WO2021135415A1 - 一种机车车辆及其加权参数粘着控制方法 - Google Patents

一种机车车辆及其加权参数粘着控制方法 Download PDF

Info

Publication number
WO2021135415A1
WO2021135415A1 PCT/CN2020/116493 CN2020116493W WO2021135415A1 WO 2021135415 A1 WO2021135415 A1 WO 2021135415A1 CN 2020116493 W CN2020116493 W CN 2020116493W WO 2021135415 A1 WO2021135415 A1 WO 2021135415A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
weighted
traction motor
speed
adhesion control
Prior art date
Application number
PCT/CN2020/116493
Other languages
English (en)
French (fr)
Inventor
蔡志伟
宋杨
杨曦亮
徐朝林
高磊
周庆强
贾峰
李哲
Original Assignee
中车大连机车车辆有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车大连机车车辆有限公司 filed Critical 中车大连机车车辆有限公司
Priority to AU2020415919A priority Critical patent/AU2020415919A1/en
Priority to ZA2020/06735A priority patent/ZA202006735B/en
Publication of WO2021135415A1 publication Critical patent/WO2021135415A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61CLOCOMOTIVES; MOTOR RAILCARS
    • B61C17/00Arrangement or disposition of parts; Details or accessories not otherwise provided for; Use of control gear and control systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D17/00Control of torque; Control of mechanical power
    • G05D17/02Control of torque; Control of mechanical power characterised by the use of electric means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the invention relates to the technical field of electric traction and transmission control of railway locomotives and vehicles, and in particular to a locomotive and vehicle and a weighted parameter adhesion control method thereof.
  • High-speed railway and heavy-duty transportation are important signs of railway modernization.
  • it is very important to maximize the traction and braking performance of rolling stock, and the use of wheel-rail adhesion directly affects the traction and braking of rolling stock
  • the performance is exerted.
  • the traction or braking force generated by the wheelset is greater than the adhesion force between the wheel and the rail, the wheel will spin or slip, so that the traction or braking force is drastically reduced, and wheel/rail heating and wheel/rail rubbing will also occur. In severe cases, it will also affect the safe operation of rolling stock and cause great harm.
  • the adhesion between the wheel and the rail is a complex time-varying system with uncertainty. It needs to adopt a specific control method to effectively prevent the traction from idling or brake sliding, and to enable the locomotive and rolling stock to exert the maximum traction or force under the current rail surface state. Braking force.
  • an existing control method by detecting the acceleration of the locomotive wheel pair in real time, when the acceleration exceeds the protection threshold, the unloading torque is started, and the acceleration peak is continuously searched during the unloading process, until the acceleration peak is detected, and it stops immediately. Unload the torque to restore the adhesion of the locomotive wheel pair.
  • This method is based on the real-time detection of locomotive running speed, and takes the locomotive wheel pair acceleration exceeding a certain threshold as the entry point to implement locomotive load reduction measures.
  • the embodiment of the present invention proposes a rolling stock and its weighted parameter adhesion control method.
  • the adhesive force of the prior art cannot be exerted to the maximum, the wheel-rail adhesive force is maximized, and the traction idling or brake sliding can be effectively prevented.
  • Step 1 According to the locomotive running status, obtain the traction motor torque reference value Tqref by querying the traction/electric system torque characteristic curve, and generate the traction motor torque reference control value through the first-order low-pass filter of the transfer function G(S) Tqrefout, and limit Tqmin ⁇ Tqrefout ⁇ Tqmax;
  • Step 2 Obtain the weighted adhesion control reference value TqAdref by querying the traction/electricity weighted adhesion control reference value curve according to the locomotive operating state;
  • Step 4 Calculate the weighted adhesion control reference value TqAdref and the weighted adhesion control feedback value TqAdfdb in the weighted adhesion control PI closed-loop controller TqAd to obtain the weighted adhesion control value TqAdout, and limit Tqmin ⁇ TqAdout ⁇ Tqmax;
  • Step 5 Control the traction motor torque Tqout according to the smaller of the weighted adhesion control value TqAdout and the traction motor torque given control value Tqrefout;
  • the transfer function is m*G(S) a first-order low-pass filter to filter the given value Tqref of the traction motor torque until Tqrefout is restored to a% of Tqoutmax, and then the transfer function is G (S)/n first-order low-pass filter to filter the given value Tqref of the traction motor torque until Tqrefout is equal to Tqref;
  • the operating state of the locomotive includes at least one of a traction/electric system command, a handle level, and a rotation speed of a traction motor.
  • k is the gain
  • ⁇ c is the cutoff angular frequency
  • the second step further includes:
  • the parameter RPMRLow generally selects the traction motor speed corresponding to the locomotive speed of 3km/h, and k1 generally selects 0.6 ⁇ 0.9 A real number between 1.1 and 1.25 is generally selected for k2;
  • the rotational speed signal RPM[i] of the effective traction motor rotational speed sensor is obtained, and the RPM[i ]
  • the average speed value of the traction motor RPMav is obtained by dividing the accumulation by the number of faulty shafts of the speedless sensor.
  • the maximum value in RPM[i] is RPMmax and the minimum value is RPMmin; the maximum value in RPM[i] of each bogie is compared to RPMmax, The minimum value is RPMTmin, and meanwhile calculate the average speed value RPMTav of each bogie traction motor;
  • ⁇ N is the rotation speed of the corresponding wheelset when the rolling stock is running at a maximum acceleration of 2Km/h/s in one execution cycle, and the unit is revolutions per second.
  • the rolling stock is equipped with a radar speed measurement device, the value of RPMg is directly obtained from the radar speed measurement signal; if the rolling stock is equipped with a non-power shaft speed measurement device, the value of RPMg is directly obtained from the non-power shaft speed measurement signal.
  • the estimated value RPMg of the converted rotational speed of the vehicle body to the ground is obtained by a radar bookkeeping device or a non-power axle speed measuring device.
  • ⁇ 1, ⁇ 2, and ⁇ 3 are weighting coefficients greater than 1 and less than 5.
  • AdF1 is the transient acceleration/deceleration feedback parameter
  • AdF2 is the speed difference feedback parameter
  • AdF3 is the acceleration limit feedback parameter
  • step 4 the transfer function adopted by the weighted adhesion control PI closed-loop controller TqAd is
  • TqAdout TqAdout+Kp[e(k)-e(k-1)]+Ki*e(k),
  • Kp and Ki are the proportional and integral parameters of the PI closed-loop controller TqAd.
  • e(k) is the difference between TqAdref and TqAdfdb
  • e(k-1) is the difference between the last TqAdref and TqAdfdb.
  • the traction motor torque given value Tqref is filtered until Tqrefout returns to a% of Tqoutmax, the Kp and Ki are respectively increased to a times of the original Kp and Ki parameters.
  • step 4 when the difference between the weighted adhesion control feedback value TqAdfdb and the weighted adhesion control reference value TqAdref is greater than ⁇ *TqAdref (0.5 ⁇ 1), the control system executes the corresponding axial sanding instruction .
  • AdF1, AdF2 and AdF3 are calculated in the manner of vehicle control, frame control and axle control.
  • the transient acceleration (deceleration) speed feedback parameter AdF1 is the average speed value of the vehicle traction motor RPMav(tk) at this sampling point and the vehicle traction at the previous sampling point The difference between the average motor speed value RPMav(tk-1) (traction conditions), or the average vehicle traction motor average speed value RPMav(tk-1) at the last sampling point and the average vehicle traction motor average at this sampling point The difference of the speed value RPMav (tk) (electrical operating conditions), if the difference is less than zero, then zero; the speed difference feedback parameter AdF2 is the difference between the vehicle's maximum traction motor speed RPMmax and the vehicle's average traction motor speed RPMav ( Traction conditions) or the difference between the average vehicle speed RPMav and the vehicle minimum speed RPMmin (electrical operating conditions).
  • the acceleration limit feedback parameter AdF3 is the average vehicle speed RPMav versus the vehicle body The difference between the estimated ground speed RPMg (traction conditions) or the difference between the estimated vehicle body ground speed RPMg and the average vehicle speed RPMav (electrical operating conditions). If the difference is less than zero, then zero.
  • the transient acceleration (deceleration) speed feedback parameter AdF1 is the average speed value RPMFav(tk) of the front bogie traction motor at this sampling point and the front bogie traction at the previous sampling point
  • the difference between the average motor speed value RPMFav (tk-1) (traction conditions), or the average speed value of the front bogie traction motor RPMFav (tk-1) and the average speed value of the front bogie traction motor RPMFav ( tk) (electrical operating conditions) if the difference is less than zero, take zero;
  • the speed difference feedback parameter AdF2 is the difference between the maximum traction motor speed RPMFmax of the front bogie and the average speed of the whole vehicle traction motor RPMav (traction operating conditions ) Or the difference between the average speed of the traction motor RPMav and the minimum speed of the front bogie RPMFmin (electrical operating conditions),
  • the transient acceleration (deceleration) speed feedback parameter AdF1 is the average speed value of the rear bogie traction motor RPMBav(tk) at this sampling point and the back frame of the previous sampling point.
  • the speed difference feedback parameter AdF2 is the difference between the maximum traction motor rotation speed RPMBmax of the rear bogie and the average rotation speed RPMav of the whole vehicle traction motor Value (traction condition) or the difference between the average speed RPMav of the whole vehicle traction motor and the minimum speed RPMBmin of the rear bogie (electrical operating condition), if the difference is less than zero, then zero;
  • the acceleration limit feedback parameter AdF3 is the average of the rear bogie The difference between the speed RPMBav and the estimated speed RPMg of the car body ground conversion (traction condition), or the difference between the estimated speed RPMg of the car body ground conversion speed and the average speed of the rear bogie RPMBav (electric working condition), such as difference If the value is less than zero, take zero.
  • the transient acceleration (deceleration) speed feedback parameter AdF1 is the current sampling point of the current shaft traction motor speed value RPM[i](tk) and the current shaft traction motor speed value RPM[i](tk-1 at the last sampling point) ) Is the absolute value of the difference, if the difference is less than zero, then zero;
  • the speed difference feedback parameter AdF2 is the difference between the current shaft traction motor speed RPM[i] and the vehicle traction motor speed average RPMav (traction conditions) or The difference between the average vehicle traction motor speed RPMav and the current shaft traction motor speed RPM[i] (electrical operating conditions), if the difference is less than zero, then zero; acceleration limit feedback parameter AdF3 is the current shaft traction motor speed RPM[ i] The difference between the estimated speed RPMg of the vehicle body and the ground (traction condition), or the difference between the estimated speed RPMg of the vehicle body and the ground and the current shaft
  • the invention also discloses a locomotive or vehicle, which adopts the above-mentioned weighted parameter adhesion control method.
  • the present invention has at least the following beneficial effects:
  • the invention determines the optimal load shedding time, the percentage of load shedding and the duration of load shedding by comprehensively judging the multiple operating parameters of the locomotive, so as to maximize the adhesion of the locomotive and vehicle, effectively prevent the traction from idling or braking, and make the locomotive and vehicle The maximum traction or braking force is exerted under the current rail surface condition.
  • Fig. 1 is a flowchart of the main program of an embodiment of the present invention.
  • Fig. 2 is a flowchart of a program for calculating a rotation speed related value according to an embodiment of the invention.
  • Fig. 3 is a flowchart of a subroutine for calculating the weighted adhesion control feedback value TqAdfdb according to an embodiment of the present invention.
  • Fig. 4 is a flowchart of the subroutines of AdF1, AdF2, and AdF3 in the frame control mode according to the embodiment of the present invention.
  • Fig. 5 is a flowchart of the subroutines of AdF1, AdF2, and AdF3 in the axis control mode according to the embodiment of the present invention.
  • the embodiment of the present invention discloses a main program flowchart of a weighted parameter adhesion control method.
  • the corresponding software of this flowchart is called periodically (usually 10-20ms).
  • the traction/electric torque characteristic curve obtains the traction motor torque given value Tqref, and passes through a first-order low-pass filter with a transfer function of G(S) to generate the traction motor torque given control value Tqrefout, and limits Tqmin ⁇ Tqrefout ⁇ Tqmax, as a reference value given by the motor torque of the locomotive and vehicle traction/electric system;
  • the weighted adhesion control reference value TqAdref and the weighted adhesion control feedback value TqAdfdb are obtained according to the locomotive and vehicle operating state, and the weighted adhesion control reference value
  • the value TqAdref and the weighted adhesion control feedback value TqAdfdb are sent to the weighte
  • the transfer function is m*G(S) a first-order low-pass filter to filter the given value Tqref of the traction motor torque until Tqrefout is restored to a% of Tqoutmax, and then the transfer function is G (S)/n first-order low-pass filter to filter the given value Tqref of the traction motor torque until Tqrefout is equal to Tqref.
  • the key is to construct the weighted adhesion control PI closed-loop controller TqAd. Therefore, the weighted adhesion control reference value curve is designed in the software, and the weighted adhesion control reference value curve is obtained by real-time querying the traction/electricity weighted adhesion control reference value curve according to the traction/electricity command, handle level, traction motor speed and other commands and status parameters
  • the reference value TqAdref, TqAdref is the given value of the PI closed-loop controller TqAd obtained by weighted addition of multiple parameters.
  • the first step is to detect and correct the current effective traction motor speed RPM[i], and calculate other related speed values.
  • the program flow chart is shown in Figure 2.
  • Motor speed RPM[i] calculate the average vehicle speed RPMRav.
  • the rotation speed signal RPMR[i] of the faulty shaft position without a rotation speed sensor After filtering the rotation speed signal RPMR[i] of the faulty shaft position without a rotation speed sensor, the rotation speed signal RPM[i] of the effective traction motor rotation speed sensor is obtained after the wheel diameter check is performed by a first-order low-pass filter. The RPM[i] is accumulated and divided by the number of faulty shafts of the speedless sensor Sn to obtain the average speed value of the traction motor RPMav.
  • the maximum value in RPM[i] is RPMmax, and the minimum value is RPMmin; the front bogie is lowered to the traction motor RPM[i ]
  • the average speed value RPMFav of the front frame traction motor is obtained by adding up and dividing the previous bogie speed sensorless axis number SFn.
  • the maximum value of the lower traction motor RPM[i] of the front bogie is RPMFmax and the minimum value is RPMFmin; the same principle is used to get the rear frame
  • the average traction motor speed value is RPMBav, the maximum traction motor speed value of the rear frame is RPMBmax, and the minimum traction motor speed value of the rear frame is RPMBmin.
  • the program flow chart of calculating the weighted adhesion control feedback value TqAdfdb is shown in Figure 3. This process needs to consider the control mode of the traction system of the rolling stock: vehicle control, frame control, and axle control. If the vehicle control method is adopted, first determine whether the rolling stock is in traction or braking mode.
  • AdF1 RPMav-RPMavLast, otherwise AdF1 is zero; the maximum traction motor speed RPMmax is greater than the traction motor
  • imax is the number of axles of the rolling stock, which needs to be cyclically judged.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种机车车辆及其加权参数粘着控制方法,根据机车运行状态获取牵引电机转矩给定值和加权粘着控制参考值,生成牵引电机转矩给定控制值;计算加权粘着控制反馈值;将加权粘着控制参考值与加权粘着控制反馈值在加权粘着控制PI闭环控制器中计算,得出加权粘着控制值;依据加权粘着控制值和牵引电机转矩给定控制值二者中较小者控制牵引电机转矩;从T0时刻开始,按m*G(S)对牵引电机转矩给定值进行滤波,直到牵引电机转矩给定控制值恢复到牵引电机转矩最大值的a%时,按G(S)/n对牵引电机转矩给定值进行滤波处理。本方法最大限度发挥机车车辆的粘着力,有效防止牵引空转或制动滑行,使机车车辆在当前的轨面状态下发挥最大的牵引力或制动力。

Description

一种机车车辆及其加权参数粘着控制方法 技术领域
本发明涉及铁路机车车辆电力牵引与传动控制技术领域,尤其涉及一种机车车辆及其加权参数粘着控制方法。
背景技术
高速铁路、重载运输是铁路现代化的重要标志,为了实现高速、重载的目标,最大限度发挥机车车辆牵引与制动性能至关重要,而轮轨粘着利用状况直接影响机车车辆牵引与制动性能的发挥,当轮对产生的轮周牵引力或制动力大于轮轨间的粘着力时车轮就会发生空转或打滑,使牵引力或制动力急剧减小,还会出现轮轨发热、轮轨擦伤,严重时还会影响机车车辆的安全运行,危害极大。轮轨之间的粘着是一个具有不确定性的复杂时变系统,需要采用特定的控制方法,有效防止牵引空转或制动滑行,并使机车车辆在当前的轨面状态下发挥最大的牵引力或制动力。
在机车车辆防空转滑行及粘着控制领域,常用的方案有差动继电器法、阈值法、多参数联合控制、增稳控制等方法。然而这些控制方法都采用侧重于对空转与滑行的识别和主动减载策略上,难以选取合适的减载时刻、减载率百分比及减载持续时间,均难以最大限度发挥粘着力。
具体地,现有的一种控制方法中,通过实时检测机车轮对加速度,当加速度超过保护阈值时,开始卸载力矩,并在卸载过程中不断搜索加速度峰值,直至检测到加速度的峰值,立即停止卸载力矩,使机车轮对粘着重新恢复。该方法以实时检测的机车运行速度为评判依据,以机车轮对加速度超过某一阈值为切入点,实施机车减载措施,在机车速度传感器正常情况下,该方法很适用,但当其传感器故障时,仅凭借单轴速度、加速度就 判断其发生空转滑行,就会造成误判,由于误判减少机车牵引力,影响机车运行。
基于此,现有技术仍然有待改进。
发明内容
为解决上述技术问题,本发明实施例提出一种机车车辆及其加权参数粘着控制方法。以解决现有技术粘着力无法最大限度发挥的技术问题,最大化地利用轮轨粘着力,并且有效防止牵引空转或制动滑行。
本发明实施例所公开的一种加权参数粘着控制方法,其包括:
步骤一根据机车运行状态,通过查询牵引/电制转矩特性曲线获取牵引电机转矩给定值Tqref,经过传递函数G(S)的一阶低通滤波器生成牵引电机转矩给定控制值Tqrefout,并且,限制Tqmin≤Tqrefout≤Tqmax;
步骤二根据机车运行状态,通过查询牵引/电制加权粘着控制参考值曲线,获取加权粘着控制参考值TqAdref;
步骤三基于加权粘着控制反馈因子Adiv1、Adiv2及Adiv3,计算加权粘着控制反馈值TqAdfdb=Adiv1+Adiv2+Adiv3;
步骤四将所述加权粘着控制参考值TqAdref与加权粘着控制反馈值TqAdfdb在加权粘着控制PI闭环控制器TqAd中计算,得出加权粘着控制值TqAdout,且限制Tqmin≤TqAdout≤Tqmax;
步骤五依据所述加权粘着控制值TqAdout和牵引电机转矩给定控制值Tqrefout二者中较小者控制牵引电机转矩Tqout;
步骤六当TqAdout<Tqrefout时,令Tqrefout=TqAdout,并记录该时刻T0的前Ts秒内Tqout的最大值Tqoutmax;
从T0时刻开始,按传递函数为m*G(S)一阶低通滤波器,对牵引电机转矩给定值Tqref进行滤波,直到Tqrefout恢复到Tqoutmax的a%时,再按传递函数为G(S)/n一阶低通滤波器,对牵引电机转矩给定值Tqref进行滤波处理,直到Tqrefout等于Tqref;
其中,1<m<10;1<n<10。
在车辆运行过程中,上述步骤周期性的循环执行。
进一步地,所述机车运行状态包括牵引/电制指令、手柄级位、牵引电机转速中的至少一种。
具体地,
进一步地,所述传递函数G(S)为:
Figure PCTCN2020116493-appb-000001
其中,k为增益,ω c为截止角频率。
进一步地,所述步骤二还包括:
实时监测牵引电机转速传感器状态,
检测并校正当前有效牵引电机转速传感器的转速信号RPM[i](i=1,2…n),其中n为机车车辆车轴数,
计算整车牵引电机平均转速值RPMav、最大牵引电机转速值RPMmax、最小牵引电机转速值RPMmin,
计算各转向架的牵引电机平均转速值RPMTav,最大牵引电机转速值RPMTmax、最小牵引电机转速值RPMTmin,
计算车体对地折算转速估算值RPMg。
具体地,包括:
1)检测各个轴牵引电机实际转速RPMR[i](i=1,2…n),其中n为机车车辆车轴数,计算各个轴牵引电机实际平均速度RPMRav;
2)检测各个轴牵引电机实际电流AMP[i](i=1,2…n),其中n为机车车辆车轴数,计算各个轴牵引电机平均电流AMPav;
3)当满足
RPMRav>=RPMRLow,
且RPMR[i]<=k1*RPMRav,
且AMP[i]<k2*AMPav时,
延时t1秒后判断第i牵引电机转速传感器故障,该故障在控制系统重新上电后自动清除,其中参数RPMRLow一般选取机车车辆速度为3km/h对应的牵引电机转速,k1一般选取0.6~0.9之间的实数,k2一般选取1.1~1.25之间的实数;
4)将无转速传感器故障轴位的转速信号RPMR[i]经一阶低通滤波器滤波后,经过轮径校核,得到有效牵引电机转速传感器的转速信号RPM[i],将RPM[i]累加除以无速传感器故障轴数得出牵引电机平均转速值RPMav,比较RPM[i]中最大值为RPMmax,最小值为RPMmin;分别比较各转向架RPM[i]中最大值为RPMTmax,最小值为RPMTmin,同时计算各转向架牵引电机平均转速值RPMTav;
5)对RPMav进行定斜率滤波处理得到车体对地折算转速估算值RPMg:在牵引状态下,如果RPMg+ΔN<RPMav则RPMg=RPMg+ΔN,否则RPMg=RPMav;在电制状态下,如果RPMg>RPMav+ΔN则RPMg=RPMg-ΔN,否则RPMg=RPMav;
其中,ΔN为机车车辆在一个执行周期内以最大加速度2Km/h/s运行时,对应的轮对转速,单位为转每秒。
如果机车车辆装备雷达测速装置,则RPMg的值直接从雷达测速信号获取;如果机车车辆装备非动力轴测速装置,则RPMg的值直接从非动力轴测速信号获取。
进一步地,所述车体对地折算转速估算值RPMg通过雷达册数装置或非动力轴测速装置获取。
进一步地,所述粘着控制反馈因子
Adiv1=δ1*AdF1,
Adiv2=δ2*AdF2,
Adiv3=δ3*AdF3,
其中,δ1、δ2、δ3为大于1且小于5加权系数,
AdF1为瞬态加/减速度反馈参数,AdF2为速度差反馈参数,AdF3为加速度限制反馈参数。
进一步地,步骤四中,所述加权粘着控制PI闭环控制器TqAd采用的传递函数为
TqAdout=TqAdout+Kp[e(k)-e(k-1)]+Ki*e(k),
其中,Kp、Ki为PI闭环控制器TqAd的比例参数和积分参数,
e(k)为本次TqAdref与TqAdfdb的差值,
e(k-1)为上一次TqAdref与TqAdfdb的差值。
即从T0时刻开始,对牵引电机转矩给定值Tqref进行滤波,直到Tqrefout恢复到Tqoutmax的a%时,所述Kp、Ki分别增大到原Kp、Ki参数的a倍。
进一步地,步骤四中,当所述加权粘着控制反馈值TqAdfdb与加权粘着控制参考值TqAdref之间的差值大于β*TqAdref(0.5<β<1)时,控制系统执行相应轴位撒砂指令。
进一步地,所述AdF1,AdF2和AdF3按车控、架控和轴控的方式进行计算。
具体地,当电机控制采用车控方式时,所述瞬态加(减)速度反馈参数AdF1为本次采样点的整车牵引电机平均转速值RPMav(tk)与上次采样点的整车牵引电机平均转速值RPMav(tk-1)的差值(牵引工况),或为上次采样点的整车牵引电机平均转速值RPMav(tk-1)与本次采样点的整车牵引电机平均转速值RPMav(tk)的差值(电制工况),如差值小于零则取零;速度差反馈参数AdF2为整车最大牵引电机转速RPMmax与整车平均牵引电机转速RPMav的差值(牵引工况)或整车平均转速RPMav与整车最小转速RPMmin的差值(电制工况),如差值小于零则取零;加速度限制反馈参数AdF3为整车平均转速RPMav与车体对地折算转速估算值RPMg的差值(牵引工况)或车体对地折算转速估算值RPMg与整车平均转速RPMav的差值(电制工况),如差值小于零则取零。
当电机控制采用架控方式时,分别对前、后转向架进行计算。当所计算的转向架为前架时,所述瞬态加(减)速度反馈参数AdF1为本次采样点的前转向架牵引电机平均转速值RPMFav(tk)与上次采样点的前转向架牵引电机平均转速值RPMFav(tk-1)的差值(牵引工况),或上次采样点的前转向架牵引电机平均转速值RPMFav(tk-1)与前转向架牵引电机平均转速值RPMFav(tk)的差值(电制工况),如差值小于零则取零;速度差反馈参数AdF2为前转向架最大牵引电机转速RPMFmax与整车牵引电机平均转速RPMav的差值(牵引工况)或整车牵引电机平均转速RPMav与前转向架最小转速RPMFmin的差值(电制工况),如差值小于零则取零;加速度限制反馈参数AdF3为前转向架平均转速RPMFav与车体对地折算转速估算值RPMg的差值(牵引工况),或车体对地折算转速估算值RPMg与前转向架平均转速RPMFav的差值(电制工况),如差值小于零则取零。相同的,当所计算的转向架为后架时,所述瞬态加(减)速度反馈参数AdF1为本次采样点的后转向架牵引电机平均转速值RPMBav(tk)与上次采样点的后转向架牵引电机平均转速值RPMBav(tk-1)的差值,如差值小于零则取零;速度差反馈参数AdF2为后转向架最大牵引电机转速RPMBmax与整车牵引电机平均转速RPMav的差值(牵引工况)或整车牵引电机平均转速RPMav与后转向架最小转速RPMBmin的差值(电制工况),如差值小于零则取零;加速度限制反馈参数AdF3为后转向架平均转速RPMBav与车体对地折算转速估算值RPMg的差值(牵引工况),或车体对地折算转速估算值RPMg与后转向架平均转速RPMBav的差值(电制工况),如差值小于零则取零。
当电机控制采用轴控方式时,分别对各轴进行计算。所述瞬态加(减)速度反馈参数AdF1为本次采样点的当前轴牵引电机转速值RPM[i](tk)与上次采样点当前轴牵引电机转速值RPM[i](tk-1)的差值的绝对值,如差值小于零则取零;速度差反馈参数AdF2为当前轴牵引电机转速RPM[i]与整车牵引电机转速平均值RPMav的差值(牵引工况)或整车牵引电机转速平均值RPMav与当前轴牵引电机转速RPM[i]的差值(电制工况),如差值小于零则取零;加速度限制反馈参数AdF3为当前轴牵引电机转速RPM[i]与车体对地 折算转速估算值RPMg的差值(牵引工况),或车体对地折算转速估算值RPMg与当前轴牵引电机转速RPM[i]的差值(电制工况),如差值小于零则取零。
本发明还公开了一种机车或车辆,其采用上述的加权参数粘着控制方法。
采用上述技术方案,本发明至少具有如下有益效果:
本发明通过对机车多运行参数的综合判断,确定最佳减载时刻,减载率百分比及减载持续时间,最大限度发挥机车车辆的粘着力,有效防止牵引空转或制动滑行,使机车车辆在当前的轨面状态下发挥最大的牵引力或制动力。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例的主程序流程图。
图2为本发明实施例的计算转速相关值程序流程图。
图3为本发明实施例的计算加权粘着控制反馈值TqAdfdb子程序流程图。
图4为本发明实施例的架控模式下AdF1、AdF2、AdF3子程序流程图。
图5为本发明实施例的轴控模式下AdF1、AdF2、AdF3子程序流程图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明实施例进一步详细说明。
需要说明的是,本发明实施例中所有使用“第一”和“第二”的表述 均是为了区分两个相同名称非相同的实体或者非相同的参量,可见“第一”“第二”仅为了表述的方便,不应理解为对本发明实施例的限定,后续实施例对此不再一一说明。
如图1所示,本发明实施例公开了一种加权参数粘着控制方法的主程序流程图,周期性(一般选取10—20ms)调用此流程图对应软件首先,根据机车车辆运行状态,通过查询牵引/电制转矩特性曲线获取牵引电机转矩给定值Tqref,经过传递函数为G(S)的一阶低通滤波器,生成所述牵引电机转矩给定控制值Tqrefout,且限制Tqmin≤Tqrefout≤Tqmax,作为机车车辆牵引/电制工况电机扭矩给定的一个参考值;其次,根据机车车辆运行状态获取加权粘着控制参考值TqAdref,加权粘着控制反馈值TqAdfdb,将加权粘着控制参考值TqAdref与加权粘着控制反馈值TqAdfdb送入加权粘着控制PI闭环控制器TqAd,得出加权粘着控制值TqAdout,且限制Tqmin≤TqAdout≤Tqmax,作为机车车辆牵引/电制工况电机扭矩给定的另一个参考值;然后,对Tqrefout和TqAdout进行比较,由两者中较小者控制牵引电机转矩Tqout。当TqAdout<Tqrefout时,令Tqrefout=TqAdout,并记录该时刻T0的前Ts秒内Tqout的最大值Tqoutmax。从T0时刻开始,按传递函数为m*G(S)一阶低通滤波器,对牵引电机转矩给定值Tqref进行滤波,直到Tqrefout恢复到Tqoutmax的a%时,再按传递函数为G(S)/n一阶低通滤波器,对牵引电机转矩给定值Tqref进行滤波处理,直到Tqrefout等于Tqref。
在本发明中,为了实现机车车辆粘着的闭环控制,构造加权粘着控制PI闭环控制器TqAd是其中的关键。因此在软件中设计了加权粘着控制参考值曲线,并根据牵引/电制指令、手柄级位、牵引电机转速等指令和状态参数,实时查询牵引/电制加权粘着控制参考值曲线获取加权粘着控制参考值TqAdref,TqAdref是多参数通过加权相加得到的用作PI闭环控制器TqAd的给定值。在计算加权粘着控制反馈值TqAdfdb的过程中,首先是检测并校正当前有效牵引电机转速RPM[i],并计算其他相关转速值,程序流程图如图2所示,由检测到的当前有效牵引电机转速RPM[i],计算出整车平均速 度RPMRav。并检测各个轴牵引电机实际电流AMP[i],计算牵引电机平均电流AMPav。逐个轴判断牵引电机转速传感器的有效性,判断条件如下:当满足RPMRav>=RPMRLow(RPMRLow一般选取机车车辆速度为3km/h对应的牵引电机转速)且RPMR[i]<=k1*RPMRav且AMP[i]<k2*AMPav时,延时t1秒后判断第i牵引电机转速传感器故障,其中:k1一般选取0.6~0.9之间的实数,k2一般选取1.1~1.25之间的实数。标记下速度传感器故障轴数,并计算得到整车无速度传感器故障的轴数Sn,前架无速度传感器轴速SFn,后架无速度传感器轴速SBn。将无转速传感器故障轴位的转速信号RPMR[i]经一阶低通滤波器滤波后,经过轮径校核,得到有效牵引电机转速传感器的转速信号RPM[i]。将RPM[i]累加除以无速传感器故障轴数Sn得出牵引电机平均转速值RPMav,比较RPM[i]中最大值为RPMmax,最小值为RPMmin;将前转向架下牵引电机RPM[i]累加除以前转向架无速传感器故障轴数SFn得出前架牵引电机平均转速值RPMFav,比较前转向架下牵引电机RPM[i]中最大值为RPMFmax,最小值为RPMFmin;相同原理得到后架牵引电机平均转速值RPMBav,后架最大牵引电机转速值为RPMBmax,后架最小牵引电机转速值为RPMBmin。
对RPMav进行定斜率滤波处理得到车体对地折算转速估算值RPMg:在牵引状态下,如果RPMg+ΔN<RPMav则RPMg=RPMg+ΔN,否则RPMg=RPMav;在电制状态下,如果RPMg>RPMav+ΔN则RPMg=RPMg-ΔN,否则RPMg=RPMav。如果机车车辆装备雷达测速装置,则RPMg的值直接从雷达测速信号获取;如果机车车辆装备非动力轴测速装置,则RPMg的值直接从非动力轴测速信号获取。
计算加权粘着控制反馈值TqAdfdb程序流程图如图3所示。该流程需考虑机车车辆的牵引系统控制方式:车控、架控、轴控。若采用车控方式,首先判断机车车辆处于牵引还是制动工况。当机车车辆处于牵引工况时,机车车辆当前牵引电机平均转速值RPMav大于上一周期牵引电机平均转速值RPMavLast时,AdF1=RPMav-RPMavLast,否则AdF1为零;最大牵引电机转速值RPMmax大于牵引电机平均转速值RPMav时:AdF2=RPMmax-RPMav, 否则AdF2为零;牵引电机平均转速值RPMav大于车体对地折算转速估算值RPMg时:AdF3=RPMav-RPMg,否则AdF3为零。当机车车辆处于制动工况时,机车车辆当前牵引电机平均转速值RPMav小于上一周期牵引电机平均转速值RPMavLast时,若AdF1=RPMavLast-RPMav,否则AdF1为零;最小牵引电机转速值RPMmin小于牵引电机平均转速值RPMav时:AdF2=RPMav-RPMmin,否则AdF2为零;牵引电机平均转速值RPMav小于车体对地折算转速估算值RPMg时:AdF3=RPMg-RPMav,否则AdF3为零。若采用架控方式,AdF1、AdF2、AdF3子程序流程图如图4所示,其中:jmax为机车车辆转向架数量,需循环判断,当机车车辆处于牵引工况时,判断当前转向架牵引电机平均转速值RPMTav[j](j=1,…jmax)是否大于该转向架上一周期牵引电机平均转速值RPMTavLast[j](j=1,…jmax),若RPMTav[j]>RPMJavLast[j],则AdF1=RPMTav[j]-RPMJavLast[j],否则AdF1为零;判断该转向架牵引电机最大转速值RPMTmax[j](j=1,…jmax)是否大于整车牵引电机平均转速值RPMav,若RPMTmax[j]>RPMav,则AdF2=RPMTmax[j]-RPMav,否则AdF2为零;判断该转向架牵引电机平均转速值RPMTav[j](j=1,…jmax)是否大于车体对地折算转速估算值RPMg,若RPMTav[j]>RPMg,则AdF3=RPMTav[j]-RPMg,否则AdF3为零。当机车车辆处于制动模式时,判断当前转向架牵引电机平均转速值RPMTav[j](j=1,…jmax)是否小于该转向架上一周期牵引电机平均转速值RPMTavLast[j](j=1,…jmax),若RPMTav[j]<RPMJavLast[j],则AdF1=RPMJavLast[j]-RPMTav[j],否则AdF1为零;判断该转向架牵引电机最小转速值RPMTmin[j](j=1,…jmax)是否小于整车牵引电机平均转速值RPMav,若RPMTmin[j]<RPMav,则AdF2=RPMav-RPMTmin[j],否则AdF2为零;判断该转向架牵引电机平均转速值RPMTav[j](j=1,…jmax)是否小于车体对地折算转速估算值RPMg,若RPMTav[j]<RPMg,则AdF3=RPMg-RPMTav[j],否则AdF3为零。若采用轴控方式,AdF1、AdF2、AdF3子程序流程图如图5所示,其中:imax为机车车辆轴数,需循环判断,当机车车辆处于牵引工况时,判断当前有效牵引电机转速传感器的转速信号RPM[i](i=1,2…imax)与是否大于其上一周期该轴有效牵引电机转速传感器的转速信号RPMLast[i](i=1,2…imax),若RPM[i]>RPMLast[i],则 AdF1=RPM[i]-RPMLast[i],否则AdF1为零;判断当前有效牵引电机转速传感器的转速信号RPM[i](i=1,2…imax)是否大于整车牵引电机平均转速值RPMav,若RPM[i]>RPMav,则AdF2=RPM[i]-RPMav,否则AdF2为零;判断当前有效牵引电机转速传感器的转速信号RPM[i](i=1,2…imax)是否大于车体对地折算转速估算值RPMg,若RPM[i]>RPMg,则AdF3=RPM[i]-RPMg,否则AdF3为零。若为制动模式时,判断当前有效牵引电机转速传感器的转速信号RPM[i](i=1,2…imax)与是否小于上一周期该轴有效牵引电机转速传感器的转速信号RPMLast[i](i=1,2…imax),若RPM[i]<RPMLast[i],则AdF1=RPMLast[i]-RPM[i],否则AdF1为零;判断当前有效牵引电机转速传感器的转速信号RPM[i](i=1,2…imax)是否小于整车牵引电机平均转速值RPMav,若RPM[i]<RPMav,则AdF2=RPMav-RPM[i],否则AdF2为零;判断当前有效牵引电机转速传感器的转速信号RPM[i](i=1,2…imax)是否小于车体对地折算转速估算值RPMg,若RPM[i]<RPMg,则AdF3=RPMg-RPM[i],否则AdF3为零。
由上述计算得到的AdF1、AdF2、AdF3参数值,乘以各自的加权系数δ1、δ2、δ3(大于1且小于5加权系数),从而得到加权粘着控制反馈值TqAdfdb=δ1*AdF1+δ2*AdF2+δ3*AdF3。
需要特别指出的是,上述各个实施例中的各个组件或步骤均可以相互交叉、替换、增加、删减,因此,这些合理的排列组合变换形成的组合也应当属于本发明的保护范围,并且不应将本发明的保护范围局限在所述实施例之上。
以上是本发明公开的示例性实施例,上述本发明实施例公开的顺序仅仅为了描述,不代表实施例的优劣。但是应当注意,以上任何实施例的讨论仅为示例性的,并非旨在暗示本发明实施例公开的范围(包括权利要求)被限于这些例子,在不背离权利要求限定的范围的前提下,可以进行多种改变和修改。根据这里描述的公开实施例的方法权利要求的功能、步骤和/或动作不需以任何特定顺序执行。此外,尽管本发明实施例公开的元素可以以个体形式描述或要求,但除非明确限制为单数,也可以理解为多个。
所属领域的普通技术人员应当理解:以上任何实施例的讨论仅为示例性的,并非旨在暗示本发明实施例公开的范围(包括权利要求)被限于这些例子;在本发明实施例的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,并存在如上所述的本发明实施例的不同方面的许多其它变化,为了简明它们没有在细节中提供。因此,凡在本发明实施例的精神和原则之内,所做的任何省略、修改、等同替换、改进等,均应包括在本发明实施例的保护范围之内。

Claims (10)

  1. 一种加权参数粘着控制方法,其特征在于,包括:
    步骤一 根据机车运行状态获取牵引电机转矩给定值Tqref,经过传递函数G(S)生成牵引电机转矩给定控制值Tqrefout;
    步骤二 根据机车运行状态获取加权粘着控制参考值TqAdref;
    步骤三 基于加权粘着控制反馈因子Adiv1、Adiv2及Adiv3,计算加权粘着控制反馈值TqAdfdb=Adiv1+Adiv2+Adiv3;
    步骤四 将所述加权粘着控制参考值TqAdref与加权粘着控制反馈值TqAdfdb在加权粘着控制PI闭环控制器TqAd中计算,得出加权粘着控制值TqAdout;
    步骤五 依据所述加权粘着控制值TqAdout和牵引电机转矩给定控制值Tqrefout二者中较小者控制牵引电机转矩Tqout;
    步骤六 当TqAdout<Tqrefout时,令Tqrefout=TqAdout,并记录该时刻T0的前Ts秒内Tqout的最大值Tqoutmax;
    从T0时刻开始,按传递函数为m*G(S)一阶低通滤波器,对牵引电机转矩给定值Tqref进行滤波,直到Tqrefout恢复到Tqoutmax的a%时,再按传递函数为G(S)/n一阶低通滤波器,对牵引电机转矩给定值Tqref进行滤波处理,直到Tqrefout等于Tqref;
    其中,1<m<10;1<n<10。
  2. 根据权利要求1所述的方法,其特征在于,所述机车运行状态包括牵引/电制指令、手柄级位、牵引电机转速中的至少一种。
  3. 根据权利要求1所述的方法,其特征在于,所述传递函数G(S)为:
    Figure PCTCN2020116493-appb-100001
    其中,k为增益,ω c为截止角频率。
  4. 根据权利要求1所述的方法,其特征在于,所述步骤二还包括:
    实时监测牵引电机转速传感器状态,
    检测并校正当前有效牵引电机转速传感器的转速信号RPM[i](i=1,2…n),其中n为机车车辆车轴数,
    计算整车牵引电机平均转速值RPMav、最大牵引电机转速值RPMmax、最小牵引电机转速值RPMmin,
    计算各转向架的牵引电机平均转速值RPMTav,最大牵引电机转速值RPMTmax、最小牵引电机转速值RPMTmin,
    计算车体对地折算转速估算值RPMg。
  5. 根据权利要求4所述的方法,其特征在于,所述车体对地折算转速估算值RPMg通过雷达册数装置或非动力轴测速装置获取。
  6. 根据权利要求1所述的方法,其特征在于,所述粘着控制反馈因子
    Adiv1=δ1*AdF1,
    Adiv2=δ2*AdF2,
    Adiv3=δ3*AdF3,
    其中,δ1、δ2、δ3为大于1且小于5加权系数,
    AdF1为瞬态加/减速度反馈参数,AdF2为速度差反馈参数,AdF3为加速度限制反馈参数。
  7. 根据权利要求1所述的方法,其特征在于,步骤四中,所述加权粘着控制PI闭环控制器TqAd采用的传递函数为
    TqAdout=TqAdout+Kp[e(k)-e(k-1)]+Ki*e(k),
    其中,Kp、Ki为PI闭环控制器TqAd的比例参数和积分参数,
    e(k)为本次TqAdref与TqAdfdb的差值,
    e(k-1)为上一次TqAdref与TqAdfdb的差值。
  8. 根据权利要求1所述的方法,其特征在于,步骤四中,当所述加权粘着控制反馈值TqAdfdb与加权粘着控制参考值TqAdref之间的差值大于β*TqAdref时,控制系统执行相应轴位撒砂指令,其中,0.5<β<1。
  9. 根据权利要求6所述的方法,其特征在于,所述AdF1,AdF2和AdF3按车控、架控和轴控的方式进行计算。
  10. 一种机车或车辆,其特征在于,采用权利要求1-9任意一项所述的加权参数粘着控制方法。
PCT/CN2020/116493 2019-12-30 2020-09-21 一种机车车辆及其加权参数粘着控制方法 WO2021135415A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2020415919A AU2020415919A1 (en) 2019-12-30 2020-09-21 Locomotive and weighted parameter adhesion control method therefor
ZA2020/06735A ZA202006735B (en) 2019-12-30 2020-10-28 Locomotive and weighted parameter adhesion control method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911390705.8 2019-12-30
CN201911390705.8A CN111114562B (zh) 2019-12-30 2019-12-30 一种机车车辆及其加权参数粘着控制方法

Publications (1)

Publication Number Publication Date
WO2021135415A1 true WO2021135415A1 (zh) 2021-07-08

Family

ID=70504713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/116493 WO2021135415A1 (zh) 2019-12-30 2020-09-21 一种机车车辆及其加权参数粘着控制方法

Country Status (4)

Country Link
CN (1) CN111114562B (zh)
AU (1) AU2020415919A1 (zh)
WO (1) WO2021135415A1 (zh)
ZA (1) ZA202006735B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111114562B (zh) * 2019-12-30 2021-04-02 中车大连机车车辆有限公司 一种机车车辆及其加权参数粘着控制方法
CN112678028B (zh) * 2021-01-19 2022-09-13 中车青岛四方车辆研究所有限公司 自动减载方法、自动减载系统
CN115257868B (zh) * 2022-08-16 2023-05-26 中车青岛四方车辆研究所有限公司 一种黏着控制方法及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5708334A (en) * 1993-04-21 1998-01-13 Abb Research, Ltd. Method for controlling an electric drive of a vehicle
CN202847693U (zh) * 2012-10-30 2013-04-03 株洲南车时代电气股份有限公司 一种交流传动机车电气牵引系统
CN103183037A (zh) * 2011-12-29 2013-07-03 中国北车股份有限公司大连电力牵引研发中心 电力机车粘着控制方法及装置
CN103818391A (zh) * 2014-02-27 2014-05-28 株洲南车时代电气股份有限公司 一种用于动车组的快速粘着控制方法
US20150112508A1 (en) * 2012-05-21 2015-04-23 Pioneer Corporation Traction control device and traction control method
JP2019022342A (ja) * 2017-07-18 2019-02-07 ダイムラー・アクチェンゲゼルシャフトDaimler AG 電気自動車の制御装置、及び、電気自動車の制御方法
CN111114562A (zh) * 2019-12-30 2020-05-08 中车大连机车车辆有限公司 一种机车车辆及其加权参数粘着控制方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103057552B (zh) * 2012-12-13 2015-03-11 中国铁路总公司 机车撒砂控制方法
WO2019053680A1 (en) * 2017-09-15 2019-03-21 Detroit Electric Ev Technologies (Zhejiang) Limited SPIN CONTROL SYSTEM AND METHOD FOR REALIZING SPIN CONTROL FOR ELECTRIC VEHICLES
CN109799702A (zh) * 2017-11-17 2019-05-24 株洲中车时代电气股份有限公司 一种轨道交通车辆的粘着控制方法及系统
CN108422897B (zh) * 2018-02-28 2020-06-26 江苏大学 一种纯电动汽车驱动模式切换控制方法
CN109782325B (zh) * 2019-03-06 2021-03-12 西南交通大学 基于粒子滤波和多传感器信息融合的列车速度估计方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5708334A (en) * 1993-04-21 1998-01-13 Abb Research, Ltd. Method for controlling an electric drive of a vehicle
CN103183037A (zh) * 2011-12-29 2013-07-03 中国北车股份有限公司大连电力牵引研发中心 电力机车粘着控制方法及装置
US20150112508A1 (en) * 2012-05-21 2015-04-23 Pioneer Corporation Traction control device and traction control method
CN202847693U (zh) * 2012-10-30 2013-04-03 株洲南车时代电气股份有限公司 一种交流传动机车电气牵引系统
CN103818391A (zh) * 2014-02-27 2014-05-28 株洲南车时代电气股份有限公司 一种用于动车组的快速粘着控制方法
JP2019022342A (ja) * 2017-07-18 2019-02-07 ダイムラー・アクチェンゲゼルシャフトDaimler AG 電気自動車の制御装置、及び、電気自動車の制御方法
CN111114562A (zh) * 2019-12-30 2020-05-08 中车大连机车车辆有限公司 一种机车车辆及其加权参数粘着控制方法

Also Published As

Publication number Publication date
CN111114562B (zh) 2021-04-02
CN111114562A (zh) 2020-05-08
AU2020415919A1 (en) 2021-11-18
ZA202006735B (en) 2022-07-27

Similar Documents

Publication Publication Date Title
WO2021135415A1 (zh) 一种机车车辆及其加权参数粘着控制方法
AU2006266295B2 (en) System and method for locomotive adhesion control
CN112061177B (zh) 基于最优牵引转矩在线搜寻的机车黏着控制方法
CN103183037B (zh) 电力机车粘着控制方法及装置
US6152546A (en) Traction vehicle/wheel slip and slide control
WO2020125249A1 (zh) 基于线控转向双电机的主动容错和故障缓解系统及其控制方法
CN103303158B (zh) 电车的控制装置
US7679298B2 (en) Locomotive wheel speed control
US6758087B2 (en) Method, system and storage medium for determining a vehicle reference speed
CN112406559B (zh) 一种大功率电力机车空转快速恢复控制方法
JP6235609B2 (ja) 変速機出力軸センサを用いて車両の推定車輪速度を監視するためのシステムおよび方法
WO2012079343A1 (zh) 机车防空转滑行控制方法
JP4187058B1 (ja) 電気車の車輪径計測装置
CN113942399B (zh) 一种抑制机车低速空转的控制方法
CN108725254B (zh) 一种控制电动汽车驱动防滑和制动防抱死的方法及系统
US6600979B1 (en) Method and system for determining an inertially-adjusted vehicle reference speed
CN113696915B (zh) 高速制动大蠕滑粘着控制方法及装置
JP4621377B2 (ja) 電気車制御装置
JP2012151958A (ja) 電気車制御装置
JP6050089B2 (ja) 電気自動車の制御装置およびその電気自動車
CN112519592A (zh) 车辆轮速控制方法、设备及电动汽车
JP6983802B2 (ja) 鉄道車両の進行速度の算出方法
CN109693653B (zh) 一种机车轮轴防滑保护控制方法
EP3040251B1 (en) Method of decreasing lateral pressure in railroad vehicle
JP4402980B2 (ja) 鉄道車両用トラクション制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20909662

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020415919

Country of ref document: AU

Date of ref document: 20200921

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20909662

Country of ref document: EP

Kind code of ref document: A1