WO2021135888A1 - 车辆、能量转换装置及其控制方法 - Google Patents

车辆、能量转换装置及其控制方法 Download PDF

Info

Publication number
WO2021135888A1
WO2021135888A1 PCT/CN2020/135183 CN2020135183W WO2021135888A1 WO 2021135888 A1 WO2021135888 A1 WO 2021135888A1 CN 2020135183 W CN2020135183 W CN 2020135183W WO 2021135888 A1 WO2021135888 A1 WO 2021135888A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
battery pack
charge
discharge
cycle
Prior art date
Application number
PCT/CN2020/135183
Other languages
English (en)
French (fr)
Inventor
凌和平
潘华
谢飞跃
黄日
郑益浩
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to US17/790,398 priority Critical patent/US20230038790A1/en
Priority to JP2022540611A priority patent/JP7433443B2/ja
Priority to KR1020227026529A priority patent/KR102696116B1/ko
Priority to EP20910329.0A priority patent/EP4086112A4/en
Publication of WO2021135888A1 publication Critical patent/WO2021135888A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/22Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/25Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by controlling the electric load
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4264Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing with capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/429Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/529Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/11Electric energy storages
    • B60Y2400/112Batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present disclosure relates to the field of vehicle technology, and in particular to a vehicle, an energy conversion device and a control method thereof.
  • the battery pack is used as a power source in different environments, and the performance of the battery pack will also be affected. For example, the performance of the battery pack in a low-temperature environment will be reduced to a greater extent than at room temperature. In order to be able to use the battery pack in a low-temperature environment, it is necessary to preheat the battery pack before using the battery pack.
  • a battery pack preheating method is disclosed in the related art.
  • the transistor VT1 and the transistor VT6 in the trigger motor controller 101 are turned on at the same time, and the current flows from the positive electrode of the battery pack 103 through the transistor VT1 and the transistor VT6,
  • the two stator inductances of the motor 102 return to the negative pole of the battery pack 103, the current rises, and the energy is stored in the two stator inductances; as shown in Figure 2, when the battery pack 103 is in the charging process, the transistor VT1 and the transistor VT6 are disconnected at the same time, and the current From the two stator inductances of the motor 102 and the motor controller 101 back to the battery pack 102 through the two bleeder diodes VD4 and VD3, the current drops.
  • the battery is in an alternate state of rapid charging and discharging. Due to the internal resistance of the battery,
  • the battery pack 103 can form both a charging and discharging circuit and a motor drive circuit, the control difficulty of the motor controller is increased.
  • a large amount of current will pass through the bus capacitor C1 when the battery pack 103 is discharged during the operation of the charging and discharging circuit, so that the current flowing through the battery pack is greatly reduced, and the heating speed of the battery pack will also be severe. Slow down.
  • the present disclosure proposes a vehicle, an energy conversion device and a control method thereof to realize the distinction between a motor drive circuit and a charging and discharging circuit, so that the motor controller can control the two circuits to work separately and increase the heating speed of the battery pack.
  • the present disclosure proposes an energy conversion device, the energy conversion device including:
  • a motor controller wherein the first ends of the bridge arms of the motor controller are connected together to form a first bus terminal, and the second ends of the bridge arms of the motor controller are connected together to form a second bus terminal;
  • a bus capacitor a first end of the bus capacitor is connected to the first bus terminal, and a second end of the bus capacitor is connected to the second bus terminal and the negative electrode of the battery pack;
  • a first switch module is connected between the bus capacitor and the positive electrode of the battery pack;
  • a motor, the coils of the motor are respectively connected to the midpoints of the bridge arms of the motor controller;
  • the second switch module is connected between the neutral point of the coil of the motor and the positive electrode or the negative electrode of the battery pack.
  • the present disclosure proposes a control method based on the energy conversion device described in the first aspect, and the control method includes:
  • the first switch module When an instruction to enter the heating mode is received, the first switch module is controlled to be turned off and the second switch module is turned on, so that the battery pack, the second switch module, the motor, and the motor control
  • the device and the bus capacitor form a charging and discharging circuit of the battery pack
  • the first switch module When an instruction to enter the driving mode is received, the first switch module is controlled to be turned on and the second switch module is turned off, so that the battery pack, the first switch module, the bus capacitor, and the The motor controller and the motor form a motor drive circuit.
  • the present disclosure provides a vehicle including the energy conversion device described in the first aspect.
  • the energy conversion device includes a motor controller, a bus capacitor, a first switch module, a motor, and a second switch module.
  • the battery pack, the first switch module, the bus capacitor, the motor controller, and the motor can form a motor drive circuit
  • the battery pack, the second switch module, the motor, the motor controller, and the bus capacitor can form a charging and discharging circuit
  • the process of discharging the bus capacitor and the charging process of the bus capacitor to the battery pack alternately to achieve the temperature rise of the battery pack.
  • the motor drive circuit and the charge and discharge circuit can be distinguished, and the motor controller can control the two circuits to work separately, and the bus capacitor is involved in the charging and discharging process in the charging and discharging circuit to avoid the battery pack discharge.
  • a large amount of current passes through the bus capacitor, so that the current flowing through the battery pack is greatly reduced, and the heating speed of the battery pack will also be seriously slowed down, which improves the heating efficiency of the battery pack.
  • Figure 1 is a current flow diagram of a motor control circuit provided by the prior art
  • Fig. 2 is another current flow diagram of the motor control circuit provided by the prior art
  • FIG. 3 is a circuit diagram of an energy conversion device provided by Embodiment 1 of the present disclosure.
  • FIG. 4 is a flowchart of a control method of an energy conversion device according to Embodiment 1 of the present disclosure
  • FIG. 5 is another flowchart of a control method of an energy conversion device according to Embodiment 1 of the present disclosure
  • FIG. 6 is a circuit diagram of an energy conversion device provided by Embodiment 1 of the present disclosure.
  • FIG. 7 is another circuit diagram of an energy conversion device provided by Embodiment 1 of the present disclosure.
  • FIG. 8 is another circuit diagram of an energy conversion device provided by Embodiment 1 of the present disclosure.
  • FIG. 9 is a current flow diagram of an energy conversion device provided by Embodiment 1 of the present disclosure.
  • FIG. 10 is a current flow diagram of an energy conversion device provided by Embodiment 1 of the present disclosure.
  • FIG. 11 is a current flow diagram of an energy conversion device provided by Embodiment 1 of the present disclosure.
  • FIG. 12 is a current flow diagram of an energy conversion device provided by Embodiment 1 of the present disclosure.
  • FIG. 13 is a time-current waveform diagram of an energy conversion device provided in the first embodiment of the present disclosure.
  • the first embodiment of the present disclosure provides an energy conversion device. As shown in FIG. 3, the energy conversion device includes:
  • the first ends of the bridge arms of the motor controller 101 are connected together to form a first bus terminal, and the second ends of the bridge arms of the motor controller 101 are connected together to form a second bus terminal;
  • the bus capacitor C1 the first end of the bus capacitor C1 is connected to the first bus terminal, and the second end of the bus capacitor C1 is connected to the second bus terminal and the negative electrode of the battery pack 103;
  • the first switch module 104, the first switch module 104 is connected between the bus capacitor C1 and the positive electrode of the battery pack 103;
  • the motor, the coils of the motor are respectively connected to the midpoints of the bridge arms of the motor controller 101;
  • the second switch module 105 is connected between the neutral point of the coil of the motor and the positive electrode or the negative electrode of the battery pack 103.
  • the motor controller 101 includes M bridge arms, the first end of each bridge arm in the M bridge arms is connected to form the first bus terminal of the motor controller 101, and the second end of each bridge arm in the M bridge arms is connected together.
  • the second bus terminal of the motor controller 101 is formed.
  • Each bridge arm includes two power switch units connected in series.
  • the power switch units can be transistors, IGBTs, MOS transistors and other device types.
  • the midpoints of each bridge arm are formed in two
  • the motor includes an M-phase coil.
  • the first end of each phase coil in the M-phase coil is connected to the midpoint of each bridge arm in a set of M bridge arms in a one-to-one correspondence.
  • the second end is connected in common to form a neutral line, and the neutral line is connected to the second switch module 105.
  • the motor controller 101 is a three-phase inverter, and the three-phase inverter includes three bridge arms.
  • the first end of each bridge arm of the three bridge arms is connected together to form the first confluence of the motor controller 101
  • the second end of each bridge arm in a group of three bridge arms is connected to form the second bus terminal of the motor controller 101;
  • the three-phase inverter includes a first power switch unit, a second power switch unit, and a third power
  • the switch unit, the fourth power switch unit, the fifth power switch and the sixth power switch, the first power switch unit and the fourth power switch unit form a first bridge arm
  • the second power switch unit and the fifth switch unit form a second bridge Arm
  • the third power switch unit and the sixth switch unit form a third bridge arm
  • one end of the first power switch unit, the third power switch unit, and the fifth power switch unit are connected together to form the first confluence of the three-phase inverter
  • the motor includes a three-phase coil, the first end of each phase coil in the three-phase coil is connected to the midpoint of each bridge arm in the three-way bridge arm in a one-to-one correspondence, and the second end of each phase coil in the three-phase coil is connected together to form .
  • the first phase coil of the motor is connected to the midpoint of the first bridge arm
  • the second phase coil of the motor is connected to the midpoint of the second bridge arm
  • the third phase coil of the motor is connected to the midpoint of the third bridge arm.
  • the first power switch unit in the three-phase inverter includes a first upper bridge arm VT1 and a first upper bridge diode VD1
  • the second power switch unit includes a second lower bridge arm VT2 and a second lower bridge diode VD2
  • the third The power switch unit includes a third upper bridge arm VT3 and a third upper bridge diode VD3
  • the fourth power switch unit includes a fourth lower bridge arm VT4 and a fourth lower bridge diode VD4
  • the fifth power switch unit includes a fifth upper bridge arm VT5.
  • the sixth power switch unit includes the sixth lower bridge arm VT6 and the sixth lower bridge diode VD6.
  • the motor is a three-phase four-wire system, which can be a permanent magnet synchronous motor or an asynchronous motor, connected to a three-phase coil At one point and connected to the second switch module 105.
  • the first switch module 104 is used to realize the conduction or disconnection between the battery pack 103 and the bus capacitor C1 according to the control signal, so that the battery pack 103 charges the bus capacitor C1 or stops charging;
  • the second switch module 105 is used for The conduction or disconnection between the motor and the battery pack 103 is realized according to the control signal, so that the battery pack 103 outputs electric energy to the motor or stops outputting electric energy.
  • the battery pack 103, the first switch module 104, the motor controller 101, the bus capacitor C1, and the motor 102 form a motor drive circuit.
  • the motor controller 101 realizes the output power of the motor.
  • the charging and discharging circuit includes a discharge circuit.
  • the discharge circuit means that the battery pack 103 discharges the bus capacitor C1 through the motor 102 and the motor controller 101. At this time, current flows out of the battery pack 103, and the current flows into the bus through the motor 102 and the motor controller 101
  • the capacitor C1 is used to charge the bus capacitor C1; the charging circuit means that the bus capacitor C1 charges the battery pack 103 through the motor and the motor controller 101.
  • the current flows out from the bus capacitor C1, and the current passes through the motor controller 101 and the motor , Flows into the battery pack 103, and current flows in the battery pack 103. Due to the internal resistance in the battery pack 103, the current flowing in and out of the battery pack 103 will cause the internal resistance of the battery pack 103 to generate heat when the discharging circuit and the charging circuit are working. , Thereby increasing the temperature of the battery pack 103.
  • the embodiment of the present disclosure provides an energy conversion device.
  • the energy conversion device includes a motor controller 101, a bus capacitor C1, a first switch module 104, a motor, and a second switch module 105.
  • the first switch module 104 and the second switch module 105 are controlled by Turning on or off 105 can make the battery pack 103, the first switch module 104, the bus capacitor C1, the motor controller 101, and the motor form a motor drive circuit, and make the battery pack 103, the second switch module 105, the motor, and the motor form a motor drive circuit.
  • the controller 101 and the bus capacitor C1 form a charging and discharging circuit.
  • the motor controller 101 controls the output torque when the motor drive circuit works, and the motor controller 101 controls the discharge process of the battery pack 103 to the bus capacitor C1 and the bus capacitor when the charging and discharging circuit works.
  • C1 alternately performs the charging process of the battery pack 103 to achieve the temperature rise of the battery pack 103, which can distinguish the motor drive circuit and the charge and discharge circuit, and make the motor controller 101 control the two circuits to work separately, and through the charging and discharging
  • the bus capacitor C1 participates in the process of charging and discharging, which prevents a large amount of current from passing through the bus capacitor C1 when the battery pack 103 is discharged, so that the current flowing through the battery pack 103 is greatly reduced, and the heating speed of the battery pack 103 is also increased.
  • the problem of serious slowing down improves the heating efficiency of the battery pack 103.
  • the battery pack 103, the second switch module 105, the motor 102, and the motor controller 101 form a discharge energy storage circuit
  • the controller 101, the bus capacitor C1 form a discharge energy release circuit
  • the bus capacitor C1 the motor controller 101, the motor 102, the second switch module 105, and the battery pack 103 form a charging energy storage circuit
  • the package 103 and the motor controller 101 form a charging and discharging circuit.
  • the discharge circuit includes a discharge energy storage circuit and a discharge energy release circuit.
  • the charging circuit includes a charge energy storage circuit and a charge energy release circuit.
  • the battery pack 103 When the discharge energy storage circuit is controlled by the motor controller 101 to work, the battery pack 103 outputs electrical energy to make the coil of the motor Perform energy storage; when the motor controller 101 controls the discharge and discharge circuit to work, the battery pack 103 is discharged and the motor coil is discharged to charge the bus capacitor C1; when the motor controller 101 controls the charging and storage circuit to work, the bus capacitor C1 discharges to charge the battery pack 103, and the coil of the motor 102 stores energy; when the motor controller 101 controls the charging and discharging circuit to work, the coil of the motor 102 is discharged to charge the battery pack 103.
  • the discharging process of the battery pack 103 to the bus capacitor C1 and the charging process of the bus capacitor C1 to the battery pack 103 are alternately performed, so that the temperature of the battery pack 103 is increased; in addition, by controlling the PWM of the motor controller 101
  • the duty cycle of the control signal adjusts the current value flowing through the charge and discharge loop. Controlling the duty cycle is equivalent to controlling the conduction time of the upper bridge arm and the lower bridge arm by controlling the conduction time of the upper bridge arm or the lower bridge arm.
  • the discharge energy storage circuit, the discharge energy release circuit, the charge energy storage circuit and the charge energy release circuit in the discharge circuit can be controlled to work in sequence, by controlling the motor controller
  • the duty cycle of the PWM control signal of 101 adjusts the current value flowing through the charge and discharge loop.
  • the charging and energy storage loop and the charging and discharging loop are turned on alternately for discharging, and the value of the current flowing through the discharging loop and the charging loop is adjusted by controlling the duty cycle of the PWM control signal of the motor controller 101.
  • the technical effect of this embodiment is to control the motor controller 101 to operate the charging and discharging circuit, so that the battery pack 103 in the discharging circuit discharges the bus capacitor C1 and the bus capacitor C1 in the charging circuit charges the battery pack 103.
  • the temperature of the battery pack 103 is increased, and the current in the self-heating loop of the battery pack 103 can be adjusted by controlling the motor controller 101 to adjust the heating power generated by the battery pack 103.
  • the second embodiment of the present disclosure provides a control method of an energy conversion device. As shown in FIG. 4, the control method includes:
  • Step S10 When an instruction to enter the driving mode is received, the first switch module is controlled to be turned on and the second switch module is turned off, so that the battery pack, the first switch module, the bus capacitor, the motor controller, and the motor form a motor drive circuit.
  • the first switch module is controlled to be turned on and the second switch module is turned off, and the motor drive circuit is controlled to work by controlling the motor controller to realize the motor output power.
  • Step S20 When an instruction to enter the heating mode is received, the first switch module is controlled to be turned off and the second switch module is turned on, so that the battery pack, the second switch module, the motor, the motor controller, and the bus capacitor form a charge for the battery pack. Discharge circuit.
  • the control method when entering the heating mode, includes: controlling the motor controller to adjust the current value flowing through the charging and discharging circuit when the charging and discharging circuit is working, so as to adjust the heat generated by the internal resistance of the battery pack.
  • the motor may be a three-phase AC motor
  • the motor controller may be a three-phase inverter.
  • the battery pack, the three-phase AC motor, the motor controller, and the bus capacitor form a charging and discharging circuit including a discharging circuit and a charging circuit, respectively.
  • the discharge circuit means that the battery pack discharges the bus capacitor through the three-phase AC motor and the three-phase inverter. At this time, there is current flowing out of the battery pack; the charging circuit means the bus capacitor passes through the three-phase AC motor and the three-phase reverse The converter charges the battery pack, and at this time, current flows into the battery pack.
  • the current flowing in and out of the battery pack will cause the internal resistance of the battery pack to generate heat, thereby increasing the temperature of the battery pack, in order to further control the battery pack’s temperature.
  • the amount of heat generated by the internal resistance can be controlled by a three-phase inverter. Since the three-phase inverter is connected in series in the charging and discharging circuit, different control signals can be input to the three-phase inverter to adjust the flow through the charging and discharging circuit. The current value of, and then adjust the heat generated by the internal resistance of the battery pack.
  • the embodiments of the present disclosure provide a method for controlling an energy conversion device.
  • a charging and discharging circuit is formed by a battery pack, a three-phase AC motor, a three-phase inverter, and a bus capacitor, and the charging and discharging circuit generated in the charging and discharging circuit is controlled by the three-phase inverter.
  • the size of the discharge current causes the internal resistance of the battery pack to generate heat and raise the temperature of the battery pack. Compared with the method of heating the battery pack by external liquid flowing through the battery pack, no additional heating equipment is required, and the heating efficiency of the battery pack is improved.
  • controlling the motor controller to adjust the current value flowing through the charging and discharging loop includes:
  • Step S201 Obtain the charge-discharge cycle of the battery pack and the target equivalent current value of the charge-discharge loop.
  • the charge-discharge cycle of the battery pack and the target equivalent current value of the charge-discharge loop are given by the battery management system.
  • Step S202 Obtain the charge-discharge cycle of the charge-discharge loop according to the charge-discharge cycle of the battery pack, and obtain the duty cycle of the PWM control signal according to the target equivalent current value of the charge-discharge loop.
  • the charge and discharge cycle of the charge and discharge loop refers to the cycle for controlling the upper and lower arms to complete a switch
  • the duty cycle refers to the time occupied by the upper or lower arms of the motor controller to output high-level signals.
  • the percentage of the entire charge and discharge cycle. Controlling the duty cycle is equivalent to controlling the conduction time of the upper and lower bridge arms.
  • the charging loop may include a charging energy storage loop and a charging freewheeling loop.
  • the duty cycle is controlled, the on-time of the charging energy storage loop is changed. For a long time, the current in the circuit will increase, that is, the duty cycle in each cycle determines the increase or decrease of the current in the charge and discharge loop.
  • obtaining the charge-discharge cycle of the charge-discharge circuit according to the charge-discharge cycle of the battery pack includes:
  • the charge-discharge cycle of the battery pack is equal to the charge-discharge cycle of the battery pack.
  • the pre-stored target equivalent current value and the duty cycle corresponding table of the PWM control signal can be obtained through multiple test measurements.
  • the number of target current equivalent values in one charge and discharge cycle is one, according to The above correspondence table can obtain the duty ratio of the PWM control signal of the charge and discharge cycle of the charge and discharge circuit.
  • controlling the motor controller to adjust the current value flowing through the charging and discharging circuit to adjust the heat generated by the internal resistance of the battery pack includes:
  • the switch of the upper and lower bridge arms of the motor controller is controlled, and the current value flowing through the charging and discharging circuit is adjusted to adjust the heat generated by the internal resistance of the battery pack.
  • the charge-discharge cycle of the charge-discharge loop includes a charge cycle and a discharge cycle.
  • the charge cycle refers to the working cycle of the charging loop in the charge-discharge loop
  • the discharge cycle refers to the working cycle of the discharge loop in the charge-discharge loop, and one charge and discharge of the battery pack.
  • the cycle is divided into a charging duration and a discharging duration.
  • the charging time is equal to the charging cycle
  • the discharging time is equal to the discharging cycle, that is, the charging time includes a charging cycle of the charging and discharging circuit
  • the discharging time includes a discharging cycle of the charging and discharging circuit. It can also be different from the discharge cycle.
  • the switch of the upper and lower bridge arms of the motor controller is controlled to control the discharge energy storage circuit, discharge energy release circuit, and charge storage circuit in the charge and discharge circuit.
  • the energy loop and the charging and discharging loop work in sequence, adjusting the current flowing through the charging and discharging loop to the target current equivalent value to adjust the heat generated by the internal resistance of the battery pack.
  • This embodiment adopts a low-frequency control mode to obtain the charge-discharge cycle of the battery pack and the target equivalent current value of the charge-discharge loop, and obtain the charge-discharge cycle of the charge-discharge loop according to the charge-discharge cycle of the battery pack, which is equivalent to the target equivalent of the charge-discharge loop.
  • the current value obtains the duty cycle of the PWM control signal, controls the switches of the upper and lower arms of the motor controller according to the duty cycle of the PWM control signal, and adjusts the current flowing through the charge and discharge loop to the target equivalent current value.
  • This embodiment controls Simple, the motor controller generates less heat, which improves the heating efficiency of the battery pack.
  • the soft start mode is to output a very small duty cycle of the PWM control signal to the motor controller to control the discharge energy storage circuit and the discharge energy release circuit in the charge and discharge circuit.
  • the charging and energy storage circuit and the charging and discharging circuit work in sequence, so that the system slowly builds up the battery charge and discharge current, and then slowly increases the duty cycle of the lower bridge arm, so that the battery charge and discharge current gradually increases to complete the soft start .
  • the energy conversion device includes a motor 102, a motor controller 101, a bus capacitor C1, a switch K1, a switch K2, a switch K3, a switch K4, and a resistor R.
  • the neutral point of the three-phase coil of the motor 102 is connected to the switch K1.
  • the second terminal of the switch K1 is connected to the positive terminal of the battery pack 103, the first terminal of the switch K2, the first terminal of the switch K3, the second terminal of the switch K3 is connected to the first terminal of the resistor R, and the motor 102
  • the three-phase coils are respectively connected to the midpoint of the three-phase bridge arm of the motor controller 101, and the first bus terminal of the motor controller 101 is connected to the first end of the bus capacitor C1, the second end of the switch K2, and the second end of the resistor R
  • the second bus terminal of the motor controller 101 is connected to the second terminal of the bus capacitor C1 and the second terminal of the switch K4, and the first terminal of the switch K4 is connected to the negative electrode of the battery pack 103.
  • the second end of the switch K1 is connected to the negative electrode of the battery pack 103.
  • the motor controller 101 includes a first power switch unit, a second power switch unit, a third power switch unit, a fourth power switch unit, a fifth power switch unit, and a sixth power switch unit, the first power switch unit and the second power switch unit.
  • the four power switch units form the first bridge arm
  • the third power switch unit and the sixth power switch unit form the second bridge arm
  • the fifth power switch unit and the second power switch unit form the third bridge arm
  • the first power switch unit One ends of the third power switch unit and the fifth power switch unit are commonly connected to form the first bus terminal of the motor controller, and one end of the second power switch unit, the fourth power switch unit and the sixth power switch unit are commonly connected to form the motor
  • the first phase coil of the motor 102 is connected to the midpoint of the first bridge arm
  • the second phase coil of the motor 102 is connected to the midpoint of the second bridge arm
  • the third phase coil of the motor 102 is connected to the third The midpoint of the bridge arm.
  • the first power switch unit in the motor controller 101 includes a first upper bridge arm VT1 and a first upper bridge diode VD1
  • the second power switch unit includes a first lower bridge arm VT2 and a first lower bridge diode VD2
  • a third power switch unit It includes a second upper bridge arm VT3 and a second upper bridge diode VD3
  • the fourth power switch unit includes a second lower bridge arm VT4 and a second lower bridge diode VD4
  • the fifth power switch unit includes a third upper bridge arm VT5 and a third
  • the upper bridge diode VD5 and the sixth power switch unit include the third lower bridge arm VT6 and the third lower bridge diode VD6.
  • the three-phase AC motor is a three-phase four-wire system, which can be a permanent magnet synchronous motor or an asynchronous motor. Connect the midpoint to lead to the neutral line.
  • the switch K1 when the energy conversion device does not perform the heating function, the switch K1 remains open and the switch K4 is closed. After entering the heating mode, the switch K3 is closed for precharging. If the precharging is unsuccessful, it will end. If the precharging is successful , Immediately close switch K1, and open K3 to enter the heating state. At this time, the circuit structure of FIG. 6 is equivalent to that shown in FIG. 8.
  • control motor controller 101 When the control motor controller 101 is in the low frequency control mode, it enters the heating state, that is, the pre-charge of the bus capacitor C1 is completed, and the switch K1 is closed and the switch K3 is opened. At this time, the voltage on the bus capacitor C1 is close to the voltage of the battery pack 103.
  • the power tubes of the motor controller 101 are all in the off state, there is almost no current in the coil of the motor 102, and the system is in a ready state.
  • the battery pack 103, switch K1, motor 102, and motor controller 101 A discharge energy storage circuit is formed.
  • the battery pack 103, switch K1, motor 102, motor controller 101, and bus capacitor C1 form a discharge energy release circuit; bus capacitor C1, motor controller 101, motor 102, switch K1, and battery pack 103 form a charge
  • the energy storage circuit, the motor 102, the switch K1, the battery pack 103, and the motor controller 101 form a charging and discharging circuit.
  • the discharge storage in the charging and discharging circuit is controlled.
  • the energy circuit, the discharge energy release circuit, the charge energy storage circuit and the charge energy release circuit work in sequence to complete the soft start.
  • the charge-discharge cycle of the battery pack 103 After completing the soft-start process, enter the formal heating process to obtain the charge-discharge cycle of the battery pack 103 and the target equivalent current value of the charge-discharge loop.
  • the charge-discharge cycle of the battery pack 103 the charge time and discharge time are obtained, where the charge time is equal to The discharge duration, the charge cycle of the charge-discharge loop is obtained according to the charge duration, the discharge cycle of the charge-discharge loop is obtained according to the discharge duration, the duty cycle of the PWM control signal is obtained according to the target equivalent current value of the charge-discharge loop, according to the PWM control signal
  • the duty cycle of the motor controller 101 controls the switches of the upper and lower arms of the motor controller 101, thereby controlling the charging and discharging current of the battery pack 103, so that the heating power inside the battery reaches the expected value, which specifically includes:
  • the first stage is the work of the discharge energy storage circuit: as shown in Figure 9, when the lower arm of the motor controller 101 is turned on, the current flows from the positive electrode of the battery pack 103, and passes through the switch K1, the motor 102, and the lower arm of the motor controller 101. (The second lower bridge arm VT2, the fourth lower bridge arm VT4, and the sixth lower bridge arm VT6) flow back to the negative electrode of the battery pack 103, and the current continues to increase.
  • the second stage is the work of the discharge freewheeling loop: as shown in Figure 10, when the lower arm of the motor controller 101 is turned off and the upper arm is turned on, the current starts from the positive pole of the battery pack 103 and passes through switches K1, motor 102,
  • the upper arm of the motor controller 101 (the first upper bridge diode VD1, the third upper bridge diode VD3, and the fifth upper bridge diode VD5) charge the anode of the bus capacitor C1, the current is continuously reduced to zero, and the inductive energy storage is reduced to At zero, the coil inductance of the battery pack 103 and the motor 102 are discharged together to charge the bus capacitor C1, and the voltage of the bus capacitor C1 rises to a certain maximum value.
  • the third stage is the work of the charging energy storage loop: as shown in Figure 11, the lower bridge arm of the control motor controller 101 is disconnected and the upper bridge arm is closed.
  • the upper bridge arm of the motor controller 101 is opened, the current flows from the bus capacitor C1.
  • the positive pole of the battery pack 103 is charged after passing through the upper arm of the motor controller 101 (the first upper arm VT1, the third upper arm VT3, and the fifth upper arm VT5), the motor 102, and the switch K1. It increases first and then decreases continuously, and the voltage of the bus capacitor C1 decreases continuously.
  • the fourth stage is the work of the charge freewheeling loop: as shown in Figure 12, when the lower arm of the motor controller 101 is turned on, the current flows from the negative electrode of the battery pack 103 and passes through the lower arm of the motor controller 101 (the second lower bridge).
  • the diode VD2, the fourth low-bridge diode VD4, and the sixth low-bridge diode VD6), the motor 102, and the switch K1 flow back to the positive electrode of the battery pack, and the current continues to decrease, and the voltage of the bus capacitor C1 will continue to decrease.
  • the battery pack 103 In the first and second stages, the battery pack 103 is discharged to the outside, and at the end of the first stage, the discharge current reaches the maximum, and the battery pack 103 in the third and fourth stages is charged. At some point in the third stage, the charging current reaches the maximum ;
  • the second stage charges the bus capacitor C1, the voltage of the bus capacitor C1 rises to the highest, the third stage discharges the bus capacitor C1, and the voltage of the bus capacitor C1 drops to the lowest.
  • the upper and lower arms of the motor controller 101 are under complementary pulse control. Under the premise of the same control period, the longer the turn-on time of the lower arms, the greater the maximum charge and discharge current of the battery pack 103, and the greater the maximum voltage of the bus capacitor C1. Higher, the maximum charge and discharge current of the battery pack 103 will be greater, and the heating power of the internal resistance of the battery pack 103 will also be greater. On the contrary, the shorter the turn-on time of the lower bridge arm, the smaller the maximum charge and discharge current of the battery pack 103. At the same time, the lower the maximum voltage of the bus capacitor C1, the smaller the maximum charge and discharge current of the battery pack 103. The heating power of the resistance will also be smaller.
  • the charge and discharge current of the battery pack is mainly adjusted by controlling the duty cycle.
  • the internal heat generation power of the battery pack is positively correlated with the conduction time of the lower bridge arm.
  • the control period is mainly determined by the AC internal resistance of the battery pack, and the control period is selected with the maximum heating power as the target.
  • the control period will affect the variation range of the capacitor voltage, and the variation range of the capacitor voltage is negatively related to the period.
  • Increasing the duty cycle of the lower bridge arm can increase the charge and discharge current of the battery pack, that is, increase the internal heating power of the battery.
  • reducing the duty cycle of the lower bridge arm can reduce the charge and discharge current of the battery pack, that is, reduce The heating power inside the battery.
  • real-time monitoring of the status of the electronic control, motor and other related parts if there is abnormal current, voltage, temperature, immediately stop heating to ensure heating safety.
  • control method further includes a high frequency control mode.
  • the controlling the motor controller to adjust the current value flowing through the charging and discharging loop also includes:
  • Step S301 Obtain the charge-discharge cycle of the battery pack and the target current waveform of the charge-discharge loop in the charge-discharge cycle of the battery pack, wherein the charge-discharge cycle of the battery pack includes a charging duration and a discharging duration, so The charging duration includes multiple charging cycles of the charge-discharge loop, and the discharge duration includes multiple discharge cycles of the charge-discharge loop.
  • the charge and discharge cycle of the battery pack and the target current waveform of the charge and discharge loop are given by the battery management system.
  • the target current waveform refers to the control of the motor
  • the controller adjusts the current waveform reached by the current value flowing through the charging and discharging loop, and the target current waveform can satisfy the waveform function.
  • the target current waveform can be a triangular wave, a sine wave, etc., and one charge and discharge cycle of the battery pack is divided into It is a charging time and a discharging time.
  • the charging time refers to the time consumed by the battery pack in a charging and discharging cycle
  • the discharging time refers to the time consumed by the battery pack in the discharging process in a charging and discharging cycle.
  • one charge and discharge cycle of the battery pack includes multiple charge cycles and discharge cycles, and the corresponding relationship is that the charging time corresponds to multiple charging cycles, and the discharge time corresponds to multiple discharge cycles.
  • Step S302 Acquire multiple target equivalent current values corresponding to the target current waveform according to the target current waveform.
  • the target current waveform in order to obtain the target current waveform, multiple target equivalent current values conforming to the target current waveform are selected.
  • Step S303 Obtain the duty cycle of the PWM control signal according to the target equivalent current value, and obtain the number of charging cycles included in the charging duration and the number of charging cycles included in the charging duration according to the number of charge and discharge cycles of the battery pack and the target equivalent current value.
  • the discharge duration includes the number of discharge cycles, where a target equivalent current value corresponds to a charge cycle or a discharge cycle.
  • obtaining the duty cycle of the PWM control signal according to the target equivalent current value of the charge and discharge loop includes:
  • the pre-stored target equivalent current value and the duty ratio of the PWM control signal corresponding relationship table, the corresponding relationship table can be obtained through multiple test measurements.
  • obtaining the number of charge cycles included in the charging time length and the number of discharge cycles included in the discharge time length includes:
  • the charge and discharge cycle of the battery pack the number of the target equivalent current value, the charge duration, the discharge duration, the charge cycle, the discharge cycle, the number of charge cycles, and the discharge cycle
  • the quantity satisfies the following formula:
  • T1 N1 ⁇ t1;
  • N N1+N2;
  • T is the charge and discharge cycle of the battery pack
  • T1 is the charge duration
  • T2 is the discharge duration
  • t1 is the charge cycle of the charge and discharge loop
  • N1 is the number of charge cycles
  • t2 is the In the discharge cycle of the charge and discharge loop
  • N2 is the number of discharge cycles
  • N is the number of target equivalent current values.
  • N1 target equivalent current values are obtained under the charging time, which corresponds to N1 charging cycles, and N1 charging cycles correspond to the duty cycle of N1 PWM control signals;
  • N2 target equivalent current values are obtained under the discharge time , Which corresponds to obtaining N2 charging cycles, and N2 charging cycles correspond to the duty ratios of N2 PWM control signals.
  • controlling the motor controller to adjust the current value flowing through the charging and discharging circuit to adjust the heat generated by the internal resistance of the battery pack includes:
  • the current value is used to adjust the heat generated by the internal resistance of the battery pack.
  • the switching of the upper and lower bridge arms of the motor controller is controlled according to the number of charging cycles, the number of discharging cycles, and the duty ratio of the PWM control signal, and the current value flowing through the charging and discharging loop is adjusted ,include:
  • the current value in the charging and discharging loop is made the target equivalent current value, and the target current waveform is finally formed.
  • the entire charge and discharge cycle of the battery pack includes N control cycles of the motor controller.
  • the control cycle refers to the charge cycle or the discharge cycle.
  • Each adjustment of the duty cycle of the power tube will change the direction of current change at the same time.
  • Increasing the duty cycle of the lower bridge arm will increase the battery discharge current or decrease the charging current; while reducing the duty cycle of the lower bridge arm will cause the battery pack discharge current to decrease, or the charging current to increase, by controlling each battery
  • the average duty cycle of N switching control in the charge and discharge cycle can increase or decrease the overall charge and discharge current.
  • the local current can be changed. For example, the current value at a certain point can be increased or decreased.
  • the charge and discharge current of the battery can be made Shows similar waveforms such as triangle wave, sine wave, and square wave. According to the actual control requirements, battery pack heating power requirements, and battery life and other factors, select the appropriate current waveform, so that the control is convenient to realize, the battery stability is not affected, and the battery heating power is relatively large.
  • the motor controller controls the switches of the upper and lower bridge arms in each charge cycle and each discharge cycle, and adjusts the current flowing through the charge and discharge loop to the target value Equivalent current value, afterwards also include:
  • the duty cycle of the PWM control signal when the duty cycle of the PWM control signal is adjusted in a charge cycle or discharge cycle and the actual current value in the charge and discharge loop in the control cycle is obtained, when the actual current value does not match the target current value, the actual current value is obtained The current difference between the target equivalent current value and the target equivalent current value.
  • the duty cycle correction value corresponding to the current difference is obtained, and the duty cycle correction value is compared with the next control The duty cycle corresponding to the cycle is superimposed, and then the motor controller is controlled.
  • This embodiment obtains the duty cycle correction value of the current charging cycle or the current discharge cycle through the relationship between the actual current value and the target equivalent current value, and adjusts the duty cycle of the next control cycle according to the duty cycle correction value to make The actual current value of the charging and discharging circuit conforms to the target equivalent current value, which makes the current waveform more accurate.
  • a target current value corresponds to a discharge cycle or charging cycle of the click controller.
  • the effective value of the current flowing through the battery pack can reach Any target current value, the current waveform can be adjusted, and the adaptability is stronger.
  • control motor controller 101 when the control motor controller 101 is in the high-frequency control mode, it receives the heating instruction and enters the heating state, that is, the pre-charge of the bus capacitor C1 is completed, and the switch K1 and the switch K3 are closed. At this time, the bus The voltage on the capacitor C1 is close to the voltage of the battery pack 103, the power tubes of the motor controller 101 are all turned off, there is almost no current in the coil inductance of the motor 102, and the system is in a ready state.
  • the battery pack 103, switch K1, motor 102, and motor controller 101 A discharge energy storage circuit is formed.
  • the battery pack 103, switch K1, motor 102, motor controller 101, and bus capacitor C1 form a discharge energy release circuit; bus capacitor C1, motor controller 101, motor 102, switch K1, and battery pack 103 form a charge
  • the energy storage circuit, the motor 102, the switch K1, the battery pack 103, and the motor controller 101 form a charging and discharging circuit.
  • the discharge storage in the charging and discharging circuit is controlled.
  • the energy circuit, the discharge energy release circuit, the charge energy storage circuit and the charge energy release circuit work in sequence to complete the soft start.
  • the charging time is T-t0, within the discharging time t0, select 7 target equivalent current values, select the time interval between two equivalent current values as ⁇ t, according to I(t+ ⁇ t)-I(t) Obtain the current variation, and obtain the duty cycle of the PWM control signal according to the current variation.
  • the discharge time corresponds to 7 discharge cycles, and each discharge cycle corresponds to the duty cycle of the PWM control signal.
  • the motor controller is adjusted to make the current value of the charging and discharging loop the target equivalent current value, so that the heating power inside the battery reaches Expected value, including the following stages:
  • the first stage is the work of the discharge energy storage circuit: as shown in Figure 9, when the lower arm of the motor controller 101 is turned on, the current flows from the positive electrode of the battery pack 103, and passes through the switch K1, the motor 102, and the lower arm of the motor controller 101. (The second lower bridge arm VT2, the fourth lower bridge arm VT4, and the sixth lower bridge arm VT6) flow back to the negative electrode of the battery pack 103, and the current continues to increase.
  • the second stage is the work of the discharge freewheeling loop: as shown in Figure 10, when the lower arm of the motor controller 101 is turned off and the upper arm is turned on, the current starts from the positive pole of the battery pack 103 and passes through switches K1, motor 102,
  • the upper arm of the motor controller 101 (the first upper bridge diode VD1, the third upper bridge diode VD3, and the fifth upper bridge diode VD5) charge the anode of the bus capacitor C1, the current is continuously reduced to zero, and the inductive energy storage is reduced to At zero, the coil inductance of the battery pack 103 and the motor 102 are discharged together to charge the bus capacitor C1, and the voltage of the bus capacitor C1 rises to a certain maximum value.
  • the discharge energy storage circuit and the discharge freewheeling circuit are controlled to work 7 times. Each time the duty ratio of the lower bridge arm is increased, the battery discharge current will increase, and the current value of the discharge circuit will reach Target current waveform.
  • the third stage is the work of the charging energy storage loop: as shown in Figure 11, the lower bridge arm of the control motor controller 101 is disconnected and the upper bridge arm is closed.
  • the upper bridge arm of the motor controller 101 is opened, the current flows from the bus capacitor C1.
  • the positive pole of the battery pack 103 is charged after passing through the upper arm of the motor controller 101 (the first upper arm VT1, the third upper arm VT3, and the fifth upper arm VT5), the motor 102, and the switch K1. It increases first and then decreases continuously, and the voltage of the bus capacitor C1 decreases continuously.
  • the fourth stage is the work of the charge freewheeling loop: as shown in Figure 12, when the lower arm of the motor controller 101 is turned on, the current flows from the negative electrode of the battery pack 103 and passes through the lower arm of the motor controller 101 (the second lower bridge).
  • the diode VD2, the fourth low-bridge diode VD4, and the sixth low-bridge diode VD6), the motor 102, and the switch K1 flow back to the positive electrode of the battery pack, and the current continues to decrease, and the voltage of the bus capacitor C1 will continue to decrease.
  • the charging energy storage loop and the charging freewheeling loop are controlled to work 4 times according to the 4 duty ratios corresponding to the 4 charging cycles, so that the current value of the charging loop reaches the target current waveform.
  • the third embodiment of the present disclosure provides a vehicle, which includes the energy conversion device described in the first embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Automation & Control Theory (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Inverter Devices (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种车辆、能量转换装置及其控制方法,涉及车辆技术领域,能量转换装置包括电机控制器、母线电容、第一开关模块、电机以及第二开关模块,通过控制第一开关模块以及第二开关模块的导通或者关断,可以使电池包、第一开关模块、母线电容、电机控制器、电机形成电机驱动电路,以及使电池包、第二开关模块、电机、电机控制器、母线电容形成充放电回路,通过电机控制器控制电机驱动电路工作时输出动力,通过电机控制器控制充放电回路工作时电池包对母线电容的放电过程与母线电容对电池包的充电过程交替进行。

Description

车辆、能量转换装置及其控制方法
相关申请的交叉引用
本公开要求于2019年12月31日提交的申请号为201911409880.7、名称为“车辆、能量转换装置及其控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及车辆技术领域,尤其涉及一种车辆、能量转换装置及其控制方法。
背景技术
电池包作为动力源使用的环境不同,电池包的性能也会受到影响。比如,在低温环境下的电池包的性能较常温会产生较大程度的降低。为了能够在低温环境下使用电池包,需要在使用电池包之前对电池包进行预热。
为此,相关技术中公开了一种电池包预热方法。在该技术中,如图1所示,电池包103处于放电过程时,触发电机控制器101中的晶体管VT1和晶体管VT6同时导通,电流从电池包103正极流出,经过晶体管VT1和晶体管VT6、电机102的两个定子电感,回到电池包103负极,电流上升,能量储存在两定子电感中;如图2所示,电池包103处于充电过程时,晶体管VT1和晶体管VT6同时断开,电流从电机102的两个定子电感、电机控制器101经过两个泄放的二极管VD4和VD3回到电池包102,电流下降。重复上述两个过程,电池处于快速的充电、放电的交替状态,由于电池内阻的存在,使得内部大量发热,温度快速升高。
然而,上述技术中,由于电池包103既可以形成充放电回路,又可以形成电机驱动电路,因此增加了电机控制器的控制难度。并且,由于存在母线电容C1,在充放电回路工作的过程中电池包103放电时会有大量电流从母线电容C1经过,使得流经电池包的电流大幅度下降,电池包的加热速度也会严重变慢。
发明内容
本公开提出了一种车辆、能量转换装置及其控制方法,以实现对电机驱动电路和充放电回路进行区分,使电机控制器分别控制两个电路进行工作,以及提升电池包的加热速度。
第一方面,本公开提出了一种能量转换装置,所述能量转换装置包括:
电机控制器,所述电机控制器的各路桥臂的第一端共接形成第一汇流端,所述电机控制器的各路桥臂的第二端共接形成第二汇流端;
母线电容,所述母线电容的第一端与所述第一汇流端连接,所述母线电容的第二端与所述第二汇流端以及电池包的负极连接;
第一开关模块,所述第一开关模块连接在所述母线电容和所述电池包的正极之间;
电机,所述电机的线圈分别连接所述电机控制器的桥臂的中点;
第二开关模块,所述第二开关模块连接在所述电机的线圈的中性点与所述电池包的正极或者负极之间。
第二方面,本公开提出了一种基于第一方面所述的能量转换装置的控制方法,所述控制方法包括:
当接收到进入加热模式的指令时,控制所述第一开关模块关断以及所述第二开关模块导通,使所述电池包、所述第二开关模块、所述电机、所述电机控制器、所述母线电容形成所述电池包的充放电回路;
当接收到进入驱动模式的指令时,控制所述第一开关模块导通以及所述第二开关模块关断时,使所述电池包、所述第一开关模块、所述母线电容、所述电机控制器、所述电机形成电机驱动电路。
第三方面,本公开提出了一种车辆,包括第一方面所述的能量转换装置。
本公开提出的车辆、能量转换装置及其控制方法,能量转换装置包括电机控制器、母线电容、第一开关模块、电机以及第二开关模块,通过控制第一开关模块以及第二开关模块的导通或者关断,可以使电池包、第一开关模块、母线电容、电机控制器、电机形成电机驱动电路,以及使电池包、第二开关模块、电机、电机控制器、母线电容形成充放电回路,通过电机控制器控制电机驱动电路工作时输出扭矩,通过电机控制器控制充放电回路工作时电池包对母线电容的放电过程与母线电容对电池包的充电过程交替进行进而实现电池包的升温,可以实现对电机驱动电路和充放电回路进行区分,并使电机控制器分别控制两个电路进行工作,并且通过在充放电回路中使母线电容参与充放电的过程,避免了电池包放电时会有大量电流从母线电容经过,使得流经电池包的电流大幅度下降,进而使电池包的加热速度也会严重变慢的问题,提升了电池包的加热效率。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本公开的其它特征、目的和优点将会变得更明显:
图1是现有技术提供的电机控制电路的电流流向图;
图2是现有技术提供的电机控制电路的另一电流流向图;
图3是本公开实施例一提供的一种能量转换装置的电路图;
图4是本公开实施例一提供的一种能量转换装置的控制方法的流程图;
图5是本公开实施例一提供的一种能量转换装置的控制方法的另一流程图;
图6是本公开实施例一提供的一种能量转换装置的电路图;
图7是本公开实施例一提供的一种能量转换装置的另一电路图;
图8是本公开实施例一提供的一种能量转换装置的另一电路图;
图9是本公开实施例一提供的一种能量转换装置的电流流向图;
图10是本公开实施例一提供的一种能量转换装置的电流流向图;
图11是本公开实施例一提供的一种能量转换装置的电流流向图;
图12是本公开实施例一提供的一种能量转换装置的电流流向图;
图13是本公开实施例一提供的一种能量转换装置的时间电流波形图。
具体实施方式
为了使本公开的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本公开进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本公开,并不用于限定本公开。
为了说明本公开的技术方案,下面通过具体实施例来进行说明。
本公开实施例一提供一种能量转换装置,如图3所示,能量转换装置包括:
电机控制器101,电机控制器101的各路桥臂的第一端共接形成第一汇流端,电机控制器101的各路桥臂的第二端共接形成第二汇流端;
母线电容C1,母线电容C1的第一端与第一汇流端连接,母线电容C1的第二端与第二汇流端以及电池包103的负极连接;
第一开关模块104,第一开关模块104连接在母线电容C1和电池包103的正极之间;
电机,电机的线圈分别连接电机控制器101的桥臂的中点;
第二开关模块105,第二开关模块105连接在电机的线圈的中性点与电池包103的正极或者负极之间。
其中,电机控制器101包括M路桥臂,M路桥臂中的每路桥臂的第一端共接形成电机控制器101的第一汇流端,M路桥臂中的每路桥臂的第二端共接形成电机控制器101的第二汇流端,每路桥臂上包括两个串联连接的功率开关单元,功率开关单元可以是晶体管、IGBT、MOS管等器件类型,每路桥臂的中点形成在两个功率开关单元之间,电机包括M相线圈,M相线圈中每相线圈的第一端与一组M路桥臂中每路桥臂的中点一一对应连接,M相线圈中的每相线圈的第二端共接形成中性线,中性线与第二开关模块105连接。
当M=3时,电机控制器101为三相逆变器,三相逆变器包括三路桥臂,三路桥臂中的 每路桥臂的第一端共接形成电机控制器101的第一汇流端,一组三路桥臂中的每路桥臂的第二端共接形成电机控制器101的第二汇流端;三相逆变器包括第一功率开关单元、第二功率开关单元、第三功率开关单元、第四功率开关单元、第五功率开关以及第六功率开关,第一功率开关单元和第四功率开关单元形成第一路桥臂,第二功率开关单元和第五开关单元形成第二路桥臂,第三功率开关单元和第六开关单元形成第三路桥臂,第一功率开关单元、第三功率开关单元以及第五功率开关单元的一端共接并构成三相逆变器的第一汇流端,第二功率开关单元、第四功率开关单元以及第六功率开关单元的一端共接并构成三相逆变器的第二汇流端。
其中,电机包括三相线圈,三相线圈中每相线圈的第一端与三路桥臂中每路桥臂的中点一一对应连接,三相线圈中的每相线圈的第二端共接形成。电机的第一相线圈连接第一路桥臂的中点,电机的第二相线圈连接第二路桥臂的中点,电机的第三相线圈连接第三路桥臂的中点。
其中,三相逆变器中第一功率开关单元包括第一上桥臂VT1和第一上桥二极管VD1,第二功率开关单元包括第二下桥臂VT2和第二下桥二极管VD2,第三功率开关单元包括第三上桥臂VT3和第三上桥二极管VD3,第四功率开关单元包括第四下桥臂VT4和第四下桥二极管VD4,第五功率开关单元包括第五上桥臂VT5和第五上桥二极管VD5,第六功率开关单元包括第六下桥臂VT6和第六下桥二极管VD6,电机是三相四线制,可以是永磁同步电机或异步电机,三相线圈连接于一点并连接第二开关模块105。
其中,第一开关模块104用于根据控制信号实现电池包103与母线电容C1之间的导通或者断开,使电池包103向母线电容C1进行充电或者停止充电;第二开关模块105用于根据控制信号实现电机与电池包103之间的导通或者断开,使电池包103向电机输出电能或者停止输出电能。
其中,第一开关模块104导通以及第二开关模块105关断时,电池包103、第一开关模块104、电机控制器101、母线电容C1、电机102形成电机驱动电路,此时,通过控制电机控制器101实现电机输出动力。
其中,第一开关模块104关断以及第二开关模块105导通时,电池包103、第二开关模块105、电机102、电机控制器101、母线电容C1形成充放电回路,充放电回路包括放电回路和充电回路,放电回路是指由电池包103通过电机102和电机控制器101对母线电容C1进行放电,此时,电池包103中有电流流出,电流经过电机102和电机控制器101流入母线电容C1以对母线电容C1进行充电;充电回路是指由母线电容C1通过电机和电机控制器101对电池包103进行充电,此时,电流由母线电容C1流出,电流经过电机控制器101和电机,流入电池包103,电池包103有电流流入,由于电池包103中存在内阻, 当放电回路和充电回路工作的过程中电池包103有电流流入和流出会使电池包103的内阻产生热量,进而使电池包103的温度升高。
本公开实施例提供一种能量转换装置,能量转换装置包括电机控制器101、母线电容C1、第一开关模块104、电机以及第二开关模块105,通过控制第一开关模块104以及第二开关模块105的导通或者关断,可以使电池包103、第一开关模块104、母线电容C1、电机控制器101、电机形成电机驱动电路,以及使电池包103、第二开关模块105、电机、电机控制器101、母线电容C1形成充放电回路,通过电机控制器101控制电机驱动电路工作时输出扭矩,通过电机控制器101控制充放电回路工作时电池包103对母线电容C1的放电过程与母线电容C1对电池包103的充电过程交替进行进而实现电池包103的升温,可以实现对电机驱动电路和充放电回路进行区分,并使电机控制器101分别控制两个电路进行工作,并且通过在充放电回路中使母线电容C1参与充放电的过程,避免了电池包103放电时会有大量电流从母线电容C1经过,使得流经电池包103的电流大幅度下降,进而使电池包103的加热速度也会严重变慢的问题,提升了电池包103的加热效率。
作为一种实施方式,当充放电回路工作时,电池包103、第二开关模块105、电机102、电机控制器101形成放电储能回路,电池包103、第二开关模块105、电机102、电机控制器101、母线电容C1形成放电释能回路;母线电容C1、电机控制器101、电机102、第二开关模块105、电池包103形成充电储能回路,电机102、第二开关模块105、电池包103、电机控制器101形成充电释能回路。
其中,放电回路包括放电储能回路和放电释能回路,充电回路包括充电储能回路和充电释能回路,通过电机控制器101控制放电储能回路工作时,电池包103输出电能使电机的线圈进行储能;通过电机控制器101控制放电释能回路工作时,电池包103放电和电机的线圈释能以对母线电容C1进行充电;通过电机控制器101控制充电储能回路工作时,母线电容C1放电以对电池包103进行充电,电机102的线圈进行储能;通过电机控制器101控制充电释能回路工作时,电机102的线圈释能以对电池包103进行充电。通过控制电机控制器101使电池包103对母线电容C1的放电过程与母线电容C1对电池包103的充电过程交替进行,使电池包103的温度升高;此外,通过控制电机控制器101的PWM控制信号的占空比的大小调节流经充放电回路中的电流值,控制占空比即相当于控制上桥臂和下桥臂的导通时间,通过控制上桥臂或者下桥臂的导通时间变长或者缩短后,会使充放电回路中电流的增加或者减小,进而可以调整电池包103产生的加热功率。
需要说明的是,在控制放电回路和充电回路工作的过程中,可以控制放电回路中的放电储能回路、放电释能回路、充电储能回路以及充电释能回路依次工作,通过控制电机控制器101的PWM控制信号的占空比的大小调节流经充放电回路中的电流值,也可以先控 制放电回路中的放电储能回路和放电释能回路交替导通进行放电,再控制充电回路中充电储能回路以及充电释能回路交替导通进行放电,通过控制电机控制器101的PWM控制信号的占空比的大小分别调节流经放电回路和充电回路中的电流值。
本实施方式中的技术效果在于通过控制电机控制器101使充放电回路工作,使放电回路中的电池包103对母线电容C1进行放电以及使充电回路中的母线电容C1对电池包103进行充电,进而使电池包103的温度升高,并且还可以通过控制电机控制器101调整电池包103自加热回路中的电流,调整电池包103产生的加热功率。
本公开实施例二提供一种能量转换装置的控制方法,如图4所示,控制方法包括:
步骤S10.当接收到进入驱动模式的指令时,控制第一开关模块导通以及第二开关模块关断,使电池包、第一开关模块、母线电容、电机控制器、电机形成电机驱动电路。
其中,当车辆需要输出扭矩时,控制第一开关模块导通以及第二开关模块关断,通过控制电机控制器控制电机驱动电路进行工作,实现电机输出动力。
步骤S20.当接收到进入加热模式的指令时,控制第一开关模块关断以及第二开关模块导通,使电池包、第二开关模块、电机、电机控制器、母线电容形成电池包的充放电回路。
其中,当进入加热模式后,控制方法包括:在充放电回路工作时,控制电机控制器调节流经充放电回路中的电流值,以调节电池包的内阻产生的热量。
其中,电机可以是三相交流电机,电机控制器可以是三相逆变器,电池包、三相交流电机、电机控制器以及母线电容形成充放电回路分别包括放电回路和充电回路。放电回路是指由电池包通过三相交流电机和三相逆变器对母线电容进行放电,此时,电池包中有电流流出;充电回路是指由母线电容通过三相交流电机和三相逆变器对电池包进行充电,此时,电池包有电流流入。由于电池包中存在内阻,当放电回路和充电回路工作的过程中电池包有电流流入和流出会使电池包的内阻产生热量,进而使电池包的温度升高,为了进一步控制电池包的内阻产生的热量的大小,可以通过三相逆变器进行控制,由于三相逆变器串联于充放电回路中,可以向三相逆变器输入不同的控制信号调节流经充放电回路中的电流值,进而调节电池包的内阻产生的热量。
本公开实施例提供一种能量转换装置的控制方法,通过电池包、三相交流电机、三相逆变器以及母线电容形成充放电回路,通过三相逆变器控制充放电回路中产生的充放电电流的大小,使电池包的内阻产生热量,提升电池包的温度,相对于通过外部液体流经电池包进行加热的方式,不需要额外的加热设备,并且提升了电池包的加热效率。
作为一种实施方式,控制方法处于低频控制模式时,如图5所示,控制电机控制器调节流经充放电回路中的电流值,之前还包括:
步骤S201.获取电池包的充放电周期和充放电回路的目标等效电流值。
其中,电池包的充放电周期和充放电回路的目标等效电流值由电池管理系统给出,电池管理系统中存在预先设置的电池包充放电周期,电池管理系统计算电池包的内阻,可以在一个充放电周期内通过特定电流进行放电/充电,计算出当前的电池包内阻r=ΔU/ΔI;其中ΔU为电池放电/充电初期、末期的压差,ΔI为放电/充电电流;获取电池包的内阻后再根据电池包的加热功率获取等效电流值,可以根据公式P=I 2r计算目标等效电流值,其中,P为加热功率,r为电池包内阻,I为目标等效电流值,目标等效电流值可以为一个值,也可以为一组值。
步骤S202.根据电池包的充放电周期获取充放电回路的充放电周期,根据充放电回路的目标等效电流值获取PWM控制信号的占空比。
其中,充放电回路的充放电周期是指控制上桥臂和下桥臂完成一次开关的周期,占空比是指向电机控制器中的上桥臂或者下桥臂输出高电平信号的时间占整个充放电周期的百分比,控制占空比即相当于控制上桥臂和下桥臂的导通时间,当在充放电回路工作的过程中,通过控制上桥臂或者下桥臂的导通时间变长或者缩短后,会使充放电回路中电流的增加或者减小,例如,充电回路可以包括充电储能回路和充电续流回路,当控制占空比使充电储能回路的导通时间变长时,会使电路中的电流增加,即每个周期内的占空比决定充放电回路中电流的增加或者减小。
其中,根据电池包的充放电周期获取充放电回路的充放电周期,包括:
将电池包的充放电周期设置为充放电回路的充放电周期。
根据充放电回路的目标等效电流值获取PWM控制信号的占空比,包括:
根据预先存储的目标等效电流值与PWM控制信号的占空比对应关系获取PWM控制信号的占空比。
其中,电池包的充放电周期与充放电回路的充放电周期之间存在对应关系,在低频控制模式下,充放电回路的充放电周期与电池包的充放电周期相等。预先存储的目标等效电流值与PWM控制信号的占空比对应关系表可以通过多次试验测量获取,在低频控制模式下,一个充放电周期内的目标电流等效值的数量为一个,根据上述对应关系表可以得到充放电回路的充放电周期的PWM控制信号的占空比。
进一步的,控制电机控制器调节流经充放电回路中的电流值,以调节电池包的内阻产生的热量,包括:
根据充放电回路的充放电周期以及PWM控制信号的占空比控制电机控制器上下桥臂 的开关,调节流经充放电回路中的电流值,以调节电池包的内阻产生的热量。
其中,充放电回路的充放电周期包括充电周期和放电周期,充电周期是指充放电回路中充电回路的工作周期,放电周期是指充放电回路中放电回路的工作周期,电池包的一个充放电周期分为一个充电时长和一个放电时长。在低频控制模式下,充电时长等于充电周期,放电时长等于放电周期,即充电时长包括充放电回路的一个充电周期,放电时长包括充放电回路的一个放电周期,充电周期和放电周期相等,充电周期和放电周期也可以不相等,根据充电周期、放电周期以及PWM控制信号的占空比控制电机控制器上下桥臂的开关,控制充放电回路中的放电储能回路、放电释能回路、充电储能回路以及充电释能回路依次工作,调节流经充放电回路中的电流值为目标电流等效值,以调节电池包的内阻产生的热量。
本实施方式采用低频控制模式,获取电池包的充放电周期和充放电回路的目标等效电流值,根据电池包的充放电周期获取充放电回路的充放电周期,根据充放电回路的目标等效电流值获取PWM控制信号的占空比,根据PWM控制信号的占空比控制电机控制器上下桥臂的开关,调节流经充放电回路中的电流值为目标等效电流值,本实施方式控制简单,电机控制器发热少,提升了电池包的发热效率。
进一步的,在进入低频控制模式前还包括软启动模式,软启动模式为向电机控制器输出极小的PWM控制信号的占空比,控制充放电回路中的放电储能回路、放电释能回路、充电储能回路以及充电释能回路依次工作,使得系统慢慢建立起电池的充放电电流,然后慢慢增加下桥臂的占空比,使得电池的充放电电流逐步增加,以完成软启动。
本实施方式中,由于母线电容电压不能突变,如果控制电机控制器的占空比变化过快,会导致三相电流急剧增加,甚至出现过流现象,也会导致母线电容过压,或者母线电容和电机线圈的电感之间出现电流振荡问题,通过设置软启动的过程,避免上述出现的问题。
下面通过具体电路结构对本实施方式进行具体说明:
如图6所示,能量转换装置包括电机102、电机控制器101、母线电容C1、开关K1、开关K2、开关K3、开关K4、电阻R,电机102的三相线圈的中性点连接开关K1的第一端,开关K1的第二端连接至电池包103的正极端、开关K2的第一端、开关K3的第一端,开关K3的第二端连接电阻R的第一端,电机102的三相线圈分别连接电机控制器101的三相桥臂的中点,电机控制器101的第一汇流端连接母线电容C1的第一端、开关K2的第二端以及电阻R的第二端,电机控制器101的第二汇流端连接母线电容C1的第二端和开关K4的第二端,开关K4的第一端连接电池包103的负极。
如图7所示,作为另一种电路结构,开关K1的第二端连接电池包103的负极。
其中,电机控制器101包括第一功率开关单元、第二功率开关单元、第三功率开关单 元、第四功率开关单元、第五功率开关单元以及第六功率开关单元,第一功率开关单元和第四功率开关单元形成第一桥臂,第三功率开关单元和第六功率开关单元形成第二桥臂,第五功率开关单元和第二功率开关单元形成第三桥臂,第一功率开关单元、第三功率开关单元以及第五功率开关单元的一端共接并构成电机控制器的第一汇流端,第二功率开关单元、第四功率开关单元以及第六功率开关单元的一端共接并构成电机控制器的第二汇流端,电机102的第一相线圈连接第一桥臂的中点,电机102的第二相线圈连接第二桥臂的中点,电机102的第三相线圈连接第三桥臂的中点。
电机控制器101中第一功率开关单元包括第一上桥臂VT1和第一上桥二极管VD1,第二功率开关单元包括第一下桥臂VT2和第一下桥二极管VD2,第三功率开关单元包括第二上桥臂VT3和第二上桥二极管VD3,第四功率开关单元包括第二下桥臂VT4和第二下桥二极管VD4,第五功率开关单元包括第三上桥臂VT5和第三上桥二极管VD5,第六功率开关单元包括第三下桥臂VT6和第三下桥二极管VD6,三相交流电机是三相四线制,可以是永磁同步电机或异步电机,在三相线圈连接中点引出中性线。
如图6所示,当能量转换装置不进行加热功能时,开关K1保持断开,开关K4闭合,进入加热模式后,闭合开关K3进行预充,如果预充不成功就结束,如果预充成功,立即闭合开关K1,并断开K3进入加热状态,此时,图6的电路结构等效为图8所示。
当控制电机控制器101处于低频控制模式时,进入加热状态,即完成母线电容C1的预充,并闭合开关K1和断开开关K3,此时母线电容C1上电压和电池包103的电压接近,电机控制器101的功率管全部处于关闭状态,电机102的线圈里几乎没有电流,系统处于准备就绪的状态。
首先进入软启动模式,向电机控制器101输出一个极小的PWM控制信号的占空比使充放电回路工作,当充放电回路工作时,电池包103、开关K1、电机102、电机控制器101形成放电储能回路,电池包103、开关K1、电机102、电机控制器101、母线电容C1形成放电释能回路;母线电容C1、电机控制器101、电机102、开关K1、电池包103形成充电储能回路,电机102、开关K1、电池包103、电机控制器101形成充电释能回路,通过向电机控制器101输出极小的PWM控制信号的占空比,控制充放电回路中的放电储能回路、放电释能回路、充电储能回路以及充电释能回路依次工作,完成软启动。
完成软启动过程后,进入正式加热流程,获取电池包103的充放电周期和充放电回路的目标等效电流值,根据电池包103的充放电周期获取充电时长和放电时长,其中,充电时长等于放电时长,根据充电时长获取充放电回路的充电周期,根据放电时长获取充放电回路的放电周期,根据充放电回路的目标等效电流值获取PWM控制信号的占空比,根据所述PWM控制信号的占空比控制所述电机控制器101上下桥臂的开关,进而控制电池包 103充放电电流的大小,使得电池内部的发热功达到预期值,具体包括:
第一阶段为放电储能回路工作:如图9所示,电机控制器101的下桥臂开通时电流由电池包103的正极流出,经过开关K1、电机102、电机控制器101的下桥臂(第二下桥臂VT2、第四下桥臂VT4、第六下桥臂VT6),流回到电池包103的负极,且电流不断增大。
第二阶段为放电续流回路工作:如图10所示,当电机控制器101的下桥臂关断,上桥臂开通时,电流由电池包103的正极出发,经过开关K1、电机102、电机控制器101的上桥臂(第一上桥二极管VD1、第三上桥二极管VD3、第五上桥二极管VD5)后给母线电容C1正极充电,电流不断减小至零,电感储能降低至零,电池包103和电机102的线圈电感共同放电给母线电容C1充电,母线电容C1的电压升高至某一最大值。
第三阶段为充电储能回路工作:如图11所示,控制电机控制器101的下桥臂断开,上桥臂闭合,电机控制器101的上桥臂开通时,电流由母线电容C1的正极出发,经过电机控制器101的上桥臂(第一上桥臂VT1、第三上桥臂VT3、第五上桥臂VT5)、电机102、开关K1后给电池包103的正极充电,电流先增加后不断减小,母线电容C1的电压不断降低。
第四阶段为充电续流回路工作:如图12所示,电机控制器101的下桥臂开通时,电流由电池包103的负极流出,经过电机控制器101的下桥臂(第二下桥二极管VD2、第四下桥二极管VD4、第六下桥二极管VD6)、电机102、开关K1流回到电池包正极,且电流不断减小,母线电容C1的电压将不断降低。
第一阶段和第二阶段中电池包103对外放电,且第一阶段结束时,放电电流达到最大,第三阶段和四阶段电池包103充电,在第三阶段中某时刻,充电电流达到最大值;第二阶段为母线电容C1充电,母线电容C1的电压升至最高,第三阶段母线电容C1放电,母线电容C1电压降至最低。
电机控制器101的上下桥臂为互补脉冲控制,在控制周期不变的前提下,下桥臂的开通时间越长,电池包103充放电电流最大值越大,同时母线电容C1的最高电压越高,电池包103的充放电电流最大值也将越大,电池包103内阻的发热功率也将越大。相反,下桥臂的开通时间越短,电池包103的充放电电流最大值越小,同时母线电容C1的最高电压越小,电池包103的充放电电流最大值也越小,电池包103内阻的发热功率也将越小。
由以上可知,在控制周期一定的前提下,主要是通过控制占空比来调节电池包的充放电电流,电池包的内部产热功率跟下桥臂的导通时间成正相关。而控制周期会主要由电池包的交流内阻决定,以最大加热功率为目标来选取控制周期,但是控制周期会影响电容电压的变化范围,电容电压的变化范围跟周期成负相关的关系。增加下桥臂的占空比,可以提高电池包的充放电电流,也就是增大电池内部发热功率,相反减小下桥臂的占空比,可 以降低电池包的充放电电流,也就是降低电池内部的发热功率。在整个加热过程中,实时监测电控,电机等相关零部件的状态,如果出现电流、电压、温度的异常情况,立即停止加热,保证加热安全。
作为另一种实施方式,控制方法还包括高频控制模式,所述控制所述电机控制器调节流经所述充放电回路中的电流值,之前还包括:
步骤S301.获取所述电池包的充放电周期以及所述电池包的充放电周期内所述充放电回路的目标电流波形,其中,所述电池包的充放电周期包括充电时长和放电时长,所述充电时长包括所述充放电回路的多个充电周期,所述放电时长包括所述充放电回路的多个放电周期。
在本步骤中,电池包的充放电周期和充放电回路的目标电流波形由电池管理系统给出,电池管理系统中存在预先设置的电池包充放电周期,目标电流波形是指通过控制所述电机控制器调节流经所述充放电回路中的电流值所达到的电流波形,目标电流波形可以满足波形函数,例如,目标电流波形可以是三角波、正弦波等波形,电池包的一个充放电周期分为一个充电时长和一个放电时长,充电时长是指电池包在一个充放电周期内的充电过程消耗的时间,放电时长是指电池包在一个充放电周期内的放电过程消耗的时间。在高频控制模式下,在电池包的一个充放电周期内包括多个充电周期和放电周期,其对应关系是充电时长对应多个充电周期,放电时长对应多个放电周期。
步骤S302.根据所述目标电流波形获取所述目标电流波形对应的多个目标等效电流值。
在本步骤中,为了获取目标电流波形,选取符合目标电流波形的多个目标等效电流值,例如,目标电流波形满足正弦函数I=Asinωt,选取符合该函数的时间和电流值。
步骤S303.根据目标等效电流值获取PWM控制信号的占空比,根据所述电池包的充放电周期和所述目标等效电流值的数量,获取所述充电时长包含的充电周期的数量和放电时长包含的放电周期的数量,其中,一个目标等效电流值对应一个充电周期或者一个放电周期。
在本步骤中,根据所述充放电回路的目标等效电流值获取PWM控制信号的占空比,包括:
根据预先存储的目标等效电流值与所述PWM控制信号的占空比对应关系获取所述PWM控制信号的占空比。
其中,预先存储的目标等效电流值与所述PWM控制信号的占空比对应关系表,该对应关系表可以通过多次试验测量获取。
在本步骤中,根据所述电池包的充放电周期和所述目标等效电流值的数量,获取所述 充电时长包含的充电周期的数量和所述放电时长包含的放电周期的数量,包括:
所述电池包的充放电周期、所述目标等效电流值的数量、所述充电时长、所述放电时长、所述充电周期、所述放电周期、所述充电周期的数量以及所述放电周期的数量满足以下公式:
T=T1+T2;
T1=N1×t1;
T2=N2×t2;
N=N1+N2;
其中,T为所述电池包的充放电周期,T1为所述充电时长,T2为所述放电时长,t1为所述充放电回路的充电周期,N1为充电周期的个数,t2为所述充放电回路的放电周期,N2为放电周期的个数,N为目标等效电流值的数量。
其中,在充电时长下获取N1个目标等效电流值,其对应获取N1个充电周期,N1个充电周期对应N1个PWM控制信号的占空比;在放电时长下获取N2个目标等效电流值,其对应获取N2个充电周期,N2个充电周期对应N2个PWM控制信号的占空比。
进一步的,所述控制所述电机控制器调节流经所述充放电回路中的电流值,以调节所述电池包的内阻产生的热量,包括:
根据所述充放电回路的充电周期及其数量、放电周期及其数量以及所述PWM控制信号的占空比控制所述电机控制器上下桥臂的开关,调节流经所述充放电回路中的电流值,以调节所述电池包的内阻产生的热量。
所述根据所述充电周期的数量、所述放电周期的数量以及所述PWM控制信号的占空比控制所述电机控制器上下桥臂的开关,调节流经所述充放电回路中的电流值,包括:
获取每个充电周期和每个放电周期所对应的目标等效电流值以及PWM控制信号的占空比;
根据所述PWM控制信号的占空比控制所述电机控制器在每个充电周期和每个放电周期中上下桥臂的开关,调节流经所述充放电回路中的电流值为目标等效电流值。
其中,通过调节每个充电周期和每个放电周期的PWM控制信号的占空比,使充放电回路中的电流值为目标等效电流值,最终形成了目标电流波形。
本实施方式中,电池包整个充放电周期内包含电机控制器的N个控制周期,控制周期是指充电周期或者放电周期,调整每次功率管的占空比都会改变同一时刻电流的变化方向,增加下桥臂的占空比将使得电池放电电流增加,或者充电电流减小;而减小下桥臂占空比,将使得电池包放电电流减小,或者充电电流增加,通过控制每个电池充放电周期内N次开关控制的平均占空比,可以使得整体的充放电电流增加或者减小。而对每一次开关控制, 可以改变局部的电流大小,例如可以使得某点处的电流值增加,或者减小,所以通过对N次开关管占空比的协同控制,可以使得电池的充放电电流呈现出类似的三角波、正弦波、方波等波形。根据实际的控制需求,电池包加热功率需求,以及电池寿命等因素,来选取合适的电流波形,使得控制方便实现,电池稳定性不受影响,而且电池加热功率较大。
进一步的,根据所述PWM控制信号的占空比控制所述电机控制器在每个充电周期和每个放电周期中上下桥臂的开关,调节流经所述充放电回路中的电流值为目标等效电流值,之后还包括:
获取所述充放电回路中的实际电流值,根据所述实际电流值与目标等效电流值之间的关系获取当前充电周期或者当前放电周期的占空比修正值,根据所述占空比修正值对下一个充电周期或者下一个放电周期的占空比进行修正。
其中,当在一个充电周期或者放电周期中调节PWM控制信号的占空比并获取该控制周期中充放电回路中的实际电流值,当实际电流值与目标电流值不相符时,获取实际电流值与目标等效电流值之间的电流差值,根据电流值与PWM控制信号占空比之间的对应关系获取电流差值对应的占空比修正值,将占空比修正值与下一个控制周期对应的占空比进行叠加,再对电机控制器进行控制。
本实施方式通过实际电流值与目标等效电流值之间的关系获取当前充电周期或者当前放电周期的占空比修正值,根据该占空比修正值调整下一控制周期的占空比,使充放电回路的实际电流值符合目标等效电流值,使电流波形更加准确。
本实施方式通过设置高频控制模式,使一个目标电流值对应一个点击控制器的放电周期或者充电周期,通过不断调节每个控制周期的占空比,可以使流经电池包的电流有效值达到任意一个目标电流值,使电流波形可以调整,适应性更强。
下面通过具体的电路结构对高频控制模式的工作过程进行说明:
如图6所示,当控制电机控制器101处于高频控制模式时,收到加热指令,进入加热状态,即完成母线电容C1的预充,并闭合开关K1和断开开关K3,此时母线电容C1上电压和电池包103的电压接近,电机控制器101的功率管全部处于关闭状态,电机102的线圈电感里几乎没有电流,系统处于准备就绪的状态。
首先进入软启动模式,向电机控制器101输出一个极小的PWM控制信号的占空比使充放电回路工作,当充放电回路工作时,电池包103、开关K1、电机102、电机控制器101形成放电储能回路,电池包103、开关K1、电机102、电机控制器101、母线电容C1形成放电释能回路;母线电容C1、电机控制器101、电机102、开关K1、电池包103形成充电储能回路,电机102、开关K1、电池包103、电机控制器101形成充电释能回路,通过向电机控制器101输出极小的PWM控制信号的占空比,控制充放电回路中的放电储能回路、 放电释能回路、充电储能回路以及充电释能回路依次工作,完成软启动。
完成软启动过程后,进入正式加热流程,开始前电机控制器101的六个功率管全部断开,先确定电池包103的充放电周期,主要由电池管理系统给出,然后获取需要达到的电流波形I=akt+b,其中t为时间,i为目标等效电流值,a、b为常数,k为系数,如图13所示,设置电池包的充放电周期为T,放电时长为t0,充电时长为T-t0,在放电时长t0内,选取7个目标等效电流值,选取两个等效电流值之间的时间间隔为Δt,根据I(t+Δt)-I(t)获取电流变化量,根据电流变化量获取PWM控制信号的占空比,放电时长对应7个放电周期,每个放电周期对应一个PWM控制信号的占空比,在充电时长内选取4个目标等效电流值,每个充电周期对应一个PWM控制信号的占空比,根据PWM控制信号的占空比调节电机控制器使充放电回路的电流值为目标等效电流值,使得电池内部的发热功达到预期值,具体包括以下阶段:
第一阶段为放电储能回路工作:如图9所示,电机控制器101的下桥臂开通时电流由电池包103的正极流出,经过开关K1、电机102、电机控制器101的下桥臂(第二下桥臂VT2、第四下桥臂VT4、第六下桥臂VT6),流回到电池包103的负极,且电流不断增大。
第二阶段为放电续流回路工作:如图10所示,当电机控制器101的下桥臂关断,上桥臂开通时,电流由电池包103的正极出发,经过开关K1、电机102、电机控制器101的上桥臂(第一上桥二极管VD1、第三上桥二极管VD3、第五上桥二极管VD5)后给母线电容C1正极充电,电流不断减小至零,电感储能降低至零,电池包103和电机102的线圈电感共同放电给母线电容C1充电,母线电容C1的电压升高至某一最大值。
根据7个放电周期对应的7个占空比控制放电储能回路和放电续流回路工作7次,每次增加下桥臂的占空比将使得电池放电电流增加,使放电回路的电流值达到目标电流波形。
第三阶段为充电储能回路工作:如图11所示,控制电机控制器101的下桥臂断开,上桥臂闭合,电机控制器101的上桥臂开通时,电流由母线电容C1的正极出发,经过电机控制器101的上桥臂(第一上桥臂VT1、第三上桥臂VT3、第五上桥臂VT5)、电机102、开关K1后给电池包103的正极充电,电流先增加后不断减小,母线电容C1的电压不断降低。
第四阶段为充电续流回路工作:如图12所示,电机控制器101的下桥臂开通时,电流由电池包103的负极流出,经过电机控制器101的下桥臂(第二下桥二极管VD2、第四下桥二极管VD4、第六下桥二极管VD6)、电机102、开关K1流回到电池包正极,且电流不断减小,母线电容C1的电压将不断降低。
根据4个充电周期对应的4个占空比控制充电储能回路和充电续流回路工作4次,使充电回路的电流值达到目标电流波形。
本公开实施例三提供一种车辆,包括实施一例所述的能量转换装置。
以上实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围,均应包含在本公开的保护范围之内。

Claims (14)

  1. 一种能量转换装置,其特征在于,所述能量转换装置包括:
    电机控制器,所述电机控制器的各路桥臂的第一端共接形成第一汇流端,所述电机控制器的各路桥臂的第二端共接形成第二汇流端;
    母线电容,所述母线电容的第一端与所述第一汇流端连接,所述母线电容的第二端与所述第二汇流端以及电池包的负极连接;
    第一开关模块,所述第一开关模块连接在所述母线电容和所述电池包的正极之间;
    电机,所述电机的线圈分别连接所述电机控制器的桥臂的中点;
    第二开关模块,所述第二开关模块连接在所述电机的线圈的中性点与所述电池包的正极或者负极之间。
  2. 如权利要求1所述的能量转换装置,其特征在于,所述第一开关模块导通以及所述第二开关模块关断时,所述电池包、所述第一开关模块、所述母线电容、所述电机控制器、所述电机形成电机驱动电路;
    所述第一开关模块关断以及所述第二开关模块导通时,所述电池包、所述第二开关模块、所述电机、所述电机控制器、所述母线电容形成充放电回路。
  3. 如权利要求2所述的能量转换装置,其特征在于,当所述充放电回路工作时,所述电池包、所述第二开关模块、所述电机、所述电机控制器形成放电储能回路,所述电池包、所述第二开关模块、所述电机、所述电机控制器、所述母线电容形成放电释能回路;所述母线电容、所述电机控制器、所述电机、所述第二开关模块、所述电池包形成充电储能回路,所述电机、所述第二开关模块、所述电池包、所述电机控制器形成充电释能回路。
  4. 一种基于权利要求1-3中任一项所述的能量转换装置的控制方法,其特征在于,所述控制方法包括:
    当接收到进入加热模式的指令时,控制所述第一开关模块关断以及所述第二开关模块导通,使所述电池包、所述第二开关模块、所述电机、所述电机控制器、所述母线电容形成所述电池包的充放电回路;
    当接收到进入驱动模式的指令时,控制所述第一开关模块导通以及所述第二开关模块关断,使所述电池包、所述第一开关模块、所述母线电容、所述电机控制器、所述电机形成电机驱动电路。
  5. 如权利要求4所述的控制方法,其特征在于,当进入加热模式后,所述控制方法包括:
    控制所述电机控制器调节流经所述充放电回路中的电流值,以调节所述电池包的内阻 产生的热量。
  6. 如权利要求5所述的控制方法,其特征在于,所述控制所述电机控制器调节流经所述充放电回路中的电流值,之前还包括:
    获取所述电池包的充放电周期和所述充放电回路的目标等效电流值;
    根据所述电池包的充放电周期获取所述充放电回路的充放电周期,根据所述充放电回路的目标等效电流值获取PWM控制信号的占空比;
    所述控制所述电机控制器调节流经所述充放电回路中的电流值,以调节所述电池包的内阻产生的热量,包括:
    根据所述充放电回路的开关周期以及所述PWM控制信号的占空比控制所述电机控制器上下桥臂的开关,调节流经所述充放电回路中的电流值,以调节所述电池包的内阻产生的热量。
  7. 如权利要求6所述的控制方法,其特征在于,所述根据所述电池包的充放电周期获取所述充放电回路的开关周期,包括:
    将所述电池包的充放电周期设置为所述充放电回路的充放电周期;
    所述根据所述充放电回路的目标等效电流值获取PWM控制信号的占空比,包括:
    根据预先存储的目标等效电流值与所述PWM控制信号的占空比对应关系获取所述PWM控制信号的占空比。
  8. 如权利要求5-7中任一项所述的控制方法,其特征在于,所述控制所述电机控制器调节流经所述充放电回路中的电流值,之前还包括:
    获取所述电池包的充放电周期以及所述电池包的充放电周期内所述充放电回路的目标电流波形,其中,所述电池包的充放电周期包括充电时长和放电时长,所述充电时长包括所述充放电回路的多个充电周期,所述放电时长包括所述充放电回路的多个放电周期;
    根据所述目标电流波形获取所述目标电流波形对应的多个目标等效电流值;
    根据所述目标等效电流值获取PWM控制信号的占空比,根据所述电池包的充放电周期和所述目标等效电流值的数量,获取所述充电时长包含的充电周期的数量和所述放电时长包含的放电周期的数量,其中,一个目标等效电流值对应一个充电周期或者一个放电周期。
  9. 如权利要求8所述的控制方法,其特征在于,根据所述电池包的充放电周期和所述目标等效电流值的数量,获取所述充电时长包含的充电周期的数量和所述放电时长包含的放电周期的数量,包括:
    所述电池包的充放电周期、所述目标等效电流值的数量、所述充电时长、所述放电时长、所述充电周期、所述放电周期、所述充电周期的数量以及所述放电周期的数量满足以 下公式:
    T=T1+T2;
    T1=N1×t1;
    T2=N2×t2;
    N=N1+N2;
    其中,T为所述电池包的充放电周期,T1为所述充电时长,T2为所述放电时长,t1为所述充放电回路的充电周期,N1为充电周期的个数,t2为所述充放电回路的放电周期,N2为放电周期的个数,N为目标等效电流值的数量。
  10. 如权利要求8或9所述的控制方法,其特征在于,所述根据所述充放电回路的目标等效电流值获取PWM控制信号的占空比,包括:
    根据预先存储的目标等效电流值与所述PWM控制信号的占空比对应关系获取所述PWM控制信号的占空比。
  11. 如权利要求10所述的控制方法,其特征在于,所述控制所述电机控制器调节流经所述充放电回路中的电流值,以调节所述电池包的内阻产生的热量,包括:
    根据所述充放电回路的充电周期及其数量、放电周期及其数量以及所述PWM控制信号的占空比控制所述电机控制器上下桥臂的开关,调节流经所述充放电回路中的电流值,以调节所述电池包的内阻产生的热量。
  12. 如权利要求11所述的控制方法,其特征在于,所述根据所述充电周期的数量、所述放电周期的数量以及所述PWM控制信号的占空比控制所述电机控制器上下桥臂的开关,调节流经所述充放电回路中的电流值,包括:
    获取每个充电周期和每个放电周期所对应的目标等效电流值以及PWM控制信号的占空比;
    根据所述PWM控制信号的占空比控制所述电机控制器在每个充电周期和每个放电周期中上下桥臂的开关,调节流经所述充放电回路中的电流值为目标等效电流值。
  13. 如权利要求12所述的控制方法,其特征在于,还包括:根据所述PWM控制信号的占空比控制所述电机控制器在每个充电周期和每个放电周期中上下桥臂的开关,调节流经所述充放电回路中的电流值为目标等效电流值,之后还包括:
    获取所述充放电回路中的实际电流值,根据所述实际电流值与目标等效电流值之间的关系获取当前充电周期或者当前放电周期的占空比修正值,根据所述占空比修正值对下一个充电周期或者下一个放电周期的占空比进行修正。
  14. 一种车辆,其特征在于,所述车辆包括权利要求1-3中任一项所述的能量转换装置。
PCT/CN2020/135183 2019-12-31 2020-12-10 车辆、能量转换装置及其控制方法 WO2021135888A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/790,398 US20230038790A1 (en) 2019-12-31 2020-12-10 Vehicle, energy conversion device and control method thereof
JP2022540611A JP7433443B2 (ja) 2019-12-31 2020-12-10 車両、エネルギー変換装置の制御方法
KR1020227026529A KR102696116B1 (ko) 2019-12-31 2020-12-10 차량 및 에너지 변환 디바이스의 제어 방법
EP20910329.0A EP4086112A4 (en) 2019-12-31 2020-12-10 Vehicle, energy conversion device, and control method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911409880.7 2019-12-31
CN201911409880.7A CN113119801B (zh) 2019-12-31 2019-12-31 车辆、能量转换装置及其控制方法

Publications (1)

Publication Number Publication Date
WO2021135888A1 true WO2021135888A1 (zh) 2021-07-08

Family

ID=76687066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/135183 WO2021135888A1 (zh) 2019-12-31 2020-12-10 车辆、能量转换装置及其控制方法

Country Status (6)

Country Link
US (1) US20230038790A1 (zh)
EP (1) EP4086112A4 (zh)
JP (1) JP7433443B2 (zh)
KR (1) KR102696116B1 (zh)
CN (1) CN113119801B (zh)
WO (1) WO2021135888A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113644342A (zh) * 2021-08-13 2021-11-12 岚图汽车科技有限公司 电池系统、电池系统的控制方法、控制装置和车辆
WO2023010894A1 (zh) * 2021-08-05 2023-02-09 宁德时代新能源科技股份有限公司 充放电电路、充放电系统及充放电控制方法
CN117360277A (zh) * 2022-01-30 2024-01-09 华为数字能源技术有限公司 一种用于供电电路的控制方法、装置以及电动汽车
WO2024082155A1 (zh) * 2022-10-19 2024-04-25 宁德时代新能源科技股份有限公司 电池自加热系统、用电设备及车辆

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230153841A (ko) * 2022-04-29 2023-11-07 현대자동차주식회사 전동화 차량 및 이의 제어 방법
CN218243274U (zh) * 2022-08-18 2023-01-06 比亚迪股份有限公司 电动总成和具有其的车辆
US11745611B1 (en) * 2022-10-28 2023-09-05 GM Global Technology Operations LLC System and method for control of a multi-function electric powertrain
CN117748690B (zh) * 2024-02-19 2024-05-24 西安图为电气技术有限公司 电池的充放电电路和电池的充放电方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100096926A1 (en) * 2008-10-22 2010-04-22 Robert Dean King Apparatus for transferring energy using power electronics and machine inductance and method of manufacturing same
CN103560304A (zh) * 2013-11-19 2014-02-05 东风汽车公司 一种电动汽车动力电池组加热控制方法
CN107592954A (zh) * 2015-05-12 2018-01-16 大陆汽车有限公司 用于带有电驱动装置的车辆的车辆侧充电电路、用于运行车辆侧变流器的方法以及车辆侧电机的至少一个绕组用于暂存的应用
CN110015202A (zh) * 2019-03-28 2019-07-16 清华大学 电动汽车电池加热方法
CN110116653A (zh) * 2019-04-19 2019-08-13 清华大学 电动汽车驱动系统、驱动电路及电动汽车电池加热方法
CN111098760A (zh) * 2018-10-26 2020-05-05 法法汽车(中国)有限公司 用于为电动汽车的电池包加热的装置和方法及电动汽车
CN111347853A (zh) * 2018-12-21 2020-06-30 比亚迪股份有限公司 电机控制电路、充放电方法、加热方法及车辆

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4023171B2 (ja) * 2002-02-05 2007-12-19 トヨタ自動車株式会社 負荷駆動装置、負荷駆動装置における電力貯蔵装置の充電制御方法および充電制御をコンピュータに実行させるためのプログラムを記録したコンピュータ読取可能な記録媒体
US8452490B2 (en) * 2009-12-14 2013-05-28 Control Solutions LLC Electronic circuit for charging and heating a battery
CN102668229B (zh) * 2010-07-29 2015-06-10 松下电器产业株式会社 电池升温电路和电池升温装置
JP5865736B2 (ja) * 2012-03-05 2016-02-17 株式会社日本自動車部品総合研究所 電力変換装置
EP2928061B1 (en) * 2012-11-28 2018-01-10 Fuji Electric Co., Ltd. Power conversion system and method for controlling same
KR101766094B1 (ko) * 2015-12-15 2017-08-24 현대자동차주식회사 하이브리드 차량의 출력 제어 시스템
CN105762434B (zh) * 2016-05-16 2018-12-07 北京理工大学 一种具有自加热功能的电源系统和车辆
US10369900B1 (en) * 2018-02-20 2019-08-06 GM Global Technology Operations LLC Onboard DC charging circuit using traction drive components
KR102524192B1 (ko) * 2018-03-21 2023-04-21 현대자동차주식회사 전기 자동차의 충전 장치
KR102528230B1 (ko) * 2018-07-18 2023-05-03 현대자동차주식회사 전기 자동차의 충전 장치
KR20200075931A (ko) * 2018-12-11 2020-06-29 현대자동차주식회사 차량용 전력 변환 시스템의 고장진단 방법 및 장치
CN209479443U (zh) * 2018-12-29 2019-10-11 宁德时代新能源科技股份有限公司 一种电池加热系统
KR102663664B1 (ko) * 2019-05-17 2024-05-03 현대자동차주식회사 모터 구동 시스템을 이용한 멀티 입력 충전 시스템 및 방법
KR20210018599A (ko) * 2019-08-06 2021-02-18 현대자동차주식회사 모터 구동 시스템을 이용한 충전 시스템 및 방법
KR20210027662A (ko) * 2019-08-30 2021-03-11 현대자동차주식회사 모터 구동 시스템을 이용한 충전 시스템 및 방법
CN110600833A (zh) * 2019-09-06 2019-12-20 上海伊控动力系统有限公司 一种电动汽车车载电池包自加热系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100096926A1 (en) * 2008-10-22 2010-04-22 Robert Dean King Apparatus for transferring energy using power electronics and machine inductance and method of manufacturing same
CN103560304A (zh) * 2013-11-19 2014-02-05 东风汽车公司 一种电动汽车动力电池组加热控制方法
CN107592954A (zh) * 2015-05-12 2018-01-16 大陆汽车有限公司 用于带有电驱动装置的车辆的车辆侧充电电路、用于运行车辆侧变流器的方法以及车辆侧电机的至少一个绕组用于暂存的应用
CN111098760A (zh) * 2018-10-26 2020-05-05 法法汽车(中国)有限公司 用于为电动汽车的电池包加热的装置和方法及电动汽车
CN111347853A (zh) * 2018-12-21 2020-06-30 比亚迪股份有限公司 电机控制电路、充放电方法、加热方法及车辆
CN110015202A (zh) * 2019-03-28 2019-07-16 清华大学 电动汽车电池加热方法
CN110116653A (zh) * 2019-04-19 2019-08-13 清华大学 电动汽车驱动系统、驱动电路及电动汽车电池加热方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4086112A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023010894A1 (zh) * 2021-08-05 2023-02-09 宁德时代新能源科技股份有限公司 充放电电路、充放电系统及充放电控制方法
CN115843408A (zh) * 2021-08-05 2023-03-24 宁德时代新能源科技股份有限公司 充放电电路、充放电系统及充放电控制方法
CN115843408B (zh) * 2021-08-05 2024-01-12 宁德时代新能源科技股份有限公司 充放电电路、充放电系统及充放电控制方法
CN113644342A (zh) * 2021-08-13 2021-11-12 岚图汽车科技有限公司 电池系统、电池系统的控制方法、控制装置和车辆
CN117360277A (zh) * 2022-01-30 2024-01-09 华为数字能源技术有限公司 一种用于供电电路的控制方法、装置以及电动汽车
CN117360277B (zh) * 2022-01-30 2024-06-11 华为数字能源技术有限公司 一种用于供电电路的控制方法、装置以及电动汽车
WO2024082155A1 (zh) * 2022-10-19 2024-04-25 宁德时代新能源科技股份有限公司 电池自加热系统、用电设备及车辆

Also Published As

Publication number Publication date
CN113119801B (zh) 2023-12-12
JP2023509656A (ja) 2023-03-09
EP4086112A4 (en) 2023-06-28
JP7433443B2 (ja) 2024-02-19
US20230038790A1 (en) 2023-02-09
EP4086112A1 (en) 2022-11-09
CN113119801A (zh) 2021-07-16
KR20220116562A (ko) 2022-08-23
KR102696116B1 (ko) 2024-08-20

Similar Documents

Publication Publication Date Title
WO2021135888A1 (zh) 车辆、能量转换装置及其控制方法
CN113752908B (zh) 车辆、能量转换装置及其控制方法
CN111660875B (zh) 车辆、能量转换装置及其控制方法
CN113119802B (zh) 车辆、能量转换装置及其控制方法
WO2020125625A1 (zh) 动力电池的充电方法、电机控制电路及车辆
CN111446861B (zh) 直流/直流变换器及其控制方法
US20220355674A1 (en) Energy conversion apparatus and vehicle
US11223290B2 (en) Power conversion device, control method, and computer-readable medium
CN113844334B (zh) 车辆、能量转换装置及其控制方法
CN113752912B (zh) 车辆、能量转换装置及其控制方法
WO2021238103A1 (zh) 电池能量处理装置和方法、车辆
WO2021244641A1 (zh) 电池能量处理装置、方法及车辆
CN113752851B (zh) 车辆、能量转换装置及其控制方法
TW201414147A (zh) 諧振轉換器混合控制方法、諧振轉換器系統及混合控制器
CN211209619U (zh) 能量转换装置及车辆
CN113972707A (zh) 车辆、能量转换装置及其控制方法
CN113119804B (zh) 能量转换装置、控制方法、车辆及可读存储介质
CN212579628U (zh) 能量转换装置及车辆
CN113972706A (zh) 车辆、能量转换装置及其控制方法
CN111342672A (zh) 混合开关移相控制防反灌的充电装置及其控制方法
US20200083815A1 (en) Electric vehicle, dc-dc convertor, and control method for dc-dc convertor
CN113928183A (zh) 车辆、能量转换装置及其控制方法
CN110394527B (zh) 一种用于提高逆变式弧焊电源igbt工作可靠性的电路
CN113752914B (zh) 能量转换装置的控制方法、装置及车辆
CN211456998U (zh) 混合开关移相控制防反灌的充电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20910329

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022540611

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227026529

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020910329

Country of ref document: EP

Effective date: 20220801