WO2021134736A1 - 一种无碱超细玻璃纤维配方 - Google Patents

一种无碱超细玻璃纤维配方 Download PDF

Info

Publication number
WO2021134736A1
WO2021134736A1 PCT/CN2020/000329 CN2020000329W WO2021134736A1 WO 2021134736 A1 WO2021134736 A1 WO 2021134736A1 CN 2020000329 W CN2020000329 W CN 2020000329W WO 2021134736 A1 WO2021134736 A1 WO 2021134736A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass fiber
glass
alkali
ceo
glass fibers
Prior art date
Application number
PCT/CN2020/000329
Other languages
English (en)
French (fr)
Inventor
孙云栋
李伟
张德刚
张国
方强
李永艳
丁聪
刘国栋
刘彩华
Original Assignee
泰山玻璃纤维邹城有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 泰山玻璃纤维邹城有限公司 filed Critical 泰山玻璃纤维邹城有限公司
Priority to KR1020217029109A priority Critical patent/KR102385462B1/ko
Priority to US17/599,837 priority patent/US11760687B2/en
Publication of WO2021134736A1 publication Critical patent/WO2021134736A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2213/00Glass fibres or filaments

Definitions

  • the invention belongs to the technical field of glass fibers, and specifically relates to an alkali-free ultrafine glass fiber formula.
  • CN200810121473.1 discloses a low-boron and low-fluorine glass formulation, including: SiO 2 54% to 62%, CaO 20% to 28%, Al 2 O 3 12% to 18%, B 2 O 3 0 to 5%, MgO 2% ⁇ 6%, F0 ⁇ 0.4%, K 2 O and Na 2 O total 0 ⁇ 0.8%, TiO 2 0.1% ⁇ 1%, Fe 2 O 3 0.1% ⁇ 0.5%, SO 3 0 ⁇ 0.6%, And impurities below 1%.
  • CN201310093103.2 discloses a fluorine-free, boron-free and alkali-free glass fiber and a preparation method thereof.
  • the components and the content thereof are: SiO 2 58-60%, CaO 2 2-25%, MgO 2-3.5%, Al 2 O 3 13 to 15.0%, Fe 2 O 3 0.3 to 0.45%, R 2 O 0.2 to 0.8%, and Li 2 O 0.1 to 0.4%; where R 2 O is Na 2 O and K 2 O.
  • This patent completely removes the boron-containing raw materials that are volatile components, and selects an industrial lithium-containing tailings as one of the main raw materials, which reduces the melting temperature and greatly reduces exhaust gas emissions, and its monofilament strength is significantly higher than traditional
  • the strength of the E glass fiber is increased by about 8%; therefore, the performance of the glass fiber product produced by the present invention is significantly improved than the performance of the existing E glass fiber product.
  • the defect of this patent is that although the Li 2 O guarantee is added The fusibility of the glass is improved, but the high-temperature clarification ability is insufficient.
  • the small bubbles generated in the glass are difficult to effectively discharge, which affects the continuity of the glass fiber operation. It is difficult to draw the glass fiber below 10 microns. Because of the high bubble content, hollow fibers are produced, which affects product quality and reduces operating efficiency.
  • the purpose of the present invention is an alkali-free ultra-fine glass fiber formula, which avoids the use of B 2 O 3 and F that have a greater impact on the environment, reduces environmental pollution, and improves product quality.
  • the non-alkali ultrafine glass fiber formula of the present invention calculated at 100Kg, includes the following components in mass percentage:
  • the alkali-free ultrafine glass fiber formula calculated at 100Kg, includes the following components in mass percentage:
  • the alkali-free ultrafine glass fiber formula calculated at 100Kg, includes the following components in mass percentage:
  • the formulation components of the alkali-free ultrafine glass fiber of the present invention do not contain B 2 O 3 and F.
  • SiO 2 is an oxide that forms the glass framework and plays a role in improving strength and chemical stability. If the content is too low, it will affect the structure of the glass fiber, make the application performance worse, and is not conducive to subsequent processing; if the content is too high, it will cause the viscosity of the glass to increase, affect the clarification and homogenization of the glass, and cause difficulty in drawing and forming .
  • Al 2 O 3 is an oxide that forms the glass framework, which plays the role of reducing the phase separation of the glass and improving the chemical stability. If the content is too low, it will cause the glass to separate phases and form crystals, making it difficult to become a continuous fiber; if the content is too high, it will cause the viscosity of the glass to increase, affect the clarification and homogenization of the glass, and cause difficulty in drawing and forming.
  • the glass fiber of the present invention can be prepared according to the following method. According to the selected composition components, the corresponding raw materials are weighed according to the mass ratio. The raw materials are kaolin, pyrophyllite, quartz sand, quicklime, limestone, lithium-containing tailings, and cerium oxide. Wait for the powder, send the raw materials into the pneumatic homogenizer and mix uniformly to form batch materials. The batch materials are transported to the kiln head silo and put into the kiln. After high temperature melting, the molten glass is formed; the molten glass flows into the working channel and passes through the platinum The rhodium alloy slip plate is drawn into glass fiber by a wire drawing machine.
  • TiO 2 is the network outer body of the glass, which plays the role of increasing the resistivity of the glass, reducing the thermal expansion coefficient, and improving the acid resistance.
  • CaO is the network outer body of the glass, which plays the role of reducing the viscosity of the glass and accelerating the molding. If the content is too low, the viscosity of the glass liquid will increase, making it difficult to draw and shape; if the content is too high, the glass will easily crystallize. 0.2-2.0% of MgO can be used in conjunction with CaO to further adjust the molding speed.
  • the composition of the present invention adds synergistic Li 2 O and CeO 2 at the same time.
  • Li 2 O is an oxide that provides non-bridging oxygen, and has the functions of high temperature fluxing, accelerating glass melting, and reducing glass viscosity in the composition.
  • Oxide decomposes oxygen at high temperature. The solubility of oxygen decreases as the temperature rises to form bubbles.
  • the bubbles continue to grow and float on the surface of the glass; while the bubbles are floating, they continue to absorb the tiny bubbles in the glass to achieve a clarification effect. Therefore, under the combined action of CeO 2 and Li 2 O, the problem of glass melting and clarification is solved, and the product quality is improved.
  • the CeO 2 in the composition of the present invention decomposes oxygen to oxidize Fe 2+ in the glass to Fe 3+ , and it can also reduce coloration.
  • the present invention has the following beneficial effects.
  • the present invention does not contain fluorine-containing boron-containing raw materials, and introduces CeO 2 and Li 2 O into the production of alkali-free ultra-fine glass fiber, avoiding B 2 O 3 and F which have a great impact on the environment.
  • the use reduces environmental pollution, the strength of the prepared glass fiber monofilament is about 9% higher than that of the traditional E glass fiber, and the comprehensive performance of the prepared glass fiber product is significantly improved than that of the existing E glass fiber.
  • the present invention will be further described below in conjunction with the embodiments, and the content of the present invention is not restricted by the following embodiments.
  • the total content of its components is slightly less than or greater than 100%, it can be understood that the residual content is impurities or a small amount of components that cannot be analyzed.
  • the corresponding raw materials used were weighed according to the mass ratio. The raw materials were chrysotile, pyrophyllite, quartz sand, quicklime, limestone, and lithium-containing tailings.
  • the raw materials are sent into the pneumatic homogenizer and mixed uniformly to form batch materials, and the batch materials are transported to the kiln head silo and put into the kiln. After high temperature melting, the molten glass is formed; the molten glass flows into the operation channel , The platinum-rhodium alloy slip plate is drawn into glass fiber by a wire drawing machine.
  • the specific raw material is calculated at 100Kg, as shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

本发明属于玻璃纤维技术领域,具体涉及一种无碱超细玻璃纤维配方,按100Kg计算,包括如下质量百分比的组分:SiO2 50-65%,Al2O3 10-16.5%,CaO 17-28%,MgO 0.2-4.0%,Na2O与K2O和量0.1-0.8%,CeO2 0.1-0.5%,Li2O 0.1-0.7%,Fe2O3 0.05-0.6%,TiO2 0.1-1%,余量为杂质。本发明配方在无碱超细玻璃纤维制备中,无含氟含硼原料,在超细玻璃纤维生产中引入CeO2和Li2O,避免了对环境影响较大的B2O3和F使用,减轻了环境污染,制得的玻璃纤维单丝强度较传统E玻璃纤维提高9%左右,制得的的玻璃纤维产品综合性能比现有E玻璃纤维有明显的提升。

Description

一种无碱超细玻璃纤维配方 技术领域
本发明属于玻璃纤维技术领域,具体涉及一种无碱超细玻璃纤维配方。
背景技术
现有超细玻璃纤维的生产中,要求玻璃组分B 2O 3>5.0%,F>0.40%,低于此数值,会导致玻璃成型性能的变化,难以拉制出超细玻璃纤维纱,然而在熔制无碱玻璃时由于F 2与SiO 2结合极易挥发,大约有50%以上的氟化物会在熔化过程中随烟气等挥发掉,含氟废气处理需要耗费大量的人力物力,废气处理给玻璃纤维行业造成沉重的经济负担,而且若处理不当排入大气会造成严重后果,危害民众的身体健康,硼化合物也是一种易挥发的昂贵的成分,若处理不当其挥发物排入大气同样会对植物和人体造成伤害。
CN200810121473.1公开了一种低硼低氟玻璃配方,包括:SiO 254%~62%,CaO 20%~28%,Al 2O 312%~18%,B 2O 30~5%,MgO 2%~6%,F0~0.4%,K 2O和Na 2O共计0~0.8%,TiO 20.1%~1%,Fe 2O 30.1%~0.5%,SO 30~0.6%,以及1%以下的杂质。通过减少B 2O 3、F以及Al 2O 3的含量,增加SiO 2、CaO以及MgO的含量,控制碱金属、Fe 2O 3以及TiO 2的含量,获得了具有E玻璃的优点、低硼低氟、无不合适着色且可以很容易拉丝成型的玻璃组成物。然而上述组分中仍含有微量的氟和硼元素,对环境造成一定影响。
CN201310093103.2公开了一种无氟无硼无碱玻璃纤维及其制备方法,成分及其含量为:SiO 258~60%、CaO 22~25%、MgO 2~3.5%、Al 2O 313~15.0%、Fe 2O 30.3~0.45%、R 2O 0.2~0.8%及Li 2O 0.1~0.4%;其中,R 2O为Na 2O和K 2O。该专利完全去掉了易挥发性成分含硼原料,并优选了一种工业含锂尾矿作为主要原料之一,降低了熔制温度,大幅度减少了废气排放,其单丝强度明显高于传统的E玻璃纤维的强度,提高8%左右;因此,本发明生产出的玻璃纤维产品性能比现有的E玻璃纤维产品性能有了明显的提高,然而该专利缺陷在于虽然加入了Li 2O保证了玻璃的易熔性,但是高温澄清能力不足,玻璃中大量产生的小气泡难以有效排出,影响玻璃纤维的作业连续性,难以拉制成10微米以下的玻璃纤维,即使勉强拉制,也会因为气泡含量多导致中空纤维的产生,影响产品质量,降低作业效率。
发明内容
针对以上技术问题,本发明目的在于一种无碱超细玻璃纤维配方,避免了对环境影响较大的B 2O 3和F使用,减轻了环境污染,提高了产品质量。
本发明所述的无碱超细玻璃纤维配方,按100Kg计算,包括如下质量百分比的组分:
SiO 250-65%,Al 2O 310-16.5%,CaO 17-28%,MgO 0.2-4.0%,Na 2O与K 2O和量0.1-0.8%,CeO 20.1-0.5%,Li 2O 0.1-0.7%,Fe 2O 30.05-0.6%,TiO 20.1-1%,余量为杂质。
作为优选,所述的无碱超细玻璃纤维配方,按100Kg计算,包括如下质量百分比的组分:
SiO 250-62%,Al 2O 312-16.5%,CaO 19-25%,MgO 0.2-2.0%,Na 2O与K 2O和量0.1-0.8%,CeO 20.1-0.5%,Li 2O 0.1-0.7%,Fe 2O 30.05-0.45%,TiO 20.1-1%,余量为杂质。
作为优选,所述的无碱超细玻璃纤维配方,按100Kg计算,包括如下质量百分比的组分:
SiO 250-55.5%,Al 2O 314-16.5%,CaO 19-25%,MgO 0.2-0.5%,Na 2O与K 2O和量0.1-0.8%,CeO 20.1-0.4%,Li 2O 0.1-0.5%,Fe 2O 30.05-0.45%,TiO 20.1-1%,余量为杂质。
本发明所述的无碱超细玻璃纤维配方组分中不含有B 2O 3和F。
本发明的组分中,SiO 2是形成玻璃骨架的氧化物,起到提升强度和化学稳定性的作用。如果含量过低,会影响玻璃纤维的结构,使应用性能变差,且不利于后续加工;如含量过高,会导致玻璃液粘度升高,影响玻璃的澄清和均化,且造成拉丝成型困难。
本发明的组分中,Al 2O 3是形成玻璃骨架的氧化物,起到减轻玻璃分相和提升化学稳定性的作用。如果含量过低,会导致玻璃分相,形成析晶,难以成为连续纤维;如含量过高,会导致玻璃液粘度升高,影响玻璃的澄清和均化,且造成拉丝成型困难。
本发明玻璃纤维可以按照如下方法来制备,根据选定的组合物成分,按质量比例称量相应所用原料,原料为高岭土、叶蜡石、石英砂、生石灰、石灰石、含锂尾矿、氧化铈等粉料,将原料送入气力均化器中混合均匀形成配合料,将配合料输送至窑头料仓并投入池窑中,经高温熔化后形成玻璃液;玻璃液流入作业通道,经铂铑合金漏板由拉丝机拉制成为玻璃纤维。
本发明组分中,TiO 2是玻璃的网络外体,起到提高玻璃电阻率、降低热膨胀系数、提高耐酸性的作用。
本发明的组分中,CaO是玻璃的网络外体,起到降低玻璃粘度、加快成型的作用。如果含量过低,会导致玻璃液粘度升高,拉丝成型困难;如含量过高,会导致玻璃易析晶。可以加0.2-2.0%的MgO与CaO配合使用,以进一步调节成型速度。
本发明的组分中同时加入了具有协同作用的Li 2O与CeO 2,Li 2O是提供非桥氧的氧化物,在组分中具有高温助熔、加速玻璃熔化、降低玻璃粘度的作用,同时,因为Li +离子半径小,电场强度大,在一定程度上会加重玻璃的析晶倾向,高温澄清能力不足,玻璃中大量产生的小气泡难以有效排出,而组分中CeO 2是变价氧化物,高温分解出氧,氧的溶解度随温度升高而减小形成气泡,气泡不断长大,浮出玻璃表面;在气泡上浮的过程中,不断吸收玻璃中的微小气泡,从而达到澄清效果,因此,在CeO 2和Li 2O配合作用下,解决了玻璃熔化和澄清 的问题,提高了产品质量。
本发明组分中CeO 2分解出氧还可将玻璃中Fe 2+氧化为Fe 3+,还能起到降低着色的作用。
本发明与现有技术相比,具有以下有益效果。
本发明在无碱超细玻璃纤维制备中,无含氟含硼原料,在无碱超细玻璃纤维生产中引入CeO 2和Li 2O,避免了对环境影响较大的B 2O 3和F使用,减轻了坏境污染,制得的玻璃纤维单丝强度较传统E玻璃纤维提高9%左右,制得的的玻璃纤维产品综合性能比现有E玻璃纤维有明显的提升。
具体实施方式
下面结合实施例对本发明做进一步说明,本发明内容不受以下实施例的任何制约。其成分总含量略小于或大于100%时,可理解为残余量是杂质或不能分析出的少量成分。本发明实施例1-5根据每个实施例所选定的组合物成分,按质量比例称量相应所用原料,原料为高蛉土、叶蜡石、石英砂、生石灰、石灰石、含锂尾矿、氧化铈等粉料,将原料送入气力均化器中混合均匀形成配合料,将配合料输送至窑头料仓并投入池窑中,经高温熔化后形成玻璃液;玻璃液流入作业通道,经铂铑合金漏板由拉丝机拉制成为玻璃纤维,具体原料按100Kg计算,如表1所示。
表1实施例1-5性能测试数据
Figure PCTCN2020000329-appb-000001
Figure PCTCN2020000329-appb-000002
由表1中可以看出,在超细玻璃纤维生产中引入CeO 2和Li 2O,制得的玻璃纤维单丝强度较传统E玻璃纤维提高9%左右,同时含CeO 2和Li 2O组分的配方较只含Li 2O组分的配方制得的超细玻璃纤维气泡含量少,澄清效果好,同时气泡含量低,拉制超细纤维时不容易断丝,更容易拉制出超细纤维。

Claims (4)

  1. 一种无碱超细玻璃纤维配方,其特征在于,按100Kg计算,包括如下质量百分比的组分:
    SiO 250-65%,Al 2O 310-16.5%,CaO 17-28%,MgO 0.2-4.0%,Na 2O与K 2O和量0.1-0.8%,CeO 20.1-0.5%,Li 2O 0.1-0.7%,Fe 2O 30.05-0.6%,TiO 20.1-1%,余量为杂质。
  2. 根据权利要求1所述的无碱超细玻璃纤维配方,其特征在于:按100Kg计算,包括如下质量百分比的组分:
    SiO 250-62%,Al 2O 312-16.5%,CaO 19-25%,MgO 0.2-2.0%,Na 2O与K 2O和量0.1-0.8%,CeO 20.1-0.5%,Li 2O 0.1-0.7%,Fe 2O 30.05-0.45%,TiO 20.1-1%,余量为杂质。
  3. 根据权利要求1所述的无碱超细玻璃纤维配方,其特征在于:按100Kg计算,包括如下质量百分比的组分:
    SiO 250-55.5%,Al 2O 314 16.5%,CaO 19-25%,MgO 0.2-0.5%,Na 2O与K 2O和量0.1-0.8%,CeO 20.1-0.4%,Li 2O 0.1-0.5%,Fe 2O 30.05-0.45%,TiO 20.1-1%,余量为杂质。
  4. 根据权利要求1-3任一所述的无碱超细玻璃纤维配方,其特征在于:组分中不含有B 2O 3和F。
PCT/CN2020/000329 2020-01-02 2020-12-29 一种无碱超细玻璃纤维配方 WO2021134736A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020217029109A KR102385462B1 (ko) 2020-01-02 2020-12-29 무알칼리 초미세 유리섬유 배합방법
US17/599,837 US11760687B2 (en) 2020-01-02 2020-12-29 Alkali-free ultrafine glass fiber formula

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010002593.0A CN111018358B (zh) 2020-01-02 2020-01-02 一种无碱超细玻璃纤维配方
CN202010002593.0 2020-01-02

Publications (1)

Publication Number Publication Date
WO2021134736A1 true WO2021134736A1 (zh) 2021-07-08

Family

ID=70198341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/000329 WO2021134736A1 (zh) 2020-01-02 2020-12-29 一种无碱超细玻璃纤维配方

Country Status (4)

Country Link
US (1) US11760687B2 (zh)
KR (1) KR102385462B1 (zh)
CN (1) CN111018358B (zh)
WO (1) WO2021134736A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111018358B (zh) 2020-01-02 2020-11-10 泰山玻璃纤维邹城有限公司 一种无碱超细玻璃纤维配方

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101503279A (zh) * 2009-03-02 2009-08-12 巨石集团有限公司 一种新型玻璃纤维组合物
CN102010134A (zh) * 2010-11-15 2011-04-13 巨石集团有限公司 一种玻璃纤维组合物
CN102786223A (zh) * 2012-08-28 2012-11-21 泰山玻璃纤维有限公司 一种高强度玻璃纤维组合物
CN102849956A (zh) * 2012-08-23 2013-01-02 巨石集团有限公司 一种无硼玻璃纤维组合物
CN103145341A (zh) * 2013-03-22 2013-06-12 内江华原电子材料有限公司 一种无氟无硼无碱玻璃纤维及其制备方法
CN105174732A (zh) * 2015-09-11 2015-12-23 无锡市长安曙光手套厂 一种高强度玻璃纤维及其制备方法和用途
CN110606665A (zh) * 2019-09-25 2019-12-24 巨石集团有限公司 一种电子级玻璃纤维组合物及其玻璃纤维和电子布
CN111018358A (zh) * 2020-01-02 2020-04-17 泰山玻璃纤维邹城有限公司 一种无碱超细玻璃纤维配方

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55113644A (en) * 1979-02-17 1980-09-02 Nippon Sheet Glass Co Ltd Glass composition for cathode-ray tube
US5039631A (en) * 1990-01-11 1991-08-13 Schott Glass Technologies, Inc. Strengthenable, high non-nd lanthanoid-containing glasses
GB9302927D0 (en) * 1993-02-13 1993-03-31 Evans Philip A Unleaded transparent vitreous ceramic compositions and articles
CN101423329B (zh) 2008-10-06 2010-09-01 巨石集团有限公司 一种低硼低氟玻璃配方
RU2641050C2 (ru) * 2012-04-18 2018-01-15 3Б Фибрегласс СПРЛ Композиция стекловолокна
CN109422464B (zh) * 2017-08-30 2020-05-19 巨石集团有限公司 一种玻璃纤维组合物及其玻璃纤维和复合材料

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101503279A (zh) * 2009-03-02 2009-08-12 巨石集团有限公司 一种新型玻璃纤维组合物
CN102010134A (zh) * 2010-11-15 2011-04-13 巨石集团有限公司 一种玻璃纤维组合物
CN102849956A (zh) * 2012-08-23 2013-01-02 巨石集团有限公司 一种无硼玻璃纤维组合物
CN102786223A (zh) * 2012-08-28 2012-11-21 泰山玻璃纤维有限公司 一种高强度玻璃纤维组合物
CN103145341A (zh) * 2013-03-22 2013-06-12 内江华原电子材料有限公司 一种无氟无硼无碱玻璃纤维及其制备方法
CN105174732A (zh) * 2015-09-11 2015-12-23 无锡市长安曙光手套厂 一种高强度玻璃纤维及其制备方法和用途
CN110606665A (zh) * 2019-09-25 2019-12-24 巨石集团有限公司 一种电子级玻璃纤维组合物及其玻璃纤维和电子布
CN111018358A (zh) * 2020-01-02 2020-04-17 泰山玻璃纤维邹城有限公司 一种无碱超细玻璃纤维配方

Also Published As

Publication number Publication date
KR20210126670A (ko) 2021-10-20
CN111018358B (zh) 2020-11-10
US11760687B2 (en) 2023-09-19
KR102385462B1 (ko) 2022-04-12
CN111018358A (zh) 2020-04-17
US20220169562A1 (en) 2022-06-02

Similar Documents

Publication Publication Date Title
US6686304B1 (en) Glass fiber composition
JP5267464B2 (ja) 無アルカリガラスの製造方法
WO2011000221A1 (zh) 一种高强度高模量玻璃纤维
JP7466729B2 (ja) 電子グレードガラス繊維組成物、そのガラス繊維及び電子グレードガラス繊維布
WO2014065321A1 (ja) ガラス繊維用ガラス組成物、ガラス繊維及びガラス繊維の製造方法
EP2817265A1 (de) Verfahren zur herstellung von gläsern, glaskeramiken und deren verwendung
CN112624620B (zh) 一种低热膨胀系数玻璃纤维
US10590027B2 (en) High performance glass fiber composition, and glass fiber and composite material thereof
CN110668702B (zh) 一种电子级玻璃纤维组合物及其玻璃纤维和电子布
CN100569683C (zh) 无碱玻璃及其生产工艺
JP2003500330A (ja) ガラスファイバー組成物
CN1169965A (zh) 水增强的澄清方法—一种降低玻璃熔窑有毒排放物的方法
CN101575172A (zh) 一种玻璃纤维组合物
WO2021134736A1 (zh) 一种无碱超细玻璃纤维配方
WO2018123327A1 (ja) ガラス繊維用ガラス組成物、ガラス繊維及びガラス繊維の製造方法
CN106396419A (zh) 环保低能耗的玻璃纤维
CN111433166B (zh) 玻璃纤维及其制造方法
CN103145341A (zh) 一种无氟无硼无碱玻璃纤维及其制备方法
CN108726874B (zh) 玻璃、其制备方法及应用
WO2017221637A1 (ja) ガラス繊維の製造方法
CN111039565B (zh) 一种乳白脱氟玻璃及其制备方法
JP2004075498A (ja) 酸化物系ガラス及びその製造方法
CN114835380B (zh) 一种抑制硼硅酸盐玻璃成分挥发的熔制生产工艺
JP2020070218A (ja) ガラスの製造方法及びガラス用混合原料
CN117417124A (zh) 一种有效减少ltps玻璃基板熔制气泡的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20910424

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217029109

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20910424

Country of ref document: EP

Kind code of ref document: A1