WO2013097153A1 - 一种履带式钢轨探伤的无线超声波探头组件及其探伤方法 - Google Patents

一种履带式钢轨探伤的无线超声波探头组件及其探伤方法 Download PDF

Info

Publication number
WO2013097153A1
WO2013097153A1 PCT/CN2011/084938 CN2011084938W WO2013097153A1 WO 2013097153 A1 WO2013097153 A1 WO 2013097153A1 CN 2011084938 W CN2011084938 W CN 2011084938W WO 2013097153 A1 WO2013097153 A1 WO 2013097153A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
rail
ultrasonic probe
signal
track
Prior art date
Application number
PCT/CN2011/084938
Other languages
English (en)
French (fr)
Inventor
韦岗
余业林
曹燕
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Publication of WO2013097153A1 publication Critical patent/WO2013097153A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/225Supports, positioning or alignment in moving situation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2412Probes using the magnetostrictive properties of the material to be examined, e.g. electromagnetic acoustic transducers [EMAT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/265Arrangements for orientation or scanning by relative movement of the head and the sensor by moving the sensor relative to a stationary material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/10Number of transducers
    • G01N2291/106Number of transducers one or more transducer arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/262Linear objects
    • G01N2291/2623Rails; Railroads

Definitions

  • the invention relates to an ultrasonic non-destructive detecting technology and a wireless communication technology, in particular to an ultrasonic probe assembly for a track-type rail flaw detection and a flaw detection method thereof.
  • Ultrasonic refers to sound waves with a frequency exceeding 20 kHz.
  • Ultrasonic flaw detection utilizes three characteristics: one is the reflection characteristic, which is reflected when the ultrasonic wave enters another medium from one medium. When the density of the medium is very different, the sound wave is almost completely Reflected back; the second is the attenuation characteristic. During the propagation process, the intensity will be attenuated due to the obstruction of the medium or impurities. The third is the speed of sound. Under the same conditions, its propagation velocity is constant in the same medium.
  • the basic principle of flaw detection of steel rails is to use the propagation characteristics of sound waves in different media. Sound waves with a frequency higher than 2MHz are injected into the rails.
  • the reflected ultrasonic signals will be different from the normal reflected waves.
  • the size and position of the flaw are determined based on the detected reflected wave.
  • ultrasonic probes with different angles are installed on the flaw detector to check the damage of different parts. For example, a 65° ⁇ 75° tilt angle ultrasonic probe is used to detect nuclear or transverse cracks in the rail head. A 35° ⁇ 45° tilt angle ultrasonic probe is used to detect damage at the rail waist and bolt holes, and a vertical ultrasonic probe is used. Horizontal cracks and longitudinal cracks in the rail head, rail waist and rail bottom.
  • the traditional pulse echo method has been widely used in the field of rail flaw detection as the mainstream of ultrasonic nondestructive testing. It uses an ultrasonic probe to emit ultrasonic pulses to the workpiece to be inspected, and determines whether the rail is defective or not based on the energy of the reflected wave and the phase information.
  • the pulse echo method is relatively mature in technology because it has long been used in the field of rail flaw detection.
  • the current leading technology is the RTS series of large rail inspection vehicles manufactured by Sprry Corporation of the United States. This series of large rail inspection vehicles consists of two parts: the mechanical subsystem and the background processing subsystem.
  • the mechanical subsystem is composed of a flaw detection trolley and a hydraulic system, an air system, a water system and a marking system for arranging the ultrasonic probe assembly;
  • the background processing subsystem is mainly composed of a host computer, an A/D and a D/A converter, and a remote It consists of external devices such as amplifiers, displays, and system printers.
  • the railway rails can be inspected at a top speed of 80km/h.
  • ultrasonic probes for rail inspection have two forms: wheel probes and shoe probes.
  • the wheel probe is composed of a probe holder and an outer membrane of the probe wheel.
  • the probe bracket is mounted on the axle for fixing the ultrasonic probe, and the outer membrane of the probe wheel is made of a sound-permeable resin material for enclosing the acoustic coupling fluid of the entire inner cavity.
  • Five ultrasonic probes are generally mounted on the probe holder to transmit ultrasonic waves of three different directions and different frequencies to the rail. During the flaw detection, the outer membrane of the probe wheel rolls forward with the movement of the vehicle, and the ultrasonic probe therein does not move to keep the transmission and reception directions of the ultrasonic waves unchanged.
  • the sliding shoe probe is composed of an ultrasonic probe and a seesaw. A plurality of ultrasonic probes are embedded in the seesaw at different angles.
  • the ultrasonic probe slides along the rail surface of the rail with the seesaw.
  • the sliding shoe probe had the upper hand.
  • the quality of wheeled probes has improved significantly, so wheeled probes have gradually become mainstream.
  • the wheel probe relies in principle on the energy of the reflected wave, which is an energy-sensitive detection method, and the performance in quantitative detection is not good. This is also one of the reasons why the missed detection rate cannot be effectively controlled when using the traditional method for rail flaw detection in practical applications.
  • the harmful space in steel rails is as small as tens of millimeters and more than one hundred millimeters.
  • the aisle will directly fall into the harmful space of the ballast, causing a great impact on the ultrasonic probe and easily destroying the ultrasonic probe.
  • it is necessary to manually lift the ultrasonic probe every time the aisle is smashed, causing great inconvenience to the operator of the flaw detection vehicle, and the occurrence of such an event cannot be completely eliminated.
  • the present invention aims to propose a wireless ultrasonic probe assembly for tracked rail inspection and a flaw detection method thereof.
  • using ultra-wideband (Ultra Wide-Band (UWB) wireless communication method transmits the continuous multi-frequency modulated ultrasonic signal sent by the background processing subsystem directly to the ultrasonic probe in the track piece base, and measures the reflected wave signal of the continuous multi-frequency modulated ultrasonic signal to realize Non-destructive testing of rails.
  • UWB Ultra Wide-Band
  • the invention adopts the track rolling method instead of the traditional wheel rolling mode, realizes the relative static between the ultrasonic probe and the rail, so that the data sampling time is greatly increased; and the UWB technology is used for short between the background processing subsystem and the ultrasonic probe assembly.
  • Distance wireless communication separates the background processing subsystem from the ultrasonic probe assembly, which greatly improves the flexibility of detection.
  • the ultrasonic signal is replaced by the traditional transmission and reception sharing method, which can greatly improve the signal-to-noise of the received signal. ratio.
  • the background processing subsystem of the present invention is similar in structure to the background processing subsystem of the existing large rail inspection vehicle, except that a UWB communication module is installed, and the existing background processor is replaced by UWB wireless communication. A wired connection between the system and the ultrasound probe assembly.
  • the present invention is achieved by the following technical solutions.
  • a wireless ultrasonic probe assembly for tracked rail inspection comprising a plurality of track shoes, each track piece comprising a track piece base and an ultrasonic probe array embedded in the track piece base, a battery, a pressure sensor, an ultrasonic transceiver circuit , converter and UWB communication module; the battery and Ultrasonic transceiver circuit,
  • the converter is connected with the UWB communication module; the ultrasonic transceiver circuit, the UWB communication module, and the pressure sensor are respectively connected to the converter, and the ultrasonic transceiver circuit is also connected with the ultrasonic probe array;
  • the pressure sensor is responsible for detecting the pressure state of the track piece;
  • the ultrasonic transmitting and receiving circuit will continuously
  • the frequency modulated ultrasonic signal is forwarded to the corresponding ultrasonic probe, and the ultrasonic transmitting and receiving circuit also buffers the reflected wave signal received by each ultrasonic probe and transmits it to the converter;
  • the converter includes an A/D and a D/A converter, and is responsible
  • the rows and rows of the ultrasonic probe array are arranged in parallel, and the columns and columns are arranged in alignment; the ultrasonic probes on both sides of the ultrasonic probe array parallel to the longitudinal direction of the rail are adopted.
  • Ultrasonic probe arrays Several ultrasonic probes in the middle of the array are tilted at 0 ° An angular arrangement for detecting horizontal and longitudinal cracks in the rail head, rail waist and rail bottom; ultrasonic probes located outside the sides and the middle are arranged at an inclination angle of 30 ° ⁇ 50 ° to detect the rail waist and bolts Hole damage;
  • the tilt angle is the angle between the direction in which the ultrasonic probe is emitted and the cross section of the rail.
  • the ultrasonic probe of ° ° has an ultrasonic frequency of 4 ⁇ 5MHz, and its beam reflection surface is located at the bottom of the rail head; the tilt angle is 0 °.
  • the ultrasonic probe has an ultrasonic frequency of 3 ⁇ 4 MHz.
  • the beam reflection surface is located at the bottom of the rail bottom; the ultrasonic probe with an inclination angle of 30 ° ⁇ 50 ° has an ultrasonic frequency of 2 ⁇ 3 MHz, and the beam reflection surface is also located at the bottom of the rail bottom.
  • the pressure sensor is disposed in the middle of the track shoe base.
  • the battery adopts The microbattery, the elastic material for the microbattery is fixed in the track piece base together with the ultrasonic transceiving circuit, the A/D converter and the UWB communication module.
  • the track piece base is made of rubber material, the surface of the track piece base is provided with a sound-permeable outer film, and the gap between the track piece base and the sound-permeable outer film is transparent. Acoustic coupling fluid is filled.
  • the method for detecting the wireless ultrasonic probe assembly described above includes the following steps:
  • the pressure sensor in the base of the track piece senses the pressure, and the contact trigger signal is subjected to analog-to-digital conversion by the A/D converter and transmitted to the background processing subsystem through the UWB communication module;
  • the background processing subsystem controls the track piece to be in working state after receiving the contact trigger signal; the working state of the ultrasonic probe in the track piece includes sending and receiving; if at some time, the background processing subsystem determines an ultrasonic probe A Should be in the transmitting state, then generate continuous multi-frequency modulated ultrasonic signals After the analog-to-digital conversion, the UWB communication module of the background processing subsystem is transmitted to the track piece in the form of a UWB signal;
  • the UWB communication module on the track piece receives the UWB signal from the background processing subsystem, and is converted into a digital-to-analog conversion by the D/A converter.
  • the continuous multi-frequency modulated ultrasonic signal is transmitted to the ultrasonic transceiver circuit; the ultrasonic transceiver circuit controls the ultrasonic probe A to emit the ultrasonic beam of the corresponding frequency according to the transmitted continuous multi-frequency modulated ultrasonic signal;
  • the ultrasonic beam emitted by the ultrasonic probe A has an ultrasonic probe B in the direction reflected by the rail.
  • the background processing subsystem determines that the ultrasonic probe B is in the receiving state; the ultrasonic probe B receives the ultrasonic signal emitted from the ultrasonic probe A and reflected back inside the rail, via the A/D After the analog-to-digital conversion of the converter, the UWB communication module in the track piece is transmitted to the background processing subsystem in the form of a UWB signal;
  • the background processing subsystem analyzes and processes the signal after receiving the signal transmitted from the ultrasonic probe B, Determining whether the ultrasonic beam is emitted from the probe A through the rail to the ultrasonic probe B in the path of the rail;
  • the track piece When the track piece is off the rail, the track piece The pressure sensor in the film base feels the pressure disappears, and the detachment trigger signal is transmitted to the background processing subsystem through the UWB communication module in the track piece after being converted by the A/D converter analog-to-digital conversion; the background processing subsystem After receiving the disengagement trigger signal, it is judged that the track piece has been disengaged from the rail, and then the transmission and reception of the ultrasonic signal of the track piece is stopped, and the track piece is in a waiting state until the next cycle starts.
  • Each ultrasonic beam propagates in the rail corresponding to a certain path: for an ultrasonic beam emitted by an ultrasonic probe having a certain inclination angle, the path determined by the ultrasonic beam is a bilaterally symmetric polygonal line, if the rail head or the rail waist appears Damage, which affects both the incident beam and the path through the location Underside of rail head Or the reflected wave reflected from the bottom of the bottom of the rail, the intersection of the two ultrasonic beams is the location of the damage, and at the same time, for the same damage, there are multiple incident waves and reflected waves intersecting at the position to form a plurality of intersections, according to this
  • the distribution of intersection points can accurately depict the shape and size of the rail damage; for the vertically arranged ultrasonic probe, each ultrasonic beam and its reflected beam only pass through a certain section of the rail, if the rail head corresponds to a section of the rail Horizontal cracks or longitudinal cracks appear at the rail waist and rail bottom.
  • the principle of the flaw detection method in the present invention is as follows: When the rail is intact, the ultrasonic wave only forms specular reflection on the flat rail head and the bottom surface of the rail bottom, and the received ultrasonic wave changes little in waveform and energy. And when the ultrasound encounters in the direction of propagation In the case of damage such as nuclear injury, horizontal cracks and longitudinal cracks, the damage site will have reflection and scattering effects on the ultrasonic waves. Ultrasonic waves that continue to travel in the direction of the beam have large changes in waveform and energy. According to this waveform and energy changes, the damage in the rail can be detected and located.
  • the present invention Compared with the existing wheeled ultrasonic probe assembly, the present invention has the following advantages:
  • each track piece is in close contact with the rail during operation, and is relatively stationary, and the time of contact with the rail can be greatly increased. Overcome the ultrasonic wave when the flaw detection vehicle is walking at high speed The probe is short of sampling time on one part of the rail, which leads to loss of echo, etc., and avoids a series of problems caused by relative motion such as Doppler effect and low sensitivity.
  • the track piece touches the rail in a planar structure, and it takes a long time to contact the rail and ensures multiple ultrasonic waves.
  • the probe detects the same position and the acquired rail detection information is large. Therefore, it is possible to avoid missed detection, improve detection accuracy, and support higher driving speeds.
  • UWB signal is used for background processing subsystem and ultrasound
  • the short-range wireless communication between the probe components physically separates the background processing subsystem from the ultrasonic probe array, replacing the current ultrasonic probe holder to fix the ultrasonic probe to the background processing subsystem in a wired manner, greatly improving the flexibility of detection. .
  • the combination of transmission and reception separation and transmission and reception is used to replace the traditional simple transmission and reception method, according to each ultrasonic wave.
  • the ultrasonic wave signal is received in the direction of the probe beam, and no multiple interface reflection interference is formed at the outer film of the track piece, which can greatly improve the signal-to-noise ratio and overcome the shortcomings of the prior method for detecting the low efficiency of the nuclear damage in the track head.
  • the performance of the track-type design is good.
  • the harmful space in the switch for the rail-changing channel is less than one hundred millimeters and hundreds of millimeters.
  • the aisle will directly fall into the harmful space of the switch, The ultrasonic probe caused a lot of impact, which destroyed the ultrasonic probe.
  • the track-and-strap design greatly improves the contact surface and avoids such situations.
  • the track shoe has a simple structure, small size and low price. When the track is damaged, it is only necessary to replace the damaged single track piece, and it is not necessary to consume a large amount of coupling fluid. Therefore, compared with the wheeled ultrasonic probe assembly, the maintenance cost is greatly reduced.
  • Figure 1 is a schematic diagram of the operation of a wireless ultrasonic probe assembly for tracked rail inspection.
  • Figure 2 is a block diagram of the internal structure of a single track shoe.
  • Figure 3a is a schematic plan view of the outer side of the track shoe.
  • Figure 3b is a plan view of the inside of the track shoe.
  • FIG. 4 is a block diagram of the internal structure of the UWB communication module.
  • Figure 5 is a single working flow chart of a single track shoe.
  • Figure 6 is a schematic diagram of the flaw detection process of the wireless ultrasonic probe assembly for tracked rail inspection.
  • Fig. 7a is a schematic diagram of signal transmission and reception of a 70° tilt angle ultrasonic probe.
  • Figure 7b is a schematic diagram of signal transmission and reception of a 38° tilt angle ultrasonic probe.
  • Fig. 7c is a schematic diagram of signal transmission and reception of a vertical ultrasonic probe.
  • Figure 8a is a schematic diagram of beam-to-railhead nuclear injury detection.
  • Figure 8b is a schematic diagram of beam-to-rail lumbar crack detection.
  • Figure 8c is a schematic illustration of beam-to-rail bottom longitudinal crack detection.
  • FIG. 1 it is a schematic view of the operation of the wireless ultrasonic probe assembly 101 of the track type rail inspection according to the present invention.
  • the ultrasonic probe assembly 101 of the track-type rail inspection according to the present invention has no power device itself, and the ultrasonic probe assembly 101 of the four sets of track-type rail inspection is connected to the flaw detection trolley bracket 103 through the axle of the tensioning pulley 102 in the crawler. A flaw detection trolley is then connected to the chassis of the high-speed rail inspection vehicle.
  • the ultrasonic probe assembly 101 of the tracked rail inspection shown in the figure is configured with four tensioning wheels 102 to form a pair of tracks.
  • the number of tensioning pulleys 102 and the number of ultrasonic probe assemblies 101 for tracked rail inspection can be adjusted according to the needs of the specific detection environment.
  • each track piece is pressed from the tensioning wheel through the head to the rail to the time when the tensioning wheel from the tail is disengaged from the rail, and the rail stays still and remains stationary. .
  • the array of ultrasonic probes in the base of the track is issued (or received) by 2 ⁇ 5MHZ according to the control of the background processing subsystem.
  • Unequal continuous modulation of ultrasound Assume that the total length of the track contact with the rail is 1 m and the forward rolling speed is 100 km/h. After a simple calculation, the time for each track piece to contact the rail is 36 ms. With the highest detection speed of 80 Compared with km/h and sampling time of 0.3 ms, the sampling time can be greatly extended and the missed detection rate can be reduced.
  • FIG. 2 it is a block diagram of the internal structure of a single track shoe according to the present invention.
  • the track shoe is composed of a track shoe base and an embedded ultrasonic probe array, a miniature battery, a pressure sensor, an ultrasonic transceiver circuit, a converter, and a UWB communication module.
  • the above-mentioned elastic material for the micro battery is fixed together with the ultrasonic transmitting and receiving circuit, the converter and the UWB communication module in the track piece base, and supplies power to these devices;
  • the pressure sensor is disposed in the middle of the track piece base, and is responsible for detecting the track piece.
  • the pressure state; one end of the ultrasonic transceiver circuit is connected with the ultrasonic probe, and the other end is connected with the UWB communication module through the converter, and is responsible for transmitting and receiving the ultrasonic signal, that is, forwarding the continuous multi-frequency modulated ultrasonic signal to the corresponding ultrasonic probe and buffering the ultrasonic waves.
  • the reflected wave signal received by the probe is transmitted to the converter;
  • the converter is composed of an A/D converter and a D/A converter, one end is connected with the ultrasonic transmitting and receiving circuit and the pressure sensor, and the other end is connected with the UWB communication module, and is responsible for The conversion between the analog signal and the digital signal;
  • the UWB communication module is connected to the ultrasonic transceiver circuit and the pressure sensor via the converter, and is responsible for the signal transmission between the ultrasonic transceiver circuit and the pressure sensor and the background processing subsystem, that is, the background processing subsystem Continuous multi-frequency modulated ultrasonic signal transmission
  • the background processing subsystem uses the corresponding UWB module to receive and transmit UWB signals.
  • Figures 3a-b there is shown a schematic view of one embodiment of the arrangement of the various elements within a single track shoe of the present invention.
  • Figure 3a is a plan view of the outside of the track shoe, which is attached to the surface of the rail after the sound-permeable outer film is attached.
  • the track piece base 301 is made of a rubber material, and a sound-permeable outer film is attached to the surface, and a small gap between the track piece base and the sound-permeable outer film is filled with a sound-permeable coupling liquid.
  • each ultrasonic probe In the track shoe base 301, nine ultrasonic probes are embedded in the array, and three ultrasonic probes in each row parallel to the cross section of the rail are arranged in three rows, and the rows and rows are arranged in parallel and arranged in columns.
  • a total of six arrangements on either side of each row are 70° tilt angle ultrasonic probes 302 for detecting nuclear and transverse cracks in the rail head 105; one arrangement in the middle of the middle row is a 0° tilt angle (vertical An ultrasonic probe 303 for detecting horizontal cracks and longitudinal cracks of the rail head 105, the rail waist 106 and the rail bottom 107; a total of two 38° tilt angle ultrasonic probes 304 arranged in the middle of the two rows of head and tail for detecting Rail waist 106 and bolt hole damage.
  • Figure 3b is a plan view of the inside of the track shoe that is in surface contact with the tensioning wheel 102.
  • the microbattery 305 is fixed with the elastic material 306 to the ultrasonic transmission/reception circuit 307, the converter 308, the UWB communication module 309, and the like in the track piece base.
  • the portion of the protruding steel rail is not in contact with the rail to prevent the circuit from being crushed and causing a malfunction.
  • the pressure sensor 310 is disposed in the middle of the track shoe base 301 of the surface, and functions to detect the pressure state of the track shoe, generate a touch trigger signal when the pressure is detected, and generate a release trigger signal when the pressure is detected to be released.
  • the UWB communication module consists of a pulse generator, a pulse position modulator, an active crystal oscillator, a power amplifier, a low noise amplifier, an RF filter, a multiplier, a low pass filter, a sample/detector, and a UWB antenna.
  • the UWB signal is generated by the active crystal oscillator generating a reference square wave signal and the input pulse generator generating a basic UWB signal.
  • the basic UWB signal is input to the pulse position modulator, and the pulse position modulator generates a modulated UWB signal according to the pulse position modulation of the basic UWB signal according to the digital signal transmitted by the ultrasonic transceiver circuit or the pressure sensor.
  • the modulated UWB signal is amplified by the input power amplifier and radiated through the UWB antenna.
  • the UWB signal receiving process is: the UWB signal transmitted from the UWB communication module in the background processing subsystem is received by the UWB antenna in the track, and then input into the low noise amplifier, the RF filter and the multiplier.
  • the multiplier receives the basic UWB signal input by the pulse generator, multiplies the two signals and inputs the low-pass filter, and the filtered signal is input to the sample/detector for sampling and detection to obtain a digital signal input converter to restore multi-frequency continuous modulation.
  • the ultrasonic signal is transmitted to the ultrasonic transceiver circuit.
  • FIG. 5 is a single work flow chart of a single track. Its non-destructive detection of rails includes the following steps:
  • the track piece is in contact with the rail, and when the pressure sensor 310 detects the pressure, a contact trigger signal is generated.
  • the analog trigger signal is subjected to analog-to-digital conversion, it is transmitted to the background processing subsystem through the UWB communication module 309 in the track slice, and the background processing subsystem specifies that the track piece is in the working state after receiving the trigger signal.
  • the ultrasonic probes in the track shoes have two working states of transmitting and receiving at different times, and the specific working state is controlled by the background processing subsystem.
  • the background processing subsystem determines that an ultrasonic probe (assumed to be the ultrasonic probe A) is in a transmitting state, then the continuous multi-frequency modulated ultrasonic signal is subjected to analog-to-digital conversion through the UWB communication module 309 of the background processing subsystem. It is transmitted to the track shoe in the form of a UWB signal.
  • the UWB communication module 309 on the track shoe receives the UWB signal transmitted from the background processing subsystem, and is reduced to a continuous multi-frequency modulated ultrasonic signal by digital-to-analog conversion to the ultrasonic transceiver circuit 307.
  • the ultrasonic transceiver circuit 307 controls the ultrasonic probe A to emit a corresponding ultrasonic beam for rail flaw detection based on the transmitted continuous multi-frequency modulated ultrasonic signal.
  • the ultrasonic beam emitted by the ultrasonic probe A has an ultrasonic probe reflected in the direction of the rail (assumed to be the ultrasonic probe B), and the background processing subsystem determines that the ultrasonic probe is in the receiving state.
  • the ultrasonic probe B receives the ultrasonic signal emitted from the ultrasonic probe A and reflected back inside the rail, and is subjected to analog-to-digital conversion by the converter 308, and then transmitted to the background processing subsystem in the form of a UWB signal through the UWB communication module 309 in the track sheet.
  • the background processing subsystem can analyze and process the signal to determine the inside of the rail, and the inner rail of the path is reflected by the ultrasonic beam from the ultrasonic probe A through the rail to the ultrasonic probe B. There is no damage.
  • the background processing subsystem judges that the track piece has been detached from the rail, and then stops the transmission and reception of the ultrasonic signal of the track piece, the track piece is in a waiting state until the next cycle starts.
  • FIG. 6 it is a schematic diagram of the flaw detection process of the wireless ultrasonic probe assembly 101 for track-type rail inspection in the embodiment.
  • Six 70° tilt angle ultrasonic probes 302 located on each side of each track of the track piece are transmitted to the side and rear by means of transmission and reception.
  • two 38° tilt angle ultrasonic probes 304 located in the middle of the two rows of the head and tail of the track are also separated by transmission and reception.
  • the method is to transmit 2 ⁇ 3MHz relatively low frequency ultrasonic waves or receive oblique reflected waves to the side rear to detect the rail waist 106 and the bolt hole damage; the 0° tilt angle (vertical) ultrasonic probe 303 located in the middle of the middle row is combined with the transmitting and receiving In a manner, a medium-low frequency ultrasonic wave having a frequency of 3 to 4 MHz is vertically emitted downward for detecting horizontal cracks and longitudinal cracks of the rail head 105, the rail waist 106, and the rail bottom 107.
  • the 70kg/m heavy-duty rail mainly used in the current railway trunk line is used as the detection object, and four tensioning wheels 102 are used to match one pair of crawler belts.
  • Each pair of tracks consists of 42 track shoes, 16 of which are upper and lower sides, and 5 pieces of outside of the front and rear tensioning wheels 102.
  • a total of 16 track shoes are in contact with the rail track surface 104 at each determined moment.
  • the track pieces are sequentially numbered 1, 2, 3, ..., 16 in the direction in which the tracks are rolled. As shown in Fig.
  • the ultrasonic wave is transmitted by the 9-16 track piece, and the 1-8 track piece receives the ultrasonic wave; as shown in Fig. 7b, for the 38° tilt angle ultrasonic probe 304, Tracks 13-16 and 5-8 emit ultrasonic waves, and track shoes 9-12 and 1-4 receive ultrasonic waves. As shown in Fig. 7c, for the vertical ultrasonic probe 303, the track shoes 1-16 both emit and receive ultrasonic waves.
  • the background processing subsystem performs real-time control and adjustment of the transmitting and receiving states of the ultrasonic probes according to the trigger signal of the pressure sensor 310 on the track sheet, thereby realizing the detection of various parts of the rail. .
  • FIG. 8a-c it is a schematic diagram of the detection of the internal damage of the rail by the ultrasonic probes of various angles in the embodiment.
  • Each ultrasonic beam travels in the rail corresponding to a certain path, as shown in Figure 8a (only the beams from the three ultrasonic probes on one side of each track piece are shown) for a 70° tilt angle ultrasonic probe
  • the ultrasonic beam emitted by 302 has a determined path which is a bilaterally symmetric polyline. If the rail head 105 has a nuclear injury (the plane part surrounded by the outer smooth curve in the figure), the damage first affects the energy and shape of the reflected wave, and the reflected beam passing through the position and the reflection after the bottom of the rail head is reflected.
  • the intersection of the two ultrasonic beams determines the location of the damage.
  • the ultrasonic probes on the track shoes are very dense, and for one side of the rails, two sets of tracks pass through. Therefore, for the same damage, a plurality of incident waves and reflected waves intersect at the position to form a plurality of intersections.
  • the intersections distributed at the outermost point are connected by a broken line, and the shape and size of the rail damage can be accurately depicted (the plane portion surrounded by the inner curved dotted line in the figure). As shown in Fig.
  • each ultrasonic beam and its reflected beam only pass through a certain cutting plane of the rail, and if a certain section of the rail corresponds to the rail head 105, the rail waist 106 and the rail bottom 107
  • the horizontal crack or longitudinal crack can directly determine the position and shape of the crack according to the time, energy and waveform of the reflected wave return.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Electromagnetism (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

一种履带式钢轨探伤的无线超声波探头组件(101)及其探伤方法,所述组件(101)中每个履带片包括履带片片基(301)以及内嵌在片基(301)中的超声波探头阵列(302,303,304)、电池(305)、压力传感器(310)、超声波收发电路(307)、转换器(308)和UWB通信模块(309);电池(305)与超声波收发电路(307)、转换器(308)和UWB通信模块(309)连接;超声波收发电路(307)、UWB通信模块(309)、压力传感器(310)分别与转换器(308)连接,超声波收发电路(307)还与超声波探头阵列(302,303,304)连接。探伤方法中,当超声波在传播方向遇到钢轨内部的核伤、水平裂纹以及纵裂纹等损伤时,损伤部位会对超声波产生反射和散射效应。采用履带滚进方式代替传统的车轮滚动方式,实现了超声波探头与钢轨之间相对静止,使得数据采样时间大大增加;同时能提高检测的灵活性并降低检测成本。

Description

一种履带式钢轨探伤的无线超声波探头组件及其探伤方法
技术领域
本发明涉及超声波无损探测技术和无线通信技术,具体涉及履带式钢轨探伤的超声波探头组件及其探伤方法。
背景技术
我国铁路运输繁忙,列车运行间隔只有十几分钟,同时,运营线路近八万公里,线路状况较差,超期服役钢轨数量很大,导致钢轨损伤发生率高。为了保障铁路运输安全,需要定期对线路进行检查,并对损坏的钢轨进行更换。目前检测钢轨内部缺陷的主要设备为小型钢轨超声波探伤仪,由人工推行的方法进行钢轨探伤。为防止损伤的发生和恶化,平均每年每条线路需检测十遍以上,总检测里程近一百万公里。全线有近万名专职钢轨探伤人员负责钢轨内部损伤的检测。随着中国铁路的进一步提速,对能够完成钢轨高速探伤设备的需求日益迫切,研究开发高速钢轨探伤的装置,对铁路运输业具有重要意义。
超声波是指频率超过20kHz的声波,超声波探伤利用了其三个特性:一是反射特性,当超声波由一种介质进入另一种介质时会发生反射,当介质密度相差悬殊时,声波几乎完全被反射回来;二是衰减特性,在传播过程中,由于受到介质或者杂质的阻碍,强度会产生衰减;三是声速特性,在同样条件下,其在同一介质中传播速度为常数。对钢轨进行探伤基本原理是利用声波在不同介质中的传播特性,用频率高于2MHz的声波射入钢轨中,当遇到钢轨损伤时,反射回来的超声波信号会异于正常反射波,因此可根据检测反射波来判断伤痕的大小及位置。通常,探伤仪上安装有不同角度的超声波探头,分别检查不同部位的损伤。如65°~75°倾斜角超声波探头用来发现轨头内的核伤或横裂,35°~45°倾斜角超声波探头用来探测轨腰及螺栓孔处的损伤,垂直超声波探头则用来探轨头、轨腰以及轨底的水平裂纹、纵裂纹。
传统的脉冲回波法作为超声波无损检测的主流已经广泛应用于钢轨探伤领域。它利用超声波探头向受检工件发射超声波脉冲,并根据反射波的能量大小以及相位信息来判断钢轨有无缺陷。脉冲回波法由于长期应用于钢轨探伤领域,因而它在技术上相对成熟。标志当前领先技术的是由美国Sprry公司制造的RTS系列大型钢轨探伤车。该系列大型钢轨探伤车由机械子系统和后台处理子系统两大部分构成。其中机械子系统由用于布置超声波探头组件的探伤小车和液压系统、空气系统、水系统及标记系统等机构组成;后台处理子系统主要由主计算机、A/D和D/A转换器、远程放大器、显示器以及系统打印机等外部设备组成。实际工作中能够以最高时速80km/h对铁路钢轨进行探伤。当前,用于钢轨探伤的超声波探头有两种形式:轮式探头与滑靴式探头。轮式探头由探头支架和探轮外膜组成,探头支架安装在轮轴上用于固定超声波探头,探轮外膜由透声树脂材料制作,用于包裹整个内腔的透声耦合液。探头支架上一般安装五个超声波探头,向钢轨发射三种不同方向和不同频率的超声波。探伤时,探轮外膜随车运动而向前滚动,而其中的超声波探头不动,以保持超声波的发射和接收方向不变。滑靴式探头则由超声波探头和撬板组合而成,多个超声波探头按不同角度嵌入撬板内,探伤时,超声波探头随撬板沿钢轨轨道面滑动。早期因为轮式探头设计和制作技术比较落后,适应性差,滑靴式探头曾占上风。最近十几年,轮式探头质量明显提高,所以轮式探头又逐渐成了主流。然而,轮式探头在原理上依赖反射波的能量大小,属于对能量敏感的检测方法,定量检测方面性能不佳。这也是在实际应用中利用传统方法进行钢轨探伤时漏检率不能有效控制的原因之一。总结当前普遍使用的轮式超声波探头组件的特点,存在以下缺点和不足:
(1)在钢轨探伤过程中,超声波探头与钢轨始终处于相对运动状态,采样时间只有零点几毫秒,再加上多普勒效应、检测灵敏度不高等一系列问题,使得探测效率低下、探测速度无法提高。
(2)因为声波通常只在垂直、光滑缺陷表面形成反射,所以基于脉冲回波法在探测与钢轨轨道面垂直的轨头核伤及焊缝时,基本无法接收到缺陷回波,漏检概率较大。
(3)易损件消耗量大,维护成本高。现有透声树脂材料制作的探轮外膜每个单价上千元,而且因为需要包裹大量耦合液体,所以轮胎面出现微小的损伤就需要更换。我国铁路干线有3万公里(均为复线,不包括各城市地铁、轻轨及近5万公里的支线),若全部改用大型探伤车检测,年检按最低6次计。钢轨探伤车同时使用4个探轮,按每个探轮100km使用极限计算,仅仅探轮外膜消耗每年就高达上千万元。
(4)通过性较差、操作较复杂。钢轨道岔中的有害空间少则几十毫米,多则一百多毫米。对于主流的轮式探头,因为接触面小,过道岔时会直接陷入道岔的有害空间中,对超声波探头造成很大的冲击,容易毁坏超声波探头。为了不至于发生此类毁坏超声波探头的事件,每次过道岔时都要人为将超声波探头提起,给探伤车操纵者造成很大的不便,并且也不能完全杜绝这类事件的发生。
发明内容
针对目前在钢轨超声波探伤技术领域存在的一些诸如探伤速度难以提高、漏检率高、成本高及操作复杂等不足,本发明旨在提出一种履带式钢轨探伤的无线超声波探头组件及其探伤方法,利用超宽带(Ultra Wide-Band,UWB)无线通信的方法将后台处理子系统发出的连续多频调制超声波信号直接传至履带片片基内的超声波探头,通过测量该连续多频调制超声波信号的反射波信号,实现对钢轨的无损检测。本发明采用履带滚进方式代替传统的车轮滚动方式,实现了超声波探头与钢轨之间相对静止,使得数据采样时间大大增加;同时采用UWB技术用于后台处理子系统与超声波探头组件之间的短距离无线通信,将后台处理子系统与超声波探头组件物理分开,极大提高了探测的灵活性;另外,对超声波信号采用收发分离方式取代传统的收发共用方式,可大幅度提高接收信号的信噪比。本发明所述的后台处理子系统与现有大型钢轨探伤车的后台处理子系统在结构上类似,不同之处在于加装了一个UWB通信模块,用UWB无线通信的方式取代现有后台处理子系统与超声波探头组件之间的有线连接。本发明通过如下技术方案实现。
一种履带式钢轨探伤的无线超声波探头组件,其包括若干个履带片,每个履带片包括履带片片基以及内嵌在履带片片基中的超声波探头阵列、电池、压力传感器、超声波收发电路、转换器和UWB通信模块;所述电池与 超声波收发电路、 转换器和UWB通信模块连接;超声波收发电路、UWB通信模块、压力传感器分别与转换器连接,超声波收发电路还与超声波探头阵列连接;压力传感器负责检测履带片的压力状态;超声波收发电路将连续多频调制超声波信号转发给相应的超声波探头,超声波收发电路还缓存各个超声波探头接收到的反射波信号并传至转换器;转换器包括A/D和D/A转换器,负责模拟信号与数字信号之间的转换;UWB通信模块将后台处理子系统产生的连续多频调制超声波信号 传送至超声波收发电路,同时将各超声波探头接收的反射波信号及压力传感器的信号传送给后台处理子系统进行处理。
作为上述履带式钢轨探伤的无线超声波探头组件的优化方案,所述超声波探头阵列中行与行平行布置,列与列对齐布置;超声波探头阵列中与钢轨长度方向平行的两侧超声波探头采用 60 ° ~ 80 °倾斜角布置, 用来探测轨头内的核伤和横裂; 超声波探头阵列中 位于阵列中部的若干超声波探头采用 0 °倾斜 角布置,用来探测轨头、轨腰和轨底的水平裂纹和纵裂纹;位于所述两侧和中部以外的超声波探头采用30 ° ~ 5 0 °倾斜 角布置,用来探测轨腰及螺栓孔损伤;所述 倾斜角为超声波探头发射方向与钢轨横截面的夹角。
作为上述履带式钢轨探伤的无线超声波探头组件的优化方案,倾斜角为 60 ° ~ 80 °的超声波探头的超声波频率为4 ~ 5MHz , 其波束反射面位于轨头底面; 倾斜角为 0 °超声波探头的超声波频率为 3 ~ 4 MHz , 其波束反射面位于轨底底面; 倾斜角为 30 ° ~ 5 0 °的超声波探头的超声波频率为 2 ~ 3 MHz , 其 波束反射面同样位于 轨底底面。
作为上述履带式钢轨探伤的无线超声波探头组件的优化方案,所述压力传感器布置在履带片片基的中部。
作为上述履带式钢轨探伤的无线超声波探头组件的优化方案,所述电池采用 微型电池,微型电池用弹性材料与所述超声波收发电路、 A/D 转换器和UWB通信模块一起固定在 履带片片基内。
作为上述履带式钢轨探伤的无线超声波探头组件的优化方案,履带片片基采用橡胶材料,履带片片基表面加装透声外膜,履带片片基与透声外膜之间的缝隙用透声耦合液填充。
上 述无线超声波探头组件的探伤方法,包括如下步骤:
(1)履带片接触钢轨后,履带片片基内的压力传感器感受到压力,产生接触触发信号经A/D转换器进行模数转换后通过UWB通信模块传至后台处理子系统;
(2)后台处理子系统接收到接触触发信号后控制该履带片处于工作状态;履带片内的超声波探头的工作状态包括发送和接收;若在某一时刻后台处理子系统判定某个超声波探头A应为发射状态,则产生连续多频调制超声波信号 经模数转换后通过后台处理子系统的UWB通信模块以UWB信号的形式传至该履带片;
(3)履带片上的UWB通信模块接收到后台处理子系统传来UWB信号,经D/A转换器进行数模转换后还原成 连续多频调制超声波信号传输至超声波收发电路;超声波收发电路根据传来的连续多频调制超声波信号控制所述超声波探头A发出相应频率的超声波波束进行钢轨探伤;
(4)所述超声波探头A发出的超声波波束经钢轨反射回来的方向有一个超声波探头B , 则后台处理子系统判定超声波探头B为接收状态;超声波探头B接收从超声波探头A发出并经钢轨内部反射回来的超声波信号, 经 A/D 转换器模数转换后通过履带片内的UWB通信模块以UWB信号的形式传至后台处理子系统;
(5)后台处理子系统接收到所述超声波探头B传回来的信号后对信号进行分析处理, 判断超声波波束从探头A发出经钢轨反射至超声波探头B的路径内钢轨有无损伤;
(6)当履带片脱离钢轨时,履带片 片基内的压力传感器感受到压力消失,产生脱离触发信号经A/D转换器模数转换后通过履带片内的UWB通信模块传至后台处理子系统;后台处理子系统 接收到脱离触发信号后判断本履带片已经和钢轨脱离,于是停止该履带片超声波信号的收发,则该履带片处于等待状态 ,直至下一个循环开始。
上述的探伤方法中, 每一束超声波波束在钢轨中传播时对应一条确定的路径:对于有一定倾斜角的超声波探头发出的超声波波束,该超声波波束确定的路径就是一条左右对称的折线,若钢轨轨头或轨腰出现损伤,这种损伤会同时影响通过该位置的入射波束和经 轨头底面 或者轨底底面反射后的反射波,这两束超声波波束的交点就是损伤的位置,同时,对于同一处损伤,会有多束入射波和反射波在该位置相交形成多个交点,根据这多个交点的分布,能准确描绘出钢轨损伤的形状及大小;而对于垂直布置的超声波探头,每束超声波波束及其反射波束只通过钢轨的某一个切面,若钢轨的某个切面对应的轨头、轨腰和轨底出现水平裂纹或纵裂纹,根据反射波返回的时间、能量和波形就能直接确定裂纹的位置、形状。
本发明中的探伤方法的原理如下:当钢轨完好时,超声波只在平整的轨头和轨底底面形成镜面反射,接收到的超声波在波形与能量上变化很小。而当超声波在传播方向遇到 核伤、水平裂纹以及纵裂纹等损伤时,损伤部位会对超声波产生反射和散射效应。继续沿波束方向传播的超声波在波形和能量上都具有较大变化,依据这种波形和能量的变化就可以对钢轨内损伤进行检测和定位。
与现有的轮式超声波探头组件相比,本发明具有以下优点:
(1)采用多个履带片滚进探测的方式,每个履带片在工作时与钢轨紧贴,并且是相对静止的,与钢轨接触的时间可以大幅度增加。克服了在探伤车高速行走时 超声波 探头对钢轨某一处采样时间过短而导致回波丢失等不足,同时避免了多普勒效应、灵敏度低等因相对运动出现的一系列问题。
(2) 履带片以平面结构接触钢轨,接触钢轨的时间长,且保证了多个 超声波 探头对同一位置进行探测,获取的钢轨探测信息量大。因此能避免漏检,同时提高探测精度,且能支持更高的行车速度。
(3)采用 UWB 信号用于后台处理子系统与 超声波 探头组件之间的短距离无线通信,将后台处理子系统与超声波探头阵列物理分开,取代现行用超声波探头支架将超声波探头与后台处理子系统固定有线连接的方式,极大提高了探测的灵活性。
(4)采用多频连续调制 超声波波的方式,对履带片上的多个 超声波 探头分别发送2 ~ 5Mz 不等的调制连续波,取代传统的脉冲波,可以大大降低探测电压,提高探测精度。
(5)同时采用收发分离与收发结合的方式取代传统的单纯收发结合的方式,按每一个 超声波 探头波束波达方向接收超声波信号,不会在履带片外膜处形成多次界面反射干扰,可以大幅提高信噪比,克服现有方法对 轨头内的核伤检测效率低下的缺点 。
(6)采用履带片式的设计通过性能好。用于钢轨变换股道的道岔中的有害空间少则一百多毫米,多则数百毫米。对于传统的小接触面轮式探头,过道岔时会直接陷入道岔的有害空间中,对 超声波 探头造成很大的冲击,以至于毁坏 超声波 探头。而履带片式的设计使接触面大大改善,避免了这类情况的发生。
(7)履带片结构简单、体积小、价格低。履带损坏时,只需要将损坏的单个履带片进行更换即可,更不需要大量消耗耦合液。所以与轮式超声波探头组件相比,后期维护成本大幅降低。
附图说明
图1是履带式钢轨探伤的无线超声波探头组件工作示意图。
图2是单个履带片内部结构框图。
图3a是履带片外侧平面示意图。
图3b是履带片内侧平面示意图。
图4是UWB通信模块内部结构框图。
图5是单个履带片单次工作流程图。
图6是履带式钢轨探伤的无线超声波探头组件探伤过程示意图。
图7a是70°倾斜角超声波探头信号收发示意图。
图7b是38°倾斜角超声波探头信号收发示意图。
图7c是垂直超声波探头信号收发示意图。
图8a是波束对轨头核伤进行检测的示意图。
图8b是波束对轨腰裂纹进行检测的示意图。
图8c是波束对轨底纵裂纹进行检测的示意图。
具体实施方式
下面结合附图对本发明的具体实施方式作进一步说明,但本发明的实施不限于此。
如图1所示,是本发明所述履带式钢轨探伤的无线超声波探头组件101的工作示意图。本发明所述履带式钢轨探伤的超声波探头组件101,自身无动力装置,4组履带式钢轨探伤的超声波探头组件101通过履带内的涨紧轮102的轮轴共同连接到探伤小车支架103上,构成一部探伤小车,然后再和高速钢轨探伤车的底盘连接。图中所示履带式钢轨探伤的超声波探头组件101采用4个涨紧轮102配成一副履带。涨紧轮102的个数和履带式钢轨探伤的超声波探头组件101的个数可以根据具体探测环境的需要进行调整。当履带沿钢轨轨道表面104向前滚进时,每个履带片从经头部的涨紧轮压向钢轨至从尾部的涨紧轮脱离钢轨这段时间内,和钢轨紧贴保持静止不动。在这段时间内,履带片片基内的超声波探头阵列按后台处理子系统的控制发出(或接收)2~5MHZ 不等的连续调制超声波。假设履带与钢轨接触的总长度为1m,向前滚进的速度是100km/h。经简单计算,可得每个履带片与钢轨接触的时间是36ms。与现有的最高探测速度80 km/h、采样时间0.3 ms 相比,可大幅延长采样时间,降低漏检率。
如图2所示,是本发明所述单个履带片内部结构框图。履带片由履带片片基以及内嵌的超声波探头阵列、微型电池、压力传感器、超声波收发电路、转换器以及UWB通信模块组合而成。
上述微型电池用弹性材料与履带片片基内的超声波收发电路、转换器和UWB通信模块固定在一起,并向这些设备提供电源;压力传感器布置在履带片片基的中部,负责检测履带片的压力状态;超声波收发电路一端与超声波探头连接,另一端通过转换器与UWB通信模块连接,负责超声波信号的发送和接收,即是把连续多频调制超声波信号转发给相应的超声波探头和缓存各个超声波探头接收下来的反射波信号并传至转换器;转换器由A/D转换器和D/A转换器两部分组成,一端与超声波收发电路及压力传感器连接,另一端与UWB通信模块连接,负责模拟信号与数字信号之间的转换;UWB通信模块经转换器与超声波收发电路及压力传感器连接,负责超声波收发电路及压力传感器与后台处理子系统之间的信号传输,即是把后台处理子系统产生的连续多频调制超声波信号传送至超声波收发电路,把各超声波探头接收的反射波信号及压力传感器信号传送给后台处理子系统。后台处理子系统采用对应的UWB模块来接收和发送UWB信号。
如图3a~b所示,是本发明所述单个履带片内部各单元布置的一个实施例示意图。其中图3a是履带片外侧平面图,该表面加装透声外膜后与钢轨表面接触。履带片片基301选用橡胶材料制作,表面加装透声外膜,履带片片基与透声外膜之间的微小缝隙用透声耦合液填充。履带片片基301内按阵列内嵌9个超声波探头,与钢轨横截面平行的每行各3个超声波探头,共3行,行与行平行布置,列于列对齐布置。位于每行两侧的共6个布置的是70°倾斜角超声波探头302,用来探测轨头105内的核伤和横裂;位于中间行中部的1个布置的是0°倾斜角(垂直)超声波探头303,用来探测轨头105、轨腰106和轨底107的水平裂纹和纵裂纹;位于头尾两行的中部的共2个布置的38°倾斜角超声波探头304,用来探测轨腰106及螺栓孔损伤。图3b是履带片内侧平面图,该表面与涨紧轮102表面接触。微型电池305用弹性材料306与履带片片基内的超声波收发电路307、转换器308、UWB通信模块309等固定在一起。该部分伸出钢轨一侧不与钢轨接触,以免电路受到挤压产生故障。压力传感器310布置在该表面的履带片片基301的中部,其功能是检测履带片的压力状态,当检测到压力时产生接触触发信号,当检测到压力解除时产生脱离触发信号。
如图4所示,是实施例中的UWB通信模块内部结构框图。UWB通信模块的组成包括脉冲发生器、脉冲位置调制器、有源晶振、功率放大器、低噪放大器、射频滤波器、乘法器、低通滤波器、采样/检测器和UWB天线。UWB信号的产生过程是:有源晶振产生基准方波信号,输入脉冲发生器产生基本UWB信号。基本UWB信号被输入脉冲位置调制器,同时脉冲位置调制器根据超声波收发电路或压力传感器传来的,并经模数转换后的数字信号,对基本UWB信号进行脉冲位置调制后产生调制UWB信号,调制UWB信号被输入功率放大器放大后经UWB天线辐射出去。UWB信号的接收过程是:后台处理子系统内UWB通信模块传来的UWB信号被履带片内UWB天线接收,然后依次被输入低噪放大器、射频滤波器和乘法器。同时乘法器接收脉冲发生器输入的基本UWB信号,将两信号相乘后输入低通滤波器,滤波后的信号被输入采样/检测器进行采样和检波得到数字信号输入转换器还原多频连续调制超声波信号传至超声波收发电路。
如图5所示:是单个履带片单次工作流程图。其对钢轨进行无损探测包括以下步骤:
(1)履带片与钢轨接触,压力传感器310检测到压力,则产生接触触发信号。
(2)接触触发信号进行模数转换后,通过履带片内的UWB通信模块309传向后台处理子系统,后台处理子系统收到触发信号后指定该履带片处于工作状态。而履带片内的超声波探头在不同时刻有发射、接收两种工作状态,具体工作状态由后台处理子系统进行控制。
(3)若在某一时刻后台处理子系统判定某个超声波探头(假定为超声波探头A)为发射状态,则产生连续多频调制超声波信号经模数转换通过后台处理子系统的UWB通信模块309以UWB信号的形式传至该履带片。
(4)履带片上的UWB通信模块309接收到后台处理子系统传来UWB信号,经数模转换后还原成连续多频调制超声波信号传输至超声波收发电路307。超声波收发电路307根据传来的连续多频调制超声波信号控制超声波探头A发出相应的超声波波束进行钢轨探伤。
(5)在同一时刻,超声波探头A发出的超声波波束经钢轨反射回来的方向有一超声波探头(假定为超声波探头B),则后台处理子系统判定该超声波探头为接收状态。超声波探头B接收从超声波探头A发出,并经钢轨内部反射回来的超声波信号,经转换器308进行模数转换后通过履带片内的UWB通信模块309以UWB信号的形式传至后台处理子系统。
(6)后台处理子系统接收到超声波探头B传回来的信号后就可以对信号进行分析处理,判断钢轨内部,由超声波波束从超声波探头A发出经钢轨反射至超声波探头B这段路径之内钢轨有无损伤。
(7)当履带片脱离钢轨时,履带片片基301内的压力传感器310感受到压力消失,产生脱离触发信号经转换器308模数转换后通过履带片内的UWB通信模块309传至后台处理子系统。
(8)后台处理子系统接收到脱离触发信号后判断本履带片已经和钢轨脱离,于是停止该履带片超声波信号的收发,则本履带片处于等待状态,直至下一个循环开始。
如图6所示,是实施例中履带式钢轨探伤的无线超声波探头组件101探伤过程示意图。位于履带片每行两侧的6个70°倾斜角超声波探头302,采用收发分离的方式向侧后方发射4~5 MHz相对高频超声波或接收斜前方的发射波,用来探测轨头105内的核伤和横裂;位于履带片头尾两行的中部的2个38°倾斜角超声波探头304,同样采用收发分离的方式向侧后方发射2~3MHz相对低频超声波或接收斜前方的反射波,用来探测轨腰106及螺栓孔损伤;位于中间行中部的0°倾斜角(垂直)超声波探头303采用收发结合的方式,垂直向下发射频率为3~4MHz的中低频超声波,用于探测轨头105、轨腰106和轨底107的水平裂纹和纵裂纹。
下面以当前铁路干线主要采用的70kg/m重载钢轨为探测对象,采用4个涨紧轮102配一副履带。每副履带由42个履带片构成,其中上下两个面各16片,前后两个涨紧轮102外侧各5片。在进行钢轨探伤时,每一确定的时刻共有16片履带片与钢轨轨道表面104接触。在这里,按履带滚进的方向将履带片依次编为1、2、3、……16号。如图7a所示,对于70°倾斜角超声波探头302,由9-16号履带片发射超声波,1-8号履带片接收超声波;如图7b所示,对于38°倾斜角超声波探头304,由13-16、5-8号履带片发射超声波,9-12、1-4号履带片接收超声波。如图7c所示对于垂直超声波探头303,1-16号履带片均发射并接收超声波。随着履带沿钢轨轨道表面104向前滚进,后台处理子系统依据履带片上压力传感器310的触发信号,对各超声波探头的收发状态进行实时的控制和调整,从而实现了对钢轨各个部位的检测。
如图8a~c所示,是实施例中各角度超声波探头对钢轨内部损伤的探测示意图。每一束超声波波束在钢轨中传播时对应一条确定的路径,如图8a所示(图中只示意了每个履带片内一侧的3个超声波探头发出的波束)对于70°倾斜角超声波探头302发出的超声波波束,其确定的路径就是一条左右对称的折线。若钢轨轨头105出现核伤(如图中的外部光滑曲线包围的平面部分),这种损伤首先会影响反射波的能量和形状,通过该位置的入射波束和经轨头底面反射后的反射波,这两束超声波波束的交点可确定损伤的位置。同时,因为履带片上的超声波探头非常密集,且对于一侧钢轨,有两组履带先后通过。所以对于同一处损伤,会有多束入射波和反射波在该位置相交形成多个交点。将分布在最外部的交点用虚线连接起来,可以准确描绘出钢轨损伤的形状及大小(如图中内部弯折的虚线包围的平面部分)。如图8b所示(图中只示意了每个履带片内的1个超声波探头发出的波束),是38°倾斜角超声波探头304对于轨腰106裂纹的探测实例示意图,其入射波和反射波相交形成交点的原理与70°倾斜角超声波探头302完全一样,不同之处在于对这种线性的损伤(如图中细曲线所示),入射波与反射波相交形成的交点呈锯齿形分布(如图中粗锯齿形折线所示),依据这种锯齿形折线可以判断裂纹的位置、长度和方向。如图8c所示,是垂直超声波探头303对于轨底纵裂纹的探测实例示意图。对于垂直超声波探头303,因为采用收发共用的方式,所以每束超声波波束及其反射波束只通过钢轨的某一个切面,若钢轨的某个切面对应的轨头105、轨腰106和轨底107出现水平裂纹或纵裂纹,根据反射波返回的时间、能量、波形就可以直接确定裂纹的位置及形状。

Claims (1)

  1. 1、一种履带式钢轨探伤的无线超声波探头组件,其特征在于包括若干个履带片,每个履带片包括履带片片基以及内嵌在履带片片基中的超声波探头阵列、电池、压力传感器、超声波收发电路、转换器和UWB通信模块;所述电池与超声波收发电路、转换器和UWB通信模块连接;超声波收发电路、UWB通信模块、压力传感器分别与转换器连接,超声波收发电路还与超声波探头阵列连接;所述压力传感器负责检测履带片的压力状态;所述超声波收发电路将连续多频调制超声波信号转发给相应的超声波探头,超声波收发电路还缓存各个超声波探头接收到的反射波信号并传至转换器;所述转换器包括A/D和D/A转换器,负责模拟信号与数字信号之间的转换;所述UWB通信模块主要负责将后台处理子系统产生的连续多频调制超声波信号传送至超声波收发电路,同时将各超声波探头接收的反射波信号及压力传感器的信号传送给后台处理子系统进行处理。
    2、根据权利要求1所述的履带式钢轨探伤的无线超声波探头组件,其特征在于所述超声波探头阵列中行与行平行布置,列与列对齐布置;超声波探头阵列中与钢轨长度方向平行的两侧超声波探头采用60°~80°倾斜角布置,用来探测轨头内的核伤和横裂;超声波探头阵列中位于阵列中部的若干超声波探头采用0°倾斜角布置,用来探测轨头、轨腰和轨底的水平裂纹和纵裂纹;位于所述两侧和中部以外的超声波探头采用30°~50°倾斜角布置,用来探测轨腰及螺栓孔损伤;所述倾斜角为超声波探头发射方向与钢轨横截面的夹角。
    3、根据权利要求2所述的履带式钢轨探伤的无线超声波探头组件,其特征在于倾斜角为60°~80°的超声波探头的超声波频率为4~5MHz,倾斜角为0°超声波探头的超声波频率为3~4MHz,倾斜角为30°~50°的超声波探头的超声波频率为2~3MHz。
    4、根据权利要求1所述的履带式钢轨探伤的无线超声波探头组件,其特征在于所述压力传感器布置在履带片片基的中部。
    5、根据权利要求1所述的履带式钢轨探伤的无线超声波探头组件,其特征在于所述电池采用微型电池,微型电池用弹性材料与所述超声波收发电路、转换器和UWB通信模块一起固定在履带片片基内。
    6、根据权利要求1所述的履带式钢轨探伤的无线超声波探头组件,其特征在于履带片片基采用橡胶材料,履带片片基表面加装透声外膜,履带片片基与透声外膜之间的缝隙用透声耦合液填充。
    7、权利要求1~6任一项所述无线超声波探头组件的探伤方法,其特征在于包括如下步骤:
    (1)履带片接触钢轨后,履带片片基内的压力传感器感受到压力,产生接触触发信号经A/D转换器进行模数转换后通过UWB通信模块传至后台处理子系统;
    (2)后台处理子系统接收到接触触发信号后控制该履带片处于工作状态;履带片内的超声波探头的工作状态包括发送和接收;若在某一时刻后台处理子系统判定某个超声波探头A应为发射状态,则产生连续多频调制超声波信号经模数转换后通过后台处理子系统的UWB通信模块以UWB信号的形式传至该履带片;
    (3)履带片上的UWB通信模块接收到后台处理子系统传来UWB信号,经D/A转换器进行数模转换后还原成连续多频调制超声波信号传输至超声波收发电路;超声波收发电路根据传来的连续多频调制超声波信号控制所述超声波探头A发出相应频率的超声波波束进行钢轨探伤;
    (4)所述超声波探头A发出的超声波波束经钢轨反射回来的方向有一个超声波探头B,则后台处理子系统判定超声波探头B为接收状态;超声波探头B接收从超声波探头A发出并经钢轨内部反射回来的超声波信号,经A/D转换器模数转换后通过履带片内的UWB通信模块以UWB信号的形式传至后台处理子系统;
    (5)后台处理子系统接收到所述超声波探头B传回来的信号后对信号进行分析处理,判断超声波波束从探头A发出经钢轨反射至超声波探头B的路径内钢轨有无损伤;
    (6)当履带片脱离钢轨时,履带片片基内的压力传感器感受到压力消失,产生脱离触发信号经A/D转换器模数转换后通过履带片内的UWB通信模块传至后台处理子系统;后台处理子系统接收到脱离触发信号后判断本履带片已经和钢轨脱离,于是停止该履带片超声波信号的收发,则该履带片处于等待状态,直至下一个循环开始。
    8、根据权利要求7所述的探伤方法,其特征在于每一束超声波波束在钢轨中传播时对应一条确定的路径:对于有一定倾斜角的超声波探头发出的超声波波束,该超声波波束确定的路径就是一条左右对称的折线,若钢轨轨头或轨腰出现损伤,这种损伤会同时影响通过该位置的入射波束和经轨头底面或者轨底底面反射后的反射波,这两束超声波波束的交点就是损伤的位置,同时,对于同一处损伤,会有多束入射波和反射波在该位置相交形成多个交点,根据这多个交点的分布,能准确描绘出钢轨损伤的形状及大小;而对于垂直布置的超声波探头,每束超声波波束及其反射波束只通过钢轨的某一个切面,若钢轨的某个切面对应的轨头、轨腰和轨底出现水平裂纹或纵裂纹,根据反射波返回的时间、能量和波形就能直接确定裂纹的位置及形状。
PCT/CN2011/084938 2011-12-27 2011-12-29 一种履带式钢轨探伤的无线超声波探头组件及其探伤方法 WO2013097153A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110449210.5 2011-12-27
CN201110449210.5A CN102565198B (zh) 2011-12-27 2011-12-27 一种履带式钢轨探伤的无线超声波探头组件及其探伤方法

Publications (1)

Publication Number Publication Date
WO2013097153A1 true WO2013097153A1 (zh) 2013-07-04

Family

ID=46411160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/084938 WO2013097153A1 (zh) 2011-12-27 2011-12-29 一种履带式钢轨探伤的无线超声波探头组件及其探伤方法

Country Status (2)

Country Link
CN (1) CN102565198B (zh)
WO (1) WO2013097153A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104457638A (zh) * 2014-12-30 2015-03-25 晋能集团有限公司 一种超声巷道表面收敛分析仪
CN106896157A (zh) * 2017-03-16 2017-06-27 华南理工大学 基于距离自适应的3d拼接可视化超声钢轨探伤方法及装置
CN107839860A (zh) * 2017-12-13 2018-03-27 北京圣世信通科技发展有限公司 一种搭载水下超声波测距的水下机器设备
CN108415090A (zh) * 2018-05-14 2018-08-17 招商局重庆交通科研设计院有限公司 一种适用于路面无损检测的电阻率检波器
CN109100422A (zh) * 2018-08-27 2018-12-28 上海市东方海事工程技术有限公司 基于非同步编码器的钢轨探伤和视频监控综合系统
CN109387566A (zh) * 2018-12-04 2019-02-26 邢台路桥建设总公司 钢结构焊缝自动检测系统
CN111896625A (zh) * 2020-08-17 2020-11-06 中南大学 钢轨伤损实时监测方法及其监测系统
CN112014464A (zh) * 2019-05-28 2020-12-01 北京云率数据科技有限公司 钢轨焊缝自动识别系统及其方法
CN114067630A (zh) * 2021-10-29 2022-02-18 株洲时代电子技术有限公司 一种钢轨探伤车仿真操作方法
CN116973451A (zh) * 2023-08-02 2023-10-31 郑州大学 一种预应力孔道内钢束损伤双声发射传感器空间定位方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103217474B (zh) * 2013-03-11 2015-02-18 哈尔滨工业大学 基于无线通讯技术的焊接结构服役状态检测系统及检测方法
CN103412518A (zh) * 2013-04-01 2013-11-27 北京天惠华数字技术有限公司 一种超声装置的无线控制系统以及交互控制的方法
CN104512434A (zh) * 2013-09-28 2015-04-15 沈阳新松机器人自动化股份有限公司 一种轨道伤损探测装置及其探测方法
CN103913511A (zh) * 2013-11-06 2014-07-09 广州丰谱信息技术有限公司 基于无线分体轮沿式探头阵列的钢轨探伤装置与方法
CN103760236A (zh) * 2014-01-08 2014-04-30 华南理工大学 一种双轨履带式钢轨探伤装置及其变频探伤方法
CN104960546A (zh) * 2015-07-16 2015-10-07 无锡市崇安区科技创业服务中心 一种用于巡检高铁钢轨的探伤车
CN106959342A (zh) * 2016-01-10 2017-07-18 昆明耐维科技有限公司 一种钢轨不完全断裂及严重伤损超声波实时检测方法
CN105911139A (zh) * 2016-04-11 2016-08-31 南通筑升土木工程科技有限责任公司 对高速铁路的线下结构进行无损检测的装置
CN106442730B (zh) * 2016-11-03 2024-03-08 中国铁道科学研究院金属及化学研究所 一种钢轨焊缝超声波检测装置及检测方法
CN107764897B (zh) * 2017-10-17 2020-03-20 四川升拓检测技术股份有限公司 基于空气加速度的非接触式连续移动式无损检测方法
CN109187740A (zh) * 2018-07-13 2019-01-11 贵州绿源天鑫系统技术有限公司 一种管道缺陷的多频多点超声导波检测方法
CN109459166B (zh) * 2018-10-17 2021-08-31 吴江市建设工程质量检测中心有限公司 预制装配式结构中高强螺栓连接节点的超声波检测方法
CN113125568B (zh) * 2021-04-07 2022-06-17 华南理工大学 履带式移动超声波结构检测装置和检测方法
CN113639790A (zh) * 2021-07-27 2021-11-12 爱德森(厦门)电子有限公司 一种真空胶囊式集成管束检测装置及其检测方法
CN114590290B (zh) * 2022-03-03 2023-07-11 青岛海信微联信号有限公司 列车定位测速方法及相关设备
CN116299485B (zh) * 2023-05-16 2023-12-26 航天极创物联网研究院(南京)有限公司 一种高结构集成度的超声波传感器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3958451A (en) * 1973-12-12 1976-05-25 Inspection Technology Development, Inc. Ultrasonic inspection apparatus
CN1225453A (zh) * 1998-10-23 1999-08-11 李钢 钢轨超声探伤方法,探轮和探伤装置
JP2004125752A (ja) * 2002-10-07 2004-04-22 Sumitomo Metal Ind Ltd 測定装置および測定方法
JP2007132758A (ja) * 2005-11-09 2007-05-31 Central Japan Railway Co レール探傷装置、レール探傷システムおよび超音波探傷用試験片
CN101320020A (zh) * 2007-06-07 2008-12-10 章罕 超声波轮式探头
CN102156167A (zh) * 2011-04-07 2011-08-17 华南理工大学 一种分布式钢轨超声检测方法和系统
CN102230915A (zh) * 2011-04-07 2011-11-02 华南理工大学 一种基于三向超声衍射的小型履带式钢轨探伤装置与方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6715354B2 (en) * 1998-02-24 2004-04-06 Massachusetts Institute Of Technology Flaw detection system using acoustic doppler effect
JP2000131299A (ja) * 1998-10-20 2000-05-12 Mitsubishi Heavy Ind Ltd 弾性軌道式検査装置
WO2004084733A1 (en) * 2003-03-28 2004-10-07 Koninklijke Philips Electronics N.V. Remote wireless control device for an ultrasound machine and method
US7849748B2 (en) * 2008-05-15 2010-12-14 Sperry Rail, Inc. Method of and an apparatus for in situ ultrasonic rail inspection of a railroad rail
CN101398410A (zh) * 2008-11-07 2009-04-01 哈尔滨工业大学 一种电磁超声技术钢轨缺陷检测方法及其装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3958451A (en) * 1973-12-12 1976-05-25 Inspection Technology Development, Inc. Ultrasonic inspection apparatus
CN1225453A (zh) * 1998-10-23 1999-08-11 李钢 钢轨超声探伤方法,探轮和探伤装置
JP2004125752A (ja) * 2002-10-07 2004-04-22 Sumitomo Metal Ind Ltd 測定装置および測定方法
JP2007132758A (ja) * 2005-11-09 2007-05-31 Central Japan Railway Co レール探傷装置、レール探傷システムおよび超音波探傷用試験片
CN101320020A (zh) * 2007-06-07 2008-12-10 章罕 超声波轮式探头
CN102156167A (zh) * 2011-04-07 2011-08-17 华南理工大学 一种分布式钢轨超声检测方法和系统
CN102230915A (zh) * 2011-04-07 2011-11-02 华南理工大学 一种基于三向超声衍射的小型履带式钢轨探伤装置与方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104457638A (zh) * 2014-12-30 2015-03-25 晋能集团有限公司 一种超声巷道表面收敛分析仪
CN106896157B (zh) * 2017-03-16 2023-04-21 华南理工大学 基于距离自适应的3d拼接可视化超声钢轨探伤方法及装置
CN106896157A (zh) * 2017-03-16 2017-06-27 华南理工大学 基于距离自适应的3d拼接可视化超声钢轨探伤方法及装置
CN107839860A (zh) * 2017-12-13 2018-03-27 北京圣世信通科技发展有限公司 一种搭载水下超声波测距的水下机器设备
CN108415090A (zh) * 2018-05-14 2018-08-17 招商局重庆交通科研设计院有限公司 一种适用于路面无损检测的电阻率检波器
CN109100422A (zh) * 2018-08-27 2018-12-28 上海市东方海事工程技术有限公司 基于非同步编码器的钢轨探伤和视频监控综合系统
CN109100422B (zh) * 2018-08-27 2024-02-13 上海市东方海事工程技术有限公司 基于非同步编码器的钢轨探伤和视频监控综合系统
CN109387566A (zh) * 2018-12-04 2019-02-26 邢台路桥建设总公司 钢结构焊缝自动检测系统
CN112014464A (zh) * 2019-05-28 2020-12-01 北京云率数据科技有限公司 钢轨焊缝自动识别系统及其方法
CN111896625A (zh) * 2020-08-17 2020-11-06 中南大学 钢轨伤损实时监测方法及其监测系统
CN111896625B (zh) * 2020-08-17 2023-07-14 中南大学 钢轨伤损实时监测方法及其监测系统
CN114067630A (zh) * 2021-10-29 2022-02-18 株洲时代电子技术有限公司 一种钢轨探伤车仿真操作方法
CN116973451A (zh) * 2023-08-02 2023-10-31 郑州大学 一种预应力孔道内钢束损伤双声发射传感器空间定位方法

Also Published As

Publication number Publication date
CN102565198B (zh) 2014-07-02
CN102565198A (zh) 2012-07-11

Similar Documents

Publication Publication Date Title
WO2013097153A1 (zh) 一种履带式钢轨探伤的无线超声波探头组件及其探伤方法
US6945114B2 (en) Laser-air, hybrid, ultrasonic testing of railroad tracks
CN103913511A (zh) 基于无线分体轮沿式探头阵列的钢轨探伤装置与方法
EP2277037B1 (en) Method of and an apparatus for in situ ultrasonic rail inspection of a railroad rail
US8418563B2 (en) Apparatus for detecting defects
CN102230915B (zh) 一种基于三向超声衍射的小型履带式钢轨探伤装置与方法
CN101424664B (zh) 钢轨踏面裂纹超声波检测装置及检测方法
CN205720099U (zh) 一种铁路轨道损伤缺陷的空气耦合超声检测装置
CN101398411A (zh) 钢轨踏面缺陷快速扫查方法及其装置
CN103760236A (zh) 一种双轨履带式钢轨探伤装置及其变频探伤方法
CN110412137A (zh) 一种钢轨超声波探伤车
CN102043015B (zh) 长距离探测钢轨轨底缺陷的超声导波装置及方法
CN101666781B (zh) 一种机车车辆车轮轮辐缺陷超声波检测装置
CN101706477B (zh) 一种基于电磁超声斜入射体波的检测装置及方法
CN211905211U (zh) 一种用于轨道板内部缺陷检测的信号采集装置
CN110261481B (zh) 点压式采集装置
CN205003124U (zh) 一种探伤轮
CN102818848B (zh) 一种钢轨超声波在线检测系统及其控制方法
CN211856387U (zh) 一种用于无砟轨道板裂缝检测的信号采集装置
CN201653986U (zh) 一种用于铁道车辆轮轴镶入部的超声探伤装置
CN210221915U (zh) 点压式采集装置
CN202404068U (zh) 一种履带式钢轨探伤的无线超声波探头组件
CN210221916U (zh) 滚轮式采集器及采集装置
CN202814924U (zh) 一种钢轨超声波在线探伤成套设备
CN216594918U (zh) 手推式双轨探伤仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11878651

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11878651

Country of ref document: EP

Kind code of ref document: A1