, CSI) between the second communication node and the first communication node.
  • the reference signal for the first communication node to perform frequency-domain selection scheduling, closed-loop power control, etc. according to the obtained CSI.
  • the second communication node may send the last data of the subframe periodically according to the frequency band, frequency domain position, sequence cyclic shift, period, and subframe offset indicated by the first communication node. Uplink SRS is sent on the symbol.
  • Fig. 2 is a schematic diagram of jointly triggering SRS and CSI-RS according to an embodiment.
  • the first communication node jointly triggers the sending of SRS and CSI-RS through DCI
  • the second communication node sends SRS and CSI-RS
  • the first communication node calculates the downlink channel quality indicator (Channel Quality Indicator) according to the CSI-RS.
  • Indicator, CQI and other channel state information, and can obtain uplink or downlink channel state information according to SRS.
  • Fig. 4 is a schematic diagram of jointly triggering SRS and CSI-RS according to another embodiment.
  • the first communication node jointly triggers the transmission of SRS and CSI-RS through DCI.
  • the second communication node sends SRS and then CSI-RS in different time slots.
  • the first communication node can be based on the received SRS. Calculate CSI-RS precoding (Precoder).
  • the time slot interval or time slot offset between SRS and CSI-RS is configured by the first communication node through Radio Resource Control (RRC) signaling, or according to the combination in downlink control information
  • RRC Radio Resource Control
  • the request field is determined; when the time slot interval or time slot offset is zero, the time slot of the SRS is the same as the time slot of the CSI-RS; when the time slot interval or time slot offset is a positive number Below, the time slot where SRS is located is before the time slot where CSI-RS is located, and when the time slot interval or time slot offset is negative, the time slot where SRS is located is after the time slot where CSI-RS is located.
  • the slot where the SRS is located is before the slot where the CSI-RS is located, and when the slot interval or slot offset is a positive number , The time slot where the SRS is located is after the time slot where the CSI-RS is located.
  • the value of K is a positive number, which means that the time slot of the CSI-RS is before the time slot of the SRS, and the value of K is a negative number, which means that the time slot of the CSI-RS is in the time slot of the SRS After the time slot.
  • the SRS resource or resource set and the CSI-RS resource or resource set have a quasi-co-location (QCL) relationship, and the quasi-co-location relationship includes type A, type B, type C and At least one of the D types.
  • QCL quasi-co-location
  • the number of symbols occupied by SRS resources in the time domain is expanded to 6, 8, 10, 12, or 14, and the repetition factor of each SRS resource is also expanded to 6, 8, 10, 12, or 14 accordingly.
  • the time-domain symbols occupied by the SRS resource correspond to a set of orthogonal masks (Orthogonal Cover Code, OCC).
  • the orthogonal mask satisfies at least one of the following: when the repetition factor is 2, the corresponding orthogonal mask includes at least one of the following: [+1,+1], [+1 ,-1]; when the repetition factor is 4, the corresponding orthogonal mask includes at least one of the following: [+1,+1,+1,+1], [+1,-1,+ 1,-1], [+1,-1,-1,+1] and [+1,+1,-1,-1]; when the repetition factor is 8, the corresponding orthogonal mask
  • the code includes at least one of the following: [+1,+1,+1,+1,+1,+1,+1], [+1,-1,+1,-1,+1,- 1,+1,-1], [+1,-1,-1,+1,+1,-1,-1,+1] and [+1,+1,+1,+1,-1 ,-1,-1]; when the repetition factor is 12, the corresponding orthogonal mask includes at least one of the following: [+1,+1,+1,+1,+1,+1,+1,+1,+1,+1], []
  • the SRS is sent through 8 ports; the multiplexing relationship between the ports includes at least one of the following: in the case that the repetition factor is 2, the orthogonal mask corresponding to the first port group is [+1, +1], the orthogonal mask corresponding to the second port group is [+1,-1]; when the repetition factor is 4, the orthogonal mask corresponding to the first port group is [+1,+1, +1,+1], the orthogonal mask corresponding to the second port group is [+1,-1,+1,-1] or [+1,-1,-1,+1] or [+1, +1,-1,-1]; when the repetition factor is 8, the orthogonal mask corresponding to the first port group is [+1,+1,+1,+1,+1,+1,+ 1,+1], the orthogonal mask corresponding to the second port group is [+1,-1,+1,-1,+1,-1], [+1,-1, -1,+1,+1,-1,-1,+1] or [+1,+1,+1,+1,-1,-1,-1]; when the repeat factor is 2, the orthogonal mask
  • the first port group includes port 1000 to port 1003, and the second port group includes port 1004 to port 1007.
  • the reference signal includes SRS.
  • the SRS resource set is at most two, each SRS resource in each SRS resource set is located in a different time domain symbol, and each SRS resource contains 4 There are two SRS ports, and the SRS port of each SRS resource is associated with a different antenna port.
  • the association relationship between the SRS resource and the antenna port includes at least one of the following:
  • the second communication node is configured with 2 SRS resource sets, and the number of SRS resources included in each SRS resource set may be 1 or 2 or 3, taking each SRS resource set including 2 SRS resources as an example, these 2 SRS resource sets include a total of 4 SRS resources, and the 4 SRS resources are located on different symbols.
  • Each SRS resource consists of 2 It is composed of three SRS ports, and the two SRS ports in each SRS resource are respectively associated with different UE antenna ports.
  • the association relationship between the SRS resource and the antenna port includes at least one of the following:
  • the second communication node is configured with 1 SRS resource set, and the SRS resource set includes 8 SRS resources , The 8 SRS resources are located on different symbols, each SRS resource is composed of a single SRS port, and the SRS ports in different SRS resources are respectively associated with different UE antenna ports.
  • the second communication node is configured with 1 SRS resource set, and the number of SRS resources included in each SRS resource set is 4 ,
  • This 1 SRS resource set includes a total of 4 SRS resources, the 4 SRS resources are located on different symbols, each SRS resource is composed of 2 SRS ports, and the 2 SRS ports in each SRS resource are respectively associated To different UE antenna ports.
  • the second communication node can be configured with 2 SRS resource sets at most, and the number of SRS resources included in each SRS resource set is 2.
  • the two SRS resources are respectively located on different symbols, each SRS resource is composed of 4 SRS ports, and the 4 SRS ports in each SRS resource are respectively associated with different UE antenna ports.
  • the ability of the second communication node to transmit or receive the antenna port includes at least one of the following: T1R1-T1R2-T1R4-T1R8; T1R1-T1R2-T1R4-T2R8; T1R1-T1R2-T2R4-T4R8; T1R1- T2R2-T4R4-T8R8.
  • the setting condition includes: there are SRS resources with a transmission bandwidth greater than a first threshold in the triggered SRS resource set; or, the sum of the transmission bandwidths of the SRS resources in the triggered SRS resource set is greater than the second threshold.
  • the reference signal includes an SRS
  • the first symbol to the eighth symbol in the time slot are used to transmit the SRS, thereby expanding the multiplexing capacity of the SRS.
  • the transmission priority between the reference signal and other uplink signals can be determined, so as to cancel or postpone the transmission of the SRS, or cancel or postpone the transmission of other uplink signals.
  • the first type of channel includes a physical uplink control channel (Physical Uplink Control Channel, At least one of PUCCH), Physical Uplink Shared Channel (PUSCH), or Physical Random Access Channel (PRACH).
  • the first type of channel carries Hybrid Automatic Repeat Request Acknowledgement (Hybrid Automatic).
  • Repeat reQuest ACK noledgement, HARQ-ACK) information positive (Positive) SRS, rank indication (Rank Indication, RI) or channel state information reference signal resource indicator (CSI-RS Resource Indicator, CRI) at least one; in SRS
  • rank indication Rank Indication, RI
  • CRI channel state information reference signal resource indicator
  • the resource type of is periodic or semi-persistent, and the symbol for sending SRS overlaps the symbol for sending the second type of channel, cancel or postpone sending the SRS, where the second type of channel includes PUSCH, and the second type of channel carries aperiodic CSI
  • the symbols for sending SRS overlap with the symbols for sending the third channel, cancel or postpone sending the third channel, where the third channel includes at least one of PUCCH and PUSCH, and the third channel Carry periodic CSI
  • the symbol for sending SRS overlaps with the symbol for sending the fourth channel, cancel or postpone sending the fourth channel, where the fourth channel includes PUSCH, and the fourth channel
  • the second communication node when SRS transmission and PUSCH, PUCCH or PRACH carrying HARQ-ACK, Positive SRS, RI or CRI overlap in the same time domain symbol, the second communication node does not send SRS; When the transmission of SRS or semi-persistent SRS and the PUSCH carrying aperiodic CSI overlap in the same symbol, the second communication node does not send periodic SRS or semi-persistent SRS; the transmission of SRS and the PUCCH carrying periodic CSI or PUCCH or When the PUSCH overlaps with the same symbol, the second communication node does not send the PUCCH or PUSCH.
  • the reference signal includes SRS; SRS occupies non-contiguous M segments of resources in the frequency domain, and each segment of resources includes multiple consecutive subcarriers with an interval of L, where M is an integer greater than or equal to 2.
  • L is a configured or predefined SRS transmission comb parameter; M-segment resources are evenly distributed in the frequency domain.
  • the M segments of resources correspond to P sequence identifiers, where P is an integer less than or equal to M; the P sequence identifiers are configured by the first communication node, or X(X ⁇ P) sequence identifiers are configured by the first communication node, and the remaining PX sequence identifiers are obtained according to a predefined manner. For example, assuming that the bandwidth to be detected is 16 resource blocks (Resource Block, RB), and the configured SRS transmission comb is 2, the 16 RBs can be divided into 4 resource segments (assumed to be resource segment 1 to resource segment 4), SRS The sequence occupies 1 RB on each segment of resources, that is, occupies 6 subcarriers.
  • RB resource blocks
  • SRS transmission comb 2
  • each segment of SRS sequence you can use different SRS sequence identifiers on each segment of frequency domain resources to initialize the sequence, or use one SRS sequence identifier for multiple segments of resources to generate an SRS sequence, and then map to these multiple segments The location of the sub-carrier corresponding to the resource. For example, use SRS sequence identifier 1 for resource segment 1 and resource segment 2 to generate SRS sequence 1, and then map it to the subcarrier positions of resource segment 1 and resource segment 2 with an interval of 2; use SRS for resource segment 3 and resource segment 4 The sequence identifier 2 generates the SRS sequence 2 and then maps it to the subcarrier positions of the resource segment 3 and the resource segment 4 with an interval of 2.
  • the first parameter of the SRS sequence corresponding to each segment of resource is different, and the first parameter includes at least one of the following: segment index; group hopping; sequence hopping.
  • the segment index of the SRS sequence corresponding to each segment of resource is different, or the group jump of the SRS sequence corresponding to each segment of resource is different, and so on.
  • the value of M is configured by the first communication node in the SRS resource; the first communication node can also configure M sequence identifiers in the SRS resource, where P(P ⁇ M) sequence identifiers correspond to the SRS resources M-segment resources occupied in the frequency domain.
  • the M second parameters in the SRS resource are configured by the first communication node; the second parameters include at least one of the following: frequency domain position, frequency domain shift, transmission bandwidth parameter, jump bandwidth parameter, SRS Configuration parameters (Csrs).
  • the first communication node configures M second parameters in the SRS resource, for example, configures M frequency domain locations, or configures M transmission bandwidth parameters, and so on.
  • each of the non-contiguous M resources corresponds to one SRS resource; the airspace related information configuration parameters of the M SRS resources are the same, or the M SRS resources have a quasi-colocation relationship,
  • the quasi co-location relationship includes at least one of type A, type B, type C, and type D.
  • the SRS sequence from resource 1 to resource segment 4 can be phase rotated, and the rotated phases are 0, phase 1, phase 2, and phase 3 respectively.
  • phase 1, phase 2, and phase 3 It is a fixed phase or a phase that changes with the subcarrier index or segment resource index.
  • the SRS sequences in the M segments of resources are orthogonal to each other through cyclic shift or phase rotation.
  • the bandwidth to be detected is 16 RBs and the configured SRS transmission comb is 2, the 16 RBs can be divided into 4 segments of resources (assumed to be resource segment 1 to resource segment 4).
  • the SRS sequences of resource segment 1 to resource segment 4 are SRS sequence 1, SRS sequence 2, SRS sequence 3, and SRS sequence 4, respectively.
  • SRS sequence 1, SRS sequence 2, SRS sequence 3 and SRS sequence 4 pass through different cyclic shifts. Bits or different phase rotations achieve quadrature.
  • the reference signal transmission method of the above embodiment realizes joint triggering of the transmission of SRS and CSI-RS and saves signaling overhead; an 8-port multiplexing scheme with orthogonal mask OCC is used for multiple time domain symbols to distinguish different SRSs and realize The expansion of time domain symbols and repetition factors; through 1T8R, 2T8R, 4T8R antenna switching to solve the channel reciprocity problem caused by the inconsistency of the number of transmission links and the number of reception links of the second communication node, and improve the reliability of communication;
  • the extended transmission comb is used to transmit SRS to enhance the coverage of SRS; in the case of extended SRS time-domain transmission symbols, the transmission priority of SRS and other uplink signals is defined, which improves the transmission efficiency of SRS and effectively avoids the interference of uplink signals.
  • An embodiment of the present application also provides a reference signal receiving method, which is applied to a first communication node, and the first communication node sends instruction information to the second communication node through downlink control information or high-level signaling to instruct the second communication node to send the reference
  • the signal can be adapted to different communication environments and configurations, thereby improving the flexibility of sending reference signals and the reliability of wireless communication.
  • the interaction process between the first communication node and the second communication node may refer to any of the foregoing embodiments.
  • FIG. 5 is a flowchart of a method for receiving a reference signal according to an embodiment. As shown in FIG. 5, the method provided in this embodiment includes step 210 and step 220.
  • step 210 indication information is sent, where the indication information is used to instruct the second communication node to send a reference signal, and the indication information includes at least one of downlink control information and high-level signaling.
  • step 220 a reference signal sent by the second communication node according to the indication information is received.
  • the reference signal includes a sounding reference signal SRS and a channel state information reference signal CSI-RS; the indication information is used to jointly trigger the transmission of the SRS and CSI-RS.
  • the time slot interval or time slot offset between the SRS and the CSI-RS is configured by the first communication node through radio resource control RRC signaling, or determined according to the joint request field in the downlink control information;
  • the time slot interval or the time slot offset is zero, the time slot in which the SRS is located is the same as the time slot in which the CSI-RS is located; in the time slot interval or the time slot offset is In the case of a positive number, the time slot where the SRS is located is before the time slot where the CSI-RS is located, and when the time slot interval or time slot offset is a negative number, the time slot where the SRS is located
  • the time slot is after the time slot where the CSI-RS is located; or, when the time slot interval or the time slot offset is a negative number, the time slot where the SRS is located is at the time slot where the CSI-RS is located.
  • the time slot interval or the time slot offset is a positive number
  • the resource or resource set of the SRS and the resource or resource set of the CSI-RS have a quasi-colocation relationship, and the quasi-colocation relationship includes type A, type B, type C, and type D. At least one of.
  • the indication information is indicated by a configuration field in the downlink control information, and the configuration field is configured by the first communication node through RRC signaling; the configuration field includes a CSI request field or an SRS request field .
  • the reference signal includes SRS; the number of time-domain symbols occupied by SRS resources includes at least one of 6, 8, 10, 12, and 14; the repetition factor of the SRS resources and the time domain occupied by the SRS resources There is a one-to-one correspondence between the number of domain symbols.
  • the time domain symbols occupied by the SRS resource correspond to a set of orthogonal masks.
  • the orthogonal mask satisfies at least one of the following: when the repetition factor is 2, the corresponding orthogonal mask includes at least one of the following: [+1,+1], [ +1,-1]; In the case where the repetition factor is 4, the corresponding orthogonal mask includes at least one of the following: [+1,+1,+1,+1], [+1,-1 ,+1,-1], [+1,-1,-1,+1] and [+1,+1,-1,-1]; when the repetition factor is 8, the corresponding positive
  • the cross mask includes at least one of the following: [+1,+1,+1,+1,+1,+1,+1], [+1,-1,+1,-1,+1 ,+1,-1], [+1,-1,-1,+1,+1,-1,-1,+1] and [+1,+1,+1,+1, -1,-1,-1,-1]; when the repetition factor is 12, the corresponding orthogonal mask includes at least one of the following: [+1,+1,+1,+ 1,+1,+1,+1,+1,+1,+1,+1,+1,+1,+1,
  • the SRS is sent through 8 ports; the multiplexing relationship of the ports includes at least one of the following: when the repetition factor is 2, the orthogonal mask corresponding to the first port group is [+1,+1], the orthogonal mask corresponding to the second port group is [+1,-1]; when the repetition factor is 4, the orthogonal mask corresponding to the first port group is [ +1,+1,+1,+1], the orthogonal mask corresponding to the second port group is [+1,-1,+1,-1] or [+1,-1,-1,+1 ] Or [+1,+1,-1,-1]; when the repetition factor is 8, the orthogonal mask corresponding to the first port group is [+1,+1,+1,+1 ,+1,+1,+1,+1], the orthogonal mask corresponding to the second port group is [+1,-1,+1,-1,+1,-1] , [+1,-1,-1,+1,+1,-1,+1] or [+1,+1,+1,+1,+1,-1,-1,- 1]; In the case where
  • the reference signal includes SRS; when the number of time-domain symbols occupied by the SRS resource or the SRS resource set is less than or equal to 6, the association relationship between the SRS resource and the antenna port includes at least one of the following: When the number of links is 1, the number of receiving links is 8, and the resource type is periodic or semi-persistent, the SRS resource set is one, and each SRS resource in the SRS resource set is located in a different time domain symbol.
  • SRS resources include 1 SRS port, and each SRS port is associated with a different antenna port; when the number of transmission links is 1, the number of reception links is 8, and the resource type is aperiodic, the SRS resource set is 4, each Each SRS resource in an SRS resource set is located in a different time domain symbol, each SRS resource contains 1 SRS port, and each SRS port is associated with a different antenna port; the number of transmission links is 2 and the number of receive links is 8.
  • each SRS resource in each SRS resource set is located in a different time domain symbol, each SRS resource contains 2 SRS ports, and the SRS of each SRS resource Ports are associated with different antenna ports;
  • the number of transmit links is 4, the number of receive links is 8 and the resource types include at least two, the SRS resource set is at most two, and each SRS resource in each SRS resource set Located in different time domain symbols, each SRS resource contains 4 SRS ports, and the SRS port of each SRS resource is associated with different antenna ports.
  • the association relationship between the SRS resource and the antenna port includes at least one of the following: when the number of transmission links is 1, the number of reception links is 8, and the resource type In the case of periodic or semi-persistent, the SRS resource set is one, each SRS resource in the SRS resource set is located in a different time domain symbol, each SRS resource includes one SRS port, and each SRS port is associated with a different Antenna port; when the number of sending links is 1, the number of receiving links is 8 and the resource type is aperiodic, there are 2 SRS resource sets, and each SRS resource in each SRS resource set is located in a different time domain symbol , Each SRS resource contains 1 SRS port, and each SRS port is associated with a different antenna port; when the number of transmit links is 2, the number of receive links is 8, and the resource type is aperiodic, the SRS resource set is 1 Each SRS resource in the SRS resource set is one, each SRS resource in the SRS resource set is one, each SRS resource in the SRS resource
  • the ability to transmit or receive an antenna port includes at least one of the following: the number of transmit links is 1 and the number of receive links is 1, the number of transmit links is 1, and the number of receive links is 2, and the number of transmit links is 2.
  • the number is 1 and the number of receiving links is 4, and the number of sending links is 1 and the number of receiving links is 8; the number of sending links is 1 and the number of receiving links is 1, the number of sending links is 1, and the number of receiving links is 1 The number is 2, the number of sending links is 1 and the number of receiving links is 4, and the number of sending links is 2 and the number of receiving links is 8; the number of sending links is 1 and the number of receiving links is 1, the sending link The number is 1 and the number of receiving links is 2, the number of sending links is 2 and the number of receiving links is 4, and the number of sending links is 4 and the number of receiving links is 8; the number of sending links is 1 and the number of receiving links is The number is 1, the number of sending links is 2 and the number of receiving links is 2, the number of sending links is 1
  • the setting conditions include: there are SRS resources with a transmission bandwidth greater than a first threshold in the triggered SRS resource set; or, the sum of the transmission bandwidths of the SRS resources in the triggered SRS resource set is greater than the second Threshold.
  • the transmission power of the SRS is N times the default power, and the default power is determined according to a set version of the new air interface protocol.
  • the reference signal includes an SRS; in the case where the symbol for transmitting the SRS overlaps the symbol for transmitting the first type channel, the SRS is cancelled or the transmission is postponed, wherein the first type channel It includes at least one of a physical uplink control channel, a physical uplink shared channel, or a physical random access channel.
  • the first type of channel carries hybrid automatic repeat request confirmation information, positive SRS, rank indication or channel state information reference signal At least one of resource indications; in the case where the resource type of the SRS is periodic or semi-persistent, and the symbol for transmitting the SRS overlaps the symbol for transmitting the second type channel, the SRS is cancelled or the transmission is postponed,
  • the second type of channel includes a physical uplink shared channel, and the second type of channel carries aperiodic channel state information CSI; in the case where the symbol for transmitting the SRS overlaps with the symbol for transmitting the third type of channel, The third type of channel is cancelled or postponed for transmission, where the third type of channel includes at least one of a physical uplink control channel and a physical uplink shared channel, and the third type of channel carries periodic CSI; In the case where the symbol of the SRS overlaps with the symbol for transmitting the fourth type of channel, the fourth type of channel is cancelled or the transmission is postponed, wherein the fourth type of channel includes a
  • the reference signal includes SRS; the SRS occupies non-contiguous M segments of resources in the frequency domain, and each segment of resources includes consecutive subcarriers with an interval of L, where M is an integer greater than or equal to 2.
  • L is a configured or predefined SRS transmission comb parameter; the M-segment resources are evenly distributed in the frequency domain.
  • the M segments of resources correspond to P sequence identifiers, where P is an integer less than or equal to M; the P sequence identifiers are configured by the first communication node, or among the P sequence identifiers The X sequence identifiers are configured by the first communication node, and the remaining PX sequence identifiers are obtained according to a predefined manner.
  • the first parameter of the SRS sequence corresponding to each segment of resource is different, and the first parameter includes at least one of the following: segment index; group jump; sequence jump.
  • the SRS sequence on the Q-segment resource in the M-segment resources is rotated by an additional phase compared to the SRS sequence on any resource in the M-segment resource except the Q-segment resource.
  • Q is an integer less than M
  • the additional phase is a fixed phase or a phase that changes with the subcarrier index or the segment resource index.
  • FIG. 6 is a schematic structural diagram of a reference signal sending device provided by an embodiment. As shown in FIG. 6, the reference signal sending device includes: a transmission information receiving module 310 and a reference signal sending module 320.
  • the information receiving module 310 is configured to receive indication information, where the indication information is used to instruct the second communication node to send a reference signal, and the indication information includes at least one of downlink control information and high-level signaling; the reference signal sending module 320, Set to send the reference signal according to the instruction information.
  • the reference signal sending device of this embodiment receives indication information through downlink control information or high-level signaling, and sends reference signals according to the indication information, which can adapt to different communication environments and configuration conditions, thereby improving the flexibility of sending reference signals and wireless communication Reliability.
  • the reference signal includes a sounding reference signal SRS and a channel state information reference signal CSI-RS; the indication information is used to jointly trigger the transmission of the SRS and CSI-RS.
  • the time slot interval or time slot offset between SRS and CSI-RS is configured by the first communication node through radio resource control RRC signaling, or determined according to the joint request field in the downlink control information;
  • the slot interval or slot offset is zero, the SRS is in the same slot as the CSI-RS;
  • the slot interval or slot offset is positive, the SRS is located The time slot is before the time slot where the CSI-RS is located, and when the time slot interval or time slot offset is negative, the time slot where the SRS is located is after the time slot where the CSI-RS is located; or, in the time slot
  • the interval or time slot offset is a negative number
  • the time slot where the SRS is located is before the time slot where the CSI-RS is located, and when the time slot interval or time slot offset is a positive number, the SRS is located
  • the time slot of is after the time slot where the CSI-RS is located.
  • the resource or resource set of the SRS and the resource or resource set of the CSI-RS have a quasi-colocation relationship, and the quasi-colocation relationship includes at least one of Type A, Type B, Type C, and Type D .
  • the reference signal includes SRS; the number of time-domain symbols occupied by the SRS resource includes at least one of 6, 8, 10, 12, and 14; the repetition factor of the SRS resource and the time-domain symbol occupied by the SRS resource The quantity corresponds to one by one.
  • the time-domain symbols occupied by the SRS resource correspond to a set of orthogonal masks.
  • the orthogonal mask satisfies at least one of the following: when the repetition factor is 2, the corresponding orthogonal mask includes at least one of the following: [+1,+1], [+1,- 1]; When the repetition factor is 4, the corresponding orthogonal mask includes at least one of the following: [+1,+1,+1,+1], [+1,-1,+1,-1 ], [+1,-1,-1,+1] and [+1,+1,-1,-1]; when the repetition factor is 8, the corresponding orthogonal mask includes at least one of the following : [+1,+1,+1,+1,+1,+1,+1], [+1,-1,+1,-1,+1,+1,- 1], [+1,-1,-1,+1,+1,-1,-1,+1] and [+1,+1,+1,+1,-1,-1,-1 ,-1]; when the repetition factor is 12, the corresponding orthogonal mask includes at least one of the following: [+1,+1,+1,+1,+1,+1,+1 ,+1,+1,+1],+1,+1,+1,+1],+1],
  • SRS is sent through 8 ports; the multiplexing relationship of the ports includes at least one of the following: in the case of a repetition factor of 2, the orthogonal mask corresponding to the first port group is [+1,+1 ], the orthogonal mask corresponding to the second port group is [+1,-1]; when the repetition factor is 4, the orthogonal mask corresponding to the first port group is [+1,+1,+1 ,+1], the orthogonal mask corresponding to the second port group is [+1,-1,+1,-1] or [+1,-1,-1,+1] or [+1,+1 ,-1,-1]; when the repetition factor is 8, the orthogonal mask corresponding to the first port group is [+1,+1,+1,+1,+1,+1,+ 1,+1], the orthogonal mask corresponding to the second port group is [+1,-1,+1,-1,+1,-1], [+1,-1, -1,+1,+1,-1,-1,+1] or [+1,+1,+1,+1,-1,-1,-1]; when the repeat
  • the reference signal includes SRS; when the number of time-domain symbols occupied by the SRS resource or the SRS resource set is less than or equal to 6, the association relationship between the SRS resource and the antenna port includes at least one of the following: When the number is 1, the number of receiving links is 8, and the resource type is periodic or semi-persistent, the SRS resource set is one, each SRS resource in the SRS resource set is located in a different time domain symbol, and each SRS resource Contains 1 SRS port, each SRS port is associated with a different antenna port; when the number of sending links is 1, the number of receiving links is 8 and the resource type is aperiodic, the SRS resource set is 4, and each SRS Each SRS resource in the resource set is located in a different time domain symbol, each SRS resource contains 1 SRS port, and each SRS port is associated with a different antenna port; the number of transmission links is 2, the number of reception links is 8, and the resource When the type is aperiodic, there are two SRS resource sets, each SRS resource
  • the association relationship between the SRS resource and the antenna port includes at least one of the following: when the number of transmission links is 1, the number of reception links is 8, and the resource type In the case of periodic or semi-persistent, the SRS resource set is one, each SRS resource in the SRS resource set is located in a different time domain symbol, each SRS resource includes one SRS port, and each SRS port is associated with a different Antenna port; when the number of sending links is 1, the number of receiving links is 8 and the resource type is aperiodic, there are 2 SRS resource sets, and each SRS resource in each SRS resource set is located in a different time domain symbol , Each SRS resource contains 1 SRS port, and each SRS port is associated with a different antenna port; when the number of transmit links is 2, the number of receive links is 8, and the resource type is aperiodic, the SRS resource set is 1 Each SRS resource in the SRS resource set is one, each SRS resource in the SRS resource set is one, each SRS resource in the SRS resource
  • the ability to transmit or receive an antenna port includes at least one of the following: the number of transmit links is 1 and the number of receive links is 1, the number of transmit links is 1, and the number of receive links is 2, and the number of transmit links is 2.
  • the number is 1 and the number of receiving links is 4, and the number of sending links is 1 and the number of receiving links is 8; the number of sending links is 1 and the number of receiving links is 1, the number of sending links is 1, and the number of receiving links is 1 The number is 2, the number of sending links is 1 and the number of receiving links is 4, and the number of sending links is 2 and the number of receiving links is 8; the number of sending links is 1 and the number of receiving links is 1, the sending link The number is 1 and the number of receiving links is 2, the number of sending links is 2 and the number of receiving links is 4, and the number of sending links is 4 and the number of receiving links is 8; the number of sending links is 1 and the number of receiving links is The number is 1, the number of sending links is 2 and the number of receiving links is 2, the number of sending links is 1
  • the reference signal includes SRS; the reference signal sending module 320 is configured to: when the set conditions are met and the sending comb parameters are configured, the SRS is sent through the extended sending comb, and the sending comb parameters include default Sending comb and default offset value; the extended sending comb is the default sending comb of N times, and the corresponding comb offset is the sum of the default sending comb of N times and the default offset value, or the default offset value of N times, or Is the default bias value, where N is an integer greater than or equal to 2.
  • the setting conditions include: there are SRS resources with a transmission bandwidth greater than a first threshold in the triggered SRS resource set; or, the sum of the transmission bandwidths of the SRS resources in the triggered SRS resource set is greater than the second Threshold.
  • the transmission power of the SRS is N times the default power, and the default power is determined according to the set version of the new air interface protocol.
  • the reference signal includes an SRS; the apparatus is further configured to be at least one of the following: in the case where the symbol for transmitting the SRS overlaps the symbol for transmitting the first-type channel, cancel or postpone the transmission of the SRS, wherein,
  • the first type of channel includes at least one of a physical uplink control channel, a physical uplink shared channel, or a physical random access channel.
  • the first type of channel carries hybrid automatic repeat request confirmation information, positive SRS, rank indicator, or channel state information At least one of the reference signal resource indications; when the resource type of the SRS is periodic or semi-persistent, and the symbol for sending the SRS overlaps the symbol for sending the second type of channel, cancel or postpone the sending of the SRS, where the second type Channels include physical uplink shared channels, the second type of channel carries aperiodic channel state information CSI; in the case that the symbols for sending SRS overlap with the symbols for sending the third type of channel, the third type of channel is cancelled or postponed, where, The third type of channel includes at least one of a physical uplink control channel and a physical uplink shared channel.
  • the reference signal includes SRS; SRS occupies non-contiguous M segments of resources in the frequency domain, and each segment of resources includes contiguous subcarriers with an interval of L, where M is an integer greater than or equal to 2, and L is configuration
  • SRS sending comb parameter; M-segment resources are evenly distributed in the frequency domain.
  • the first parameter of the SRS sequence corresponding to each segment of resource is different, and the first parameter includes at least one of the following: segment index; group jump; sequence jump.
  • the first communication node configures the value of M in the SRS resource; configures M sequence identifiers in the SRS resource.
  • the first communication node configures M second parameters in the SRS resource; the second parameters include at least one of the following: frequency domain position, frequency domain shift, transmission bandwidth parameter, jump bandwidth parameter , SRS configuration parameters.
  • each of the non-contiguous M segments of resources corresponds to 1 SRS resource; the airspace related information configuration parameters of the M SRS resources are the same, or the M SRS resources have a quasi-colocation relationship.
  • the bit relationship includes at least one of A type, B type, C type, and D type.
  • the SRS sequence on the Q-segment resource in the M-segment resources is rotated by an additional phase compared to the SRS sequence on any resource in the M-segment resource except the Q-segment resource.
  • Q is an integer less than M
  • the additional phase is a fixed phase or a phase that changes with the subcarrier index or the segment resource index.
  • This embodiment provides a reference signal sending device.
  • this embodiment has the same technical effect as the implementation of the reference signal sending method.
  • FIG. 7 is a schematic structural diagram of a reference signal receiving device provided by an embodiment. As shown in FIG. 7, the reference signal receiving device includes: a transmission information sending module 410 and a reference signal receiving module 420.
  • the information sending module 410 is configured to send indication information, where the indication information is used to instruct the second communication node to send a reference signal, and the indication information includes at least one of downlink control information and high-level signaling; the reference signal receiving module 420, Set to receive the reference signal sent by the second communication node according to the indication information.
  • the reference signal receiving apparatus of this embodiment sends instruction information to the second communication node through downlink control information or high-level signaling to instruct the second communication node to send a reference signal, which can adapt to different communication environments and configuration conditions, thereby improving the transmission of reference signals.
  • the reference signal includes a sounding reference signal SRS and a channel state information reference signal CSI-RS; the indication information is used to jointly trigger the transmission of the SRS and CSI-RS.
  • the time slot interval or time slot offset between the SRS and the CSI-RS is configured by the first communication node through radio resource control RRC signaling, or determined according to the joint request field in the downlink control information;
  • the time slot interval or the time slot offset is zero, the time slot in which the SRS is located is the same as the time slot in which the CSI-RS is located; in the time slot interval or the time slot offset is In the case of a positive number, the time slot where the SRS is located is before the time slot where the CSI-RS is located, and when the time slot interval or time slot offset is a negative number, the time slot where the SRS is located
  • the time slot is after the time slot where the CSI-RS is located; or, when the time slot interval or the time slot offset is a negative number, the time slot where the SRS is located is at the time slot where the CSI-RS is located.
  • the time slot interval or the time slot offset is a positive number
  • the resource or resource set of the SRS and the resource or resource set of the CSI-RS have a quasi-colocation relationship, and the quasi-colocation relationship includes type A, type B, type C, and type D. At least one of.
  • the indication information is indicated by a configuration field in the downlink control information, and the configuration field is configured by the first communication node through RRC signaling; the configuration field includes a CSI request field or an SRS request field .
  • the reference signal includes SRS; the number of time-domain symbols occupied by SRS resources includes at least one of 6, 8, 10, 12, and 14; the repetition factor of the SRS resources and the time domain occupied by the SRS resources There is a one-to-one correspondence between the number of domain symbols.
  • the time domain symbols occupied by the SRS resource correspond to a set of orthogonal masks.
  • the orthogonal mask satisfies at least one of the following: when the repetition factor is 2, the corresponding orthogonal mask includes at least one of the following: [+1,+1], [ +1,-1]; In the case where the repetition factor is 4, the corresponding orthogonal mask includes at least one of the following: [+1,+1,+1,+1], [+1,-1 ,+1,-1], [+1,-1,-1,+1] and [+1,+1,-1,-1]; when the repetition factor is 8, the corresponding positive
  • the cross mask includes at least one of the following: [+1,+1,+1,+1,+1,+1,+1], [+1,-1,+1,-1,+1 ,+1,-1], [+1,-1,-1,+1,+1,-1,-1,+1] and [+1,+1,+1,+1, -1,-1,-1,-1]; when the repetition factor is 12, the corresponding orthogonal mask includes at least one of the following: [+1,+1,+1,+ 1,+1,+1,+1,+1,+1,+1,+1,+1,+1,+1,
  • the reference signal includes SRS; when the number of time-domain symbols occupied by the SRS resource or the SRS resource set is less than or equal to 6, the association relationship between the SRS resource and the antenna port includes at least one of the following: When the number of links is 1, the number of receiving links is 8, and the resource type is periodic or semi-persistent, the SRS resource set is one, and each SRS resource in the SRS resource set is located in a different time domain symbol.
  • SRS resources include 1 SRS port, and each SRS port is associated with a different antenna port; when the number of transmit links is 1, the number of receive links is 8, and the resource type is aperiodic, the SRS resource set is 4, each Each SRS resource in an SRS resource set is located in a different time domain symbol, each SRS resource contains 1 SRS port, and each SRS port is associated with a different antenna port; the number of transmission links is 2 and the number of receive links is 8.
  • each SRS resource in each SRS resource set is located in a different time domain symbol, each SRS resource contains 2 SRS ports, and the SRS of each SRS resource Ports are associated with different antenna ports;
  • the number of transmit links is 4, the number of receive links is 8 and the resource types include at least two, the SRS resource set is at most two, and each SRS resource in each SRS resource set Located in different time domain symbols, each SRS resource contains 4 SRS ports, and the SRS port of each SRS resource is associated with different antenna ports.
  • the association relationship between the SRS resource and the antenna port includes at least one of the following: when the number of transmission links is 1, the number of reception links is 8, and the resource type In the case of periodic or semi-persistent, the SRS resource set is one, each SRS resource in the SRS resource set is located in a different time domain symbol, each SRS resource includes one SRS port, and each SRS port is associated with a different Antenna port; when the number of sending links is 1, the number of receiving links is 8 and the resource type is aperiodic, there are 2 SRS resource sets, and each SRS resource in each SRS resource set is located in a different time domain symbol , Each SRS resource contains 1 SRS port, and each SRS port is associated with a different antenna port; when the number of transmit links is 2, the number of receive links is 8, and the resource type is aperiodic, the SRS resource set is 1 Each SRS resource in the SRS resource set is one, each SRS resource in the SRS resource set is one, each SRS resource in the SRS resource
  • the ability to transmit or receive an antenna port includes at least one of the following: the number of transmit links is 1 and the number of receive links is 1, the number of transmit links is 1, and the number of receive links is 2, and the number of transmit links is 2.
  • the number is 1 and the number of receiving links is 4, and the number of sending links is 1 and the number of receiving links is 8; the number of sending links is 1 and the number of receiving links is 1, the number of sending links is 1, and the number of receiving links is 1 The number is 2, the number of sending links is 1 and the number of receiving links is 4, and the number of sending links is 2 and the number of receiving links is 8; the number of sending links is 1 and the number of receiving links is 1, the sending link The number is 1 and the number of receiving links is 2, the number of sending links is 2 and the number of receiving links is 4, and the number of sending links is 4 and the number of receiving links is 8; the number of sending links is 1 and the number of receiving links is The number is 1, the number of sending links is 2 and the number of receiving links is 2, the number of sending links is 1
  • the reference signal includes an SRS; when the set conditions are met and the sending comb parameters are configured, the SRS is sent through an extended sending comb, and the sending comb parameters include a default sending comb and a default offset value.
  • the extended sending comb is the default sending comb of N times
  • the corresponding comb offset is the sum of the default sending comb of N times and the default offset value, or the default offset value of N times, or the The default offset value, where N is an integer greater than or equal to 2.
  • the transmission power of the SRS is N times the default power, and the default power is determined according to a set version of the new air interface protocol.
  • the reference signal includes SRS; the SRS occupies non-contiguous M segments of resources in the frequency domain, and each segment of resources includes consecutive subcarriers with an interval of L, where M is an integer greater than or equal to 2.
  • L is the configured SRS transmission comb parameter; the M-segment resources are evenly distributed in the frequency domain.
  • the M segments of resources correspond to P sequence identifiers, where P is an integer less than or equal to M; the P sequence identifiers are configured by the first communication node, or among the P sequence identifiers The X sequence identifiers are configured by the first communication node, and the remaining PX sequence identifiers are obtained according to a predefined manner.
  • the first parameter of the SRS sequence corresponding to each segment of resource is different, and the first parameter includes at least one of the following: segment index; group jump; sequence jump.
  • the first communication node configures the value of M in the SRS resource; configures M sequence identifiers in the SRS resource.
  • the first communication node configures M second parameters in the SRS resource; the second parameters include at least one of the following: frequency domain position, frequency domain shift, transmission bandwidth parameter, jump Bandwidth parameters, SRS configuration parameters.
  • each segment of resource corresponds to 1 SRS resource; the airspace related information configuration parameters of the M SRS resources are the same, or the M SRS resources have a quasi-colocation relationship, and the quasi-colocation relationship includes Type A, At least one of type B, type C, and type D.
  • the SRS sequence on the Q-segment resource in the M-segment resources is rotated by an additional phase compared to the SRS sequence on any resource in the M-segment resource except the Q-segment resource.
  • Q is an integer less than M
  • the additional phase is a fixed phase or a phase that changes with the subcarrier index or the segment resource index.
  • This embodiment provides a reference signal receiving device.
  • this embodiment has the same technical effect as the implementation of the reference signal receiving method.
  • the embodiment of the present application also provides a communication node.
  • the reference signal sending method may be executed by a reference signal sending device, which may be implemented in software and/or hardware, and integrated in the communication node.
  • the communication node is the sending device.
  • the second communication node of the reference signal; the reference signal receiving method can be executed by a reference signal receiving device, which can be implemented by software and/or hardware, and integrated in the communication node, in this case below, the communication node is the first communication node that receives the reference signal.
  • FIG. 8 is a schematic diagram of the hardware structure of a communication node provided by an embodiment.
  • a communication node provided in this embodiment includes a processor 510 and a storage device 520.
  • one processor 510 is taken as an example.
  • the processor 510 and the storage device 520 in the device may be connected through a bus or other methods. In FIG. Take the bus connection as an example.
  • the storage device 520 in the communication node can be used to store one or more programs.
  • the programs can be software programs, computer-executable programs, and modules, such as the reference signal transmission in the embodiment of the present invention.
  • the program instructions/modules corresponding to the method include: an information receiving module 310 and a reference signal sending module 220).
  • the processor 510 executes various functional applications and data processing of the communication node by running the software programs, instructions, and modules stored in the storage device 520, that is, implements the reference signal sending method or the reference signal receiving method in the foregoing method embodiment.
  • the storage device 520 mainly includes a storage program area and a storage data area.
  • the storage program area can store an operating system and an application program required by at least one function; the storage data area can store data created according to the use of the device, etc. (as in the above implementation) The indication information, time slot interval, etc. in the example).
  • the storage device 520 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage devices.
  • the storage device 520 may further include a memory provided remotely with respect to the processor 510, and these remote memories may be connected to a communication node through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • the following operations are implemented: receiving instruction information, where the instruction information is used to instruct the second communication node to send a reference signal,
  • the indication information includes at least one of downlink control information and high-layer signaling; the reference signal is sent according to the indication information.
  • the following operations are implemented: sending instruction information, where the instruction information is used to instruct the second communication node to send a reference signal,
  • the indication information includes at least one of downlink control information and high-level signaling; and a reference signal sent by the second communication node according to the indication information is received.
  • This embodiment provides a communication node.
  • the embodiment of the present application also provides a storage medium containing computer-executable instructions.
  • the computer-executable instructions are used to execute a reference signal sending method or a reference signal receiving method when executed by a computer processor.
  • the block diagram of any logic flow in the drawings of the present application may represent program steps, or may represent interconnected logic circuits, modules, and functions, or may represent a combination of program steps and logic circuits, modules, and functions.
  • the computer program can be stored on the memory.
  • the memory can be of any type suitable for the local technical environment and can be implemented using any suitable data storage technology, such as but not limited to read only memory (ROM), random access memory (RAM), optical storage devices and systems (digital multi-function optical discs) (Digital Video Disc, DVD) or Compact Disc (CD)), etc.
  • Computer-readable media may include non-transitory storage media.
  • the data processor can be any type suitable for the local technical environment, such as but not limited to general-purpose computers, special-purpose computers, microprocessors, digital signal processors (Digital Signal Processors, DSP), application specific integrated circuits (ASICs) ), programmable logic devices (Field Programmable Gate Array, FPGA), and processors based on multi-core processor architecture.
  • DSP Digital Signal Processors
  • ASICs application specific integrated circuits
  • FPGA Field Programmable Gate Array
  • processors based on multi-core processor architecture such as but not limited to general-purpose computers, special-purpose computers, microprocessors, digital signal processors (Digital Signal Processors, DSP), application specific integrated circuits (ASICs) ), programmable logic devices (Field Programmable Gate Array, FPGA), and processors based on multi-core processor architecture.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种参考信号发送方法和装置、参考信号接收方法和装置、通信节点及介质。该参考信号发送方法包括:接收指示信息,所述指示信息用于指示第二通信节点发送参考信号,所述指示信息包括下行控制信息和高层信令中的至少之一;根据所述指示信息发送所述参考信号。

Description

参考信号发送方法和装置、参考信号接收方法和装置、通信节点及介质
本申请要求在2020年01月03日提交中国专利局、申请号为202010006915.9的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信网络,例如涉及一种参考信号发送方法和装置、参考信号接收方法和装置、通信节点及介质。
背景技术
随着通信技术的发展,数据业务需求量不断增加。第一通信节点根据第二通信节点发送的参考信号可以判断出第二通信节点的信道状态信息,据此进行频域选择调度、闭环功率控制等操作。第二通信节点可能配置了多个天线端口,也可能通过不同的时隙发送多种参考信号,通信环境和配置情况复杂多样。相关技术中缺乏有效的指示参考信号发送的机制,导致第二通信节点发送参考信号的灵活性差,无法适应多样的通信环境,影响通信可靠性。
发明内容
本申请提供一种参考信号发送方法和装置、参考信号接收方法和装置、通信节点及介质,提高发送参考信号的灵活性和通信的可靠性。
本申请实施例提供一种参考信号发送方法,应用于第二通信节点,包括:
接收指示信息,所述指示信息用于指示第二通信节点发送参考信号,所述指示信息包括下行控制信息(Downlink Control Information,DCI)和高层信令中的至少之一;根据所述指示信息发送所述参考信号。
本申请实施例还提供了一种参考信号接收方法,应用于第一通信节点,包括:
发送指示信息,所述指示信息用于指示第二通信节点发送参考信号,所述指示信息包括下行控制信息和高层信令中的至少之一;接收第二通信节点根据所述指示信息发送的参考信号。
本申请实施例还提供了一种参考信号发送装置,包括:
信息接收模块,设置为接收指示信息,所述指示信息用于指示第二通信节点发送参考信号,所述指示信息包括下行控制信息和高层信令中的至少之一; 参考信号发送模块,设置为根据所述指示信息发送所述参考信号。
本申请实施例还提供了一种参考信号接收装置,包括:
信息发送模块,设置为发送指示信息,所述指示信息用于指示第二通信节点发送参考信号,所述指示信息包括下行控制信息和高层信令中的至少之一;参考信号接收模块,设置为接收第二通信节点根据所述指示信息发送的参考信号。
本申请实施例还提供了一种通信节点,包括:
一个或多个处理器;存储装置,用于存储一个或多个程序;当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现上述的参考信号发送方法或参考信号接收方法。
本申请实施例还提供了一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该程序被处理器执行时实现上述的参考信号发送方法或参考信号接收方法。
附图说明
图1为一实施例提供的一种参考信号发送方法的流程图;
图2为一实施例提供的一种联合触发SRS和CSI-RS的示意图;
图3为另一实施例提供的一种联合触发SRS和CSI-RS的示意图;
图4为又一实施例提供的一种联合触发SRS和CSI-RS的示意图;
图5为一实施例提供的一种参考信号接收方法的流程图;
图6为一实施例提供的一种参考信号发送装置的结构示意图;
图7为一实施例提供的一种参考信号接收装置的结构示意图;
图8为一实施例提供的一种通信节点的硬件结构示意图。
具体实施方式
下面结合附图和实施例对本申请进行说明。可以理解的是,此处所描述的实施例仅仅用于解释本申请,而非对本申请的限定。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
第一通信节点根据第二通信节点发送的参考信号可以判断出第二通信节点的信道状态信息,据此进行频域选择调度、闭环功率控制等操作。第二通信节点可能配置了多个天线端口,也可能通过不同的时隙发送多种参考信号,通信 环境和配置情况复杂多样。相关技术中缺乏有效的指示参考信号发送的机制。
本实施例提供一种参考信号发送方法,应用于第二通信节点,第二通信节点通过下行控制信息或高层信令接收指示信息,并按照指示信息发送参考信号,可以适应不同的通信环境和配置情况,从而提高发送参考信号的灵活性和无线通信的可靠性。
图1为一实施例提供的一种参考信号发送方法的流程图,如图1所示,本实施例提供的方法包括步骤110和步骤120。
在步骤110中,接收指示信息,所述指示信息用于指示第二通信节点发送参考信号,所述指示信息包括下行控制信息和高层信令中的至少之一。
在步骤120中,根据所述指示信息发送所述参考信号。
本实施例中,第一通信节点可以通过下行控制信息或高层(Higher Layers)信令配置或指示第二通信节点发送参考信号,第一通信节点可以为宏小区的基站、小小区(Small cell)的基站或传输节点、演进型基站(evolved-Node-B,eNB)、高频通信系统中的发送节点、物联网系统中的发送节点、卫星节点等,第二通信节点例如为用户设备(User Equipment,UE)、手机、便携设备、汽车、卫星节点等通信系统中的节点。参考信号可以为探测参考信号(Sounding Reference Signal,SRS)、信道状态信息参考信号(Channel State Information-Reference Signal)等。
在一实施例中,所述参考信号包括SRS和CSI-RS;所述指示信息用于联合触发所述SRS和CSI-RS的发送。
本实施例中,指示信息用于联合触发SRS和CSI-RS的发送,SRS和CSI-RS是用于测量第二通信节点与第一通信节点之间的信道状态信息(Channel State Information,CSI)的参考信号,以供第一通信节点根据得到的CSI进行频域选择调度、闭环功率控制等。示例性的,在长期演进系统中,第二通信节点按照第一通信节点指示的频带、频域位置、序列循环移位、周期和子帧偏置等参数,可以定时在发送子帧的最后一个数据符号上发送上行SRS。
图2为一实施例提供的一种联合触发SRS和CSI-RS的示意图。如图2所示,第一通信节点通过DCI联合触发SRS和CSI-RS的发送,第二通信节点发送SRS和CSI-RS,第一通信节点根据CSI-RS计算下行的信道质量指示(Channel Quality Indicator,CQI)等信道状态信息,并可以根据SRS获取上行或下行信道状态信息。
图3为另一实施例提供的一种联合触发SRS和CSI-RS的示意图。如图3所示,第一通信节点通过DCI联合触发SRS和CSI-RS的发送,第二通信节点 在不同的时隙先发送CSI-RS再发送SRS,第二通信节点可以基于非零功率(Non-Zero Power,Non-ZP)的CSI-RS资源计算SRS的预编码(Precoder)。
图4为又一实施例提供的一种联合触发SRS和CSI-RS的示意图。如图4所示,第一通信节点通过DCI联合触发SRS和CSI-RS的发送,第二通信节点在不同的时隙先发送SRS再发送CSI-RS,第一通信节点可以基于接收到的SRS计算CSI-RS的预编码(Precoder)。
在一实施例中,SRS与CSI-RS之间的时隙间隔或时隙偏置由第一通信节点通过无线资源控制(Radio Resource Control,RRC)信令配置,或者根据下行控制信息中的联合请求域确定;在时隙间隔或时隙偏置为零的情况下,SRS所处的时隙与CSI-RS所处的时隙相同;在时隙间隔或时隙偏置为正数的情况下,SRS所处的时隙在CSI-RS所处的时隙之前,在时隙间隔或时隙偏置为负数的情况下,SRS所处的时隙在CSI-RS所处的时隙之后;或者,在时隙间隔或时隙偏置为负数的情况下,SRS所处的时隙在CSI-RS所处的时隙之前,在时隙间隔或时隙偏置为正数的情况下,SRS所处的时隙在CSI-RS所处的时隙之后。
本实施例中,通过指示信息联合触发SRS和CSI-RS的发送,SRS与CSI-RS的时隙间隔或时隙偏置表示为K,K的取值由第一通信节点通过RRC信令配置,或者K的取值与DCI中的SRS与CSI-RS的联合请求域的相关联。K的取值可以为零、正数或负数。K的取值为0,表示SRS与CSI-RS在同一个时隙。K的取值为正数,表示CSI-RS的所处时隙在SRS的所处时隙之后,K的取值为负数,表示CSI-RS的所处时隙在SRS的所处时隙之前;或者可以为:K的取值为正数,表示CSI-RS的所处时隙在SRS的所处时隙之前,K的取值为负数,表示CSI-RS的所处时隙在SRS的所处时隙之后。
在一实施例中,SRS的资源或资源集与CSI-RS的资源或资源集具有准共位(Quasi-Co-Location,QCL)关系,准共位关系包括A类型、B类型、C类型和D类型中的至少之一。
本实施例中,联合触发的SRS资源或资源集与CSI-RS资源或资源集具有QCL关系,可以为Type-A QCL、Type-B QCL、Type-C QCL和/或Type-D QCL。
在一实施例中,所述指示信息通过下行控制信息中的设定域指示,所述设定域由第一通信节点通过RRC信令配置;所述设定域包括CSI请求域或SRS请求域。
本实施例中,对于DCI指示发送参考信号的情况,第一通信节点可以通过RRC信令配置使用CSI request域或SRS request域联合触发SRS和CSI-RS。例如,RRC信令的取值为0,表示通过CSI request域联合触发SRS和CSI-RS, RRC信令的取值为1,表示通过SRS request域联合触发SRS和CSI-RS;或者,RRC信令的取值为1,表示通过CSI request域联合触发SRS和CSI-RS,RRC信令的取值为0,表示通过SRS request域联合触发SRS和CSI-RS。
在一实施例中,所述参考信号包括SRS;SRS资源占有的时域符号数量包括6、8、10、12和14中的至少一种;SRS资源的重复因子与所述SRS资源占有的时域符号数量一一对应。
本实施例中,将SRS资源在时域上占有的符号数量扩展为6、8、10、12或14个,每个SRS资源的重复因子也相应地扩展为6、8、10、12或14。
在一实施例中,在所述重复因子大于2的情况下,SRS资源占有的时域符号对应于一组正交掩码(Orthogonal Cover Code,OCC)。
本实施例中,在重复因子大于2的情况下,例如重复因子为2、4、6、8、10、12或14,对时域的多个符号使用正交掩码,以区分不同第二通信节点发送的SRS。
在一实施例中,正交掩码满足如下至少之一:在所述重复因子为2的情况下,对应的正交掩码包括如下至少之一:[+1,+1]、[+1,-1];在所述重复因子为4的情况下,对应的正交掩码包括如下至少之一:[+1,+1,+1,+1]、[+1,-1,+1,-1]、[+1,-1,-1,+1]以及[+1,+1,-1,-1];在所述重复因子为8的情况下,对应的正交掩码包括如下至少之一:[+1,+1,+1,+1,+1,+1,+1,+1]、[+1,-1,+1,-1,+1,-1,+1,-1]、[+1,-1,-1,+1,+1,-1,-1,+1]以及[+1,+1,+1,+1,-1,-1,-1,-1];在所述重复因子为12的情况下,对应的正交掩码包括如下至少之一:[+1,+1,+1,+1,+1,+1,+1,+1,+1,+1,+1,+1]、[+1,-1,+1,-1,+1,-1,+1,-1,+1,-1,+1,-1]、[+1,-1,-1,+1,+1,-1,-1,+1,+1,-1,-1,+1]以及[+1,+1,+1,+1,+1,+1,-1,-1,-1,-1,-1,-1]。
在一实施例中,SRS通过8个端口发送;端口之间的复用关系包括以下至少之一:在重复因子为2的情况下,第一端口组对应的正交掩码为[+1,+1],第二端口组对应的正交掩码为[+1,-1];在重复因子为4的情况下,第一端口组对应的正交掩码为[+1,+1,+1,+1],第二端口组对应的正交掩码为[+1,-1,+1,-1]或[+1,-1,-1,+1]或[+1,+1,-1,-1];在重复因子为8的情况下,第一端口组对应的正交掩码为[+1,+1,+1,+1,+1,+1,+1,+1],第二端口组对应的正交掩码为[+1,-1,+1,-1,+1,-1,+1,-1]、[+1,-1,-1,+1,+1,-1,-1,+1]或者[+1,+1,+1,+1,-1,-1,-1,-1];在重复因子为12的情况下,第一端口组对应的正交掩码为[+1,+1,+1,+1,+1,+1,+1,+1,+1,+1,+1,+1],第二端口组对应的正交掩码为[+1,-1,+1,-1,+1,-1,+1,-1,+1,-1,+1,-1]、[+1,-1,-1,+1,+1,-1,-1,+1,+1,-1,-1,+1]或者[+1,+1,+1,+1,+1,+1,-1,-1,-1,-1,-1,-1]。
本实施例中,第一端口组包括端口1000至端口1003,第二端口组包括1004至端口1007。
在一实施例中,所述参考信号包括SRS。
在SRS资源或SRS资源集占有的时域符号数量小于或等于6的情况下,SRS资源与天线端口的关联关系包括以下至少之一:在发送链路数为1、接收链路数为8且资源类型为周期或半持续的情况下,SRS资源集为1个,所述SRS资源集中的每个SRS资源位于不同的时域符号,每个SRS资源包含1个SRS端口,每个SRS端口关联不同的天线端口;在发送链路数为1、接收链路数为8且资源类型为非周期的情况下,SRS资源集为4个,每个SRS资源集中的每个SRS资源位于不同的时域符号,每个SRS资源包含1个SRS端口,每个SRS端口关联不同的天线端口;在发送链路数为2、接收链路数为8且资源类型为非周期的情况下,SRS资源集为2个,每个SRS资源集中的每个SRS资源位于不同的时域符号,每个SRS资源包含2个SRS端口,每个SRS资源的SRS端口关联不同的天线端口;在发送链路数为4、接收链路数为8且资源类型包括至少两种的情况下,SRS资源集最多为2个,每个SRS资源集中的每个SRS资源位于不同的时域符号,每个SRS资源包含4个SRS端口,每个SRS资源的SRS端口关联不同的天线端口。
在SRS资源或SRS资源集占有的时域符号数量大于6的情况下,SRS资源与天线端口的关联关系包括以下至少之一:在发送链路数为1、接收链路数为8且资源类型为周期或半持续的情况下,SRS资源集为1个,所述SRS资源集中的每个SRS资源位于不同的时域符号,每个SRS资源包含1个SRS端口,每个SRS端口关联不同的天线端口;在发送链路数为1、接收链路数为8且资源类型为非周期的情况下,SRS资源集为2个,每个SRS资源集中的每个SRS资源位于不同的时域符号,每个SRS资源包含1个SRS端口,每个SRS端口关联不同的天线端口;在发送链路数为2、接收链路数为8且资源类型为非周期的情况下,SRS资源集为1个,所述SRS资源集中的每个SRS资源位于不同的时域符号,每个SRS资源包含2个SRS端口,每个SRS资源的SRS端口关联不同的天线端口;在发送链路数为4、接收链路数为8且资源类型包括至少两种的情况下,SRS资源集最多为2个,每个SRS资源集中的每个SRS资源位于不同的时域符号,每个SRS资源包含4个SRS端口,每个SRS资源的SRS端口关联不同的天线端口。
本实施例中,通过SRS的天线切换,可以解决第二通信节点的发送链路数与接收链路数不一致时的信道互易问题,提高通信的可靠性。以第二通信节点配置为1T2R、2T4R、4T8R的情况为例进行说明,其中,T表示发送链路数,R 表示接收链路数。示例性的,1T2R表示发送链路数为1,接收链路数为2。
本实施例中,在SRS资源或SRS资源集占有的时域符号数量小于或等于6的情况下,SRS资源与天线端口的关联关系包括以下至少之一:
1)在1T8R且第二通信节点的SRS资源集中的资源类型(ResourceType)参数被设置为周期或半持续的情况下,第二通信节点被配置1个SRS资源集,该SRS资源集包括8个SRS资源,每个SRS资源位于不同的时域符号,每个SRS资源包含1个单独的SRS端口,不同SRS资源中的SRS端口分别关联到不同的天线端口上。
2)在1T8R且第二通信节点的SRS资源集中的资源类型参数被设置为非周期的情况下,第二通信节点被配置4个SRS资源集,每个SRS资源集包括的SRS资源数量可以为1或2或3,以每个SRS资源集包括2个SRS资源为例,这4个SRS资源集共包括8个SRS资源,8个SRS资源分别位于不同的符号上,每个SRS资源由1个单独的SRS端口组成,不同SRS资源中的SRS端口分别关联到不同的UE天线端口上。
3)在2T8R且第二通信节点的SRS资源集中的资源类型参数被设置为非周期的情况下,第二通信节点被配置2个SRS资源集,每个SRS资源集包括的SRS资源数量可以为1或2或3,以每个SRS资源集包括2个SRS资源为例,这2个SRS资源集共包括4个SRS资源,4个SRS资源分别位于不同的符号上,每个SRS资源由2个SRS端口组成,每个SRS资源中的2个SRS端口分别关联到不同的UE天线端口上。
4)在4T8R且第二通信节点的SRS资源集中的资源类型参数被设置为不同值的情况下,第二通信节点最多可被配置2个SRS资源集,每个SRS资源集包括的SRS资源数量为2,所述2个SRS资源分别位于不同的符号上,每个SRS资源由4个SRS端口组成,每个SRS资源中的4个SRS端口分别关联到不同的UE天线端口上。
本实施例中,在SRS资源或SRS资源集占有的时域符号数量大于6的情况下,SRS资源与天线端口的关联关系包括以下至少之一:
1)在1T8R且第二通信节点的SRS资源集中的资源类型参数被设置为周期或半持续的情况下,第二通信节点被配置1个SRS资源集,所述SRS资源集包括8个SRS资源,这8个SRS资源分别位于不同的符号上,每个SRS资源由1个单独的SRS端口组成,不同SRS资源中的SRS端口分别关联到不同的UE天线端口上。
2)在1T8R且第二通信节点的SRS资源集中的资源类型参数被设置为非周 期的情况下,第二通信节点被配置2个SRS资源集,每个SRS资源集包括的SRS资源数量可以为1或2或3或5或6或7,这2个SRS资源集共包括8个SRS资源,所述8个SRS资源分别位于不同的符号上,每个SRS资源由1个单独的SRS端口组成,不同SRS资源中的SRS端口分别关联到不同的UE天线端口上。
3)在2T8R且第二通信节点的SRS资源集中的资源类型参数被设置为非周期的情况下,第二通信节点被配置1个SRS资源集,每个SRS资源集包括的SRS资源数量为4,这1个SRS资源集共包括4个SRS资源,所述4个SRS资源分别位于不同的符号上,每个SRS资源由2个SRS端口组成,每个SRS资源中的2个SRS端口分别关联到不同的UE天线端口上。
4)在4T8R且第二通信节点的SRS资源集中的资源类型参数被设置不同值的情况下,第二通信节点最多可被配置2个SRS资源集,每个SRS资源集包括的SRS资源数量为2,所述2个SRS资源分别位于不同的符号上,每个SRS资源由4个SRS端口组成,每个SRS资源中的4个SRS端口分别关联到不同的UE天线端口上。
在一实施例中,第二通信节点在发送或接收天线端口的能力包括以下至少之一:T1R1-T1R2-T1R4-T1R8;T1R1-T1R2-T1R4-T2R8;T1R1-T1R2-T2R4-T4R8;T1R1-T2R2-T4R4-T8R8。
在一实施例中,所述参考信号包括SRS。所述方法还包括:在满足设定条件且配置发送梳参数的情况下,通过扩展发送梳发送所述SRS,所述发送梳参数包括默认发送梳和默认偏置值;所述扩展发送梳为N倍的默认发送梳,对应的梳偏置为N倍的默认发送梳与所述默认偏置值的和,或者为N倍的默认偏置值,或者为所述默认偏置值,其中,N为大于或等于2的整数。
本实施例中,在满足设定条件且第二通信节点被配置发送梳参数的情况下,第二通信节点可以使用更大的发送梳,即扩展发送梳发送SRS,其中,发送梳参数包括默认发送梳(transmissionComb)和默认偏置值(combOffset),扩展发送梳可以为N*transmissionComb的发送梳,对应的梳偏置为(N*transmissionComb+combOffset)或(combOffset*N)或combOffset,其中,N为大于或等于2的整数。本实施例通过使用扩展发送梳发送SRS,增强了SRS的覆盖范围。
在一实施例中,设定条件包括:在被触发的SRS资源集中存在发送带宽大于第一阈值的SRS资源;或者,被触发的SRS资源集中的SRS资源的发送带宽之和大于第二阈值。
本实施例中,在第一通信节点用于指示采用扩展发送梳的信令使能的情况 下,或者用于指示SRS覆盖增强的信令使能的情况下,如果第二通信节点被触发的SRS资源集中的某个SRS资源的发送带宽大于第一阈值M1,或者第二通信节点被触发的SRS资源集中的所有SRS资源的发送带宽之和大于第二阈值M2,则第二通信节点使用扩展发送梳(例如使用N*transmissionComb的发送梳)发送所述SRS资源集;否则,第二通信节点采用默认发送梳发送SRS资源集。如果用于指示采用扩展发送梳的信令不使能,或者用于指示SRS覆盖增强的信令不使能,则不采用发送梳。
在一实施例中,所述SRS的发送功率为默认功率的N倍,所述默认功率根据设定版本的新空口(New Radio,NR)协议确定。
本实施例中,在第二通信节点使用扩展发送梳发送SRS资源的情况下,第二通信节点使用N倍的默认SRS功率发送SRS资源,其中,所述默认的SRS功率可以基于Rel-15(Release 15)的NR协议计算。
在一实施例中,参考信号包括SRS,将时隙内的第1个符号至第8个符号用于发送SRS,从而扩展SRS的复用容量。这种情况下,如果SRS与其他上行信号的发送发生冲突,则可以确定参考信号和其他上行信号之间的发送优先级,从而取消或者推迟发送SRS,或者取消或者推迟发送其他上行信号。可以根据如下方式至少之一确定:在发送SRS的符号与发送第一类信道的符号重叠的情况下,取消或者推迟发送SRS,其中,第一类信道包括物理上行控制信道(Physical Uplink Control Channel,PUCCH)、物理上行共享信道(Physical Uplink Shared Channel,PUSCH)或物理随机接入信道(Physical Random Access Channel,PRACH)中的至少一种,第一类信道中携带混合自动重传请求确认(Hybrid Automatic Repeat reQuest ACKnoledgement,HARQ-ACK)信息、正的(Positive)SRS、秩指示(Rank Indication,RI)或信道状态信息参考信号资源指示(CSI-RS Resource Indicator,CRI)中的至少一种;在SRS的资源类型为周期或半持续,且发送SRS的符号与发送第二类信道的符号重叠的情况下,取消或者推迟发送SRS,其中,第二类信道包括PUSCH,第二类信道中携带非周期的CSI;在发送SRS的符号与发送第三类信道的符号重叠的情况下,取消或者推迟发送第三类信道,其中,第三类信道包括PUCCH和PUSCH中的至少一种,第三类信道携带周期的CSI;在发送SRS的符号与发送第四类信道的符号重叠的情况下,取消或者推迟发送第四类信道,其中,第四类信道包括PUSCH,第四类信道携带非周期的CSI。
本实施例中,在SRS的发送与携带有HARQ-ACK、Positive SRS、RI或CRI的PUSCH、PUCCH或PRACH在相同的时域符号发生重叠的情况下,第二通信节点不发送SRS;在周期SRS或半持续SRS的发送与携带有非周期CSI的 PUSCH在相同的符号发生重叠的情况下,第二通信节点不发送周期SRS或半持续SRS;在SRS的发送与携带有周期CSI的PUCCH或PUSCH在相同的符号发生重叠的情况下,第二通信节点不发送所述PUCCH或PUSCH,其中,周期CSI仅由CQI或预编码矩阵指示(Precoding Matrix Indicator,PMI)组成;在非周期SRS的发送与携带有非周期CSI的PUSCH在相同的符号发生重叠的情况下,第二通信节点不发送所述PUSCH,其中,非周期CSI仅由CQI或预编码矩阵指示(Precoding Matrix Indicator,PMI)组成。
在一实施例中,通过采用SRS序列在频域非连续资源映射的方式,使SRS信号达到更远的覆盖范围;通过使用多个不同的SRS序列标识对频域上的多段SRS序列进行初始化,或者对多段SRS序列进行额外的相位旋转,从而降低发送信号的峰均比。
在一实施例中,所述参考信号包括SRS;SRS在频域上占用非连续的M段资源,每段资源包括间隔为L的多个连续子载波,其中,M为大于或等于2的整数,L为配置的或预定义的SRS发送梳参数;M段资源在频域上为均匀分布。
本实施例中,SRS在频域上占用至少2段非连续的资源,至少2段非连续的资源均匀分布,每段资源包括的连续子载波的数量根据配置的SRS发送梳参数确定。
在一实施例中,所述M段资源对应于P个序列标识,其中,P为小于或等于M的整数;P个序列标识由第一通信节点配置,或者P个序列标识中的X(X≤P)个序列标识由第一通信节点配置,其余P-X个序列标识根据预定义方式获得。例如,假定要探测的带宽为16个资源块(Resource Block,RB),配置的SRS发送梳为2,可将16个RB划分为4段资源(假定为资源段1至资源段4),SRS序列在每段资源上占用1个RB,即占用6个子载波。在生成每段SRS序列的过程中,可以分别在每段频域资源上使用不同的SRS序列标识进行序列初始化,或者是对多段资源使用1个SRS序列标识生成一条SRS序列,然后映射到这多段资源对应的子载波位置上。例如,对资源段1和资源段2使用SRS序列标识1生成SRS序列1,然后映射到资源段1和资源段2上间隔为2的子载波位置上;对资源段3和资源段4使用SRS序列标识2生成SRS序列2,然后映射到资源段3和资源段4上间隔为2的子载波位置上。
在一实施例中,每段资源对应的SRS序列的第一参数不同,第一参数包括如下至少之一:段索引;组跳转(hopping);序列跳转。
例如,每段资源对应的SRS序列的段索引不同,或者每段资源对应的SRS序列的组跳转不同等。
在一实施例中,M满足以下至少之一:M的取值由第一通信节点在SRS资源中配置;M个序列标识由第一通信节点在SRS资源中配置。
本实施例中,M的取值由第一通信节点在SRS资源中配置;第一通信节点在SRS资源中还可以配置M个序列标识,其中P(P≤M)个序列标识对应于SRS在频域上占用的M段资源。
在一实施例中,SRS资源中的M个第二参数由第一通信节点配置;第二参数包括以下至少之一:频域位置、频域移位、发送带宽参数、跳转带宽参数、SRS配置参数(Csrs)。
本实施例中,第一通信节点配置SRS资源中的M个第二参数,例如,配置M个频域位置,或者配置M个发送带宽参数等。
在一实施例中,所述非连续的M段资源中的每段资源分别对应于1个SRS资源;M个SRS资源的空域相关信息配置参数相同,或者M个SRS资源具有准共位关系,所述准共位关系包括A类型、B类型、C类型和D类型中的至少之一。
在一实施例中,所述M段资源中的Q段资源上的SRS序列,相比于所述M段资源中除所述Q段资源以外的任意一段资源上的SRS序列旋转了一个额外相位,其中,Q为小于M的整数,所述额外相位为固定的相位,或者为随子载波索引或段资源索引而变化的相位。例如,假定要探测的带宽为16个RB,配置的SRS发送梳为2,可将16个RB划分为4段资源(假定为资源段1至资源段4),SRS序列在每段资源上占用1个RB,即占用6个子载波。为了降低SRS信号的峰均比,可以对资源1至资源段4的SRS序列进行相位旋转,旋转的相位分别为0、相位1、相位2和相位3,其中,相位1、相位2和相位3为固定的相位,或者为随着子载波索引或段资源索引而变化的相位。
在一实施例中,所述M段资源中的SRS序列之间通过循环移位或相位旋转实现正交。例如,假定要探测的带宽为16个RB,配置的SRS发送梳为2,可将16个RB划分为4段资源(假定为资源段1至资源段4)。资源段1至资源段4的SRS序列分别为SRS序列1、SRS序列2、SRS序列3和SRS序列4,SRS序列1、SRS序列2、SRS序列3和SRS序列4之间通过不同的循环移位或不同的相位旋转实现正交。
上述实施例的参考信号发送方法,实现联合触发SRS和CSI-RS的发送,节省信令开销;对多个时域符号采用正交掩码OCC的8端口复用方案,区分不同的SRS,实现了对于时域符号和重复因子的扩展;通过1T8R、2T8R、4T8R的天线切换解决第二通信节点的发送链路数与接收链路数不一致导致的信道互易 问题,提高通信的可靠性;通过采用扩展发送梳发送SRS,增强SRS的覆盖范围;在扩展SRS的时域发送符号的情况下,定义了SRS与其他上行信号的发送优先级,提高了SRS的发送效率且有效避免了上行信号的发送冲突,进一步提高了参考信号发送或接收的灵活性和可靠性;通过采用SRS序列在频域非连续资源映射的方式,增大SRS信号的覆盖范围;通过使用多个不同的SRS序列标识对频域上的多段SRS序列进行初始化,或者对多段SRS序列进行额外的相位旋转,降低发送信号的峰均比。
在本申请实施例中还提供一种参考信号接收方法,应用于第一通信节点,第一通信节点通过下行控制信息或高层信令向第二通信节点发送指示信息,指示第二通信节点发送参考信号,可以适应不同的通信环境和配置情况,从而提高发送参考信号的灵活性和无线通信的可靠性。需要说明的是,下述实施例中的参考信号接收方法,第一通信节点与第二通信节点之间的交互过程可参见上述任意实施例。
图5为一实施例提供的一种参考信号接收方法的流程图,如图5所示,本实施例提供的方法包括步骤210和步骤220。
在步骤210中,发送指示信息,所述指示信息用于指示第二通信节点发送参考信号,所述指示信息包括下行控制信息和高层信令中的至少之一。
在步骤220中,接收第二通信节点根据所述指示信息发送的参考信号。
在一实施例中,所述参考信号包括探测参考信号SRS和信道状态信息参考信号CSI-RS;所述指示信息用于联合触发所述SRS和CSI-RS的发送。
在一实施例中,所述SRS与CSI-RS之间的时隙间隔或时隙偏置由第一通信节点通过无线资源控制RRC信令配置,或者根据下行控制信息中的联合请求域确定;在所述时隙间隔或时隙偏置为零的情况下,所述SRS所处的时隙与所述CSI-RS所处的时隙相同;在所述时隙间隔或时隙偏置为正数的情况下,所述SRS所处的时隙在所述CSI-RS所处的时隙之前,在所述时隙间隔或时隙偏置为负数的情况下,所述SRS所处的时隙在所述CSI-RS所处的时隙之后;或者,在所述时隙间隔或时隙偏置为负数的情况下,所述SRS所处的时隙在所述CSI-RS所处的时隙之前,在所述时隙间隔或时隙偏置为正数的情况下,所述SRS所处的时隙在所述CSI-RS所处的时隙之后。
在一实施例中,所述SRS的资源或资源集与所述CSI-RS的资源或资源集具有准共位关系,所述准共位关系包括A类型、B类型、C类型和D类型中的至少之一。
在一实施例中,所述指示信息通过下行控制信息中的设定域指示,所述设定域由第一通信节点通过RRC信令配置;所述设定域包括CSI请求域或SRS请求域。
在一实施例中,所述参考信号包括SRS;SRS资源占有的时域符号数量包括6、8、10、12和14中的至少一种;SRS资源的重复因子与所述SRS资源占有的时域符号数量一一对应。
在一实施例中,在所述重复因子大于2的情况下,SRS资源占有的时域符号对应于一组正交掩码。
在一实施例中,所述正交掩码满足如下至少之一:在所述重复因子为2的情况下,对应的正交掩码包括如下至少之一:[+1,+1]、[+1,-1];在所述重复因子为4的情况下,对应的正交掩码包括如下至少之一:[+1,+1,+1,+1]、[+1,-1,+1,-1]、[+1,-1,-1,+1]以及[+1,+1,-1,-1];在所述重复因子为8的情况下,对应的正交掩码包括如下至少之一:[+1,+1,+1,+1,+1,+1,+1,+1]、[+1,-1,+1,-1,+1,-1,+1,-1]、[+1,-1,-1,+1,+1,-1,-1,+1]以及[+1,+1,+1,+1,-1,-1,-1,-1];在所述重复因子为12的情况下,对应的正交掩码包括如下至少之一:[+1,+1,+1,+1,+1,+1,+1,+1,+1,+1,+1,+1]、[+1,-1,+1,-1,+1,-1,+1,-1,+1,-1,+1,-1]、[+1,-1,-1,+1,+1,-1,-1,+1,+1,-1,-1,+1]以及[+1,+1,+1,+1,+1,+1,-1,-1,-1,-1,-1,-1]。
在一实施例中,所述SRS通过8个端口发送;所述端口的复用关系包括以下至少之一:在所述重复因子为2的情况下,第一端口组对应的正交掩码为[+1,+1],第二端口组对应的正交掩码为[+1,-1];在所述重复因子为4的情况下,第一端口组对应的正交掩码为[+1,+1,+1,+1],第二端口组对应的正交掩码为[+1,-1,+1,-1]或[+1,-1,-1,+1]或[+1,+1,-1,-1];在所述重复因子为8的情况下,第一端口组对应的正交掩码为[+1,+1,+1,+1,+1,+1,+1,+1],第二端口组对应的正交掩码为[+1,-1,+1,-1,+1,-1,+1,-1]、[+1,-1,-1,+1,+1,-1,-1,+1]或者[+1,+1,+1,+1,-1,-1,-1,-1];在所述重复因子为12的情况下,第一端口组对应的正交掩码为[+1,+1,+1,+1,+1,+1,+1,+1,+1,+1,+1,+1],第二端口组对应的正交掩码为[+1,-1,+1,-1,+1,-1,+1,-1,+1,-1,+1,-1]、[+1,-1,-1,+1,+1,-1,-1,+1,+1,-1,-1,+1]或者[+1,+1,+1,+1,+1,+1,-1,-1,-1,-1,-1,-1];其中,所述第一端口组包括端口1000至端口1003,所述第二端口组包括1004至端口1007。
在一实施例中,所述参考信号包括SRS;在SRS资源或SRS资源集占有的时域符号数量小于或等于6的情况下,SRS资源与天线端口的关联关系包括以下至少之一:在发送链路数为1、接收链路数为8且资源类型为周期或半持续的情况下,SRS资源集为1个,所述SRS资源集中的每个SRS资源位于不同的时域符号,每个SRS资源包含1个SRS端口,每个SRS端口关联不同的天线端口; 在发送链路数为1、接收链路数为8且资源类型为非周期的情况下,SRS资源集为4个,每个SRS资源集中的每个SRS资源位于不同的时域符号,每个SRS资源包含1个SRS端口,每个SRS端口关联不同的天线端口;在发送链路数为2、接收链路数为8且资源类型为非周期的情况下,SRS资源集为2个,每个SRS资源集中的每个SRS资源位于不同的时域符号,每个SRS资源包含2个SRS端口,每个SRS资源的SRS端口关联不同的天线端口;在发送链路数为4、接收链路数为8且资源类型包括至少两种的情况下,SRS资源集最多为2个,每个SRS资源集中的每个SRS资源位于不同的时域符号,每个SRS资源包含4个SRS端口,每个SRS资源的SRS端口关联不同的天线端口。
在SRS资源或SRS资源集占有的时域符号数量大于6的情况下,SRS资源与天线端口的关联关系包括以下至少之一:在发送链路数为1、接收链路数为8且资源类型为周期或半持续的情况下,SRS资源集为1个,所述SRS资源集中的每个SRS资源位于不同的时域符号,每个SRS资源包含1个SRS端口,每个SRS端口关联不同的天线端口;在发送链路数为1、接收链路数为8且资源类型为非周期的情况下,SRS资源集为2个,每个SRS资源集中的每个SRS资源位于不同的时域符号,每个SRS资源包含1个SRS端口,每个SRS端口关联不同的天线端口;在发送链路数为2、接收链路数为8且资源类型为非周期的情况下,SRS资源集为1个,所述SRS资源集中的每个SRS资源位于不同的时域符号,每个SRS资源包含2个SRS端口,每个SRS资源的SRS端口关联不同的天线端口;在发送链路数为4、接收链路数为8且资源类型包括至少两种的情况下,SRS资源集最多为2个,每个SRS资源集中的每个SRS资源位于不同的时域符号,每个SRS资源包含4个SRS端口,每个SRS资源的SRS端口关联不同的天线端口。
在一实施例中,发送或接收天线端口的能力包括以下至少之一:发送链路数为1且接收链路数为1、发送链路数为1且接收链路数为2、发送链路数为1且接收链路数为4,以及发送链路数为1且接收链路数为8;发送链路数为1且接收链路数为1、发送链路数为1且接收链路数为2、发送链路数为1且接收链路数为4,以及发送链路数为2且接收链路数为8;发送链路数为1且接收链路数为1、发送链路数为1且接收链路数为2、发送链路数为2且接收链路数为4,以及发送链路数为4且接收链路数为8;发送链路数为1且接收链路数为1、发送链路数为2且接收链路数为2、发送链路数为4且接收链路数为4,以及发送链路数为8且接收链路数为8。
在一实施例中,所述参考信号包括SRS;在满足设定条件且配置发送梳参数的情况下,所述SRS通过扩展发送梳发送,所述发送梳参数包括默认发送梳和默认偏置值;所述扩展发送梳为N倍的默认发送梳,对应的梳偏置为N倍的 默认发送梳与所述默认偏置值的和,或者为N倍的默认偏置值,或者为所述默认偏置值,其中,N为大于或等于2的整数。
在一实施例中,所述设定条件包括:在被触发的SRS资源集中存在发送带宽大于第一阈值的SRS资源;或者,被触发的SRS资源集中的SRS资源的发送带宽之和大于第二阈值。
在一实施例中,所述SRS的发送功率为默认功率的N倍,所述默认功率根据设定版本的新空口协议确定。
在一实施例中,所述参考信号包括SRS;在发送所述SRS的符号与发送第一类信道的符号重叠的情况下,所述SRS被取消或者推迟发送,其中,所述第一类信道包括物理上行控制信道、物理上行共享信道或物理随机接入信道中的至少一种,所述第一类信道中携带混合自动重传请求确认信息、正的SRS、秩指示或信道状态信息参考信号资源指示中的至少一种;在所述SRS的资源类型为周期或半持续,且发送所述SRS的符号与发送第二类信道的符号重叠的情况下,所述SRS被取消或者推迟发送,其中,所述第二类信道包括物理上行共享信道,所述第二类信道中携带非周期的信道状态信息CSI;在发送所述SRS的符号与发送第三类信道的符号重叠的情况下,所述第三类信道被取消或者推迟发送,其中,所述第三类信道包括物理上行控制信道和物理上行共享信道中的至少一种,所述第三类信道携带周期的CSI;在发送所述SRS的符号与发送第四类信道的符号重叠的情况下,所述第四类信道被取消或者推迟发送,其中,所述第四类信道包括物理上行共享信道,所述第四类信道携带非周期的CSI。
在一实施例中,所述参考信号包括SRS;所述SRS在频域上占用非连续的M段资源,每段资源包括间隔为L的连续子载波,其中,M为大于或等于2的整数,L为配置的或预定义的SRS发送梳参数;所述M段资源在频域上为均匀分布。
在一实施例中,所述M段资源对应于P个序列标识,其中,P为小于或等于M的整数;所述P个序列标识由第一通信节点配置,或者所述P个序列标识中的X个序列标识由第一通信节点配置,其余P-X个序列标识根据预定义方式获得。
在一实施例中,每段资源对应的SRS序列的第一参数不同,所述第一参数包括如下至少之一:段索引;组跳转;序列跳转。
在一实施例中,所述M的取值由第一通信节点在SRS资源中配置;所述M个序列标识由第一通信节点在SRS资源中配置。
在一实施例中,SRS资源中的M个第二参数由第一通信节点配置;所述第 二参数包括以下至少之一:频域位置、频域移位、发送带宽参数、跳转带宽参数、SRS配置参数Csrs。
在一实施例中,每段资源分别对应于1个SRS资源;M个SRS资源的空域相关信息配置参数相同,或者M个SRS资源具有准共位关系,所述准共位关系包括A类型、B类型、C类型和D类型中的至少之一。
在一实施例中,所述M段资源中的Q段资源上的SRS序列,相比于所述M段资源中除所述Q段资源以外的任意一段资源上的SRS序列旋转了一个额外相位,其中,Q为小于M的整数,所述额外相位为固定的相位,或者为随子载波索引或段资源索引而变化的相位。
本申请实施例还提供一种参考信号发送装置。图6为一实施例提供的一种参考信号发送装置的结构示意图。如图6所示,所述参考信号发送装置包括:传输信息接收模块310和参考信号发送模块320。
信息接收模块310,设置为接收指示信息,所述指示信息用于指示第二通信节点发送参考信号,所述指示信息包括下行控制信息和高层信令中的至少之一;参考信号发送模块320,设置为根据所述指示信息发送所述参考信号。
本实施例的参考信号发送装置,通过下行控制信息或高层信令接收指示信息,并按照指示信息发送参考信号,可以适应不同的通信环境和配置情况,从而提高发送参考信号的灵活性和无线通信的可靠性。
在一实施例中,参考信号包括探测参考信号SRS和信道状态信息参考信号CSI-RS;所述指示信息用于联合触发所述SRS和CSI-RS的发送。
在一实施例中,SRS与CSI-RS之间的时隙间隔或时隙偏置由第一通信节点通过无线资源控制RRC信令配置,或者根据下行控制信息中的联合请求域确定;在时隙间隔或时隙偏置为零的情况下,SRS所处的时隙与CSI-RS所处的时隙相同;在时隙间隔或时隙偏置为正数的情况下,SRS所处的时隙在CSI-RS所处的时隙之前,在时隙间隔或时隙偏置为负数的情况下,SRS所处的时隙在CSI-RS所处的时隙之后;或者,在时隙间隔或时隙偏置为负数的情况下,SRS所处的时隙在所述CSI-RS所处的时隙之前,在时隙间隔或时隙偏置为正数的情况下,SRS所处的时隙在CSI-RS所处的时隙之后。
在一实施例中,SRS的资源或资源集与CSI-RS的资源或资源集具有准共位关系,所述准共位关系包括A类型、B类型、C类型和D类型中的至少之一。
在一实施例中,指示信息通过下行控制信息中的设定域指示,所述设定域由第一通信节点通过RRC信令配置;设定域包括CSI请求域或SRS请求域。
在一实施例中,参考信号包括SRS;SRS资源占有的时域符号数量包括6、8、10、12和14中的至少一种;SRS资源的重复因子与所述SRS资源占有的时域符号数量一一对应。
在一实施例中,在重复因子大于2的情况下,SRS资源占有的时域符号对应于一组正交掩码。
在一实施例中,正交掩码满足如下至少之一:在重复因子为2的情况下,对应的正交掩码包括如下至少之一:[+1,+1]、[+1,-1];在重复因子为4的情况下,对应的正交掩码包括如下至少之一:[+1,+1,+1,+1]、[+1,-1,+1,-1]、[+1,-1,-1,+1]以及[+1,+1,-1,-1];在重复因子为8的情况下,对应的正交掩码包括如下至少之一:[+1,+1,+1,+1,+1,+1,+1,+1]、[+1,-1,+1,-1,+1,-1,+1,-1]、[+1,-1,-1,+1,+1,-1,-1,+1]以及[+1,+1,+1,+1,-1,-1,-1,-1];在重复因子为12的情况下,对应的正交掩码包括如下至少之一:[+1,+1,+1,+1,+1,+1,+1,+1,+1,+1,+1,+1]、[+1,-1,+1,-1,+1,-1,+1,-1,+1,-1,+1,-1]、[+1,-1,-1,+1,+1,-1,-1,+1,+1,-1,-1,+1]以及[+1,+1,+1,+1,+1,+1,-1,-1,-1,-1,-1,-1]。
在一实施例中,SRS通过8个端口发送;端口的复用关系包括以下至少之一:在重复因子为2的情况下,第一端口组对应的正交掩码为[+1,+1],第二端口组对应的正交掩码为[+1,-1];在重复因子为4的情况下,第一端口组对应的正交掩码为[+1,+1,+1,+1],第二端口组对应的正交掩码为[+1,-1,+1,-1]或[+1,-1,-1,+1]或[+1,+1,-1,-1];在所述重复因子为8的情况下,第一端口组对应的正交掩码为[+1,+1,+1,+1,+1,+1,+1,+1],第二端口组对应的正交掩码为[+1,-1,+1,-1,+1,-1,+1,-1]、[+1,-1,-1,+1,+1,-1,-1,+1]或者[+1,+1,+1,+1,-1,-1,-1,-1];在重复因子为12的情况下,第一端口组对应的正交掩码为[+1,+1,+1,+1,+1,+1,+1,+1,+1,+1,+1,+1],第二端口组对应的正交掩码为[+1,-1,+1,-1,+1,-1,+1,-1,+1,-1,+1,-1]、[+1,-1,-1,+1,+1,-1,-1,+1,+1,-1,-1,+1]或者[+1,+1,+1,+1,+1,+1,-1,-1,-1,-1,-1,-1];其中,第一端口组包括端口1000至端口1003,第二端口组包括1004至端口1007。
在一实施例中,参考信号包括SRS;在SRS资源或SRS资源集占有的时域符号数量小于或等于6的情况下,SRS资源与天线端口的关联关系包括以下至少之一:在发送链路数为1、接收链路数为8且资源类型为周期或半持续的情况下,SRS资源集为1个,所述SRS资源集中的每个SRS资源位于不同的时域符号,每个SRS资源包含1个SRS端口,每个SRS端口关联不同的天线端口;在发送链路数为1、接收链路数为8且资源类型为非周期的情况下,SRS资源集为4个,每个SRS资源集中的每个SRS资源位于不同的时域符号,每个SRS资源包含1个SRS端口,每个SRS端口关联不同的天线端口;在发送链路数为2、 接收链路数为8且资源类型为非周期的情况下,SRS资源集为2个,每个SRS资源集中的每个SRS资源位于不同的时域符号,每个SRS资源包含2个SRS端口,每个SRS资源的SRS端口关联不同的天线端口;在发送链路数为4、接收链路数为8且资源类型包括至少两种的情况下,SRS资源集最多为2个,每个SRS资源集中的每个SRS资源位于不同的时域符号,每个SRS资源包含4个SRS端口,每个SRS资源的SRS端口关联不同的天线端口。
在SRS资源或SRS资源集占有的时域符号数量大于6的情况下,SRS资源与天线端口的关联关系包括以下至少之一:在发送链路数为1、接收链路数为8且资源类型为周期或半持续的情况下,SRS资源集为1个,所述SRS资源集中的每个SRS资源位于不同的时域符号,每个SRS资源包含1个SRS端口,每个SRS端口关联不同的天线端口;在发送链路数为1、接收链路数为8且资源类型为非周期的情况下,SRS资源集为2个,每个SRS资源集中的每个SRS资源位于不同的时域符号,每个SRS资源包含1个SRS端口,每个SRS端口关联不同的天线端口;在发送链路数为2、接收链路数为8且资源类型为非周期的情况下,SRS资源集为1个,所述SRS资源集中的每个SRS资源位于不同的时域符号,每个SRS资源包含2个SRS端口,每个SRS资源的SRS端口关联不同的天线端口;在发送链路数为4、接收链路数为8且资源类型包括至少两种的情况下,SRS资源集最多为2个,每个SRS资源集中的每个SRS资源位于不同的时域符号,每个SRS资源包含4个SRS端口,每个SRS资源的SRS端口关联不同的天线端口。
在一实施例中,发送或接收天线端口的能力包括以下至少之一:发送链路数为1且接收链路数为1、发送链路数为1且接收链路数为2、发送链路数为1且接收链路数为4,以及发送链路数为1且接收链路数为8;发送链路数为1且接收链路数为1、发送链路数为1且接收链路数为2、发送链路数为1且接收链路数为4,以及发送链路数为2且接收链路数为8;发送链路数为1且接收链路数为1、发送链路数为1且接收链路数为2、发送链路数为2且接收链路数为4,以及发送链路数为4且接收链路数为8;发送链路数为1且接收链路数为1、发送链路数为2且接收链路数为2、发送链路数为4且接收链路数为4,以及发送链路数为8且接收链路数为8。
在一实施例中,所述参考信号包括SRS;参考信号发送模块320是设置为:在满足设定条件且配置发送梳参数的情况下,通过扩展发送梳发送所述SRS,发送梳参数包括默认发送梳和默认偏置值;扩展发送梳为N倍的默认发送梳,对应的梳偏置为N倍的默认发送梳与默认偏置值的和,或者为N倍的默认偏置值,或者为默认偏置值,其中,N为大于或等于2的整数。
在一实施例中,所述设定条件包括:在被触发的SRS资源集中存在发送带宽大于第一阈值的SRS资源;或者,被触发的SRS资源集中的SRS资源的发送带宽之和大于第二阈值。
在一实施例中,SRS的发送功率为默认功率的N倍,默认功率根据设定版本的新空口协议确定。
在一实施例中,所述参考信号包括SRS;所述装置还设置为以下至少之一:在发送SRS的符号与发送第一类信道的符号重叠的情况下,取消或者推迟发送SRS,其中,第一类信道包括物理上行控制信道、物理上行共享信道或物理随机接入信道中的至少一种,第一类信道中携带混合自动重传请求确认信息、正的SRS、秩指示或信道状态信息参考信号资源指示中的至少一种;在SRS的资源类型为周期或半持续,且发送SRS的符号与发送第二类信道的符号重叠的情况下,取消或者推迟发送SRS,其中,第二类信道包括物理上行共享信道,第二类信道中携带非周期的信道状态信息CSI;在发送SRS的符号与发送第三类信道的符号重叠的情况下,取消或者推迟发送第三类信道,其中,第三类信道包括物理上行控制信道和物理上行共享信道中的至少一种,第三类信道携带周期的CSI;在发送SRS的符号与发送第四类信道的符号重叠的情况下,取消或者推迟发送第四类信道,其中,第四类信道包括物理上行共享信道,第四类信道携带非周期的CSI。
在一实施例中,参考信号包括SRS;SRS在频域上占用非连续的M段资源,每段资源包括间隔为L的连续子载波,其中,M为大于或等于2的整数,L为配置的SRS发送梳参数;M段资源在频域上为均匀分布。
在一实施例中,M段资源对应于P个序列标识,其中,P为小于或等于M的整数;P个序列标识由第一通信节点配置,或者P个序列标识中的X个序列标识由第一通信节点配置,其余P-X个序列标识根据预定义方式获得。
在一实施例中,每段资源对应的SRS序列的第一参数不同,第一参数包括如下至少之一:段索引;组跳转;序列跳转。
在一实施例中,还包括以下至少之一:第一通信节点在SRS资源中配置M的取值;在SRS资源中配置M个序列标识。
在一实施例中,还包括:第一通信节点在SRS资源中配置M个第二参数;第二参数包括以下至少之一:频域位置、频域移位、发送带宽参数、跳转带宽参数、SRS配置参数。
在一实施例中,非连续的M段资源中的每段资源分别对应于1个SRS资源;M个SRS资源的空域相关信息配置参数相同,或者M个SRS资源具有准共位 关系,准共位关系包括A类型、B类型、C类型和D类型中的至少之一。
在一实施例中,所述M段资源中的Q段资源上的SRS序列,相比于所述M段资源中除所述Q段资源以外的任意一段资源上的SRS序列旋转了一个额外相位,其中,Q为小于M的整数,所述额外相位为固定的相位,或者为随子载波索引或段资源索引而变化的相位。
本实施例提供一种参考信号发送装置,未在本实施例中详尽描述的技术细节可参见上述任意实施例,并且本实施例具备与执行参考信号发送方法相同的技术效果。
本申请实施例还提供一种参考信号接收装置。图7为一实施例提供的一种参考信号接收装置的结构示意图。如图7所示,所述参考信号接收装置包括:传输信息发送模块410和参考信号接收模块420。
信息发送模块410,设置为发送指示信息,所述指示信息用于指示第二通信节点发送参考信号,所述指示信息包括下行控制信息和高层信令中的至少之一;参考信号接收模块420,设置为接收第二通信节点根据所述指示信息发送的参考信号。
本实施例的参考信号接收装置,通过下行控制信息或高层信令向第二通信节点发送指示信息,指示第二通信节点发送参考信号,可以适应不同的通信环境和配置情况,从而提高发送参考信号的灵活性和无线通信的可靠性。
在一实施例中,所述参考信号包括探测参考信号SRS和信道状态信息参考信号CSI-RS;所述指示信息用于联合触发所述SRS和CSI-RS的发送。
在一实施例中,所述SRS与CSI-RS之间的时隙间隔或时隙偏置由第一通信节点通过无线资源控制RRC信令配置,或者根据下行控制信息中的联合请求域确定;在所述时隙间隔或时隙偏置为零的情况下,所述SRS所处的时隙与所述CSI-RS所处的时隙相同;在所述时隙间隔或时隙偏置为正数的情况下,所述SRS所处的时隙在所述CSI-RS所处的时隙之前,在所述时隙间隔或时隙偏置为负数的情况下,所述SRS所处的时隙在所述CSI-RS所处的时隙之后;或者,在所述时隙间隔或时隙偏置为负数的情况下,所述SRS所处的时隙在所述CSI-RS所处的时隙之前,在所述时隙间隔或时隙偏置为正数的情况下,所述SRS所处的时隙在所述CSI-RS所处的时隙之后。
在一实施例中,所述SRS的资源或资源集与所述CSI-RS的资源或资源集具有准共位关系,所述准共位关系包括A类型、B类型、C类型和D类型中的至少之一。
在一实施例中,所述指示信息通过下行控制信息中的设定域指示,所述设 定域由第一通信节点通过RRC信令配置;所述设定域包括CSI请求域或SRS请求域。
在一实施例中,所述参考信号包括SRS;SRS资源占有的时域符号数量包括6、8、10、12和14中的至少一种;SRS资源的重复因子与所述SRS资源占有的时域符号数量一一对应。
在一实施例中,在所述重复因子大于2的情况下,SRS资源占有的时域符号对应于一组正交掩码。
在一实施例中,所述正交掩码满足如下至少之一:在所述重复因子为2的情况下,对应的正交掩码包括如下至少之一:[+1,+1]、[+1,-1];在所述重复因子为4的情况下,对应的正交掩码包括如下至少之一:[+1,+1,+1,+1]、[+1,-1,+1,-1]、[+1,-1,-1,+1]以及[+1,+1,-1,-1];在所述重复因子为8的情况下,对应的正交掩码包括如下至少之一:[+1,+1,+1,+1,+1,+1,+1,+1]、[+1,-1,+1,-1,+1,-1,+1,-1]、[+1,-1,-1,+1,+1,-1,-1,+1]以及[+1,+1,+1,+1,-1,-1,-1,-1];在所述重复因子为12的情况下,对应的正交掩码包括如下至少之一:[+1,+1,+1,+1,+1,+1,+1,+1,+1,+1,+1,+1]、[+1,-1,+1,-1,+1,-1,+1,-1,+1,-1,+1,-1]、[+1,-1,-1,+1,+1,-1,-1,+1,+1,-1,-1,+1]以及[+1,+1,+1,+1,+1,+1,-1,-1,-1,-1,-1,-1]。
在一实施例中,所述SRS通过8个端口发送;所述端口的复用关系包括以下至少之一:在所述重复因子为2的情况下,第一端口组对应的正交掩码为[+1,+1],第二端口组对应的正交掩码为[+1,-1];在所述重复因子为4的情况下,第一端口组对应的正交掩码为[+1,+1,+1,+1],第二端口组对应的正交掩码为[+1,-1,+1,-1]或[+1,-1,-1,+1]或[+1,+1,-1,-1];在所述重复因子为8的情况下,第一端口组对应的正交掩码为[+1,+1,+1,+1,+1,+1,+1,+1],第二端口组对应的正交掩码为[+1,-1,+1,-1,+1,-1,+1,-1]、[+1,-1,-1,+1,+1,-1,-1,+1]或者[+1,+1,+1,+1,-1,-1,-1,-1];在所述重复因子为12的情况下,第一端口组对应的正交掩码为[+1,+1,+1,+1,+1,+1,+1,+1,+1,+1,+1,+1],第二端口组对应的正交掩码为[+1,-1,+1,-1,+1,-1,+1,-1,+1,-1,+1,-1]、[+1,-1,-1,+1,+1,-1,-1,+1,+1,-1,-1,+1]或者[+1,+1,+1,+1,+1,+1,-1,-1,-1,-1,-1,-1];其中,所述第一端口组包括端口1000至端口1003,所述第二端口组包括1004至端口1007。
在一实施例中,所述参考信号包括SRS;在SRS资源或SRS资源集占有的时域符号数量小于或等于6的情况下,SRS资源与天线端口的关联关系包括以下至少之一:在发送链路数为1、接收链路数为8且资源类型为周期或半持续的情况下,SRS资源集为1个,所述SRS资源集中的每个SRS资源位于不同的时域符号,每个SRS资源包含1个SRS端口,每个SRS端口关联不同的天线端口;在发送链路数为1、接收链路数为8且资源类型为非周期的情况下,SRS资源集 为4个,每个SRS资源集中的每个SRS资源位于不同的时域符号,每个SRS资源包含1个SRS端口,每个SRS端口关联不同的天线端口;在发送链路数为2、接收链路数为8且资源类型为非周期的情况下,SRS资源集为2个,每个SRS资源集中的每个SRS资源位于不同的时域符号,每个SRS资源包含2个SRS端口,每个SRS资源的SRS端口关联不同的天线端口;在发送链路数为4、接收链路数为8且资源类型包括至少两种的情况下,SRS资源集最多为2个,每个SRS资源集中的每个SRS资源位于不同的时域符号,每个SRS资源包含4个SRS端口,每个SRS资源的SRS端口关联不同的天线端口。
在SRS资源或SRS资源集占有的时域符号数量大于6的情况下,SRS资源与天线端口的关联关系包括以下至少之一:在发送链路数为1、接收链路数为8且资源类型为周期或半持续的情况下,SRS资源集为1个,所述SRS资源集中的每个SRS资源位于不同的时域符号,每个SRS资源包含1个SRS端口,每个SRS端口关联不同的天线端口;在发送链路数为1、接收链路数为8且资源类型为非周期的情况下,SRS资源集为2个,每个SRS资源集中的每个SRS资源位于不同的时域符号,每个SRS资源包含1个SRS端口,每个SRS端口关联不同的天线端口;在发送链路数为2、接收链路数为8且资源类型为非周期的情况下,SRS资源集为1个,所述SRS资源集中的每个SRS资源位于不同的时域符号,每个SRS资源包含2个SRS端口,每个SRS资源的SRS端口关联不同的天线端口;在发送链路数为4、接收链路数为8且资源类型包括至少两种的情况下,SRS资源集最多为2个,每个SRS资源集中的每个SRS资源位于不同的时域符号,每个SRS资源包含4个SRS端口,每个SRS资源的SRS端口关联不同的天线端口。
在一实施例中,发送或接收天线端口的能力包括以下至少之一:发送链路数为1且接收链路数为1、发送链路数为1且接收链路数为2、发送链路数为1且接收链路数为4,以及发送链路数为1且接收链路数为8;发送链路数为1且接收链路数为1、发送链路数为1且接收链路数为2、发送链路数为1且接收链路数为4,以及发送链路数为2且接收链路数为8;发送链路数为1且接收链路数为1、发送链路数为1且接收链路数为2、发送链路数为2且接收链路数为4,以及发送链路数为4且接收链路数为8;发送链路数为1且接收链路数为1、发送链路数为2且接收链路数为2、发送链路数为4且接收链路数为4,以及发送链路数为8且接收链路数为8。
在一实施例中,所述参考信号包括SRS;在满足设定条件且配置发送梳参数的情况下,所述SRS通过扩展发送梳发送,所述发送梳参数包括默认发送梳和默认偏置值;所述扩展发送梳为N倍的默认发送梳,对应的梳偏置为N倍的默认发送梳与所述默认偏置值的和,或者为N倍的默认偏置值,或者为所述默 认偏置值,其中,N为大于或等于2的整数。
在一实施例中,所述设定条件包括:在被触发的SRS资源集中存在发送带宽大于第一阈值的SRS资源;或者,被触发的SRS资源集中的SRS资源的发送带宽之和大于第二阈值。
在一实施例中,所述SRS的发送功率为默认功率的N倍,所述默认功率根据设定版本的新空口协议确定。
在一实施例中,所述参考信号包括SRS;在发送所述SRS的符号与发送第一类信道的符号重叠的情况下,所述SRS被取消或者推迟发送,其中,所述第一类信道包括物理上行控制信道、物理上行共享信道或物理随机接入信道中的至少一种,所述第一类信道中携带混合自动重传请求确认信息、正的SRS、秩指示或信道状态信息参考信号资源指示中的至少一种;在所述SRS的资源类型为周期或半持续,且发送所述SRS的符号与发送第二类信道的符号重叠的情况下,所述SRS被取消或者推迟发送,其中,所述第二类信道包括物理上行共享信道,所述第二类信道中携带非周期的信道状态信息CSI;在发送所述SRS的符号与发送第三类信道的符号重叠的情况下,所述第三类信道被取消或者推迟发送,其中,所述第三类信道包括物理上行控制信道和物理上行共享信道中的至少一种,所述第三类信道携带周期的CSI;在发送所述SRS的符号与发送第四类信道的符号重叠的情况下,所述第四类信道被取消或者推迟发送,其中,所述第四类信道包括物理上行共享信道,所述第四类信道携带非周期的CSI。
在一实施例中,所述参考信号包括SRS;所述SRS在频域上占用非连续的M段资源,每段资源包括间隔为L的连续子载波,其中,M为大于或等于2的整数,L为配置的SRS发送梳参数;所述M段资源在频域上为均匀分布。
在一实施例中,所述M段资源对应于P个序列标识,其中,P为小于或等于M的整数;所述P个序列标识由第一通信节点配置,或者所述P个序列标识中的X个序列标识由第一通信节点配置,其余P-X个序列标识根据预定义方式获得。
在一实施例中,每段资源对应的SRS序列的第一参数不同,所述第一参数包括如下至少之一:段索引;组跳转;序列跳转。
在一实施例中,还包括以下至少之一:第一通信节点在SRS资源中配置M的取值;在SRS资源中配置M个序列标识。
在一实施例中,还包括:第一通信节点在SRS资源中配置M个第二参数;所述第二参数包括以下至少之一:频域位置、频域移位、发送带宽参数、跳转带宽参数、SRS配置参数。
在一实施例中,每段资源分别对应于1个SRS资源;M个SRS资源的空域相关信息配置参数相同,或者M个SRS资源具有准共位关系,所述准共位关系包括A类型、B类型、C类型和D类型中的至少之一。
在一实施例中,所述M段资源中的Q段资源上的SRS序列,相比于所述M段资源中除所述Q段资源以外的任意一段资源上的SRS序列旋转了一个额外相位,其中,Q为小于M的整数,所述额外相位为固定的相位,或者为随子载波索引或段资源索引而变化的相位。
本实施例提供一种参考信号接收装置,未在本实施例中详尽描述的技术细节可参见上述任意实施例,并且本实施例具备与执行参考信号接收方法相同的技术效果。
本申请实施例还提供一种通信节点。所述参考信号发送方法可以由参考信号发送装置执行,该参考信号发送装置可以通过软件和/或硬件的方式实现,并集成在所述通信节点中,这种情况下,所述通信节点为发送参考信号的第二通信节点;所述参考信号接收方法可以由参考信号接收装置执行,该参考信号接收装置可以通过软件和/或硬件的方式实现,并集成在所述通信节点中,这种情况下,所述通信节点为接收参考信号的第一通信节点。
图8为一实施例提供的一种通信节点的硬件结构示意图。如图8所示,本实施例提供的一种通信节点,包括:处理器510和存储装置520。该通信节点中的处理器可以是一个或多个,图8中以一个处理器510为例,所述设备中的处理器510和存储装置520可以通过总线或其他方式连接,图8中以通过总线连接为例。
所述一个或多个程序被所述一个或多个处理器510执行,使得所述一个或多个处理器实现上述任一实施例所述的参考信号发送方法或参考信号接收方法。
该通信节点中的存储装置520作为一种计算机可读存储介质,可用于存储一个或多个程序,所述程序可以是软件程序、计算机可执行程序以及模块,如本发明实施例中参考信号发送方法对应的程序指令/模块(例如,附图6所示的参考信号发送装置中的模块,包括:信息接收模块310和参考信号发送模块220)。处理器510通过运行存储在存储装置520中的软件程序、指令以及模块,从而执行通信节点的各种功能应用以及数据处理,即实现上述方法实施例中的参考信号发送方法或参考信号接收方法。
存储装置520主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据设备的使 用所创建的数据等(如上述实施例中的指示信息、时隙间隔等)。此外,存储装置520可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储装置520可进一步包括相对于处理器510远程设置的存储器,这些远程存储器可以通过网络连接至通信节点。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
并且,当上述通信节点中所包括一个或者多个程序被所述一个或者多个处理器510执行时,实现如下操作:接收指示信息,所述指示信息用于指示第二通信节点发送参考信号,所述指示信息包括下行控制信息和高层信令中的至少之一;根据所述指示信息发送所述参考信号。
或者,当上述通信节点中所包括一个或者多个程序被所述一个或者多个处理器510执行时,实现如下操作:发送指示信息,所述指示信息用于指示第二通信节点发送参考信号,所述指示信息包括下行控制信息和高层信令中的至少之一;接收第二通信节点根据所述指示信息发送的参考信号。
本实施例提供一种通信节点,未在本实施例中详尽描述的技术细节可参见上述任意实施例,并且本实施例具备与执行参考信号发送方法或参考信号接收方法相同的技术效果。
本申请实施例还提供一种包含计算机可执行指令的存储介质,计算机可执行指令在由计算机处理器执行时用于执行一种参考信号发送方法或参考信号接收方法。
通过以上关于实施方式的描述,所属领域的技术人员可以了解到,本申请可借助软件及通用硬件来实现,也可以通过硬件实现。基于这样的理解,本申请的技术方案可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如计算机的软盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、闪存(FLASH)、硬盘或光盘等,包括多个指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请任意实施例所述的方法。
以上所述,仅为本申请的示例性实施例而已,并非用于限定本申请的保护范围。
本申请附图中的任何逻辑流程的框图可以表示程序步骤,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本地技术环境的类型并且可以使用任何适合的数据存储技术实现,例如但不限于 只读存储器(ROM)、随机访问存储器(RAM)、光存储器装置和系统(数码多功能光碟(Digital Video Disc,DVD)或光盘(Compact Disc,CD))等。计算机可读介质可以包括非瞬时性存储介质。数据处理器可以是任何适合于本地技术环境的类型,例如但不限于通用计算机、专用计算机、微处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑器件(Field Programmable Gate Array,FPGA)以及基于多核处理器架构的处理器。

Claims (25)

  1. 一种参考信号发送方法,应用于第二通信节点,包括:
    接收指示信息,所述指示信息用于指示所述第二通信节点发送参考信号,所述指示信息包括下行控制信息和高层信令中的至少之一;
    根据所述指示信息发送所述参考信号。
  2. 根据权利要求1所述的方法,其中,所述参考信号包括探测参考信号SRS和信道状态信息参考信号CSI-RS;
    所述指示信息用于联合触发所述SRS和所述CSI-RS的发送。
  3. 根据权利要求2所述的方法,其中,所述SRS与所述CSI-RS之间的时隙间隔或时隙偏置由第一通信节点通过无线资源控制RRC信令配置,或者根据下行控制信息中的联合请求域确定;
    在所述时隙间隔或时隙偏置为零的情况下,所述SRS所处的时隙与所述CSI-RS所处的时隙相同;
    在所述时隙间隔或时隙偏置为正数的情况下,所述SRS所处的时隙在所述CSI-RS所处的时隙之前,在所述时隙间隔或时隙偏置为负数的情况下,所述SRS所处的时隙在所述CSI-RS所处的时隙之后;或者,
    在所述时隙间隔或时隙偏置为负数的情况下,所述SRS所处的时隙在所述CSI-RS所处的时隙之前,在所述时隙间隔或时隙偏置为正数的情况下,所述SRS所处的时隙在所述CSI-RS所处的时隙之后。
  4. 根据权利要求2所述的方法,其中,所述SRS的资源或资源集与所述CSI-RS的资源或资源集具有准共位关系,所述准共位关系包括A类型、B类型、C类型和D类型中的至少之一。
  5. 根据权利要求2所述的方法,其中,所述指示信息通过下行控制信息中的设定域指示,所述设定域由第一通信节点通过RRC信令配置;
    所述设定域包括信道状态信息CSI请求域或SRS请求域。
  6. 根据权利要求1所述的方法,其中,所述参考信号包括SRS;
    SRS资源占有的时域符号数量包括6、8、10、12和14中的至少一种;
    所述SRS资源的重复因子与所述SRS资源占有的时域符号数量一一对应。
  7. 根据权利要求6所述的方法,其中,在所述重复因子大于2的情况下,所述SRS资源占有的时域符号对应于一组正交掩码。
  8. 根据权利要求7所述的方法,其中,所述正交掩码满足如下至少之一:
    在所述重复因子为2的情况下,对应的正交掩码包括如下至少之一:[+1,+1]、[+1,-1];
    在所述重复因子为4的情况下,对应的正交掩码包括如下至少之一:[+1,+1,+1,+1]、[+1,-1,+1,-1]、[+1,-1,-1,+1]以及[+1,+1,-1,-1];
    在所述重复因子为8的情况下,对应的正交掩码包括如下至少之一:[+1,+1,+1,+1,+1,+1,+1,+1]、[+1,-1,+1,-1,+1,-1,+1,-1]、[+1,-1,-1,+1,+1,-1,-1,+1]以及[+1,+1,+1,+1,-1,-1,-1,-1];
    在所述重复因子为12的情况下,对应的正交掩码包括如下至少之一:[+1,+1,+1,+1,+1,+1,+1,+1,+1,+1,+1,+1]、[+1,-1,+1,-1,+1,-1,+1,-1,+1,-1,+1,-1]、[+1,-1,-1,+1,+1,-1,-1,+1,+1,-1,-1,+1]以及[+1,+1,+1,+1,+1,+1,-1,-1,-1,-1,-1,-1]。
  9. 根据权利要求8所述的方法,其中,所述SRS通过8个端口发送;
    所述端口的复用关系包括以下至少之一:
    在所述重复因子为2的情况下,第一端口组对应的正交掩码为[+1,+1],第二端口组对应的正交掩码为[+1,-1];
    在所述重复因子为4的情况下,第一端口组对应的正交掩码为[+1,+1,+1,+1],第二端口组对应的正交掩码为[+1,-1,+1,-1]或[+1,-1,-1,+1]或[+1,+1,-1,-1];
    在所述重复因子为8的情况下,第一端口组对应的正交掩码为[+1,+1,+1,+1,+1,+1,+1,+1],第二端口组对应的正交掩码为[+1,-1,+1,-1,+1,-1,+1,-1]、[+1,-1,-1,+1,+1,-1,-1,+1]或者[+1,+1,+1,+1,-1,-1,-1,-1];
    在所述重复因子为12的情况下,第一端口组对应的正交掩码为[+1,+1,+1,+1,+1,+1,+1,+1,+1,+1,+1,+1],第二端口组对应的正交掩码为[+1,-1,+1,-1,+1,-1,+1,-1,+1,-1,+1,-1]、[+1,-1,-1,+1,+1,-1,-1,+1,+1,-1,-1,+1]或者[+1,+1,+1,+1,+1,+1,-1,-1,-1,-1,-1,-1];
    其中,所述第一端口组包括端口1000至端口1003,所述第二端口组包括1004至端口1007。
  10. 根据权利要求1所述的方法,其中,所述参考信号包括SRS;
    在SRS资源或SRS资源集占有的时域符号数量小于或等于6的情况下,所述SRS资源与天线端口的关联关系包括以下至少之一:
    在发送链路数为1、接收链路数为8且资源类型为周期或半持续的情况下,所述SRS资源集的数量为1个,所述SRS资源集中的每个SRS资源位于不同的 时域符号,每个SRS资源包含1个SRS端口,每个SRS端口关联不同的天线端口;
    在发送链路数为1、接收链路数为8且资源类型为非周期的情况下,所述SRS资源集的数量为4个,每个SRS资源集中的每个SRS资源位于不同的时域符号,每个SRS资源包含1个SRS端口,每个SRS端口关联不同的天线端口;
    在发送链路数为2、接收链路数为8且资源类型为非周期的情况下,所述SRS资源集的数量为2个,每个SRS资源集中的每个SRS资源位于不同的时域符号,每个SRS资源包含2个SRS端口,每个SRS资源的SRS端口关联不同的天线端口;
    在发送链路数为4、接收链路数为8且资源类型包括至少两种的情况下,所述SRS资源集的数量最多为2个,每个SRS资源集中的每个SRS资源位于不同的时域符号,每个SRS资源包含4个SRS端口,每个SRS资源的SRS端口关联不同的天线端口;
    在SRS资源或SRS资源集占有的时域符号数量大于6的情况下,所述SRS资源与天线端口的关联关系包括以下至少之一:
    在发送链路数为1、接收链路数为8且资源类型为周期或半持续的情况下,所述SRS资源集的数量为1个,所述SRS资源集中的每个SRS资源位于不同的时域符号,每个SRS资源包含1个SRS端口,每个SRS端口关联不同的天线端口;
    在发送链路数为1、接收链路数为8且资源类型为非周期的情况下,所述SRS资源集的数量为2个,每个SRS资源集中的每个SRS资源位于不同的时域符号,每个SRS资源包含1个SRS端口,每个SRS端口关联不同的天线端口;
    在发送链路数为2、接收链路数为8且资源类型为非周期的情况下,所述SRS资源集的数量为1个,所述SRS资源集中的每个SRS资源位于不同的时域符号,每个SRS资源包含2个SRS端口,每个SRS资源的SRS端口关联不同的天线端口;
    在发送链路数为4、接收链路数为8且资源类型包括至少两种的情况下,所述SRS资源集的数量最多为2个,每个SRS资源集中的每个SRS资源位于不同的时域符号,每个SRS资源包含4个SRS端口,每个SRS资源的SRS端口关联不同的天线端口。
  11. 根据权利要求10所述的方法,其中,发送或接收天线端口的能力包括以下至少之一:
    发送链路数为1且接收链路数为1、发送链路数为1且接收链路数为2、发 送链路数为1且接收链路数为4,以及发送链路数为1且接收链路数为8;
    发送链路数为1且接收链路数为1、发送链路数为1且接收链路数为2、发送链路数为1且接收链路数为4,以及发送链路数为2且接收链路数为8;
    发送链路数为1且接收链路数为1、发送链路数为1且接收链路数为2、发送链路数为2且接收链路数为4,以及发送链路数为4且接收链路数为8;
    发送链路数为1且接收链路数为1、发送链路数为2且接收链路数为2、发送链路数为4且接收链路数为4,以及发送链路数为8且接收链路数为8。
  12. 根据权利要求1所述的方法,其中,所述参考信号包括SRS;
    所述根据所述指示信息发送所述参考信号,包括:
    在满足设定条件且配置发送梳参数的情况下,通过扩展发送梳发送所述SRS,所述发送梳参数包括默认发送梳和默认偏置值;
    所述扩展发送梳为N倍的默认发送梳,所述扩展发送梳对应的梳偏置为N倍的默认发送梳与所述默认偏置值的和,或者所述扩展发送梳对应的梳偏置为N倍的默认偏置值,或者所述扩展发送梳对应的梳偏置为所述默认偏置值,其中,N为大于或等于2的整数。
  13. 根据权利要求12所述的方法,其中,所述设定条件包括:
    在被触发的SRS资源集中存在发送带宽大于第一阈值的SRS资源;或者,
    被触发的SRS资源集中的SRS资源的发送带宽之和大于第二阈值。
  14. 根据权利要求12所述的方法,其中,
    所述SRS的发送功率为默认功率的N倍,所述默认功率根据设定版本的新空口协议确定。
  15. 根据权利要求1所述的方法,其中,所述参考信号包括SRS;
    所述方法还包括以下至少之一:
    在发送所述SRS的符号与发送第一类信道的符号重叠的情况下,取消或者推迟发送所述SRS,其中,所述第一类信道包括物理上行控制信道、物理上行共享信道或物理随机接入信道中的至少一种,所述第一类信道中携带混合自动重传请求确认信息、正的SRS、秩指示或信道状态信息参考信号资源指示中的至少一种;
    在所述SRS的资源类型为周期或半持续,且发送所述SRS的符号与发送第二类信道的符号重叠的情况下,取消或者推迟发送所述SRS,其中,所述第二类信道包括物理上行共享信道,所述第二类信道中携带非周期的信道状态信息 CSI;
    在发送所述SRS的符号与发送第三类信道的符号重叠的情况下,取消或者推迟发送所述第三类信道,其中,所述第三类信道包括物理上行控制信道和物理上行共享信道中的至少一种,所述第三类信道携带周期的CSI;
    在发送所述SRS的符号与发送第四类信道的符号重叠的情况下,取消或者推迟发送所述第四类信道,其中,所述第四类信道包括物理上行共享信道,所述第四类信道携带非周期的CSI。
  16. 根据权利要求1所述的方法,其中,所述参考信号包括SRS;
    所述SRS在频域上占用非连续的M段资源,每段资源包括间隔为L的多个连续子载波,其中,M为大于或等于2的整数,L为配置的或预定义的SRS发送梳参数;
    所述M段资源在频域上为均匀分布。
  17. 根据权利要求16所述的方法,其中,所述M段资源对应于P个序列标识,其中,P为小于或等于M的整数;
    所述P个序列标识由第一通信节点配置,或者所述P个序列标识中的X个序列标识由第一通信节点配置,其余P-X个序列标识根据预定义方式获得。
  18. 根据权利要求16所述的方法,其中,每段资源对应的SRS序列的第一参数不同,所述第一参数包括如下至少之一:段索引;组跳转;序列跳转。
  19. 根据权利要求16所述的方法,其中,M满足以下至少之一:
    M的取值由第一通信节点在SRS资源中配置;
    M个序列标识由第一通信节点在SRS资源中配置。
  20. 根据权利要求16所述的方法,其中,
    SRS资源中的M个第二参数由第一通信节点配置;
    所述第二参数包括以下至少之一:频域位置、频域移位、发送带宽参数、跳转带宽参数、SRS配置参数。
  21. 根据权利要求16所述的方法,其中,所述非连续的M段资源中的每段资源分别对应于1个SRS资源;
    M个SRS资源的空域相关信息配置参数相同,或者M个SRS资源具有准共位关系,所述准共位关系包括A类型、B类型、C类型和D类型中的至少之一。
  22. 根据权利要求16所述的方法,其中,所述M段资源中的Q段资源上的 SRS序列,相比于所述M段资源中除所述Q段资源以外的任意一段资源上的SRS序列旋转了一个额外相位,其中,Q为小于M的整数,所述额外相位为固定的相位,或者所述额外相位为随子载波索引或段资源索引而变化的相位。
  23. 一种参考信号接收方法,应用于第一通信节点,包括:
    发送对参考信号的指示信息,所述指示信息用于指示第二通信节点发送参考信号,所述指示信息包括下行控制信息和高层信令中的至少之一;
    接收第二通信节点根据所述指示信息发送的参考信号。
  24. 一种通信节点,包括:
    至少一个处理器;
    存储装置,设置为存储至少一个程序;
    当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现如权利要求1-22中任一所述的参考信号发送方法或如权利要求23所述的参考信号接收方法。
  25. 一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1-22中任一所述的参考信号发送方法或如权利要求23所述的参考信号接收方法。
PCT/CN2020/139348 2020-01-03 2020-12-25 参考信号发送方法和装置、参考信号接收方法和装置、通信节点及介质 WO2021136086A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010006915.9 2020-01-03
CN202010006915.9A CN111901079A (zh) 2020-01-03 2020-01-03 参考信号发送、接收方法、装置、通信节点及介质

Publications (1)

Publication Number Publication Date
WO2021136086A1 true WO2021136086A1 (zh) 2021-07-08

Family

ID=73169703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/139348 WO2021136086A1 (zh) 2020-01-03 2020-12-25 参考信号发送方法和装置、参考信号接收方法和装置、通信节点及介质

Country Status (2)

Country Link
CN (1) CN111901079A (zh)
WO (1) WO2021136086A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111901079A (zh) * 2020-01-03 2020-11-06 中兴通讯股份有限公司 参考信号发送、接收方法、装置、通信节点及介质
CN116963205A (zh) * 2022-04-20 2023-10-27 大唐移动通信设备有限公司 一种信息接收方法、信息发送方法、装置及可读存储介质
CN117579239A (zh) * 2022-08-08 2024-02-20 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106455094A (zh) * 2015-08-13 2017-02-22 中国移动通信集团公司 探测参考信号的传输方法及网络侧设备、用户设备
WO2018126474A1 (en) * 2017-01-09 2018-07-12 Qualcomm Incorporated Transmitting multiplexed sounding reference signal ports in new radio
CN109586865A (zh) * 2017-09-28 2019-04-05 中国移动通信有限公司研究院 探测参考信号srs的配置方法、发送方法、基站及终端
CN109803417A (zh) * 2017-11-17 2019-05-24 维沃移动通信有限公司 确定参考信号的方法、上行探测参考信号发送方法和设备
CN110034897A (zh) * 2018-01-12 2019-07-19 电信科学技术研究院有限公司 一种参考信号传输方法及装置
CN110521137A (zh) * 2017-03-28 2019-11-29 三星电子株式会社 用于利用dl和ul参考信号的信道状态信息(csi)获取的方法和设备
CN110535593A (zh) * 2018-09-28 2019-12-03 中兴通讯股份有限公司 信号发送、资源确定方法、装置、终端、基站和存储介质
CN111901079A (zh) * 2020-01-03 2020-11-06 中兴通讯股份有限公司 参考信号发送、接收方法、装置、通信节点及介质

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106455094A (zh) * 2015-08-13 2017-02-22 中国移动通信集团公司 探测参考信号的传输方法及网络侧设备、用户设备
WO2018126474A1 (en) * 2017-01-09 2018-07-12 Qualcomm Incorporated Transmitting multiplexed sounding reference signal ports in new radio
CN110521137A (zh) * 2017-03-28 2019-11-29 三星电子株式会社 用于利用dl和ul参考信号的信道状态信息(csi)获取的方法和设备
CN109586865A (zh) * 2017-09-28 2019-04-05 中国移动通信有限公司研究院 探测参考信号srs的配置方法、发送方法、基站及终端
CN109803417A (zh) * 2017-11-17 2019-05-24 维沃移动通信有限公司 确定参考信号的方法、上行探测参考信号发送方法和设备
CN110034897A (zh) * 2018-01-12 2019-07-19 电信科学技术研究院有限公司 一种参考信号传输方法及装置
CN110535593A (zh) * 2018-09-28 2019-12-03 中兴通讯股份有限公司 信号发送、资源确定方法、装置、终端、基站和存储介质
CN111901079A (zh) * 2020-01-03 2020-11-06 中兴通讯股份有限公司 参考信号发送、接收方法、装置、通信节点及介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Remaining issues on non-codebook based UL transmission", 3GPP DRAFT; R1-1801450, vol. RAN WG1, 16 February 2018 (2018-02-16), Athens, Greece, pages 1 - 6, XP051397414 *

Also Published As

Publication number Publication date
CN111901079A (zh) 2020-11-06

Similar Documents

Publication Publication Date Title
WO2021043058A1 (zh) 数据传输方法、装置、传输接收节点、终端及介质
WO2021073508A1 (zh) 传输方法、装置、第一通信节点、第二通信节点及介质
WO2019158005A1 (zh) 下行控制信息传输方法
WO2021136086A1 (zh) 参考信号发送方法和装置、参考信号接收方法和装置、通信节点及介质
WO2019029378A1 (zh) 参考信号配置信息的指示方法、基站及终端
CN106455094B (zh) 探测参考信号的传输方法及网络侧设备、用户设备
RU2714130C1 (ru) Способы для адаптации плотности опорных сигналов демодуляции
WO2018082544A1 (zh) 无线通信的方法和装置
US20180242347A1 (en) Configuration of uplink transmission for a wireless device
JP2020519158A (ja) 無線通信システムにおける資源を割り当てる方法及び装置
US9912451B2 (en) Methods and nodes in a wireless communication system
WO2017133306A1 (zh) 传输导频信号的方法和装置
US20140369292A1 (en) Wireless Communication Method and Communication Apparatus
KR102225238B1 (ko) 데이터 송신 방법, 단말기, 및 기지국
US20180192321A1 (en) Reference Signal In A Communications Network
KR20130122572A (ko) 단말 대 단말 통신을 위한 송수신 방법
WO2019080937A1 (zh) 上行控制信息的发送及接收方法和装置
WO2012055259A1 (zh) 一种上行信道的发送方法、基站和用户设备
AU2017338040A1 (en) Control of aperiodic signalling of SRS for wireless systems
CN111615861B (zh) 多比特调度请求
WO2018171792A1 (zh) 一种参考信号传输方法、装置及系统
TW201836393A (zh) 上行傳輸方法、裝置、終端設備、接入網設備及系統
US11962521B2 (en) Radio communication apparatus, method, program, non-transitory computer readable recording medium, and system
WO2014094294A1 (en) Method for determining channel quality information (cqi) for physical resource blocks having reduced overhead
WO2014075294A1 (zh) Rs的传输方法、用户设备及网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20908867

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20908867

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14/02/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20908867

Country of ref document: EP

Kind code of ref document: A1