WO2021136016A1 - 一种同步信号检测、传输方法、装置、设备和存储介质 - Google Patents

一种同步信号检测、传输方法、装置、设备和存储介质 Download PDF

Info

Publication number
WO2021136016A1
WO2021136016A1 PCT/CN2020/138362 CN2020138362W WO2021136016A1 WO 2021136016 A1 WO2021136016 A1 WO 2021136016A1 CN 2020138362 W CN2020138362 W CN 2020138362W WO 2021136016 A1 WO2021136016 A1 WO 2021136016A1
Authority
WO
WIPO (PCT)
Prior art keywords
synchronization
synchronization signal
delay
frame
time
Prior art date
Application number
PCT/CN2020/138362
Other languages
English (en)
French (fr)
Inventor
魏继东
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2021136016A1 publication Critical patent/WO2021136016A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0055Synchronisation arrangements determining timing error of reception due to propagation delay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0055Synchronisation arrangements determining timing error of reception due to propagation delay
    • H04W56/0065Synchronisation arrangements determining timing error of reception due to propagation delay using measurement of signal travel time

Definitions

  • This application relates to the field of communication technology, and in particular to a synchronization signal detection and transmission method, device, device, and storage medium.
  • LTE Long Term Evolution
  • NR New Radio
  • future communication systems require high-speed, high-spectrum efficiency, and large-capacity multimedia data transmission capabilities.
  • LTE Long Term Evolution
  • NR New Radio
  • future communication systems require high-speed, high-spectrum efficiency, and large-capacity multimedia data transmission capabilities.
  • the ratio of the frame and the downlink subframe is to meet the uplink and downlink traffic requirements in different business scenarios.
  • the demand for cell coverage radius is increased.
  • the embodiment of the present application provides a synchronization signal detection method, including: buffering time domain data of a set time length from the receiving start point; performing synchronization signal frame boundary detection on the buffered time domain data, and combining the frame boundary detection result Group, and determine the frame boundary of each group; for the synchronization signal in each group, determine the delay offset of the synchronization signal in the group based on the frame boundary of the group; the delay offset is used as the The coarse synchronization delay of the synchronization signal in the group; synchronization detection is performed on the synchronization signal that determines the frame boundary in each group to obtain a synchronization detection result, and the synchronization detection result includes the identification of the synchronization signal, the fine synchronization delay and power; Determine the true time delay of the synchronization signal based on the coarse synchronization time delay and the fine synchronization time delay, and report the true time delay, the identifier, and the power to the media access control point, and pass the The media access control point feeds back the real time delay and the
  • An embodiment of the present application provides a synchronization signal transmission method, including: configuring multiple sets of frame structures based on the size of a network coverage area; and sending the multiple sets of frame structures to user equipment.
  • the embodiment of the application provides a synchronization signal transmission method, including: receiving multiple sets of frame structures sent by a base station; sending signals according to the multiple sets of frame structures; wherein, according to one set of frame structures in the multiple sets of frame structures Send synchronization signal.
  • the embodiment of the present application provides a synchronization signal detection device, including: a receiving module configured to buffer time-domain data of a set length of time from the receiving start point; a frame boundary detection module configured to buffer the time-domain data Perform the frame boundary detection of the synchronization signal, group the frame boundary detection results, and determine the frame boundary of each group; the delay offset determination module is set for the synchronization signal in each group, based on the frame of the group The boundary determines the delay offset of the synchronization signal in the packet; the delay offset is used as the coarse synchronization delay of the synchronization signal in the packet; the synchronization detection module is set to determine the frame boundary in each packet Synchronization detection of the synchronization signal to obtain a synchronization detection result.
  • the synchronization detection result includes the identification of the synchronization signal, the fine synchronization delay and the power; the feedback module is used to determine based on the coarse synchronization delay and the fine synchronization delay The real time delay of the synchronization signal, and report the real time delay, the identifier, and the power to the media access control point, and use the media access control point to compare the real time delay to the The identification is fed back to the user equipment.
  • An embodiment of the application provides a synchronization signal transmission device, including: a configuration module configured to configure multiple sets of frame structures based on the size of a network coverage area; a frame structure sending module configured to transmit the multiple sets of frame structures To the user equipment.
  • the embodiment of the present application provides a synchronization signal transmission device, including: a receiving module configured to receive multiple sets of frame structures sent by a base station; a signal sending module configured to transmit signals according to the multiple sets of frame structures, wherein, The synchronization signal is sent according to one of the multiple frame structures.
  • An embodiment of the present application provides a device, including: one or more processors; a memory, configured to store one or more programs; when the one or more programs are executed by the one or more processors, such that The one or more processors implement any method in the embodiments of the present application.
  • the embodiment of the present application provides a storage medium that stores a computer program, and when the computer program is executed by a processor, any one of the methods in the embodiments of the present application is implemented.
  • Fig. 1 is a flowchart of a synchronization signal detection method provided by the present application
  • FIG. 2a is a flowchart of a synchronization signal detection method provided by the present application.
  • Fig. 2b is a schematic diagram of the synchronization signal structure type 0 provided by the present application.
  • Fig. 2c is a schematic diagram of the synchronization signal structure type 1 provided by the present application.
  • Fig. 3a is a flowchart of a synchronization signal detection method provided by the present application.
  • Fig. 3b is a schematic diagram of a 5ns single-period frame structure provided by the present application.
  • Fig. 4 is a flowchart of a synchronization signal transmission method provided by the present application.
  • FIG. 5 is a flowchart of a synchronization signal transmission method provided by the present application.
  • Fig. 6 is a flowchart of a synchronization signal transmission method provided by the present application.
  • FIG. 7 is a structural block diagram of a synchronization signal detection device provided by the present application.
  • FIG. 8 is a structural block diagram of a synchronization signal transmission device provided by the present application.
  • FIG. 9 is a structural block diagram of a synchronization signal transmission device provided by the present application.
  • FIG. 10 is a structural block diagram of a synchronization signal transmission device provided by the present application.
  • Fig. 11 is a schematic diagram of a device structure provided by the present application.
  • LTE Long Term Evolution
  • NR New Radio
  • future communication systems require high-speed, high-spectrum efficiency, and large-capacity multimedia data transmission capabilities.
  • LTE Long Term Evolution
  • NR New Radio
  • future communication systems require high-speed, high-spectrum efficiency, and large-capacity multimedia data transmission capabilities.
  • the ratio of the frame and the downlink subframe is to meet the uplink and downlink traffic requirements in different business scenarios.
  • the demand for cell coverage radius is increased.
  • the 3rd Generation Partnership Project (3rd Generation Partnership Project, 3GPP) protocol defines different frame structure formats, and each format meets different coverage. It also requires a certain number of continuous uplink subframes to ensure the normal transmission of a certain PRACH format signal. In this way, it forms a pair of contradictions with the ratio of uplink subframes and downlink subframes, which eventually leads to service congestion, timeouts, etc., which seriously reduces the user experience.
  • PRACH Physical Random Access Channel
  • 3GPP 3rd Generation Partnership Project
  • the existing solutions to the above problems can mainly include two types.
  • One is to create an exclusive scenario protocol system independent of the 3GPP protocol, which increases the solution cost of the exclusive scenario and restricts the entire industry.
  • Mutual integration and development The second is to follow the 3GPP protocol, sacrificing part of the uplink resources or downlink resources to ensure the normal access of the user equipment or synchronization with the base station.
  • this method realizes the normal access of the user equipment without changing the protocol, it may cause the problem of uplink or downlink service congestion at the same time.
  • FIG. 1 is a flowchart of a synchronization signal detection method provided by the present application.
  • the method can be applied to an uplink synchronization signal detection method.
  • it can be applied to a short synchronization signal detection method. Detection of synchronization signals (including short PRACH signals) or long PRACH signals that do not meet the coverage requirements.
  • This method can be executed by the synchronization signal detection device provided by the present application, and the synchronization signal detection device can be implemented by software and/or hardware and integrated on the base station.
  • the method provided in this embodiment includes the following steps:
  • S11 Buffer the time domain data of the set time length from the receiving start point.
  • the time domain data may include time domain data of a synchronization signal, and may also include time domain data of other signals.
  • the synchronization signal may be an uplink synchronization signal, and the uplink synchronization signal may include a PRACH signal.
  • the base station may buffer the time domain data of the synchronization signal sent by N user equipments from the receiving start point.
  • the received time domain data may be N symbol data, or may also be N subframe data.
  • the set time length is related to the length of the synchronization signal and the maximum coverage radius of the network coverage area.
  • S12 Perform frame boundary detection of the synchronization signal on the buffered time domain data, group the frame boundary detection results, and determine the frame boundary of each group.
  • the detecting the frame boundary of the synchronization signal on the buffered time domain data includes: using a search signal of a preset time length to perform a sliding window on the buffered time domain data; The correlation value of the search signal and the buffered time domain data at different search points; store the correlation value greater than the set threshold to form a set; determine synchronization based on the time index corresponding to the correlation value in the set The starting position of the signal, and the starting position is used as the frame boundary detection result of the synchronization signal.
  • the set threshold value can be determined according to traversal simulation or can also be calculated based on received time-domain data.
  • the search signal is a cyclic prefix signal or a local timing sequence.
  • the correlation value of the cyclic prefix signal at different search points and the buffered time domain data is determined based on the following formula: Among them, N_step is the sliding step length of the search signal; L is the length of the detection window, M is the time domain interval between the two related signals (the time domain interval between the search signal and the synchronization signal), and P(k) is the k-th correlation value , K is a natural number; D is the synchronization signal, and D* is the conjugate of D.
  • the search signal is a cyclic prefix signal.
  • the search signal is a local time domain synchronization sequence
  • the construction process of the local time domain synchronization sequence includes: generating a time domain sequence of all possible synchronization signals based on the logical root configuration of the network coverage area ; Superimpose the time-domain sequences of all possible synchronization signals to obtain a local time-domain synchronization sequence.
  • the relevant detection is performed through the transmitted synchronization signal (uplink synchronization signal) in the time domain signal within a certain time window.
  • the correlation value is calculated based on the following formula: Among them, P(k) is the k-th correlation value, D is the synchronization signal, L is the length of the sliding window, LocalP* is the LocalP conjugate, and LocalP is the time domain sequence of the local synchronization signal.
  • the grouping the frame boundary detection results and determining the frame boundary of each group includes: grouping the frame boundary detection results according to a preset time length offset threshold; and grouping each group The inner frame boundary detection result uses the same frame boundary as the frame boundary of each group.
  • the determining the delay offset of the synchronization signal in the packet based on the frame boundary of the packet includes: comparing the frame boundary of the synchronization signal in the packet with the synchronization signal The time interval between the sending times is used as the delay offset of the synchronization signal in the packet.
  • the time delay offset of the synchronization signal determined by the frame boundary is a rough calculation of the time delay of the synchronization signal, so it is necessary to perform synchronization detection on the synchronization signal to obtain a precise time delay.
  • the transmission time of the synchronization signal can be carried in the synchronization signal.
  • S14 Perform synchronization detection on the synchronization signal that determines the frame boundary in each packet to obtain a synchronization detection result of the synchronization signal.
  • the synchronization detection result includes the identification of the synchronization signal, the fine synchronization delay, and the power.
  • the synchronization detection method of the synchronization signal can refer to the method in the related technology, and no detailed introduction will be provided.
  • S15 Determine the true time delay of the synchronization signal based on the coarse synchronization time delay and the fine synchronization time delay, and report the true time delay, identification and power of the synchronization signal to the media access control point, and pass The media access control point feeds back the real time delay and the identifier to the user equipment.
  • determining the true time delay of the synchronization signal based on the coarse synchronization time delay and the fine synchronization time delay includes: comparing the coarse synchronization time delay and the fine synchronization time delay And as the real time delay of the synchronization signal.
  • the method before using a search signal of a preset time length to perform window sliding on the buffered time domain data, the method further includes:
  • the overlapped in the synchronization detection process of the synchronization signal that determines the frame boundary in each packet, and in the case where there is an overlap in the synchronization detection window determined based on the frame boundary of each packet, the overlapped The synchronization detection result of the synchronization signal in the smallest packet among the packets corresponding to the synchronization detection window, or the synchronization detection result of the synchronization signal with the strongest reserved power.
  • the user equipment when the synchronization signal interferes with other signals, the user equipment is prohibited from sending other signals on the frequency domain resources corresponding to all the detection windows of the synchronization signal, or the synchronization signal The user equipment is prohibited from sending the other signals in the time slots or symbols corresponding to all detection windows.
  • the coverage radius supported by the synchronization signal is smaller than the actual support capability, there may be interference from the synchronization signal to other signals.
  • the adjacent F subframes that may interfere with the synchronization signal correspond to User scheduling is not performed at the frequency domain resource location, or the K time slots or symbols adjacent to the PRACH are not scheduled, and no signal is transmitted.
  • the method for determining the frame boundary may include: determining the frame boundary of the synchronization signal based on the distance between the user equipment and the base station and the transmission time of the synchronization signal. Specifically, the time delay of the synchronization signal can be determined by the distance between the user equipment and the base station, and the frame boundary of the synchronization signal can be determined by the time delay and the transmission time of the synchronization signal.
  • the method for determining the frame boundary may include: querying the frame boundary of the synchronization signal stored in the history.
  • FIG. 2a is a flowchart of a synchronization signal detection method provided by the present application. As shown in FIG. 2a, the method provided by the present application includes:
  • S21 Buffer the time domain data of the set time length from the receiving start point.
  • S22 Perform a sliding window on the buffered time domain data using a cyclic prefix signal with a preset time length.
  • S23 Determine correlation values between the search signal and the buffered time domain data at different search points.
  • S25 Determine the start position of the synchronization signal based on the time index corresponding to the correlation value in the set, and use the start position as the frame boundary detection result of the synchronization signal.
  • S29 Perform synchronization detection on the synchronization signal that determines the frame boundary in each packet to obtain a synchronization detection result of the synchronization signal, where the synchronization detection result includes the identification of the synchronization signal, the fine synchronization delay, and the power;
  • S291 Determine the true time delay of the synchronization signal based on the coarse synchronization time delay and the fine synchronization time delay, and report the true time delay, the identifier, and the power to the media access control point, and The real time delay and the identifier are fed back to the user equipment through the media access control point.
  • the specific determination method can refer to the following steps:
  • Step 1 According to the requirement of network coverage, buffer the data of N consecutive subframes from the starting point of PRACH reception.
  • the choice of N is related to the size of the network coverage area.
  • Step 2 Perform frame boundary detection of PRACH signal or synchronization signal.
  • the blind detection of the signal is performed according to the structural characteristics of the synchronization signal or the PRACH signal.
  • the detection process may use a Cyclic Prefix (CP) signal or a preamble synchronization (Preamble) signal to perform a sliding blind search, and the length of the search is N subframes.
  • CP Cyclic Prefix
  • Preamble preamble synchronization
  • Sub-step 1 The blind detection process of the signal.
  • the CP signal can only be used for blind search. If it belongs to the synchronization signal structure type 1, the CP signal can be used for the blind search, or the Preamble signal can also be used for the blind search.
  • the length of the search can be one preamble length or multiple preamble lengths, and there is no restriction here.
  • the specific search process starts from the starting point of PRACH reception and performs sliding window, the window length is L, the window length is CP length or one Preamble length or multiple Preamble lengths, and the sliding step N_step selects an appropriate step length according to the requirements of detection accuracy.
  • D represents the uplink synchronization signal or PRACH signal
  • M represents the time domain interval for detecting two related signals
  • P(k) is the k-th correlation value
  • k is a natural number
  • D* is the conjugate of D.
  • the data of N subframes can be down-sampled, and the down-sampled data can be used for related detection.
  • Sub-step 2 Judging the validity of the detection result. Effectively judge the detection result P(k).
  • the judgment method is that P(k) is greater than an absolute threshold value.
  • the absolute threshold value may be determined by traversal simulation or calculated based on the received data.
  • the storage pass is valid P(k) of the result of the sexual judgment, and save it, denoted by M(k), M(k) belongs to a subset of P(k).
  • Sub-step 3 The process of determining the frame boundary corresponding to the PRACH detection of different users.
  • the starting positions of the synchronization signals corresponding to different user equipments are converted.
  • the synchronization signal within a certain range of L CP + ⁇ adopts a unified frame boundary; if there are still sample points in the set M(k), Then determine the frame boundary of the remaining synchronization signal according to the previous method.
  • Step 3 Use the C frame boundary groups selected in the above steps to demodulate the signal according to the length of the PRACH signal or the synchronization signal.
  • the specific detection method can refer to related technologies, which will not be described in detail here. And get the synchronization signal identification, time delay and signal power.
  • Step 4 Use the result detected in Step 3 to adjust the actual transmission delay of the user according to the corresponding frame boundary. Since the synchronization signal identification is unique to each user equipment, the detected synchronization signal identification is differentiated, and if there is agreement, the corresponding signal power is used for the judgment, and finally the strongest power is selected as the final effective one. The verdict.
  • FIG. 3a is a flowchart of a method for detecting synchronization signals provided by an embodiment of the present application. As shown in FIG. 3a, the technical solution provided by the present application includes:
  • S31 Buffer the time domain data of the set time length from the receiving start point.
  • S32 Generate a time domain sequence of all possible synchronization signals based on the logical root configuration of the network coverage area.
  • S34 Perform a sliding window on the buffered time domain data using a local time domain synchronization sequence with a preset time length.
  • S35 Determine the correlation value between the local time domain synchronization sequence and the buffered time domain data at different search points.
  • S36 Store the relevant values greater than the set threshold to form a set.
  • S37 Determine the start position of the synchronization signal based on the time index corresponding to the correlation value in the set, and use the start position as the frame boundary detection result of the synchronization signal.
  • S392 Perform synchronization detection on the synchronization signal that determines the frame boundary in each packet to obtain a synchronization detection result of the synchronization signal, where the synchronization detection result includes the identification of the synchronization signal, the fine synchronization delay, and the power;
  • S393 Determine the real delay of the synchronization signal based on the coarse synchronization delay and the fine synchronization delay, and report the real delay, the identifier, and the power to the media access control point, and The real time delay and the identifier are fed back to the user equipment through the media access control point.
  • the specific detection method can refer to the following steps:
  • Step 1 According to the requirement of network coverage, buffer the data of N consecutive subframes from the starting point of PRACH reception.
  • the choice of N is related to the size of the network coverage area.
  • Step 2 Perform frame boundary detection of PRACH signal or synchronization signal.
  • the constructed local time domain synchronization sequence and the received time domain data are used for sliding correlation detection, and the length of the search is N subframes.
  • the specific process includes the following sub-steps:
  • Sub-step 1 The construction process of the local time domain synchronization sequence.
  • the construction process of the local time domain synchronization sequence is related to the configuration of the logical root sequence of the PRACH in the coverage area of the network, or the uplink synchronization signal in the coverage area of the network.
  • N' represents the number of possible mother codes.
  • offline processing can also be used, and online processing can also be used, and there is no restriction here.
  • Sub-step 2 Use the generated local time-domain synchronization sequence to perform sliding correlation detection in a time-domain window with a length of N subframes.
  • the specific search process starts from the starting point of the PRACH reception, and the window length is L, the window length is the CP length or one Preamble length or multiple Preamble lengths.
  • the sliding step N_step is specifically selected according to the detection accuracy requirements. .
  • D represents an uplink synchronization signal or a PRACH signal.
  • the data of the N subframes can be down-sampled, and the down-sampled data can be used for correlation detection.
  • Sub-step 3 Judging the validity of the detection result. Effectively judge the detection result P(k).
  • the judgment method is that P(k) is greater than an absolute threshold.
  • the threshold may be determined by traversal simulation or calculated based on the received data.
  • the validity is stored The decision result P(k), and save it, denoted by M(k), M(k) belongs to a subset of P(k).
  • Sub-step 4 The process of determining the frame boundary corresponding to the PRACH detection of different users.
  • the starting positions of the synchronization signals corresponding to different user equipments are converted.
  • the synchronization signal within a certain range of L CP + ⁇ adopts a unified frame boundary; if there are still sample points in the set M(k), Then determine the frame boundary of the remaining synchronization signal according to the previous method.
  • Step 3 Use the C frame boundary groups selected in the above steps to demodulate the signal according to the length of the PRACH signal or the synchronization signal.
  • the specific detection method can refer to the related technology, which will not be described in detail here. And get the synchronization signal identification, time delay and signal power.
  • Step 4 Use the result detected in Step 3 to adjust the actual transmission delay of the user according to the corresponding frame boundary. Since the synchronization signal identification is unique to each user equipment, the detected synchronization signal identification is differentiated, and if there is agreement, the corresponding signal power is used for the judgment, and finally the strongest power is selected as the final effective one. The verdict.
  • the detection methods for synchronization signals are not limited to these two methods.
  • the method of blind determination of frame boundaries can be used, specifically combining the cell coverage radius and the characteristics of synchronization signals, to determine multiple frame boundaries, and two adjacent ones.
  • the frame boundaries may be the same or different.
  • Artificial Intelligence AI
  • the input parameters of each base station in the AI model that specifically determine the frame boundaries can include time or reference signal receiving power reported by the user equipment. Power, RSRP) etc.
  • the fine synchronization of the uplink synchronization signal is performed as in the above-mentioned method.
  • the synchronization signal When the synchronization signal supports the network coverage area radius is smaller than the actual support capacity, there may be interference of the synchronization signal to other signals.
  • the scheduling process it corresponds to the F subframes that may interfere with the synchronization signal adjacent to the synchronization signal.
  • User scheduling is not performed at the frequency domain resource location of the PRACH, or the K time slots or symbols adjacent to the PRACH are not scheduled, and no signal is transmitted.
  • the method provided in this application can increase the network coverage area radius of the uplink synchronization signal or PRACH signal, and at the same time reduce the interference of the synchronization signal and other signals in combination with the strategy of user resource scheduling.
  • This method can solve the problem of exceeding the synchronization signal (uplink synchronization signal) or PRACH In the case of signal coverage, how to perform uplink synchronization or PRACH detection.
  • TDD Time Division Duplexing
  • 3b Time Division Duplexing 5ms single-period frame structure
  • the PRACH signal is configured as Format0, occupying U0
  • the cell coverage must meet 100km, and three user equipments to be accessed are scheduled on one U (uplink subframe), and the user equipment is 5km, 50km, and 100km away from the base station.
  • the method provided in this application may include the following steps:
  • Step 1 According to the logical root index of the network coverage area configuration, it is inferred that there may be the number of mother codes M, and the time domain Preamble sequence of M Format0 obtained by offline calculation is used for 16 times downsampling, and the length is obtained by superposition
  • the 1536 length Preamble time domain sequence LocalP is stored as a local time domain synchronization sequence.
  • Step 2 Considering that the network coverage area needs to meet the requirement of 100Km, it is necessary to detect the signals on two consecutive U, and schedule and limit the transmission of other signals on the frequency domain resources corresponding to U1.
  • the time-domain data of U1 and U2 are buffered, and down-sampling is also performed by 16 times.
  • the time-domain data obtained is denoted by D, and the length is 3840.
  • Step 3 Use the stored local time domain synchronization sequence LocalP to perform sliding correlation with the time domain data to obtain the relevant detection results, and the sliding step is N_step;
  • sub-step 1 make a validity judgment on the result of P(k), put P(k) satisfying P(k) ⁇ Thr in another memory, and use M(k) to denote; where Thr is Set the threshold; the length of the detected M(k) is 3, and the three positions correspond to 64, 640, and 1280 after downsampling.
  • Sub-step 2 The position of M(k) is subjected to difference processing in pairs, and it is judged whether the difference value is less than a threshold Thr2. If it is less, the corresponding small value is used as the detected frame boundary.
  • the definition of the frame boundary can include CP may not include CP.
  • the detected positions are both greater than the decision threshold, then three frame boundaries are determined, and the offset value of the frame boundary relative to U0 is recorded.
  • Step 3 Use the selected three frame boundary groups to perform fine synchronization detection of the PRACH signals respectively, and obtain the detection results.
  • the detection results include the identification, time delay and signal power of the three PRACH signals.
  • Step 4 Combining the PRACH signal delays sent by the three user equipments detected in Step 3 and the corresponding frame boundary offsets, calculate the true delays of the three user equipment sending signals, and report the detected results to the media interface.
  • Access Control Modium Access Control, MAC
  • FIG. 4 is a flowchart of a synchronization signal transmission method provided by the present application.
  • the method may be executed by a synchronization signal transmission device, and the device may be configured on the user equipment.
  • the method can be applied to the transmission of uplink synchronization signals (including PRACH signals).
  • sending the synchronization signal based on the real time delay includes: sending the synchronization signal in advance of the real time delay based on the original sending time.
  • the determination of the real time delay can refer to the determination method in the foregoing embodiment.
  • FIG. 5 is a flowchart of a synchronization signal transmission method provided by the present application. The method may be executed by a synchronization signal transmission device, and the device may be configured on a base station.
  • the method provided by the embodiment of the present application includes:
  • S51 Configure multiple sets of frame structures based on the size of the network coverage area.
  • the number of configured frame structures can be larger.
  • the first frame structure and the second frame structure in the multiple sets of frame structures are adjacent, and the ratio of the uplink subframe and the downlink subframe of the first frame structure is greater than that of the set frame structure.
  • the ratio of the uplink subframe and the downlink subframe of the second frame structure is smaller than the set ratio value;
  • the ratio of the uplink subframe and the downlink subframe of the first frame structure is less than the set ratio value
  • the ratio of the uplink subframe and the downlink subframe of the second frame structure is greater than the set ratio value.
  • S52 Send the multiple sets of frame structures to the user equipment.
  • the frame structure of multiple patterns (Pattern) designed in the embodiment of this application one or some of the pattern frame structure needs to meet the requirements of the selected uplink synchronization signal or the continuous N uplink subframes involved in the PRACH signal, and the configuration is fixed
  • the PRACH signal or the uplink synchronization signal is transmitted in this or these Pattern uplink subframes.
  • two Pattern frame structures are designed, one frame structure ensures normal transmission of PRACH signals or uplink synchronization signals, and the other frame structure comprehensively considers meeting the requirements of uplink and downlink throughput.
  • FIG. 6 is a flowchart of a synchronization signal transmission method provided by the present application. The method may be executed by a synchronization signal transmission device, and the device may be configured on the user equipment. .
  • the method provided by this application includes:
  • S61 Receive multiple sets of frame structures sent by the base station.
  • S62 Send a signal according to the multiple sets of frame structures, wherein the synchronization signal is sent according to one of the multiple sets of frame structures.
  • the first frame structure and the second frame structure in the multiple sets of frame structures are adjacent, and the ratio of the uplink subframe and the downlink subframe of the first frame structure is greater than the set ratio.
  • the ratio of the uplink subframe and the downlink subframe of the second frame structure is smaller than the set ratio value;
  • the ratio of the uplink subframe and the downlink subframe of the first frame structure is less than the set ratio value
  • the ratio of the uplink subframe and the downlink subframe of the second frame structure is greater than the set ratio value.
  • FIG. 7 is a structural block diagram of a synchronization signal detection device provided by an embodiment of the present application.
  • the device executes a synchronization signal detection method provided by an embodiment of the present application.
  • the device is configured in a base station, and the device includes: a receiving module 71.
  • the receiving module 71 is configured to buffer time domain data of a set time length from the receiving start point;
  • the frame boundary detection module 72 is configured to perform synchronization signal frame boundary detection on the buffered time domain data, group the frame boundary detection results, and determine the frame boundary of each group;
  • the delay offset determining module 73 is configured to determine the delay offset of the synchronization signal in the packet based on the frame boundary of the packet for the synchronization signal in each packet; the delay offset is used as the Coarse synchronization delay of the synchronization signal in the packet;
  • the synchronization detection module 74 is configured to perform synchronization detection on the synchronization signal that determines the frame boundary in each packet to obtain a synchronization detection result of the synchronization signal.
  • the synchronization detection result includes the identification of the synchronization signal, the fine synchronization delay and the power ;
  • the feedback module 75 is configured to determine the true time delay of the synchronization signal based on the coarse synchronization time delay and the fine synchronization time delay, and report the true time delay, the identifier and the power to the media interface Access the control point, and feed back the real time delay and the identifier to the user equipment through the media access control point.
  • grouping the frame boundary detection results and determining the frame boundary of each group includes: grouping the frame boundary detection results according to a preset time length offset threshold;
  • the frame boundary detection result in each group adopts the same frame boundary as the frame boundary of each group.
  • the frame boundary detection module 72 is configured to use a search signal of a preset time length to perform a sliding window on the buffered time domain data;
  • the start position of the synchronization signal is determined based on the time index corresponding to the correlation value in the set, and the start position is used as the frame boundary detection result of the synchronization signal.
  • the search signal is a cyclic prefix signal or a local time domain synchronization sequence.
  • the search signal is a local time domain synchronization sequence
  • the process of constructing the local time domain synchronization sequence includes:
  • the time-domain sequences of all possible synchronization signals are superimposed to obtain a local time-domain synchronization sequence.
  • the device further includes a sampling module configured to perform a window sliding on the buffered time domain data using a search signal of a preset length of time, and perform a windowing on the buffered time domain data and all the time domain data.
  • the local time-domain synchronization sequence performs down-sampling at the same magnification.
  • determining the true time delay of the synchronization signal based on the coarse synchronization time delay and the fine synchronization time delay includes:
  • the sum of the coarse synchronization delay and the fine synchronization delay is used as the true delay of the synchronization signal.
  • the overlapped in the synchronization detection process of the synchronization signal that determines the frame boundary in each packet, and in the case where there is an overlap in the synchronization detection window determined based on the frame boundary of each packet, the overlapped The synchronization detection result of the synchronization signal in the smallest packet among the packets corresponding to the synchronization detection window, or the synchronization detection result of the synchronization signal with the strongest reserved power.
  • the device further includes a prohibition module configured to prohibit users on frequency domain resources corresponding to all detection windows of the synchronization signal when the synchronization signal interferes with other signals.
  • the device sends other signals, or prohibits the user equipment from sending the other signals in the time slots or symbols corresponding to all detection windows of the synchronization signal.
  • the set time length is related to the length of the synchronization signal and the maximum coverage radius of the network coverage area.
  • the above-mentioned device can execute the method provided in any embodiment of the present application, and has corresponding functional modules and beneficial effects for executing the method.
  • FIG. 8 is a structural block diagram of a synchronization signal transmission device provided by the present application.
  • the device can be configured in user equipment, and the device includes: a receiving module 81 and a synchronization signal.
  • Sending module 82 sends to the device.
  • the receiving module 81 is set to receive the real time delay and identification of the synchronization signal sent by the base station;
  • the synchronization signal sending module 82 is configured to determine whether it is consistent with the identifier of the sent synchronization signal based on the received identifier and to send the synchronization signal based on the real time delay.
  • the above-mentioned device can execute the method provided in any embodiment of the present application, and has corresponding functional modules and beneficial effects for executing the method.
  • FIG. 9 is a structural block diagram of a synchronization signal transmission device provided by the present application.
  • the device can be configured in a base station, and the device includes a configuration module 91 and a frame structure sending module. 92.
  • the configuration module 91 is set to configure multiple sets of frame structures based on the size of the network coverage area;
  • the frame structure sending module 92 is configured to send the multiple sets of frame structures to the user equipment.
  • the first frame structure and the second frame structure in the multiple sets of frame structures are adjacent, and the ratio of the uplink subframe and the downlink subframe of the first frame structure is greater than that of the set frame structure.
  • the ratio of the uplink subframe and the downlink subframe of the second frame structure is smaller than the set ratio value;
  • the ratio of the uplink subframe and the downlink subframe of the first frame structure is less than the set ratio value
  • the ratio of the uplink subframe and the downlink subframe of the second frame structure is greater than the set ratio value.
  • the above-mentioned device can execute the method provided in any embodiment of the present application, and has corresponding functional modules and beneficial effects for executing the method.
  • FIG. 10 is a structural block diagram of a synchronization signal transmission device provided by the application.
  • the device can be configured with user equipment.
  • the device includes a frame structure receiving module 101 and a signal transmission device. Module 102.
  • the frame structure receiving module 101 is configured to receive multiple sets of frame structures sent by the base station;
  • the signal sending module 102 is configured to send signals according to the multiple sets of frame structures, wherein the synchronization signal is sent according to one of the multiple sets of frame structures.
  • the above-mentioned device can execute the method provided in any embodiment of the present application, and has corresponding functional modules and beneficial effects for executing the method.
  • FIG. 11 is a schematic structural diagram of a device provided in this application.
  • the device provided in this application includes one or more processors 121 and a memory 122; There may be one or more processors 121 in the device.
  • one processor 121 is taken as an example; the memory 122 is used to store one or more programs; the one or more programs are processed by the one or more programs.
  • the processor 121 executes, so that the one or more processors 121 implement the method described in the embodiment of the present application.
  • the equipment also includes: a communication device 123, an input device 124, and an output device 125.
  • the processor 121, the memory 122, the communication device 123, the input device 124, and the output device 125 in the device may be connected through a bus or other methods.
  • the connection through a bus is taken as an example.
  • the input device 124 can be used to receive inputted numeric or character information, and generate key signal input related to user settings and function control of the device.
  • the output device 125 may include equipment such as a display screen or an output interface.
  • the communication device 123 may include a receiver and a transmitter.
  • the communication device 123 is configured to perform information transceiving and communication under the control of the processor 121.
  • the memory 122 can be configured to store software programs, computer-executable programs, and modules, such as program instructions/modules corresponding to the synchronization signal detection method described in the embodiments of the present application (for example, in the synchronization signal detection device The receiving module 71, the frame boundary detection module 72, the delay offset determination module 73, the synchronization detection module 74 and the feedback module 75), and then the program instructions/modules corresponding to the synchronization signal transmission method described in the embodiment of the present application (for example, The receiving module 81 and the synchronization signal sending module 82 in the synchronization signal transmission device).
  • Another example is the program instructions/modules corresponding to the synchronization signal transmission method described in the embodiment of the present application (for example, the configuration module 91 and the frame structure sending module 92 in the synchronization signal transmission device).
  • Another example is the program instructions/modules corresponding to the synchronization signal transmission method described in the embodiment of the present application (for example, the frame structure receiving module 101 and the signal sending module 102 in the synchronization signal transmission device).
  • the memory 122 may include a program storage area and a data storage area, where the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created according to the use of the device, and the like.
  • the memory 122 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage devices.
  • the memory 122 may further include a memory remotely provided with respect to the processor 121, and these remote memories may be connected to the device through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • the embodiment of the present application further provides a storage medium, the storage medium stores a computer program, and the computer program is executed by a processor to implement the method described in any of the embodiments of the present application.
  • the method includes:
  • the signal is sent according to the multiple sets of frame structures, wherein the synchronization signal is sent according to one of the multiple sets of frame structures.
  • user terminal encompasses any suitable type of wireless user equipment, such as a mobile phone, a portable data processing device, a portable web browser, or a vehicle-mounted mobile station.
  • the various embodiments of the present application can be implemented in hardware or dedicated circuits, software, logic or any combination thereof.
  • some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software that may be executed by a controller, microprocessor, or other computing device, although the present application is not limited thereto.
  • Computer program instructions can be assembly instructions, instruction set architecture (ISA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, state setting data, or source code written in any combination of one or more programming languages or Object code.
  • ISA instruction set architecture
  • the block diagram of any logical decision in the drawings of this application may represent program steps, or may represent interconnected logic circuits, modules, and functions, or may represent a combination of program steps and logic circuits, modules, and functions.
  • the computer program can be stored on the memory.
  • the memory can be of any type suitable for the local technical environment and can be implemented using any suitable data storage technology, such as but not limited to read only memory (ROM), random access memory (RAM), optical storage devices and systems (digital multi-function optical discs) DVD or CD) etc.
  • Computer-readable media may include non-transitory storage media.
  • the data processor can be any type suitable for the local technical environment, such as but not limited to general-purpose computers, special-purpose computers, microprocessors, digital signal processors (DSP), application-specific integrated circuits (ASIC), programmable logic devices (FGPA) And processors based on multi-core processor architecture.
  • DSP digital signal processors
  • ASIC application-specific integrated circuits
  • FGPA programmable logic devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提出一种同步信号检测、传输方法、装置、设备和存储介质,其中该方法包括:从接收开始点缓存时域数据;对时域数据进行同步信号的帧边界检测并对结果进行分组,确定每个分组的帧边界;基于分组的帧边界确定分组内的同步信号的时延偏移并作为粗同步时延;对同步信号进行同步检测,得到同步检测结果,包括同步信号的标识、精同步时延和功率;并将基于粗同步时延和精同步时延确定的同步信号的真实时延、标识和功率进行上报和反馈。

Description

一种同步信号检测、传输方法、装置、设备和存储介质
相关申请的交叉引用
本申请基于申请号为201911410018.8、申请日为2019年12月31日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此以引入方式并入本申请。
技术领域
本申请涉及通信技术领域,具体涉及一种同步信号检测、传输方法、装置、设备和存储介质。
背景技术
长期演进(Long Term Evolution,LTE)、新空口(New Radio,NR)和未来通信系统要求具备高速率、高频谱效率、大容量的多媒体数据传输能力,同时针对不同应用场景能够灵活的选择上行子帧和下行子帧的配比,来满足不同业务场景下的上行和下行流量需求。但是,对于覆盖范围较大的场景,比如航线覆盖、海峡覆盖或者沿海岛屿覆盖等,增加了对小区覆盖半径的需求。
发明内容
本申请实施例提供了一种同步信号检测方法,包括:从接收开始点缓存设定时间长度的时域数据;对缓存的所述时域数据进行同步信号的帧边界检测,将帧边界检测结果进行分组,并确定每个分组的帧边界;针对每个分组内的同步信号,基于所述分组的帧边界确定所述分组内的同步信号的时延偏移;所述时延偏移作为所述分组内的同步信号的粗同步时延;对每个分组内确定帧边界的同步信号进行同步检测,得到同步检测结果,所述同步检测结果包括同步信号的标识、精同步时延和功率;基于所述粗同步时延和所述精同步时延确定所 述同步信号的真实时延,并将所述真实时延、所述标识和所述功率上报给媒体接入控制点,并通过所述媒体接入控制点将所述真实时延和所述标识反馈给用户设备。
本申请实施例提供了一种同步信号的传输方法,包括:基于网络覆盖区域的大小配置多套帧结构;将所述多套帧结构发送给用户设备。
本申请实施例提供了一种同步信号的传输方法,包括:接收基站发送的多套帧结构;按照所述多套帧结构发送信号;其中,按照所述多套帧结构中的一套帧结构发送同步信号。
本申请实施例提供了一种同步信号检测装置,包括:接收模块,被设置从接收开始点缓存设定时间长度的时域数据;帧边界检测模块,被设置为对缓存的所述时域数据进行同步信号的帧边界检测,对帧边界检测结果进行分组,并确定每个分组的帧边界;时延偏移确定模块,被设置为针对每个分组内的同步信号,基于所述分组的帧边界确定所述分组内的同步信号的时延偏移;所述时延偏移作为所述分组内的同步信号的粗同步时延;同步检测模块,被设置为对每个分组内确定帧边界的同步信号进行同步检测,得到同步检测结果,所述同步检测结果包括同步信号的标识、精同步时延和功率;反馈模块,用于基于所述粗同步时延和所述精同步时延确定所述同步信号的真实时延,并将所述真实时延、所述标识和所述功率上报给媒体接入控制点,并通过所述媒体接入控制点将所述真实时延和所述标识反馈给用户设备。
本申请实施例提供了一种同步信号的传输装置,包括:配置模块,被设置为基于网络覆盖区域的大小配置多套帧结构;帧结构发送模块,被设置为将所述多套帧结构发送给用户设备。
本申请实施例提供了一种同步信号的传输装置,包括:接收模块,被设置为接收基站发送的多套帧结构;信号发送模块,被设置为按照所述多套帧结构发送信号,其中,按照所述多套帧结构中的一套帧结构发送同步信号。
本申请实施例提供了一种设备,包括:一个或多个处理器;存储器,用于存储一个或多个程序;当所述一个或多个程序被所述一个或多个处理器执行, 使得所述一个或多个处理器实现本申请实施例中的任意一种方法。
本申请实施例提供了一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现本申请实施例中的任意一种方法。
关于本申请的以上实施例和其他方面以及其实现方式,在附图说明、具体实施方式和权利要求中提供更多说明。
附图说明
图1是本申请提供的一种同步信号检测方法的流程图;
图2a是本申请提供的一种同步信号检测方法的流程图;
图2b是本申请提供的同步信号结构类型0的示意图;
图2c是本申请提供的同步信号结构类型1的示意图;
图3a是本申请提供的一种同步信号检测方法的流程图;
图3b是本申请提供的5ns单周期帧结构示意图;
图4是本申请提供的一种同步信号传输方法的流程图;
图5是本申请提供的一种同步信号传输方法的流程图;
图6是本申请提供的一种同步信号传输方法的流程图;
图7是本申请提供的一种同步信号检测装置结构框图;
图8是本申请提供的一种同步信号传输装置结构框图;
图9是本申请提供的一种同步信号传输装置结构框图;
图10是本申请提供的一种同步信号传输装置结构框图;
图11是本申请提供的一种设备结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚明白,下文中将结合附图对本申请的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系 统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
长期演进(Long Term Evolution,LTE)、新空口(New Radio,NR)和未来通信系统要求具备高速率、高频谱效率、大容量的多媒体数据传输能力,同时针对不同应用场景能够灵活的选择上行子帧和下行子帧的配比,来满足不同业务场景下的上行和下行流量需求。但是,对于覆盖范围较大的场景,比如航线覆盖、海峡覆盖或者沿海岛屿覆盖等,增加了对小区覆盖半径的需求。
对于同步信号,例如,物理随机接入(Physical Random Access Channel,PRACH)信号,第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)协议定义了不同帧结构的格式,每种格式满足不同的覆盖范围,同时也就要求存在一定数量的连续上行子帧,这样才能保证某个PRACH格式信号的正常传输。这样就无异与上行子帧和下行子帧的配比形成一对矛盾体,最终导致业务堵塞、超时等,严重降低了用户的体验。
针对上述的问题现有存在的解决思路可以主要包括两种类型,其一是独立于3GPP协议,创建一个专属场景的协议体系,这样增加了专署场景的解决方案成本,以及限制了整个行业领域的互融和发展。其二是遵循3GPP协议,牺牲一部分上行资源或者下行资源来保证用户设备的正常接入或与基站的同步。该方法虽然在不改变协议的前提条件下,实现了用户设备的正常接入,但是同时可能会导致上行或者下行业务阻塞的问题。
因此,针对上述问题需要提出一个有效的解决方案,既能保证用户设备的正常接入或者同步,也能够满足上下行业务吞吐量的需求。
在一个示例性实施方式中,图1是本申请提供的一种同步信号检测方法的流程图,如图1所示,该方法可以适用于上行同步信号检测的方法,例如,可以适用于短的同步信号(包括短PRACH信号)或者不满足覆盖需求的长PRACH信号的检测的情况。该方法可以由本申请提供的同步信号检测装置执行,该通同步信号装置可以由软件和/或硬件实现,并集成在基站上。
如图1所示,本实施例提供的方法包括如下步骤:
S11:从接收开始点缓存设定时间长度的时域数据。
在本申请中,时域数据可以包括同步信号的时域数据,还可以包括其他信号的时域数据,其中,同步信号可以为上行同步信号,上行同步信号可以包括PRACH信号。其中,基站可以从接收开始点缓存N个用户设备发送的同步信号的时域数据。其中,接收到的时域数据可以是N个符号数据,或者也可以是N个子帧的数据。
在一个示例性的实施方式中,所述设定时间长度与同步信号的长度以及网络覆盖区域的最大覆盖半径相关。
S12:对缓存的时域数据进行同步信号的帧边界检测,将帧边界检测结果进行分组,并确定每个分组的帧边界。
在一个示例性实施方式中,所述对缓存的所述时域数据进行同步信号的帧边界检测,包括:采用预设时间长度的搜索信号对缓存的所述时域数据进行滑窗;确定所述搜索信号在不同的搜索点上与缓存的所述时域数据的相关值;将大于设定门限值的相关值进行存储,形成集合;基于所述集合中相关值对应的时间索引确定同步信号的起始位置,将所述起始位置作为同步信号的帧边界检测结果。
其中,设定门限值可以根据遍历仿真进行确定或者也可以基于接收到的时域数据进行计算得到。
在一个示例性的实施方式中,所述搜索信号为循环前缀信号或者本地时序序列。
在一个示例性的实施方式中,在所述搜索信号为循环前缀信号情况下,基于如下的公式确定循环前缀信号在不同的搜索点与缓存的时域数据的相关值:
Figure PCTCN2020138362-appb-000001
其中,N_step为搜索信号的滑动步长;L为检测窗的长度,M为两个相关信号的时域间隔(搜索信号与同步信号的时域间隔),P(k)为第k个相关值,k为自然数;D为同步信号,D*为D的共轭。其中,该所述搜索信号为循环前缀信号。
在一个示例性的实施方式中,所述搜索信号为本地时域同步序列,所述本地时域同步序列的构造过程包括:基于网络覆盖区域的逻辑根配置生成所有可能的同步信号的时域序列;将所有可能的同步信号的时域序列进行叠加,得到本地时域同步序列。
其中,当某个时刻发送给一个或者少数用户设备的情况下,通过发送的同步信号(上行同步信号)在一定时间窗内的时域信号进行相关检测。
在一个示例性的实施方式中,当搜索信号为本地时域同步序列时,基于如下公式计算相关值:
Figure PCTCN2020138362-appb-000002
其中,P(k)为第k个相关值,D为同步信号,L为滑窗的长度,LocalP*为LocalP共轭,其中,LocalP为本地同步信号的时域序列。
在一个示例性的实施方式中,所述对帧边界检测结果进行分组,并确定每个分组的帧边界,包括:将帧边界检测结果按照预设时间长度偏移门限进行分组;将每个分组内的帧边界检测结果采用相同的帧边界,作为每个分组的帧边界。
S13:针对每个分组内的同步信号,基于所述分组的帧边界确定所述分组内的同步信号的时延偏移,所述时延偏移作为所述分组内的同步信号的粗同步时延。
在一个示例性的实施方式中,所述基于所述分组的帧边界确定所述分组内的同步信号的时延偏移,包括:将所述分组内的同步信号的帧边界与所述同步信号发送时间之间的时间间隔作为所述分组内的同步信号的时延偏移。其中,通过帧边界确定的同步信号的时延偏移是对同步信号时延的一个粗略的计算,所以需要对同步信号进行同步检测,得到精准时延。其中,同步信号的发送时间可以携带在同步信号中。
S14:对每个分组内确定帧边界的同步信号进行同步检测,得到所述同步信号的同步检测结果,所述同步检测结果包括同步信号的标识、精同步时延和功率。
其中,同步信号的同步检测方法可以参考相关技术中的方法,不再进行具体介绍。
S15:基于所述粗同步时延和所述精同步时延确定所述同步信号的真实时延,并将所述同步信号的真实时延、标识和功率上报给媒体接入控制点,并通过所述媒体接入控制点将所述真实时延和所述标识反馈给用户设备。
在一个示例性的实施方式中,基于所述粗同步时延和所述精同步时延确定所述同步信号的真实时延,包括:将所述粗同步时延与所述精同步时延之和作为所述同步信号的真实时延。
在一个示例性的实施方式中,在采用预设时间长度的搜索信号对缓存的时域数据进行滑窗之前,还包括:
对缓存的所述时域数据和所述本地时域同步序列进行相同倍率的降采样。
在一个示例性的实施方式中,在对每个分组内确定帧边界的同步信号进行同步检测过程中,且在基于每个分组的帧边界确定的同步检测窗存在重叠的情况下,保留重叠的同步检测窗对应的分组中最小分组内的同步信号的同步检测结果,或者保留功率最强的同步信号的同步检测结果。
在一个示例性的实施方式中,在所述同步信号对其他信号存在干扰的情况下,在所述同步信号的所有检测窗对应频域资源上禁止用户设备发送其他信号,或者在所述同步信号的所有检测窗对应的时隙或者符号内禁止所述用户设备发送所述其他信号。
其中,如果同步信号所支持的覆盖半径小于实际的支持能力的情况下,可能会存在同步信号对其他信号的干扰现象,在调度过程中对同步信号相邻的可能存在干扰的F个子帧对应的频域资源位置上不进行用户调度,或者PRACH相邻的K个时隙或者符号不作任何调度,不传输任何信号。
在一个示例性的实施方式中,确定帧边界的方法可以包括:通过用户设备与基站的距离、同步信号的发送时间确定同步信号的帧边界。具体的可以是通过用户设备与基站的距离可以确定同步信号的时延,通过该时延与同步信号的发送时间确定同步信号的帧边界。
在一个示例性的实施方式中,确定帧边界的方法可以包括:查询历史存储的同步信号的帧边界。
在一个示例性的实施方式中,图2a是本申请提供的一种同步信号检测方法流程图,如图2a所示,本申请提供的方法包括:
S21:从接收开始点缓存设定时间长度的时域数据。
S22:采用预设时间长度的循环前缀信号对缓存的时域数据进行滑窗。
S23:确定所述搜索信号在不同的搜索点上与缓存的所述时域数据的相关值。
S24:将大于设定门限值的相关值进行存储,形成集合。
S25:基于所述集合中相关值对应的时间索引确定同步信号的起始位置,将所述起始位置作为同步信号的帧边界检测结果。
S26:将帧边界检测结果按照预设时间长度偏移门限进行分组。
S27:将每个分组内的帧边界检测结果采用相同的帧边界,作为每个分组的帧边界。
S28:针对每个分组内的同步信号,基于所述分组的帧边界确定所述分组内的同步信号的时延偏移;所述时延偏移作为所述分组内的同步信号的粗同步时延。
S29:对每个分组内确定帧边界的同步信号进行同步检测,得到所述同步信号的同步检测结果,所述同步检测结果包括同步信号的标识、精同步时延和功率;
S291:基于所述粗同步时延和所述精同步时延确定所述同步信号的真实时延,并将所述真实时延、所述标识和所述功率上报给媒体接入控制点,并通过所述媒体接入控制点将所述真实时延和所述标识反馈给用户设备。
具体的确定的方法可以是参考如下步骤:
步骤一:根据网络覆盖的需求,从PRACH接收开始点进行缓存连续N个子帧的数据,N的选择与网路覆盖区域的大小有关。
步骤二:进行PRACH信号或者同步信号的帧边界检测。
根据同步信号或者PRACH信号的结构特点进行信号的盲检测,检测过程 可以采用循环前缀(Cyclic Prefix,CP)信号或者前导同步(Preamble)信号进行滑动盲搜索,搜索的长度为N个子帧。具体过程包括如下几个子步骤.
子步骤一:信号的盲检测过程。
如果PRACH信号或者同步信号属于同步信号结构类型0,则只能采用CP信号进行盲搜索,如果属于同步信号结构类型1,则可以采用CP信号进行盲搜索,或者也可以采用Preamble信号进行盲搜索,搜索的长度可以是一个Preamble长度,也可以是多个Preamble长度,再此不作限制,其中,同步信号结构类型0和同步信号结构类型1的示意图可以分别参考图2b和图2c。具体搜索过程以PRACH接收开始点开始进行滑窗,窗长为L,窗长为CP长度或者一个Preamble长度或者多个Preamble长度,滑动步长N_step具体根据检测精度的要求选择合适的步长。
Figure PCTCN2020138362-appb-000003
其中,D表示上行同步信号或者PRACH信号,M表示检测两个相关信号的时域间隔,P(k)为第k个相关值,k为自然数;D*为D的共轭。
在具体实现的过程,为了简化实现过程可以对N个子帧的数据进行降采样,利用降采后的数据进行相关检测。
子步骤二:对检测结果进行有效性判决。对检测结果P(k)进行有效判决,判决方法为P(k)大于一个绝对门限值,该绝对门限值取值可能通过遍历仿真确定或者基于接收到的数据计算获取得到,存储通过有效性判决结果的P(k),并保存下来,用M(k)表示,M(k)属于P(k)的一个子集合。
子步骤三:不同用户PRACH检测对应的帧边界确定过程。根据PRACH信号或者同步信号的结构特点,以及M(k)集合中的k对应的时间索引折算出不同用户设备对应的同步信号的起始位置。按照选择的最早的起始位置或者该起始位置所在的帧开始,在一定的L CP+Δ范围内的同步信号采用统一的帧边界;如果在集合M(k)之内依然剩余样本点,然后按照前面的方法确定剩余的同步信号的帧边界。
步骤三:利用上述步骤选择的C个帧边界组,按照PRACH信号或者同步信号的长度进行信号的解调。具体检测方法可参考相关技术,在此不再详细说明。并获取到同步信号标识、时延和信号功率。
步骤四:利用步骤三检测出来的结果,根据对应的帧边界调整用户的实际传输时延。由于同步信号标识对于每个用户设备是唯一的,则对检测得到的同步信号的标识进行差异性判决,如果存在一致的,则采用对应的信号功率进行判决,最终选择功率最强作为最终有效的判决结果。
在一个示例性的实施方式中,图3a是本申请实施例提供的一种同步信号的检测方法流程图,如图3a所示,本申请提供的技术方案包括:
S31:从接收开始点缓存设定时间长度的时域数据。
S32:基于网络覆盖区域的逻辑根配置生成所有可能的同步信号的时域序列。
S33:将所有可能的同步信号的时域序列进行叠加,得到本地时域同步序列。
S34:采用预设时间长度的本地时域同步序列对缓存的时域数据进行滑窗。
S35:确定本地时域同步序列在不同的搜索点上与缓存的所述时域数据的相关值。
S36:将大于设定门限值的相关值进行存储,形成集合。
S37:基于所述集合中相关值对应的时间索引确定同步信号的起始位置,将所述起始位置作为同步信号的帧边界检测结果。
S38:将帧边界检测结果按照预设时间长度偏移门限进行分组。
S39:将每个分组内的帧边界检测结果采用相同的帧边界,作为每个分组的帧边界。
S391:针对每个分组内的同步信号,基于所述分组的帧边界确定所述分组内的同步信号的时延偏移;所述时延偏移作为所述分组内的同步信号的粗同步时延;
S392:对每个分组内确定帧边界的同步信号进行同步检测,得到所述同步信号的同步检测结果,所述同步检测结果包括同步信号的标识、精同步时延和 功率;
S393:基于所述粗同步时延和所述精同步时延确定所述同步信号的真实时延,并将所述真实时延、所述标识和所述功率上报给媒体接入控制点,并通过所述媒体接入控制点将所述真实时延和所述标识反馈给用户设备。
具体的检测的方法可以是参考如下步骤:
步骤一:根据网络覆盖的需求,从PRACH接收开始点进行缓存连续N个子帧的数据,N的选择与网路覆盖区域的大小有关。
步骤二:进行PRACH信号或者同步信号的帧边界检测。
利用构造的本地时域同步序列与接收时域数据进行滑动相关检测,搜索的长度为N个子帧。具体过程包括如下几个子步骤:
子步骤一:本地时域同步序列的构造过程。本地时域同步序列的构造过程与本网络覆盖区域的PRACH的逻辑根序列的配置有关,或者本网络覆盖区域的上行同步信号有关。利用本网络覆盖区域可能存在的逻辑根序列,生成所有可能的同步信号的时域序列,表示为LocalP i,然后生成同步信号的时域序列
Figure PCTCN2020138362-appb-000004
其中N'表示可能存在的母码个数。对于该过程可以采用离线处理的方式,也可以采用在线处理的方式,再此不作限制。
子步骤二:利用生成的本地时域同步序列在N个子帧长度的时域窗内进行滑动相关检测。
具体搜索过程以PRACH接收开始点开始进行滑窗,窗长为L,窗长为CP长度或者一个Preamble长度或者多个Preamble长接度,滑动步长N_step具体根据检测精度的要求选择合适的步长。
Figure PCTCN2020138362-appb-000005
其中,D表示上行同步信号或者PRACH信号。
在具体实现的过程,为了简化实现过程可以对N个子帧的数据进行降采样,利用降采后的数据进行相关检测。
子步骤三:对检测结果进行有效性判决。对检测结果P(k)进行有效判决, 判决方法为P(k)大于一个绝对门限值,该门限值取值可能通过遍历仿真确定或者基于接收到的数据计算获取得到,存储通过有效性判决结果的P(k),并保存下来,用M(k)表示,M(k)属于P(k)的一个子集合。
子步骤四:不同用户PRACH检测对应的帧边界确定过程。根据PRACH信号或者同步信号的结构特点,以及M(k)集合中的k对应的时间索引折算出不同用户设备对应的同步信号的起始位置。按照选择的最早的起始位置或者该起始位置所在的帧开始,在一定的L CP+Δ范围内的同步信号采用统一的帧边界;如果在集合M(k)之内依然剩余样本点,然后按照前面的方法确定剩余的同步信号的帧边界。
步骤三:利用上述步骤选择的C个帧边界组,按照PRACH信号或者同步信号的长度进行信号的解调。具体检测方法可参考相关技术,在此不再详细说明。并获取到同步信号标识、时延和信号功率。
步骤四:利用步骤三检测出来的结果,根据对应的帧边界调整用户的实际传输时延。由于同步信号标识对于每个用户设备是唯一的,则对检测得到的同步信号的标识进行差异性判决,如果存在一致的,则采用对应的信号功率进行判决,最终选择功率最强作为最终有效的判决结果。
针对同步信号的检测方法除了上述两种检测方法,不局限于这两种方法,可以采用帧边界盲确定的方法,具体结合小区覆盖半径和同步信号的特点,确定多个帧边界,相邻两个帧边界可以是相同的,也可以不是相同。或者采用人工智能(Artificial Intelligence,AI)的方式存储历史搜索的帧边界,具体确定帧边界的AI模型的每个基站的输入参量可以包括时间、或者用户设备上报的参考信号接收功率(Reference Signal Receiving Power,RSRP)等。确定帧边界之后同上述的方法一样进行上行同步信号的精同步。
本申请提供的方法在实现过程中,考虑一些特殊的应用场景,在一个RO时刻发送给一个或者少数用户设备的情况下,通过确定发送的上行同步信号或者PRACH信号与在一定的时间窗内的时域信号进行相关检测,获取的同步信 号的检测结果作为最终上报的信息。
在同步信号所支持的是网络覆盖区域半径小于实际的支持能力的情况下,可能会存在同步信号对其他信号的干扰现象,在调度过程中对同步信号相邻的可能存在干扰的F个子帧对应的频域资源位置上不进行用户调度,或者PRACH相邻的K个时隙或者符号不作任何调度,不传输任何信号。
本申请提供的方法可以提高上行同步信号或者PRACH信号的网络覆盖区域半径,同时结合用户资源调度的策略来降低同步信号和其他信号的干扰,该方法可以解决超出同步信号(上行同步信号)或者PRACH信号的覆盖范围的情况下,如何进行上行同步或者PRACH检测。
在一个示例性的实施方式中,假设以时分双工(Time Division Duplexing,TDD)5ms单周期的帧结构(如3b所示),子载波间隔为15KHz为例,PRACH信号配置为Format0,占用U0的6个RB的资源,小区覆盖要满足100km,其中一个U(上行子帧)上调度了3个待接入的用户设备,用户设备距离基站的位置分别是5km,50km和100km。
本申请提供的方法可以包括如下步骤:
步骤一:根据该网络覆盖区域配置的逻辑根索引,推断出可能存在母码个数M,并利用离线计算得到的M个Format0的时域Preamble序列进行进行16倍降采样,并叠加得到长度为1536长度Preamble时域序列LocalP,并存储为本地时域同步序列。
步骤二:考虑网络覆盖区域要满足100Km的需求,则需要检测连续两个U上的信号,并调度限制U1对应频域资源上不进行其他信号的传输。缓存U1和U2的时域数据,同样进行16倍的降采样,得到的时域数据用D表示,长度为3840。
步骤三:利用存储的本地时域同步序列LocalP与时域数据进行滑动相关,获取相关检测结果,滑动步长为N_step;
Figure PCTCN2020138362-appb-000006
其中,子步骤一:对P(k)的结果进行有效性判决,将满足P(k)≥Thr的P(k)放在另外一个存储器中,并用M(k)来表示;其中,Thr为设定门限值;检测出来的M(k)的长度为3,三个位置分别对应降采样后的64、640和1280。
子步骤二:M(k)的位置两两进行差值处理,判决差值是否小于一个门限值Thr2,如果小于则按照相应的小值作为检测的帧边界,其中,帧边界的定义可以包含CP,也可以不包含CP。在本实施例中检测出来的位置两两均大于判决门限,则确定三个帧边界,并记录帧边界相对于U0的偏移值。
步骤三:利用选择的三个帧边界组,分别进行PRACH信号的精同步检测,得到检测结果,检测结果包括三个PRACH信号的标识、时延和信号功率。
步骤四:结合步骤三检测出来的三个用户设备发送的的PRACH信号时延和对应的帧边界偏移,计算出三个用户设备发送信号的真实时延,并对检测出来的结果上报媒体接入控制(Midium Access Control,MAC)。
在一个示例性的实施方式中,图4是本申请提供的一种同步信号的传输方法流程图,所述方法可以由一种同步信号的传输装置来执行,所述装置可以配置在用户设备上,所述方法可以应用于上行同步信号(包括PRACH信号)的传输的情况。
如图4所示,本申请提供的技术方案包括:
S41:接收基站发送的同步信号的真实时延和标识。
S42:基于所述标识判断与已发送的同步信号的标识是否一致,以及基于所述真实时延发送同步信号。
在一个示例性的实施方式中,基于所述真实时延发送同步信号包括:将同步信号在原来发送时间的基础上提前真实时延发送。
其中,真实时延的确定可以参考上述实施例中的确定方法。
在一个示例性的实施方式中,图5是本申请提供的一种同步信号的传输方法流程图,所述方法可以由一种同步信号的传输装置来执行,所述装置可以配置在基站上。
如图5所示,本申请实施例提供的方法包括:
S51:基于网络覆盖区域的大小配置多套帧结构。
其中,当网络覆盖区域越大时,配置的帧结构的数量可以越多。
在一个示例性的实施方式中,在所述多套帧结构中的第一帧结构和第二帧结构相邻,且所述第一帧结构的上行子帧和下行子帧的配比大于设定配比值的情况下,则所述第二帧结构的上行子帧和下行子帧的的配比小于所述设定配比值;
在所述多套帧结构中的第一帧结构和第二帧结构相邻,且在所述第一帧结构的上行子帧和下行子帧的配比小于设定配比值的情况下,则所述第二帧结构的上行子帧和下行子帧的配比大于所述设定配比值。
S52:将所述多套帧结构发送给用户设备。
在本申请中,配置多个帧结构的图案(pattern),并满足上行子帧的pattern的帧结构进行传输PRACH或者上行同步信号。本申请实施例公开的具体内容如下:
本申请实施例设计的多套图案(Pattern)的帧结构,其中某个或者某些Pattern的帧结构需要满足选择的上行同步信号或者PRACH信号涉及到的连续N个上行子帧的需求,配置固定在这个或者这些Pattern的上行子帧进行PRACH信号或者上行同步信号的传输。
在一个示例性的实施方式中,设计两套Pattern的帧结构,一套帧结构保证PRACH信号或者上行同步信号的正常传输,另外一套帧结构综合考虑满足上下行的吞吐量的需求。
在一个示例性的实施方式中,图6是本申请提供的一种同步信号的传输方法流程图,所述方法可以由一种同步信号的传输装置来执行,所述装置可以配置在用户设备上。
如图6所示,本申请提供的方法包括:
S61:接收基站发送的多套帧结构。
S62:按照所述多套帧结构发送信号,其中,按照所述多套帧结构中的一套 帧结构发送同步信号。
在一个示例性的实施方式中,在所述多套帧结构中的第一帧结构和第二帧结构相邻,且所述第一帧结构的上行子帧和下行子帧的配比大于设定配比值的情况下,则所述第二帧结构的上行子帧和下行子帧的的配比小于所述设定配比值;
在所述多套帧结构中的第一帧结构和第二帧结构相邻,且在所述第一帧结构的上行子帧和下行子帧的配比小于设定配比值的情况下,则所述第二帧结构的上行子帧和下行子帧的配比大于所述设定配比值。
图7是本申请实施例提供的一种同步信号检测装置的结构框图,所述装置执行本申请实施例提供的一种同步信号检测方法,所述装置配置在基站,所述装置包括:接收模块71、帧边界检测模块72、时延偏移确定模块73、同步检测模块74和反馈模块75。
其中,接收模块71,被设置从接收开始点缓存设定时间长度的时域数据;
帧边界检测模块72,被设置为对缓存的所述时域数据进行同步信号的帧边界检测,对帧边界检测结果进行分组,并确定每个分组的帧边界;
时延偏移确定模块73,被设置为针对每个分组内的同步信号,基于所述分组的帧边界确定所述分组内的同步信号的时延偏移;所述时延偏移作为所述分组内的同步信号的粗同步时延;
同步检测模块74,被设置为对每个分组内确定帧边界的同步信号进行同步检测,得到所述同步信号的同步检测结果,所述同步检测结果包括同步信号的标识、精同步时延和功率;
反馈模块75,被设置为基于所述粗同步时延和所述精同步时延确定所述同步信号的真实时延,并将所述真实时延、所述标识和所述功率上报给媒体接入控制点,并通过所述媒体接入控制点将所述真实时延和所述标识反馈给用户设备。
在一个示例性的实施方式中,对帧边界检测结果进行分组,并确定每个分组的帧边界,包括:将帧边界检测结果按照预设时间长度偏移门限进行分组;
将每个分组内的帧边界检测结果采用相同的帧边界,作为每个分组的帧边界。
帧边界检测模块72,被设置为采用预设时间长度的搜索信号对缓存的所述时域数据进行滑窗;
确定所述搜索信号在不同的搜索点上与缓存的所述时域数据的相关值;
将大于设定门限值的相关值进行存储,形成集合;
基于所述集合中相关值对应的时间索引确定同步信号的起始位置,将所述起始位置作为同步信号的帧边界检测结果。
在一个示例性的实施方式中,所述搜索信号为循环前缀信号或者本地时域同步序列。
在一个示例性的实施方式中,所述搜索信号为本地时域同步序列,所述本地时域同步序列的构造过程包括:
基于网络覆盖区域的逻辑根配置生成所有可能的同步信号的时域序列;
将所有可能的同步信号的时域序列进行叠加,得到本地时域同步序列。
在一个示例性的实施方式中,所述装置还包括将采样模块,被设置为采用预设时间长度的搜索信号对缓存的时域数据进行滑窗之前,对缓存的所述时域数据和所述本地时域同步序列进行相同倍率的降采样。
在一个示例性的实施方式中,基于所述粗同步时延和所述精同步时延确定所述同步信号的真实时延,包括:
将所述粗同步时延与所述精同步时延之和作为所述同步信号的真实时延。
在一个示例性的实施方式中,在对每个分组内确定帧边界的同步信号进行同步检测过程中,且在基于每个分组的帧边界确定的同步检测窗存在重叠的情况下,保留重叠的同步检测窗对应的分组中最小分组内的同步信号的同步检测结果,或者保留功率最强的同步信号的同步检测结果。
在一个示例性的实施方式中,所述装置还包括禁止模块,被设置为在所述同步信号对其他信号存在干扰的情况下,在所述同步信号的所有检测窗对应频域资源上禁止用户设备发送其他信号,或者在所述同步信号的所有检测窗对应 的时隙或者符号内禁止所述用户设备发送所述其他信号。
在一个示例性的实施方式中,所述设定时间长度与所述同步信号的长度以及网络覆盖区域的最大覆盖半径相关。
上述装置可执行本申请任意实施例所提供的方法,具备执行方法相应的功能模块和有益效果。
本申请实施例还提供了一种同步信号传输装置,图8是本申请提供的一种同步信号传输装置结构框图,所述装置可以配置在用户设备,所述装置包括:接收模块81和同步信号发送模块82。
其中,接收模块81,被设置为接收基站发送的同步信号的真实时延和标识;
同步信号发送模块82,被设置为基于接收到的所述标识判断与已发送的同步信号的标识是否一致以及基于所述真实时延发送同步信号。
上述装置可执行本申请任意实施例所提供的方法,具备执行方法相应的功能模块和有益效果。
本申请实施例还提供了一种同步信号传输装置,图9是本申请提供的一种同步信号传输装置结构框图,所述装置可以配置在基站,所述装置包括配置模块91和帧结构发送模块92。
其中,配置模块91,被设置为基于网络覆盖区域的大小配置多套帧结构;
帧结构发送模块92,被设置为将所述多套帧结构发送给用户设备。
在一个示例性的实施方式中,在所述多套帧结构中的第一帧结构和第二帧结构相邻,且所述第一帧结构的上行子帧和下行子帧的配比大于设定配比值的情况下,则所述第二帧结构的上行子帧和下行子帧的配比小于所述设定配比值;
在所述多套帧结构中的第一帧结构和第二帧结构相邻,且在所述第一帧结构的上行子帧和下行子帧的配比小于设定配比值的情况下,则所述第二帧结构的上行子帧和下行子帧的配比大于所述设定配比值。
上述装置可执行本申请任意实施例所提供的方法,具备执行方法相应的功能模块和有益效果。
本申请实施例还提供了一种同步信号传输装置,图10是本申请提供的一种同步信号传输装置结构框图,所述装置可以配置用户设备,所述装置包括帧结构接收模块101和信号发送模块102。
帧结构接收模块101,被设置为接收基站发送的多套帧结构;
信号发送模块102,被设置为按照所述多套帧结构发送信号,其中,按照所述多套帧结构中的一套帧结构发送同步信号。
上述装置可执行本申请任意实施例所提供的方法,具备执行方法相应的功能模块和有益效果。
本申请实施例还提供了一种设备,图11为本申请提供的一种设备的结构示意图,如图11所示,本申请提供的设备,包括一个或多个处理器121和存储器122;该设备中的处理器121可以是一个或多个,图11中以一个处理器121为例;存储器122用于存储一个或多个程序;所述一个或多个程序被所述一个或多个处理器121执行,使得所述一个或多个处理器121实现如本申请实施例中所述的方法。
设备还包括:通信装置123、输入装置124和输出装置125。
设备中的处理器121、存储器122、通信装置123、输入装置124和输出装置125可以通过总线或其他方式连接,图11中以通过总线连接为例。
输入装置124可用于接收输入的数字或字符信息,以及产生与设备的用户设置以及功能控制有关的按键信号输入。输出装置125可包括显示屏或者输出接口等设备。
通信装置123可以包括接收器和发送器。通信装置123设置为根据处理器121的控制进行信息收发通信。
存储器122作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序以及模块,如本申请实施例所述同步信号检测方法对应的程序指令/模块(例如,同步信号检测装置中的接收模块71、帧边界检测模块72、时延偏移确定模块73、同步检测模块74和反馈模块75),再如本申请实施例所述 同步信号传输方法对应的程序指令/模块(例如,同步信号传输装置中的接收模块81和同步信号发送模块82)。再如本申请实施例所述同步信号传输方法对应的程序指令/模块(例如,同步信号传输装置中的配置模块91和帧结构发送模块92)。再如本申请实施例所述同步信号传输方法对应的程序指令/模块(例如,同步信号传输装置中的帧结构接收模块101和信号发送模块102)。
存储器122可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据设备的使用所创建的数据等。此外,存储器122可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器122可进一步包括相对于处理器121远程设置的存储器,这些远程存储器可以通过网络连接至设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
本申请实施例还提供一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现本申请实施例中任一所述的方法。
实现本申请实施例中任一所述的同步信号检测方法时,所述方法包括:
从接收开始点缓存设定时间长度的时域数据;
对缓存的所述时域数据进行同步信号的帧边界检测,将帧边界检测结果进行分组,并确定每个分组的帧边界;
针对每个分组内的同步信号,基于所述分组的帧边界确定所述分组内的同步信号的时延偏移;所述时延偏移作为所述分组内的同步信号的粗同步时延;
对每个分组内确定帧边界的同步信号进行同步检测,得到所述同步信号的同步检测结果,所述同步检测结果包括同步信号的标识、精同步时延和功率;
基于所述粗同步时延和所述精同步时延确定所述同步信号的真实时延,并将所述同步信号的真实时延、标识以上报给媒体接入控制点,并通过所述媒体接入控制点将所述同步信号的真实时延和标识反馈给用户设备。
或者实现本申请实施例中任一所述的同步信号传输方法,所述方法包括:
基于网络覆盖区域的大小配置多套帧结构;
将所述多套帧结构发送给用户设备。
或者实现本申请实施例中任一所述的同步信号传输方法,所述方法包括:
接收基站发送的多套帧结构;
按照所述多套帧结构发送信号,其中,按照所述多套帧结构中的一套帧结构发送同步信号。
以上所述,仅为本申请的示例性实施例而已,并非用于限定本申请的保护范围。
本领域内的技术人员应明白,术语用户终端涵盖任何适合类型的无线用户设备,例如移动电话、便携数据处理装置、便携网络浏览器或车载移动台。
一般来说,本申请的多种实施例可以在硬件或专用电路、软件、逻辑或其任何组合中实现。例如,一些方面可以被实现在硬件中,而其它方面可以被实现在可以被控制器、微处理器或其它计算装置执行的固件或软件中,尽管本申请不限于此。
本申请的实施例可以通过移动装置的数据处理器执行计算机程序指令来实现,例如在处理器实体中,或者通过硬件,或者通过软件和硬件的组合。计算机程序指令可以是汇编指令、指令集架构(ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码。
本申请附图中的任何逻辑判决的框图可以表示程序步骤,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本地技术环境的类型并且可以使用任何适合的数据存储技术实现,例如但不限于只读存储器(ROM)、随机访问存储器(RAM)、光存储器装置和系统(数码多功能光碟DVD或CD光盘)等。计算机可读介质可以包括非瞬时性存储介质。数据处理器可以是任何适合于本地技术环境的类型,例如但不限于通用计算机、专用计算机、微处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、可 编程逻辑器件(FGPA)以及基于多核处理器架构的处理器。
通过示范性和非限制性的示例,上文已提供了对本申请的示范实施例的详细描述。但结合附图和权利要求来考虑,对以上实施例的多种修改和调整对本领域技术人员来说是显而易见的,但不偏离本申请的范围。因此,本申请的恰当范围将根据权利要求确定。

Claims (19)

  1. 一种同步信号检测方法,其中,包括:
    从接收开始点缓存设定时间长度的时域数据;
    对缓存的所述时域数据进行同步信号的帧边界检测,将帧边界检测结果进行分组,并确定每个分组的帧边界;
    针对每个分组内的同步信号,基于所述分组的帧边界确定所述分组内的同步信号的时延偏移;所述时延偏移作为所述分组内的同步信号的粗同步时延;
    对每个分组内确定帧边界的同步信号进行同步检测,得到同步检测结果,所述同步检测结果包括同步信号的标识、精同步时延和功率;
    基于所述粗同步时延和所述精同步时延确定所述同步信号的真实时延,并将所述真实时延、所述标识和所述功率上报给媒体接入控制点,并通过所述媒体控制点将所述真实时延和所述标识反馈给用户设备。
  2. 根据权利要求1所述的方法,其中,所述将帧边界检测结果进行分组,并确定每个分组的帧边界,包括:
    将帧边界检测结果按照预设时间长度偏移门限进行分组;
    将每个分组内的帧边界检测结果采用相同的帧边界,作为每个分组的帧边界。
  3. 根据权利要求2所述的方法,其中,所述对缓存的所述时域数据进行同步信号的帧边界检测,包括:
    采用预设时间长度的搜索信号对缓存的所述时域数据进行滑窗;
    确定所述搜索信号在不同的搜索点上与缓存的所述时域数据的相关值;
    将大于设定门限值的相关值进行存储,形成集合;
    基于所述集合中相关值对应的时间索引确定所述同步信号的起始位置,将所述起始位置作为所述同步信号的帧边界检测结果。
  4. 根据权利要求3所述的方法,其中,所述搜索信号为循环前缀信号或者本地时域同步序列。
  5. 根据权利要求4所述的方法,其中,所述搜索信号为本地时域同步序列,所述本地时域同步序列的构造过程包括:
    基于网络覆盖区域的逻辑根配置生成所有可能的同步信号的时域序列;
    将所有可能的同步信号的时域序列进行叠加,得到本地时域同步序列。
  6. 根据权利要求5所述的方法,其中,在采用预设时间长度的搜索信号对缓存的时域数据进行滑窗之前,还包括:
    对缓存的所述时域数据和所述本地时域同步序列进行相同倍率的降采样。
  7. 根据权利要求1所述的方法,其中,所述基于所述分组的帧边界确定所述分组内的同步信号的时延偏移,包括:
    将所述分组内的同步信号的帧边界与所述同步信号发送时间之间的时间间隔作为所述分组内的同步信号的时延偏移。
  8. 根据权利要求1所述的方法,其中,基于所述粗同步时延和所述精同步时延确定所述同步信号的真实时延,包括:
    将所述粗同步时延与所述精同步时延之和作为所述同步信号的真实时延。
  9. 根据权利要求2所述的方法,其中,
    在对每个分组内确定帧边界的同步信号进行同步检测过程中,且在基于每个分组的帧边界确定的同步检测窗存在重叠的情况下,保留重叠的同步检测窗对应的分组中最小分组内的同步信号的同步检测结果,或者保留功率最强的同步信号的同步检测结果。
  10. 根据权利要求3所述的方法,其中,还包括:
    在所述同步信号对其他信号存在干扰的情况下,在所述同步信号的所有检测窗对应频域资源上禁止用户设备发送其他信号,或者在所述同步信号的所有检测窗对应的时隙或者符号内禁止所述用户设备发送所述其他信号。
  11. 根据权利要求1所述的方法,其中,所述设定时间长度与所述同步信号的长度以及网络覆盖区域的最大覆盖半径相关。
  12. 一种同步信号的传输方法,其中,包括:
    基于网络覆盖区域的大小配置多套帧结构;
    将所述多套帧结构发送给用户设备。
  13. 根据权利要求12所述的方法,其中,
    在所述多套帧结构中的第一帧结构和第二帧结构相邻,且所述第一帧结构的上行子帧和下行子帧的配比大于设定配比值的情况下,则所述第二帧结构的上行子帧和下行子帧的配比小于所述设定配比值;
    在所述多套帧结构中的第一帧结构和第二帧结构相邻,且在所述第一帧结构的上行子帧和下行子帧的配比小于设定配比值的情况下,则所述第二帧结构的上行子帧和下行子帧的配比大于所述设定配比值。
  14. 一种同步信号的传输方法,其中,包括:
    接收基站发送的多套帧结构;
    按照所述多套帧结构发送信号,其中,按照所述多套帧结构中的一套帧结构发送同步信号。
  15. 一种同步信号检测装置,其中,包括:
    接收模块,被设置从接收开始点缓存设定时间长度的时域数据;
    帧边界检测模块,被设置为对缓存的所述时域数据进行同步信号的帧边界检测,对帧边界检测结果进行分组,并确定每个分组的帧边界;
    时延偏移确定模块,被设置为针对每个分组内的同步信号,基于所述分组的帧边界确定所述分组内的同步信号的时延偏移;所述时延偏移作为所述分组内的同步信号的粗同步时延;
    同步检测模块,被设置为对每个分组内确定帧边界的同步信号进行同步检测,得到同步检测结果,所述同步检测结果包括同步信号的标识、精同步时延和功率;
    反馈模块,被设置为基于所述粗同步时延和所述精同步时延确定所述同步信号的真实时延,并将所述真实时延、所述标识和所述功率上报给媒体接入控制点,并通过所述媒体接入控制点将所述真实时延和所述标识反馈给用户设备。
  16. 一种同步信号的传输装置,其中,包括:
    配置模块,被设置为基于网络覆盖区域的大小配置多套帧结构;
    帧结构发送模块,被设置为将所述多套帧结构发送给用户设备。
  17. 一种同步信号的传输装置,其中,包括:
    帧结构接收模块,被设置为接收基站发送的多套帧结构;
    信号发送模块,被设置为按照所述多套帧结构发送信号,其中,按照所述多套帧结构中的一套帧结构发送同步信号。
  18. 一种设备,其中,包括:
    一个或多个处理器;
    存储器,用于存储一个或多个程序;
    当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如权利要求1-13任一项所述的方法。
  19. 一种存储介质,其中,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1-13任一项所述的方法。
PCT/CN2020/138362 2019-12-31 2020-12-22 一种同步信号检测、传输方法、装置、设备和存储介质 WO2021136016A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911410018.8A CN113133021A (zh) 2019-12-31 2019-12-31 一种同步信号检测、传输方法、装置、设备和存储介质
CN201911410018.8 2019-12-31

Publications (1)

Publication Number Publication Date
WO2021136016A1 true WO2021136016A1 (zh) 2021-07-08

Family

ID=76687047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/138362 WO2021136016A1 (zh) 2019-12-31 2020-12-22 一种同步信号检测、传输方法、装置、设备和存储介质

Country Status (2)

Country Link
CN (1) CN113133021A (zh)
WO (1) WO2021136016A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114189289A (zh) * 2021-11-26 2022-03-15 中电科思仪科技(安徽)有限公司 一种太赫兹信号快速同步方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115002894B (zh) * 2022-08-03 2022-11-01 杰创智能科技股份有限公司 上行定时同步方法、装置、设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101388723A (zh) * 2008-10-28 2009-03-18 重庆重邮信科通信技术有限公司 一种无线通信定时同步方法及小区搜索方法和系统
CN101911628A (zh) * 2008-01-04 2010-12-08 高通股份有限公司 用于无线通信系统中的同步和检测的方法和装置
CN102938931A (zh) * 2011-08-15 2013-02-20 北京为邦远航无线技术有限公司 大范围非同步上行接入方法及装置
US8576830B2 (en) * 2010-04-02 2013-11-05 Broadcom Corporation Method and system for tracking timing drift in multiple frequency hypothesis testing
CN107634924A (zh) * 2016-07-18 2018-01-26 中兴通讯股份有限公司 同步信号的发送、接收方法及装置、传输系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101911628A (zh) * 2008-01-04 2010-12-08 高通股份有限公司 用于无线通信系统中的同步和检测的方法和装置
CN101388723A (zh) * 2008-10-28 2009-03-18 重庆重邮信科通信技术有限公司 一种无线通信定时同步方法及小区搜索方法和系统
US8576830B2 (en) * 2010-04-02 2013-11-05 Broadcom Corporation Method and system for tracking timing drift in multiple frequency hypothesis testing
CN102938931A (zh) * 2011-08-15 2013-02-20 北京为邦远航无线技术有限公司 大范围非同步上行接入方法及装置
CN107634924A (zh) * 2016-07-18 2018-01-26 中兴通讯股份有限公司 同步信号的发送、接收方法及装置、传输系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114189289A (zh) * 2021-11-26 2022-03-15 中电科思仪科技(安徽)有限公司 一种太赫兹信号快速同步方法

Also Published As

Publication number Publication date
CN113133021A (zh) 2021-07-16

Similar Documents

Publication Publication Date Title
WO2021031927A1 (zh) 无线通信资源指示方法、装置和系统
CN108112074B (zh) 信息的上报、接收方法、装置及计算机可读存储介质
CN110087302B (zh) 传输定时调整的方法及设备
WO2021136016A1 (zh) 一种同步信号检测、传输方法、装置、设备和存储介质
US10887890B2 (en) Fast multi-beam listen before talk
CN106231614A (zh) 一种信号传输方法及相关网元
CN114246014B (zh) 一种随机接入方法、终端设备和网络设备
KR20160034994A (ko) 데이터 전송 방법, 장치 및 시스템
WO2019024756A1 (zh) 通信方法、网络设备和中继设备
CN105704807A (zh) 定时提前方法和装置
CN105636206A (zh) 一种laa侦听资源分配方法和装置
WO2017076372A1 (zh) 一种srs传输方法及装置
US11997655B2 (en) Resource indication method and apparatus and communication system
CN113170465A (zh) 无线通信的方法和设备
CN110167173A (zh) 一种上行数据的发送方法、接收方法和装置
KR20230128367A (ko) 타이밍 결정 방법, 장치, 통신 노드 및 저장매체
CN101669383A (zh) 在部分负载下的频域分组调度
Salman et al. An overview of spectrum sensing techniques for cognitive LTE and LTE-A radio systems
CN106341357A (zh) 一种下行频偏补偿方法和装置
CN103369662A (zh) 适配器、基带处理单元和基站系统
CN107734661A (zh) 终端资源调度的方法、确定资源调度颗粒度的方法及设备
CN106961742B (zh) 一种上行laa的通信方法和装置
AU2021418389A9 (en) Communication method and apparatus
WO2023198024A1 (zh) 信号传输方法、网络侧设备及终端
CN107733608B (zh) 一种同步信号发送方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20909454

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20909454

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 15/02/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20909454

Country of ref document: EP

Kind code of ref document: A1