WO2021134739A1 - 一种超前液压支架导航检测及倾角测量系统 - Google Patents

一种超前液压支架导航检测及倾角测量系统 Download PDF

Info

Publication number
WO2021134739A1
WO2021134739A1 PCT/CN2020/000335 CN2020000335W WO2021134739A1 WO 2021134739 A1 WO2021134739 A1 WO 2021134739A1 CN 2020000335 W CN2020000335 W CN 2020000335W WO 2021134739 A1 WO2021134739 A1 WO 2021134739A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
hydraulic support
bottom plate
transmitter
ultrasonic
Prior art date
Application number
PCT/CN2020/000335
Other languages
English (en)
French (fr)
Inventor
李玉霞
张坤
黄梁松
徐亚军
马英
张德生
孙绍安
苏金鹏
陈洪月
吴思
刘增锴
Original Assignee
山东科技大学
天地科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东科技大学, 天地科技股份有限公司 filed Critical 山东科技大学
Priority to US17/280,277 priority Critical patent/US11459887B2/en
Priority to AU2020356798A priority patent/AU2020356798B2/en
Publication of WO2021134739A1 publication Critical patent/WO2021134739A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D23/00Mine roof supports for step- by- step movement, e.g. in combination with provisions for shifting of conveyors, mining machines, or guides therefor
    • E21D23/12Control, e.g. using remote control
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F17/00Methods or devices for use in mines or tunnels, not covered elsewhere
    • E21F17/18Special adaptations of signalling or alarm devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C9/00Measuring inclination, e.g. by clinometers, by levels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C9/00Measuring inclination, e.g. by clinometers, by levels
    • G01C9/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/06Systems determining the position data of a target
    • G01S15/08Systems for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D15/00Props; Chocks, e.g. made of flexible containers filled with backfilling material
    • E21D15/14Telescopic props
    • E21D15/44Hydraulic, pneumatic, or hydraulic-pneumatic props

Definitions

  • the invention belongs to the technical field of coal mine roadway mining, and specifically relates to an advanced hydraulic support navigation detection and inclination measurement system.
  • a group of advanced hydraulic supports is generally composed of two identical left and right hydraulic supports and a connecting hydraulic cylinder between the two hydraulic supports.
  • a group of advanced hydraulic supports can simultaneously move forward along the direction of the hydraulic supports during the supporting process, or the two hydraulic supports can simultaneously move horizontally through the expansion and contraction of the connecting hydraulic cylinder between the two hydraulic supports.
  • the following three situations often occur during the work of the advanced hydraulic support: First, when the advanced hydraulic support is pushed forward or moved horizontally, the outer parts of the supports on both sides are easy to hit the side siding on both sides of the roadway. , Hinder the advancement of the hydraulic support.
  • the technical problem solved by the present invention is to provide an advanced hydraulic support navigation detection and inclination measurement system, which can effectively improve the safe working efficiency of the advanced hydraulic support, and improve the safety factor in the working process.
  • the present invention provides a navigation detection and inclination measurement system for a leading hydraulic support, including:
  • the detection device module including an ultrasonic sensor and an inclination measuring device, is used to detect the distance between the obstacle and the advanced support hydraulic support and collect the inclination signal of the advanced support hydraulic support;
  • the signal transfer and transmission module including a signal integration transmitter, is located in the tunnel and connected to the detection device module, and is used to summarize the received ultrasonic signals and inclination signals from each advanced hydraulic support according to the number of each hydraulic support After that, it is transmitted to the analysis and processing module in the form of a wireless signal;
  • the analysis and processing module is located outside the roadway and connected to the signal transfer and transmission module, and is used to receive and analyze the wireless signal from the signal integration transmitter. If the analysis result is abnormal, it will immediately send an alarm to the staff; if the analysis result is abnormal If the abnormality continues or the abnormal value is large, immediately issue an instruction to stop the working mode of the advanced hydraulic support.
  • the ultrasonic sensor includes:
  • the ultrasonic sensor at the front end of the top plate and the ultrasonic sensor at the front end of the bottom plate respectively installed on the top plate and the bottom plate of the advanced hydraulic support are used to determine whether there is an obstacle at the front end by transmitting and receiving ultrasonic waves, and to measure the distance between the obstacle and the ultrasonic sensor.
  • the measured signal is transmitted to the signal integration transmitter in a wireless form;
  • the top-side front-end ultrasonic sensor and the top-side rear-end ultrasonic sensor are used to determine whether the side of the front and rear ends of the top plate is present by transmitting and receiving ultrasonic waves. Obstacles, and measure the distance between the obstacles and the ultrasonic sensor;
  • the bottom-side mid-end ultrasonic sensor fixed on the middle of the bottom plate and the position corresponding to the bottom plate horizontal pushing hydraulic cylinder is used to judge whether there are obstacles on the side of the middle part of the bottom plate by transmitting and receiving ultrasonic waves, and to measure the obstacle distance of the ultrasonic sensor distance.
  • the inclination angle measuring device is installed on the top plate and the bottom plate of a single advanced hydraulic support each, including:
  • the middle reference displacement sensor installed in the middle part of the side of the top or bottom plate is used to collect the displacement signal of the middle part of the side of the top or bottom plate and transmit it to the signal collection transmitter;
  • a front-end displacement sensor installed on the front end of the side of the top or bottom plate is used to collect the displacement signal of the front end of the top or bottom plate and transmit it to the signal collection transmitter;
  • the back-end displacement sensor installed on the rear side of the top or bottom plate is used to collect the displacement signal of the back end of the top or bottom plate and transmit it to the signal collection transmitter;
  • the signal collection transmitter installed next to the central reference displacement sensor is used to organize the received displacement signals from the central reference displacement sensor, front-end displacement sensor and rear-end displacement sensor into tilt angle signals and in the form of wireless signals Transmit to the integrated signal transmitter located in the tunnel.
  • the analysis processing module includes a signal receiving transmitter and an analysis computer, and the signal receiving transmitter receives the wireless signal from the signal integration transmitter and transmits it to the analysis computer for analysis.
  • An advanced hydraulic support navigation detection and inclination measurement system including: a detection device module, a signal transfer and transmission module, and an analysis and processing module;
  • the detection device module is installed on the advanced hydraulic support
  • the detection device module includes an ultrasonic sensor and an inclination measuring device; the ultrasonic sensor is used to transmit ultrasonic waves to the outer direction of the advanced hydraulic support and receive the ultrasonic signal reflected by obstacles; the inclination measuring device is used to detect the displacement signal of the advanced hydraulic support, according to the displacement signal Obtain the inclination signal of the advanced hydraulic support;
  • the signal transfer and transmission module including a signal integration transmitter, is located in the tunnel and connected to the detection device module, and is used to summarize the received ultrasonic signals and inclination signals from each advanced hydraulic support according to the number of each advanced hydraulic support After sorting, it will be transmitted to the analysis and processing module in the form of wireless signal;
  • the analysis and processing module is located outside the roadway and connected to the signal transfer and transmission module, and is used to receive and analyze the wireless signal from the signal integration transmitter. If the analysis result is abnormal, it will immediately send an alarm to the staff; if the analysis result is abnormal If the abnormality is continuous or the abnormal value is large, immediately issue an instruction to stop the working mode of the advanced hydraulic support; the analysis result found that the abnormality specifically includes that the distance between the obstacle and the advanced hydraulic support is less than or equal to the distance threshold or the inclination signal is greater than or equal to the first inclination threshold.
  • the continuous abnormality of the analysis result specifically includes that the duration of the inclination signal is greater than or equal to the abnormal time threshold; the large abnormal value specifically includes that the inclination signal is greater than or equal to the second inclination threshold.
  • the ultrasonic sensor includes: a top-plate front-end ultrasonic sensor, a top-plate-side front-end ultrasonic sensor, a top-plate-side rear-end ultrasonic sensor, a bottom-plate front-end ultrasonic sensor, and a bottom-side mid-end ultrasonic sensor;
  • the top-end ultrasonic sensors and bottom-end ultrasonic sensors respectively installed in the front of the top and bottom of the advanced hydraulic support are used to transmit ultrasonic waves to the front of the top or bottom of the advanced hydraulic support, receive the ultrasonic signals reflected by obstacles, and measure
  • the ultrasonic signal in front of the top plate or the bottom plate is wirelessly transmitted to the signal integration transmitter;
  • the top-side front-end ultrasonic sensor and the top-side rear-end ultrasonic sensor are respectively fixed at the front and rear ends of the top plate at the positions corresponding to the front and back horizontal displacement hydraulic cylinders of the top plate, which are used to advance the front end direction of the top plate side of the hydraulic support and the top plate respectively. Transmit ultrasonic waves in the rear direction of the side, receive ultrasonic signals reflected by obstacles, and wirelessly transmit the measured ultrasonic signals on the side of the top plate to the signal integration transmitter;
  • the bottom-side mid-end ultrasonic sensor fixed on the middle of the bottom plate and the position corresponding to the bottom plate horizontal pushing hydraulic cylinder is used to transmit ultrasonic waves to the middle of the bottom plate side of the advance hydraulic support, receive the ultrasonic signals reflected by obstacles, and measure The ultrasonic signal on the side of the bottom plate is wirelessly transmitted to the signal integration transmitter.
  • a set of inclination measuring devices are installed on the top and bottom plates of a single advanced hydraulic support, including: front-end displacement sensor, rear-end displacement sensor, middle reference displacement sensor and signal collection transmitter;
  • the middle reference displacement sensor installed in the middle part of the side of the top or bottom plate is used to collect the displacement signal of the middle part of the side of the top or bottom plate and transmit it to the signal collection transmitter;
  • a front-end displacement sensor installed on the front end of the side of the top or bottom plate is used to collect the displacement signal of the front end of the top or bottom plate and transmit it to the signal collection transmitter;
  • the back-end displacement sensor installed on the rear side of the top or bottom plate is used to collect the displacement signal of the back end of the top or bottom plate and transmit it to the signal collection transmitter;
  • the signal collection transmitter installed next to the central reference displacement sensor is used to organize the received displacement signals from the central reference displacement sensor, front-end displacement sensor and rear-end displacement sensor into tilt angle signals and in the form of wireless signals Transmit to the integrated signal transmitter located in the tunnel.
  • the analysis processing module includes: a signal receiving transmitter and an analysis computer;
  • the signal receiving transmitter receives the wireless signal from the signal integration transmitter and transmits it to the analysis computer for analysis.
  • an inclination measuring device is designed, which can effectively measure the deviation of the front and rear inclination angles of the top or bottom of a single advanced hydraulic support, and warn in advance that equipment failures caused by the excessive deviation of the front and rear inclination of the top or bottom of the hydraulic support will be damaged.
  • the reasonable installation and utilization of multiple ultrasonic sensors can effectively warn and avoid the occurrence of obstacles on the top or bottom of a group of advanced hydraulic supports that collide with the side of the roadway, the front of the top or the bottom.
  • the advanced hydraulic support navigation detection and inclination measurement system of the present invention can effectively improve the safe working efficiency of the advanced hydraulic support, improve the safety factor in the working process, reflect the advanced nature of intelligent coal mining, and highlight the safe, efficient and intelligent support of coal mine roadways technology.
  • Figure 1 is a layout diagram of a sensor of a single advanced hydraulic support provided by the present invention
  • Figure 2 is a layout diagram of a set of sensors for a set of advanced hydraulic supports provided by the present invention
  • Fig. 3 is a working flow chart of the navigation detection and inclination angle measurement system of the advanced hydraulic support of the present invention.
  • the advanced hydraulic support navigation detection and inclination measurement system is mainly composed of three parts: a detection device module, a signal transfer and transmission module, and an analysis and processing module.
  • the detection device module includes an ultrasonic sensor and a tilt angle measuring device 7.
  • the signal transfer and transmission module includes a signal integration transmitter 11.
  • the analysis processing module includes a signal receiving transmitter 12 and an analysis computer 13. Specifically include: top-plate front ultrasonic sensor 1, bottom-bottom front-end ultrasonic sensor 9, top-side front-end ultrasonic sensor 2, top-side rear-end ultrasonic sensor 8, bottom-side mid-end ultrasonic sensor 10, middle reference displacement sensor 4, front-end displacement sensor 3, rear End displacement sensor 6, signal collection transmitter 5, signal integration transmitter 11, signal receiving transmitter 12, analysis computer 13.
  • the ultrasonic sensor of the present invention includes a top-plate front-end ultrasonic sensor 1, a bottom-plate front-end ultrasonic sensor 9, a top-plate-side front-end ultrasonic sensor 2, a top-plate-side rear-end ultrasonic sensor 8, and a bottom-plate-side mid-end ultrasonic sensor 10.
  • the top-end ultrasonic sensor 1 and the bottom-end ultrasonic sensor 9 are installed in front of the top and bottom of the advanced hydraulic support, and their function is to determine whether there is an obstacle at the front end by transmitting and receiving ultrasonic waves, and to measure the obstacle distance ultrasonic sensor
  • the measured signal is transmitted to the signal integration transmitter 11 in the form of a wireless signal.
  • the ultrasonic sensor 2 at the front end of the roof side and the ultrasonic sensor 8 at the rear end of the roof are respectively fixed at the front and rear ends of the roof at the positions corresponding to the front and rear horizontal pushing cylinders of the roof.
  • the function is to judge the front and rear of the roof by transmitting and receiving ultrasonic waves. Whether there is an obstacle on the side of the end, and measure the distance between the obstacle (or roadway wall) and the ultrasonic sensor.
  • the ultrasonic sensor 10 at the bottom side of the bottom plate is fixed at the position corresponding to the bottom plate horizontal pushing hydraulic cylinder.
  • the function is to determine whether there are obstacles on the side of the bottom plate by transmitting and receiving ultrasonic waves, and to detect obstacles (or roadway walls). ) The distance from the ultrasonic sensor.
  • the tilt angle measuring device 7 of the present invention includes a middle reference displacement sensor 4, a front displacement sensor 3 and a rear displacement sensor 6, and a signal collection transmitter 5.
  • the inclination angle measuring device 7 is installed on the top plate and the bottom plate of a single advanced hydraulic support.
  • the central reference displacement sensor 4 is installed in the middle part of the side surface of the top or bottom plate, and its function is to collect the displacement signal (including the signals of front and back movement and horizontal movement) of the middle part of the side of the top or bottom plate and transmit it to the signal collection transmitter 5. .
  • the front-end displacement sensor 3 is installed at the front-end part of the side of the top plate or the bottom plate, and its function is to collect the displacement signal of the front-end part of the top plate or the bottom plate (including signals of forward and backward movement and horizontal movement) and transmit it to the signal collecting transmitter 5.
  • the rear-end displacement sensor 6 is installed on the rear side of the top or bottom plate, and its function is to collect the displacement signal (including the signals of forward and backward movement and horizontal movement) of the rear end of the top or bottom plate and transmit it to the signal collection transmitter. 5.
  • the signal collection transmitter 5 is installed on the side of the top or bottom plate and is located beside the middle reference displacement sensor 4, and is used to organize the received displacement signals from the middle reference displacement sensor 4, the front displacement sensor 3 and the rear displacement sensor 6.
  • the inclination signal (horizontal inclination or vertical inclination) is transmitted in the form of a wireless signal to the signal integration transmitter 11 located in the tunnel.
  • the signal integration transmitter 11 of the present invention is located in the tunnel, and it will collect the received ultrasonic signals and inclination signals from each advanced hydraulic support according to the number of each hydraulic support (advanced hydraulic support), and then use the wireless signal The form is transmitted to the signal receiving transmitter 12 located outside the tunnel.
  • the signal receiving transmitter 12 of the present invention receives the wireless signal from the signal integration transmitter 11 and transmits it to the analysis computer 13 for analysis. If the analysis result finds an abnormality (such as a large front end of the top or bottom plate of the advanced hydraulic support) Obstacles, large obstacles on the side of the roof or floor or too close to the sidewall of the roadway, excessive inclination of the roof or floor, etc.), an alarm will be issued to the staff immediately, so that the staff can clear the obstacles in time. If the analysis result continues to be abnormal or the abnormal value is large, an instruction will be issued immediately to stop the working mode of the advanced hydraulic support.
  • an abnormality such as a large front end of the top or bottom plate of the advanced hydraulic support
  • Obstacles large obstacles on the side of the roof or floor or too close to the sidewall of the roadway, excessive inclination of the roof or floor, etc.
  • An advanced hydraulic support navigation detection and inclination measurement system includes: a detection device module, a signal transfer and transmission module, and an analysis and processing module.
  • the detection device module is arranged on the advanced hydraulic support.
  • the detection device module includes an ultrasonic sensor and an inclination measuring device 7.
  • the ultrasonic sensor is used to transmit ultrasonic waves to the outer direction of the advanced hydraulic support and receive ultrasonic signals reflected by obstacles.
  • the inclination measuring device 7 is used to detect the displacement signal of the leading hydraulic support, and obtain the inclination signal of the leading hydraulic support according to the displacement signal.
  • the signal transfer and transmission module including the signal integration transmitter 11, is located in the tunnel and connected to the detection device module, and is used to summarize the received ultrasonic signals and inclination signals from each advanced hydraulic support according to the number of each advanced hydraulic support After that, it is transmitted to the analysis and processing module in the form of a wireless signal.
  • the analysis and processing module is located outside the roadway and connected to the signal transfer and transmission module, and is used to receive and analyze the wireless signal from the signal integration transmitter 11. If an abnormality is found in the analysis result, an alarm will be issued to the staff immediately. If the analysis result continues to be abnormal or the abnormal value is large, immediately issue an instruction to stop the working mode of the advanced hydraulic support.
  • the analysis result found that the abnormality specifically includes: the distance between the obstacle and the leading hydraulic support is less than or equal to the distance threshold or the inclination signal is greater than or equal to the first inclination threshold.
  • the continuous abnormality of the analysis result specifically includes: the duration of the inclination signal is greater than or equal to the abnormal time threshold.
  • the larger abnormal value specifically includes: the inclination signal is greater than or equal to the second inclination threshold.
  • the ultrasonic sensor includes: a top-plate front-end ultrasonic sensor 1, a top-plate-side front-end ultrasonic sensor 2, a top-plate-side rear-end ultrasonic sensor 8, a bottom-plate front-end ultrasonic sensor 9 and a bottom-side mid-end ultrasonic sensor 10.
  • the top-end ultrasonic sensor 1 is installed in front of the top of the advanced hydraulic support, and is used to transmit ultrasonic waves to the front of the advanced hydraulic support, receive ultrasonic signals reflected by obstacles, and wirelessly transmit the measured ultrasonic signals in front of the roof to the signal Integrated transmitter 11.
  • the bottom ultrasonic sensor 9 is installed in front of the bottom of the advanced hydraulic support, and is used to transmit ultrasonic waves to the front of the advanced hydraulic support, receive the ultrasonic signals reflected by obstacles, and wirelessly transmit the measured ultrasonic signals in front of the bottom to the signal Integrated transmitter 11.
  • the front end ultrasonic sensor 2 on the top plate side is fixed at the position corresponding to the front end of the top plate side of the top plate and the front horizontal pushing cylinder of the top plate, and is used to transmit ultrasonic waves to the front end of the top plate side of the advanced hydraulic support, receive ultrasonic signals reflected by obstacles, and The measured ultrasonic signal in the front end direction of the side of the top plate is wirelessly transmitted to the signal integration transmitter 11.
  • the rear end ultrasonic sensor 8 on the roof side is fixed at a position corresponding to the rear end of the roof side and the rear horizontal displacement hydraulic cylinder of the roof, and is used to transmit ultrasonic waves to the rear end of the roof side of the advanced hydraulic support and receive ultrasonic signals reflected by obstacles. , And wirelessly transmit the measured ultrasonic signal in the direction of the rear end of the side of the top plate to the signal integration transmitter 11.
  • the bottom-side mid-end ultrasonic sensor 10 is fixed at the middle of the bottom plate and the position corresponding to the bottom plate horizontal pushing hydraulic cylinder, and is used to transmit ultrasonic waves to the middle of the bottom plate side of the advanced hydraulic support, receive the ultrasonic signals reflected by obstacles, and measure The ultrasonic signal in the middle direction of the side of the bottom plate is wirelessly transmitted to the signal integration transmitter 11.
  • the inclination angle measuring device 7 is installed on the top plate and the bottom plate of a single advanced hydraulic support, including: a front-end displacement sensor 3, a rear-end displacement sensor 6, a middle reference displacement sensor 4, and a signal collection transmitter 5.
  • the middle reference displacement sensor 4 installed on the middle part of the side surface of the top or bottom plate is used to collect the displacement signal of the middle part of the side surface of the top or bottom plate and transmit it to the signal collecting transmitter 5.
  • the front displacement sensor 3 installed at the front end of the side of the top or bottom plate is used to collect the displacement signal of the front end of the top or bottom plate and transmit it to the signal collecting transmitter 5.
  • the rear displacement sensor 6 installed at the rear end of the side of the top plate or the bottom plate is used to collect the displacement signal of the rear end of the top plate or the bottom plate and transmit it to the signal collecting transmitter 5.
  • the signal collection transmitter 5 installed next to the central reference displacement sensor 4 is used to organize the received displacement signals from the central reference displacement sensor 4, front-end displacement sensor 3 and rear-end displacement sensor 6 into inclination angle signals and use them as wireless signals.
  • the form is transmitted to the signal integration transmitter 11 located in the tunnel.
  • the analysis processing module includes: a signal receiving transmitter 12 and an analysis computer 13.
  • the signal receiving transmitter 12 receives the wireless signal from the signal integration transmitter 11 and transmits it to the analysis computer 13 for analysis.

Abstract

一种超前液压支架导航检测及倾角测量系统,包括检测装置模块,用于检测障碍物距超前支护液压支架的距离、以及采集超前支护液压支架的倾角信号;信号中转传输模块,与检测装置模块连接,用于将接收到的来自各个超前液压支架的超声信号和倾角信号按照每台液压支架的编号进行汇总整理后,发射到分析处理模块(13);分析处理模块(13),与信号中转传输模块连接,用于接收来自信号整合发射器(11)的无线信号并进行分析,若分析结果发现异常,立刻发出警报给工作人员;若分析结果持续异常或异常数值较大,立刻发出指令停止超前液压支架的工作模式。能有效提高超前液压支架的安全工作效率,提升其工作过程中的安全系数,体现智能化采煤的先进性。

Description

一种超前液压支架导航检测及倾角测量系统
本申请要求于2020年01月03日提交中国专利局、申请号为202010006895.5、发明名称为“一种超前液压支架导航检测及倾角测量系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于煤矿巷道开采的技术领域,具体涉及一种超前液压支架导航检测及倾角测量系统。
背景技术
一组超前液压支架一般是由左右两个完全相同的液压支架和两个液压支架之间的连接液压缸组成。一组超前液压支架在支护过程中可以同时沿液压支架走向方向向前推进移动,也可以通过两个液压支架之间的连接液压缸的伸缩使两个液压支架同时实现水平移动。但现阶段超前液压支架在工作过程中经常会有以下三种情况出现:其一,在超前液压支架向前推进或水平移动的过程中,其两侧支架外侧部分易撞到巷道两侧侧帮,阻碍液压支架向前推进。其二,在液压支架向前推进的过程中,若巷道底部或顶部存在岩石等障碍物,两侧支架的顶板及底板前端在前进过程中也会受到阻碍。其三,由于巷道底部或顶部不平坦,易造成单个液压支架顶板平面前后方向倾角过大或左右两个液压支架顶板平面高度差异过大,进而引起支架倾倒或故障。以上三种情况的发生都会影响超前液压支架的正常工作,延误工程并造成一定的经济损失,甚至危害煤矿工作人员的生命安全。
发明内容
基于以上现有技术的不足,本发明所解决的技术问题在于提供一种超前液压支架导航检测及倾角测量系统,能有效提高超前液压支架的安全工作效率,提升其工作过程中的安全系数,体现智能化采煤的先进性。
为了解决上述技术问题,本发明通过以下技术方案来实现:本发明提供一种超前液压支架导航检测及倾角测量系统,包括:
检测装置模块,包括超声传感器和倾角测量装置,用于检测障碍物距超前支护液压支架的距离、以及采集超前支护液压支架的倾角信号;
信号中转传输模块,包括信号整合发射器,位于巷道内并与所述检测装置模块连接,用于将接收到的来自各个超前液压支架的超声信号和倾角信号按照每台液压支架的编号进行汇总整理后,再以无线信号的形式发射到分析处理模块;
分析处理模块,位于巷道外并与所述信号中转传输模块连接,用于接收来自所述信号整合发射器的无线信号并进行分析,若分析结果发现异常,立刻发出警报给工作人员;若分析结果持续异常或异常数值较大,立刻发出指令停止超前液压支架的工作模式。
进一步的,所述超声传感器包括:
分别安装在超前液压支架的顶板和底板前方的顶板前端超声传感器和底板前端超声传感器,用于通过发射并接收超声波来判断前端是否有障碍物,并测得障碍物距超声传感器的距离,并将测得的信号以无线形式发射到所述信号整合发射器;
分别固定在顶板的前端和后端与顶板的前后水平推移液压缸相对应的位置的顶板侧前端超声传感器和顶板侧后端超声传感器,用于通过发射并接收超声波来判断顶板前后端的侧面是否有障碍物,并测得障碍物距超声传感器的距离;
固定在底板中部与底板水平推移液压缸相对应的位置上的底板侧中端超声传感器,用于通过发射并接收超声波来判断底板中部的侧面是否有障碍物,并测得障碍物距超声传感器的距离。
进一步的,所述倾角测量装置在单个超前液压支架的顶板和底板是各安装一套,包括:
安装在顶板或底板侧面的中间部位的中部基准位移传感器,用于采集顶板或底板的侧面中间部位的位移信号并将其传输给信号收集发射器;
安装在顶板或底板的侧面前端部位的前端位移传感器,用于采集顶板或底板的前端部位的位移信号并将其传输给信号收集发射器;
安装在顶板或底板的侧面后端部位的后端位移传感器,用于采集顶板或底板的后端部位的位移信号并将其传输给信号收集发射器;
安装在所述中部基准位移传感器旁边的信号收集发射器,用于将接收到的来自所述中部基准位移传感器、前端位移传感器和后端位移传感器的位移信号整理成倾角信号并以无线信号的形式发射到位于巷道内的信号整合发射器。
可选的,所述分析处理模块包括信号接收发射器和分析计算机,所述信号接收发射器接收到来自所述信号整合发射器的无线信号后将其传输给所述分析计算机进行分析。
一种超前液压支架导航检测及倾角测量系统,包括:检测装置模块、信号中转传输模块和分析处理模块;
检测装置模块设置于超前液压支架上;
检测装置模块,包括超声传感器和倾角测量装置;超声传感器用于向超前液压支架的外侧方向发射超声波,接收障碍物反射的超声信号;倾角测量装置用于检测超前液压支架的位移信号,根据位移信号获得超前液压支架的倾角信号;
信号中转传输模块,包括信号整合发射器,位于巷道内并与所述检测装置模块连接,用于将接收到的来自各个超前液压支架的超声信号和倾角信号按照每台超前液压支架的编号进行汇总整理后,再以无线信号的形式发射至分析处理模块;
分析处理模块,位于巷道外并与所述信号中转传输模块连接,用于接收来自所述信号整合发射器的无线信号并进行分析,若分析结果发现异常,立刻发出警报给工作人员;若分析结果持续异常或异常数值较大,立刻发出指令停止超前液压支架的工作模式;所述分析结果发现异常具体包括障碍物与超前液压支架的距离小于或等于距离阈值或者倾角信号大于或等于第一倾角阈值;所述分析结果持续异常具体包括倾角信号的持续时间大于或等于异常时间阈值;所述异常数值较大具体包括倾角信号大于或等于第二倾角阈值。
可选的,超声传感器包括:顶板前端超声传感器、顶板侧前端超声传感器、顶板侧后端超声传感器、底板前端超声传感器和底板侧中端超声传感器;
分别安装在超前液压支架的顶板和底板前方的顶板前端超声传感器和底板前端超声传感器,用于分别向超前液压支架的顶板或底板的前方发射超声波,接收障碍物反射的超声信号,并将测得的顶板或底板的前方的超声信号以无线形式发射到所述信号整合发射器;
分别固定在顶板的前端和后端与顶板的前后水平推移液压缸相对应的位置的顶板侧前端超声传感器和顶板侧后端超声传感器,用于分别向超前液压支架的顶板侧面的前端方向和顶板侧面的后端方向发射超声波,接收障碍物反射的超声信号,并将测得的顶板侧面的超声信号以无线形式发射到所述信号整合发射器;
固定在底板中部与底板水平推移液压缸相对应的位置上的底板侧中端超声传感器,用于向超前液压支架的底板侧面的中部方向发射超声波,接收障碍物反射的超声信号,并将测得的底板侧面的超声信号以无线形式发射到所述信号整合发射器。
可选的,倾角测量装置在单个超前液压支架的顶板和底板各安装一套,包括:前端位移传感器、后端位移传感器、中部基准位移传感器和信号收集发射器;
安装在顶板或底板侧面的中间部位的中部基准位移传感器,用于采集顶板或底板的侧面中间部位的位移信号并将其传输给信号收集发射器;
安装在顶板或底板的侧面前端部位的前端位移传感器,用于采集顶板或底板的前端部位的位移信号并将其传输给信号收集发射器;
安装在顶板或底板的侧面后端部位的后端位移传感器,用于采集顶板或底板的后端部位的位移信号并将其传输给信号收集发射器;
安装在所述中部基准位移传感器旁边的信号收集发射器,用于将接收到的来自所述中部基准位移传感器、前端位移传感器和后端位移传感器的位移信号整理成倾角信号并以无线信号的形式发射到位于巷道内的信号整合发射器。
可选的,分析处理模块包括:信号接收发射器和分析计算机;
所述信号接收发射器接收到来自所述信号整合发射器的无线信号后将其传输给所述分析计算机进行分析。
本发明的有益效果是:
其一,设计了一种倾角测量装置,能够有效测量单个超前液压支架顶板或底板前后端的倾角偏离程度,提前预警因液压支架顶板或底板前后端倾角偏离程度过大而导致的设备故障会损坏。
其二,通过合理安装利用多个超声传感器能够有效预警及避免一组超前液压支架顶板或底板两侧部分发生撞击巷道侧帮、顶板或底板前端遇到障碍物的情况发生。
其三,通过合理安装及利用位移传感器,能有效测量一组超前液压支架两个支架的顶板及底板在竖直方向上的实际位置高度,避免出现因两侧液压支架顶板或底板的竖直高度差异过大引起故障的现象。
本发明的超前液压支架导航检测及倾角测量系统能有效提高超前液压支架的安全工作效率,提升其工作过程中的安全系数,体现智能化采煤的先进性,凸显煤矿巷道安全高效智能化支护技术。
说明书附图
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明提供的单个超前液压支架的传感器的布置图;
图2为本发明提供的一组超前液压支架的传感器的布置图;
图3为本发明的超前液压支架导航检测及倾角测量系统的工作流程图。
符号说明:1-顶板前端超声传感器;2-顶板侧前端超声传感器;3-前端位移传感器;4-中部基准位移传感器;5-信号收集发射器;6-后端位移传感器;7-倾角测量装置;8-顶板侧后端超声传感器;9-底板前端超声传感器;10-底板侧中端超声传感器;11-信号整合发射器;12-信号接收发射器;13-分析计算机。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1~3所示,下面结合实施例对本发明作进一步的详细说明:
实施例一
本发明提供的超前液压支架导航检测及倾角测量系统主要由三部分组成:检测装置模块、信号中转传输模块、分析处理模块。其中检测装置模块包括超声传感器、倾角测量装置7。信号中转传输模块包括信号整合发射器11。分析处理模块包括信号接收发射器12和分析计算机13。具体包括:顶板前端超声传感器1、底板前端超声传感器9、顶板侧前端超声传感器2、顶板侧后端超声传感器8、底板侧中端超声传感器10、中部基准位移传感器4、前端位移传感器3、后端位移传感器6、信号收集发射器5、信号整合发射器11、信号接收发射器12、分析计算机13。
本发明的超声传感器包括顶板前端超声传感器1、底板前端超声传感器9、顶板侧前端超声传感器2、顶板侧后端超声传感器8、底板侧中端超声传感器10。其中,所述顶板前端超声传感器1和底板前端超声传感器9安装在超前液压支架的顶板和底板的前方,作用是通过发射并接收超声波来判断前端是否有障碍物,并测得障碍物距超声传感器的距离,并将测得的信号以无线信号的形式发射到信号整合发射器11。
同理,顶板侧前端超声传感器2、顶板侧后端超声传感器8分别固定在顶板的前端和后端与顶板的前后水平推移液压缸相对应的位置,作用是通过发射并接收超声波来判断顶板前后端的侧面是否有障碍物,并测得障碍物(或巷道壁)距超声传感器的距离。
底板侧中端超声传感器10固定在底板中部与底板水平推移液压缸相对应的位置上,作用是通过发射并接收超声波来判断底板中部的侧面是否 有障碍物,并测得障碍物(或巷道壁)距超声传感器的距离。
本发明的倾角测量装置7包括中部基准位移传感器4、前端位移传感器3和后端位移传感器6、信号收集发射器5。所述倾角测量装置7在单个超前液压支架的顶板和底板各安装一套。所述中部基准位移传感器4安装在顶板或底板侧面的中间部位,作用是采集顶板或底板的侧面中间部位的位移信号(包括前后运动和水平运动的信号)并将其传输给信号收集发射器5。
所述前端位移传感器3安装在顶板或底板的侧面前端部位,作用是采集顶板或底板的前端部位的位移信号(包括前后运动和水平运动的信号)并将其传输给信号收集发射器5。
所述后端位移传感器6安装在顶板或底板的侧面后端部位,作用是采集顶板或底板的后端部位的位移信号(包括前后运动和水平运动的信号)并将其传输给信号收集发射器5。
所述信号收集发射器5安装在顶板或底板侧面并位于中部基准位移传感器4的旁边,作用是将接收到的来自中部基准位移传感器4、前端位移传感器3和后端位移传感器6的位移信号整理成倾角信号(水平倾角或竖直倾角)并以无线信号的形式发射到位于巷道内的信号整合发射器11。
本发明的信号整合发射器11位于巷道内,其会将接收到的来自各个超前液压支架的超声信号和倾角信号按照每台液压支架(超前液压支架)的编号进行汇总整理后,再以无线信号的形式发射到位于巷道外的信号接收发射器12。
本发明的信号接收发射器12接收到来自信号整合发射器11的无线信号后将其传输给所述分析计算机13进行分析,若分析结果发现异常(如超前液压支架顶板或底板的前端有较大障碍物、顶板或底板的侧面有较大的障碍物或距离巷道侧壁过近、顶板或底板的倾角过大等),会立刻发出警报给工作人员,便于工作人员及时清除障碍物。若分析结果持续异常或异常数值较大,则会立刻发出指令停止超前液压支架的工作模式。
实施例二
一种超前液压支架导航检测及倾角测量系统,包括:检测装置模块、 信号中转传输模块和分析处理模块。
检测装置模块设置于超前液压支架上。
检测装置模块,包括超声传感器和倾角测量装置7。超声传感器用于向超前液压支架的外侧方向发射超声波,接收障碍物反射的超声信号。倾角测量装置7用于检测超前液压支架的位移信号,根据位移信号获得超前液压支架的倾角信号。
信号中转传输模块,包括信号整合发射器11,位于巷道内并与检测装置模块连接,用于将接收到的来自各个超前液压支架的超声信号和倾角信号按照每台超前液压支架的编号进行汇总整理后,再以无线信号的形式发射至分析处理模块。
分析处理模块,位于巷道外并与信号中转传输模块连接,用于接收来自信号整合发射器11的无线信号并进行分析,若分析结果发现异常,立刻发出警报给工作人员。若分析结果持续异常或异常数值较大,立刻发出指令停止超前液压支架的工作模式。
分析结果发现异常具体包括:障碍物与超前液压支架的距离小于或等于距离阈值或者倾角信号大于或等于第一倾角阈值。分析结果持续异常具体包括:倾角信号的持续时间大于或等于异常时间阈值。异常数值较大具体包括:倾角信号大于或等于第二倾角阈值。
超声传感器包括:顶板前端超声传感器1、顶板侧前端超声传感器2、顶板侧后端超声传感器8、底板前端超声传感器9和底板侧中端超声传感器10。
顶板前端超声传感器1安装在超前液压支架的顶板前方,用于向超前液压支架的顶板前方发射超声波,接收障碍物反射的超声信号,并将测得的顶板前方的超声信号以无线形式发射到信号整合发射器11。
底板前端超声传感器9安装在超前液压支架的底板前方,用于向超前液压支架的底板前方发射超声波,接收障碍物反射的超声信号,并将测得的底板前方的超声信号以无线形式发射到信号整合发射器11。
顶板侧前端超声传感器2固定在顶板侧面的前端与顶板的前水平推移液压缸相对应的位置,用于向超前液压支架的顶板侧面的前端方向发射 超声波,接收障碍物反射的超声信号,并将测得的顶板侧面的前端方向的超声信号以无线形式发射到信号整合发射器11。
顶板侧后端超声传感器8固定在顶板侧面的后端与顶板的后水平推移液压缸相对应的位置,用于向超前液压支架的顶板侧面的后端方向发射超声波,接收障碍物反射的超声信号,并将测得的顶板侧面的后端方向的超声信号以无线形式发射到信号整合发射器11。
底板侧中端超声传感器10固定在底板中部与底板水平推移液压缸相对应的位置上,用于向超前液压支架的底板侧面的中部方向发射超声波,接收障碍物反射的超声信号,并将测得的底板侧面的中部方向的超声信号以无线形式发射到信号整合发射器11。
倾角测量装置7在单个超前液压支架的顶板和底板各安装一套,包括:前端位移传感器3、后端位移传感器6、中部基准位移传感器4和信号收集发射器5。
安装在顶板或底板侧面的中间部位的中部基准位移传感器4,用于采集顶板或底板的侧面中间部位的位移信号并将其传输给信号收集发射器5。
安装在顶板或底板的侧面前端部位的前端位移传感器3,用于采集顶板或底板的前端部位的位移信号并将其传输给信号收集发射器5。
安装在顶板或底板的侧面后端部位的后端位移传感器6,用于采集顶板或底板的后端部位的位移信号并将其传输给信号收集发射器5。
安装在中部基准位移传感器4旁边的信号收集发射器5,用于将接收到的来自中部基准位移传感器4、前端位移传感器3和后端位移传感器6的位移信号整理成倾角信号并以无线信号的形式发射到位于巷道内的信号整合发射器11。
分析处理模块包括:信号接收发射器12和分析计算机13。信号接收发射器12接收到来自信号整合发射器11的无线信号后将其传输给分析计算机13进行分析。
以上结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制 性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本发明的保护之内。

Claims (8)

  1. 一种超前液压支架导航检测及倾角测量系统,其特征在于,包括:
    检测装置模块,包括超声传感器和倾角测量装置,用于检测障碍物距超前支护液压支架的距离、以及采集超前支护液压支架的倾角信号;
    信号中转传输模块,包括信号整合发射器,位于巷道内并与所述检测装置模块连接,用于将接收到的来自各个超前液压支架的超声信号和倾角信号按照每台液压支架的编号进行汇总整理后,再以无线信号的形式发射到分析处理模块;
    分析处理模块,位于巷道外并与所述信号中转传输模块连接,用于接收来自所述信号整合发射器的无线信号并进行分析,若分析结果发现异常,立刻发出警报给工作人员;若分析结果持续异常或异常数值较大,立刻发出指令停止超前液压支架的工作模式。
  2. 如权利要求1所述的超前液压支架导航检测及倾角测量系统,其特征在于,所述超声传感器包括:
    分别安装在超前液压支架的顶板和底板前方的顶板前端超声传感器和底板前端超声传感器,用于通过发射并接收超声波来判断前端是否有障碍物,并测得障碍物距超声传感器的距离,并将测得的信号以无线形式发射到所述信号整合发射器;
    分别固定在顶板的前端和后端与顶板的前后水平推移液压缸相对应的位置的顶板侧前端超声传感器和顶板侧后端超声传感器,用于通过发射并接收超声波来判断顶板前后端的侧面是否有障碍物,并测得障碍物距超声传感器的距离;
    固定在底板中部与底板水平推移液压缸相对应的位置上的底板侧中端超声传感器,用于通过发射并接收超声波来判断底板中部的侧面是否有障碍物,并测得障碍物距超声传感器的距离。
  3. 如权利要求1所述的超前液压支架导航检测及倾角测量系统,其特征在于,所述倾角测量装置在单个超前液压支架的顶板和底板各安装一套,包括:
    安装在顶板或底板侧面的中间部位的中部基准位移传感器,用于采集 顶板或底板的侧面中间部位的位移信号并将其传输给信号收集发射器;
    安装在顶板或底板的侧面前端部位的前端位移传感器,用于采集顶板或底板的前端部位的位移信号并将其传输给信号收集发射器;
    安装在顶板或底板的侧面后端部位的后端位移传感器,用于采集顶板或底板的后端部位的位移信号并将其传输给信号收集发射器;
    安装在所述中部基准位移传感器旁边的信号收集发射器,用于将接收到的来自所述中部基准位移传感器、前端位移传感器和后端位移传感器的位移信号整理成倾角信号并以无线信号的形式发射到位于巷道内的信号整合发射器。
  4. 如权利要求1所述的超前液压支架导航检测及倾角测量系统,其特征在于,所述分析处理模块包括信号接收发射器和分析计算机,所述信号接收发射器接收到来自所述信号整合发射器的无线信号后将其传输给所述分析计算机进行分析。
  5. 一种超前液压支架导航检测及倾角测量系统,其特征在于,包括:检测装置模块、信号中转传输模块和分析处理模块;
    检测装置模块设置于超前液压支架上;
    检测装置模块,包括超声传感器和倾角测量装置;超声传感器用于向超前液压支架的外侧方向发射超声波,接收障碍物反射的超声信号;倾角测量装置用于检测超前液压支架的位移信号,根据位移信号获得超前液压支架的倾角信号;
    信号中转传输模块,包括信号整合发射器,位于巷道内并与所述检测装置模块连接,用于将接收到的来自各个超前液压支架的超声信号和倾角信号按照每台超前液压支架的编号进行汇总整理后,再以无线信号的形式发射至分析处理模块;
    分析处理模块,位于巷道外并与所述信号中转传输模块连接,用于接收来自所述信号整合发射器的无线信号并进行分析,若分析结果发现异常,立刻发出警报给工作人员;若分析结果持续异常或异常数值较大,立刻发出指令停止超前液压支架的工作模式;所述分析结果发现异常具体包括障碍物与超前液压支架的距离小于或等于距离阈值或者倾角信号大于 或等于第一倾角阈值;所述分析结果持续异常具体包括倾角信号的持续时间大于或等于异常时间阈值;所述异常数值较大具体包括倾角信号大于或等于第二倾角阈值。
  6. 如权利要求5的超前液压支架导航检测及倾角测量系统,其特征在于,超声传感器包括:顶板前端超声传感器、顶板侧前端超声传感器、顶板侧后端超声传感器、底板前端超声传感器和底板侧中端超声传感器;
    分别安装在超前液压支架的顶板和底板前方的顶板前端超声传感器和底板前端超声传感器,用于分别向超前液压支架的顶板或底板的前方发射超声波,接收障碍物反射的超声信号,并将测得的顶板或底板的前方的超声信号以无线形式发射到所述信号整合发射器;
    分别固定在顶板的前端和后端与顶板的前后水平推移液压缸相对应的位置的顶板侧前端超声传感器和顶板侧后端超声传感器,用于分别向超前液压支架的顶板侧面的前端方向和顶板侧面的后端方向发射超声波,接收障碍物反射的超声信号,并将测得的顶板侧面的超声信号以无线形式发射到所述信号整合发射器;
    固定在底板中部与底板水平推移液压缸相对应的位置上的底板侧中端超声传感器,用于向超前液压支架的底板侧面的中部方向发射超声波,接收障碍物反射的超声信号,并将测得的底板侧面的超声信号以无线形式发射到所述信号整合发射器。
  7. 如权利要求5的超前液压支架导航检测及倾角测量系统,其特征在于,倾角测量装置在单个超前液压支架的顶板和底板各安装一套,包括:前端位移传感器、后端位移传感器、中部基准位移传感器和信号收集发射器;
    安装在顶板或底板侧面的中间部位的中部基准位移传感器,用于采集顶板或底板的侧面中间部位的位移信号并将其传输给信号收集发射器;
    安装在顶板或底板的侧面前端部位的前端位移传感器,用于采集顶板或底板的前端部位的位移信号并将其传输给信号收集发射器;
    安装在顶板或底板的侧面后端部位的后端位移传感器,用于采集顶板或底板的后端部位的位移信号并将其传输给信号收集发射器;
    安装在所述中部基准位移传感器旁边的信号收集发射器,用于将接收到的来自所述中部基准位移传感器、前端位移传感器和后端位移传感器的位移信号整理成倾角信号并以无线信号的形式发射到位于巷道内的信号整合发射器。
  8. 如权利要求5的超前液压支架导航检测及倾角测量系统,其特征在于,分析处理模块包括:信号接收发射器和分析计算机;
    所述信号接收发射器接收到来自所述信号整合发射器的无线信号后将其传输给所述分析计算机进行分析。
PCT/CN2020/000335 2020-01-03 2020-12-31 一种超前液压支架导航检测及倾角测量系统 WO2021134739A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/280,277 US11459887B2 (en) 2020-01-03 2020-12-31 System for navigation detection and inclination measurement of advanced hydraulic supports
AU2020356798A AU2020356798B2 (en) 2020-01-03 2020-12-31 System for navigation detection and inclination measurement of advanced hydraulic supports

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010006895.5A CN111158000A (zh) 2020-01-03 2020-01-03 一种超前液压支架导航检测及倾角测量系统
CN202010006895.5 2020-01-03

Publications (1)

Publication Number Publication Date
WO2021134739A1 true WO2021134739A1 (zh) 2021-07-08

Family

ID=70561188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/000335 WO2021134739A1 (zh) 2020-01-03 2020-12-31 一种超前液压支架导航检测及倾角测量系统

Country Status (4)

Country Link
US (1) US11459887B2 (zh)
CN (1) CN111158000A (zh)
AU (1) AU2020356798B2 (zh)
WO (1) WO2021134739A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111158000A (zh) * 2020-01-03 2020-05-15 山东科技大学 一种超前液压支架导航检测及倾角测量系统
CN114509036B (zh) * 2021-11-16 2024-01-16 中煤新集能源股份有限公司 液压支架监测装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1507668A (en) * 1974-07-11 1978-04-19 Dowty Mining Equipment Ltd Conveyor adjusting device
CN107795336A (zh) * 2017-12-01 2018-03-13 中国矿业大学(北京) 基于测距和测速的采煤工作面灾害报警系统
CN108005723A (zh) * 2017-12-01 2018-05-08 中国矿业大学(北京) 基于测距和测速的采煤工作面水灾报警系统
CN109931107A (zh) * 2019-03-14 2019-06-25 中国矿业大学 一种液压支架与采煤机截割部干涉保护装置与方法
CN209198061U (zh) * 2018-11-13 2019-08-02 一汽-大众汽车有限公司 一种换挡杆总成扭转性能测试装置
CN111158000A (zh) * 2020-01-03 2020-05-15 山东科技大学 一种超前液压支架导航检测及倾角测量系统

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3815495A1 (de) * 1988-05-06 1989-11-23 Hoelter Heinz Elektronische steuerung fuer den untertageschildausbau
US7331735B2 (en) * 2004-11-03 2008-02-19 Mckenzie Jefferson D Apparatus, system, and method for supporting a gate entry for underground full extraction mining
AU2008351276B2 (en) * 2008-02-19 2011-07-07 Beijing Meike Tianma Automation Technology Co., Ltd Method for automatically creating a defined face opening in longwall coal mining operations
DE102009034216B4 (de) * 2009-07-22 2017-01-05 Marco Systemanalyse Und Entwicklung Gmbh Verfahren zur Überwachung eines Schreitzylinders und Steuerung zur Durchführung des Verfahrens
DE102009048154B4 (de) * 2009-10-02 2016-07-21 Marco Systemanalyse Und Entwicklung Gmbh Verfahren zur Schreitwerkssteuerung und Vorrichtung zur Durchführung des Verfahrens
US10404948B2 (en) * 2014-03-18 2019-09-03 Tiefenbach Control Systems Gmbh Longwall face support in an underground mine
RU2691793C2 (ru) * 2014-08-28 2019-06-18 ДЖОЙ ГЛОБАЛ АНДЕРГРАУНД МАЙНИНГ ЭлЭлСи Мониторинг крепления кровли в системе сплошной разработки
CN204941585U (zh) * 2015-06-18 2016-01-06 天津明昊鼎盛包装机械有限公司 一种智能化巷道移动式支架装置
CN105370308B (zh) * 2015-09-24 2018-03-09 北京天地玛珂电液控制系统有限公司 沿留空巷液压支架支护系统
CN205779021U (zh) * 2016-05-25 2016-12-07 天津华宁电子有限公司 用于矿用液压支架的检测系统
CN108981650A (zh) * 2018-07-27 2018-12-11 中国矿业大学 一种用于液压支架姿态检测的装置及方法
US10890068B2 (en) * 2018-12-15 2021-01-12 Jefferson David McKenzie Automated support of a gate entry for underground full extraction mining

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1507668A (en) * 1974-07-11 1978-04-19 Dowty Mining Equipment Ltd Conveyor adjusting device
CN107795336A (zh) * 2017-12-01 2018-03-13 中国矿业大学(北京) 基于测距和测速的采煤工作面灾害报警系统
CN108005723A (zh) * 2017-12-01 2018-05-08 中国矿业大学(北京) 基于测距和测速的采煤工作面水灾报警系统
CN209198061U (zh) * 2018-11-13 2019-08-02 一汽-大众汽车有限公司 一种换挡杆总成扭转性能测试装置
CN109931107A (zh) * 2019-03-14 2019-06-25 中国矿业大学 一种液压支架与采煤机截割部干涉保护装置与方法
CN111158000A (zh) * 2020-01-03 2020-05-15 山东科技大学 一种超前液压支架导航检测及倾角测量系统

Also Published As

Publication number Publication date
US11459887B2 (en) 2022-10-04
CN111158000A (zh) 2020-05-15
US20220120181A1 (en) 2022-04-21
AU2020356798B2 (en) 2022-04-21
AU2020356798A1 (en) 2021-07-22

Similar Documents

Publication Publication Date Title
WO2021134739A1 (zh) 一种超前液压支架导航检测及倾角测量系统
CN207066656U (zh) 一种接触网硬点动态检测装置
WO2013097153A1 (zh) 一种履带式钢轨探伤的无线超声波探头组件及其探伤方法
CN108521625B (zh) 采空区高温点无线监测方法
CN108344801B (zh) Crtsⅱ型板式无砟轨道砂浆粘结质量检测设备及方法
CN104236484A (zh) 一种实时监测顶管机机头偏位的装置及方法
WO2022078515A1 (zh) 一种tbm搭载的护盾围岩变形监测系统与方法
CN103018482A (zh) 基于风速时差的矿用智能巷道检测装置及方法
CN103673940A (zh) 顶板离层及剪切变形检测方法及装置
CN112720532A (zh) 一种围岩稳定性智能监测及精准支护机器人群
CN100494919C (zh) 船舶吨位智能测量系统及测量方法
CN113777611B (zh) 一种基于超声波技术的梭式矿车定位监测系统
CN210221916U (zh) 滚轮式采集器及采集装置
CN207361212U (zh) 盾构皮带输送机称重装置
CN103061743A (zh) 高深溜井井筒堵塞状况观测监听方法
CN107271559B (zh) 一种主从机结构钢轨焊缝超声检测系统
CN105351003B (zh) 刮板机水平方向运动夹角测量系统及方法
CN203165219U (zh) 路侧安装超声波检测器检测交通流的装置
CN114325725A (zh) 基于超声波雷达探测器阵列辅助大件货物安全运输的方法及系统
CN102788844A (zh) 一种自动纠偏弯管裂纹自动超声检测系统
CN202583127U (zh) 一种自动纠偏弯管裂纹自动超声检测系统
CN115638027A (zh) 一种矿用多功能机器人
CN201016659Y (zh) 一种自动报靶系统传感器布阵方式装置
CN201406233Y (zh) 基于地震检测的电梯监控系统
CN215449196U (zh) 一种采空区自燃发火监控辅助装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020356798

Country of ref document: AU

Date of ref document: 20201231

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20910603

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20910603

Country of ref document: EP

Kind code of ref document: A1