WO2021134782A1 - 一种钠界面的制备方法及钠的光学结构器件的制备方法 - Google Patents

一种钠界面的制备方法及钠的光学结构器件的制备方法 Download PDF

Info

Publication number
WO2021134782A1
WO2021134782A1 PCT/CN2020/070258 CN2020070258W WO2021134782A1 WO 2021134782 A1 WO2021134782 A1 WO 2021134782A1 CN 2020070258 W CN2020070258 W CN 2020070258W WO 2021134782 A1 WO2021134782 A1 WO 2021134782A1
Authority
WO
WIPO (PCT)
Prior art keywords
sodium
interface
dielectric substrate
preparing
optical structure
Prior art date
Application number
PCT/CN2020/070258
Other languages
English (en)
French (fr)
Inventor
朱嘉
于健宇
汪洋
Original Assignee
南京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京大学 filed Critical 南京大学
Priority to US17/607,403 priority Critical patent/US11761093B2/en
Priority to PCT/CN2020/070258 priority patent/WO2021134782A1/zh
Priority to JP2021560673A priority patent/JP7055525B1/ja
Publication of WO2021134782A1 publication Critical patent/WO2021134782A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • C23C26/02Coating not provided for in groups C23C2/00 - C23C24/00 applying molten material to the substrate
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/002Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials
    • G02B1/005Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials made of photonic crystals or photonic band gap materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/002Processes for applying liquids or other fluent materials the substrate being rotated
    • B05D1/005Spin coating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0808Mirrors having a single reflecting layer

Definitions

  • the invention relates to the preparation of an alkali metal sodium interface, in particular to a method for preparing a sodium interface and a method for preparing sodium optical structure devices based on the method, and belongs to the technical field of metal surface plasmon materials.
  • Metal surface plasmons have received extensive attention due to their huge applications in integrated optoelectronics, photodetection, nano-lasers and other fields.
  • precious metals gold and silver are the two most commonly used materials due to their relatively low loss in the visible and near-infrared bands.
  • these two metals have high optical loss, which limits the performance of the device in the application of plasmon, and the precious metal is expensive. Therefore, it is urgent to choose lower loss and lower cost materials for replacement.
  • Alkali metal sodium was considered to be an ideal plasmon material in the past due to its low inter-band loss.
  • due to its high chemical activity it is very difficult to prepare stable and smooth metal interfaces and metal micro-nano structures. , Making it difficult to achieve metal applications such as plasmons.
  • Traditional metal thin film preparation methods include physical deposition and crystal growth.
  • the physical deposition method has the disadvantages of high instrument cost, strict preparation conditions, and long deposition time.
  • the crystal growth method requires high control of the external environment and has a long growth period.
  • the size of the samples prepared by the two methods is limited, and it is difficult to achieve mass production of metal thin films.
  • due to the relatively high chemical activity of sodium a stable metal interface and micro-nano structure can only be formed under an environment of extremely low oxygen concentration and humidity. The above preparation methods are difficult to achieve such a preparation environment.
  • the present invention provides a method for preparing the sodium interface and provides an optical structure device based on the method for preparing sodium Methods.
  • the preparation method of the sodium interface of the present invention is carried out under an inert gas atmosphere with an oxygen concentration of less than 20 ppm and a humidity of less than 20 ppm, and includes the following steps:
  • the above-mentioned preparation process of the sodium interface is carried out in a glove box filled with inert gas, and the ambient oxygen concentration is less than 20 ppm and the humidity is less than 20 ppm.
  • the temperature of the molten liquid sodium is 150-180°C.
  • the spin-coated sodium has good interface quality, complete interface and uniform thickness.
  • the temperature of liquid sodium affects its viscosity, thereby affecting the spin coating effect and solidification speed.
  • the temperature of liquid sodium is too high, it is easy to separate from the substrate during the spin coating process and cannot form a sodium interface on the substrate.
  • the temperature of the liquid sodium is too low, the viscosity is large and the solidification speed is slow, and a complete and uniform sodium interface cannot be obtained on the substrate.
  • the process parameters of spin coating can be adjusted according to the size of the dielectric substrate. Taking a dielectric substrate with a size of 1.5cm in length, 1.5cm in width, and 0.2mm in thickness as an example, the speed of the dielectric substrate during spin coating is preferably 4000 ⁇ 8000r/min, preferably 6000r/min. At this time, the quality can be obtained. Good sodium interface; when the size of the medium substrate is large, the speed can be increased appropriately to prevent the liquid sodium from solidifying too fast.
  • the dielectric substrate is a transparent substrate that can isolate air and does not react with sodium.
  • the surface of the dielectric substrate in contact with liquid sodium can be a flat surface, and the sodium interface prepared at this time is a smooth sodium interface; the surface of the dielectric substrate in contact with liquid sodium can also be a surface prepared with a micro-nano structure.
  • the obtained sodium interface is a sodium interface with a micro-nano structure.
  • a sodium optical structure device can be further prepared.
  • the method for preparing a sodium optical structure device according to the present invention includes the following steps under an inert gas atmosphere with an oxygen concentration of less than 20 ppm and a humidity of less than 20 ppm:
  • the preparation process is preferably carried out in a glove box filled with inert gas, and the ambient oxygen concentration is less than 20 ppm and the humidity is less than 20 ppm.
  • the preparation process control in steps (1) to (2) is the same as in the sodium interface preparation method.
  • the first dielectric substrate is a transparent substrate that can isolate air and does not react with sodium; according to preparation requirements, the surface of the first dielectric substrate in contact with liquid sodium may be a flat surface or a surface prepared with a micro-nano structure. It can produce smooth sodium interface optical structure device or sodium fine micro-nano structure device.
  • the second medium substrate mainly plays a sealing role, and it is enough to select a substrate that can isolate air and does not react with sodium.
  • epoxy resin can be used to seal the sodium interface and the edges of the first and second dielectric substrates to isolate the air.
  • the advantages of the present invention are: (1) The present invention realizes the preparation of a stable sodium interface through a thermally assisted spin coating method, and the preparation conditions are simple and easy, fast and convenient, and low cost; moreover, The sample size can be adjusted to achieve large-area, large-scale production and preparation; the prepared sodium interface can be used as a plasmon material for applications in plasmon optical waveguides, nano lasers, etc.; (2) The method is used with media The surface of the substrate is tightly attached, which can not only form the sodium interface on the side of the sodium film and the medium, but also the dielectric substrate can isolate the air; only need to seal the back with another dielectric substrate after spin coating.
  • This method can be used to prepare sodium micro-nano structure, only the micro-nano structure needs to be processed on the dielectric substrate , The fine micro-nano optical structure of sodium can be realized, and the optical device can be prepared, which solves the problem of directly processing the micro-nano structure on the surface of sodium, so as to meet the test and application requirements of many optical devices.
  • Figure 1 is a flow chart of the sodium interface preparation method of the present invention
  • Example 2 is a physical map of the smooth and flat sodium interface prepared in Example 1 and a performance map of the smooth sodium interface optical structure device;
  • Example 3 is a process flow diagram of preparing sodium micro-nano optical structure device in Example 3;
  • FIG. 4 is a diagram showing the effect of plasma laser propagation of the sodium micro-nano optical structure device prepared in Example 3.
  • FIG. 4 is a diagram showing the effect of plasma laser propagation of the sodium micro-nano optical structure device prepared in Example 3.
  • a method for preparing a sodium interface of the present invention includes the following steps:
  • a dielectric substrate with a smooth and flat surface or a dielectric substrate with a micro-nano structure can be selected according to the preparation requirements.
  • a dielectric substrate with a smooth and flat surface such as quartz, alumina, etc.
  • the micro-nano structure can be passed through ion beam and photolithography in advance. And other processes are processed and formed on the dielectric substrate.
  • a smooth medium substrate or a medium substrate with a micro-nano structure can be placed on the homogenizer and quickly rotated to make the pure sodium metal droplets fall on the rotating medium substrate. Once the sodium droplets Contact with the surface of the rotating medium substrate, the sodium droplets will be coated on the substrate under the strong centrifugal force exerted by the rotating medium substrate and solidified quickly, and closely adhere to form a smooth sodium interface or a micro-nano structure Sodium interface.
  • steps (1) to (2) are all carried out under an inert gas atmosphere with an oxygen concentration of less than 20 ppm and a humidity of less than 20 ppm; for example, it can be carried out in a glove box.
  • the invention easily realizes the preparation of large-area, low-cost stable and smooth sodium interface and sodium micro-nano structure through a heat-assisted spin coating method.
  • a sodium optical structure device can be further prepared. The method is: after the sodium interface is prepared according to the above steps (1) to (2), the same preparation environment is maintained, and the sample prepared in step (2) is not The sodium on the side in contact with the dielectric substrate is covered with another dielectric substrate, and then the edges where the sodium interface is in contact with the two dielectric substrates are sealed with epoxy resin or other materials, so that the sodium interface is located between the two dielectric substrates , Completely isolate the air, and obtain the sodium optical structure device.
  • control the ambient oxygen concentration to be less than 20ppm and humidity to be less than 20ppm proceed as follows:
  • the sodium interface was prepared with reference to the method in Example 1. The difference is that in step 1, the sodium block is heated to 180°C to melt, and in step 2, liquid sodium at 180°C is spin-coated on the quartz substrate at 8000r/min to obtain sodium
  • the interface is similar to that of Example 1, and both have smooth and flat surfaces.
  • B. Use focused ion beams to etch a periodic hole array with an aperture of 300nm, a period of 700nm, and a depth of 55nm on a quartz substrate with silver on the surface.
  • the array is 1.4 ⁇ m long and 0.7 ⁇ m wide. Holes of the same periodic size are processed at an interval of 100 ⁇ m. Array so that the distance between two periodic arrays is 100 ⁇ m;
  • the annealed sample is etched by argon plasma for 5 minutes to remove the gallium remaining in the periodic structure etched by the focused ion beam.
  • step 1 the sodium block is heated to 150°C to melt, and in step 2, liquid sodium at 150°C at 4000 r/min is spin-coated onto the quartz substrate. on.
  • a laser with a wavelength of 1180nm is selected to pass through a quartz substrate and enter one of the periodic structures.
  • the charge-coupled device (CCD) can be used to observe that the light is coupled out of the other periodic structure at a distance of 100 ⁇ m, which can also achieve surface plasmonization. Excitation transmission.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

一种钠界面的制备方法及钠的光学结构器件的制备方法,该钠界面的制备过程在惰性气体气氛下进行,步骤为:(1)加热固态金属钠,使其熔融至液态,同时剥离熔融钠表面的固体氧化物和杂质,得到纯净的、具有金属光泽的液态钠;(2)在介质衬底上旋涂液态钠,得到紧密贴合介质衬底的钠界面。通过热辅助的旋涂方法可简易地实现大面积、低成本的稳定光滑钠界面和钠的微纳结构的制备,制备的钠界面可作为等离激元材料,在等离激元光波导、纳米激光等方面应用。在制得的钠界面未与介质衬底接触一面的钠用另一介质衬底盖住后密封、将钠界面完全隔绝空气,可得到钠的光学结构器件,该钠器件可以长期稳定地暴露在空气中工作。

Description

一种钠界面的制备方法及钠的光学结构器件的制备方法 技术领域
本发明涉及一种碱金属钠界面的制备,特别涉及一种钠界面的制备方法及基于该方法制备钠的光学结构器件的方法,属于金属表面等离激元材料技术领域。
背景技术
金属表面等离激元由于其在集成光电、光电探测、纳米激光以及其他领域有巨大的应用,得到了人们的广泛关注。在等离激元材料中,贵金属金和银由于其在可见和近红外波段损耗相对较低,是两种最常用的材料。然而,这两种金属光学损耗大,在等离激元的应用中使器件的性能受限,且贵金属价格昂贵。因此,亟需选择更低损耗的、更低成本的材料进行替代。碱金属钠由于其低的带间损耗,在过去被认为是一种理想的等离激元材料,但是由于其较高的化学活泼性,制备稳定光滑金属界面和金属微纳结构的难度很大,使得等离激元等金属应用难以实现。
传统的金属薄膜制备方法包括物理沉积和晶体生长法,其中,物理沉积方法具有仪器成本高,制备条件严格,沉积时间长的缺点,而晶体生长法对外界环境控制要求高,生长周期长,并且两种方法制备样品的尺寸有限,很难实现金属薄膜的大规模生产。而且,由于钠较高的化学活泼性,必须在极低的氧气浓度和湿度的环境下才能形成稳定的金属界面和微纳结构,以上制备方法均难以实现这样的制备环境。
发明内容
发明目的:针对现有的金属薄膜制备方法难以实现碱金属钠界面及微纳结构的制备的问题,本发明提供一种钠界面的制备方法,并提供一种基于该方法制备钠的光学结构器件的方法。
技术方案:本发明所述的一种钠界面的制备方法,制备过程在氧气浓度小于20ppm、湿度小于20ppm的惰性气体气氛下进行,包括如下步骤:
(1)加热固态金属钠,使其熔融至液态,同时剥离熔融钠表面的固体氧化物和杂质,得到纯净的、具有金属光泽的液态钠;
(2)在介质衬底上旋涂液态钠,得到紧密贴合介质衬底的钠界面。
优选的,上述钠界面的制备过程在充满惰性气体的手套箱中进行,环境氧气浓度小于20ppm、湿度小于20ppm。
上述步骤(1)中,优选将固态金属钠加热至150~180℃,即熔融的液态钠的温度为150~180℃,此时,旋涂的钠界面质量较好,界面完整、厚度均匀。液态钠的温度影响其粘稠度,从而影响旋涂效果和凝固速度,当液态钠温度过高时,旋涂时极易在旋转过程中脱离衬底、无法在衬底上形成钠界面,而当液态钠温度过低时,粘稠度较大,且凝固速度慢,无法在衬底上获得完整均匀的钠界面。
旋涂的工艺参数可根据介质衬底的尺寸大小调整。以尺寸为长1.5cm、宽1.5cm、厚度0.2mm的介质衬底为例,旋涂时介质衬底的转速优选为4000~8000r/min,最好为6000r/min,此时可获得质量较好的钠界面;当介质衬底尺寸较大时,可适当加快转速,以免液态钠过快凝固。
其中,介质衬底为能够隔绝空气且不与钠反应的透明衬底。介质衬底与液态钠接触的表面可为平整表面,此时制得的钠界面为光滑的钠界面;介质衬底与液态钠接触的表面也可为制备有微纳结构的表面,此时制得的钠界面为具备微纳结构的钠界面。
以上述钠界面的制备方法为基础,可进一步制备得到钠的光学结构器件。具体而言,本发明所述的一种制备钠的光学结构器件的方法,制备过程在氧气浓度小于20ppm、湿度小于20ppm的惰性气体气氛下,包括如下步骤:
(1)加热固态金属钠,使其熔融至液态,同时剥离熔融钠表面的固体氧化物和杂质,得到纯净的、具有金属光泽的液态钠;
(2)在第一介质衬底上旋涂液态钠,得到紧密贴合介质衬底的钠界面;
(3)将钠界面未与第一介质衬底接触的一面用第二介质衬底覆盖,然后将钠界面及第一、第二介质衬底接触的边缘四周密封,使钠界面完全隔绝空气,得到钠的光学结构器件。
制备过程优选在充满惰性气体的手套箱中进行,环境氧气浓度小于20ppm、湿度小于20ppm。步骤(1)~(2)中制备工艺控制与钠界面制备方法中相同。
其中,第一介质衬底为能够隔绝空气且不与钠反应的透明衬底;根据制备需求,第一介质衬底与液态钠接触的表面可为平整表面或制备有微纳结构的表面,相应的可制得光滑钠界面光学结构器件或者钠的精细微纳结构器件。第二介质衬底主要起密封作用,选择能够隔绝空气且不与钠反应的衬底即可。
步骤(3)中,可采用环氧树脂将钠界面与第一、第二介质衬底的边缘四周密封以 隔绝空气。
有益效果:与现有技术相比,本发明的优点在于:(1)本发明通过热辅助的旋涂方法实现了稳定钠界面的制备,制备条件简单易行、快速便捷,成本低;而且,样品尺寸可以调节,可实现大面积、大规模地生产制备;制备的钠界面可作为等离激元材料,在等离激元光波导、纳米激光等方面应用;(2)该方法利用与介质衬底的表面紧密贴合,既能使钠膜和介质接触的一面形成钠界面,介质衬底又能够起到隔绝空气的作用;只需在旋涂后背面用另一介质衬底密封,就可以长期稳定地暴露在空气中工作,制备的钠器件可暴露在空气中使用三个月以上;(3)该方法可用于制备钠的微纳结构,只需在介质衬底上加工微纳结构,即可实现钠的精细微纳光学结构,从而制备出光学器件,解决了在钠表面直接加工微纳结构的难题,从而达到很多光学器件的测试和应用要求。
附图说明
图1为本发明的钠界面制备方法流程图;
图2为实施例1中制备的光滑平整钠界面的实物图及光滑钠界面光学结构器件的性能图谱;
图3为实施例3中制备钠的微纳光学结构器件的工艺流程图;
图4为实施例3中制备的钠的微纳光学结构器件的等离激光传播效果图。
具体实施方式
下面结合附图对本发明的技术方案作进一步说明。
如图1,本发明的一种钠界面的制备方法,包括如下步骤:
(1)加热固态金属钠,使其熔融至液态,熔融钠外面包裹了一层钠的蓬松的固体氧化物,同时固态钠所含的少量杂质会扩散到表面,将熔融钠表面的固体氧化物和杂质剥离,得到纯净的、具有金属光泽的液态钠小球;
(2)在介质衬底上旋涂液态钠,得到紧密贴合介质衬底的钠界面;
可根据制备需求选择具有光滑平整表面的介质衬底或带有微纳结构的介质衬底,当制备光滑的钠界面时,选择具有光滑平整表面的介质衬底,如石英、氧化铝等,表面足够平整,粗糙度约为0.1nm,尺寸可根据需要调节;预制备具备微纳结构的钠界面时,则采用带有微纳结构的介质衬底,微纳结构可事先通过离子束、光刻等工艺在介质衬底上加工形成。
具体而言,可将光滑的介质衬底或带有微纳结构的介质衬底放置在匀胶机上快速旋 转,使纯净的钠金属液滴滴落在旋转的介质衬底上,一旦钠液滴接触到旋转的介质衬底表面,钠液滴将在旋转的介质衬底施加的强大离心力作用下涂覆在衬底上并快速凝固,并且紧密贴合形成光滑的钠界面或具备微纳结构的钠界面。
上述步骤(1)~(2)均在氧气浓度小于20ppm、湿度小于20ppm的惰性气体气氛下进行;如可在手套箱中进行。
本发明通过热辅助的旋涂方法简易地实现了大面积、低成本的稳定光滑钠界面和钠的微纳结构的制备。采用该钠界面制备方法,可进一步制得钠的光学结构器件,方法为:根据上述步骤(1)~(2)制得钠界面后,保持同样的制备环境,将步骤(2)制备样品未与介质衬底接触一面的钠用另一介质衬底盖住,然后将钠界面与两介质衬底接触的边缘四周用环氧树脂或其他材料密封,使钠界面位于两层介质衬底之间、完全隔绝空气,得到钠的光学结构器件。
实施例1
制备光滑的钠界面,具体步骤如下:
在充满惰性气体氩气的手套箱中,控制环境氧气浓度小于20ppm,湿度小于20ppm,进行如下操作:
①取出一定大小的钠块置于钨舟内,切除表面氧化物,使其露出金属光泽,然后用加热台将盛有钠块的钨舟加热到160℃,使其熔融成液态,采用不锈钢镊子将熔融钠表面包裹的氧化物和杂质剥离,形成具有金属光泽的液态钠小球;
②将尺寸为长1.5cm、宽1.5cm、厚度0.2mm的光滑石英衬底放入手套箱中,在匀胶机上快速旋转,通过热辅助旋涂工艺160℃,6000r/min将纯净的液态金属钠涂覆在有周期性结构的石英衬底上,钠液紧密贴合石英衬底制得钠界面,其实物图如图2a,可以看到,制得的钠界面表面光滑平整;
③将光滑钠界面的另一面用载玻片盖住,同时在与石英衬底及载玻片接触的四周用环氧树脂密封,即得到光滑钠界面光学结构器件(简称“钠器件”)。
以标准银镜(Thorlabs,PF10-03-P01)作为参考测试钠器件的反射率,如图2b,可以看到,波长大于550nm时,钠器件的反射比银镜更强。将制备好的钠器件暴露在空气中超过120天后测试其反射率,结果如图2c,钠器件的反射率依旧保持稳定,说明本发明制备的钠器件可以长期稳定地暴露在空气中工作。
实施例2
参照实施例1的方法制备钠界面,区别在于,步骤①中,将钠块加热至180℃熔融,步骤②中,将180℃的液态钠8000r/min旋涂到石英衬底上,得到的钠界面与实施例1相近,均具有光滑平整的表面。
实施例3
制备钠的微纳光学结构器件,如图2,具体步骤如下:
(1)在介质衬底上加工微纳结构:
A、在长1.5cm、宽1.5cm、厚度0.2mm的石英衬底上物理气相沉积一层约30nm的银膜,形成一层导电层;
B、通过聚焦离子束在表面有银的石英衬底上刻蚀孔径300nm,周期700nm,深度55nm的周期性孔洞阵列,阵列长1.4μm,宽0.7μm,在间隔100μm处加工同样周期尺寸的孔洞阵列,使得两个周期阵列之间的距离为100μm;
C、用硝酸反应去除石英衬底表面的银,只剩下带有周期性孔洞阵列的石英衬底,如图3b,分别用丙酮、乙醇、去离子水各超声清洗石英片30min;
D、将清洗干净的石英片放入马弗炉中700℃退火6min;
E、将退火后的样品通过氩等离子体刻蚀5min用来去除聚焦离子束刻蚀残留在周期性结构中的镓。
(2)在充满惰性气体氩气的手套箱中,控制环境氧气浓度小于20ppm,湿度小于20ppm,进行如下操作:
①取出一定大小的钠块置于钨舟内,切除表面氧化物,使其露出金属光泽,然后用加热台将盛有钠块的钨舟加热到160℃,使其熔融成液态,采用不锈钢镊子将熔融钠表面包裹的氧化物和杂质剥离,形成具有金属光泽的液态钠小球;
②将刻蚀有周期性结构的石英衬底放入手套箱中,在匀胶机上快速旋转,通过热辅助旋涂工艺160℃,6000r/min将纯净的液态金属钠涂覆在有周期性结构的石英衬底上,钠液紧密贴合石英衬底制得钠周期性结构,如图3c;
③将钠周期性结构的另一面用载玻片盖住,同时在与石英衬底及载玻片接触的四周用环氧树脂密封,即得到钠的微纳光学结构器件,如图3d,可取出暴露在空气中。
选用波长为1180nm的激光透过石英衬底入射到其中一个周期性结构中,使光与结构发生耦合,如图4,通过电荷耦合元件(CCD)可以观测到光从距离100μm的另一个周期性结构中耦出,从而实现了表面等离激元传播。
实施例4
参照实施例3的方法制备钠的微纳光学结构器件,区别在于,步骤①中,将钠块加热至150℃熔融,步骤②中,将150℃的液态钠4000r/min旋涂到石英衬底上。
选用波长为1180nm的激光透过石英衬底入射到其中一个周期性结构中,通过电荷耦合元件(CCD)可以观测到光从距离100μm的另一个周期性结构中耦出,同样能够实现表面等离激元传播。

Claims (10)

  1. 一种钠界面的制备方法,其特征在于,制备过程在氧气浓度小于20ppm、湿度小于20ppm的惰性气体气氛下进行,包括如下步骤:
    (1)加热固态金属钠,使其熔融至液态,同时剥离熔融钠表面的固体氧化物和杂质,得到纯净的、具有金属光泽的液态钠;
    (2)在介质衬底上旋涂液态钠,得到紧密贴合介质衬底的钠界面。
  2. 根据权利要求1所述的钠界面的制备方法,其特征在于,步骤(1)中,所述液态钠的温度为150~180℃。
  3. 根据权利要求1所述的钠界面的制备方法,其特征在于,所述介质衬底为能够隔绝空气且不与钠反应的透明衬底。
  4. 根据权利要求1所述的钠界面的制备方法,其特征在于,所述介质衬底与液态钠接触的表面平整或者制备有微纳结构,对应制得的钠界面为光滑的钠界面或具备微纳结构的钠界面。
  5. 根据权利要求1所述的钠界面的制备方法,其特征在于,所述钠界面的制备在充满惰性气体的手套箱中进行,环境氧气浓度小于20ppm,湿度小于20ppm。
  6. 一种制备钠的光学结构器件的方法,其特征在于,制备过程在氧气浓度小于20ppm、湿度小于20ppm的惰性气体气氛下进行,包括如下步骤:
    (1)加热固态金属钠,使其熔融至液态,同时剥离熔融钠表面的固体氧化物和杂质,得到纯净的、具有金属光泽的液态钠;
    (2)在第一介质衬底上旋涂液态钠,得到紧密贴合介质衬底的钠界面;
    (3)将钠界面未与第一介质衬底接触的一面用第二介质衬底覆盖,然后将钠界面与第一、第二介质衬底接触的边缘四周密封,使钠界面完全隔绝空气,得到钠的光学结构器件。
  7. 根据权利要求6所述的制备钠的光学结构器件的方法,其特征在于,步骤(1)中,所述液态钠的温度为150~180℃。
  8. 根据权利要求6所述的制备钠的光学结构器件的方法,其特征在于,所述第一介质衬底与液态钠接触的表面平整或制备有微纳结构。
  9. 根据权利要求6所述的制备钠的光学结构器件的方法,其特征在于,所述第一介质衬底为能隔绝空气且不与钠反应的透明衬底,第二介质衬底为能够隔绝空气且不与钠反应的衬底。
  10. 根据权利要求6所述的制备钠的光学结构器件的方法,其特征在于,所述钠的光学结构器件在充满惰性气体的手套箱中进行制备,环境氧气浓度小于20ppm,湿度小于20ppm。
PCT/CN2020/070258 2020-01-03 2020-01-03 一种钠界面的制备方法及钠的光学结构器件的制备方法 WO2021134782A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/607,403 US11761093B2 (en) 2020-01-03 2020-01-03 Method for preparing sodium interface and method for preparing sodium-based optical structure device
PCT/CN2020/070258 WO2021134782A1 (zh) 2020-01-03 2020-01-03 一种钠界面的制备方法及钠的光学结构器件的制备方法
JP2021560673A JP7055525B1 (ja) 2020-01-03 2020-01-03 ナトリウム界面の製造方法およびナトリウムの光学構造デバイスの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/070258 WO2021134782A1 (zh) 2020-01-03 2020-01-03 一种钠界面的制备方法及钠的光学结构器件的制备方法

Publications (1)

Publication Number Publication Date
WO2021134782A1 true WO2021134782A1 (zh) 2021-07-08

Family

ID=76686333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/070258 WO2021134782A1 (zh) 2020-01-03 2020-01-03 一种钠界面的制备方法及钠的光学结构器件的制备方法

Country Status (3)

Country Link
US (1) US11761093B2 (zh)
JP (1) JP7055525B1 (zh)
WO (1) WO2021134782A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113753845A (zh) * 2021-07-21 2021-12-07 南京大学 一种角度不敏感的反射型等离子体结构色的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3558347A (en) * 1969-03-13 1971-01-26 Ppg Industries Inc Process for preparing highly reactive lead compound particles
JP2000214484A (ja) * 1999-01-27 2000-08-04 Sony Corp 電気光学装置、電気光学装置用の駆動基板、及びこれらの製造方法
CN105932104A (zh) * 2016-05-23 2016-09-07 中国科学院长春光学精密机械与物理研究所 一种氧化镓日盲紫外探测器及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001192856A (ja) * 2000-01-06 2001-07-17 Japan Science & Technology Corp 金属コーティング方法および金属コーティングされた材料
JP5689976B2 (ja) * 2011-09-29 2015-03-25 日本曹達株式会社 ナトリウム二次電池用負極の製造方法、およびナトリウム二次電池用負極を形成するためのナトリウム分散組成物
CN106893372B (zh) * 2015-12-18 2019-06-21 石家庄日加精细矿物制品有限公司 高反射率陶瓷颗粒及其制备方法
TWI638666B (zh) * 2017-03-22 2018-10-21 國立清華大學 緩釋型組成物、其製備方法及其用途
JP7172693B2 (ja) 2019-02-12 2022-11-16 株式会社アイシン 電気測定型表面プラズモン共鳴センサ、電気測定型表面プラズモン共鳴センサチップ、及び表面プラズモンポラリトン変化検出方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3558347A (en) * 1969-03-13 1971-01-26 Ppg Industries Inc Process for preparing highly reactive lead compound particles
JP2000214484A (ja) * 1999-01-27 2000-08-04 Sony Corp 電気光学装置、電気光学装置用の駆動基板、及びこれらの製造方法
CN105932104A (zh) * 2016-05-23 2016-09-07 中国科学院长春光学精密机械与物理研究所 一种氧化镓日盲紫外探测器及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YAMAURA, S.I. ; INOUE, A.: "Effect of surface coating element on hydrogen permeability of melt-spun Ni"4"0Nb"2"0Ta"5Zr"3"0Co"5 amorphous alloy", JOURNAL OF MEMBRANE SCIENCE, ELSEVIER BV, NL, vol. 349, no. 1-2, 1 March 2010 (2010-03-01), NL, pages 138 - 144, XP026874421, ISSN: 0376-7388 *
ZHOU JISHENG, SONG HUAIHE, ZHANG XIAOTING, CHEN XIAOHONG: "Conformational changes of graphene nanosheets induced by metal: melting metal can spin a graphene cocoon to encapsulate itself", CHEMICAL COMMUNICATIONS, ROYAL SOCIETY OF CHEMISTRY, vol. 50, no. 15, 1 January 2014 (2014-01-01), pages 1886, XP055825431, ISSN: 1359-7345, DOI: 10.1039/c3cc48311h *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113753845A (zh) * 2021-07-21 2021-12-07 南京大学 一种角度不敏感的反射型等离子体结构色的制备方法

Also Published As

Publication number Publication date
JP7055525B1 (ja) 2022-04-18
JP2022524465A (ja) 2022-05-02
US20220205108A1 (en) 2022-06-30
US11761093B2 (en) 2023-09-19

Similar Documents

Publication Publication Date Title
WO2021134782A1 (zh) 一种钠界面的制备方法及钠的光学结构器件的制备方法
CN103882378B (zh) 一种三硼酸氧钙钇晶体(ycob)高激光损伤阈值增透膜的制备方法
CN109292732B (zh) 一种具有等离子体聚焦性能的折线型纳米间隙及其制备方法
CN113388892A (zh) 一种钛扩散制备铌镁酸铅钛酸铅光波导的方法
CN112525881A (zh) 聚乙烯醇包覆表面增强拉曼散射基底及其制备方法
CN107812678A (zh) 一种在金属上制备无氟超疏水性表面的方法
Wang et al. Innovative two-step method for efficient silicon microfluidic device fabrication: Integrating laser ablation with wet etching
FR2479277A1 (fr) Procede perfectionne de production d'un film magnetique sur un substrat de grenat
CN107449768B (zh) 一种银和氧化硅互镶嵌的表面增强拉曼基底及其制备方法
CN107344730A (zh) 一种氧化锌纳米柱阵列的制备方法
CN108193171B (zh) 多通道集成滤光片光隔离结构的制造方法
CN110702659A (zh) 基于双面金属光波导热增强刻蚀sers芯片的方法
CN111627795A (zh) 一种清洗晶振片的方法
Gottmann et al. Manufacturing of periodical nanostructures by fs-laser direct writing
CN116299786A (zh) 一种超表面及其制备方法、光学器件及其制备方法
WO2004027400A1 (ja) 光導波路を利用する露点の測定装置
Yulianto et al. Diffusion processes for planar waveguides fabrication in soda-lime glasses
CN108275651A (zh) 一种表面增强拉曼散射基底的制备方法
Afanasjeva et al. Nanovoid irregular array in plasmonic Ag@ Au nanostructures
Gentile et al. Structural and optical properties of solid-state synthesized Au dendritic structures
CN105293939A (zh) 一种Ag-TeO2-SiO2复合材料的制备方法及其光学三倍频器件
WO2011124826A1 (fr) Procede de metallisation selective d'un monolithe de verre a base de silice, et produit obtenu par ce procede
Sangwaranatee et al. Deposition of transparent niobium oxide thin film by DC reactive magnetron sputtering
Nayan et al. Characterization of Au Thin Films on n-type Si for Photovoltaic Applications
CN116908160A (zh) 一种高稳定性银锆表面增强拉曼基底及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20909745

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021560673

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20909745

Country of ref document: EP

Kind code of ref document: A1