WO2021135051A1 - 一种船舶及海工平台用轻型变频软电缆及其制造方法 - Google Patents

一种船舶及海工平台用轻型变频软电缆及其制造方法 Download PDF

Info

Publication number
WO2021135051A1
WO2021135051A1 PCT/CN2020/092130 CN2020092130W WO2021135051A1 WO 2021135051 A1 WO2021135051 A1 WO 2021135051A1 CN 2020092130 W CN2020092130 W CN 2020092130W WO 2021135051 A1 WO2021135051 A1 WO 2021135051A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
core
conductor
wire
main insulated
Prior art date
Application number
PCT/CN2020/092130
Other languages
English (en)
French (fr)
Inventor
辅志辉
梁斌
解向前
倪伟
王俊
顾小刚
Original Assignee
中天科技装备电缆有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中天科技装备电缆有限公司 filed Critical 中天科技装备电缆有限公司
Publication of WO2021135051A1 publication Critical patent/WO2021135051A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/04Flexible cables, conductors, or cords, e.g. trailing cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/06Insulating conductors or cables
    • H01B13/14Insulating conductors or cables by extrusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/22Sheathing; Armouring; Screening; Applying other protective layers
    • H01B13/24Sheathing; Armouring; Screening; Applying other protective layers by extrusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/04Flexible cables, conductors, or cords, e.g. trailing cables
    • H01B7/041Flexible cables, conductors, or cords, e.g. trailing cables attached to mobile objects, e.g. portable tools, elevators, mining equipment, hoisting cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/04Flexible cables, conductors, or cords, e.g. trailing cables
    • H01B7/045Flexible cables, conductors, or cords, e.g. trailing cables attached to marine objects, e.g. buoys, diving equipment, aquatic probes, marine towline
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/29Protection against damage caused by extremes of temperature or by flame
    • H01B7/295Protection against damage caused by extremes of temperature or by flame using material resistant to flame

Definitions

  • the invention relates to a flexible cable and a manufacturing method thereof, in particular to a light variable frequency flexible cable for ships and offshore platforms and a manufacturing method thereof, and belongs to the field of cable manufacturing.
  • variable frequency AC drives can be widely used in wind turbines, winches, main propellers, rudder propeller drives and various special working conditions.
  • the frequency conversion system produces harmonics, electromagnetic interference, reflected wave voltage and induced voltage of adjacent cables, which will cause cable damage, shorten the service life of the cable, and affect the electrical safety performance.
  • the reliability of ships and offshore equipment is a very critical issue. Vibration, moisture and salt may cause damage to the mechanical and electrical components of marine equipment. In order to ensure trouble-free operation of marine equipment, system components and materials need to be selected according to special requirements.
  • Cable products for marine variable frequency propulsion systems must meet the requirements for load capacity, shock resistance, acid and alkali resistance, low smoke and halogen free, oil resistance, low temperature resistance, mud resistance and flame retardancy. At the same time, due to the limited space and energy-saving requirements of ships, frequency conversion cables need to be small in size and light in weight.
  • the existing variable frequency cables mostly adopt the method of splitting the neutral wire to realize the symmetry of the cable structure and reduce the impact of the odd waves of higher harmonics on the variable frequency cable.
  • the structure is a 3+3 core with a round core, and the variable frequency cable
  • the neutral wire in the middle is only used as a protective ground or through three-phase unbalanced current, that is, used for equipotential, or used to discharge ground fault current, or when a ground fault occurs, the protective ground wire should not be burned before the protective equipment is activated. effect.
  • the phases of the three neutral cores lag 120° in sequence, forming a symmetrical and balanced state, so that the current does not form a superposition, effectively reducing the harm of high-order harmonics to the frequency conversion cable.
  • the technical problem to be solved by the present invention is to provide a light variable frequency flexible cable for ships and offshore platforms and a manufacturing method thereof, which solves the problem that the position of the wire core in the prior art is prone to shift after the cable is bent and twisted.
  • a light variable frequency flexible cable for ships and offshore platforms which is characterized in that it comprises a main insulated core, a neutral core, a shielding layer, an armor layer and an outer sheath.
  • the three main insulated cores form a complete ring and are sheathed outside the neutral core.
  • the shielding layer, armor layer and outer sheath are sequentially sheathed on the outside of the main insulated cores from the inside to the outside.
  • the main insulated core and the neutral core both include a conductor, a semi-conductive layer, and a cross-linked polyethylene composite insulation layer, the semi-conductive layer is arranged on the outside of the conductor, and the cross-linked polyethylene composite insulation layer is arranged on the semi-conductive layer.
  • the conductor adopts a copper-clad aluminum composite conductor
  • the semi-conductive layer adopts a semi-conductive shielding material.
  • the main insulated core and the neutral core further comprise a self-adhesive layer, the self-adhesive layer is arranged on the outside of the cross-linked polyethylene composite insulating layer, and the self-adhesive layer is made of self-adhesive rubber.
  • the outer side of the self-adhesive layer of the neutral wire core is provided with concavo-convex lines
  • the tile-shaped lower inner wall and both side walls of the main insulated wire core are provided with concavo-convex lines.
  • the concave-convex pattern adopts a bar-shaped zigzag pattern, a bar-shaped wave pattern, an array of triangular pyramid pattern or an array of quadrangular pyramid pattern, and the uneven pattern on the mutually contacting plane of the neutral wire core and the main insulated wire core To mesh with each other.
  • the outer side of the main insulated wire core is provided with a wrapping layer, and the wrapping layer is wrapped with a low-smoke, halogen-free oxygen barrier tape on the outer side of the main insulated wire core and located on the inner side of the shielding layer.
  • the shielding layer is formed by wrapping a drain wire and a copper-plastic composite tape, and the drain wire is an annealed tinned copper soft conductor.
  • the armor layer is woven from nickel-plated carbon fiber.
  • the outer sheath adopts a low-smoke, halogen-free, flame-retardant, mud-resistant rubber sheath material.
  • a manufacturing method of a light variable frequency flexible cable for ships and offshore platforms which is characterized in that it comprises the following steps:
  • Step 1 Wire drawing and annealing.
  • the copper-clad aluminum alloy wire is produced to a single wire with a diameter of ⁇ 0.080 ⁇ 0.400mm through a high-precision drawing die made of diamond material with gradual aperture in the wire drawing machine, and the single wire is passed through an oven at 500 ⁇ 600°C.
  • High temperature annealing to soften, cooling, air-blowing and drying, and winding onto the wire reel;
  • Step 2 Twisting, twist the drawn copper-clad aluminum alloy monofilament bundle into a conductor unit of 0.5mm 2 ⁇ 16mm 2 , using a high-speed twisted wire machine, twist the monofilament into a bundle by twisting the bow.
  • the combined pitch diameter ratio is 8-10 times, twisting to the left, and the active pay-off stand is used for pay-off, constant tension control, and the tension setting is 10-15N;
  • Step 3 Twisting and pressing, twisting the stranding unit into 25mm 2 ⁇ 300mm 2 conductors, arranging the stranding unit according to the 1+6+12+18 regular stranding structure, and the stranding pitch diameter ratio is 10 ⁇ 12 times, to be consistent with the twist buncher section, a section of the beam cutter unit according to 20N / mm 2 tension provided by the polycrystalline material pressed against high mold, a round stranded conductor, with the pressure in the mold pressed Type device, the circular conductor is pressed into a 120°W shape through a pair of pressing wheels, and then wound onto the wire reel through the traction wheel;
  • Step 4 Extrusion of semi-conductive, insulating and self-adhesive layer, use high-precision extruder to extrude and melt the cross-linked polyethylene insulation material.
  • the conductor is evenly covered on the outside of the conductor.
  • the conductor enters the extruder.
  • the front surface of the head is coated with a semi-conductive layer, after coating, the surface is coated with an insulating layer, and then coated with a self-adhesive rubber layer.
  • the extrusion temperature is 160 °C ⁇ with a BM screw with a length-to-diameter ratio of 25.
  • the conductor is heated by high frequency induction heating online before insulation coating;
  • Step 5 Steam cross-linking. Place the insulated wire core after production in a closed steam room. Steam is fed into the steam room.
  • the steam pipe valve is automatically controlled by a temperature sensor to adjust the steam intake to keep the temperature at 90°C ⁇ 98°C, set the cross-linking time according to the size of the insulated wire core section;
  • Step 6 Make the cable, place the main insulated core on the outer layer, place the neutral core at the center, adjust the angle of the main insulated core, and combine the insulated cores into a circle through the cable and wire mold;
  • Step 7 Braiding, according to different cable specifications, select appropriate nickel-plated carbon fibers for braiding on a high-speed braiding machine, with a braiding coverage density of ⁇ 88%;
  • Step 8 The sheath is extruded.
  • the low-smoke, halogen-free, flame-retardant and mud-resistant rubber sheath material is extruded and melted by a high-precision rubber extruder. After the extrusion die is shaped, it is evenly coated on the outside of the cable core.
  • the sheath layer is vulcanized, and the molecules of the sheath material are transformed from a linear structure to a network structure.
  • the present invention has the following advantages and effects:
  • the present invention uses the structure in which the tile-shaped main insulated wire core surrounds the outer side of the circular neutral wire core. There is no gap between such structures, and the inner and both sides of the tile-shaped main insulated wire core resist each other, and the outer side It is covered, so that the four directions are completely restricted, the structure is stable, and it is not easy to cause position deviation, so that the stable symmetry of the cable can be ensured when the cable is bent or twisted;
  • the present invention homogenizes the electric field through the semi-conductive layer, reduces the tip discharge, and effectively avoids insulation breakdown; at the same time, the self-adhesive rubber layer and the concave-convex pattern are adopted to further avoid the deviation of the main insulation core.
  • Figure 1 is a schematic diagram of a light variable frequency flexible cable for ships and offshore platforms of the present invention.
  • Figure 2 is a schematic diagram of the neutral core of the present invention.
  • Fig. 3 is a schematic diagram of the main insulated wire core of the present invention.
  • a light variable frequency flexible cable for ships and offshore platforms of the present invention includes a main insulated core 1, a neutral core 2, a shielding layer 3, an armoring layer 4, and an outer sheath 5.
  • the three main insulated cores 1 form a complete ring and are sheathed outside the neutral core 2.
  • the shielding layer 3, the armoring layer 4 and the outer sheath 5 are sequentially sheathed on the outside of the main insulated core 1 from the inside to the outside.
  • Three main insulated cores 1 are in the shape of 120°Watts, and a neutral core 2 is a circular structure distributed in the center of the three main insulated cores 1.
  • the main insulated core 1 and the neutral core 2 are combined into a structure A very stable circle, forming a completely symmetrical and balanced state.
  • the core will not move left and right, which effectively reduces the harm of high-order harmonics to the variable-frequency cable.
  • the light variable frequency flexible cable for ships and offshore platforms provided by the present invention adopts a tile-shaped + circular combined structure, and has the outstanding characteristics of smaller outer diameter and stable structure than the conventional 3+3 core structure.
  • the tile shape in the present application refers to a structure similar to the shape of a thick tile formed after a small fan shape is cut out at the center of the fan shape, which is similar to the shape of the fan surface of a folding fan.
  • the main insulated core 1 and the neutral core 2 both include a conductor 6, a semiconducting layer 7, and a cross-linked polyethylene composite insulation layer 8.
  • the semiconducting layer 7 is arranged on the outside of the conductor 6, crossed
  • the polyethylene composite insulating layer 8 is arranged on the outside of the semiconductive layer 7.
  • the conductor 6 uses a copper-clad aluminum composite conductor
  • the copper-clad aluminum alloy conductor uses a copper strip-coated aluminum alloy rod to complete the interatomic lattice bonding process after stretching.
  • the inner core of the copper-clad aluminum alloy conductor is made of aluminum alloy, and the volume accounts for The ratio is 85-90%, the outer layer is made of copper, and the volume accounts for 10-15%.
  • the copper-clad aluminum alloy wire is gradually stretched to draw the required monofilament diameter, and then is softened by annealing and a special stranding process is used to complete the final conductor.
  • the density of the prepared copper-clad aluminum alloy is 1/3 of that of pure copper.
  • the weight of the aluminum alloy wire conductor is about 20% lighter than that of the pure copper conductor. Due to the low density, high strength, high flexibility, and high creep resistance of copper-clad aluminum alloy conductors. As a result, the cable has the outstanding characteristics of lighter weight and higher flexibility than conventional copper materials, while saving costs and improving operation convenience.
  • the semi-conducting layer adopts semi-conducting shielding material, and a semi-conducting layer is added outside the conductor to homogenize the electric field and reduce the tip discharge.
  • defects such as burrs
  • the electric field will change at the defect, which is likely to cause breakdown and damage the insulation. If the semi-conductive layer is applied, the electric field on the surface of the conductor is evened, which can effectively avoid insulation breakdown.
  • the main insulated core 1 and the neutral core 2 further include a self-adhesive layer 9 which is arranged on the outside of the cross-linked polyethylene composite insulating layer 8, and the self-adhesive layer 9 is made of self-adhesive rubber.
  • the outer side of the self-adhesive layer of the neutral wire core 2 is provided with concavo-convex patterns, and the tile-shaped lower inner wall and both side walls of the main insulated wire core 1 are provided with concavo-convex patterns.
  • the concave-convex pattern adopts a striped zigzag pattern, a striped wave pattern, an array of triangular pyramid pattern or an array of quadrangular pyramid pattern, and the uneven pattern on the mutually contacting planes of the neutral core 2 and the main insulation core 1 meshes with each other.
  • Self-adhesive rubber layer and concave-convex pattern are adopted to further avoid the deviation of the main insulation core
  • the outer side of the main insulated wire core 1 is provided with a wrapping layer 10, and the wrapping layer 10 is wrapped around the outer side of the main insulated wire core 1 and located on the inner side of the shielding layer 3 with a low-smoke non-halogen oxygen barrier tape.
  • the shielding layer 3 is wrapped by a drain wire and a copper-plastic composite tape, and the drain wire is an annealed tinned copper soft conductor, so that the copper-plastic composite tape shielding layer maintains continuity and can conduct accumulated charges, short-circuit current, and leakage current, which is convenient for connection Ground wire.
  • the armor layer 4 is woven from nickel-plated carbon fiber.
  • the density of nickel-plated carbon fiber is about 2.4g/cm3, the strength is far better than tin-plated copper wire under the same specification, the woven coverage density is not less than 88%, and the control shielding effect reaches 100%.
  • the shielding layer structure is more stable and reliable, and at the same time, the overall weight can be reduced by about 15%.
  • the outer sheath 5 is made of low-smoke halogen-free flame-retardant mud resistant rubber sheath material. Low temperature resistance -40°C, high temperature resistance 125°C.
  • the sheath material is made of EVM rubber as the main raw material, adding halogen-free flame retardant and other additives through mixing, extruding, and granulating; the test piece made of the material is subjected to an enhanced oil resistance test according to NEKTS606 to test the tensile strength Change rate ⁇ 30%, test breaking elongation change rate ⁇ 30%; according to NEKTS606, carry out mud resistance test (resistance to calcium bromide solution, resistance to EDC95-11 base oil), test tensile strength change rate ⁇ 25% , Test the rate of change of elongation at break ⁇ 25%. Effectively ensure that the cable can withstand long-term operation in harsh environments such as high temperature and oil pollution in the frequency conversion propulsion system.
  • a manufacturing method of a light variable frequency flexible cable for ships and offshore platforms which is characterized in that it comprises the following steps:
  • Step 1 Wire drawing and annealing.
  • the copper-clad aluminum alloy wire is produced to a single wire with a diameter of ⁇ 0.080 ⁇ 0.400mm through a high-precision drawing die made of diamond material with a gradually changing aperture in the drawing machine.
  • a drawing die with a gradually changing aperture in a multi-end wire drawing machine is used to produce monofilaments of the required diameter.
  • 16 monofilaments can be drawn at the same time. Further, the monofilament is softened by high-temperature annealing through an oven at 500-600°C, a water pipe with a length of 2 to 3 meters is cooled by natural cold water, blown and dried, and then wound onto a spool.
  • Step 2 Bundling, the drawn copper-clad aluminum alloy monofilament bundle is twisted into a conductor unit of 0.5 mm 2 to 16 mm 2.
  • a high-speed double twisting machine is used to twist the monofilament into a bundle through the twisting bow rotation.
  • the twisting pitch diameter ratio is 8-10 times, and the twisting is leftward.
  • the active pay-off rack is used for pay-off and constant tension control.
  • the tension is set to 10-15N to ensure good conductor resistance.
  • Step 3 Twisting and pressing, twisting the stranding unit into a conductor of 25mm 2 ⁇ 300mm 2.
  • a cage stranding machine with stepless variable speed hysteresis tension control is used for rewinding.
  • the cage stranding machine has a complete back-twisting function, so that the internal stress of the stranded conductor is small.
  • the hysteresis tension has a constant tension control function to ensure the roundness of the conductor.
  • Cross section set tension according to 20N/mm 2 , twist a round conductor through a compact die made of high polycrystalline material. After pressing the mold, there is a pressing device. By adopting a pair of pressing wheels (upper and lower structure), the circular conductor is pressed into a 120° tile shape, and it is wound on the spool through the traction wheel.
  • Step 4 Extrusion of semi-conductive, insulating and self-adhesive layer, use high-precision extruder to extrude and melt the cross-linked polyethylene insulation material.
  • the conductor is evenly covered on the outside of the conductor.
  • the conductor enters the extruder.
  • the front surface of the head is coated with a semi-conductive layer, after coating, the surface is coated with an insulating layer, and then coated with a self-adhesive rubber layer.
  • a BM screw with a length-to-diameter ratio of 25 is used for extrusion, and the extrusion temperature is 160°C to 190°C.
  • Step 5 Steam cross-linking. Place the insulated wire core after production in a closed steam room. Steam is fed into the steam room. The steam pipe valve is automatically controlled by a temperature sensor to adjust the steam intake to keep the temperature at 90°C ⁇ At 98°C, the cross-linking time is set according to the size of the insulated wire core section. Under the action of the crosslinking agent, the molecules of the insulating material are transformed from a linear structure to a network structure. The temperature resistance is increased from 70°C to 90°C, and the environmental cracking resistance has also been greatly improved.
  • Step 6 Make the cable, place the main insulated core on the outer layer, place the neutral core at the center, adjust the angle of the main insulated core, and combine the insulated cores into a circle through the cable and wire mold.
  • a coil twister with two winding machines is used for cable formation, pre-twisting (each main insulation core is twisted 5 to 8 times in advance, and the inlet angle of the main insulation core is adjusted to ensure the cabling process The main insulated core will not turn over), the pitch diameter ratio is 30 to 35 times, and the twisting direction is consistent with the conductor, so that the conductor in the insulated core will not be loose.
  • the halogen-free oxygen barrier tape is wrapped around the cable core to prevent the cable core from loosening and increase the flame retardant performance of the cable.
  • a piece of tinned soft copper wire is dragged outside the halogen-free oxygen barrier, and a layer of soft copper tape is wrapped around the tinned soft copper wire.
  • the overlap rate of copper tape wrapping is 15-20%.
  • Step 7 Braiding. According to different cable specifications, select appropriate nickel-plated carbon fiber to braid on a high-speed braiding machine, with a braiding coverage density of ⁇ 88%.
  • Step 8 The sheath is extruded, and the low-smoke, halogen-free, flame-retardant and mud-resistant rubber sheath material is extruded and melted by a high-precision rubber extruder, and the extrusion die is shaped and then evenly coated on the outside of the cable core.
  • the jacket layer is vulcanized through the steam pipeline, and the molecules of the jacket material are transformed from a linear structure to a network structure, which improves its oil resistance and mud resistance.
  • the thickness, outer diameter and surface quality of the sheath are monitored by using a high-precision deflection meter and a concave-convex meter.
  • code printing is performed online at the same time, and information such as factory name, model specification, meter mark and other information is printed.
  • the present invention adopts the structure in which the tile-shaped main insulated wire core surrounds the outer side of the circular neutral wire core. There is no gap between such structures and the inner and both sides of the tile-shaped main insulated wire core are against each other, and the outer side is covered. Cover, so that the four directions are completely restricted, the structure is stable, and it is not easy to cause positional deviation, so that the stable symmetry of the cable can also be ensured when the cable is bent or twisted; the present invention homogenizes the electric field through the semi-conductive layer , To reduce the tip discharge, effectively avoid insulation breakdown; at the same time, the self-adhesive rubber layer and the concave-convex pattern are adopted to further avoid the deviation of the main insulation core.
  • the cable conductor adopts a copper-clad aluminum alloy solution, combined with copper-clad, drawing, annealing, and stranding technology to form a super-soft copper-clad aluminum alloy composite material.
  • the conductor has high strength, good conductivity, light weight, and bending Good features.
  • the armor layer is woven with nickel-plated carbon fiber.
  • the density of nickel-plated carbon fiber is about 2.4g/cm3, the strength is far better than tin-plated copper wire under the same specification, the woven coverage density is not less than 88%, and the control shielding effect reaches 100%.
  • the shielding layer structure is more stable and reliable, and at the same time, the overall weight can be reduced by about 15%.
  • the cable outer sheath adopts a low-smoke, halogen-free, flame-retardant, oil-resistant and mud-resistant rubber sheath material trial-produced by an independent formula, which ensures that the cable sheath has excellent waterproof, oil-resistant, mud-resistant, flame-retardant, high and low temperature resistance properties.

Abstract

本发明公开了一种船舶及海工平台用轻型变频软电缆及其制造方法,包含主绝缘线芯、中性线芯、屏蔽层、铠装层和外护套,主绝缘线芯为三根并且其截面呈120度的瓦形,三根主绝缘线芯构成一个完整的环形套设在中性线芯的外侧,屏蔽层、铠装层和外护套由内向外依次套设在主绝缘线芯的外侧。本发明通过瓦形主绝缘线芯环绕在圆形中性线芯外侧的结构,这样的结构相互之间不存在间隙并且瓦形主绝缘线芯的内侧和两侧均相互抵死,外侧又被包覆,这样四个方向上完全被限制,结构稳定,不易造成位置的偏移,从而在电缆在弯曲、扭动的时候,也能够保证电缆稳定的对称性。

Description

一种船舶及海工平台用轻型变频软电缆及其制造方法 技术领域
本发明涉及一种软电缆及其制造方法,特别是一种船舶及海工平台用轻型变频软电缆及其制造方法,属于电缆制造领域。
背景技术
随着船舶及海工行业的节能发展使得变频交流传动在风机、绞盘、主推进器、舵桨驱动和各种各样的特殊工况中得以广泛应用。因变频系统产生谐波、电磁干扰、反射波电压和相邻电缆的感应电压,会造成电缆损伤,缩短电缆的使用寿命,影响电气安全性能。船舶及海工设备的可靠性是一个十分关键的问题,震动、潮湿及盐份都可能对船用设备的机械和电气元件造成损坏。为了保证船用设备的无故障运行,需要按照特殊的要求选用系统部件和材料。船用变频推进系统用电缆产品对于负载能力、防震性能、耐酸碱、低烟无卤、耐油、耐低温、耐泥浆和阻燃等性能均要满足要求。同时由于船舶有限的空间和节能要求,变频电缆需要做到尺寸小、重量轻。
现有的变频电缆多为采用拆分中性线的办法,实现电缆结构对称,降低高次谐波的奇次波对变频电缆的冲击,结构为圆形线芯的3+3芯,变频电缆中的中性线只作为保护接地或通过三相不平衡电流,也就是用作等电位、或用于泄放接地故障电流、或发生接地故障时保护地线不应在保护设备动作前烧毁的作用。三个中性线芯的相位依次滞后120°,形成了一个对称平衡的状态,使得电流不会形成叠加,有效的减小了高次谐波对变频电缆的危害。但由于电缆在生产过程中因挤出、成缆工艺等原因不能确保产品完全控制在绝对的理论计算值范围内,电缆在生产和安装时是动态的。由于电缆的主线芯和中性线无论二类或五类导体都是圆形,线芯绞合是有节距的,电缆的弯曲、扭动会使 线芯之间前后滑移和相互挤压产生永久变形的线芯左右位移发生变化,电缆稳定的对称性因此也会发生改变,高次谐波产生的电流分量就会在中性线芯内无相位差,这样一来电流将会叠加成原分量的数倍,中性线芯在高频脉冲下很快就会被击穿。
发明内容
本发明所要解决的技术问题是提供一种船舶及海工平台用轻型变频软电缆及其制造方法,解决现有技术线芯在电缆弯曲、扭动后位置容易发生偏移的问题。
为解决上述技术问题,本发明所采用的技术方案是:
一种船舶及海工平台用轻型变频软电缆,其特征在于:包含主绝缘线芯、中性线芯、屏蔽层、铠装层和外护套,主绝缘线芯为三根并且其截面呈120度的瓦形,三根主绝缘线芯构成一个完整的环形套设在中性线芯的外侧,屏蔽层、铠装层和外护套由内向外依次套设在主绝缘线芯的外侧。
进一步地,所述主绝缘线芯和中性线芯均包含导体、半导电层、交联聚乙烯复合绝缘层,半导电层设置在导体外侧,交联聚乙烯复合绝缘层设置在半导电层外侧,其中导体采用铜包铝复合导体,半导电层采用半导电屏蔽料。
进一步地,所述主绝缘线芯和中性线芯还包含自粘层,自粘层设置在交联聚乙烯复合绝缘层的外侧,自粘层采用自粘橡胶。
进一步地,所述中性线芯的自粘层的外侧设置有凹凸纹路,主绝缘线芯的瓦形下侧内壁和两侧侧壁上设置有凹凸纹路。
进一步地,所述凹凸纹路采用条形的锯齿纹路、条形的波浪纹路、阵列的三棱锥纹路或阵列的四棱锥纹路,中性线芯和主绝缘线芯的相互接触的平面上的凹凸纹路相互啮合。
进一步地,所述主绝缘线芯的外侧设置有绕包层,绕包层采用低烟无卤隔氧带绕包在主绝缘线芯的外侧并且位于屏蔽层的内侧。
进一步地,所述屏蔽层采用引流线和铜塑复合带绕包而成,引流 线采用退火镀锡铜软导体。
进一步地,所述铠装层由镀镍碳纤维编织而成。
进一步地,所述外护套采用低烟无卤阻燃耐泥浆橡胶护套料。
一种船舶及海工平台用轻型变频软电缆的其制造方法,其特征在于包含以下步骤:
步骤一:拉丝、退火,铜包铝合金线经过拉丝机内渐变孔径的金刚石材质的高精度拉丝模具生产至Ф0.080~0.400mm直径的单线,将单丝通过经过500~600℃的烘箱进行高温退火软化,冷却、吹气烘干,卷绕至线盘上;
步骤二:束绞,将拉制好的铜包铝合金单丝束绞为0.5mm 2~16mm 2的导体单元,采用高速双扭绞线机,通过绞弓旋转将单丝绞合成束,绞合节径比为8~10倍,绞向左向,同时使用主动放线架进行放线,恒张力控制,张力设置10-15N;
步骤三:复绞、压型,将束绞单元复绞为25mm 2~300mm 2的导体,将束绞单元按照1+6+12+18正规绞合结构排列,绞合节径比为10~12倍,绞向与束绞单元保持一致,根据束绞单元的截面,按照20N/mm 2设置张力,通过高聚晶材质的紧压模具,绞合出圆形导体,在紧压模具后设有压型装置,通过1对压轮将圆形导体压成120°瓦形状,经过牵引轮卷绕至线盘上;
步骤四:半导电、绝缘、自粘层挤出,利用高精度挤塑机对交联聚乙烯绝缘材料进行挤压熔融经挤出模具定型后均匀包覆在导体外面,导体在进挤出机头前表面涂覆一层半导电层,经涂覆后表面包覆绝缘层,再包覆一层自粘橡胶层,采用长径比为25的BM螺杆挤出,挤出温度为160℃~190℃,导体在绝缘包覆前在线进行高频感应加热;
步骤五:蒸汽交联,将生产后的绝缘线芯放置在密闭的蒸汽房中,蒸汽房内通入蒸汽,通过温度传感器自动控制蒸汽管道阀门,调节蒸汽进气量,保持温度在90℃~98℃,根据绝缘线芯截面大小设置交联时间;
步骤六:成缆,将主绝缘线芯放置在外层,中心放置中性线芯,调整主绝缘线芯角度,通过成缆并线模将绝缘线芯组合成圆形;
步骤七:编织,按照不同的电缆规格,选取合适的镀镍碳纤维在高速编织机上进行编织,编织覆盖密度≥88%;
步骤八:护套挤出,利用高精度挤橡机对低烟无卤阻燃耐泥浆橡胶护套料进行挤压熔融经挤出模具定型后均匀包覆在缆芯外面,同时通过蒸汽管道对护套层进行硫化,护套料的分子由线状结构转化为网状结构。
本发明与现有技术相比,具有以下优点和效果:
1、本发明通过瓦形主绝缘线芯环绕在圆形中性线芯外侧的结构,这样的结构相互之间不存在间隙并且瓦形主绝缘线芯的内侧和两侧均相互抵死,外侧又被包覆,这样四个方向上完全被限制,结构稳定,不易造成位置的偏移,从而在电缆在弯曲、扭动的时候,也能够保证电缆稳定的对称性;
2、本发明通过半导电层匀化电场,减少尖端放电,有效避免绝缘击穿;同时采用自粘橡胶层并采用凹凸纹路,进一步避免了主绝缘线芯的偏移。
附图说明
图1是本发明的一种船舶及海工平台用轻型变频软电缆的示意图。
图2是本发明的中性线芯的示意图。
图3是本发明的主绝缘线芯的示意图。
主要元件符号说明
主绝缘线芯 1
中性线芯 2
屏蔽层 3
铠装层 4
外护套 5
导体 6
半导电层 7
交联聚乙烯复合绝缘层 8
自粘层 9
绕包层 10
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
为了能够更清楚地理解本发明实施例的上述目的、特征和优点,下面结合附图和具体实施方式对本发明进行详细描述。需要说明的是,在不冲突的情况下,本申请的实施方式中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本发明实施例,所描述的实施方式是本发明一部分实施方式,而不是全部的实施方式。基于本发明中的实施方式,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,都属于本发明实施例保护的范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明实施例的技术领域的技术人员通常理解的含义相同。在本发明的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本发明实施例。
如图1所示,本发明的一种船舶及海工平台用轻型变频软电缆,包含主绝缘线芯1、中性线芯2、屏蔽层3、铠装层4和外护套5,主绝缘线芯1为三根并且其截面呈120度的瓦形,三根主绝缘线芯1构成一个完整的环形套设在中性线芯2的外侧,屏蔽层3、铠装层4和外护套5由内向外依次套设在主绝缘线芯1的外侧。三根主绝缘线芯1呈120°瓦形状,一根中性线芯2为圆形结构分布在三个主绝缘线芯1的中心,主绝缘线芯1与中性线芯2组合成一个结构很稳定的圆形, 形成了一个完全对称平衡的状态。使电缆在弯曲和移动时,不会产生线芯的左右移动,有效的减小了高次谐波对变频电缆的危害。本发明所提供的一种船舶及海工平台用轻型变频软电缆采用瓦形+圆形组合结构,较常规3+3芯结构有外径小、结构稳定的突出特点。本申请的瓦形,指的是扇形圆心位置挖去一个小扇形后形成的类似于厚瓦片形状的结构,其与折扇扇面形状类似。
如图2及图3所示,主绝缘线芯1和中性线芯2均包含导体6、半导电层7、交联聚乙烯复合绝缘层8,半导电层7设置在导体6外侧,交联聚乙烯复合绝缘层8设置在半导电层7外侧。其中导体6采用铜包铝复合导体,铜包铝合金导体采用铜带包覆铝合金杆经过拉伸使原子间晶格结合工艺完成,铜包铝合金导体的内芯为铝合金材质,体积占比85~90%,,外层为铜材质,体积占比10~15%。铜包铝合金线经过逐步拉伸,拉制所需单丝直径,经过退火软化、特殊的绞线工艺从而完成最终的导体。制得的铜包铝合金的密度是纯铜的1/3,在满足电气性能的前提下,铝合金线导体重量比纯铜导体减轻20%左右。由于铜包铝合金导体密度小、强度高、高柔性、高抗蠕变特性。从而使得电缆较常规铜材质重量轻、柔软度高的突出特点,同时节约成本,提高了操作方便性。半导电层采用半导电屏蔽料,导体外增加半导电层以均化电场,减少尖端放电。导体在加工过程中,可能会在表面产生缺陷(如毛刺),导体外没有半导电层,则在缺陷处产生电场琦变,容易产生击穿破坏绝缘。如施加半导电层后,导体表面电场得到均化,可有效避免绝缘击穿。
主绝缘线芯1和中性线芯2还包含自粘层9,自粘层9设置在交联聚乙烯复合绝缘层8的外侧,自粘层9采用自粘橡胶。中性线芯2的自粘层的外侧设置有凹凸纹路,主绝缘线芯1的瓦形下侧内壁和两侧侧壁上设置有凹凸纹路。凹凸纹路采用条形的锯齿纹路、条形的波浪纹路、阵列的三棱锥纹路或阵列的四棱锥纹路,中性线芯2和主绝缘线芯1的相互接触的平面上的凹凸纹路相互啮合。采用自粘橡胶层并采用凹凸纹路,进一步避免了主绝缘线芯的偏移
主绝缘线芯1的外侧设置有绕包层10,绕包层10采用低烟无卤隔氧带绕包在主绝缘线芯1的外侧并且位于屏蔽层3的内侧。
屏蔽层3采用引流线和铜塑复合带绕包而成,引流线采用退火镀锡铜软导体,使铜塑复合带屏蔽层保持连续性而且可以传导积攒电荷、短路电流、泄漏电流,便于连接地线。
铠装层4由镀镍碳纤维编织而成。镀镍碳纤维密度约为2.4g/cm3,相同规格下强度远远优于镀锡铜丝,编织覆盖密度不小于88%,控制屏蔽效果达到100%。使屏蔽层结构更加稳固、可靠,同时,整体重量可以减轻约15%。
外护套5采用低烟无卤阻燃耐泥浆橡胶护套料。低温耐受-40℃,高温耐受125℃。该护套材料是以EVM橡胶为主要原材料加入无卤阻燃剂及其他助剂经混炼、挤出、造粒制得;材料制的试片依据NEKTS606进行增强型耐油试验,测试抗张强度变化率≤±30%,测试断裂伸长率变化率≤±30%;依据NEKTS606进行耐泥浆试验(耐溴化钙溶液、耐EDC95-11基础油),测试抗张强度变化率≤±25%,测试断裂伸长率变化率≤±25%。有效确保电缆在变频推进系统中长期耐受高温、油污等恶劣环境中的运行。
一种船舶及海工平台用轻型变频软电缆的其制造方法,其特征在于包含以下步骤:
步骤一:拉丝、退火,铜包铝合金线经过拉丝机内渐变孔径的金刚石材质的高精度拉丝模具生产至Ф0.080~0.400mm直径的单线,具体采用通过多头拉丝机内渐变孔径的拉丝模具生产所需直径的单丝,一次可同时拉制16根单丝。进一步的将单丝通过经过500~600℃的烘箱进行高温退火软化,2~3米长度的水管自然冷水冷却、吹气烘干,卷绕至线盘上。
步骤二:束绞,将拉制好的铜包铝合金单丝束绞为0.5mm 2~16mm 2的导体单元。具体采用高速双扭绞线机,通过绞弓旋转将单丝绞合成束,绞合节径比为8~10倍,绞向左向,同时使用主动放线架进行放线,恒张力控制,张力设置10-15N,保证良好的导体电阻。
步骤三:复绞、压型,将束绞单元复绞为25mm 2~300mm 2的导体。具体采用无级变速磁滞张力控制的笼绞机进行复绞。笼绞机具备完全退扭功能,使得绞合后的导体内应力小。磁滞张力具备恒张力控制功能,保证导体的圆整。将束绞单元按照1+6+12+18正规绞合结构排列,绞合节径比为10~12倍,绞向与束绞单元保持一致,使复绞结构更加紧密,根据束绞单元的截面,按照20N/mm 2设置张力,通过高聚晶材质的紧压模具,绞合出圆形导体。在紧压模具后设有压型装置,通过采用1对压轮(上下结构),将圆形导体压成120°瓦形状,经过牵引轮卷绕至线盘上。
步骤四:半导电、绝缘、自粘层挤出,利用高精度挤塑机对交联聚乙烯绝缘材料进行挤压熔融经挤出模具定型后均匀包覆在导体外面,导体在进挤出机头前表面涂覆一层半导电层,经涂覆后表面包覆绝缘层,再包覆一层自粘橡胶层。具体采用长径比为25的BM螺杆挤出,挤出温度为160℃~190℃。导体在绝缘包覆前在线进行高频感应加热,增强导体与绝缘层附着力,降低绝缘层的内应力。绝缘挤制过程中通过采用高精度测偏仪、凹凸仪,监控绝缘厚度、外径及表面质量。
步骤五:蒸汽交联,将生产后的绝缘线芯放置在密闭的蒸汽房中,蒸汽房内通入蒸汽,通过温度传感器自动控制蒸汽管道阀门,调节蒸汽进气量,保持温度在90℃~98℃,根据绝缘线芯截面大小设置交联时间。在交联剂的作用下,绝缘料的分子由线状结构转化为网状结构,耐温性能由70℃提高到90℃,抗环境开裂性能也得到了很大的提高。
步骤六:成缆,将主绝缘线芯放置在外层,中心放置中性线芯,调整主绝缘线芯角度,通过成缆并线模将绝缘线芯组合成圆形。具体采用带有两台绕包机的盘绞机进行成缆,预扭绞合(每根主绝缘线芯预先扭转5~8圈,并调整好主绝缘线芯的进线角度,保证成缆过程中主绝缘线芯不会翻转),节径比为30~35倍,绞向与导体保持一致,使得绝缘线芯内的导体不会松扭。在缆芯外绕包无卤隔氧带,防止缆芯松散,同时增加电缆阻燃性能。无卤隔氧带外拖一根镀锡软铜丝, 并在镀锡软铜丝外绕包一层软铜带,铜带绕包重叠率15~20%。
步骤七:编织,按照不同的电缆规格,选取合适的镀镍碳纤维在高速编织机上进行编织,编织覆盖密度≥88%。
步骤八:护套挤出,利用高精度挤橡机对低烟无卤阻燃耐泥浆橡胶护套料进行挤压熔融经挤出模具定型后均匀包覆在缆芯外面。同时通过蒸汽管道对护套层进行硫化,护套料的分子由线状结构转化为网状结构,提高其耐油、耐泥浆性能。护套挤制过程中通过采用采用高精度测偏仪、凹凸仪,监控护套厚度、外径及表面质量。护套挤出的同时在线进行喷码印字,喷印厂名、型号规格、米标等信息。
本发明通过瓦形主绝缘线芯环绕在圆形中性线芯外侧的结构,这样的结构相互之间不存在间隙并且瓦形主绝缘线芯的内侧和两侧均相互抵死,外侧又被包覆,这样四个方向上完全被限制,结构稳定,不易造成位置的偏移,从而在电缆在弯曲、扭动的时候,也能够保证电缆稳定的对称性;本发明通过半导电层匀化电场,减少尖端放电,有效避免绝缘击穿;同时采用自粘橡胶层并采用凹凸纹路,进一步避免了主绝缘线芯的偏移。电缆导体采用了铜包铝合金方案,结合铜包覆、拉拔、退火、绞合工艺技术形成的铜包铝合金复合材质的超软导体,导体具备强度高、导电率好、重量轻、弯曲好的特点。铠装层采用镀镍碳纤维编织。镀镍碳纤维密度约为2.4g/cm3,相同规格下强度远远优于镀锡铜丝,编织覆盖密度不小于88%,控制屏蔽效果达到100%。使屏蔽层结构更加稳固、可靠,同时,整体重量可以减轻约15%。电缆外护套采用自主配方试制出的低烟无卤阻燃耐油耐泥浆橡胶护套料,保证了电缆护层具备优异的防水性、耐油、耐泥浆、阻燃、耐高低温等性能。
以上实施方式仅用以说明本发明实施例的技术方案而非限制,尽管参照以上较佳实施方式对本发明实施例进行了详细说明,本领域的普通技术人员应当理解,可以对本发明实施例的技术方案进行修改或等同替换都不应脱离本发明实施例的技术方案的精神和范围。

Claims (10)

  1. 一种船舶及海工平台用轻型变频软电缆,其特征在于:包含主绝缘线芯、中性线芯、屏蔽层、铠装层和外护套,主绝缘线芯为三根并且其截面呈120度的瓦形,三根主绝缘线芯构成一个完整的环形套设在中性线芯的外侧,屏蔽层、铠装层和外护套由内向外依次套设在主绝缘线芯的外侧。
  2. 按照权利要求1所述的一种船舶及海工平台用轻型变频软电缆,其特征在于:所述主绝缘线芯和中性线芯均包含导体、半导电层、交联聚乙烯复合绝缘层,半导电层设置在导体外侧,交联聚乙烯复合绝缘层设置在半导电层外侧,其中导体采用铜包铝复合导体,半导电层采用半导电屏蔽料。
  3. 按照权利要求2所述的一种船舶及海工平台用轻型变频软电缆,其特征在于:所述主绝缘线芯和中性线芯还包含自粘层,自粘层设置在交联聚乙烯复合绝缘层的外侧,自粘层采用自粘橡胶。
  4. 按照权利要求3所述的一种船舶及海工平台用轻型变频软电缆,其特征在于:所述中性线芯的自粘层的外侧设置有凹凸纹路,主绝缘线芯的瓦形下侧内壁和两侧侧壁上设置有凹凸纹路。
  5. 按照权利要求4所述的一种船舶及海工平台用轻型变频软电缆,其特征在于:所述凹凸纹路采用条形的锯齿纹路、条形的波浪纹路、阵列的三棱锥纹路或阵列的四棱锥纹路,中性线芯和主绝缘线芯的相互接触的平面上的凹凸纹路相互啮合。
  6. 按照权利要求1所述的一种船舶及海工平台用轻型变频软电缆,其特征在于:所述主绝缘线芯的外侧设置有绕包层,绕包层采用低烟无卤隔氧带绕包在主绝缘线芯的外侧并且位于屏蔽层的内侧。
  7. 按照权利要求1所述的一种船舶及海工平台用轻型变频软电缆,其特征在于:所述屏蔽层采用引流线和铜塑复合带绕包而成,引流线采用退火镀锡铜软导体。
  8. 按照权利要求1所述的一种船舶及海工平台用轻型变频软电 缆,其特征在于:所述铠装层由镀镍碳纤维编织而成。
  9. 按照权利要求1所述的一种船舶及海工平台用轻型变频软电缆,其特征在于:所述外护套采用低烟无卤阻燃耐泥浆橡胶护套料。
  10. 一种船舶及海工平台用轻型变频软电缆的其制造方法,其特征在于包含以下步骤:
    步骤一:拉丝、退火,铜包铝合金线经过拉丝机内渐变孔径的金刚石材质的高精度拉丝模具生产至Ф0.080~0.400mm直径的单线,将单丝通过经过500~600℃的烘箱进行高温退火软化,冷却、吹气烘干,卷绕至线盘上;
    步骤二:束绞,将拉制好的铜包铝合金单丝束绞为0.5mm 2~16mm 2的导体单元,采用高速双扭绞线机,通过绞弓旋转将单丝绞合成束,绞合节径比为8~10倍,绞向左向,同时使用主动放线架进行放线,恒张力控制,张力设置10-15N;
    步骤三:复绞、压型,将束绞单元复绞为25mm 2~300mm 2的导体,将束绞单元按照1+6+12+18正规绞合结构排列,绞合节径比为10~12倍,绞向与束绞单元保持一致,根据束绞单元的截面,按照20N/mm 2设置张力,通过高聚晶材质的紧压模具,绞合出圆形导体,在紧压模具后设有压型装置,通过1对压轮将圆形导体压成120°瓦形状,经过牵引轮卷绕至线盘上;
    步骤四:半导电、绝缘、自粘层挤出,利用高精度挤塑机对交联聚乙烯绝缘材料进行挤压熔融经挤出模具定型后均匀包覆在导体外面,导体在进挤出机头前表面涂覆一层半导电层,经涂覆后表面包覆绝缘层,再包覆一层自粘橡胶层,采用长径比为25的BM螺杆挤出,挤出温度为160℃~190℃,导体在绝缘包覆前在线进行高频感应加热;
    步骤五:蒸汽交联,将生产后的绝缘线芯放置在密闭的蒸汽房中,蒸汽房内通入蒸汽,通过温度传感器自动控制蒸汽管道阀门,调节蒸汽进气量,保持温度在90℃~98℃,根据绝缘线芯截面大小设置交联时间;
    步骤六:成缆,将主绝缘线芯放置在外层,中心放置中性线芯,调整主绝缘线芯角度,通过成缆并线模将绝缘线芯组合成圆形;
    步骤七:编织,按照不同的电缆规格,选取合适的镀镍碳纤维在高速编织机上进行编织,编织覆盖密度≥88%;
    步骤八:护套挤出,利用高精度挤橡机对低烟无卤阻燃耐泥浆橡胶护套料进行挤压熔融经挤出模具定型后均匀包覆在缆芯外面,同时通过蒸汽管道对护套层进行硫化,护套料的分子由线状结构转化为网状结构。
PCT/CN2020/092130 2019-12-31 2020-05-25 一种船舶及海工平台用轻型变频软电缆及其制造方法 WO2021135051A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911404883.1A CN111029005B (zh) 2019-12-31 2019-12-31 一种船舶及海工平台用轻型变频软电缆及其制造方法
CN201911404883.1 2019-12-31

Publications (1)

Publication Number Publication Date
WO2021135051A1 true WO2021135051A1 (zh) 2021-07-08

Family

ID=70199984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/092130 WO2021135051A1 (zh) 2019-12-31 2020-05-25 一种船舶及海工平台用轻型变频软电缆及其制造方法

Country Status (2)

Country Link
CN (1) CN111029005B (zh)
WO (1) WO2021135051A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111029005B (zh) * 2019-12-31 2021-05-11 中天科技装备电缆有限公司 一种船舶及海工平台用轻型变频软电缆及其制造方法
CN112164523A (zh) * 2020-09-18 2021-01-01 双登电缆股份有限公司 装备线用d型软铝合金导体制备方法
CN112992435B (zh) * 2021-01-13 2022-12-06 江西新吉电缆有限公司 一种交联聚乙烯绝缘变频系统用电力电缆

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008146916A (ja) * 2006-12-07 2008-06-26 Tatsuta Electric Wire & Cable Co Ltd 低ノイズケーブル
CN201607992U (zh) * 2010-03-10 2010-10-13 安徽宏源特种电缆集团有限公司 新型屏蔽电力电缆
CN204066774U (zh) * 2014-07-30 2014-12-31 上海飞航电线电缆有限公司 五芯电缆
CN104715840A (zh) * 2015-03-18 2015-06-17 中天科技装备电缆有限公司 海工平台用本质安全型耐油耐泥浆防火电缆及制备工艺
CN208521676U (zh) * 2018-07-26 2019-02-19 重庆新中环电缆有限公司 一种基于紧压瓦形导体排布的电力电缆
CN111029005A (zh) * 2019-12-31 2020-04-17 中天科技装备电缆有限公司 一种船舶及海工平台用轻型变频软电缆及其制造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2613861Y (zh) * 2003-02-13 2004-04-28 德阳电缆股份有限公司 三芯瓦状屏蔽型电力电缆
CN207319751U (zh) * 2017-07-08 2018-05-04 安徽德源电缆集团有限公司 一种韧性好的乙丙橡胶绝缘型信号电缆
CN107887071A (zh) * 2017-11-16 2018-04-06 中天科技装备电缆有限公司 船舶及海工平台用变频推进系统用复合缆
CN209149854U (zh) * 2018-10-09 2019-07-23 安波福电气系统有限公司 一种双绞线线缆以及使用该双绞线线缆的非屏蔽线缆
CN211125095U (zh) * 2019-12-31 2020-07-28 中天科技装备电缆有限公司 一种船舶及海洋工程变频系统用软电缆

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008146916A (ja) * 2006-12-07 2008-06-26 Tatsuta Electric Wire & Cable Co Ltd 低ノイズケーブル
CN201607992U (zh) * 2010-03-10 2010-10-13 安徽宏源特种电缆集团有限公司 新型屏蔽电力电缆
CN204066774U (zh) * 2014-07-30 2014-12-31 上海飞航电线电缆有限公司 五芯电缆
CN104715840A (zh) * 2015-03-18 2015-06-17 中天科技装备电缆有限公司 海工平台用本质安全型耐油耐泥浆防火电缆及制备工艺
CN208521676U (zh) * 2018-07-26 2019-02-19 重庆新中环电缆有限公司 一种基于紧压瓦形导体排布的电力电缆
CN111029005A (zh) * 2019-12-31 2020-04-17 中天科技装备电缆有限公司 一种船舶及海工平台用轻型变频软电缆及其制造方法

Also Published As

Publication number Publication date
CN111029005B (zh) 2021-05-11
CN111029005A (zh) 2020-04-17

Similar Documents

Publication Publication Date Title
WO2021135051A1 (zh) 一种船舶及海工平台用轻型变频软电缆及其制造方法
CN104715840B (zh) 海工平台用本质安全型耐油耐泥浆防火电缆及制备工艺
CN107731416B (zh) 一种特种聚氯乙烯绝缘电子线的制造方法及电子线
CN104361945B (zh) 一种无卤阻燃耐低温中压风能电缆的制备方法
CN201465594U (zh) 低烟无卤阻燃中压船用电缆
CN106782860A (zh) 绝缘芯线、高阻燃数据电缆及两者的制作工艺
CN211125095U (zh) 一种船舶及海洋工程变频系统用软电缆
CN204423958U (zh) 海工平台用本质安全型耐油耐泥浆防火电缆
CN102097177B (zh) 游动电力电缆及其制备方法
CN111261330A (zh) 一种充油型500kV超高压海底电缆
CN204270715U (zh) 一种无卤阻燃耐低温中压风能电缆
CN202650631U (zh) 一种航空航天用电缆
CN114121352A (zh) 一种可防盗电的电缆及其制备工艺
CN113436789A (zh) 一种航空装备用特种电缆及其制备方法
CN105609180A (zh) 一种超低温仪表控制电缆及其制备方法
CN205751678U (zh) 一种船用电力电缆
CN206401055U (zh) 一种利于保护绝缘层的异型导体绞合电缆
CN212411653U (zh) 一种耐火轧纹铝护套矿物绝缘电缆
CN111081418A (zh) 一种高性能抗拉抗撕裂阻燃电缆及其制造方法
CN215183254U (zh) 一种海上钻井平台游动电力电缆
CN204792154U (zh) 一种铅护套铜丝屏蔽复合型高压电力电缆
CN220171801U (zh) 一种金属铠装阻燃硅橡胶软电缆
CN216597042U (zh) 一种新能源电池耐高温电缆
CN217086235U (zh) 一种在线温度监测的同轴电缆
CN215770559U (zh) 一种海上钻井平台顶驱游动跳线综合电缆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20910971

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20910971

Country of ref document: EP

Kind code of ref document: A1