WO2021135929A1 - 一种基于多孔性表面结构和基底的连接结构的假体 - Google Patents

一种基于多孔性表面结构和基底的连接结构的假体 Download PDF

Info

Publication number
WO2021135929A1
WO2021135929A1 PCT/CN2020/136530 CN2020136530W WO2021135929A1 WO 2021135929 A1 WO2021135929 A1 WO 2021135929A1 CN 2020136530 W CN2020136530 W CN 2020136530W WO 2021135929 A1 WO2021135929 A1 WO 2021135929A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous
substrate
prosthesis
porous surface
surface structure
Prior art date
Application number
PCT/CN2020/136530
Other languages
English (en)
French (fr)
Inventor
姚建清
史金虎
朱永良
Original Assignee
骄英医疗器械(上海)有限公司
雅博尼西医疗科技(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201911395087.6A external-priority patent/CN111012551A/zh
Application filed by 骄英医疗器械(上海)有限公司, 雅博尼西医疗科技(苏州)有限公司 filed Critical 骄英医疗器械(上海)有限公司
Publication of WO2021135929A1 publication Critical patent/WO2021135929A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • A61F2/34Acetabular cups
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • A61F2/36Femoral heads ; Femoral endoprostheses

Definitions

  • the present invention relates to the connection technology of mechanical structures, in particular to medical devices, and provides a prosthesis based on the connection structure of a porous surface structure and a substrate.
  • the overall performance (such as fatigue strength) of the acetabular cup and the femoral stem of the artificial hip joint should meet the dynamic load of the prosthesis during one million to two million walks a year after being implanted in the body.
  • the overall performance (such as fatigue strength) of the acetabular cup and the femoral stem of the artificial hip joint should meet the dynamic load of the prosthesis during one million to two million walks a year after being implanted in the body.
  • the overall performance (such as fatigue strength) of the acetabular cup and the femoral stem of the artificial hip joint should meet the dynamic load of the prosthesis during one million to two million walks a year after being implanted in the body.
  • the prosthesis surface to meet the firm combination of the prosthesis surface and the patient’s bone group to ensure that the prosthesis does not loosen; otherwise the patient will have pain, and the prosthesis must be removed.
  • the patient undergoes another revision operation and a new prosthesis is implanted.
  • Other orthopedic implants (such as the spine) have
  • Artificial materials commonly used in joint prostheses are titanium alloy/cobalt-chromium steel alloy/stainless steel, etc., which cannot form an effective biological or chemical bond with bones.
  • the interface between the prosthesis and the bone is generally mainly through a physical/mechanical combination.
  • the highly polished surface of the prosthesis and bone tissue cannot form an effective bonding force. Therefore, it is necessary to increase bone conduction, osteoinduction, and bone regeneration to accelerate or strengthen the combination of bone tissue and the surface of the prosthesis, and further improve bone growth or growth.
  • the performance of bone ingrowth Sometimes titanium wire or titanium beads can be used to form a porous coating on the surface of the prosthesis (such as the acetabular cup/femoral stem) by sintering or diffusion welding.
  • the welding process has a relatively low impact on the mechanical properties of the substrate.
  • the porosity of the porous structure is high (>50%), the proportion of interconnected scaffolds is relatively low and weak; a large number of pores are formed between the scaffolds.
  • Such a high-porosity structure is realized by metal 3D printing additive manufacturing technology or by sintering.
  • the porous structure and the substrate are directly connected by laser welding, as long as the effective diameter of the laser beam is close to or even larger than the width of the stent , The laser energy may directly break the stent structure, penetrate the porous structure, and cannot achieve an effective welding connection between the porous structure stent and the base stent. Or, when penetration welding is used to connect the porous structure and the substrate, the strength of the substrate structure will be greatly reduced due to the high temperature and high pressure conditions.
  • a method can be used to compress the two workpieces to be welded between the two electrodes and pass the current through the contact surface between the two workpieces and the adjacent area to generate resistance heat. It forms an effective resistance welding method between metal workpieces, and connects the porous structure with the substrate.
  • the bonding efficiency is low at this time, resulting in insufficient welding bonding strength or requiring too high current to achieve sufficient welding strength.
  • the latter causes the contact between the upper electrode and the upper surface of the porous structure to generate heat that is too high to damage the surface of the porous structure too much, including sinking of the pore structure. Therefore, the present invention needs to design an intermediate structure between the porous structure and the substrate.
  • the composite body formed by the porous surface structure and the middle bottom plate is tightly combined with the substrate, so as to improve the combination efficiency of the porous structure and the substrate and ensure sufficient welding strength.
  • the purpose of the present invention is to provide a prosthesis based on the connection structure of the porous surface structure and the base, the porous surface structure, the intermediate (solid plate structure or low-porosity porous structure) and the substrate are subjected to resistance welding (such as Projection welding resistance welding or spot welding resistance welding, etc.) to achieve a fastened connection and maintain the mechanical properties of the substrate; the surface based on the porous structure of the present invention can ensure that the artificial implant prosthesis has excellent bone ingrowth performance, and makes The strength of the substrate is not substantially affected.
  • resistance welding such as Projection welding resistance welding or spot welding resistance welding, etc.
  • a prosthesis is provided with a connection structure, the connection structure comprising: a composite body comprising a porous surface structure and an intermediate body connected in advance; a substrate for forming a prosthesis body, and at least part of the surface of the prosthesis body serves as The connecting area is used to connect with the composite body, the intermediate body is located between the porous surface structure and the substrate, and the intermediate body is connected to the connecting area of the prosthesis body, making the porous
  • the sexual surface structure is located in the connection area of the prosthesis body; wherein, the substrate and the composite body are placed between the first polarity electrode and the second polarity electrode, and the first polarity electrode is connected to the The porous surface structure and/or the conductive contact of the intermediate body and the conductive contact of the substrate and the second polarity electrode form a current loop, so that the intermediate body and the substrate are resistance-welded to realize the composite body and the The connection of the substrate.
  • the prosthesis is a joint prosthesis.
  • the composite body is formed as a shell covering the connection area of the prosthesis body; the outer layer of the shell contains a porous surface structure; the inner layer of the shell contains an intermediate body, which is The connection areas of the prosthesis body are connected.
  • the shell formed by the composite body is a whole; or, the shell formed by the composite body includes a plurality of shell sheets; wherein the plurality of shell sheets are independent of each other, or adjacent shells The sheets are connected with adjacent sides on at least one side.
  • the prosthesis includes a femoral stem of a hip joint, the femoral stem includes a stem body formed as a base; the position of the connection area is the surface of the upper part of the stem body.
  • the surface of the lower part of the handle body is a smooth surface, a number of longitudinal grooves are opened in the lower part of the handle body, and the lower part of the handle body is inserted into the femoral medullary cavity.
  • the femoral stem further comprises a head and a neck, and the head, neck and the stem body are integrated or assembled;
  • the head of the femoral stem is a frustum structure, and the first The end is connected with the handle body through the neck, the head and the neck have a certain deflection angle relative to the handle body, and are arranged in a form inclined to one side of the handle body, and the second end of the head of the femoral stem is inserted into the femoral ball head.
  • the composite body is formed such that a shell is wrapped around the periphery of the connecting area of the handle body; the composite body includes a plurality of shell sheets.
  • the prosthesis includes an acetabular cup of the hip joint, the acetabular cup includes an inner cup body formed as a base; the position of the connection area is the outer peripheral surface of the acetabular cup.
  • the prosthesis includes a tibial plateau, and the tibial plateau includes a tibial tray formed as a base; the location of the connection area is the surface of the distal end of the tibial tray.
  • the prosthesis includes a femoral condyle, and the femoral condyle includes a condyle internal fixation surface formed as a base; the position of the connection area is the condyle internal fixation surface.
  • the prosthesis is any one or more of the following: patella, spinal fusion cage, spine intervertebral facet joint, ankle joint, shoulder joint, elbow joint, finger joint, toe joint, artificial intervertebral disc, mandibular joint ,LOL.
  • the porous surface structure in the composite is called the first porous structure; the intermediate is a solid structure, or the intermediate is a second porous structure and the second porous structure is The porosity is lower than the porosity of the first porous structure.
  • the substrate is made of a conductive material
  • the porous surface structure is made of a conductive material
  • the intermediate is made of a conductive material.
  • the intermediate body includes an intermediate plate structure.
  • a plurality of protruding structures are provided on the intermediate plate structure, the protruding structures are provided on the side of the intermediate plate structure close to the base, and the protruding points of the protruding structure are in contact with the base .
  • the intermediate is the second porous structure
  • the second porous structure includes a plurality of raised structures
  • the raised structures are formed on the second porous structure close to the substrate.
  • the bumps of the protruding structure are in contact with the substrate.
  • the intermediate body comprises a plurality of convex structures arranged dispersedly, formed on a side of the porous surface structure close to the substrate, and the convex points of the convex structure are in contact with the substrate.
  • the intermediate body comprises several supporting columns, and all or at least part of each supporting column is located in the porous surface structure.
  • the support columns of the intermediate body are arranged correspondingly and contact with the convex structure of the intermediate body, or the support columns of the intermediate body and the convex structure of the intermediate body are distributed in a dislocation and do not contact.
  • the surface of the support column on the side away from the substrate exceeds the surface of the porous surface structure; or, the surface of the support column on the side away from the substrate is lower than the surface of the porous surface structure; or, The surface of the support column on the side away from the substrate is flush with the surface of the porous surface structure.
  • the part of the support column beyond the porous surface structure is cut.
  • the supporting column is located in the prefabricated gap of the porous surface structure, and the supporting column is provided with a groove for placing a plurality of electrode monomers in the first polarity electrode, and the inserted electrode unit
  • the body is in conductive contact with the support column; the surface of the support column exceeds or is flush with or is lower than the surface of the porous surface structure, and the support column is a porous structure or a solid structure.
  • the support column has a multi-stage structure, including at least the first-stage part that exceeds the porous surface structure and the remaining The second stage part; the first stage part is a porous structure; the second stage part is a porous structure or a solid structure, and the surface of the second stage part away from the substrate is flush with the porous surface structure
  • the surface of the second section is caused to sink to the surface of the second section that is away from the substrate due to the heat generated by the contact with the electrode of the first polarity.
  • the support column is a conductor
  • the support column is connected to the current loop, and the support column is in conductive contact with any one or more of the following components: first polarity electrode, porous surface structure, Intermediate.
  • the support column is an insulator.
  • the protruding structure is located on the intermediate body, close to the contact position of the porous surface structure and the intermediate body.
  • At least part of the pores in the porous surface structure are filled with a conductive material.
  • At least part of the pores in the porous surface structure are filled with a powdered conductive material or a wire-shaped conductive material or a mesh-shaped conductive material.
  • the surface of the porous surface structure is covered with a solid film-like or filament-like or mesh-like deformable conductive medium, and the deformable conductive medium is located between the first polarity electrode and the porous surface structure. And/or, spray solid conductive medium or liquid conductive agent between the surface of at least part of the porous surface structure and the first polarity electrode.
  • the surface of the porous surface structure is sprayed with one or more of the following coatings: osteoconductive coating, osteoinductive coating, antibacterial coating, cell or growth factor carrier.
  • At least part of the pores of the porous surface structure is injected with a molten conductive medium, and/or at least part of the pores of the porous surface structure is embedded with a conductive medium and the conductive medium is melted by high temperature; the conductive medium The melting point is lower than the melting point of the substrate and/or the melting point of the porous surface structure.
  • the substrate is a solid structure, or the substrate is a third porous structure and the porosity of the third porous structure is smaller than the porosity of the porous surface structure.
  • the substrate is made by forging or casting or machining or powder metallurgy or metal injection molding process.
  • the porous surface structure of the composite body is integrally formed with the intermediate body.
  • the porous surface structure and intermediates of the composite body are realized by a 3D printing additive manufacturing process or a vapor deposition process.
  • the porous surface structure, the intermediate body and the support column are integrally formed.
  • a plurality of grooves are provided on the surface of the porous surface structure, and the surface of the grooves is lower than the surface of the porous surface structure, and the porous surface structure is divided into a plurality of regions;
  • Each divided area is covered by the first polarity electrode corresponding to the area, and the positional relationship between any area of the porous surface structure and the adjacent groove is any one of the following: and the first side of the groove Do not touch, cross the first side of the groove and not exceed the second side of the groove, cross the first side of the groove to the second side of the groove, cross the second side of the groove and contact at least another adjacent area One part; wherein the first side of the groove is the side close to any one of the areas, and the second side of the groove is the side away from the any one of the areas.
  • the resistance welding process between the porous surface structure of the two adjacent regions divided by the groove and the substrate is carried out at the same time by covering two different first polarity electrodes whose positions do not overlap; or, the groove division
  • the resistance welding process between the porous surface structure of the two adjacent regions and the substrate is carried out twice in sequence by using two different first polarity electrodes; or, the porous surface of the two adjacent regions divided by the groove
  • the resistance welding process between the sexual surface structure and the substrate is carried out twice in sequence through the same first polarity electrode.
  • the groove is elongated.
  • the porous surface structure is divided into multiple regions, and any two adjacent regions that are divided are called the porous structure of the first region and the porous structure of the second region; the porous structure of the first region and the corresponding first region Contact with a first polarity electrode in the first region, and after the resistance welding of the porous structure in the first region and the substrate is completed, the contact edge between the porous structure in the first region and the first polarity electrode in the first region forms a convex edge
  • the porous structure of the second region is in contact with a first polarity electrode of the corresponding second region, and a first polarity electrode of the second region at least covers the porous structure of the first region close to the porous of the second region
  • the convex edge on one side of the structure completes the resistance welding of the porous structure of the second area and the substrate.
  • the substrate includes a surface connection layer, the bottom surface connection layer is pre-connected with the substrate body, and the surface connection layer is between the intermediate body of the composite and the substrate body; the surface connection layer includes A convex structure, the convex points of the convex structure are in contact with the intermediate body of the composite body.
  • the surface connection layer of the substrate and the main body of the substrate are welded and connected in advance.
  • the side of the intermediate body close to the substrate is flat; or, the convex structure provided on the side of the intermediate body close to the substrate is staggered with the convex structure of the surface connection layer.
  • the present invention also provides a prosthesis, which is provided with a base and at least two composite bodies in the connection structure as described above.
  • the base is used to form a prosthesis body, and at least part of the surface of the prosthesis body serves as a connection.
  • Area for connection with the composite body, the intermediate body is located between the porous surface structure and the substrate, and the intermediate body is connected to the connection area of the prosthesis body so that the porosity
  • the surface structure is located in the connection area of the prosthesis body;
  • the two composite bodies are the first composite body and the second composite body, and the first composite body, the substrate and the second composite body are arranged on the first polarity electrode and the second electrode. Between sex electrodes;
  • the first composite body is placed between the first polarity electrode and the substrate, the intermediate body in the first composite body is in contact with the substrate, and the first polarity electrode is in contact with the first polarity electrode.
  • the porous surface structure and/or the intermediate body in the composite body is in conductive contact
  • the second composite body is placed between the second polarity electrode and the substrate, and the intermediate body in the second composite body is in contact with the substrate.
  • the substrate is in contact
  • the second polarity electrode is in conductive contact with the porous surface structure and/or the intermediate body in the second composite body to form a current loop;
  • the intermediate body of the first composite body and the substrate, and the intermediate body of the second composite body and the substrate are resistance-welded to realize the connection between the composite body and the substrate.
  • the structures of the first composite body and the second composite body are the same; or, the structures of the first composite body and the second composite body are different.
  • the prosthesis includes a femoral stem of a hip joint
  • the femoral stem includes a stem body, which is formed as a base
  • the position of the connection area is the surface of the upper part of the stem
  • the two composite bodies are respectively formed as a shell wrapped around the periphery of the connecting area of the handle body
  • the first composite body and the second composite body each include a plurality of shell sheets.
  • the present invention has the following beneficial effects:
  • the present invention provides a method for preparing a porous surface structure and a connection structure of a substrate.
  • a composite body is manufactured by 3D printing or other processes, including a porous surface structure and a relatively denser intermediate (such as Low porosity porous structure or solid plate), the present invention adopts resistance welding method (such as projection welding resistance welding or spot welding resistance welding, etc.) to effectively combine the composite with the substrate, which can avoid the laser welding method. It may happen that the laser energy directly breaks the support structure and cannot realize the welding connection between the porous structure support and the base support.
  • the projection welding resistance welding method uses the contact resistance to generate a local heat source to achieve welding, which greatly reduces or avoids hot pressure Processes (such as penetration welding process) cause the problem of a substantial decrease in the mechanical properties of the substrate; the present invention can also use projection welding resistance welding and spot welding resistance welding together to strengthen the welding strength between the intermediate and the substrate and reduce Surface damage of porous surface structure.
  • the present invention can not only use a large flat electrode to be attached to the porous surface structure, but also divide the electrode into a plurality of positive electrode monomers (or negative electrode monomers) and insert them vertically into the porous surface structure.
  • the electrode does not contact the porous surface structure surface to avoid damage (dentation, blackening, reduction of pore space, etc.) caused by resistance heat between the porous surface structure surface and the positive electrode due to contact resistance;
  • the flexible positive electrode produces a certain deformation, which increases the contact area between it and the top of the porous surface structure, which can not only reduce the difference between the electrode and the porous surface structure.
  • the contact resistance between them reduces the surface damage of the porous surface structure, and can also increase the current conduction to increase the welding strength between the intermediate and the substrate.
  • a solid structure supporting column is arranged in the porous surface structure to ensure that the surface height of the porous surface structure after resistance welding can reach a preset height, and to avoid excessive compression of the porous surface structure;
  • the support column is a good conductive material, most of the current output by the guide electrode preferentially flows through the support column to the substrate, which can not only ensure the welding strength between the intermediate and the substrate, but also reduce the damage generated on the surface of the porous surface structure;
  • the present invention utilizes the above-mentioned support column to be combined with the bump structure below, and the bump structure can directly contact the substrate, which can also meet the requirements of the welding strength of the intermediate and the substrate and reduce the damage generated on the surface of the porous surface structure.
  • a solid (high-density) substrate is manufactured by forging, casting, or machining, or the substrate may have a porous structure, but the density of the porous surface structure is lower than that of the substrate. The density is between the porous surface structure and the substrate.
  • the present invention uses the porous surface structure and the connection structure and method of the base to make various artificial implant prostheses, especially orthopedic prostheses, such as femoral stems, acetabular cups, tibial plateaus, femoral condyles, etc. , So that the prosthesis body is easy to process and has high strength, and at the same time optimizes the performance of bone ingrowth through the porous surface structure effectively combined with it, and can also minimize the cross-section of the prosthesis (such as the femoral stem).
  • orthopedic prostheses such as femoral stems, acetabular cups, tibial plateaus, femoral condyles, etc.
  • Fig. 1 is a schematic diagram of the connection structure between a substrate and a porous surface structure in the prior art
  • FIG. 2 is a schematic diagram of the connection structure between the porous surface structure and the substrate according to the first embodiment of the present invention
  • FIG. 3 is a schematic diagram of the structure of the porous bottom plate according to the first embodiment of the present invention.
  • FIG 4a is a schematic diagram of the connection structure between the porous surface structure and the substrate according to the second embodiment of the present invention (the lower surface of the low-porosity region does not have bumps);
  • FIG 4b is a schematic diagram of the connection structure between the porous surface structure and the substrate according to the second embodiment of the present invention (the lower surface of the low-porosity region has bumps);
  • FIG. 5 is a schematic diagram of the connection structure between the porous surface structure and the substrate in the third embodiment of the present invention.
  • FIG. 6 is a schematic diagram of the connection structure between the porous surface structure and the substrate according to the fourth embodiment of the present invention.
  • 6a-6b are schematic diagrams of related modifications of the connection structure in the fourth embodiment of the present invention.
  • FIG. 7 is a schematic diagram of the connection structure of the porous surface structure and the substrate according to the fifth embodiment of the present invention.
  • FIG. 8a is a schematic diagram of the connection structure of the porous surface structure and the substrate according to the sixth embodiment of the present invention.
  • FIG. 8b is a schematic diagram of the connection structure of the porous surface structure and the substrate according to the seventh embodiment of the present invention.
  • FIG. 8c is a schematic diagram of the connection structure between the porous surface structure and the substrate according to the eighth embodiment of the present invention.
  • Fig. 9a is a schematic diagram of the connection structure between the porous surface structure and the substrate in the ninth embodiment of the present invention.
  • FIG. 9b is a schematic diagram of the connection structure between the porous surface structure and the substrate according to the tenth embodiment of the present invention.
  • 10a is a schematic diagram of the connection structure between the porous surface structure and the substrate in the eleventh embodiment of the present invention.
  • 10b is a schematic diagram of the connection structure between the porous surface structure and the substrate in the twelfth embodiment of the present invention.
  • FIG. 11a is a schematic diagram of the connection structure of the porous surface structure and the substrate according to the thirteenth embodiment of the present invention.
  • 11b-11d are schematic diagrams of the connection structure between the porous surface structure and the substrate according to the fourteenth embodiment of the present invention.
  • FIG. 12 is a schematic diagram of the connection structure of the porous surface structure and the substrate according to the fifteenth embodiment of the present invention.
  • FIG. 13-14 are schematic diagrams of the connection structure of the porous surface structure and the substrate according to the sixteenth embodiment of the present invention.
  • connection structure of the porous surface structure and the substrate according to the eighteenth embodiment of the present invention.
  • 16a-16b are schematic diagrams of the femoral stem of the artificial prosthesis according to Embodiment 20 of the present invention.
  • Fig. 16c is a schematic cross-sectional view of Fig. 16a of the present invention.
  • 17a-17e are schematic diagrams of the handle body of the artificial prosthesis according to the twenty-first embodiment of the present invention.
  • 18a is a schematic diagram of the acetabular cup of the artificial prosthesis according to the twenty-first embodiment of the present invention.
  • Figure 18b is a partial schematic diagram of Figure 18a of the present invention.
  • 19a is a schematic diagram of the tibial platform of the artificial prosthesis according to the twenty-second embodiment of the present invention.
  • Figure 19b is a partial schematic diagram of Figure 19a of the present invention.
  • Fig. 20a is a schematic diagram of the femoral condyle of the artificial prosthesis according to the twenty-third embodiment of the present invention.
  • Fig. 20b is a partial schematic diagram of Fig. 20a of the present invention.
  • 21-22 are schematic diagrams of the porous surface structure and the connection structure of the substrate in the improved scheme of the nineteenth embodiment of the present invention, respectively.
  • the present invention provides a connection structure including a substrate 23, an intermediate 22 and a porous surface structure 21.
  • the porous structure of the porous surface structure 21 includes a large number of staggered scaffolds (or beams), and some multi-directional penetrating, regular or irregular pores are formed between these scaffolds (or beams).
  • the intermediate 22 is located between the porous surface structure 21 and the substrate 23.
  • the intermediate 22 is a non-porous bottom plate, that is, a solid bottom plate.
  • Both the porous surface structure 21 and the intermediate 22 are made of conductive materials (such as metal materials).
  • the porous surface structure 21 and the intermediate 22 are integrally formed structures, for example, realized by a 3D printing additive manufacturing process or a vapor deposition process.
  • the base 23 is solid, which is conducive to the overall strength of the connection structure.
  • the base 23 can be made of conductive materials (such as metal materials), formed by various methods such as forging, casting, powder metallurgy, or metal injection molding, and can be used for It implements various mechanical processing.
  • the porous surface structure 21 and the intermediate body 22 are pre-connected to form a composite body 2A, and the intermediate body 22 and the substrate 23 are effectively combined by resistance welding, so that the composite body 2A and the substrate 23 are connected.
  • the resistance welding method includes spot welding and/or projection welding and the like. The following embodiment focuses on the connection between the intermediate body 22 and the base 23 by the projection welding type resistance welding method for illustration.
  • the top of the porous surface structure 21 is in contact with the positive electrode 24, because the porous surface structure 21 is connected to the intermediate 22 in advance, that is, at least a part of the bottom of the porous surface structure 21 is in contact with the top of the intermediate 22.
  • a plurality of protruding structures 221 are prefabricated on the bottom of the intermediate body 22, the protruding structures 221 are in contact with the top of the substrate 23, and the bottom of the substrate 23 is in contact with the negative electrode 25.
  • the convex structure 221 is convex toward the side of the base 23.
  • the manufacturing position of the plurality of protruding structures 221 corresponds to the contact position between the bottom of the porous surface structure 21 and the top of the intermediate body 22 and the adjacent area thereof.
  • the positive direction of the X-axis shown in FIG. 2 means right
  • the negative direction of X-axis means left
  • the positive direction of Y-axis means top
  • the negative direction of Y-axis means bottom.
  • the orientation requirements of the subsequent embodiments are the same as those of the first embodiment. In order to describe the technical solution of the present invention more clearly, the above-mentioned orientation regulation is only used for illustration and does not affect the orientation in practical applications.
  • the composite body 2A formed by the porous surface structure 21 and the intermediate 22 and the substrate 23 are compressed between the positive electrode 24 and the negative electrode 25.
  • the current flows through the porous surface structure 21 and the intermediate 22 to the contact surface between the convex structure 221 and the top of the substrate 23 and the adjacent area.
  • the contact resistance generates resistance heat to heat the convex structure 221 and the top of the substrate 23
  • the protruding structure 221 of the intermediate 22 and the top of the substrate 23 form a metal combination, and finally the solid connection between the intermediate 22 and the substrate 23 is realized, so that the porous surface structure 21 and the intermediate 22
  • the formed composite body 2A and the substrate 23 are tightly bonded together.
  • the raised structures 221 are in contact with the top surface of the substrate 23, and there is a contact resistance between the two. Due to the energization, the current flows through and generates resistance heat, so the raised structures 221 These contact points with the substrate 23 form solder joints.
  • the contact resistance refers to the resistance generated by the current between two independent workpieces when they are in contact.
  • the resistance heat Q is proportional to IR 2 , R is the contact resistance, and I is the current passing through the workpiece, that is, the greater the current, the contact resistance The larger the value, the greater the value of resistance heat, and vice versa, the smaller the value of resistance heat.
  • the intermediate 22 of this example increases its contact resistance with the substrate 23 through raised structures (such as bumps) to generate sufficient resistance heat, and the raised structure 221 and the substrate 23 have sufficient welding strength.
  • the base 23 is made of a titanium alloy.
  • the shape of the protruding structure 221 of the intermediate body 22 may be spherical or arc-shaped, circular or elongated, etc. This embodiment does not specifically limit this, nor is it limited to other examples, as shown in FIG. 3 As shown, the intermediate body 22 can be provided with various protrusions or textures to reduce the contact area and increase the contact resistance, thereby correspondingly increasing the bonding efficiency between the intermediate body and the substrate, and improving the welding strength between the intermediate body and the substrate.
  • the positive electrode 24 and the negative electrode 25 are made of conductive materials (such as metal materials); the top of the negative electrode 25 is in close contact with the bottom of the substrate 23, and the bottom of the positive electrode 24 is in close contact with the top of the porous surface structure 21,
  • the contact surfaces that are in contact with each other can be flat, arced, or curved, etc.
  • the present invention does not specifically limit the shape, size, etc. of the contact surfaces, and can be designed according to actual application conditions.
  • an intermediate is added between the porous surface structure and the substrate, and the composite formed by the intermediate and the porous surface structure and the substrate are welded and combined by the resistance welding method (such as projection welding).
  • the resistance welding method such as projection welding.
  • the positive electrode 24 and the negative electrode 25 in this embodiment are also interchangeable, and this expansion method is also applicable to the subsequent embodiments, which will not be described in detail in the present invention.
  • the porous surface structure 21 is a structure with a certain porosity
  • the intermediate 22 is located between the porous surface structure 21 and the substrate 23, and the intermediate 22 is a non-porous bottom plate 22.
  • the intermediate 22 can be the solid plate described in the first embodiment, or the porous structure with low porosity described in the second embodiment.
  • the connecting structure of the second embodiment includes a first porous structure 41 in a high-porosity region, a second porous structure 42 (as an intermediate) in a low-porosity region, and a substrate 43. , As shown in Figure 4a.
  • the second porous structure 42 is located between the first porous structure 41 and the substrate 23.
  • the porous structures of the first porous structure 41 and the second porous structure 42 both include a large number of staggered scaffolds (or beams), and some multi-directional penetrations and regular shapes are formed between these scaffolds (or beams). Or irregular pores.
  • the porosity of the first porous structure 41 is recorded as a%
  • the porosity of the second porous structure 42 is recorded as b%, a%>b%.
  • the second porous structure 42 here is the intermediate of the solid structure described in the first embodiment. Therefore, compared with the first porous structure 41 constituting the porous surface structure, when the second porous structure 42 is used as the intermediate, the second porous structure 42 has a higher density, such as the second porous structure 42.
  • the scaffolds (beams) in are thicker and/or have lower porosity.
  • both the first porous structure 41 and the second porous structure 42 are made of conductive materials (such as metal materials).
  • the first porous structure 41 and the second porous structure 42 are integrally formed structures, for example, realized by a 3D printing additive manufacturing process, or a vapor deposition process.
  • the first porous structure 41 and the second porous structure 42 are formed into a composite body 4A, and the second porous structure 42 and the base 43 are effectively combined by resistance welding, for example, a projection welding method: No.
  • a projection welding method No.
  • At least part of the support (or beam) at the bottom of the two porous structures 42 is in contact with the top of the substrate 43, and resistance heat is generated due to the contact resistance, thereby heating the contact part of the two to a molten or plastic state, so that the second porous structure 42 is in contact with the top of the substrate 43.
  • the top of the base 43 forms a metal combination to connect the composite to the base 43.
  • At least a part of the top of the first porous structure 41 is in contact with the positive electrode 44, at least a part of the bottom of the second porous structure 42 is in contact with the top of the substrate 43, and the bottom of the substrate 43 is in contact with the negative electrode 45.
  • the positive electrode 24 and the negative electrode 25 are made of a metal material.
  • the top of the negative electrode 45 is in close contact with the bottom of the substrate 43, and the bottom of the positive electrode 44 is in close contact with the top of the first porous structure 41.
  • the second embodiment uses the second porous structure 42 in the low porosity region to replace the solid structure intermediate of the first embodiment.
  • the intermediate of the second embodiment has a porous structure, Due to its low porosity and within a certain range, it can ensure that the second porous structure 42 maintains a certain contact area with the substrate 43, thereby ensuring a certain bonding efficiency.
  • the porosity of the second porous structure 42 The smaller the size, the higher the efficiency of the combination between the composite body 4A and the substrate 43, and vice versa; the final combination efficiency is also related to the specific arrangement of the scaffolds (or beams) staggered inside the porous structure, which can be based on actual conditions. Application design.
  • the lower surface of the second porous structure 42 described above may also be provided with bumps 421, as shown in FIG. 4b.
  • the current flows through the first porous structure 41 and the second porous structure 42, and the contact between the bumps 421 of the second porous structure 42 and the top of the substrate 43 generates resistance heat, thereby making the second porous structure
  • the bottom of 42 and the top of the base 23 form a metal combination, so that the composite 4A formed by the first porous structure 41 and the second porous structure 42 and the base 43 are tightly combined.
  • the top of the negative electrode 25 is in close contact with the bottom of the substrate 23, and the bottom of the positive electrode 24 is in close contact with the top of the porous surface structure 21; optionally, the positive electrode 24 and the negative electrode 25 are large
  • the plane electrode and the positive electrode 24 cover the top of the porous surface structure 21, and the negative electrode 25 is pasted under the bottom of the substrate 23. Since the large flat positive electrode 24 of the first embodiment is pressed on the top of the porous surface structure 21, the large flat positive electrode 24 contacts the surface of the porous surface structure 21 and is squeezed, so that the surface of the porous surface structure 21 is damaged, for example, due to Depression caused by pressure, blackening, depression, and reduction of pore space due to temperature rise caused by contact resistance heating.
  • the positive electrode 54 in the third embodiment does not use a large flat electrode to be attached to the porous surface structure 51, but divides the positive electrode into a plurality of positive electrode monomers 541 and the positive electrode
  • the monomer 541 is inserted into the void 5a in the porous surface structure 51 along the vertical direction, and the positive electrode monomer 541 is placed on the top of the non-porous bottom plate 52 (as an intermediate), as shown in FIG. 5.
  • the porous surface structure 51 and the non-porous bottom plate 52 in this example are an integrally formed structure, for example, realized by a 3D printing additive manufacturing process or a vapor deposition process.
  • the materials and manufacturing process of the substrate 53, the non-porous bottom plate 52, and the porous surface structure 51 in this embodiment can all be referred to in the first embodiment, and will not be repeated here.
  • each positive electrode unit 541 is connected in parallel and all connected to the positive terminal of the power source, and the negative electrode 55 is connected to the negative terminal of the power source.
  • a plurality of protruding structures 521 are pre-fabricated on the bottom of the non-porous bottom plate 52, the protruding structures 521 are in contact with the top of the substrate 53, and the bottom of the substrate 53 is in contact with the negative electrode 55.
  • the void 5a in the porous surface structure 51 is used as an insertion space for the corresponding positive electrode monomer 541.
  • the void 5a is a prefabricated pore portion. The void 5a starts from the surface of the porous surface structure 51 and passes through the porous surface.
  • the structure 51 reaches above the non-porous bottom plate 52 so that the top of the non-porous bottom plate 52 is exposed in the gap 5 a, and the bottom of the positive electrode monomer 541 for insertion is in contact with the top of the non-porous bottom plate 52.
  • the positive electrode 54 of the third embodiment does not make contact with the surface of the porous surface structure 51, which solves the problem of damage caused by resistance heat between the surface of the porous surface structure and the positive electrode due to contact resistance.
  • the gap 5a is laterally matched with the positive electrode cell 541, such as a gap fit, that is, the gap 5a needs to be spaced apart from the porous surface structure of the adjacent part after the positive electrode cell 541 is inserted, so as to avoid the part of the porous surface structure.
  • the surface of the porous surface structure is damaged by resistance heat to protect the surface of the porous surface structure.
  • the positive electrode monomer 541 has a columnar structure or a structure of other shapes, which is not limited in this embodiment, and is not limited to other related examples.
  • the multiple protrusion structures 521 at the bottom of the non-porous bottom plate 52 correspond to the positions of the respective positive electrode cells 541.
  • the contact positions between the positive electrode cells 541 and the top of the non-porous bottom plate 52 are located at different positions.
  • the raised structure 521 is directly above or in the area adjacent to the raised structure 521 to ensure the smooth conduction of current to the non-porous bottom plate 52 until the contact surface between the raised structure 521 and the top of the substrate 53 and the adjacent area, generating resistance heat
  • the protruding structure 521 and the top end of the base 23 form a combined body.
  • the shape of the protruding structure 521 in this embodiment can be referred to the first embodiment, which will not be repeated here.
  • the positive electrode is divided into a plurality of positive electrode monomers and the positive electrode monomers are inserted into the voids in the porous surface structure along the vertical direction.
  • the second embodiment of the pore structure that is, the positive electrode 44 in the second embodiment is replaced with a plurality of positive electrode monomers and each positive electrode monomer is respectively arranged along the vertical direction Inserted into the void in the porous surface structure 41.
  • the prefabricated void starts from the surface of the first porous structure, passes through the first porous structure, and reaches above the second porous structure or inside the second porous structure , So that part of the second porous structure is exposed in the gap 5a, and the bottom of the positive electrode cell for insertion is in contact with part of the second porous structure.
  • the gap is laterally matched with the positive electrode cell, for example, Clearance fit, that is, the gap needs to be separated from the porous surface structure of the adjacent part after inserting the positive electrode monomer, to prevent the surface of the porous surface structure of this part from being damaged by resistance heat to protect the porous surface
  • Clearance fit that is, the gap needs to be separated from the porous surface structure of the adjacent part after inserting the positive electrode monomer, to prevent the surface of the porous surface structure of this part from being damaged by resistance heat to protect the porous surface
  • the positive electrode 24 and the negative electrode 25 can be made of conductive materials (such as metal materials); the top of the negative electrode 25 is in close contact with the bottom of the substrate 23, and the bottom of the positive electrode 24 is close to the porous surface structure 21.
  • the positive electrode 24 and the negative electrode 25 are large planar electrodes, and the positive electrode 24 covers the top of the porous surface structure 21, and the negative electrode 25 is pasted under the bottom of the substrate 23.
  • the positive electrode in the fourth embodiment is a flexible positive electrode 64, as shown in FIG. 6.
  • the flexible positive electrode 64 is a large planar electrode and covers the top of the porous surface structure 61
  • the negative electrode 65 is pasted under the bottom of the substrate 63
  • the non-porous bottom plate 62 is located on the porous surface structure 61 and Between the base 63.
  • the porous surface structure 61 and the non-porous bottom plate 62 are an integrally formed structure, for example, realized by a 3D printing additive manufacturing process, or a vapor deposition process.
  • the materials and manufacturing process of the substrate 63, the non-porous bottom plate 62, and the porous surface structure 61 in this embodiment can all be referred to in the first embodiment, which will not be repeated here.
  • the flexible positive electrode 64 covers the top surface of the porous surface structure 61, a certain pressure is generated on the surface of the porous surface structure 61. At this time, the flexible positive electrode 64 generates a certain flexible deformation under the interaction of the pressure, so that The contact area between it and the top of the porous surface structure 61 is increased (compared to the contact area between the rigid positive electrode and the top of the porous surface structure under the same conditions), which can not only reduce the positive electrode 64 and the porous surface structure
  • the contact resistance between 61 can improve or avoid surface damage (such as depression, blackening, reduction of pore space, etc.) of the porous surface due to resistance heat, protect the surface of the porous surface structure, and can enhance current conduction, non-porous
  • the welding efficiency between the bottom plate 62 and the base 63 is increased, and the welding strength is increased.
  • the flexible material is a conductive material, such as copper foil or tin foil, which is not limited in this embodiment, nor is it limited to other related examples, and can be designed according to actual application conditions.
  • a deformable good conductive medium 606 is added between the bottom of the positive electrode 604 and the top of the porous surface structure 601, and the deformable good conductive medium 606 covers the top surface of the porous surface structure 601.
  • the easily deformable good conductive medium 606 is a continuous solid film, such as copper foil.
  • the intermediate 602 is located between the porous surface structure 601 and the substrate 603, and the top of the negative electrode 605 is in close contact with the bottom of the substrate 603.
  • the positive electrode 604 is a large flat electrode and covers the top surface of the easily deformable and good conductive medium 606.
  • the contact area between it and the porous surface structure 601 increases, not only Reduce the contact resistance between the porous surface structure 601 and the positive electrode 604 above it, reduce the resistance heat, reduce the surface damage of the porous surface structure 601, and increase the current conduction effect, so that the gap between the intermediate 602 and the substrate 603 The welding strength is increased.
  • the pores between the bottom of the positive electrode 6004 and the top of the porous surface structure 6001 are filled with good conductive material powder 6006 (or good conductive wire), which can reduce the positive electrode 6004 and the porous surface structure 6001.
  • the contact resistance between the surfaces reduces the surface damage of the porous surface structure 6001, and at the same time can increase the current conduction effect and increase the welding efficiency between the intermediate 6002 and the substrate 6003.
  • the material of the good conductive material powder 6006 (or the good conductive wire) is the same as the material of the porous surface structure 6001, for example, titanium powder (or titanium wire).
  • the intermediate 6002 is located between the porous surface structure 6001 and the substrate 6003, and the top of the negative electrode 6005 is in close contact with the bottom of the substrate 6003.
  • the contact resistance between the electrode and the porous surface structure can also be reduced, and the surface damage of the porous surface structure can be reduced.
  • the present invention does not Do repeat.
  • good conductive material powder 6006 (or good conductive wire), sprayed conductive material or liquid conductive agent, etc., all of them need to be properly removed after the porous surface structure and the substrate are welded and combined so as to Ensure that the pores of the porous surface structure are open.
  • a layer of hydroxyapatite (HA) coating can be separately sprayed on the surface of the porous surface structure.
  • the HA coating has Good biological activity and biocompatibility, which is conducive to the subsequent bone ingrowth process; alternatively, a coating containing antibacterial silver ions or other cell growth factors can be sprayed separately on the porous surface structure. .
  • the melt of a specific material is penetrated into the porous surface structure, and the melt can almost penetrate the pores in the porous surface structure of the selected part (the upper part of the spacer layer). Filling, not only need to limit the melting point of the molten liquid with better conductive properties to be lower, but also need to set a spacer layer in the porous surface structure.
  • the spacer layer is preferably made of conductive material, so as to avoid the melt direction.
  • the positive electrode 24 and the negative electrode 25 are made of conductive material (metal material), the top of the negative electrode 45 is in close contact with the bottom of the substrate 43, and the bottom of the positive electrode 44 is in contact with the first high-porosity region.
  • the top of the porous structure 41 is tightly attached.
  • the positive electrode of the fifth embodiment is a flexible positive electrode 74 made of a flexible material, not the metal material in the above-mentioned embodiment, as shown in FIG. 7.
  • the flexible positive electrode 74 is a large planar electrode and covers the top of the first porous structure 71 in the high-porosity area, and the negative electrode 75 is pasted under the bottom of the substrate 73.
  • the second porous structure 72 is located between the first porous structure 71 and the substrate 73 in the high porosity region.
  • the first porous structure 71 and the second porous structure 72 are integrally formed structures, for example, implemented by a 3D printing additive manufacturing process, or a vapor deposition process.
  • the materials and manufacturing process of the substrate 73, the second porous structure 72, and the first porous structure 71 in this embodiment can all be referred to in the second embodiment, which will not be repeated here.
  • the flexible positive electrode 74 covers the top surface of the first porous structure 71, and generates a certain pressure on the top surface of the first porous structure 71.
  • the flexible material of the flexible positive electrode 74 will interact under pressure. Produce a certain flexible deformation, so that the contact area between it and the top of the first porous structure 71 is increased (compared to the contact area between the rigid positive electrode and the top of the first porous structure under the same conditions), which can not only reduce
  • the contact resistance between the positive electrode 74 and the porous surface structure 71 improves or avoids surface damage (such as depression, blackening, reduction in pore space, etc.) of the porous surface due to resistance heat, protects the surface of the porous surface structure, and
  • the current conduction can be enhanced, the welding efficiency between the non-porous bottom plate 72 and the base 73 is increased, and the welding strength is increased.
  • the flexible material is a conductive material, such as copper foil or tin foil, which is not limited in this embodiment, nor is it limited to other related examples, and can be designed according to actual application conditions.
  • the lower surface of the low-porosity bottom plate 72 may be provided with bumps to increase the resistance welding efficiency.
  • Embodiment 6 is a diagrammatic representation of Embodiment 6
  • the sixth embodiment not only provides a non-porous bottom plate 812 (or a porous structure with low porosity) between the porous surface structure 811 and the substrate 813, but also prefabricates the bottom surface of the non-porous bottom plate 812.
  • a raised structure the raised structure is in contact with the top of the base 813, and at the same time, a number of supporting pillars 816a are arranged on the surface of the non-porous bottom plate 812 near the porous surface structure, as shown in FIG. 8a, the supporting pillars 816a is interposed between the non-porous bottom plate 812 and the positive electrode 814.
  • the supporting column 816a is located inside the porous surface structure 811, the top of the supporting column 816a is substantially flush with the top of the porous surface structure, and the height of the supporting column 816a is substantially equal to the height of the porous surface structure.
  • the top of the negative electrode 815 in the sixth embodiment is also in close contact with the bottom of the substrate 813.
  • the height direction mentioned here is the azimuth shown in the figure.
  • the above-mentioned azimuth regulation is only used to show the figure and is not necessarily used as the azimuth in actual application.
  • the regulations of the subsequent related embodiments are the same as this.
  • the supporting column 816a is a solid structure with good conductivity.
  • Each supporting column 816a is directly opposite to the corresponding convex structure below, so that the area covered by the supporting column 816a is at least partially overlapped with the contact portion between the convex structure and the base 813, and the size of the supporting column 816a is the same as that of the convex structure. Match.
  • non-porous bottom plate 812, the porous surface structure 811, and the support column 816a are integrally formed structures, for example, implemented by a 3D printing additive manufacturing process or a vapor deposition process.
  • the electrode flows out greatly.
  • Part of the current preferentially passes through the solid structure of the well-conducting support column 816a, which greatly reduces the surface damage of the porous surface structure 811 due to resistance heat, and can also enhance the current conduction, and the welding efficiency between the non-porous bottom plate 812 and the base 813 Increase to ensure sufficient welding strength.
  • the seventh embodiment is modified to completely prevent the porous surface structure from contacting the positive electrode above it to generate resistance heat and cause damage to the porous surface structure, as shown in Figure 8b.
  • the tops of all support pillars 816b are set higher than the top surface of the porous surface structure, and the height of each support pillar 816b is higher than the height of the porous surface structure of its corresponding adjacent part.
  • the positive electrode will be in contact with the porous surface structure.
  • the support pillar 816b at the higher position first contacts, thereby avoiding the positive electrode from contacting the porous surface structure 811 at the lower position.
  • the positive electrode can be not only the continuous large-planar positive electrode shown in FIG. 8a, but also a plurality of segmented positive electrode monomers 814b, and each segment of the positive electrode monomers 814b is pressed against The top end of the corresponding support column 816b, and the positive electrode unit 814b is connected in parallel to a large plane electrode or directly connected to the positive terminal of the power supply.
  • Embodiment 8 is a diagrammatic representation of Embodiment 8
  • the eighth embodiment is further expanded.
  • the idea of the expansion is as follows: as shown in FIG. 8c, the top of each support column 816c is lower than the top surface of the corresponding part of the porous surface structure, The height of the support column 816c is lower than the height of the porous surface structure, and the support column 816a is hidden inside the porous surface structure 811, that is, above the support column 816c is a porous structure.
  • the positive electrode 814 will be in contact with the first surface of the porous surface structure 811 underneath, and the top surface of the porous surface structure 811 will sink slightly due to the heat generated by the contact resistance until it sinks to the top of the support column 816c.
  • the maximum sinking degree can only sink to the top position of the support column, when the sinking degree is not large, the sinking position is higher than the top position of the support column), because the support column 816c is a solid structure, and the support column 816c acts as a limit To ensure that the height of the final porous surface structure reaches the height of the support column, and avoid excessive compression of the porous surface structure.
  • the upper support column 816c may also have a recessed structure, so that the top end of the support column 816c is lower than the top surface of the corresponding part of the porous surface structure, and the support column 816c can also serve as a limiter.
  • the non-porous bottom plate 812, the porous surface structure 811, and the support column 816c may be an integrally formed structure, for example, realized by a 3D printing additive manufacturing process or a vapor deposition process.
  • the support pillar 816c is a solid structure with good conductivity, and the porous surface structure 811 has pores, so the current is mostly selectively
  • the flow through the support column 816c to the raised structure and the base 813 not only ensures the welding strength between the non-porous bottom plate 812 and the base 813, but also reduces the damage to the porous surface structure to a certain extent.
  • the surface of the porous surface structure is still damaged to a certain extent in the eighth embodiment, since the top of the support column 816c is always lower than the surface of the porous surface structure 811, it does not affect the basic function of the connection structure in the corresponding field.
  • a set height position is selected on the support column originally higher than the surface of the porous surface structure 811 and the upper part of the position is designed as The pore structure is no longer the flush support column shown in Figure 8b.
  • the positive electrode contacts the top pore structure at a higher position first, the top pore structure of the support column is compressed and a small amount of sinking occurs due to the heat generated by the contact resistance, and the support column sinks to the above-mentioned set position of the support column, making the support
  • the column and the porous structure next to it are basically flush (the maximum sinking degree can only sink to the set position, when the sinking degree is not large, the sinking position is higher than the set position). In this case, it can completely avoid the contact between the porous surface structure and the positive electrode above and cause resistance heat to cause damage to the surface, and there is no need for additional processing techniques to remove the excess part of the support column higher than the porous surface structure.
  • a non-porous bottom plate 812 (or a porous structure with low porosity) is arranged between the porous surface structure 811 and the substrate 813, and a plurality of convex structures are prefabricated on the bottom surface of the non-porous bottom plate 812, The protruding structure is in contact with the top of the base 813, and at the same time, on the non-porous bottom plate 812, a plurality of well-conductive solid support pillars 816a are arranged on the side surface of the porous surface structure. And the positive electrode 814.
  • the main difference from the sixth embodiment is that the bottom surface of the non-porous bottom plate 912a arranged between the porous surface structure 911 and the base 913 in the ninth embodiment does not produce the above-mentioned convex structure (such as bumps), and also A plurality of well-conductive support pillars 916a are also provided on the non-porous base plate 912a near the porous surface structure side surface.
  • the support pillars 916a are interposed between the non-porous base plate 912a and the positive electrode 914, as shown in FIG. 9a.
  • the bottom surface of the porous bottom plate 912a and the base 813 are in almost planar contact.
  • the support column 916a is located inside the porous surface structure 911, the height of the support column 916a is substantially flush with the top surface of the porous surface structure, and the height of the support column 916a is substantially equal to the height of the porous surface structure.
  • the top of the electrode 915 is also in close contact with the bottom of the substrate 913.
  • the non-porous bottom plate 812, the porous surface structure 811, and the support pillars 816a are integrally formed structures, for example, implemented by a 3D printing additive manufacturing process or a vapor deposition process.
  • the support pillar 916a is a solid structure with good electrical conductivity, and the porous surface structure 911 has a large amount of outflow due to the existence of pores.
  • Part of the current preferentially passes through the support pillars 916a of a solid structure with good conductivity and passes through the non-porous bottom plate 912a to the substrate 913.
  • the ninth embodiment has provided a plurality of good conductive columns.
  • the supporting column 916a still has enough current and resistance heat to make the non-porous bottom plate 912a and the base 913 have sufficient welding strength, and can also reduce the damage of the porous surface structure to a certain extent.
  • the modified idea of the tenth embodiment is as follows: as shown in FIG. 9b, in the tenth embodiment, except for the non-porous bottom plate (or low-porosity bottom plate) without protruding structures in the ninth embodiment,
  • the tops of all support pillars 916b are specially set higher than the top surface of the porous surface structure, and each support The heights of the pillars 916b are all higher than the porous surface structure of their corresponding neighboring parts.
  • the positive electrode will first contact the support pillar 916b disposed at a higher position, thereby avoiding the positive electrode from contacting the porous surface structure 911 at a lower position.
  • the part of the support column 916b higher than the porous surface structure 911 can be removed by cutting and other processes to ensure flat surface.
  • the positive electrode can be not only the continuous large-plane positive electrode shown in FIG. 9a, but also a plurality of segmented positive electrode monomers 914b, and each segment of the positive electrode monomers 914b is voltage-balanced.
  • the positive electrode unit 914b is connected in parallel to a large plane electrode or directly connected to the positive terminal of the power supply.
  • Embodiment 11 is a diagrammatic representation of Embodiment 11:
  • the positive electrode 1014a in the eleventh embodiment does not use a large flat electrode to be attached to the porous surface structure 1011, but divides the positive electrode 54 into a plurality of positive electrode monomers 001 and separates the positive electrode.
  • the body 001 is inserted into the void 10a in the porous surface structure 1011 along the vertical direction, as shown in FIG. 10a, and the positive electrode monomer 001 is placed on the top of the non-porous bottom plate 1012a (or porous structure with low porosity).
  • a plurality of the positive electrode monomers 001 are connected in parallel and are all connected to a large plane electrode or directly connected to the positive terminal of the power source, and the negative electrode 1015 is connected to the negative terminal of the power source.
  • the porous surface structure 1011 and the non-porous bottom plate 1012a are an integrally formed structure, for example, realized by a 3D printing additive manufacturing process, or a vapor deposition process.
  • the void 10a in the porous surface structure 1011 serves as the insertion space of the corresponding positive electrode monomer 001, and the void 10a is a prefabricated pore.
  • the bottom end of the positive electrode 1014a is not in contact with the top end of the porous surface structure 101 to avoid damage to the surface of the porous surface structure 1011 due to resistance heat.
  • the gap 10a is laterally matched with the positive electrode monomer 001, such as a gap fit, that is, the gap 10a needs to be spaced apart from the porous surface structure of the adjacent part after the positive electrode monomer 001 is inserted, so as to avoid porosity in this part.
  • the surface structure is damaged by resistive heat.
  • the non-porous bottom plate in the first embodiment described above is provided with a convex structure (such as bumps) for generating greater contact resistance and resistance heat.
  • the eleventh embodiment is different from the non-porous bottom plate 1012a in this embodiment.
  • the bottom plate 1012a and the substrate 1013 (without the porous surface structure 1011) can still ensure sufficient current and resistance heat, so that the non-porous bottom plate 1012a and the substrate 1013 have sufficient welding strength.
  • Embodiment 12 is a diagrammatic representation of Embodiment 12
  • the twelfth embodiment of the present embodiment is modified in that: the top surface of the non-porous bottom plate 1012b (or the porous structure with low porosity) is provided with a number of solid support structures 10b with good electrical conductivity to support The structure 10b is placed in the pores reserved inside the porous surface structure 1011, as shown in FIG. 10b.
  • the supporting structure 10b is used to place and support each positive electrode monomer 001 in the positive electrode 1014a.
  • the positive electrode monomer 001 is located in the groove opened in the supporting structure 10b and matched with the groove to ensure that all positive electrodes The monomer 001 is in good contact with the corresponding support structure 10b.
  • the non-porous bottom plate 1012b, the porous surface structure 1011, and the support column support structure 10b are integrally formed structures, for example, implemented by a 3D printing additive manufacturing process or a vapor deposition process.
  • the top of the support structure 10b is substantially flush with the top of the porous surface structure 1011, and the height of the support structure 10b is substantially equal to the height of the porous surface structure 1011; or, the top of the support structure 10b is lower than the porous surface structure 1011 Or, the top of the support structure 10b is higher than the top of the porous surface structure 1011 and the subsequent cutting process makes the top of the final support structure 10b flush with the top of the porous surface structure 1011; which height design to choose In this way, the present invention does not limit this.
  • the positive electrode 1014a is conductively connected to the non-porous bottom plate 1012b through the support structure 10b of a well-conductive solid structure, and each The positive electrode monomer 001 is respectively connected to the power supply, and the current flows directly from the positive electrode monomer 001 and passes through the non-porous bottom plate 1012b and the substrate 1013 (without passing through the porous surface structure 1011), that is, sufficient current and resistance heat can still be ensured , So that the non-porous bottom plate 1012b and the base 1013 have sufficient welding strength.
  • Embodiment 13 is a diagrammatic representation of Embodiment 13:
  • the porous surface structure 1111 is connected to the bottom of at least part of the area with good electrical conductivity.
  • the solid structure of the raised structure 1112a (such as bumps), the raised structure 1112a is in contact with the top of the substrate 1113, as shown in Figure 11a, and at the same time, a solid structure can be provided at any position in the porous surface structure 1111 and is well conductive Support column 1116a.
  • the supporting pillars 1116a and the protruding structures 1112a can be dislocated and distributed, as shown in FIG. 11a.
  • the porous surface structure 1111, the convex structure 1112a, and the support pillar 1116a are integrally formed structures, for example, realized by a 3D printing additive manufacturing process or a vapor deposition process.
  • the support column 1116a is hidden inside the porous surface structure 1111, the top end of the support column 1116a is lower than the top end of the porous surface structure 1111, and the bottom end of the support column 1116a is higher than the bottom end of the porous surface structure 1111.
  • the limiting effect of the support column 1116a can be used to prevent the porous surface structure 1111 from being over-compressed, because the positive electrode 1114 will first contact the top surface of the porous surface structure 1111 below, and the porous surface structure 1111 is caused by the surface of the porous surface structure 1111.
  • the solid structure makes the current preferably go through the support column 1116a, and then through the porous surface structure near the support column 1116a to reach the convex structure 1112a, which can improve the surface damage of the porous surface structure caused by contact resistance heating Problem:
  • the bumps of the protruding structure 1112a are further used to increase the contact resistance with the substrate 1113, so as to generate sufficient resistance heat, so that the protruding structure 1112a and the substrate 1113 have sufficient welding
  • the thirteenth embodiment described above describes that the support column 1116a and the raised structure 1112a are in a misaligned distribution.
  • the fourteenth embodiment designs the raised structure 1112b and the support column 1116b above it to be in a positive fit.
  • the two are at least partially overlapped (such as partially overlapped or completely overlapped), as shown in Figure 11b.
  • the porous surface structure 1111, the convex structure 1112b, and the support column 1116b are integrally formed structures, for example, realized by a 3D printing additive manufacturing process or a vapor deposition process.
  • the support column 1116b is hidden inside the porous surface structure 1111, the top of the support column 1116b is lower than the top of the porous surface structure 1111, and the height of the support column 1116b is lower than the height of the porous surface structure.
  • the protruding structure 1112b is in contact with the top of the substrate 1113.
  • the support column 1116b can also be used to avoid the transitional compression of the porous surface structure 1111, because the positive electrode 1114 will first contact the porous surface structure 1111 below it, and then the surface of the porous surface structure 1111 generates heat due to contact resistance.
  • the pillar 1116b is a solid structure with good conductivity, and the support pillar 1116b acts as a limiter to ensure that the height of the final porous surface structure reaches the height of the support pillar; at the same time, the solid good conductive structure of the support pillar 1116a can also be used Most of the current is preferably selected to pass through the support pillar 1116a, which can improve the problem of damage to the top surface of the porous surface structure due to contact resistance heat; furthermore, in this example, the convex structure 1112b can also be used to increase the contact resistance of the substrate 1113.
  • the protruding structure 1112b and the substrate 1113 have sufficient welding strength. It is worth noting that the welding efficiency of the fourteenth embodiment is better than that of the thirteenth embodiment, because the convex structure 1112b and the supporting column 1116b are directly matched, and the current flows through the supporting column 1116b and directly passes through the convex structure 1112b. In Example 13, after the current flows through the support column 1116a, it needs to pass through the pore structure in the porous surface structure and then flow through the protruding structure 1112a.
  • the idea of the modification is to change the height of the support column above the porous surface structure to: the support column 1116c is located inside the porous surface structure 111 and the top end of the support column 1116c is basically the same as The top of the porous surface structure is flush, and the height of the support column 1116c is basically equal to the height of the porous surface structure.
  • the raised structure 1112c is also directly matched with the support column 1116c above, and the two at least partially overlap (such as a part of Coincident or completely coincident), as shown in Figure 11c.
  • porous surface structure 1111, the convex structure 1112c, and the support column 1116c are integrally formed structures, for example, realized by a 3D printing additive manufacturing process or a vapor deposition process.
  • the idea of the modification is to change the height of the support column described above to be lower than the porous surface structure to: set the top surface of all the support columns 1116d to be higher than On the top surface of the porous surface structure, as shown in FIG. 11d, the height of each support column 1116d is higher than the height of the porous surface structure of its corresponding adjacent part.
  • the protruding structure 1112d is also directly matched with the supporting column 1116d above, and the two are at least partially overlapped (such as partially overlapped or completely overlapped), as shown in FIG. 11d.
  • the porous surface structure 1111, the convex structure 1112d, and the support column 1116d are integrally formed structures, for example, realized by a 3D printing additive manufacturing process or a vapor deposition process.
  • a 3D printing additive manufacturing process or a vapor deposition process.
  • Embodiment 15 is a diagrammatic representation of Embodiment 15:
  • the fifteenth embodiment is based on the first embodiment, and further provides a number of limit posts 1216 between the non-porous bottom plate 1212 (or a porous structure with low porosity) and the positive electrode 1214.
  • the column 1216 is placed on the surface of the non-porous bottom plate 1212 close to the side of the porous surface structure 1211.
  • the top surface of the limiting column 1216 is lower than the top surface of the corresponding part of the porous surface structure
  • the height of the limiting column 1216 is lower than the height of the porous surface structure
  • the limiting column 1216 is hidden in the porous surface structure 1211 internal.
  • the bottom end of the non-porous bottom plate 1212 in the fifteenth embodiment is prefabricated with a plurality of protruding structures 12a, and the protruding structures 12a are in contact with the top of the base 1213.
  • the positive electrode 1214 first comes into contact with the surface of the porous surface structure 1211 at a higher position below, and then the surface of the porous surface structure 1211 sinks due to damage caused by the heat generated by the contact resistance. It sinks to the top position of the limit column 1216 (the maximum sinking degree can only sink to the top position, even when the degree of sinking is not large, the sinking position is higher than the top position), because the limit column 1216 is a solid structure, because the limit column 1216 is a solid structure, The limiting column 1216 plays a limiting role to ensure that the height of the final porous surface structure reaches the height position where the limiting column 1216 is located, so as to avoid excessive compression of the porous surface structure.
  • the limiting pillars 1216 may be distributed directly opposite to or staggered with the corresponding convex structures 12a underneath; at the same time, whether the material of the limiting pillars 1216 in this embodiment is a conductive material or a non-conductive material, the present invention relates to this There are no restrictions, as long as the limiting effect of the limiting column 1216 is finally met to avoid excessive compression of the porous surface structure.
  • the limiting column 1216 is a conductive material
  • the current is mostly preferably selected to pass through the limiting column 1216, and then through the porous surface structure near the limiting column 1216 to reach the corresponding convex structure 12a, which can improve the porosity Surface structure surface damage caused by contact resistance heating.
  • the limiting pillar 1216 When the limiting pillar 1216 is made of a non-conductive material, the current flows from the positive electrode 1214 to the porous surface structure 1211 to the convex structure 12a. Although the above situation of this embodiment still causes a certain degree of damage to the surface of the porous surface structure, since the limit post 1216 is always lower than the surface of the porous surface structure 1212, it will not affect the basic function of the entire connection structure when applied to related fields. .
  • the porous surface structure of the present invention and the substrate are combined by resistance welding (for example, projection welding).
  • resistance welding for example, projection welding
  • the area of the workpiece to be welded is too large, a larger number of protrusion structures are required.
  • the convex structure is determined, in order to ensure the welding strength between each convex structure and the substrate, the total current of the electrode needs to be increased, which may lead to an increase in the cost of the power supply device, electrode damage, and surface damage of the porous surface structure.
  • the welded workpiece can be welded in different areas and in batches.
  • the porous surface structure 1311 is divided into regions and resistance welding is performed in batches with the substrate 1313.
  • the porous surface structure 1311-1 corresponding to the first region is connected to the top A positive electrode 1314-1
  • a second positive electrode 1314-2 is connected above the porous surface structure 1311-2 corresponding to the second region.
  • the top of the negative electrode 1315 is in close contact with the bottom of the substrate 1313
  • a non-porous bottom plate 1312 (or a porous structure with low porosity) is arranged between the porous surface structure 1311 and the substrate 1313, and the bottom surface of the non-porous bottom plate 1312 is prefabricated
  • a plurality of raised structures are in contact with the top of the base 1313.
  • the porous surface structure 1311 adopts regional resistance welding, but the positive electrode corresponding to each region may not completely cover the corresponding porous surface structure during the regional welding, such as arbitrarily divided two neighbors.
  • the edge of the area on the side close to the area cannot be completely covered.
  • the edge of each area may be slightly higher than the other parts covered (that is, convex edge), which affects the surface flatness of the porous surface structure 1311. It may even affect the basic functions of the connection structure applied to related fields (such as bone ingrowth).
  • the porous surface structure 1311 of the sixteenth embodiment is provided with grooves 13a to divide the top of the porous surface structure 1311 into multiple regions, such as the porous surface structure 1311-1 in the first region in the figure. And the porous surface structure 1311-2 of the second region.
  • the groove 13a is elongated, and the porous surface structure 1311-1 in the first region and the porous surface structure 1311-2 in the second region are respectively located on both sides of the elongated groove 13a.
  • the top of the groove 13a is lower than the top of the porous surface structure 1311.
  • the height of the groove 13a is smaller than the height of the porous surface structure 1311.
  • the main body of the non-porous bottom plate 1312, the groove 13a, and the porous surface structure 1311 are integrally formed structures, for example, implemented by a 3D printing additive manufacturing process, or a vapor deposition process.
  • the groove 13a can also be formed by machining.
  • Figure 13 shows that there is a gap between the first positive electrode 1314-1 and the second positive electrode 1314-2.
  • the first positive electrode 1314-1 and the second positive electrode 1314-2 can be in sequence. 13 only indicates the position, or the first positive electrode 1314-1 and the second positive electrode 1314-2 are in no particular order, and can be pressed on the porous surface structure of the corresponding area at the same time; and the positive electrode corresponding to each divided area The coverage area of each is larger than the surface area of the porous surface structure 1311-1 in the corresponding region.
  • the side of the groove 13a close to the first positive electrode 1314-1 is marked as the first side
  • the other side of the groove 13a close to the second positive electrode 1314-2 is marked as the second side.
  • the porous surface structure 1311-1 in the first region is first connected to the substrate 1313 by resistance welding: the bottom surface of the first positive electrode 1314-1 covers the porous surface structure 1311-1 in the corresponding region, and the first The portion of the positive electrode 1314-1 beyond the connection area does not exceed the edge of the second side of the groove 13a, and the first positive electrode 1314-1 and the porous surface structure 1311-1 in the first area generate heat due to contact resistance.
  • the porous surface structure 1311-1 of the area has a small amount of sinking but no convex edge will be formed; then continue to start the second area of the porous surface structure 1311-2 and the substrate 1313 to complete resistance welding: the second positive electrode 1314-2
  • the porous surface structure 1311-2 covering the corresponding area is in surface contact, and the portion of the second positive electrode 1314-2 that exceeds the connection area does not exceed the side edge of the first positive electrode 1314-1 close to the second positive electrode 1314-2
  • the second positive electrode 1314-2 and the porous surface structure 1311-2 in the second region generate heat due to the contact resistance, which causes the porous surface structure 1311-2 in the second region to sink a small amount but does not form a convex surface. side.
  • the first positive electrode 1314-1 and the second positive electrode 1314-2 may be the same electrode.
  • the first positive electrode 1314-1 and the second positive electrode 1314-2 are in no particular order, and are pressed on the porous surface structure of the corresponding area at the same time, then the porous surface structure 1311-1 of the first area and the second area
  • the porous surface structure 1311-2 of 1311-2 is resistance-welded to the substrate at the same time, wherein the bottom surface of the first positive electrode 1314-1 covers the porous surface structure 1311-1 of the corresponding area, and the portion of the first positive electrode 1314-1 beyond the connection area Not exceeding the edge of the second side of the groove 13a; and, the second positive electrode 1314-2 covers the porous surface structure 1311-2 of the corresponding area in surface contact, and the portion of the second positive electrode 1314-2 that exceeds the connection area does not exceed the concave The edge of the first side of the groove 13a.
  • This method solves the problem of edge convexity caused by regional welding.
  • the process needs to control the sinking position of the porous surface structure to be higher than the top of the groove 13a.
  • a first positive electrode 1414-1 is connected above the porous surface structure 1411-1 corresponding to the first region, and a second positive electrode is connected above the porous surface structure 1411-2 corresponding to the second region 1414-2.
  • the top of the negative electrode 1415 is in close contact with the bottom of the substrate 1413, a non-porous bottom plate 1412 (or a porous structure with low porosity) is arranged between the porous surface structure 1411 and the substrate 1413, and the bottom surface of the non-porous bottom plate 1412 is prefabricated
  • a plurality of raised structures are in contact with the top of the base 1413.
  • the porous surface structure 1411 is provided with grooves 14a to divide the top of the porous surface structure 1411 into multiple regions, such as the porous surface structure 1411-1 in the first region and the porous surface structure 1411 in the second region in the figure. 2.
  • the groove 14a is elongated, and the porous surface structure 1411-1 in the first region and the porous surface structure 1411-2 in the second region are respectively located on both sides of the elongated groove 14a.
  • the top of the groove 14a is lower than the top of the porous surface structure 1411.
  • the height of the groove 14a is smaller than the height of the porous surface structure 1411. Since the groove 14a is designed in this embodiment, the side of the groove 14a close to the first positive electrode 1414-1 is marked as the first side, and the other side of the groove 14a close to the second positive electrode 1414-2 is marked as the second side.
  • the first positive electrode 1414-1 is in contact with the porous surface structure 1411-1 of the first region, and the first positive electrode 1414-1 extends beyond the part of the groove 14a (that is, the first positive electrode 1414-1 straddles the groove 14a The first side but not beyond the second side of the groove 14a), and further contact a part of the porous surface structure 1411-2 in the second region.
  • the surface of the porous surface structure 1411-2 in the second region There is a small amount of sinking and the surface of the porous surface structure 1411-2 in the second area will have an indentation convex edge; then the second positive electrode 1414-2 is in contact with the porous surface structure 1411-2 in the second area, and The two positive electrodes 1414-2 cross over the remaining part of the groove 14a or across the entire groove 14a, and the second positive electrode 1414-2 extends beyond the indentation convex edge to ensure that the second positive electrode 1414-2 is pressed to the porous surface.
  • the indentation protruding edge that may be generated by the structure 1411-2 makes the indentation protruding edge flattened.
  • the first positive electrode 1414-1 is in contact with the porous surface structure 1411-1 in the first region, and the first positive electrode 1414-1 does not extend beyond the first side of the groove 14a.
  • the first region The porous surface structure 1411-1 has a small amount of sinking on the surface and the surface has indentation convex edges, and then the second positive electrode 1414-2 contacts the porous surface structure 1411-2 in the second region, and the second positive electrode 1414-2 Across the entire groove 13a, and the second positive electrode 1414-2 exceeds the indentation convex edge generated on the surface of the porous surface structure 1411-1, ensuring that the second positive electrode 1414-2 is pressed to the surface of the porous surface structure 1411-1.
  • the indentation convex edge makes the indentation convex edge flattened. The process needs to control the sinking position of the porous surface structure to be higher than or substantially flush with the top of the groove 14a.
  • the seventeenth embodiment still adopts the resistance welding of sub-regions; but the difference from the sixteenth embodiment is that in order to solve the problem of the indentation convex edge caused by the sub-region welding, this embodiment
  • the porous surface structure of Example 17 does not adopt the groove design.
  • the resistance welding of the first region after the first subregional resistance welding There is a bump on the edge (the bump here is a relative positional relationship of height, which means that the edge part that is not dented is higher than the other part that is dented).
  • Embodiment 18 is a diagrammatic representation of Embodiment 18:
  • the non-porous bottom plate 1512 of the eighteenth embodiment is provided with a limiting structure 15a at the top.
  • the limiting structure 15a is a long strip and can be used as a reference for region division.
  • the limiting structure 15a is set on any two At the edge of the adjacent side of the adjacent area.
  • the top of the limiting structure 15a is lower than the top of the porous surface structure 1511, and the height of the limiting structure 15a is smaller than the height of the porous surface structure 1511.
  • the main body of the non-porous bottom plate 1512, the limiting structure 15a, and the porous surface structure 1511 are integrally formed structures, for example, implemented by a 3D printing additive manufacturing process or a vapor deposition process.
  • the limiting structure 15a in this embodiment is a solid structure or a porous structure with a lower porosity than the porous surface structure 1311-1 and the porous surface structure 1311-2.
  • the positive electrode of the eighteenth embodiment can be a large planar electrode 1514 shown in FIG. 15 and a porous surface structure covering multiple regions, or it can be the first positive electrode 1314-1 and the second positive electrode 1314-1 with gaps in FIG. The positive electrode 1314-2, or the first positive electrode 1414-1 and the second positive electrode 1414-2 at least partially overlapping in FIG. 14.
  • the surface of the porous surface structure 1511 in each area has a small amount of sinking but no convex edges are formed, and
  • the limit structure 15a is used to limit the position to limit the sinking limit. This method not only solves the problem of edge convexity caused by sub-region welding, but also limits the position of the porous surface structure that sinks due to the welding process.
  • the present invention is not limited to the projection welding resistance welding method used alone in any of the above embodiments. It can also use the spot welding resistance welding method alone or the combination of the projection welding resistance welding method and the spot welding resistance welding method.
  • the welding method is used in conjunction to combine the intermediate and the substrate. Specifically: the spot-welding resistance welding method is different from the projection-welding resistance welding method by setting the convex structure. In the spot-welding resistance welding method, the intermediate body is not provided with the convex structure.
  • a single electrode and each movement of the welded workpiece (such as a composite body and a substrate) or a single electrode and each movement of the electrode to complete the welding of a solder joint, until the set number of solder joints is completed, to ensure that the intermediate body and the substrate Have sufficient welding strength.
  • the present invention can also use the projection welding resistance welding method and the spot welding resistance welding method together. For example, after the projection welding resistance welding method in any one of the above embodiments is completed, the spot welding resistance welding method is further adopted. Operation to strengthen the welding strength between the intermediate and the substrate
  • the projection welding type resistance welding method of the present invention can simultaneously weld multiple welding points in one welding cycle, with high production efficiency and no shunting effect; at the same time, since the current density is concentrated on the bumps and the current density is large, it can be used more Welding with a small current can reliably form a smaller nugget, which overcomes the migration of the nugget of spot welding resistance welding; the position of the bumps of the projection welding resistance welding method is accurate, the size is consistent, and the strength of each point It is relatively uniform, so for a given welding strength, the size of a single projection solder joint can be smaller than spot welding; in addition, because a large flat electrode is used, and the bumps are arranged on the intermediate body, the exposed surface of the substrate can be minimized. At the same time, the large plane electrode has low current density and good heat dissipation. The wear of the electrode is much smaller than that of the spot welding type, which greatly reduces the maintenance and repair costs of the electrode.
  • the protrusion structure is mainly the middle part of the protrusion subjected to greater pressure from the upper electrode and is combined with the substrate through contact with the substrate to generate resistance heat, and the side of the protrusion structure The edge part is not in full contact with the substrate, which makes it impossible to weld and bond.
  • the intermediate is welded multiple times and welded from multiple directions to ensure the raised structure It is welded to the base in all directions.
  • the porous surface structure 21 of some of the above embodiments is in contact with the large flat positive electrode 24 above, the surface of the porous surface structure may be caused by heat generation due to contact resistance. The surface is damaged (dented, blackened).
  • the porous surface structure is covered with an insulating member, and a plurality of holes are opened in the corresponding position on the insulating member. Put a positive electrode or a well-conducting support column, etc., so that the porous surface structure under the insulator in the unopened position is not damaged in any way.
  • the thickness of the insulating member is moderate, because it is necessary to ensure that a complete current loop is turned on, so that the welding process can be performed sequentially.
  • the present invention combines the non-porous bottom plate (Fig. 2) or the low porosity area (Fig. 4b) in the first embodiment and the second embodiment.
  • Dot removal is transformed into an intermediate plate structure 272 with no raised structure (non-porous or low porosity), and the base 273 is changed to a base main body 273 and another raised point structure 272A on its top surface.
  • the structure 272A is pre-connected with the base body 273 (such as resistance welding/laser welding), and the convex structure of 272A faces the side of the intermediate plate structure 272 without bumps, that is, the convex structure of the structure 272A.
  • the point makes contact with the bottom surface of the intermediate plate structure 272 in the composite.
  • the surface complex formed by the porous surface structure 271 and the intermediate plate structure 272, and the base complex formed by the bump structure 272A and the base body 273 are compressed between the positive electrode 274 and the negative electrode 275.
  • the current flows through the porous surface structure 271 and the middle plate structure 272 to the bumps of the structure 272A.
  • the contact resistance generates resistance heat to heat the 272A bumps and the bottom of the middle plate structure 272 to a molten or plastic state.
  • the anchoring effect between the structures 272 and 272A is achieved, so that the surface composite and the base composite are tightly combined.
  • the surface composite body still uses the structure 272 with bumps in the first and second embodiments, and the convex structure faces the side of the base body 273, and the convex structure of the structure 272 is aligned with the structure 272A above the base.
  • the protruding structures are arranged staggered, and finally the surface composite body and the substrate composite body can be tightly combined together.
  • Example 1 First, as in implementation 1, a first porous surface structure 281-1 and a first non-porous bottom plate are arranged on the top side of the substrate 283. A first composite body formed by pre-connection with 282-1, the first composite body is placed between the positive electrode 24 and the top surface of the substrate 283, and at least a part of the top of the first porous surface structure 281-1 is in contact with the positive electrode 24; A plurality of first protruding structures are pre-fabricated on the bottom of the first non-porous bottom plate 282-1, and the first protruding structures are in contact with the top of the base 283.
  • the bottom side of the substrate 283 is provided with a second composite body formed by pre-connecting the second porous surface structure 281-2 and the second non-porous bottom plate 282-2, and the second composite body is placed on the bottom surface of the substrate 283 and the negative electrode. 285, and at least a part of the bottom of the second porous surface structure 281-2 is in contact with the negative electrode 285.
  • the second composite body has the same structure as the first composite body, and is axisymmetric with respect to the base 283.
  • the first composite body and the second composite body are respectively resistance-welded to the upper and lower surfaces of the base 283 at the same time to realize the connection of the first composite body, the second composite body, and the base. This modification is also applicable to any of the above-mentioned embodiments, and the present invention will not repeat this description.
  • Embodiment 20 is a diagrammatic representation of Embodiment 20.
  • this embodiment provides an artificial implant prosthesis, preferably an orthopedic prosthesis; any one of the above-mentioned embodiment 1 to embodiment 19 and their respective modification examples can be used.
  • the prosthesis body 1 corresponds to the substrate in the connection structure. At least part of the surface of the prosthesis body 1 is used as the connection area, and is connected to the composite body 2 including the intermediate body and the porous surface structure.
  • connection (convex) between the porous bottom plate 22, the second porous structure 42 in the low-porosity region in the second embodiment, etc.) and the substrate (for example, the substrate 23 in the first embodiment, the substrate 43 in the second embodiment, etc.) Welding resistance welding and/or spot welding resistance welding) to realize the connection between the porous surface structure and the substrate to form the surface coverage of the connection area on the prosthesis.
  • the prosthesis shell is provided, the outer layer is a porous surface structure, and the inner layer is the intermediate contact and is fixed to the connection area of the prosthesis body by resistance welding.
  • the connection between the porous surface structure and the prosthesis body forming a surface covering the connection area on the prosthesis body, so as to be used in other kinds of orthopedic prostheses, artificial joints and other artificial implant prostheses, such as femoral stems,
  • femoral stems for details of the acetabular cup, femoral condyle, tibial plateau, etc., refer to the description of the following embodiments 20 to 23.
  • Artificial hip joints include femoral stem, femoral ball head (not shown in the figure), acetabular cup, and lining body (not shown in the figure), all of which are prostheses and are made of medical materials that can be implanted in the human body, such as titanium alloys. , Cobalt-chromium-molybdenum alloy, stainless steel and other metal materials, ultra-high molecular weight polyethylene and other polymers, ceramics, etc., but not limited to this.
  • the femoral stem 3 ( Figures 16a-16c) includes a head 301, a neck 302, and a stem 303, which can be integrated or assembled.
  • the head 301 of the femoral stem 3 has a truncated cone structure.
  • the first end is connected to the stem body 303 through the neck 302.
  • the head 301 and the neck 302 have a certain deflection angle relative to the stem, so as to be inclined relative to one side of the stem.
  • Form layout The lower part of the handle body 303 is inserted into the femoral medullary cavity. A number of longitudinal grooves can be opened in the lower part of the handle body 303.
  • On the surface of the handle body 303 it is preferable that the upper surface of the handle body 303 has a porous structure; the lower portion of the handle body 303 may have a smooth surface.
  • the second end of the head 301 of the femoral stem 3 is inserted into the inner cone mounting structure of the femoral ball head; the acetabular cup is sleeved on the outside of the femoral ball head, and the femoral ball head contacts the concave surface of the acetabular lining body to make the femoral ball
  • the head can be rotated here.
  • the acetabular cup is partially spherical (such as hemispherical) dome-shaped; the acetabular cup is provided with a matching lining body; the femoral ball head is in contact with the concave surface of the lining body, so that the femoral ball head can be in contact with the inner concave surface of the lining body.
  • the acetabular cup may be provided with a through hole for arranging a connecting piece (screw, etc.) connecting the acetabular cup to the acetabular socket; the lining body may be provided with a corresponding through hole or no through hole.
  • the inner concave surface of the lining body is in contact with the femoral ball head; the lining body can be made of metal materials or non-metallic materials (such as polyethylene or ceramics) to reduce the wear of the artificial joint.
  • the housing is usually made of metal material.
  • the outer peripheral surface of the acetabular cup preferably has a porous structure.
  • the upper surface of the femoral stem body 303 and the outer peripheral surface of the acetabular cup shell use a porous structure. On the one hand, it can increase the roughness; on the other hand, it can induce osteoblasts to grow in, thereby effectively connecting the femoral stem and the femur.
  • the acetabular cup and the acetabular socket are fixedly connected to form a good long-term biological fixation and enhance the stability of the interface between the artificial hip joint and the host bone tissue.
  • any kind of prosthesis (also applicable to the artificial joints in the subsequent embodiments) can be coated with hydroxyapatite (HA) on the surface that contacts the bone tissue.
  • HA hydroxyapatite
  • use materials such as gel/collagen as a carrier for implanted cells, growth factors, etc., attached to the porous surface of the prosthesis; or form an antibacterial coating (such as antibiotics/silver ions, etc.).
  • the femoral stem 3 can use the structures and methods (resistance welding) of the first to nineteenth embodiments described above or their modified examples, which will not be repeated here.
  • the stem body 303 of the femoral stem 3 corresponds to the substrate in the connecting structure; it includes intermediates (such as non-porous bottom plates, or porous structures in low-porosity regions, etc., which need to be determined according to different embodiments) and porous
  • the composite body of the sexual surface structure forms the handle body shell 2, which covers the connection area of the handle body 303a (upper).
  • the connection between the porous surface structure 201 and the substrate is realized by the welding of the intermediate body and the substrate, forming a pair of connection areas , The porous structure on the stem body 303 of the femoral stem is obtained.
  • the handle body 303a is made by forging, casting or machining, etc., preferably a solid structure, which is easy to process and has high strength; or the handle body 303a can also be a highly dense porous structure;
  • the body can be solid or a porous structure that is denser than the porous surface structure; when both the handle body 303a and the intermediate body 202 use a porous structure, the density of the intermediate body 202 is between that of the handle body 303a and the intermediate body 202.
  • the porous surface structure 201 is denser.
  • the intermediate 202 and the porous surface structure 201 of the handle housing 2 are preferably realized by a 3D printing additive manufacturing process, which can well form pores that meet the design requirements.
  • the handle body 303a and the intermediate body 202 of the handle body 2 are effectively connected by resistance welding, which avoids the significant decrease in overall strength when the porous structure is connected to the surface of the femoral stem 3 through a hot pressing process (such as a penetration welding process). problem.
  • FIG. 16c it corresponds to FIG. 2 in the first embodiment.
  • the inner handle body 303 corresponds to the base in the connecting structure
  • the outer porous structure 2201 corresponds to the porous surface structure of the connecting structure
  • an intermediate (non-porous bottom plate 2202) is arranged between the porous structure 2201 and the handle body 303. Due to the composite body formed by the porous structure 2201 and the non-porous bottom plate 2202, and the handle body 303 are compressed between the positive electrode 2204 and the negative electrode 2205.
  • the current flows through the porous structure 2201 and the non-porous bottom plate 2202 to the contact surface with the outside of the handle body 303 and adjacent areas, generating resistance heat to heat it to a molten or plastic state, so that the non-porous bottom plate 2202 and The handle body 303 forms a combined body to realize the fixed connection between the non-porous bottom plate 2202 and the handle body 303, so that the complex formed by the porous structure 2201 and the non-porous bottom plate 2202 and the handle body 303 are tightly combined.
  • the other content about the application of the femoral stem to the first embodiment will not be repeated here.
  • the positive electrode 2204 is in contact with a part of the porous structure 2201, while the negative electrode 2205 is not in contact with the stem 303 as the base.
  • the negative electrode 2205 can be in contact with other Part of the porous structure 2201 is in contact.
  • the upper part of the stem body 303a of the femoral stem 3 is provided with a connecting area; for the convenience of description, the side where the head 301 and the neck 302 of the femoral stem 3 are arranged obliquely is the inner side of the femoral stem 3, as shown in Figure 16a
  • the other directions of the handle body 303a are taken as the back side, the outside to the front side, the inside is opposite to the outside, and the back is opposite to the front;
  • Figure 16a shows the front side, and Figure 16b shows the outside.
  • connection area of the femoral stem 3 includes the inner, posterior, outer, and anterior surfaces of the upper part of the stem body 303a.
  • the handle housing 2 includes two housing pieces, one housing piece 2-1 corresponds to a part of the inner surface 01, the rear side surface 02, and the outer side of the upper part of the handle body 303a.
  • a part of the surface 03; the other shell sheet 2-2 corresponds to the remaining part of the upper inner surface 01, the front side surface 04, and the outer surface 03 of the upper part of the handle body 303a.
  • the inner layer of each shell body is an intermediate 202, and all or most of the outer layer is a porous surface structure 201.
  • the two shell pieces can be symmetrical (or staggered and crossed, not shown in the figure).
  • the adjacent sides may be separated from each other without being connected.
  • the adjacent sides of the two shells (such as the outer side 03) can be connected when they are formed, and they can remain connected when there is a certain bend near the adjacent sides (to make the two shells close together).
  • the adjacent sides of the two shell sheets are separated from each other when they are formed, and the adjacent sides of each side are connected after being closed (for example, welding or using connectors or other connection methods).
  • the adjacent edge refers to the adjacent edge after the two shell bodies are closed.
  • the interconnection of the adjacent sides may be the connection of the porous surface structure of the intermediate and/or the outer layer of the inner layer of each shell sheet.
  • Embodiment 21 is a diagrammatic representation of Embodiment 21.
  • porous structure of the outer peripheral surface of the acetabular cup 300a can be similarly implemented using the structures and methods of the first to nineteenth embodiments described above or their modified examples.
  • the inner cup body corresponds to the connecting structure
  • the outer porous structure 2401 corresponds to the porous surface structure of the connecting structure
  • an intermediate (non-porous bottom plate 2402) is arranged between the porous structure 2401 and the base 2403. Due to the composite body formed by the porous structure 2401 and the non-porous bottom plate 2402 (the composite body is formed on the outside of the cup body 3-3 and covers the connection area of the cup body), and the substrate 2403 is pressed against the positive electrode 2404 And the negative electrode 2405.
  • the current flows through the porous structure 2401 and the non-porous bottom plate 2402 to the contact surface with the outside of the substrate 2403 and adjacent areas, generating resistance heat to heat it to a molten or plastic state, so that the non-porous bottom plate 2402 and the substrate 2403 forms a combined body to realize the fixed connection between the non-porous bottom plate 2402 and the substrate 2403, so that the composite body formed by the porous structure 2401 and the non-porous bottom plate 2402 and the substrate 2403 are tightly combined together, thus forming the main body of the cup. Covering the upper connecting area results in a porous structure on the outer peripheral surface of the acetabular cup (shell).
  • the cup body of the acetabular cup of the present invention is matched with the composite body (or the intermediate body contained therein) at the contact and connection parts.
  • the other content about the application of the acetabular cup to the first embodiment is not repeated here, and the specific content about the application of the acetabular cup to other embodiments is not repeated here.
  • the cup body of the acetabular cup is made by forging, casting or machining, etc., preferably a solid structure, which is easy to process and has high strength; or the cup body can also be a highly dense porous structure ;
  • the intermediate can be solid or a porous structure that is denser than the porous surface structure; when both the cup body and the intermediate use a porous structure, the density of the intermediate is between the handle body and the porosity Between the density of the surface structure.
  • the intermediate and porous surface structure are preferably realized by 3D printing additive manufacturing process, which can well control the pores, etc., to meet the design requirements.
  • the main body of the cup body and the intermediate body are effectively connected by the resistance welding method, which avoids the problem of the current hot-pressing process (such as the penetration welding process) that causes the overall strength to drop significantly.
  • the entire outer surface of the main body of the cup body can be used as a connection area, and an integral composite body can be arranged in corresponding contact with it and welded in the connection area through the included intermediate body. It is also possible to divide multiple independent connection areas on the entire outer surface of the cup body; multiple composite bodies (each of which can be sheet-like or other shapes, and fit the dome shell), respectively contact these connection areas and pass through The respective intermediates are welded correspondingly in these connection areas.
  • the inner layer of each composite body is an intermediate, and all or most of the outer layer is a porous surface structure.
  • Embodiment 22 is a diagrammatic representation of Embodiment 22.
  • the proximal end of the tibia and the distal end of the femur form a knee joint
  • the contact surface between the tibia and the distal end of the femur is the tibial plateau, which is an important load-bearing structure of the knee joint.
  • the component used to replace the bone on the femoral side is called the femoral condyle
  • the component used to replace the bone on the tibial side is called the tibial plateau.
  • the tibial platform 300b has a T-shaped structure and includes an upper tibial tray 300-1 and a lower supporting portion 300-2.
  • the lower surface of the tibial plateau 300b uses a porous structure, which on the one hand can increase the roughness; on the other hand, it can induce osteoblasts to grow in, thereby effectively connecting and fixing the tibial plateau prosthesis with the human tibia, replacing damaged lesions
  • the tibial surface forms a good long-term biological fixation to withstand the pressure load of the human body and meet the requirements of sports and anti-wear functions.
  • the porous structure of the lower surface of the tibial platform 300b can be similarly implemented using the structures and methods of the first to nineteenth embodiments described above or their modified examples.
  • the lower surface of the tibial tray 300-1 corresponds to the porous surface structure 2501 of the connecting structure
  • the upper end of the tibial tray 300-1 corresponds to the base 2503 on the inner side of the connecting structure
  • An intermediate (non-porous bottom plate 2502) is provided between the structure 2501 and the base 2503. Due to the composite formed by the porous structure 2501 and the non-porous bottom plate 2502, and the substrate 2503 are compressed between the positive electrode 2504 and the negative electrode 2505.
  • the current flows through the porous structure 2501 and the non-porous bottom plate 2502 to the contact surface with the distal end of the substrate 2503 and the adjacent area, generating resistance heat to heat it to a molten or plastic state, so that the non-porous bottom plate 2502 and The base 2503 forms a combined body to realize the fixed connection between the non-porous base plate 2502 and the base 2503, so that the composite formed by the porous structure 2501 and the non-porous base plate 2502 and the base 2503 are tightly combined.
  • the composite of the porous surface structure and the intermediate body in this example is formed at the lower end of the tibial tray and covers the connection area of the tibial tray.
  • Embodiment 23 is a diagrammatic representation of Embodiment 23.
  • the artificial knee joint prosthesis includes the femoral condyle, the tibial tray, and the pad between the two, and the patella prosthesis.
  • the femoral condyle is connected to the distal end of the femur, and the tibial tray is connected to the proximal end of the tibia.
  • the pad component is connected with the tibial tray component, and the femoral condyle is in contact with the pad.
  • the lower part of the cushion is in contact with the upper surface of the tibial platform, and the convex surface of the femoral condyle is in contact with the upper part of the cushion and the articular surface of the patella prosthesis, which can realize flexion, extension, sliding, rotation and other activities within a specified range.
  • the outer convex surface of the main body of the femoral condyle 300c is usually very smooth to reduce the wear between it and the pad; while the main body of the femoral condyle will be concave on its inner surface, matching and contacting the osteotomy section formed at the distal end of the femur, so
  • a porous structure is formed on the concave surface of the main body of the femoral condyle (such as the internal fixation surface of the condyle) to help bone ingrowth, achieve tight integration of the prosthesis and bone tissue, and reduce the risk of joint replacement surgery failure caused by loosening of the prosthesis after surgery .
  • the internal fixation surface of the femoral condyle 300c uses a porous structure.
  • the roughness can be increased to enhance the initial postoperative stability of the prosthesis; on the other hand, it can promote bone ingrowth, thereby effectively reducing the femoral condyle
  • the prosthesis is connected and fixed with the human femoral condyle.
  • the tibial pad is located between the femoral condyle prosthesis and the tibial plateau prosthesis, which bears the pressure load of the human body and meets the requirements of joint kinematics and wear resistance.
  • porous structure of the condyle internal fixation surface of the femoral condyle 300c can be implemented similarly using the structures and methods of the first to nineteenth embodiments described above or their modified examples.
  • FIG. 20b it corresponds to FIG. 2 in the first embodiment.
  • the inner surface of the femoral condyle corresponds to the porous structure 2601 of the connecting structure, the intermediate (non-porous bottom plate 2602) and the base 2603 in order from the outside to the inside.
  • the medial condyle of the femoral condyle 300c corresponds to the base 2603 of the connection structure, and the internal fixation surface of the femoral condyle 300c uses a porous surface structure 2601. Due to the composite formed by the porous structure 2601 and the non-porous bottom plate 2602, and the substrate 2603 are compressed between the positive electrode and the negative electrode.
  • the current flows through the porous structure 2601 and the non-porous bottom plate 2602 to the contact surface with the outside of the substrate 2603 and adjacent areas, generating resistance heat to heat it to a molten or plastic state, so that the non-porous bottom plate 2602 and the substrate 2603 forms a combined body to achieve a fixed connection between the non-porous bottom plate 2602 and the substrate 2603, so that the composite formed by the porous structure 2601 and the non-porous bottom plate 2602 and the substrate 2603 are tightly combined.
  • the composite of the porous surface structure and the intermediate body in this example is formed on the concave surface of the femoral condyle and covers the connection area of the femoral condyle.
  • the patella prosthesis can also use the structure and method of any one of the above-mentioned embodiments or its modified examples to add a porous structure to the surface in contact with the bone.
  • Embodiments 1 to 19 of the present invention are not limited to the above-mentioned prosthesis examples, but can also be applied to spinal fusion cages, spinal facet joints, ankle joints, shoulder joints, elbow joints, finger joints, toe joints,
  • spinal fusion cages spinal facet joints, ankle joints, shoulder joints, elbow joints, finger joints, toe joints
  • the specific structures and principles of artificial intervertebral discs, intervertebral facet joints, mandibular joints, wrist joints, etc. refer to the above, and the present invention will not be repeated here.

Landscapes

  • Health & Medical Sciences (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Prostheses (AREA)

Abstract

一种基于多孔性表面结构(21)和基底(23)的连接结构的假体,连接结构包含:复合体(2A),包含预连的多孔性表面结构(21)与中间体(22);基底(23),用于形成假体主体(1),假体主体(1)的表面作为连接区域,与复合体(2A)连接;中间体(22)位于多孔性表面结构(21)与基底(23)之间,中间体(22)与假体主体(1)的连接区域相连接,使得多孔性表面结构(21)位于假体主体(1)的连接区域;基底(23)与复合体(2A)置于第一极性电极和第二极性电极之间,通过第一极性电极与多孔性表面结构(21)和/或中间体(22)导电接触,及基底(23)与第二极性电极导电接触,形成电流回路,使中间体(22)和基底(23)进行电阻焊接。将复合体(2A)和基板通过电阻焊法实现连接,保持基底(23)力学性能;保证人工植入假体具备优良的骨长入性能,使基底(23)的强度不受实质性影响。

Description

一种基于多孔性表面结构和基底的连接结构的假体 技术领域
本发明涉及机械结构的连接技术,特别涉及医疗器械,提供一种基于多孔性表面结构和基底的连接结构的假体。
背景技术
工程应用常常对机械结构的整体性能和表面性能有不同的要求。比如,人工髋关节的髋臼杯和股骨柄,其整体性能(如疲劳强度)要满足假体在植入体内后几十年、平均每年一百万到两百万次走路时承受的动态载荷下的抗疲劳要求,而且对假体表面有特定的性能需要,以满足假体表面与病人的骨骼组牢固结合在一起,保证假体不松动;否则病人会有疼痛,就必须取出假体,使病人再经过一次翻修手术,植入一个新的假体。其它骨科植入物(如脊柱)也有类似情况和需求。事实上,在其它领域,也有基底和表面有不同性能需求,而两者之间需要可靠有效连接的情况。
关节假体常用的人工材料是钛合金/钴铬钢合金/不锈钢等,和骨头无法形成有效的生物或化学结合。假体和骨之间的界面一般主要通过物理/机械结合。比如,高度抛光的假体表面和骨组织无法形成有效的结合力,所以,需要增加骨传导、骨诱导、骨再生,以加速或加强骨组织与假体表面的结合,进一步提高骨长上或骨长入的性能。有时钛丝或钛珠等可以用烧结或扩散焊等方法在假体(如髋臼杯/股骨柄)的表面形成多孔性的涂层。或者,用金属3D打印增材制造工艺、气相沉淀工艺等等,预先制作出具有多孔结构的薄片0001,然后用扩散焊的方式把薄片0001与假体的实心基底0002结合起来,如图1所示。这些方式为假体提供了多孔性的表面,与假体接触的骨组织能够再生,新的骨组织填充于互相贯通的多孔结构里,达到了“骨长入”假体的效果。但是,这些工艺都有一个不可避免的后果,就是基底的力学强度会大幅降低,从而提高了假体断裂的风险,特别是当假体(比如股骨柄)受到弯曲扭矩或拉伸应力情况下,容易断裂。所以,如何可靠牢固地把一个多孔 性结构与其基底结合,同时保证基底力学性能不受太明显的影响成为一个设计/工艺难点。
相对而言,焊接工艺对基底的力学性能影响较低。但是,当多孔性结构的孔隙率很高时(>50%),互相连接的支架占比较低,而且薄弱;支架之间形成大量孔隙。这样的高孔隙率结构无论用金属3D打印增材制造工艺实现,还是通过烧结等方式实现,在直接用激光焊接对多孔性结构和基底进行连接时,只要激光束有效直径接近甚至大于支架宽度时,激光能量可能直接击断支架结构,打透多孔性结构,无法对多孔性结构的支架和基底支架实现有效的焊接连接。又或者,当采用渗透焊对多孔性结构和基底进行连接时,由于处于高温高压条件下,基底结构的强度会大幅降低。
为避免上述激光焊和渗透焊的缺陷,可采用一种将两个被焊工件压紧在两电极之间并通过电流流经两个工件之间的接触面及邻近区域产生的电阻热而使其形成金属工件之间有效结合的电阻焊法,将多孔性结构和基底进行连接。但是,对于高孔隙率结构而言,当利用电阻焊将多孔性结构和基底直接进行连接时,此时结合效率较低,导致焊接结合强度不足或者需要太高的电流来达到足够的焊接强度,后者导致上电极和多孔结构上表面接触产生热量太高以致于过多损伤多孔结构的表面,包括孔隙结构下沉等,因此,本发明需要在多孔性结构和基底之间设计中间体结构,实现多孔性表面结构与中间底板形成的复合体与基底紧密结合在一起,用以提高多孔性结构和基底的结合效率以及保证足够的焊接强度。
发明内容
本发明的目的在于提供一种基于多孔性表面结构和基底的连接结构的假体,将多孔性表面结构、中间体(实心板结构或低孔隙率的多孔结构)和基板通过电阻焊法(例如凸焊式电阻焊或点焊式电阻焊等)实现紧固连接,保持基底力学性能;基于本发明的多孔性结构的表面,可以保证人工植入假体具备优良的骨长入性能,并且使基底的强度不受实质性影响。
为了达到上述目的,本发明通过以下技术方案实现:
一种假体,设置一连接结构,所述连接结构包含:复合体,包含预先连接的多孔性表面结构与中间体;基底,用于形成假体主体,所述假体主体的至少部分表面作为连接区域,用于与所述复合体连接,所述中间体位于所述 多孔性表面结构与所述基底之间,所述中间体与所述假体主体的连接区域相连接,使得所述多孔性表面结构位于所述假体主体的连接区域;其中,所述基底与所述复合体置于第一极性电极和第二极性电极之间,通过所述第一极性电极与所述多孔性表面结构和/或中间体导电接触,以及所述基底与第二极性电极导电接触,形成电流回路,使得所述中间体和所述基底进行电阻焊接,实现所述复合体与所述基底的连接。
优选地,所述假体是关节假体。
优选地,所述复合体形成为壳体,包覆在所述假体主体的连接区域上;所述壳体的外层包含多孔性表面结构;所述壳体的内层包含中间体,其与所述假体主体的连接区域连接。
优选地,所述复合体形成的壳体是一个整体;或者,所述复合体形成的壳体包含多个壳体片体;其中,多个壳体片体相互独立,或者相邻的壳体片体之间在至少一侧的邻边相连接。
优选地,所述假体包含髋关节的股骨柄,所述股骨柄包含柄体,其形成为基底;所述连接区域的位置为柄体上部的表面。
优选地,所述柄体下部的表面为光滑表面,所述柄体下部开设若干纵向的沟槽,所述柄体下部插入股骨髓腔。
优选地,所述股骨柄还包含头部和颈部,所述头部、颈部和所述柄体是一体的或是组装形成;所述股骨柄的头部为锥台结构,其第一端通过颈部与柄体连接,头部与颈部相对柄体有一定的偏转角度,以相对于柄体一侧倾斜的形式布置,股骨柄的头部的第二端插入至股骨球头。
优选地,所述复合体形成为壳体包裹在所述柄体的连接区域外围;所述复合体包含多个壳体片体。
优选地,所述假体包含髋关节的髋臼杯,所述髋臼杯包含内侧的杯体主体,其形成为基底;所述连接区域的位置为髋臼杯的外周面。
优选地,所述假体包含胫骨平台,所述胫骨平台包含胫骨托,其形成为基底;所述连接区域的位置为胫骨托的远端的表面。
优选地,所述假体包含股骨髁,所述股骨髁包含髁内固定面,其形成为基底;所述连接区域的位置为髁内固定面。
优选地,所述假体是以下的任意一种或多种:髌骨、脊柱融合器、脊柱 椎间小平面关节、踝关节、肩关节、肘关节、指关节、趾关节、人工椎间盘、下颌关节、腕关节。
优选地,所述复合体中的多孔性表面结构称为第一多孔结构;所述中间体是实心结构,或者,所述中间体是第二多孔结构并且所述第二多孔结构的孔隙率低于所述第一多孔结构的孔隙率。
优选地,所述基底由导电材料制成,所述多孔性表面结构由导电材料制成,所述中间体由导电材料制成。
优选地,所述中间体包含中间板结构。
优选地,所述中间板结构上设置多个凸起结构,所述凸起结构设置在所述中间板结构上靠近所述基底的一侧,所述凸起结构的凸点与所述基底接触。
优选地,所述中间体是所述第二多孔结构,所述第二多孔结构包含多个凸起结构,所述凸起结构形成在所述第二多孔结构上靠近所述基底的一侧,所述凸起结构的凸点与所述基底接触。
优选地,所述中间体包含若干个分散布置的凸起结构,形成在所述多孔性表面结构靠近基底的一侧,所述凸起结构的凸点与所述基底接触。
优选地,所述中间体包含若干支撑柱,每个支撑柱的全部或至少部分位于多孔性表面结构内。
优选地,所述中间体的支撑柱与所述中间体的凸起结构对应布置并接触,或所述中间体的支撑柱与所述中间体的凸起结构错位分布且不接触。
优选地,所述支撑柱的远离基底一侧的表面超出所述多孔性表面结构的表面;或者,所述支撑柱的远离基底一侧的表面低于所述多孔性表面结构的表面;或者,所述支撑柱的远离基底一侧的表面与所述多孔性表面结构的表面平齐。
优选地,所述支撑柱的远离基底一侧的表面超出所述多孔性表面结构的表面时,在电阻焊完成后,切割所述支撑柱超出所述多孔性表面结构的部分。
优选地,所述支撑柱位于所述多孔性表面结构的预制空隙内,所述支撑柱开设凹槽,用于放置所述第一极性电极中的多个电极单体,插入后的电极单体与所述支撑柱导电接触;所述支撑柱的表面超出或平齐于或低于所述多孔性表面结构的表面,所述支撑柱为多孔结构或实心结构。
优选地,所述支撑柱的远离基底一侧的表面超出所述多孔性表面结构的 表面时:所述支撑柱为多段结构,至少包含超出所述多孔性表面结构的第一段部分和剩余的第二段部分;所述第一段部分为多孔结构;所述第二段部分为多孔结构或实心结构,所述第二段部分上远离基底一侧的表面平齐于所述多孔性表面结构的表面,使得第一段部分因与第一极性电极接触生热导致所述支撑柱下沉至所述第二段部分的远离基底一侧的表面。
优选地,所述支撑柱为导电体时,所述支撑柱接入到所述电流回路,所述支撑柱与以下任意一个或多个部件导电接触:第一极性电极、多孔性表面结构、中间体。
优选地,所述支撑柱为绝缘体。
优选地,所述凸起结构位于所述中间体上的位置,靠近所述多孔性表面结构与所述中间体的接触位置。
优选地,所述多孔性表面结构内至少部分的孔隙内填充导电材料。
优选地,所述多孔性表面结构内至少部分的孔隙内填充粉末状的导电材料或丝材状的导电材料或网状的导电材料。
优选地,多孔性表面结构的至少部分的表面铺设固体薄膜状或丝状或网状的可变形导电介质,所述可变形导电介质位于所述第一极性电极和所述多孔性表面结构之间;和/或,至少部分的多孔性表面结构的表面与所述第一极性电极之间喷涂固态导电介质或液态导电剂。
优选地,所述多孔性表面结构的表面喷涂以下涂层中的一种或多种:骨传导涂层、骨诱导涂层、抗菌涂层、细胞或生长因子载体。
优选地,至少部分的多孔性表面结构的孔隙内注入熔融状的导电介质,和/或,至少部分的多孔性表面结构的孔隙内置导电介质并通过高温使导电介质成熔融状;所述导电介质的熔点低于基底的熔点和/或多孔性表面结构的熔点。
优选地,所述基底是实心结构,或者,所述基底是第三多孔结构且所述第三多孔结构的孔隙率小于所述多孔性表面结构的孔隙率。
优选地,所述基底通过锻造或铸造或机加工或粉末冶金或金属注塑工艺制成。
优选地,所述复合体的多孔性表面结构与中间体一体成型。
优选地,所述复合体的多孔性表面结构与中间体,通过3D打印增材制 造工艺、或气相沉淀工艺实现。
优选地,所述多孔性表面结构、所述中间体和所述支撑柱一体成型。
优选地,所述多孔性表面结构表面设置若干个凹槽,所述凹槽的表面低于所述多孔性表面结构表面,将所述多孔性表面结构划分成多个区域;经所述凹槽划分出的各区域,均被该区域对应接触的第一极性电极覆盖,所述多孔性表面结构的任意一区域与邻近凹槽的位置关系是以下的任意一种:与凹槽第一侧不接触、跨过凹槽第一侧且不超出凹槽第二侧、跨过凹槽第一侧直至凹槽第二侧、跨过凹槽第二侧并接触到邻近的另一区域的至少一部分;其中,凹槽的第一侧为靠近所述任意一区域的一侧,凹槽的第二侧为远离所述任意一区域的一侧。
优选地,凹槽划分的相邻两区域的多孔性表面结构与基底之间的电阻焊过程是分别通过覆盖位置不相重合的两个不同的第一极性电极同时进行;或者,凹槽划分的相邻两区域的多孔性表面结构与基底之间的电阻焊过程是分别通过两个不同的第一极性电极按先后次序分两次进行;或者,凹槽划分的相邻两区域的多孔性表面结构与基底之间的电阻焊过程是通过同一个第一极性电极按先后次序分两次进行。
优选地,所述凹槽为长条状。
优选地,将多孔性表面结构划分成多个区域,划分的任意相邻的两个区域称为第一区域的多孔结构和第二区域的多孔结构;第一区域的多孔结构与对应的第一区域的一第一极性电极接触,完成第一区域的多孔结构与基底的电阻焊接后,所述第一区域的多孔结构与所述第一区域的第一极性电极的接触边缘形成凸边;所述第二区域的多孔结构与对应的第二区域的一第一极性电极接触,第二区域的一第一极性电极至少覆盖到第一区域的多孔结构上靠近第二区域的多孔结构一侧的凸边,完成第二区域的多孔结构与基底的电阻焊接。
优选地,所述基底包含一表面连接层,所述底表面连接层与基底主体预先连接,所述表面连接层介于所述复合体的中间体与基底主体之间;所述表面连接层包含凸起结构,所述凸起结构的凸点与所述复合体的中间体接触。
优选地,所述基底的表面连接层与基底主体预先焊接连接。
优选地,所述中间体上靠近所述基底的一侧为平面状;或者,所述中间 体上靠近所述基底的一侧设置的凸起结构与所述表面连接层的凸起结构错开。
本发明还提供了一种假体,其设置一基底和至少两个如上文所述连接结构中的复合体,所述基底用于形成假体主体,所述假体主体的至少部分表面作为连接区域,用于与所述复合体连接,所述中间体位于所述多孔性表面结构与所述基底之间,所述中间体与所述假体主体的连接区域相连接,使得所述多孔性表面结构位于所述假体主体的连接区域;两个复合体分别为第一复合体和第二复合体,第一复合体、基底和第二复合体设置在第一极性电极和第二极性电极之间;
所述第一复合体置于所述第一极性电极与所述基底之间,所述第一复合体中的中间体与所述基底接触,所述第一极性电极与所述第一复合体中的多孔性表面结构和/或中间体导电接触,所述第二复合体置于所述第二极性电极与所述基底之间,所述第二复合体中的中间体与所述基底接触,所述第二极性电极与所述第二复合体中的多孔性表面结构和/或中间体导电接触,用以形成电流回路;
所述第一复合体的中间体与所述基底,以及所述第二复合体中的中间体与所述基底进行电阻焊接,实现所述复合体与所述基底的连接。
优选地,所述第一复合体和所述第二复合体的结构相同;或者,所述第一复合体和所述第二复合体的结构不同。
优选地,所述假体包含髋关节的股骨柄,所述股骨柄包含柄体,其形成为基底;所述连接区域的位置为柄体上部的表面;所述第一复合体和所述第二复合体分别形成为壳体包裹在所述柄体的连接区域外围;所述第一复合体和所述第二复合体分别包含多个壳体片体。
与现有技术相比,本发明的有益效果在于:
(1)本发明提供了用于制备多孔性表面结构和基底的连接结构的方法,通过3D打印或其它工艺制造一个复合体,包含多孔表面结构和相对其有更高致密度的中间体(例如低孔隙率的多孔结构或实心板),本发明采用电阻焊法(例如凸焊式电阻焊或点焊式电阻焊等)将所述复合体与基底进行有效结合,既能避免激光焊接方法中可能出现激光能量直接击断支架结构导致无法对多孔性结构的支架和基底支架实现焊接连接的情况;另外,凸焊式电阻焊 法利用接触电阻产生局部热源实现焊接,大大减少或避免了热压工艺(如渗透焊工艺)等造成基底的力学性能大幅下降的问题;本发明还可以将凸焊式电阻焊和点焊式电阻焊配合使用,加强中间体与基底之间的焊接强度以及减小多孔性表面结构的表面损伤。
(2)本发明不仅可采用大平面电极贴覆于多孔性表面结构上,还能将电极分成多个正电极单体(或负电极单体)并将其竖向插入至多孔性表面结构内特别预留的空隙内,电极与多孔性表面结构表面不接触,避免多孔性表面结构表面与正电极之间因接触电阻产生电阻热发生损伤(凹陷、变黑、孔隙空间减小等);另外,贴覆于多孔性表面结构的大平面电极采用柔性材料时,柔性正电极产生一定的变形使得其与多孔性表面结构顶部之间的接触面积增大,不仅可以降低电极和多孔性表面结构之间的接触电阻,减小多孔性表面结构的表面损伤,而且还能增大电流传导使得中间体与基底之间的焊接强度增大。
(3)本发明通过在多孔性表面结构的孔隙内填充良导电材料或在表面喷涂良导电材料,以降低电极和多孔性表面结构之间的接触电阻,减小多孔性表面结构的表面损伤。
(4)本发明在多孔性表面结构内设置实心结构的支撑柱,保证电阻焊接完成后的多孔性表面结构表面的高度能达至预设高度,避免多孔性表面结构被过多压缩;当所述支撑柱为良导电材料时,引导电极输出的电流大部分优先流经支撑柱直至基底,既能保证中间体与基底之间的焊接强度,还能减小多孔性表面结构表面产生的损伤;本发明利用上述的支撑柱与其下方的凸点结构结合,并且凸点结构可以与基底直接接触,同样能满足中间体与基底的焊接强度的要求以及减小多孔性表面结构表面产生的损伤。
(5)本发明通过锻造、铸造或机加工等工艺制造一个实心(高致密度)的基底,或者基底可以是多孔性结构,但多孔表面结构的致密度要低于基底,而中间体的致密度介于多孔性表面结构和基底之间。
(6)本发明加工操作得以简化,降低了制造成本,也节约了时间。
(7)本发明利用多孔性表面结构和基底的连接结构及方法,制成了各种人工植入假体,尤其是骨科假体,比如股骨柄体,髋臼杯、胫骨平台、股骨髁等,使假体主体便于加工且具有高强度,同时通过与之有效结合的多孔表 面结构来优化骨长入的性能,还可以使假体(如股骨柄)的截面最小化。
附图说明
图1为现有技术的基底和多孔性表面结构的连接结构示意图;
图2为本发明实施例一的多孔性表面结构和基底的连接结构示意图;
图3为本发明实施例一的多孔性底板结构示意图;
图4a为本发明实施例二的多孔性表面结构和基底的连接结构示意图(低孔隙率区域的下表面不带凸点);
图4b为本发明实施例二的多孔性表面结构和基底的连接结构示意图(低孔隙率区域的下表面带有凸点);
图5为本发明实施例三的多孔性表面结构和基底的连接结构示意图;
图6为本发明实施例四的多孔性表面结构和基底的连接结构示意图;
图6a-图6b为本发明实施例四中连接结构的相关变形的原理示意图;
图7为本发明实施例五的多孔性表面结构和基底的连接结构示意图;
图8a为本发明实施例六的多孔性表面结构和基底的连接结构示意图;
图8b为本发明实施例七的多孔性表面结构和基底的连接结构示意图;
图8c为本发明实施例八的多孔性表面结构和基底的连接结构示意图;
图9a为本发明实施例九的多孔性表面结构和基底的连接结构示意图;
图9b为本发明实施例十的多孔性表面结构和基底的连接结构示意图;
图10a为本发明实施例十一的多孔性表面结构和基底的连接结构示意图;
图10b为本发明实施例十二的多孔性表面结构和基底的连接结构示意图;
图11a为本发明实施例十三的多孔性表面结构和基底的连接结构示意图;
图11b-图11d为本发明实施例十四的多孔性表面结构和基底的连接结构示意图;
图12为本发明实施例十五的多孔性表面结构和基底的连接结构示意图;
图13-图14为本发明实施例十六的多孔性表面结构和基底的连接结构示意图;
图15为本发明实施例十八的多孔性表面结构和基底的连接结构示意图;
图16a-图16b为本发明实施例二十的人工假体的股骨柄的示意图;
图16c为本发明的图16a的截面示意图;
图17a-图17e为本发明实施例二十一的人工假体的柄体壳体的示意图;
图18a为本发明实施例二十一的人工假体的髋臼杯的示意图;
图18b为本发明的图18a的局部示意图;
图19a为本发明实施例二十二的人工假体的胫骨平台的示意图;
图19b为本发明的图19a的局部示意图;
图20a为本发明实施例二十三的人工假体的股骨髁的示意图;
图20b为本发明的图20a的局部示意图;
图21-图22分别为本发明实施例十九中改进方案的多孔性表面结构和基底的连接结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例一:
如图2所示,本发明提供一种连接结构,包含基底23、中间体22、多孔性表面结构21。其中,多孔性表面结构21的多孔性结构包含众多交错布置的支架(或梁),并在这些支架(或梁)之间构成一些多向贯通、形状规则或不规则的孔隙。中间体22位于多孔性表面结构21和基底23之间。可选地,中间体22为非多孔性底板,即实心底板。多孔性表面结构21、中间体22均由导电材料(如金属材料)制成。多孔性表面结构21与中间体22是一体成型的结构,例如通过3D打印增材制造工艺、或气相沉淀工艺等实现。
示例地,基底23是实心的,有利于连接结构的整体强度,基底23可由导电材料(例如金属材料)制成,通过锻造、铸造、粉末冶金或金属注塑工艺等各种方式成型,并可以对其实行各种机械加工。
本实施例中,多孔性表面结构21与中间体22预先连接形成复合体2A,并且中间体22与基底23通过电阻焊法进行有效地结合,使该复合体2A与基底23实现连接。所述电阻焊法包含点焊式和/或凸焊式等。以下实施例着重以中间体22与基底23采用凸焊式电阻焊法进行连接进行示例说明。
具体而言,多孔性表面结构21顶部的至少一部分与正电极24接触,由 于多孔性表面结构21与中间体22预先连接,即多孔性表面结构21底部的至少一部分与中间体22顶部接触。中间体22的底部预先制造出多个凸起结构221,该凸起结构221与基底23顶部相接触,以及基底23底部与负电极25相接触。其中,凸起结构221是朝向基底23一侧凸起。优选地,多个凸起结构221的制造位置同多孔性表面结构21底部与中间体22顶部所接触的位置以及其邻近区域相对应。其中,图2中所示的X轴正方向表示右,X轴负方向表示左,Y轴正方向表示顶,Y轴负方向表示底,后续实施例的方位规定与本实施例一相同,用以更清楚地描述本发明的技术方案,上述方位规定仅用于表示图示,不影响实际应用中的方位。
由于多孔性表面结构21与中间体22形成的复合体2A,以及基底23被压紧在正电极24和负电极25之间。当通以电流,电流流经多孔性表面结构21、中间体22直至凸起结构221与基底23顶端的接触面及邻近区域,因接触电阻产生电阻热从而将凸起结构221和基底23顶部加热到熔化或塑性状态,使得中间体22的凸起结构221与基底23顶端形成金属结合体,最终实现中间体22与基底23之间的固连作用,从而使多孔性表面结构21与中间体22形成的复合体2A与基底23紧密结合在一起。
由于中间体22的底部设有多个凸起结构221,使得凸起结构221与基底23顶部表面接触,两者之间存在接触电阻,由于通电使得电流经过从而产生电阻热,则凸起结构221与基底23的这些接触点形成焊点。其中,接触电阻是指两个独立的工件之间在接触时通过电流而产生的电阻,电阻热Q正比于IR 2,R为接触电阻,I为通过工件的电流,即电流越大,接触电阻越大,则电阻热的值越大,反之电阻热的值越小。
基于上述可知,本示例的中间体22通过凸起结构(如凸点),来增大其与基底23的接触电阻,产生足够的电阻热量,则凸起结构221与基底23有足够的焊接强度。优选地,基底23由钛合金制成。
可选地,中间体22的凸起结构221的形状可为球状或弧状或环状或长条状等等,本实施例对此不做具体限定,也不限定在其他示例中,如图3所示,中间体22可带各种凸起或纹理,用以减少接触面积,增大接触电阻,从而相应地增加其与基底之间的结合效率,提高中间体与基底之间的焊接强度。
示例地,正电极24和负电极25由导电材料(如金属材料)制成;负电 极25的顶部与基底23的底部紧贴,正电极24的底部与多孔性表面结构21的顶部紧贴,相互接触的接触面可为平面或弧面或曲面等,本发明对该接触面的形状、尺寸等都不做具体限定,可以根据实际应用情况设计。
因此,本发明通过在多孔性表面结构和基底之间添加中间体,并利用电阻焊方法(例如凸焊式)将中间体与多孔性表面结构形成的复合体和基底进行焊接结合,可以在多孔性结构的孔隙率很高(>50%)的时候,也能保证较高的结合效率(例如70%~80%)。
本实施例中的正电极24和负电极25也可互换,该拓展方式同样也适用于后续的各个实施例,本发明对此不做赘述。
实施例二:
对于上述的实施例一,多孔性表面结构21为一定孔隙率的结构,中间体22位于多孔性表面结构21和基底23之间,且中间体22为非多孔性底板22。其实,中间体22可以是实施例一所述的实心板,也可以是实施例二中阐述的低孔隙率的多孔性结构。
因此,与实施例一的主要区别在于,本实施例二的连接结构包含高孔隙率区域的第一多孔结构41、低孔隙率区域的第二多孔结构42(作为中间体)和基底43,如图4a所示。第二多孔结构42位于第一多孔结构41和基底23之间。
示例地,第一多孔结构41和第二多孔结构42的孔性结构均是包含众多交错布置的支架(或梁),在这些支架(或梁)之间构成一些多向贯通、形状规则或不规则的孔隙。其中,第一多孔结构41的孔隙率大小记为a%,第二多孔结构42的孔隙率大小记为b%,a%>b%。当b%数值等于0时,这里的第二多孔结构42就是实施例一所述的实心结构的中间体。因此,相比构成多孔性表面结构的第一多孔结构41,中间体采用第二多孔结构42时,该第二多孔结构42的致密度更高,如表现为第二多孔结构42中的支架(梁)更粗和/或孔隙率更低。
本实施例中,第一多孔结构41、第二多孔结构42均由导电材料(如金属材料)制成。第一多孔结构41与第二多孔结构42是一体成型的结构,例如通过3D打印增材制造工艺、或气相沉淀工艺等实现。
第一多孔结构41与第二多孔结构42形成为复合体4A,并且第二多孔结 构42与基底43之间通过电阻焊法,进行有效地结合,例如凸焊式阻焊法:第二多孔结构42底部至少部分的支架(或梁)与基底43顶部相接触,因接触电阻产生电阻热,从而将两者的接触部分加热到熔化或塑性状态,使得第二多孔结构42与基底43顶端形成金属结合体,使复合体与基底43实现连接。
第一多孔结构41顶部的至少一部分与正电极44接触,第二多孔结构42底部的至少一部分与基底43顶部相接触,基底43底部与负电极45接触。正电极24和负电极25由金属材料制成。负电极45的顶部与基底43的底部紧贴,正电极44的底部与第一多孔结构41的顶部紧贴。
与实施例一的主要区别在于,本实施例二利用低孔隙率区域的第二多孔结构42来替换实施例一的实心结构的中间体,实施例二的中间体虽然为多孔性结构,但是由于其的孔隙率较低并处于一定范围值,能够保证第二多孔结构42与基底43保持一定的接触面积,从而保证一定的结合效率,原则上来说,第二多孔结构42的孔隙率越小,复合体4A与基底43之间的结合效率越高,反之效率越低;同时,最终的结合效率还与多孔结构内部交错布置的支架(或梁)的具体布置方式有关,可以根据实际应用情况设计。
上述的第二多孔结构42下表面也可以带有凸点421,如图4b所示。当通以电流后,电流流经第一多孔结构41和第二多孔结构42,通过第二多孔结构42的凸点421与基底43顶部的接触产生电阻热从而使得第二多孔结构42底部与基底23顶部形成金属结合体,从而使得第一多孔结构41和第二多孔结构42形成的复合体4A与基底43紧密结合在一起。
实施例三:
对于上述的实施例一,负电极25的顶部与基底23的底部紧贴,以及正电极24的底部与多孔性表面结构21的顶部紧贴;可选地,正电极24和负电极25为大平面电极且正电极24覆盖于多孔性表面结构21顶部之上,负电极25贴覆在基底23底部之下。由于实施例一的大平面正电极24压在多孔性表面结构21顶部,大平面正电极24与多孔性表面结构21表面接触并产生挤压,使得多孔性表面结构21表面发生损伤,例如因被压产生凹陷以及因接触电阻生热导致温度升高而变黑、凹陷、孔隙空间减小等。
为了保护多孔性表面结构的表面,本实施例三中的正电极54并非采用大平面电极贴覆于多孔性表面结构51上,而是将正电极分成多个正电极单体 541并将正电极单体541沿着竖向方向插入至多孔性表面结构51内的空隙5a中,而且正电极单体541置于非多孔性底板52(作为中间体)顶端,如图5所示。同样地,本示例中的多孔性表面结构51与非多孔性底板52是一体成型的结构,例如通过3D打印增材制造工艺、或气相沉淀工艺等实现。本实施例中的基底53、非多孔性底板52、多孔性表面结构51的材质及制作工艺等,都可以参见实施例一,在此不做赘述。
本实施例中,各个正电极单体541并联连接且均连接到电源正极端,负电极55连接在电源负极端。如图5所示,非多孔性底板52的底部预先制造出多个凸起结构521,该凸起结构521与基底53顶部相接触,以及基底53底部与负电极55相接触。可选地,多孔性表面结构51内的空隙5a作为对应正电极单体541的插入空间,该空隙5a为预制的孔隙部分,空隙5a是从多孔性表面结构51表面开始,穿过多孔性表面结构51直至非多孔性底板52的上方,使得非多孔性底板52顶部在空隙5a内暴露,供插入的正电极单体541底部与非多孔性底板52顶部接触。
本实施例三的正电极54与多孔性表面结构51表面未产生接触,解决了多孔性表面结构表面与正电极之间因接触电阻产生电阻热发生损伤的问题。
示例地,空隙5a与正电极单体541侧向配合,例如是间隙配合,即空隙5a需要保证在插入正电极单体541后还要与临近部分的多孔性表面结构间隔开,避免该部分的多孔性表面结构的表面因电阻热而受损,用以保护多孔性表面结构的表面。可选地,正电极单体541为柱状结构或其他形状的结构,本实施例对此不做限定,也不限定在其他相关示例中。
示例地,非多孔性底板52底部的多个凸起结构521与各个正电极单体541的位置相对应,例如,正电极单体541与非多孔性底板52顶部之间接触位置是处在各凸起结构521的正上方或者处于凸起结构521相邻部分区域内,用以保证电流顺利传导至非多孔性底板52直至凸起结构521与基底53顶端的接触面及邻近区域,产生电阻热从而将凸起结构521与基底23顶端形成结合体。本实施例的凸起结构521的形状等都可以参见实施例一,在此不做赘述。
值得说明的是,本实施例三中将正电极分成多个正电极单体并将正电极单体沿着竖向方向插入至多孔性表面结构内的空隙,同样适用于中间体是第 二多孔结构(比所述多孔性表面结构的孔隙率低)的实施例二,即将实施例二中的正电极44替换为多个正电极单体并分别将各个正电极单体沿着竖向方向插入至多孔性表面结构41内的空隙,此时,该预制的空隙从第一多孔结构的表面开始,穿过第一多孔结构后直至第二多孔结构上方或第二多孔结构内部,使得第二多孔结构的部分在空隙5a内暴露,供插入的正电极单体的底部与部分的第二多孔结构接触,同样地,该空隙与正电极单体侧向配合,例如是间隙配合,即空隙需要保证在插入正电极单体后还要与临近部分的多孔性表面结构间隔开,避免该部分的多孔性表面结构的表面因电阻热而受损,用以保护多孔性表面结构的表面,其他具体结构和工艺等与本实施例三相同,在此不做赘述。
实施例四:
对于上述的实施例一,正电极24和负电极25可由导电材料(例如金属材料)制成;负电极25的顶部与基底23的底部紧贴,正电极24的底部与多孔性表面结构21的顶部紧贴;正电极24和负电极25为大平面电极,并且正电极24覆盖于多孔性表面结构21顶部之上,负电极25贴覆在基底23底部之下。
与实施例一的主要区别在于,本实施例四中的正电极是柔性正电极64,如图6所示。本实施例四中,柔性正电极64为大平面电极并覆盖于多孔性表面结构61顶部之上,负电极65贴覆在基底63底部之下,非多孔性底板62位于多孔性表面结构61和基底63之间。示例地,多孔性表面结构61与非多孔性底板62是一体成型的结构,例如通过3D打印增材制造工艺、或气相沉淀工艺等实现。本实施例的基底63、非多孔性底板62、多孔性表面结构61的材质及制作工艺等,都可以参见实施例一,在此不做赘述。
本实施例四中,由于柔性正电极64覆盖于多孔性表面结构61顶部表面,对多孔性表面结构61表面产生一定压力,此时柔性正电极64在压力的相互作用下产生一定柔性变形,使得其与多孔性表面结构61顶部之间的接触面积增大(相比于同等条件下的硬性正电极与多孔性表面结构顶部之间的接触面积),不仅可以降低正电极64与多孔性表面结构61之间的接触电阻,改善或避免多孔性表面因电阻热导致表面损伤(例如凹陷、变黑、孔隙空间减小等),保护多孔性表面结构的表面,而且可以增强电流传导,非多孔性底板62与基 底63之间的焊接结合效率增大,增大焊接强度。
示例地,柔性材料为导电材料,例如铜箔或锡箔等,本实施例对此不做限定,也不限定在其他相关示例中,可以根据实际应用情况设计。
作为实施例四的一种变形,如下:
如图6a所示,在正电极604的底部和多孔性表面结构601顶部之间增加易变形良导电介质606,所述易变形良导电介质606覆盖于多孔性表面结构601顶面。可选地,所述易变形良导电介质606为连续的固体薄膜状,例如铜箔等。同样地,中间体602位于多孔性表面结构601和基底603之间,负电极605的顶部与基底603的底部紧贴。正电极604为大平面电极并覆盖于易变形良导电介质606的顶面,由于易变形良导电介质606极易产生变形,使得其与多孔性表面结构601之间的接触面积增大,不仅可以降低多孔性表面结构601与其上方的正电极604之间的接触电阻,降低电阻热,减少多孔性表面结构601的表面损伤,而且可以增大电流传导作用,使得中间体602与基底603之间的焊接强度增大。
根据上述变形方式,还可做进一步地拓展,如下:
如图6b所示,在正电极6004的底部和多孔性表面结构6001顶部之间的孔隙内填充良导电材料粉末6006(或良导电丝材),这样可以降低正电极6004与多孔性表面结构6001表面之间的接触电阻,从而减小了多孔性表面结构6001的表面损伤,同时还可增大电流传导作用,增大中间体6002与基底6003之间的焊接结合效率。优选地,良导电材料粉末6006(或良导电丝材)的材质与多孔性表面结构6001的材质相同,例如为钛粉(或钛丝)。同样地,如图6b,中间体6002位于多孔性表面结构6001和基底6003之间,负电极6005的顶部与基底6003的底部紧贴。在另一不同的示例中,通过在多孔性表面结构的表面喷涂导电材料,同样也可以降低电极和多孔性表面结构之间的接触电阻,减少多孔性表面结构的表面损伤,本发明对此不做赘述。
无论上述的易变形良导电介质606、良导电材料粉末6006(或良导电丝材)、喷涂的导电材料或液态导电剂等,均需要在多孔性表面结构与基底完成焊接结合之后适当去除以致于保证多孔性表面结构的孔隙敞开。
值得说明的是,在上述任一实施例完成多孔性表面结构与基底连接之后,还可在多孔性表面结构表面地单独地喷涂一层羟基磷灰石(HA)涂层,该 HA涂层具有良好的生物活性和生物相容性,有利于后续的骨长入过程;或者,还可在多孔性表面结构表面地单独地喷涂一层包含抗菌的银离子的涂层或者其他含有细胞生长因子等。
基于上述,本发明还提供一个变形示例,具体如下:
为了避免或改善多孔性表面结构的表面因电阻热发生损伤,需要尽可能地提高多孔性表面结构的导电性能,用以减少其与电极之间的接触电阻。本变形示例中,将特定材料(导电性较好的材质)的熔液渗透到多孔性表面结构中,熔液几乎可以将选定部分(间隔层的上方部分)的多孔性表面结构内的孔隙填满,此时不仅需要限定所述导电性质较好的熔液的熔点较低,还需要在多孔性表面结构内设置一间隔层,间隔层优选为由导电材料制成,从而避免熔液向下渗透而流至下方的中间体上,避免影响电阻焊的效果。待电阻焊过程结束后,将结合后的整体放入到高温环境中,由于特定导电介质的熔点低于多孔性表面结构和基底(如钛合金),则高温环境对基底影响不大,但是低熔点的导电介质会被熔化,并通过现有技术的一些工艺将该添加的低熔点的导电介质去除。
实施例五:
对于上述的实施例二,正电极24和负电极25由导电材料(金属材料)制成,负电极45的顶部与基底43的底部紧贴,正电极44的底部与高孔隙率区域的第一多孔结构41的顶部紧贴。与实施例二的主要区别在于:本实施例五的正电极是由柔性材料制成的柔性正电极74,并非是上述实施例中的金属材料,如图7所示。
本实施例五中,柔性正电极74为大平面电极并覆盖于高孔隙率区域的第一多孔结构71顶部之上,负电极75贴覆在基底73底部之下,低孔隙率区域的第二多孔结构72位于高孔隙率区域的第一多孔结构71和基底73之间。可选地,第一多孔结构71与第二多孔结构72是一体成型的结构,例如通过3D打印增材制造工艺、或气相沉淀工艺等实现。本实施例中的基底73、第二多孔结构72、第一多孔结构71的材质及制作工艺等,都可以参见实施例二,在此不做赘述。
本实施例中,柔性正电极74覆盖于第一多孔结构71顶面,对第一多孔结构71顶面产生一定的压力,此时柔性正电极74的柔性材料会在压力的相 互作用下产生一定柔性变形,使得其与第一多孔结构71顶部之间的接触面积增大(相比于同等条件下的硬性正电极与第一多孔结构顶部之间的接触面积),不仅可以降低正电极74与多孔性表面结构71之间的接触电阻,改善或避免多孔性表面因电阻热导致表面损伤(例如凹陷、变黑、孔隙空间减小等),保护多孔性表面结构的表面,而且可以增强电流传导,非多孔性底板72与基底73之间的焊接结合效率增大,增大焊接强度。
示例地,柔性材料为导电材料,例如铜箔或锡箔等,本实施例对此不做限定,也不限定在其他相关示例中,可以根据实际应用情况设计。
类似实施例二(图4b所示),低孔隙率底板72下表面可以带有凸点,以增加电阻焊效率。
实施例六:
基于上述实施例一,本实施例六不仅在多孔性表面结构811和基底813之间设置非多孔性底板812(或低孔隙率的多孔结构),以及非多孔性底板812的底面预制造出多个凸起结构,凸起结构与基底813顶部相接触,同时还在非多孔性底板812上靠近多孔性表面结构一侧的表面设置若干个支撑柱816a,如图8a所示,所述支撑柱816a介于非多孔性底板812和正电极814之间。支撑柱816a位于多孔性表面结构811的内部,支撑柱816a的顶端与多孔性表面结构的顶端基本平齐,支撑柱816a的高度基本等于多孔性表面结构的高度。同样地,本实施例六中的负电极815的顶部也与基底813的底部紧贴。当然这里的所述的高度方向为图示的方位,上述方位规定仅用于表示图示,不一定作为实际应用中的方位,后续相关实施例的规定同此一致。
本实施例中,支撑柱816a为良导电的实心结构。各个支撑柱816a分别与其下方对应的各凸起结构正对,使得支撑柱816a覆盖的区域同凸起结构与基底813之间的接触部分至少有部分重合,且支撑柱816a的尺寸与凸起结构相匹配。
可选地,非多孔性底板812、多孔性表面结构811以及支撑柱816a是一体成型的结构,例如通过3D打印增材制造工艺、或气相沉淀工艺等实现。
本示例中虽然多孔性表面结构811的表面仍与其上方的正电极814有部分接触,但由于支撑柱816a为良导电的实心结构,而多孔性表面结构811因有孔隙存在,则电极流出的大部分电流优先通过实心结构的良导电的支撑 柱816a,大大降低多孔性表面结构811因电阻热产生的表面损伤,还能增强电流传导作用,非多孔性底板812与基底813之间的焊接结合效率增大,保证足够的焊接强度。
实施例七:
作为本实施例六的一种变形,本实施例七的变形在于:为了完全避免多孔性表面结构与其上方的正电极接触产生电阻热导致多孔性表面结构表面产生损伤,如图8b所示,本实施例七将所有支撑柱816b的顶端设置成高于多孔性表面结构的顶面,各个支撑柱816b的高度均高于其对应邻近部分的多孔性表面结构的高度,这样的话,正电极会与较高位置处的支撑柱816b先接触,从而避免了正电极与较低位置的多孔性表面结构811进行接触。
由于本例中的支撑柱816b的高度超出多孔性表面结构,为了保证整个连接结构的基本功能,焊接完成后可以通过切削等工艺将支撑柱816b高出多孔性表面结构811的这部分去除,保证表面平整。进一步地,如图8b所示,正电极不仅可以是图8a所示的连续式大平面正电极,还可以是分段的多个正电极单体814b,每段正电极单体814b均压在对应的支撑柱816b的顶端,且正电极单体814b并联连接至一个大平面电极或直接连接至电源正极端。
实施例八:
基于上述实施例六和实施例七,本实施例八做进一步地拓展,该拓展的思路在于:如图8c所示,各个支撑柱816c的顶端低于对应部分的多孔性表面结构的顶面,支撑柱816c的高度低于多孔性表面结构的高度,所述支撑柱816a隐藏在多孔性表面结构811的内部,即支撑柱816c上方是多孔结构。这样的话,正电极814会与其下方的多孔性表面结构811的先表面接触,从而多孔性表面结构811的顶面因接触电阻生热导致发生少量下沉,直至下沉至支撑柱816c的顶端位置为止(最大下沉程度也只能下沉至支撑柱顶端位置,当下沉程度不大时,下沉位置高于支撑柱顶端位置),因为支撑柱816c为实心结构,支撑柱816c起到限位的作用,保证最终的多孔性表面结构表面的高度达至支撑柱所在的高度位置,避免多孔性表面结构被过多压缩。可选地,支撑柱816c上方也可以是凹陷结构,使得支撑柱816c的顶端低于对应部分的多孔性表面结构的顶面,所述支撑柱816c也能起到限位的作用。
示例地,非多孔性底板812、多孔性表面结构811以及支撑柱816c可以 是一体成型的结构,例如通过3D打印增材制造工艺、或气相沉淀工艺等实现。
本实施例中虽然多孔性表面结构811的顶面与上方的正电极814接触,但支撑柱816c为良导电的实心结构,而多孔性表面结构811因有孔隙存在,则电流大部分选择性地流经支撑柱816c直至凸起结构与基底813,既保证了非多孔性底板812与基底813之间的焊接强度,也能一定程度减小多孔性表面结构表面的损伤。本实施例八中虽然仍然导致多孔性表面结构表面发生一定程度的损伤,但是因支撑柱816c的顶端始终低于多孔性表面结构811表面,终究不影响连接结构应用到相应领域的基本功能。
基于图8b和图8c的实施方式,在另外的一个示例中(未图示),在原本高于多孔性表面结构811表面的支撑柱上选择一设定高度位置并将该位置的上方设计为孔隙结构,不再是图8b中所示的表面齐平的支撑柱。此时,正电极与较高位置的顶部孔隙结构先接触,支撑柱的顶部孔隙结构被压并因接触电阻生热发生少量下沉,支撑柱下沉至支撑柱的上述设定位置,使得支撑柱与其旁边的多孔结构基本齐平(最大下沉程度也只能下沉至设定位置,当下沉程度不大时,下沉位置高于设定位置)。这种情况下,既能完全避免多孔性表面结构与其上方的正电极接触产生电阻热导致其表面产生损伤,又不需要用于将支撑柱高出多孔性表面结构的多余部分去除的额外加工工艺。
实施例九:
对于上述的实施例六,多孔性表面结构811和基底813之间设置非多孔性底板812(或低孔隙率的多孔结构),以及非多孔性底板812的底面预制造出多个凸起结构,凸起结构与基底813顶部相接触,同时还在非多孔性底板812上靠近多孔性表面结构一侧表面设置多个良导电的实心结构的支撑柱816a,支撑柱816a介于非多孔性底板812和正电极814之间。
与实施例六的主要区别在于,本实施例九中的多孔性表面结构911和基底913之间设置的非多孔性底板912a底面并未制造出上述的凸起结构(如凸点),且也还在非多孔性底板912a上靠近多孔性表面结构一侧表面设置了多个良导电的支撑柱916a,支撑柱916a介于非多孔性底板912a和正电极914之间,如图9a所示,非多孔性底板912a底面与基底813几乎是平面接触。
示例地,支撑柱916a位于多孔性表面结构911的内部,支撑柱916a的 高度与多孔性表面结构的顶面基本平齐,支撑柱916a的高度基本等于多孔性表面结构的高度,同样地,负电极915的顶部也与基底913的底部紧贴。
示例地,非多孔性底板812、多孔性表面结构811以及支撑柱816a是一体成型的结构,例如通过3D打印增材制造工艺、或气相沉淀工艺等实现。
本实施例九中,多孔性表面结构表面虽然仍与其上方的正电极814存在部分接触,但是支撑柱916a为良导电的实心结构,而多孔性表面结构911因有孔隙存在,则电极流出的大部分电流优先通过良导电的实心结构的支撑柱916a并经过非多孔性底板912a直至基底913,即使非多孔性底板912a底端未设置凸起结构,但本实施例九已设置多个良导电柱状的支撑柱916a,仍然有足够的电流量和电阻热量使得非多孔性底板912a与基底913有足够的焊接强度,也能一定程度减小多孔性表面结构表面的损伤。
实施例十:
作为实施例九的一种变形,本实施例十的变形思路在于:如图9b所示,本实施例十中除了实施例九中有关未设有凸起结构的非多孔性底板(或低孔隙率的多孔结构)的特征以外,还为了完全避免多孔性表面结构911因接触电阻生热导致其表面损伤,特地将所有的支撑柱916b的顶端设置成高于多孔性表面结构顶面,各个支撑柱916b的高度均高于其对应邻近部分的多孔性表面结构。本示例中的正电极会与较高位处置的支撑柱916b先接触,进而避免了正电极与较低位置的多孔性表面结构911进行接触。另外,由于支撑柱916b的高度超出多孔性表面结构,为了保证整体连接结构的基本功能,在焊接完成后,可以通过切削等工艺将支撑柱916b高出多孔性表面结构911的这部分去除,保证表面平整。进一步地,如图9b所示,正电极不仅可以是图9a所示的连续式的大平面正电极,还可以是分段的多个正电极单体914b,每段正电极单体914b均压在对应的支撑柱916b上端,且正电极单体914b并联连接至一个大平面电极或直接连接至电源正极端。
实施例十一:
与实施例一不同,本实施例十一中的正电极1014a并非采用大平面电极贴覆于多孔性表面结构1011上,而是将正电极54分成多个正电极单体001并将正电极单体001沿着竖向方向插入至多孔性表面结构1011内的空隙10a中,如图10a所示,而且正电极单体001置于非多孔性底板1012a(或低孔 隙率的多孔结构)顶端。示例地,多个所述正电极单体001并联连接且都连接到一个大平面电极或直接连接至电源正极端,负电极1015连接在电源负极端。
可选地,多孔性表面结构1011与非多孔性底板1012a是一体成型的结构,例如通过3D打印增材制造工艺、或气相沉淀工艺等实现。
如图10a所示,多孔性表面结构1011内的空隙10a作为对应的正电极单体001的插入空间,空隙10a为预制的孔隙。本示例中的正电极1014a底端与多孔性表面结构101顶端不接触,避免多孔性表面结构1011表面因电阻热导致损伤。其中,空隙10a与正电极单体001侧向配合,例如是间隙配合,即空隙10a需要保证在插入正电极单体001后还要与临近部分的多孔性表面结构间隔开,避免该部分的多孔性表面结构产生电阻热而受损。
上述实施例一中的非多孔性底板设置用以产生较大接触电阻以及电阻热量的凸起结构(如凸点),但是本实施例十一与之不同,本例中的非多孔性底板1012a的底部未设置凸起结构,但是由于正电极1014a本身与非多孔性底板1012a直接接触,而且每个正电极单体001分别与电源连接,电流直接从正电极单体001流出并经过非多孔性底板1012a和基底1013(不经过多孔性表面结构1011),即仍然能保证足够的电流量和电阻热量,使得非多孔性底板1012a与基底1013有足够的焊接强度。
实施例十二:
作为实施例十一的一种变形,本实施例十二变形点在于:非多孔性底板1012b(或低孔隙率的多孔结构)顶面上设置若干个良导电的实心结构的支撑结构10b,支撑结构10b置于多孔性表面结构1011内部预留的孔隙中,如图10b所示。所述支撑结构10b分别用于放置和支撑正电极1014a中的各个正电极单体001,正电极单体001位于支撑结构10b开设的凹槽内,并与凹槽相配合,保证所有的正电极单体001与对应的支撑结构10b之间良好地接触。
示例地,非多孔性底板1012b、多孔性表面结构1011以及支撑柱支撑结构10b是一体成型的结构,例如通过3D打印增材制造工艺、或气相沉淀工艺等实现。
可选地,支撑结构10b的顶端与多孔性表面结构1011的顶端基本平齐,支撑结构10b的高度基本等于多孔性表面结构1011的高度;或者,支撑结构 10b的顶端低于多孔性表面结构1011的顶端;或者,支撑结构10b的顶端高于多孔性表面结构1011的顶端并借助后续的切削工艺,使得最终的支撑结构10b的顶端与多孔性表面结构1011的顶端平齐;选择何种高度设计方式,本发明对此不做限制。同样地,本例中即使非多孔性底板1012b的底端并未设置凸起结构,但是由于正电极1014a通过良导电的实心结构的支撑结构10b与非多孔性底板1012b进行导电连接,而且每个正电极单体001分别与电源连接,电流直接从正电极单体001流出并经过非多孔性底板1012b和基底1013(不经过多孔性表面结构1011),即仍然能保证足够的电流量和电阻热量,使得非多孔性底板1012b与基底1013有足够的焊接强度。
实施例十三:
与实施例八不同,本实施例十三中的多孔性表面结构1111与基底1113之间并未设置非多孔性底板,改进之处在于:多孔性表面结构1111至少部分区域的底部连接有良导电的实心结构的凸起结构1112a(如凸点),凸起结构1112a与基底1113顶部接触,如图11a所示,同时,多孔性表面结构1111内的任意位置处可设置实心结构且良导电的支撑柱1116a。
本例中的支撑柱1116a与凸起结构1112a可以错位分布,如图11a所示。
示例地,多孔性表面结构1111、凸起结构1112a、支撑柱1116a是一体成型的结构,例如通过3D打印增材制造工艺、或气相沉淀工艺等实现。
可选地,支撑柱1116a隐藏于多孔性表面结构1111内部,支撑柱1116a顶端低于多孔性表面结构1111顶端,支撑柱1116a的底端高于多孔性表面结构1111底端。
本示例中既可以利用支撑柱1116a的限位作用来避免多孔性表面结构1111被过度压缩,因为正电极1114会与其下方的多孔性表面结构1111顶面先接触,进而多孔性表面结构1111表面因接触电阻生热导致损伤而发生少量下沉,直至下沉至支撑柱1116a的顶端为止(最大下沉程度也只能下沉至顶端位置,甚至下沉程度不大时,下沉位置高于顶端位置),因为支撑柱1116a为实心结构,支撑柱1116a起到限位作用,保证最终的多孔性表面结构表面的高度达至支撑柱所在的高度位置;同时,还可利用支撑柱1116a的良导电的实心结构,使得电流大多优选选择经过支撑柱1116a,再经过该支撑柱1116a附近部分的多孔性表面结构后到达凸起结构1112a,则可以改善多孔性表面 结构表面因接触电阻生热造成的损伤问题;再者,本例中进一步利用凸起结构1112a的凸点来增加与基底1113的接触电阻,用以产生足够的电阻热量,使得凸起结构1112a与基底1113有足够的焊接强度。
实施例十四:
上述实施例十三描述了支撑柱1116a与凸起结构1112a是错位分布,那么作为实施例十三的一种变形,本实施例十四将凸起结构1112b与其上方的支撑柱1116b设计成正对配合,两者至少部分重合(如一部分重合或完全重合),如图11b所示。
示例地,多孔性表面结构1111、凸起结构1112b、支撑柱1116b是一体成型的结构,例如通过3D打印增材制造工艺、或气相沉淀工艺等实现。
本实施例十四中,支撑柱1116b隐藏于多孔性表面结构1111内部,支撑柱1116b的顶端低于多孔性表面结构1111的顶端,支撑柱1116b的高度低于多孔性表面结构的高度。所述凸起结构1112b与基底1113顶部接触。
本例中同样既可以利用支撑柱1116b来避免多孔性表面结构1111过渡压缩,因为正电极1114首先会与其下方的多孔性表面结构1111表面接触,进而多孔性表面结构1111的表面因接触电阻生热导致损伤而导致少量下沉,直至下沉至支撑柱1116b顶端为止(最大下沉程度也只能下沉至顶端位置,甚至下沉程度不大时,下沉位置高于顶端位置),因为支撑柱1116b为良导电的实心结构,支撑柱1116b起到限位作用,保证最终的多孔性表面结构表面的高度达至支撑柱所在的高度位置;同时,还可利用支撑柱1116a实心的良导电结构,电流大多优选选择经过支撑柱1116a,可以改善多孔性表面结构顶面因接触电阻生热造成损伤的问题;再者,本例中还可利用凸起结构1112b来增加基底1113的接触电阻,用以产生足够的电阻热量,使得凸起结构1112b与基底1113有足够的焊接强度。值得说明的是,本实施例十四的焊接效率比实施例十三较好,因为凸起结构1112b与支撑柱1116b正对配合,电流流经支撑柱1116b后直接通过凸起结构1112b,而实施例十三中电流流经支撑柱1116a后还需经过多孔性表面结构中的孔隙结构后再流经凸起结构1112a。
作为本实施例十四的一种变形,该变形思路在于:将上述支撑柱的高度低于多孔性表面结构改成:支撑柱1116c位于多孔性表面结构111的内部且支撑柱1116c的顶端基本与多孔性表面结构的顶端平齐,支撑柱1116c的高 度与多孔性表面结构的高度基本相等,此时,凸起结构1112c也与其上方的支撑柱1116c正对配合,两者至少部分重合(如一部分重合或完全重合),如图11c所示。
示例地,多孔性表面结构1111、凸起结构1112c、支撑柱1116c是一体成型的结构,例如通过3D打印增材制造工艺、或气相沉淀工艺等实现。该变形的实施方式中的其他内容可参照上述实施例六和上述实施例十四,在此不做赘述。
同理,作为本实施例十四的另一种变形,该变形思路在于:将上述记载的支撑柱的高度低于多孔性表面结构改成:将所有的支撑柱1116d的顶面设置成高于多孔性表面结构顶面,如图11d所示,各个支撑柱1116d的高度均高于其对应邻近部分的多孔性表面结构的高度。此时,凸起结构1112d也与其上方的支撑柱1116d正对配合,两者至少部分重合(如一部分重合或完全重合),如图11d所示。示例地,多孔性表面结构1111、凸起结构1112d、支撑柱1116d是一体成型的结构,例如通过3D打印增材制造工艺、或气相沉淀工艺等实现。该变形的实施方式中的其他内容可参照上述实施例七和上述实施例十四,在此不做赘述。
实施例十五:
如图12所示,本实施例十五在实施例一的基础上,进一步地非多孔性底板1212(或低孔隙率的多孔结构)和正电极1214之间设置若干个限位柱1216,限位柱1216置于非多孔性底板1212上的靠近多孔性表面结构1211一侧的表面。可选地,限位柱1216的顶面低于对应部分的多孔性表面结构顶面,限位柱1216的高度低于多孔性表面结构的高度,限位柱1216隐藏在多孔性表面结构1211的内部。同样地,本实施例十五中的非多孔性底板1212的底端预制造出多个凸起结构12a,凸起结构12a与基底1213顶部相接触。
本实施例十五中,正电极1214首先会与其下方的较高位置的多孔性表面结构1211的表面接触,进而多孔性表面结构1211的表面因接触电阻生热导致损伤而发生下沉,直至下沉至限位柱1216的顶端位置为止(最大下沉程度也只能下沉至顶端位置,甚至下沉程度不大时,下沉位置高于顶端位置),因为限位柱1216为实心结构,限位柱1216起到限位作用,保证最终的多孔性表面结构表面的高度达至限位柱1216所在的高度位置,避免多孔性表面结构 被过多压缩。
示例地,限位柱1216可以与其下方对应的各凸起结构12a正对分布或者错开分布;同时,本实施例中的限位柱1216的材质是否为导电材料或不导电材料,本发明对此均不做限制,只要最终能满足限位柱1216的限位作用,避免多孔性表面结构被过多压缩即可。其中,当限位柱1216为导电材料时,电流大多优选选择经过限位柱1216,再经过该限位柱1216附近部分的多孔性表面结构后到达对应的凸起结构12a,这样可以改善多孔性表面结构表面因接触电阻生热造成的损伤问题。当限位柱1216为非导电材料时,电流从正电极1214到达多孔性表面结构1211直至凸起结构12a。本实施例的上述情况,虽然仍然导致多孔性表面结构表面一定程度的损伤,但是由于限位柱1216始终低于多孔性表面结构1212表面,终究不会影响整个连接结构应用到相关领域的基本功能。
实施例十六:
本发明的多孔性表面结构和基底通过电阻焊(例如凸焊)结合起来,当被焊工件的面积过大时,就需要更多数量的凸起结构。当凸起结构确定后,为了保证每个凸起结构与基底之间的焊接强度时,需要增大电极的总电流,可能导致电源设备成本增加、电极损伤以及多孔性表面结构表面损伤增大,此时可以采用分区域、分批次对被焊工件进行焊接。
本实施例十六中,将多孔性表面结构1311分区域并与基底1313分批次地进行电阻焊接,如图13所示,第一区域对应的多孔性表面结构1311-1的上方连接有第一正电极1314-1,第二区域对应的多孔性表面结构1311-2的上方连接有第二正电极1314-2。负电极1315的顶部与基底1313的底部紧贴,多孔性表面结构1311和基底1313之间设置非多孔性底板1312(或低孔隙率的多孔结构),以及非多孔性底板1312的底面预制造出多个凸起结构,凸起结构与基底1313顶部相接触。
本实施例是将多孔性表面结构1311采用分区域的电阻焊接,但在分区焊接时各个区域对应的正电极可能出现无法完全覆盖对应的多孔性表面结构的情况,例如任意被划分的相两邻区域相靠近一侧的边缘无法被完全覆盖,此时各区域的边缘相比于被覆盖的其他部分的位置可能略微偏高(即凸边),则影响多孔性表面结构1311的表面平整度,甚至会影响连接结构应用到相关领 域的基本功能(如骨长入)。
为了克服上述缺陷,本实施例十六的多孔性表面结构1311设置凹槽13a,将多孔性表面结构1311的顶部划分成了多个区域,例如图中第一区域的多孔性表面结构1311-1和第二区域的多孔性表面结构1311-2。凹槽13a为长条状,第一区域的多孔性表面结构1311-1和第二区域的多孔性表面结构1311-2分别位于长条状的凹槽13a的两侧。凹槽13a顶端低于多孔性表面结构1311顶端。凹槽13a的高度小于多孔性表面结构1311的高度。
示例地,非多孔性底板1312的主体、凹槽13a、多孔性表面结构1311是一体成型的结构,例如通过3D打印增材制造工艺、或气相沉淀工艺等实现。所述凹槽13a也可以通过机加工形成。
图13所示表明了第一正电极1314-1和第二正电极1314-2之间存在间隙,此时第一正电极1314-1和第二正电极1314-2可以分先后次序,则图13仅代表位置示意,或者第一正电极1314-1和第二正电极1314-2不分先后次序,可以同时压在对应区域的多孔性表面结构上;而且划分的各个区域所对应的正电极的覆盖面积均大于对应区域的多孔性表面结构1311-1表面面积。
由于本实施例设计了凹槽13a,凹槽13a靠近第一正电极1314-1的一侧记作为第一侧,凹槽13a靠近第二正电极1314-2的另一侧记作为第二侧。
本实施例中,第一区域的多孔性表面结构1311-1先通过电阻焊与基底1313完成连接:第一正电极1314-1底面覆盖对应区域的多孔性表面结构1311-1,并且,第一正电极1314-1超出连接区域的部分不超过凹槽13a第二侧的边缘,第一正电极1314-1和第一区域的多孔性表面结构1311-1之间因接触电阻生热导致第一区域的多孔性表面结构1311-1表面虽有少量下沉但不会形成凸边;然后继续开始第二区域的多孔性表面结构1311-2与基底1313完成电阻焊接:第二正电极1314-2覆盖对应区域的多孔性表面结构1311-2表面接触,并且,第二正电极1314-2超出连接区域的部分不超出第一正电极1314-1的靠近第二正电极1314-2的一侧边缘,第二正电极1314-2和第二区域的多孔性表面结构1311-2之间因接触电阻生热导致第二区域的多孔性表面结构1311-2表面虽有少量下沉但不会形成凸边。当第一正电极1314-1和第二正电极1314-2分先后次序时,第一正电极1314-1和第二正电极1314-2可以是同一电极。
或者,第一正电极1314-1和第二正电极1314-2不分先后次序,同时压在对应区域的多孔性表面结构上,则第一区域的多孔性表面结构1311-1和第二区域的多孔性表面结构1311-2同时与基底完成电阻焊接,其中,第一正电极1314-1底面覆盖对应区域的多孔性表面结构1311-1,并且第一正电极1314-1超出连接区域的部分不超过凹槽13a第二侧的边缘;以及,第二正电极1314-2覆盖对应区域的多孔性表面结构1311-2表面接触,并且第二正电极1314-2超出连接区域的部分不超出凹槽13a第一侧的边缘。
这种方法解决了分区域焊接导致的边缘凸边的问题。工艺过程需要控制多孔性表面结构下沉的位置比凹槽13a的顶端高。
作为本实施例十六的一种变形,如下:
如图14所示,第一区域对应的多孔性表面结构1411-1的上方连接有第一正电极1414-1,第二区域对应的多孔性表面结构1411-2的上方连接有第二正电极1414-2。负电极1415的顶部与基底1413的底部紧贴,多孔性表面结构1411和基底1413之间设置非多孔性底板1412(或低孔隙率的多孔结构),以及非多孔性底板1412的底面预制造出多个凸起结构,凸起结构与基底1413顶部相接触。
多孔性表面结构1411设置凹槽14a,将多孔性表面结构1411的顶部划分成了多个区域,例如图中第一区域的多孔性表面结构1411-1和第二区域的多孔性表面结构1411-2。凹槽14a为长条状,第一区域的多孔性表面结构1411-1和第二区域的多孔性表面结构1411-2分别位于长条状的凹槽14a的两侧。凹槽14a顶端低于多孔性表面结构1411顶端。凹槽14a的高度小于多孔性表面结构1411的高度。由于本实施例设计了凹槽14a,凹槽14a靠近第一正电极1414-1的一侧记作为第一侧,凹槽14a靠近第二正电极1414-2的另一侧记作为第二侧。
如图14所示,第一正电极1414-1和第二正电极1414-2之间有重合部分(第一正电极1414-1和第二正电极1414-2分先后次序,图14仅代表位置示意)。
第一正电极1414-1与第一区域的多孔性表面结构1411-1接触,并且第一正电极1414-1超出部分的凹槽14a(即第一正电极1414-1跨过凹槽14a的第一侧但不超出凹槽14a的第二侧),并与部分的第二区域的多孔性表面结构 1411-2进一步接触,焊接过程完成后,第二区域的多孔性表面结构1411-2表面有少量下沉且第二区域的多孔性表面结构1411-2边缘的表面会有压痕凸边;然后第二正电极1414-2与第二区域的多孔性表面结构1411-2接触,并且第二正电极1414-2跨过剩余部分的凹槽14a或跨过整个凹槽14a,第二正电极1414-2超出上述压痕凸边,保证第二正电极1414-2压到上述多孔性表面结构1411-2可能产生的压痕凸边,使得上述压痕凸边被压平。
或者,第一正电极1414-1与第一区域的多孔性表面结构1411-1接触,并且第一正电极1414-1未超出凹槽14a的第一侧,焊接过程完成后,第一区域的多孔性表面结构1411-1表面有少量下沉且表面会有压痕凸边,然后第二正电极1414-2与第二区域的多孔性表面结构1411-2接触,第二正电极1414-2跨过整个凹槽13a,而且第二正电极1414-2超出多孔性表面结构1411-1表面产生的压痕凸边,保证第二正电极1414-2压到多孔性表面结构1411-1表面产生的压痕凸边,使得压痕凸边被压平。工艺过程需要控制多孔性表面结构下沉的位置比凹槽14a的顶端高或者基本齐平。
实施例十七:
与实施例十六的相同点在于,本实施例十七依然采用分区域的电阻焊接;但是与实施例十六的区别在于,同样为了解决分区域焊接导致的压痕凸边的问题,本实施例十七(未图示)的多孔性表面结构不采用凹槽设计。本示例中,当相邻两个分区域的多孔性表面结构按照先后顺序依次进行电阻焊,由于第一正电极的覆盖面积小于对应区域的面积时,第一次分区电阻焊后第一区域的边缘出现凸起(这里的凸起是一种高度的相对位置关系,指未发生凹陷的边缘部分相对于其他发生凹陷的部分较高),此时需要保证下一次进行电阻焊的第二正电极能覆盖住原先发生凸起的第一区域中的边缘部分,这样利用第二次电阻焊过程中该凸起的边缘部分的多孔性表面结构会发生凹陷,从而避免了分区域焊接导致的边缘压痕凸边的问题。
实施例十八:
如图15所示,本实施例十八的非多孔性底板1512顶端设置限位结构15a,限位结构15a为长条状,可作为区域划分的基准,所述限位结构15a设置在任意两邻近区域的相邻侧的边缘处。限位结构15a的顶端低于多孔性表面结构1511顶端,限位结构15a的高度小于多孔性表面结构1511的高度。 示例地,非多孔性底板1512的主体、限位结构15a、多孔性表面结构1511是一体成型的结构,例如通过3D打印增材制造工艺、或气相沉淀工艺等实现。
本实施中的限位结构15a为实心结构或比多孔性表面结构1311-1和多孔性表面结构1311-2孔隙率低的多孔结构。
本实施例十八的正电极可以是图15所示为大平面电极1514,覆盖多个区域的多孔性表面结构,也可以是图13中的存在间隙的第一正电极1314-1和第二正电极1314-2,或者是图14中至少部分重合的第一正电极1414-1和第二正电极1414-2。此时,通过电阻焊将多孔性表面结构1511与非多孔性底板1512形成的复合体与基底1513结合后,各个区域的多孔性表面结构1511表面虽有少量下沉但不会形成凸边,且通过限位结构15a进行限位,限定下沉的限度。这种方法不仅解决了分区域焊接导致的边缘凸边的问题,还可对多孔性表面结构因焊接过程导致下沉的位置进行限定。
实施例十九:
值得说明的是,本发明并不仅限于上述任意一实施例中的单独采用凸焊式电阻焊法,还可以采用单独采用点焊式电阻焊法或者将凸焊式电阻焊法和点焊式电阻焊法配合使用,将中间体与基底结合起来。具体地:点焊式电阻焊法与通过设置凸起结构的凸焊式电阻焊法不同,所述点焊式电阻焊法中,中间体未设置凸起结构,在一个焊接循环过程中,通过单个电极以及每次移动被焊工件(例如复合体和基底)或者通过单个电极以及每次移动电极来完成一个焊点的焊接,直至完成设定个数的焊点,保证中间体与基底之间有足够的焊接强度。另外,本发明还可以将凸焊式电阻焊法和点焊式电阻焊法配合使用,例如在上述任意一实施例中的凸焊式电阻焊法完成后,进一步地采用点焊式电阻焊法操作,用以加强中间体与基底之间的焊接强度。
本发明凸焊式电阻焊的方法可以在一个焊接循环内可同时焊接多个焊点,生产效率高,而且没有分流影响;同时,由于电流密度集中于凸点,电流密度大,所以可以采用较小的电流进行焊接,并能可靠地形成较小的熔核,克服了点焊式电阻焊的熔核偏移现象;凸焊式电阻焊法的凸点位置准确、尺寸一致,各点的强度比较均匀,因此对于给定的焊接强度、单个凸焊焊点的尺寸可以小于点焊;另外,由于采用大平面电极,且凸点设置在中间体上, 所以可最大限度地减轻基底外露表面上的压痕,同时大平面电极的电流密度小、散热好,电极的磨损要比点焊式小得多,因而大大降低了电极的保养和维修费用。
针对上述任一实施例中的凸焊电阻焊过程中,由于凸起结构主要是中间部分的凸起受到上方电极的压力较大并与基底通过接触产生电阻热进行结合,而凸起结构的侧边部分未与基底充分接触导致无法焊接结合。为了提高中间体的凸起结构与基底之间的焊接强度,通过旋转电极、基底、中间体中的任意一个或多个,对中间体分多次并从多个方向进行焊接,确保凸起结构与基底全方位的进行焊接。
另外,作为上述实施例方式的一个拓展方式,具体包含:由于上述某些实施例的多孔性表面结构21与其上方的大平面正电极24接触,则多孔性表面结构表面可能因接触电阻生热导致表面发生损伤(凹陷、变黑),为了克服该缺陷,保护多孔性表面结构的表面,通过在多孔性表面结构覆盖一绝缘件,并在所述绝缘件上相应位置开设多个孔,用以放入正电极或良导电的支撑柱等,使得未开孔位置的绝缘件下方的多孔性表面结构不受任何损伤。其中,所述绝缘件的厚度适度,因为需要保证完整的电流回路导通,使得焊接工艺得以顺序进行。
如图21所示,基于实施例一/实施例二还可做如下改进:本发明将实施例一和例二中的非多孔性底板(图2)或低孔隙率区域(图4b)的凸点去除变换成一种无凸起结构的(非多孔性或低孔隙率)中间板结构272,并将基底273改成一种基底主体273和其顶面上的另一带凸点的结构272A的基底复合体,所述结构272A与所述基底主体273预先连接(如电阻焊/激光焊),272A的凸起结构是朝向不带凸点的中间板结构272一侧,即所述结构272A的凸点与复合体中的中间板结构272底面进行接触。
由多孔性表面结构271与中间板结构272形成的表面复合体,以及由凸点结构272A与基底主体273形成的基底复合体,被压紧在正电极274和负电极275之间。当通以电流,电流流经多孔性表面结构271、中间板结构272直至结构272A的凸点,因接触电阻产生电阻热从而将272A的凸点与中间板结构272底部加热到熔化或塑性状态,最终达到结构272与272A之间的固连作用,从而使所述表面复合体与所述基底复合体紧密结合在一起。另外一 示例中,表面复合体仍然采用实施例一和例二中带有凸点的结构272,其凸起结构朝向基底主体273一侧,并让结构272的凸起结构与基底上方的结构272A的凸起结构错开布置,最终也可实现所述表面复合体与所述基底复合体紧密结合在一起。本发明的上述改进不仅限于实施例一的基础上,还可适用于上述任一实施例,本发明对此不做赘述。
如图22所示,基于实施例一还可做采用以下实施方案:首先和实施一相同,在基底283的顶部一侧设置由第一多孔性表面结构281-1与第一非多孔性底板282-1预先连接形成的第一复合体,第一复合体置于正电极24与基底283顶面之间,且第一多孔性表面结构281-1顶部的至少一部分与正电极24接触;第一非多孔性底板282-1的底部预先制造出多个第一凸起结构,该第一凸起结构与基底283顶部相接触。同时,基底283底部一侧设置由第二多孔性表面结构281-2与第二非多孔性底板282-2预先连接形成的第二复合体,第二复合体置于基底283底面与负电极285之间,且第二多孔性表面结构281-2底部的至少一部分与负电极285接触。其中,第二复合体与所述第一复合体结构相同,且关于基底283为轴对称。按照实施例一的原理,第一复合体和第二复合体分别与基底283上下表面同时进行电阻焊接,实现第一复合体、第二复合体、基底的连接。此种变形同样适用于上述任意一实施例,本发明对此不做赘述。
实施例二十:
如图16a-图16c结合所示,本实施例提供一种人工植入假体,优选是一种骨科假体;可以使用上述实施例一到实施例十九及其各自变形示例中的任意一种或多种连接结构及方法。假体主体1对应于连接结构中的基底,假体主体1的至少部分表面作为连接区域,与包含中间体及多孔性表面结构的复合体2连接,通过中间体(例如实施例一中的非多孔性底板22、实施例二中的低孔隙率区域的第二多孔结构42等等)与基底(例如实施例一中的基底23,实施例二中的基底43等等)的连接(凸焊式电阻焊和/或点焊式电阻焊),实现多孔性表面结构与基底的连接,形成对假体上连接区域的表面覆盖。
结合实施例一至实施例十九或其变形示例的结构及方法,设置假体壳体,外层为多孔性表面结构,内层为中间体接触并通过电阻焊焊接固定至假体本体的连接区域,实现多孔性表面结构与假体本体的连接,形成对假体本体上 连接区域的表面覆盖,从而在其他种类的骨科假体、人工关节等各种人工植入假体应用,如股骨柄、髋臼杯、股骨髁、胫骨平台等,具体参照后续实施例二十-二十三的描述。
以人工髋关节为例进行说明。人工髋关节包含股骨柄、股骨球头(图未示出)、髋臼杯、衬体(图未示出),均为假体,使用可植入人体的医用材料制成,例如是钛合金、钴铬钼合金、不锈钢等金属材料,超高分子量聚乙烯等聚合物,陶瓷等,且不限于此。
所述股骨柄3(图16a-图16c)包含头部301、颈部302、柄体303,可以是一体的或是组装形成的。股骨柄3的头部301为锥台结构,第一端通过颈部302与柄体303连接,头部301与颈部302相对柄部有一定的偏转角度,以相对于柄部一侧倾斜的形式布置。柄体303下部插入股骨髓腔。柄体303下部可以开设若干纵向的沟槽。在柄体303的表面,优选是柄体303上部的表面为多孔性结构;柄体303下部可以具有光滑表面。
股骨柄3的头部301的第二端插入至股骨球头的内锥安装结构;髋臼杯套设在股骨球头的外侧,股骨球头与髋臼衬体的内凹面接触,使股骨球头可在此处旋转。一些示例中的髋臼杯为部分球形(如半球形)的穹顶状;髋臼杯内设有与之配合的衬体;股骨球头与衬体的内凹面形成接触,使股骨球头可在此处旋转。所述髋臼杯上可以开设通孔,用于设置将髋臼杯连接至髋臼窝的连接件(螺钉等);衬体可以开设对应的通孔或者不开设通孔。衬体的内凹面与股骨球头接触;衬体可以由金属材料或者由非金属材料(如聚乙烯或陶瓷等)制成,以减少人工关节的磨损。壳体通常由金属材料制成。髋臼杯的外周面,优选使用多孔性结构。
股骨柄柄体303的上部表面,髋臼杯外壳的外周面使用多孔性结构,一方面可以增大粗糙度;另一方面可以诱使成骨细胞骨长入,进而有效地将股骨柄与股骨,髋臼杯与髋臼窝固定连接,形成良好的长期生物固定,增强人工髋关节与宿主骨组织之间的界面稳定性。
为了加速或加强骨组织与多孔性假体表面的结合,任意一种假体(同样适用于后续实施例的人工关节)在其接触骨组织的表面,可以形成羟基磷灰石(HA)等涂层;或者,使用凝胶/胶原蛋白等材料作为植入细胞、生长因子等的载体,附着在假体多孔性表面;或者形成抗菌涂层(如抗菌素/银离子 等)。
股骨柄3可使用上述实施例一至实施例十九或其变形示例的结构及方法(电阻焊),在此不做赘述,具体可参照上述对应实施例内容。其中,所述股骨柄3的柄体303对应于连接结构中的基底;包含中间体(如非多孔性底板,或低孔隙率区域的多孔结构等等,具体需要根据不同实施例确定)及多孔性表面结构的复合体形成柄体壳体2,其覆盖在柄体主体303a(上部)的连接区域,通过中间体与基底的焊接,实现多孔性表面结构201与基底的连接,形成对连接区域的覆盖,得到股骨柄柄体303上的多孔性结构。
在一些示例中,柄体主体303a使用锻造、铸造或机加工等方式制成,优选是实心结构,便于加工且具有高强度;或者柄体主体303a也可以是高致密度的多孔性结构;中间体可以是实心的,或是比多孔性表面结构致密度更高的多孔性结构;柄体主体303a与中间体202都使用多孔性结构时,中间体202的致密度介于柄体主体303a与多孔性表面结构201的致密度之间。柄体壳体2的中间体202与多孔性表面结构201,优选使用3D打印增材制造工艺实现,可以很好地形成符合设计要求的孔隙等。柄体主体303a与柄体壳体2的中间体202通过电阻焊实现有效连接,避免了目前通过热压工艺(如渗透焊工艺)等在股骨柄3表面连接多孔性结构时整体强度大幅下降的问题。
另一示例中,如图16c所示对应于上述实施例一中的图2。内侧的柄体303对应连接结构中的基底,外侧的多孔结构2201对应连接结构的多孔性表面结构,多孔结构2201和柄体303之间设置中间体(非多孔性底板2202)。由于多孔结构2201与非多孔性底板2202形成的复合体,以及柄体303被压紧在正电极2204和负电极2205之间。当通以电流,电流流经多孔结构2201、非多孔性底板2202直至与柄体303外侧的接触面及邻近区域,产生电阻热从而将其加热到熔化或塑性状态,使得非多孔性底板2202与柄体303形成结合体,实现非多孔性底板2202与柄体303之间的固连作用,从而使多孔结构2201与非多孔性底板2202形成的复合体与柄体303紧密结合在一起。有关股骨柄适用于实施例一的其他内容在此不做赘述。值得说明的是,对于本示例中的股骨柄,如图16c,正电极2204与一部分的多孔结构2201接触,而负电极2205与作为基底的柄体303并不接触,该负电极2205可以与其他部分的多孔结构2201接触,此时其是股骨柄适用于实施例十九中的图22所示 的拓展实施方式的情况,本发明在此不做赘述。
一个具体示例中,股骨柄3的柄体主体303a上部设有连接区域;为方便叙述,以股骨柄3的头部301与颈部302倾斜布置的一侧为股骨柄3的内侧,按照图16a所示的逆时针方向,将柄体主体303a的其他方向作为后侧、外侧至前侧,内侧与外侧相对,后侧与前侧相对;图16a示出前侧,图16b示出外侧。
本例中,股骨柄3的连接区域,包含柄体主体303a上部的内侧、后侧、外侧、前侧的表面。如图17a-图17e结合所示,柄体壳体2包含两个壳体片体,一个壳体片体2-1对应柄体主体303a上部的内侧表面01的一部分、后侧表面02、外侧表面03的一部分;另一个壳体片体2-2对应柄体主体303a上部内侧表面01的剩余部分、前侧表面04、外侧表面03的剩余部分。两个壳体片体合拢后,分别接触并焊接至柄体主体上部所述连接区域的对应位置。每个壳体片体的内层为中间体202,外层全部或大部分为多孔性表面结构201。
如图17d和图17e所示,两个壳体片体可以是对称的(或是错位交叉的,图未示出)。示例地,两个壳体片体在成型和合拢后,邻边都可以是相互分离而不进行连接的。或者,两个壳体片体在成型时一侧的邻边(如外侧03)可以是相连的,并且可以在邻边附近有一定弯曲(以使两个壳体片体合拢)时仍保持连接。又或者,两个壳体片体在成型时邻边相互分离,而在合拢后对每一侧的邻边都进行连接(例如焊接或使用连接件或其他连接方式)。所述邻边是指两个壳体片体合拢后相邻的边缘。邻边的相互连接,可以是对每个壳体片体内层的中间体和/或外层的多孔性表面结构进行连接。
实施例二十一:
本实施例中,髋臼杯300a外周面的多孔性结构,可以类似地使用上述实施例一至实施例十九或其变形示例的结构及方法实现。
在一个示例中,一个具体示例中,如图18a和图18b结合所示,对应于上述实施例一中的图2,所述髋臼杯的外壳处,内侧的杯体主体对应连接结构中的基底2403,外侧的多孔结构2401对应连接结构的多孔性表面结构,多孔结构2401和基底2403之间设置中间体(非多孔性底板2402)。由于多孔结构2401与非多孔性底板2402形成的复合体(该复合体形成在杯体主体 3-3的外侧,且覆盖在杯体主体的连接区域),以及基底2403被压紧在正电极2404和负电极2405之间。当通以电流,电流流经多孔结构2401、非多孔性底板2402直至与基底2403外侧的接触面及邻近区域,产生电阻热从而将其加热到熔化或塑性状态,使得非多孔性底板2402与基底2403形成结合体,实现非多孔性底板2402与基底2403之间的固连作用,从而使多孔结构2401与非多孔性底板2402形成的复合体与基底2403紧密结合在一起,因此形成对杯体主体上连接区域的覆盖,得到髋臼杯(外壳)外周面上的多孔性结构。本发明的髋臼杯的杯体主体与复合体(或其包含的中间体)在接触及连接的部位相适配。有关髋臼杯适用于实施例一的其他内容在此不做赘述,以及有关髋臼杯适用于其他实施例的具体内容在此不做赘述。
在一些示例中,髋臼杯的杯体主体使用锻造、铸造或机加工等方式制成,优选是实心结构,便于加工且具有高强度;或者杯体主体也可以是高致密度的多孔性结构;中间体可以是实心的,或是比多孔性表面结构致密度更高的多孔性结构;杯体主体与中间体都使用多孔性结构时,中间体的致密度介于柄体主体与多孔性表面结构的致密度之间。中间体与多孔性表面结构,优选使用3D打印增材制造工艺实现,可以很好地控制孔隙等,以满足设计要求。杯体主体与中间体通过电阻焊方法实现有效连接,避免了目前通过热压工艺(如渗透焊工艺)等造成整体强度大幅下降的问题。
具体的示例中,可以将杯体主体的整个外表面作为一个连接区域,设置一个整体的复合体与之对应接触并通过所包含的中间体在连接区域进行焊接。也可以在杯体主体的整个外表面划分多个独立的连接区域;多个复合体(各自可以是片状或其他形状,与穹顶外壳相适配),分别与这些连接区域对应接触,并通过各自的中间体在这些连接区域相应焊接。其中,每个复合体的内层为中间体,外层全部或大部分为多孔性表面结构。
实施例二十二:
胫骨近端与股骨远端形成膝关节,胫骨与股骨远端接触的面为胫骨平台,胫骨平台是膝关节的重要负荷结构。在植入假体中,用于替代股骨侧骨质的部件称为股骨髁,用于替代胫骨侧骨质的部件称为胫骨平台,股骨髁与胫骨平台之间有聚乙烯垫片,从而起到降低磨损和恢复膝关节功能的作用。
如图19a和图19b所示,胫骨平台300b呈T型结构,包含上方的胫骨 托300-1和下方的支撑部分300-2。胫骨平台300b的下表面使用多孔性结构,一方面可以增大粗糙度;另一方面可以诱使成骨细胞骨长入,进而有效地将胫骨平台假体与人体胫骨连接固定,替代受损病变的胫骨面,形成良好的长期生物固定,用以承受人体压力载荷、满足运动和抗磨损功能要求。所述胫骨平台300b的下表面的多孔性结构可以类似地使用上述实施例一至实施例十九或其变形示例的结构及方法实现。
一个具体示例中,如图19a和图19b结合所示,胫骨托300-1的下表面对应连接结构的多孔性表面结构2501,胫骨托300-1的上端对应连接结构的内侧的基底2503;多孔结构2501和基底2503之间设置中间体(非多孔性底板2502)。由于多孔结构2501与非多孔性底板2502形成的复合体,以及基底2503被压紧在正电极2504和负电极2505之间。当通以电流,电流流经多孔结构2501、非多孔性底板2502直至与基底2503远端的接触面及邻近区域,产生电阻热从而将其加热到熔化或塑性状态,使得非多孔性底板2502与基底2503形成结合体,实现非多孔性底板2502与基底2503之间的固连作用,从而使多孔结构2501与非多孔性底板2502形成的复合体与基底2503紧密结合在一起。本示例中的多孔性表面结构与中间体构成的复合体,形成在胫骨托下端,且覆盖胫骨托的连接区域。有关胫骨平台适用于实施例一的其他内容在此不做赘述。有关胫骨平台适用于其他实施例的具体内容在此不做赘述。
实施例二十三:
人工膝关节假体包括股骨髁,胫骨托,及设置在二者之间的衬垫,和髌骨假体。股骨髁连接到股骨远端,胫骨托连接到胫骨近端。衬垫部件与胫骨托部件连接,股骨髁与衬垫接触。衬垫的下部与胫骨平台的上表面接触,股骨髁的外凸面与衬垫的上部及髌骨假体关节面接触,可以在规定范围内实现屈伸、滑动、旋转等活动。
其中,股骨髁300c主体的外凸面通常非常光滑,以减少其与衬垫之间的磨损;而股骨髁主体会在其内凹面,与股骨远端形成的截骨截面相匹配且相接触,因而优选地是在股骨髁主体的内凹面(如髁内固定面)上形成多孔结构,帮助骨长入,实现假体和骨组织的紧密结合,降低假体术后松动导致关节置换手术失败的风险。本实施例中,股骨髁300c的髁内固定面使用多孔性结构,一方面可以增大粗糙度以增强假体术后初始稳定性;另一方面可以促 进骨长入,进而有效地将股骨髁假体与人体股骨髁连接固定。胫骨衬垫位于股骨髁假体与胫骨平台假体中间,承受人体压力载荷、满足关节运动学和抗磨损要求。
所述股骨髁300c的髁内固定面的多孔性结构,可以类似地使用上述实施例一至实施例十九或其变形示例的结构及方法实现。
在一个示例中,如图20b所示对应于上述实施例一中的图2。股骨髁的内表面中,由外向内依次对应连接结构的多孔结构2601、中间体(非多孔性底板2602)和基底2603。股骨髁300c的内侧髁对应连接结构的基底2603,股骨髁300c的髁内固定面使用多孔性表面结构2601。由于多孔结构2601与非多孔性底板2602形成的复合体,以及基底2603被压紧在正电极和负电极之间。当通以电流,电流流经多孔结构2601、非多孔性底板2602直至与基底2603外侧的接触面及邻近区域,产生电阻热从而将其加热到熔化或塑性状态,使得非多孔性底板2602与基底2603形成结合体,实现非多孔性底板2602与基底2603之间的固连作用,从而使多孔结构2601与非多孔性底板2602形成的复合体与基底2603紧密结合在一起。本示例中的多孔性表面结构与中间体构成的复合体,形成在股骨髁的内凹面,且覆盖股骨髁的连接区域。有关股骨髁适用于实施例一的其他内容在此不做赘述。有关股骨髁适用于其他实施例的具体内容在此不做赘述。同样地,髌骨假体同样可以使用上述任意一实施例或其变形示例的结构及方法,在其与骨骼接触的表面增加多孔性结构。
本发明的实施例一到十九还不仅限应用于上述假体示例,同样可应用于如脊柱融合器、脊柱椎间小平面关节、踝关节、肩关节、肘关节、指关节、趾关节、人工椎间盘、椎间小关节、下颌关节、腕关节等等,具体结构和原理参照上述,本发明在此不做赘述。
尽管本发明的内容已经通过上述优选实施例作了详细介绍,但应当认识到上述的描述不应被认为是对本发明的限制。在本领域技术人员阅读了上述内容后,对于本发明的多种修改和替代都将是显而易见的。因此,本发明的保护范围应由所附的权利要求来限定。

Claims (47)

  1. 一种假体,其特征在于,设置一连接结构,所述连接结构包含:
    复合体,包含预先连接的多孔性表面结构与中间体;
    基底,用于形成假体主体,所述假体主体的至少部分表面作为连接区域,用于与所述复合体连接,所述中间体位于所述多孔性表面结构与所述基底之间,所述中间体与所述假体主体的连接区域相连接,使得所述多孔性表面结构位于所述假体主体的连接区域;
    其中,所述基底与所述复合体置于第一极性电极和第二极性电极之间,通过所述第一极性电极与所述多孔性表面结构和/或中间体导电接触,以及所述基底与第二极性电极导电接触,形成电流回路,使得所述中间体和所述基底进行电阻焊接,实现所述复合体与所述基底的连接。
  2. 如权利要求1所述的假体,其特征在于,
    所述假体是关节假体。
  3. 如权利要求1所述的假体,其特征在于,
    所述复合体形成为壳体,包覆在所述假体主体的连接区域上;
    所述壳体的外层包含多孔性表面结构;
    所述壳体的内层包含中间体,其与所述假体主体的连接区域连接。
  4. 如权利要求3所述的假体,其特征在于,
    所述复合体形成的壳体是一个整体;
    或者,所述复合体形成的壳体包含多个壳体片体;其中,多个壳体片体相互独立,或者相邻的壳体片体之间在至少一侧的邻边相连接。
  5. 如权利要求1~4中任意一项所述的假体,其特征在于,
    所述假体包含髋关节的股骨柄,所述股骨柄包含柄体,其形成为基底;
    所述连接区域的位置为柄体上部的表面。
  6. 如权利要求5所述的假体,其特征在于,
    所述柄体下部的表面为光滑表面,所述柄体下部开设若干纵向的沟槽,所述柄体下部插入股骨髓腔。
  7. 如权利要求5所述的假体,其特征在于,
    所述股骨柄还包含头部和颈部,所述头部、颈部和所述柄体是一体的或是组装形成;
    所述股骨柄的头部为锥台结构,其第一端通过颈部与柄体连接,头部与颈部相对柄体有一定的偏转角度,以相对于柄体一侧倾斜的形式布置,股骨柄的头部的第二端插入至股骨球头。
  8. 如权利要求5所述的假体,其特征在于,
    所述复合体形成为壳体包裹在所述柄体的连接区域外围;
    所述复合体包含多个壳体片体。
  9. 如权利要求1~8中任意一项所述的假体,其特征在于,
    所述假体包含髋关节的髋臼杯,所述髋臼杯包含内侧的杯体主体,其形成为基底;
    所述连接区域的位置为髋臼杯的外周面。
  10. 如权利要求1~4中任意一项所述的假体,其特征在于,
    所述假体包含胫骨平台,所述胫骨平台包含胫骨托,其形成为基底;
    所述连接区域的位置为胫骨托的远端的表面。
  11. 如权利要求1~10中任意一项所述的假体,其特征在于,
    所述假体包含股骨髁,所述股骨髁包含髁内固定面,其形成为基底;
    所述连接区域的位置为髁内固定面。
  12. 如权利要求1所述的假体,其特征在于,
    所述假体是以下的任意一种或多种:髌骨、脊柱融合器、脊柱椎间小平面关节、踝关节、肩关节、肘关节、指关节、趾关节、人工椎间盘、下颌关节、腕关节。
  13. 如权利要求1~12中任意一项所述的假体,其特征在于,
    所述复合体中的多孔性表面结构称为第一多孔结构;
    所述中间体是实心结构,或者,所述中间体是第二多孔结构并且所述第二多孔结构的孔隙率低于所述第一多孔结构的孔隙率。
  14. 如权利要求13所述的假体,其特征在于,
    所述基底由导电材料制成,所述多孔性表面结构由导电材料制成,所述中间体由导电材料制成。
  15. 如权利要求13所述的假体,其特征在于,
    所述中间体包含中间板结构。
  16. 如权利要求15所述的假体,其特征在于,
    所述中间板结构上设置多个凸起结构,所述凸起结构设置在所述中间板结构上靠近所述基底的一侧,所述凸起结构的凸点与所述基底接触。
  17. 如权利要求13所述的假体,其特征在于,
    所述中间体是所述第二多孔结构,所述第二多孔结构包含多个凸起结构,所述凸起结构形成在所述第二多孔结构上靠近所述基底的一侧,所述凸起结构的凸点与所述基底接触。
  18. 如权利要求13所述的假体,其特征在于,
    所述中间体包含若干个分散布置的凸起结构,形成在所述多孔性表面结构靠近基底的一侧,所述凸起结构的凸点与所述基底接触。
  19. 如权利要求13~18中任意一项所述的假体,其特征在于,
    所述中间体包含若干支撑柱,每个支撑柱的全部或至少部分位于多孔性表面结构内。
  20. 如权利要求19所述的假体,其特征在于,
    所述中间体的支撑柱与所述中间体的凸起结构对应布置并接触,或所述中间体的支撑柱与所述中间体的凸起结构错位分布且不接触。
  21. 如权利要求19或20所述的假体,其特征在于,
    所述支撑柱的远离基底一侧的表面超出所述多孔性表面结构的表面;
    或者,所述支撑柱的远离基底一侧的表面低于所述多孔性表面结构的表面;
    或者,所述支撑柱的远离基底一侧的表面与所述多孔性表面结构的表面平齐。
  22. 如权利要求21所述的假体,其特征在于,
    所述支撑柱的远离基底一侧的表面超出所述多孔性表面结构的表面时,在电阻焊完成后,切割所述支撑柱超出所述多孔性表面结构的部分。
  23. 如权利要求19~22中任意一项所述的假体,其特征在于,
    所述支撑柱位于所述多孔性表面结构的预制空隙内,所述支撑柱开设凹槽,用于放置所述第一极性电极中的多个电极单体,插入后的电极单体与所述支撑柱导电接触;
    所述支撑柱的表面超出或平齐于或低于所述多孔性表面结构的表面,所述支撑柱为多孔结构或实心结构。
  24. 如权利要求22中任意一项所述的假体,其特征在于,
    所述支撑柱的远离基底一侧的表面超出所述多孔性表面结构的表面时:所述支撑柱为多段结构,至少包含超出所述多孔性表面结构的第一段部分和剩余的第二段部分;
    所述第一段部分为多孔结构;
    所述第二段部分为多孔结构或实心结构,所述第二段部分上远离基底一侧的表面平齐于所述多孔性表面结构的表面,使得第一段部分因与第一极性电极接触生热导致所述支撑柱下沉至所述第二段部分的远离基底一侧的表面。
  25. 如权利要求19~24中任意一项所述的假体,其特征在于,
    所述支撑柱为导电体时,所述支撑柱接入到所述电流回路,所述支撑柱与以下任意一个或多个部件导电接触:第一极性电极、多孔性表面结构、中间体。
  26. 如权利要求19所述的假体,其特征在于,
    所述支撑柱为绝缘体。
  27. 如权利要求16~18或20~24中任意一项所述的假体,其特征在于,
    所述凸起结构位于所述中间体上的位置,靠近所述多孔性表面结构与所述中间体的接触位置。
  28. 如权利要求13~27中任意一项所述的假体,其特征在于,
    所述多孔性表面结构内至少部分的孔隙内填充导电材料。
  29. 如权利要求28所述的假体,其特征在于,
    所述多孔性表面结构内至少部分的孔隙内填充粉末状的导电材料或丝材状的导电材料或网状的导电材料。
  30. 如权利要求13~27中任意一项所述的假体,其特征在于,
    多孔性表面结构的至少部分的表面铺设固体薄膜状或丝状或网状的可变形导电介质,所述可变形导电介质位于所述第一极性电极和所述多孔性表面结构之间;
    和/或,至少部分的多孔性表面结构的表面与所述第一极性电极之间喷涂 固态导电介质或液态导电剂。
  31. 如权利要求28所述的假体,其特征在于,
    所述多孔性表面结构的表面喷涂以下涂层中的一种或多种:骨传导涂层、骨诱导涂层、抗菌涂层、细胞或生长因子载体。
  32. 如权利要求13~27中任意一项所述的假体,其特征在于,
    至少部分的多孔性表面结构的孔隙内注入熔融状的导电介质,和/或,至少部分的多孔性表面结构的孔隙内置导电介质并通过高温使导电介质成熔融状;
    所述导电介质的熔点低于基底的熔点和/或多孔性表面结构的熔点。
  33. 如权利要求13~27中任意一项所述的假体,其特征在于,
    所述基底是实心结构,或者,所述基底是第三多孔结构且所述第三多孔结构的孔隙率小于所述多孔性表面结构的孔隙率。
  34. 如权利要求33所述的假体,其特征在于,
    所述基底通过锻造或铸造或机加工或粉末冶金或金属注塑工艺制成。
  35. 如权利要求13~27中任意一项所述的假体,其特征在于,
    所述复合体的多孔性表面结构与中间体一体成型。
  36. 如权利要求35所述的假体,其特征在于,
    所述复合体的多孔性表面结构与中间体,通过3D打印增材制造工艺、或气相沉淀工艺实现。
  37. 如权利要求19~26中任意一项所述的假体,其特征在于,
    所述多孔性表面结构、所述中间体和所述支撑柱一体成型。
  38. 如权利要求13~37中任意一项所述的假体,其特征在于,
    所述多孔性表面结构表面设置若干个凹槽,所述凹槽的表面低于所述多孔性表面结构表面,将所述多孔性表面结构划分成多个区域;
    经所述凹槽划分出的各区域,均被该区域对应接触的第一极性电极覆盖,所述多孔性表面结构的任意一区域与邻近凹槽的位置关系是以下的任意一种:与凹槽第一侧不接触、跨过凹槽第一侧且不超出凹槽第二侧、跨过凹槽第一侧直至凹槽第二侧、跨过凹槽第二侧并接触到邻近的另一区域的至少一部分;其中,凹槽的第一侧为靠近所述任意一区域的一侧,凹槽的第二侧为远离所述任意一区域的一侧。
  39. 如权利要求38所述的假体,其特征在于,
    凹槽划分的相邻两区域的多孔性表面结构与基底之间的电阻焊过程是分别通过覆盖位置不相重合的两个不同的第一极性电极同时进行;
    或者,凹槽划分的相邻两区域的多孔性表面结构与基底之间的电阻焊过程是分别通过两个不同的第一极性电极按先后次序分两次进行;
    或者,凹槽划分的相邻两区域的多孔性表面结构与基底之间的电阻焊过程是通过同一个第一极性电极按先后次序分两次进行。
  40. 如权利要求38所述的假体,其特征在于,
    所述凹槽为长条状。
  41. 如权利要求13~37中任意一项所述的假体,其特征在于,
    将多孔性表面结构划分成多个区域,划分的任意相邻的两个区域称为第一区域的多孔结构和第二区域的多孔结构;
    第一区域的多孔结构与对应的第一区域的一第一极性电极接触,完成第一区域的多孔结构与基底的电阻焊接后,所述第一区域的多孔结构与所述第一区域的第一极性电极的接触边缘形成凸边;
    所述第二区域的多孔结构与对应的第二区域的一第一极性电极接触,第二区域的一第一极性电极至少覆盖到第一区域的多孔结构上靠近第二区域的多孔结构一侧的凸边,完成第二区域的多孔结构与基底的电阻焊接。
  42. 如权利要求13~41中任意一项所述的假体,其特征在于,
    所述基底包含一表面连接层,所述底表面连接层与基底主体预先连接,所述表面连接层介于所述复合体的中间体与基底主体之间;
    所述表面连接层包含凸起结构,所述凸起结构的凸点与所述复合体的中间体接触。
  43. 如权利要求42所述的假体,其特征在于,
    所述基底的表面连接层与基底主体预先焊接连接。
  44. 如权利要求42所述的假体,其特征在于,
    所述中间体上靠近所述基底的一侧为平面状;
    或者,所述中间体上靠近所述基底的一侧设置的凸起结构与所述表面连接层的凸起结构错开。
  45. 一种假体,其特征在于,其设置一基底和至少两个如权利要求1~44中任 意一项所述连接结构中的复合体,所述基底用于形成假体主体,所述假体主体的至少部分表面作为连接区域,用于与所述复合体连接,所述中间体位于所述多孔性表面结构与所述基底之间,所述中间体与所述假体主体的连接区域相连接,使得所述多孔性表面结构位于所述假体主体的连接区域;两个复合体分别为第一复合体和第二复合体,第一复合体、基底和第二复合体设置在第一极性电极和第二极性电极之间;
    所述第一复合体置于所述第一极性电极与所述基底之间,所述第一复合体中的中间体与所述基底接触,所述第一极性电极与所述第一复合体中的多孔性表面结构和/或中间体导电接触,所述第二复合体置于所述第二极性电极与所述基底之间,所述第二复合体中的中间体与所述基底接触,所述第二极性电极与所述第二复合体中的多孔性表面结构和/或中间体导电接触,用以形成电流回路;
    所述第一复合体的中间体与所述基底,以及所述第二复合体中的中间体与所述基底进行电阻焊接,实现所述复合体与所述基底的连接。
  46. 如权利要求45所述的假体,其特征在于,
    所述第一复合体和所述第二复合体的结构相同;
    或者,所述第一复合体和所述第二复合体的结构不同。
  47. 如权利要求45所述的假体,其特征在于,
    所述假体包含髋关节的股骨柄,所述股骨柄包含柄体,其形成为基底;
    所述连接区域的位置为柄体上部的表面;
    所述第一复合体和所述第二复合体分别形成为壳体包裹在所述柄体的连接区域外围;
    所述第一复合体和所述第二复合体分别包含多个壳体片体。
PCT/CN2020/136530 2019-12-30 2020-12-15 一种基于多孔性表面结构和基底的连接结构的假体 WO2021135929A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201911394644.2 2019-12-30
CN201911395087.6A CN111012551A (zh) 2019-12-30 2019-12-30 一种基于多孔性表面结构和基底的连接结构的假体
CN201911395087.6 2019-12-30
CN201911394644 2019-12-30

Publications (1)

Publication Number Publication Date
WO2021135929A1 true WO2021135929A1 (zh) 2021-07-08

Family

ID=76685875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/136530 WO2021135929A1 (zh) 2019-12-30 2020-12-15 一种基于多孔性表面结构和基底的连接结构的假体

Country Status (1)

Country Link
WO (1) WO2021135929A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5104410A (en) * 1990-10-22 1992-04-14 Intermedics Orthopedics, Inc Surgical implant having multiple layers of sintered porous coating and method
US5942135A (en) * 1996-02-23 1999-08-24 Sinterstahl Gmbh Process for welding a sintered friction-lined foil
CN103221000A (zh) * 2010-11-18 2013-07-24 捷迈有限公司 多孔金属层至金属基体的电阻焊接
US20130304227A1 (en) * 2012-05-14 2013-11-14 Zimmer, Inc. Method of forming local bonds to fasten a porous metal material to a substrate
US20170156869A1 (en) * 2014-07-16 2017-06-08 Zimmer, Inc. Resistance welding a porous metal layer to a metal substrate utilizing an intermediate element
CN110773854A (zh) * 2019-12-30 2020-02-11 骄英医疗器械(上海)有限公司 一种用于制备多孔性表面结构和基底的连接结构的方法
CN111012551A (zh) * 2019-12-30 2020-04-17 骄英医疗器械(上海)有限公司 一种基于多孔性表面结构和基底的连接结构的假体
CN111084676A (zh) * 2019-12-30 2020-05-01 骄英医疗器械(上海)有限公司 一种多孔性表面结构和基底的连接结构及制备装置
CN111449806A (zh) * 2019-12-30 2020-07-28 雅博尼西医疗科技(苏州)有限公司 多孔性表面结构和基底的连接结构、制备方法及假体

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5104410A (en) * 1990-10-22 1992-04-14 Intermedics Orthopedics, Inc Surgical implant having multiple layers of sintered porous coating and method
US5942135A (en) * 1996-02-23 1999-08-24 Sinterstahl Gmbh Process for welding a sintered friction-lined foil
CN103221000A (zh) * 2010-11-18 2013-07-24 捷迈有限公司 多孔金属层至金属基体的电阻焊接
US20130304227A1 (en) * 2012-05-14 2013-11-14 Zimmer, Inc. Method of forming local bonds to fasten a porous metal material to a substrate
US20170156869A1 (en) * 2014-07-16 2017-06-08 Zimmer, Inc. Resistance welding a porous metal layer to a metal substrate utilizing an intermediate element
CN110773854A (zh) * 2019-12-30 2020-02-11 骄英医疗器械(上海)有限公司 一种用于制备多孔性表面结构和基底的连接结构的方法
CN111012551A (zh) * 2019-12-30 2020-04-17 骄英医疗器械(上海)有限公司 一种基于多孔性表面结构和基底的连接结构的假体
CN111084676A (zh) * 2019-12-30 2020-05-01 骄英医疗器械(上海)有限公司 一种多孔性表面结构和基底的连接结构及制备装置
CN111449806A (zh) * 2019-12-30 2020-07-28 雅博尼西医疗科技(苏州)有限公司 多孔性表面结构和基底的连接结构、制备方法及假体

Similar Documents

Publication Publication Date Title
WO2021135927A1 (zh) 多孔性表面结构和基底的连接结构及其制备方法与假体
CN111012551A (zh) 一种基于多孔性表面结构和基底的连接结构的假体
CN110773854B (zh) 一种用于制备多孔性表面结构和基底的连接结构的方法
CN111084676B (zh) 一种多孔性表面结构和基底的连接结构及制备装置
EP2314239B1 (en) Device to be implanted in human or animal tissue
CN102639084B (zh) 医用植入装置
US7001672B2 (en) Laser based metal deposition of implant structures
EP3426197B1 (en) Apparatus for joint replacement arthroplasty
US20150118650A1 (en) Prosthetic Element for Bone Extremities Such as Fingers or Toes, or for Teeth, and Corresponding Production Method
CN213130116U (zh) 一种基于多孔性表面结构和基底的连接结构的假体
WO2021135929A1 (zh) 一种基于多孔性表面结构和基底的连接结构的假体
WO2021135930A1 (zh) 一种多孔性表面结构和基底的连接结构及制备装置
WO2021135931A1 (zh) 一种用于制备多孔性表面结构和基底的连接结构的方法
TWI809339B (zh) 多孔性表面結構和基底的連接結構、假體及製備方法和裝置
CN213130117U (zh) 一种多孔性表面结构和基底的连接结构及制备装置
Mielniczuk et al. Modelling of the needle-palisade fixation system for the total hip resurfacing arthroplasty endoprosthesis
KR101389355B1 (ko) 클래딩 용접을 이용한 인공 보형물 및 그 제조방법
Mielniczuk et al. The 12 th International Conference on Problems of Material Engineering, Mechanics and Design

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20910156

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20910156

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20910156

Country of ref document: EP

Kind code of ref document: A1