WO2021134676A1 - 一种mems驱动器及成像防抖装置 - Google Patents

一种mems驱动器及成像防抖装置 Download PDF

Info

Publication number
WO2021134676A1
WO2021134676A1 PCT/CN2019/130913 CN2019130913W WO2021134676A1 WO 2021134676 A1 WO2021134676 A1 WO 2021134676A1 CN 2019130913 W CN2019130913 W CN 2019130913W WO 2021134676 A1 WO2021134676 A1 WO 2021134676A1
Authority
WO
WIPO (PCT)
Prior art keywords
support
anchoring
mems driver
mems
driver
Prior art date
Application number
PCT/CN2019/130913
Other languages
English (en)
French (fr)
Inventor
陶泽
李杨
吴伟昌
屠兰兰
黎家健
Original Assignee
瑞声声学科技(深圳)有限公司
瑞声科技(南京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司, 瑞声科技(南京)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Priority to PCT/CN2019/130913 priority Critical patent/WO2021134676A1/zh
Publication of WO2021134676A1 publication Critical patent/WO2021134676A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/02Microstructural systems; Auxiliary parts of microstructural devices or systems containing distinct electrical or optical devices of particular relevance for their function, e.g. microelectro-mechanical systems [MEMS]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules

Definitions

  • the invention relates to the field of MEMS actuators, and relates to a MEMS driver and an imaging anti-shake device.
  • MEMS actuators are MEMS devices that convert electrical signals into micro-actions or micro-operations.
  • electrical signals usually need to be transmitted from the moving part to the fixed part, and the number of electrical signals to be transmitted is relatively large.
  • the driving part and the electric signal transmission part are on the same layer of the actuator, and the electric signal transmission methods are as follows:
  • Solution 1 As shown in Figure 1, the signal of the image sensor 30' (usually more than 50) is directly transmitted to the PCB fixed part 10' through the B metal wire 51'; the drive control signal of the actuator 20' (usually 10 Left and right) are transferred to the PCB fixing part 10' through the first MEMS beam 61' and the A metal wire 41'; wherein the first MEMS beam 61' plays a supporting and conductive role at the same time.
  • Solution 2 As shown in FIG. 2, the signal of the image sensor 30 is sequentially transmitted to the PCB fixing part 10' through the b metal line 52, the second MEMS beam 62' and the a metal line 42'; the drive control signal of the actuator 20 is passed through The second MEMS beam 62' and a metal wire 62' are transferred to the PCB fixing part 10'.
  • the second MEMS beam 62' There are two types of the second MEMS beam 62', one for supporting and the other for conducting electricity. Among them, there are two types that play a conductive role. One is a low-rigidity beam that is etched through a MEMS process, and the other is a low-rigidity beam that is obtained through a micro-assembly process.
  • the A metal wire 41', the B metal wire 51', the a metal wire 42' and the b metal wire 52' are all bulk materials, and a wire bonding process is adopted.
  • the first MEMS beam 61' in the first solution is different from the second MEMS beam 62' that plays a conductive role in the second.
  • the latter is subject to the signal transmission requirements of the image sensor 30', and usually requires a specific arrangement and good electrical conductivity, and The stiffness is small.
  • the B metal wire 51' in the first solution connects the moving image sensor 30' and the PCB fixing part 10', its reliability is difficult to achieve, especially in the bonding area, the B metal wire 51' is prone to breakage and fall off;
  • the B metal wire 51' needs to be taken into consideration, including its rigidity and process error.
  • the wire bonding process is difficult to ensure the consistency of the B metal wire 51'.
  • the second MEMS beam 62' which plays a conductive role, occupies a large area (image sensor 30' has many signals and low rigidity), and is on the same structural layer as the actuator 20' driving part, thus resulting in a large lateral area of the entire actuator , It is difficult to apply in practical situations;
  • the second MEMS beam 62' that plays a conductive role in the second solution can be micro-assembled to appropriately reduce the occupied area.
  • the second MEMS beam 62' and the driving part of the actuator 20' are still on the same structural layer, and the lateral area of the actuator is still relatively large; in addition, the micro-assembly is not a conventional MEMS process, and the yield is low.
  • One of the objectives of the present invention is to provide a MEMS actuator, which overcomes the above-mentioned defects of the prior art, divides the driving part and the electric signal transmission part into two layers, provides more design space for the actuator structure, and reduces the size of the actuator.
  • the second objective of the present invention is to provide an imaging anti-shake device, which can transmit multiple electrical signals of the image sensor through an actuator.
  • the present invention provides a MEMS driver, which includes a driving mechanism and a linkage mechanism stacked in sequence; the driving mechanism includes a first anchoring portion, a first support member arranged at intervals from the first anchoring portion, and a first support connected to the first anchoring portion.
  • the linkage mechanism includes a first anchor corresponding to the first anchoring portion and relatively fixed Two anchoring parts, a second supporting part arranged at intervals from the second anchoring part, and an elastic electrical connection mechanism connected between the second anchoring part and the second supporting part, the second supporting
  • the first support member is fixed to the first support member, and the first support member drives the second support member to move relative to the first anchoring portion;
  • the actuator is electrically connected to the external circuit via the first anchoring portion.
  • the driven device is electrically connected with the linkage mechanism and the driven device is electrically connected with the external circuit via the second anchor portion.
  • the actuator includes a first actuator that drives the first support to move in a first direction, and a second drive that drives the first support to move in a direction perpendicular to the first direction.
  • the second actuating member for directional movement.
  • At least two of the first actuators are arranged symmetrically with respect to the center of the MEMS driver; and/or at least two of the second actuators are arranged with respect to the center of the MEMS driver. Center symmetrical setting.
  • At least one of the first actuating member and the second actuating member is an electrostatic comb driver
  • the electrostatic comb driver includes an electrostatic comb driver that extends from the anchor portion and is connected to the A first extension arm that is spaced apart from the first support, a second extension arm that extends from the first support and extends from the first anchor portion, and is formed between the first extension arm and the second extension arm.
  • the first extension arm and the second extension arm are at least partially arranged directly opposite to each other.
  • the comb tooth portion has electrostatic comb teeth parallel to the first direction or the second direction.
  • the electrostatic comb driver further includes a flexible support part connected between the first extension arm and the second extension arm, the flexible support part and the comb tooth part are spaced apart .
  • the orthographic projection of the first support member on the linkage mechanism coincides with the second support member, and the orthographic projection of the first anchor portion on the linkage mechanism coincides with the The second anchoring portion overlaps.
  • the elastic electrical connection mechanism is arranged axisymmetrically with respect to the first direction and the second direction.
  • the first anchoring portion includes anchoring side plates arranged in parallel and spaced apart from each other, and the first supporting member includes two anchoring side plates located between the two anchoring side plates and respectively connected to the two anchors.
  • the fixed side plates are opposed to a first supporting plate arranged at intervals, and a second supporting plate is respectively bent and extended from opposite ends of the first supporting plate and arranged at intervals from the anchoring side plate, and the drivers are respectively arranged Between the first supporting plate and the anchoring side plate.
  • the elastic electrical connection mechanism includes a first conductive portion extending from the second anchor portion in the first direction, and a first conductive portion bent from the first conductive portion toward the second support. Fold the extended second conductive part.
  • the second conductive portion is bent in a zigzag shape and extends along the second direction.
  • the first support member has a ring shape and is arranged around the outer periphery of the first anchoring portion.
  • the elastic electrical connection mechanism includes a first conductive portion bent and extended from the second anchor, and a second conductive portion bent and extended from the first conductive portion toward the second support.
  • the conductive portion, the included angle between the first conductive portion and the second conductive portion is an acute angle.
  • An imaging anti-shake device provided by the present invention includes a substrate, a MEMS driver fixed on the substrate, and an image sensor disposed on a side of the MEMS driver away from the substrate.
  • the MEMS driver is the above-mentioned MEMS driver.
  • the external circuit is formed on the substrate, the image sensor is fixed to the first support, and the second anchoring portion is sandwiched between the first anchoring portion and the substrate and connected to the substrate Fixed, the second support and the elastic electrical connection mechanism are suspended on one side of the substrate,
  • the external circuit is electrically connected to the first anchoring portion and outputs a driving signal to the driver to move the image sensor;
  • the image sensor is electrically connected to the linkage mechanism and is electrically connected to the second anchoring portion It is electrically connected with the external circuit; the external circuit adjusts the driving signal according to the electrical signal of the image sensor.
  • the present invention divides the driving part and the electric signal transmission part into two layers; the electric signal transmission structure of a single layer can be designed to distribute more conductive wires, so that the actuator can be
  • the multiple electrical signals on the upper part are transmitted to avoid the prior art, where the driving part and the electrical signal transmission part are arranged on the same layer.
  • the metal wire is prone to breakage and damage to the metal wire. Consistency issues, or when the MEMS beam needs to support and conduct electricity, the stiffness of the MEMS beam is low and the lateral area is large.
  • the invention separates the design of the drive and the electric signal transmission structure, provides more design space for the actuator structure under the limited structure size, and helps to reduce the lateral size of the actuator.
  • the present invention provides an imaging anti-shake device, through which multiple electrical signals of the image sensor can be transmitted, and the reliability is high, and the wires in the bonding area are not easy to break or fall off.
  • FIG. 1 is a schematic diagram of the wire binding structure of a MEMS actuator in the first scheme of the prior art of the present invention
  • FIG. 2 is a schematic diagram of the wire binding structure of the MEMS actuator of the second solution in the prior art of the present invention
  • FIG. 3 is a perspective view of the MEMS driver provided by Embodiment 1 of the present invention.
  • FIG. 4 is a schematic diagram of the structure of the driving mechanism in the MEMS driver shown in FIG. 3;
  • FIG. 5 is a schematic structural diagram of the linkage mechanism in the MEMS driver shown in FIG. 3;
  • Fig. 6 is a schematic structural diagram of a first actuator in the driving mechanism shown in Fig. 4;
  • FIG. 7 is a schematic structural diagram of a second actuator in the driving mechanism shown in FIG. 4;
  • Figure 8 is a perspective view of the imaging anti-shake device provided by the present invention.
  • FIG. 9 is an exploded view of the imaging anti-shake device provided in FIG. 8;
  • FIG. 10 is a cross-sectional view of the imaging anti-shake device shown in FIG. 8;
  • FIG. 11 is a schematic diagram of the binding wire structure of the imaging anti-shake device provided as shown in FIG. 8;
  • FIG. 12 is a perspective view of a MEMS driver provided by another embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of a driving mechanism in the MEMS driver shown in FIG. 12;
  • FIG. 14 is a schematic structural diagram of the linkage mechanism in the MEMS driver shown in FIG. 12;
  • FIG. 15 is a schematic diagram of the binding wire structure of the imaging anti-shake device using the MEMS driver shown in FIG. 12.
  • MEMS driver 1, drive mechanism; 11, the first anchoring part; 12, the first support; 121, the first support plate; 122, the second support plate; 13, the actuator; 131, the first Actuating member; 132, second actuating member; 14, first extension arm; 15, second extension arm; 16, flexible support part; 17, comb tooth part; 171, electrostatic comb tooth; 18. support beam; 2. Linkage mechanism; 21. Second anchoring part; 22. Second support member; 24. Elastic electrical connection mechanism; 241. First conductive part; 242. Second conductive part; 3. Substrate; 4. Image sensor; 51. The first wire; 52. The second wire; 53, the third wire; 61. The external wire; 62. The internal wire.
  • a MEMS driver of this embodiment includes a driving mechanism 1 and a linkage mechanism 2 stacked in sequence; the driving mechanism 1 is fixedly connected to the second support 22 of the linkage mechanism 2 through a first support 12, and the driving mechanism 1 is at the same time.
  • the first anchoring portion 11 is fixedly connected to the second anchoring portion 21 of the linkage mechanism 2.
  • the first support 12 and the second support 22 form a motion platform, which is driven by the actuator 13 Multiple degrees of freedom movement.
  • the driving mechanism 1 includes a first anchoring portion 11, a first support 12 arranged at intervals from the first anchoring portion 11, and a first supporting member 12 connected to the first anchoring portion 11 and The actuator 13 between the first support 12; as shown in conjunction with FIGS. 8-9, the supported device, such as the image sensor 4, is supported by the first support 12.
  • the first anchoring portion 11 includes anchoring side plates 11a and 11b arranged in parallel and spaced apart from each other, and the anchoring side plates 11a and 11b are strip-shaped.
  • the first support 12 and the first anchoring portion 11 are spaced apart, and the first support 12 includes a first support plate 121 placed in parallel with the anchoring side plates 11a/11b.
  • the two ends of the second supporting plate 122 are respectively bent and extended, the first supporting member 12 is H-shaped, and the second supporting plate 122 and the anchoring side plate are generally enclosed in a rectangular shape; the actuators 13 are respectively provided Between the first support 12 and the anchoring side plate 11a/11b, the actuator 13 includes at least two actuating members, and the first support 12 for driving is respectively used to drive the first anchoring member 12 relative to the first anchoring member.
  • the portion 11 moves in two directions perpendicular to each other. As shown in FIG.
  • the actuator 13 includes four actuating members A1-A4, which are respectively arranged on opposite sides of the first support plate 121, wherein the driving members A1/A4 drive the movement in the X direction, and the driving member A2 /A3 drives movement in the Y direction.
  • the driving members A1 and A4 that drive the first support 12 to move in a first direction are the first actuating members 131, and the driving members A2 and A3 that drive the first support 12 to move in a second direction perpendicular to the first direction It is the second actuating member 132, and at least one of the first actuating member 131 and the second actuating member 132 is arranged symmetrically with respect to the center of the MEMS driver.
  • the first actuating member 131 and the second actuating member 132 are both electrostatic comb drives, and the first actuating member 131 shown in FIG. 6 is shown as an actuator
  • the specific structure of A1 wherein the actuator A1 includes a first extension arm 14 extending from the first anchor portion 11 and spaced apart from the first support 12, from the first support 12 (Figure 6-7 is the second support plate 122) extends the second extension arm 15, and the comb tooth portion 17 formed between the first extension arm 14 and the second extension arm 15, the first extension arm 14 and the second extension arm 15 are arranged directly opposite, the comb tooth portion 17 is located between the first extension arm 14 and the second extension arm 15, and the first extension arm 14 and the second extension arm 15 are There is a flexible support part 16 between.
  • the comb tooth portion 17 of the first actuating member 131 has electrostatic comb teeth 171 parallel to the second direction, which can drive the first support 12 to move in the first direction; wherein the second actuating member 132 has an electrostatic comb tooth 171 parallel to the second direction.
  • the comb tooth portion 17 has electrostatic comb teeth 171 parallel to the first direction, which can drive the first support 12 to move in the first direction.
  • the linkage mechanism 2 includes a second anchoring portion 21, a second supporting member 22 spaced apart from the second anchoring portion 21, and connected to the second anchoring portion 21 and the second anchoring portion 21.
  • the elastic electrical connection mechanism 24 between the support members 22, the second support member 22 is fixed to the first support member 12, and the first support member 12 drives the second support member 22 relative to the second anchor
  • the fixed portion 21 moves;
  • the elastic electrical connection mechanism 24 is arranged axisymmetrically with respect to the first direction and the second direction, and the elastic electrical connection mechanism 24 includes the second anchor portion 21 along the first
  • the first conductive portion 241 extending in the direction and the second conductive portion 242 bent and extended from the first conductive portion 23 toward the second support 22, the second conductive portion 242 is bent in a zigzag shape and extends along the It extends in the second direction.
  • the second conductive portion 242 may also be a coil spring or other structure.
  • the H-shaped movement platform composed of the second support 22 and the first support 12 fixedly connected is arranged along X relative to the separate side plate anchoring structure formed by the second anchoring portion 21 and the first anchoring portion 11
  • the driving part and the electrical signal transmission part are divided into two layers; the electrical signal transmission structure of a single layer can be designed to distribute more conductive lines, so that the driver can respond to multiple electrical signals on the driven object. The delivery is more reliable.
  • another embodiment of the present invention provides an imaging anti-shake device using the above MEMS driver.
  • the driven device mounted on the top of the first support 12 is the image sensor 4, and the second anchor The anchor portion 21 is sandwiched between the first anchor portion 11 and the substrate 3, and the second anchor portion 21 is fixedly connected to the substrate 3.
  • the driving signal path is: the external circuit (disposed on the substrate 3) is electrically connected to the first anchor portion 11 through a second wire 52 and outputs a driving signal to the driving mechanism 1 to make the image
  • the sensor 4 moves;
  • the feedback signal path is: the image sensor 4 is electrically connected to the linkage mechanism 2 through a third wire 53, and is electrically connected to the substrate 3 through the first wire 51 through the second anchor 21;
  • the external circuit may adjust the driving signal according to the electrical signal fed back by the imaging sensor.
  • the actuator can transmit multiple electrical signals of the image sensor, and has high reliability, and the wires in the bonding area are not easy to break or fall off.
  • the above-mentioned MEMS driver has three driving methods:
  • a voltage is applied to cause the actuators A2 and A3 to move in the positive or negative direction of the Y-axis direction at the same time to drive the moving platform to move, so that the image sensor 4 moves in the Y-axis direction.
  • the elastic electrical connection mechanism 24 includes a first conductive portion 241 bent and extended from the second anchor portion 21 and a first conductive portion 241 bent and extended from the second support 22
  • the second conductive portion 242 is connected to the first conductive portion 23 and the second conductive portion 24 is an acute angle.
  • the elastic electrical connection mechanism 24 includes four and is arranged axisymmetrically along the first and second directions.
  • the two sets of conductive mechanisms in the second direction form a rhombus shape and are axisymmetric with the two sets of conductive mechanisms that form another rhombus shape about the first anchor portion 11.
  • the first supporting member 12 is rectangular and the first anchoring portion is located at the geometric center of the first supporting member 12, so that the force of the first supporting member 12 is uniform, which is beneficial for the first supporting member 12 to be more numerous.
  • the degree of freedom movement reduces the lateral size of the actuator.
  • the structure of the actuator 13 of this embodiment is similar to that of the first embodiment, and will not be repeated here.
  • FIG. 15 provides an imaging anti-shake device using the above-mentioned MEMS driver.
  • the driven device mounted on the top of the first support 12 is the image sensor 4, and the second anchoring portion 21 is sandwiched between the first anchoring portion 11 and the substrate 3 and connected to the substrate 3. Fixed, the second support 22 and the elastic electrical connection mechanism 24 are suspended on one side of the substrate 3, and the first anchor portion 11 and the second anchor portion 21 are provided with internal wires 62.
  • the drive signal path is: the external circuit (provided on the substrate 3) is electrically connected to the first anchor portion 11 through an internal wire 62 and outputs a drive signal to the drive mechanism 1 to move the image sensor 4;
  • the feedback signal path is: the image sensor 4 is electrically connected to the linkage mechanism 2 through an external wire 61, and is electrically connected to the substrate 3 through an internal wire 62 through the second anchor 21;
  • the feedback signal of the imaging sensor adjusts the driving signal.
  • the actuator can transmit multiple electrical signals of the image sensor, and has high reliability, and the wires in the bonding area are not easy to break or fall off.

Abstract

一种MEMS驱动器及成像防抖装置,涉及MEMS执行器领域,包括依次层叠的驱动机构(1)和联动机构(2);驱动机构(1)包括第一锚定部(11)、与第一锚定部(11)间隔设置的第一支撑件(12)以及连接在第一锚定部(11)和第一支撑件(12)之间的致动器(13),第一支撑件(12)用于支撑被驱动装置(4);联动机构(2)包括与第一锚定部(11)对应且相对固定的第二锚定部(21)、与第二锚定部(21)间隔设置的第二支撑件(22)以及连接在第二锚定部(21)与第二支撑件(22)之间的弹性电连接机构(24),第二支撑件(22)与第一支撑件(12)固定。这种MEMS驱动器将驱动和电信号传递结构的设计独立开来,在有限的结构尺寸下,为执行器结构提供更多设计空间,有助于减小执行器的横向尺寸。

Description

一种MEMS驱动器及成像防抖装置 技术领域
本发明涉及MEMS执行器领域,具有涉及一种MEMS驱动器及成像防抖装置。
背景技术
MEMS执行器是将电信号转化为微动作或微操作的MEMS器件。在一些应用中,如MEMS光学防抖,电信号通常需要从运动部分传递到固定部分,且所需传递电信号的数量较多。
现有技术中驱动部分和电信号传递部分在执行器的同一层,其电信号的传递方式有以下两种:
方案一:如图1所示,图像传感器30’的信号(通常有50个以上)通过B金属线51’,直接传递到PCB固定部分10’;执行器20’的驱动控制信号(通常有10个左右)通过第一MEMS梁61’和A金属线41’传递到PCB固定部分10’;其中第一MEMS梁61’同时起支撑和导电作用。
方案二:如图2所示,图像传感器30的信号依次通过b金属线52、第二MEMS梁62’和a金属线42’传递到PCB固定部分10’;执行器20的驱动控制信号,通过第二MEMS梁62’和a金属线62’,传递到PCB固定部分10’。所述第二MEMS梁62’有两种,一种起支撑作用,一种起导电作用。其中起导电作用的包括两种,一种是通过MEMS工艺刻蚀得到的低刚度梁,另一种是通过微组装工艺得到的低刚度梁。
所述A金属线41’、B金属线51’、a金属线42’和b金属线52’均为体材料,采用线键合工艺。方案一中的第一MEMS梁61’与方案二中起导电作用的第二MEMS梁62’不同,后者受图像传感器30’信号传递要求,通常需要特定的排布和良好的导电性能,且刚度较小。
发明概述
技术问题
现有的技术方案中存在以下问题:
方案一中的B金属线51’连接运动的图像传感器30’和PCB固定部分10’,其可靠性难以达到,特别是在键合区域,B金属线51’容易发生断裂和脱落;
在仿真设计MEMS执行器时需要将B金属线51’考虑进去,包括其刚度、工艺误差等,线键合工艺难以保证B金属线51’的一致性。
方案二中起导电作用的第二MEMS梁62’占用面积大(图像传感器30’信号多,低刚度),且与执行器20’驱动部分在同一结构层,因此导致整个执行器的横向面积大,难以在实际场合中应用;
进一步地,方案二中起导电作用的第二MEMS梁62’可采用微组装,适当减小占用面积。但第二MEMS梁62’与执行器20’驱动部分仍在同一结构层,执行器横向面积仍然较大;此外,微组装不是常规的MEMS工艺,良率低。
问题的解决方案
技术解决方案
本发明的目的之一在于提供一种MEMS驱动器,其克服了现有技术的上述缺陷,将驱动部分和电信号传递部分分为两层,为执行器结构提供更多设计空间,减小执行器的横向尺寸;本发明的目的之二在于提供一种成像防抖装置,通过执行器能够对图像传感器的多个电信号进行传递。
本发明提供一种MEMS驱动器,包括依次层叠的驱动机构和联动机构;所述驱动机构包括第一锚定部、与所述第一锚定部间隔设置的第一支撑件以及连接在所述第一锚定部和所述第一支撑件之间的致动器,所述第一支撑件用于支撑被驱动装置;所述联动机构包括与所述第一锚定部对应且相对固定的第二锚定部、与所述第二锚定部间隔设置的第二支撑件以及连接在所述第二锚定部与所述第二支撑件之间的弹性电连接机构,所述第二支撑件与所述第一支撑件固定,所述第一支撑件带动所述第二支撑件相对所述第一锚定部运动;所述致动器经所述第一锚定部与外部电路电连接,所述被驱动装置与所述联动机构电连接且所述被驱动装置经所述第二锚定部与所述外部电路电连接。
作为本发明的进一步改进,所述致动器包括驱动所述第一支撑件沿第一方向运动的第一致动件以及驱动所述第一支撑件沿垂直于所述第一方向的第二方向运动的第二致动件。
作为本发明的进一步改进,至少两个所述第一致动件相对所述MEMS驱动器的中心呈中心对称设置;和/或至少两个所述第二致动件相对所述MEMS驱动器的中心呈中心对称设置。
作为本发明的进一步改进,所述第一致动件与所述第二致动件中的至少一个为静电梳齿驱动器,所述静电梳齿驱动器包括自所述锚定部延伸并与所述第一支撑件间隔设置的第一延伸臂、自所述第一支撑件延伸并与所述第一锚定部延伸的第二延伸臂、以及形成在所述第一延伸臂与所述第二延伸臂之间的梳齿部,所述第一延伸臂与所述第二延伸臂至少部分正对设置。
作为本发明的进一步改进,所述梳齿部具有与所述第一方向或所述第二方向平行的静电梳齿。
作为本发明的进一步改进,所述静电梳齿驱动器还包括连接在所述第一延伸臂与所述第二延伸臂之间的柔性支撑部,所述柔性支撑部与所述梳齿部间隔设置。
作为本发明的进一步改进,所述第一支撑件在所述联动机构上的正投影与所述第二支撑件重合,所述第一锚定部在所述联动机构上的正投影与所述第二锚定部重合。
作为本发明的进一步改进,所述弹性电连接机构关于所述第一方向与所述第二方向轴对称设置。
作为本发明的进一步改进,所述第一锚定部包括平行且相互间隔设置的锚定侧板,所述第一支撑件包括位于两所述锚定侧板之间且分别与两所述锚定侧板相对且间隔设置的第一支撑板、以及自所述第一支撑板的相对两端分别弯折延伸且与所述锚定侧板间隔设置的第二支撑板,所述驱动器分别设置于所述第一支撑板与所述锚定侧板之间。
作为本发明的进一步改进,所述弹性电连接机构包括自所述第二锚定部沿所述第一方向延伸的第一导电部以及自所述第一导电部朝所述第二支撑件弯折延伸的第二导电部。
作为本发明的进一步改进,所述第二导电部呈锯齿状弯曲并沿所述第二方向延伸。
作为本发明的进一步改进,所述第一支撑件呈环形并绕设在所述第一锚定部外周。
作为本发明的进一步改进,所述弹性电连接机构包括自所述第二锚定弯折延伸的第一导电部以及自所述第一导电部朝所述第二支撑件弯折延伸的第二导电部,所述第一导电部与所述第二导电部之间的夹角为锐角。
本发明提供的一种成像防抖装置,包括基板、固定于所述基板的MEMS驱动器以及设置于所述MEMS驱动器远离所述基板一侧的图像传感器,所述MEMS驱动器为上述的MEMS驱动器,所述外部电路形成于所述基板,所述图像传感器与所述第一支撑件固定,所述第二锚定部夹设于所述第一锚定部与所述基板之间并与所述基板固定,所述第二支撑件及所述弹性电连接机构悬置于所述基板一侧,
所述外部电路与所述第一锚定部电连接并输出驱动信号至所述驱动器以使所述图像传感器运动;所述图像传感器与所述联动机构电连接并经所述第二锚定部与所述外部电路电连接;所述外部电路根据所述图像传感器的电信号调整所述驱动信号。
发明的有益效果
有益效果
本发明的有益效果是:本发明将驱动部分和电信号传递部分分为两层;单独一层的电信号传递结构,可设计分布更多的导电线,从而使得该执行器能够对被驱动物体上的多个电信号进行传递,避免现有技术中,将驱动部分和电信号传递部分设置在同一层,在直接利用金属线连接运动部分与固定部分时,金属线容易发生断裂和金属线的一致性问题,或者MEMS梁既要起支撑作用又要导电作用时,MEMS梁的刚度低,横向面积大的问题。本发明将驱动和电信号传递结构的设计独立开来,在有限的结构尺寸下,为执行器结构提供更多设计空间,有助于减小执行器的横向尺寸。
进一步地,本发明提供一种成像防抖装置,通过本执行器能够对图像传感器的多个电信号进行传递,而且可靠性高,键合区域的导线不易断裂或者脱落。
对附图的简要说明
附图说明
图1是本发明的现有技术中方案一的MEMS执行器的绑线结构示意图;
图2是本发明的现有技术中方案二的MEMS执行器的绑线结构示意图;
图3是本发明的实施例1提供的MEMS驱动器的立体图;
图4是图3所示MEMS驱动器中的驱动机构的结构示意图;
图5是图3所示MEMS驱动器中的联动机构的结构示意图;
图6是图4所示驱动机构中的第一致动件的结构示意图;
图7是图4所示驱动机构中的第二致动件的结构示意图;
图8是本发明提供的成像防抖装置的立体图;
图9是图8所示提供的成像防抖装置的爆炸图;
图10是图8所示成像防抖装置的剖视图;
图11是图8所示提供的成像防抖装置的绑线结构示意图;
图12是本发明又一实施例提供的MEMS驱动器的的立体图;
图13是图12所示MEMS驱动器中的驱动机构的结构示意图;
图14是图12所示MEMS驱动器中的联动机构的结构示意图;
图15是采用图12所示MEMS驱动器的成像防抖装置的绑线结构示意图。
其中,10、MEMS驱动器,1、驱动机构;11、第一锚定部;12、第一支撑件;121、第一支撑板;122、第二支撑板;13、致动器;131、第一致动件;132、第二致动件;14、第一延伸臂;15、第二延伸臂;16、柔性支撑部;17、梳齿部;171、静电梳齿;18、支撑梁;2、联动机构;21、第二锚定部;22、第二支撑件;24、弹性电连接机构;241、第一导电部;242、第二导电部;3、基板;4、图像传感器;51、第一导线;52、第二导线;53、第三导线;61、外部导线;62、内部导线。
发明实施例
具体实施方式
下面结合附图对本发明的2个实施例进行详细描述。
实施1,如图3-7所示:
本实施例的一种MEMS驱动器包括依次层叠的驱动机构1和联动机构2;所述驱 动机构1通过第一支撑件12与所述联动机构2的第二支撑件22固定连接,同时驱动机构1的第一锚定部11与联动机构2的第二锚定部21固定连接,所述第一支撑件12与第二支撑件22组成一个运动平台,运动平台在致动器13的驱动下做多自由度运动。
具体地,参照图4,所述驱动机构1包括第一锚定部11、与所述第一锚定部11间隔设置的第一支撑件12和连接在所述第一锚定11部和所述第一支撑件12之间的致动器13;结合图8-9所示,被支撑装置,例如图像传感器4由第一支撑件12支撑。所述第一锚定部11包括平行且相互间隔设置的锚定侧板11a和11b,锚定侧板11a和11b呈条状。所述第一支撑件12与所述第一锚定部11间隔设置,所述第一支撑件12包括与锚定侧板11a/11b平行放置的第一支撑板121,第一支撑板121的两端分别弯折延伸的第二支撑板122,所述第一支撑件12呈H状,所述第二支撑板122与锚定侧板大体围成呈矩形;所述致动器13分别设置于所述第一支撑件12与所述锚定侧板11a/11b之间,所述致动器13包括至少两个致动件,分别用于驱动的第一支撑件12相对第一锚定部11沿相互垂直的两个方向运动。如图4所示,致动器13包括四个致动件A1-A4,其分别设置在第一支撑板121的相对两侧,其中,驱动件A1/A4驱动X方向的运动,驱动件A2/A3驱动Y方向的运动。驱动第一支撑件12沿第一方向运动的驱动件A1及A4为第一致动件131,驱动第一支撑件12沿垂直于所述第一方向的第二方向运动的驱动件A2及A3为第二致动件132,所述第一致动件131和第二致动件132中的至少一个相对所述MEMS驱动器的中心呈中心对称设置。
参照图4、图6和图7,所述第一致动件131与所述第二致动件132中均为静电梳齿驱动器,图6所示第一致动件131显示为致动器A1的具体结构,其中,致动器A1包括自所述第一锚定部11延伸并与所述第一支撑件12间隔设置的第一延伸臂14、自所述第一支撑件12(图6-7中为第二支撑板122)延伸第二延伸臂15、以及形成在所述第一延伸臂14与所述第二延伸臂15之间的梳齿部17,所述第一延伸臂14与所述第二延伸臂15正对设置,梳齿部17位于第一延伸臂14与所述第二延伸臂15之间,所述第一延伸臂14与所述第二延伸15臂之间设有柔性支撑部16。其中第一致动件131的所述梳齿部17具有与第二方向平行的静电梳齿171,可驱动第 一支撑件12作第一方向的运动;其中第二致动件132的所述梳齿部17具有与第一方向平行的静电梳齿171,可驱动第一支撑件12作第一方向的运动。
参照图5,所述联动机构2包括第二锚定部21、与所述第二锚定部21间隔设置的第二支撑件22以及连接在所述第二锚定部21与所述第二支撑件22之间的弹性电连接机构24,所述第二支撑件22与所述第一支撑件12固定,所述第一支撑件12带动所述第二支撑件22相对所述第二锚定部21运动;所述弹性电连接机构24关于所述第一方向与所述第二方向轴对称设置,所述弹性电连接机构24包括自所述第二锚定部21沿所述第一方向延伸的第一导电部241以及自所述第一导电部23朝所述第二支撑件22弯折延伸的第二导电部242,所述第二导电部242呈锯齿状弯曲并沿所述第二方向延伸,在本发明的其他优选实施例中,第二导电部242也可以是螺旋弹簧等其他结构。
由第二支撑件22、第一支撑件12固定连接组成的H状运动平台相对于由第二锚定部21和第一锚定部11构成的分立式侧板锚定结构做沿着X轴平移、沿Y轴平移或者绕Z轴旋转等多多自由度运动。本实施例通过将驱动部分和电信号传递部分分为两层;单独一层的电信号传递结构,可设计分布更多的导电线,从而使得该驱动器能够对被驱动物体上的多个电信号进行传递,更加牢靠。
参照图8-10,本发明的又一实施例提供了一种采用上述MEMS驱动器的成像防抖装置,本实施例中第一支撑件12顶部搭载的被驱动装置为图像传感器4,第二锚定部21夹设于所述第一锚定部11与所述基板3之间,所述第二锚定部21与基板3固定连接。
参照图11其驱动信号通路为:所述外部电路(设置于基板3)通过第二导线52与所述第一锚定部11电连接并输出驱动信号至所述驱动机构1以使所述图像传感器4运动;反馈信号通路为:所述图像传感器4通过第三导线53与所述联动机构2电连接,并经所述第二锚定21与基板3通过第一导线51电连接;所述外部电路可以根据所述成像传感器反馈的电信号调整所述驱动信号。本执行器能够对图像传感器的多个电信号进行传递,而且可靠性高,键合区域的导线不易断裂或者脱落。
上述的MEMS驱动器有三种驱动方式:
(1)沿X轴方向平移
根据静电梳齿驱动原理,施加电压,使致动件A1和A4同时沿X轴的正方向或者负方向运动,带动运动平台运动,从而使图像传感器4在X方向运动。
(2)沿Y轴方向平移
施加电压,使致动件A2和A3同时沿Y轴方向的正方向或者负方向运动,带动运动平台运动,从而使图像传感器4在Y轴方向运动。
(3)绕绕Z轴旋转
施加电压,使图4致动件A1向右运动,同时使致动件A2向下运动,致动件A4向左运动,致动件A3向上运动时,带动运动平台运动,则图像传感器4绕Z轴顺时针旋转。同理,使致动件A1-A4反方向运动时,可使图像传感器4绕Z轴逆时针旋转。
实施例2
参照图12-14,本实施例与实施例1的结构大致相同,不同之处在于:所述第一支撑件12呈环形并绕设在所述第一锚定部11外周,第一锚定部11与第二锚定部21位于驱动器的中央,弹性电连接机构24包括自所述第二锚定部21弯折延伸的第一导电部241与自所述第二支撑件22弯折延伸的第二导电部242连接,所述第一导电部23与所述第二导电部24的夹角为锐角,弹性电连接机构24包括四个且沿第一及第二方向轴对称设置,在第二方向上的两组导电机构形成菱形状且与另外构成菱形状的两组导电机构关于第一锚定部11轴对称。本实施例的第一支撑件12呈矩形且所述第一锚定部位于所述第一支撑件12的几何中心,使第一支撑件12的受力均匀,有利第一支撑件12做多自由度运动,减小执行器的横向尺寸。本实施例的致动器13的结构与实施例1相似,在此不做赘述。
参照图12-15,图15提供了使用上述MEMS驱动器的成像防抖装置。本实施例中第一支撑件12顶部搭载的被驱动装置为图像传感器4,第二锚定部21夹设于所述第一锚定部11与所述基板3之间并与所述基板3固定,所述第二支撑件22及所述弹性电连接机构24悬置于所述基板3一侧,所述第一锚定部11及第二锚定部21内设有内部导线62。
其驱动信号通路为:所述外部电路(设于基板3)通过内部导线62与所述第一 锚定部11电连接并输出驱动信号至所述驱动机构1以使所述图像传感器4运动;反馈信号通路为:所述图像传感器4通过外部导线61与所述联动机构2电连接,并经所述第二锚定21,通过内部导线62与基板3电连接;所述外部电路可以根据所述成像传感器的反馈信号调整所述驱动信号。本执行器能够对图像传感器的多个电信号进行传递,而且可靠性高,键合区域的导线不易断裂或者脱落。
以上所述的仅是本发明的实施方式,在此应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出改进,但这些均属于本发明的保护范围。

Claims (14)

  1. 一种MEMS驱动器,其特征在于,包括层叠的驱动机构和联动机构;所述驱动机构包括第一锚定部、与所述第一锚定部间隔设置的第一支撑件以及连接在所述第一锚定部和所述第一支撑件之间的致动器,所述第一支撑件用于支撑被驱动装置;所述联动机构包括与所述第一锚定部对应且相对固定的第二锚定部、与所述第二锚定部间隔设置的第二支撑件以及连接在所述第二锚定部与所述第二支撑件之间的弹性电连接机构,所述第二支撑件与所述第一支撑件固定,所述第一支撑件带动所述第二支撑件相对所述第一锚定部运动;所述致动器经所述第一锚定部与外部电路电连接,所述被驱动装置与所述联动机构电连接且所述被驱动装置经所述第二锚定部与所述外部电路电连接。
  2. 根据权利要求1所述的MEMS驱动器,其特征在于:所述致动器包括驱动所述第一支撑件沿第一方向运动的第一致动件以及驱动所述第一支撑件沿垂直于所述第一方向的第二方向运动的第二致动件。
  3. 根据权利要求2所述的MEMS驱动器,其特征在于:至少两个所述第一致动件相对所述MEMS驱动器的中心呈中心对称设置;和/或至少两个所述第二致动件相对所述MEMS驱动器的中心呈中心对称设置。
  4. 根据权利要求3所述的MEMS驱动器,其特征在于:所述第一致动件与所述第二致动件中的至少一个为静电梳齿驱动器,所述静电梳齿驱动器包括自所述锚定部延伸并与所述第一支撑件间隔设置的第一延伸臂、自所述第一支撑件延伸并与所述第一锚定部延伸的第二延伸臂、以及形成在所述第一延伸臂与所述第二延伸臂之间的梳齿部,所述第一延伸臂与所述第二延伸臂至少部分正对设置。
  5. 根据权利要求4所述的MEMS驱动器,其特征在于:所述梳齿部具 有与所述第一方向或所述第二方向平行的静电梳齿。
  6. 根据权利要求5所述的MEMS驱动器,其特征在于:所述静电梳齿驱动器还包括连接在所述第一延伸臂与所述第二延伸臂之间的柔性支撑部,所述柔性支撑部与所述梳齿部间隔设置。
  7. 根据权利要求1所述的MEMS驱动器,其特征在于:所述第一支撑件在所述联动机构上的正投影与所述第二支撑件重合,所述第一锚定部在所述联动机构上的正投影与所述第二锚定部重合。
  8. 根据权利要求2所述的MEMS驱动器,其特征在于:所述弹性电连接机构关于所述第一方向与所述第二方向轴对称设置。
  9. 根据权利要求1-8任一项所述的MEMS驱动器,其特征在于:所述第一锚定部包括平行且相互间隔设置的锚定侧板,所述第一支撑件包括位于两所述锚定侧板之间且分别与两所述锚定侧板相对且间隔设置的第一支撑板、以及自所述第一支撑板的相对两端分别弯折延伸且与所述锚定侧板间隔设置的第二支撑板,所述驱动器分别设置于所述第一支撑板与所述锚定侧板之间。
  10. 根据权利要求9所述的MEMS驱动器,其特征在于:所述弹性电连接机构包括自所述第二锚定部沿所述第一方向延伸的第一导电部以及自所述第一导电部朝所述第二支撑件弯折延伸的第二导电部。
  11. 根据权利要求10所述的MEMS驱动器,其特征在于:所述第二导电部呈锯齿状弯曲并沿所述第二方向延伸。
  12. 根据权利要求1-8任一项所述的MEMS驱动器,其特征在于:所述第一支撑件呈环形并绕设在所述第一锚定部外周。
  13. 根据权利要求12所述的MEMS驱动器,其特征在于:所述弹性电连接机构包括自所述第二锚定部弯折延伸的第一导电部以及自所述第一导电部朝所述第二支撑件弯折延伸的第二导电部,所述第一导电部与所述第二导电部之间的夹角为锐角。
  14. 一种成像防抖装置,包括基板、固定于所述基板的MEMS驱动器 以及设置于所述MEMS驱动器远离所述基板一侧的图像传感器,其特征在于,所述MEMS驱动器为如权利要求1-13任一项所述的MEMS驱动器,所述外部电路形成于所述基板,所述图像传感器与所述第一支撑件固定,所述第二锚定部夹设于所述第一锚定部与所述基板之间并与所述基板固定,所述第二支撑件及所述弹性电连接机构悬置于所述基板一侧,
    所述外部电路与所述第一锚定部电连接并输出驱动信号至所述驱动器以使所述图像传感器运动;所述图像传感器与所述联动机构电连接并经所述第二锚定部与所述外部电路电连接;所述外部电路根据所述图像传感器的电信号调整所述驱动信号。
PCT/CN2019/130913 2019-12-31 2019-12-31 一种mems驱动器及成像防抖装置 WO2021134676A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/130913 WO2021134676A1 (zh) 2019-12-31 2019-12-31 一种mems驱动器及成像防抖装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/130913 WO2021134676A1 (zh) 2019-12-31 2019-12-31 一种mems驱动器及成像防抖装置

Publications (1)

Publication Number Publication Date
WO2021134676A1 true WO2021134676A1 (zh) 2021-07-08

Family

ID=76686173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/130913 WO2021134676A1 (zh) 2019-12-31 2019-12-31 一种mems驱动器及成像防抖装置

Country Status (1)

Country Link
WO (1) WO2021134676A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106125295A (zh) * 2016-06-08 2016-11-16 无锡微奥科技有限公司 一种电热式mems微镜阵列器件及其制造方法
CN107082405A (zh) * 2017-05-26 2017-08-22 深迪半导体(上海)有限公司 一种mems器件结构
CN107102170A (zh) * 2012-01-12 2017-08-29 村田电子有限公司 传感器结构矩阵、加速度传感器以及传感器单元
KR20170125182A (ko) * 2016-05-03 2017-11-14 단국대학교 산학협력단 전자기력 구동 스캐닝 마이크로 미러 장치 및 그 제조방법
US20180120110A1 (en) * 2015-07-01 2018-05-03 Shin Sung C&T Co., Ltd. Mems link mechanism used for gyroscope
CN108249387A (zh) * 2016-12-28 2018-07-06 意法半导体股份有限公司 具有可移动结构的微机电设备及其制造工艺
CN109073673A (zh) * 2016-05-09 2018-12-21 罗伯特·博世有限公司 微机械传感器和用于制造微机械传感器的方法
CN110531112A (zh) * 2019-09-17 2019-12-03 东南大学 基于双层静电弱耦合效应的石墨烯谐振式加速度计装置
CN111153378A (zh) * 2019-12-31 2020-05-15 瑞声科技(南京)有限公司 一种mems驱动器及成像防抖装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107102170A (zh) * 2012-01-12 2017-08-29 村田电子有限公司 传感器结构矩阵、加速度传感器以及传感器单元
US20180120110A1 (en) * 2015-07-01 2018-05-03 Shin Sung C&T Co., Ltd. Mems link mechanism used for gyroscope
KR20170125182A (ko) * 2016-05-03 2017-11-14 단국대학교 산학협력단 전자기력 구동 스캐닝 마이크로 미러 장치 및 그 제조방법
CN109073673A (zh) * 2016-05-09 2018-12-21 罗伯特·博世有限公司 微机械传感器和用于制造微机械传感器的方法
CN106125295A (zh) * 2016-06-08 2016-11-16 无锡微奥科技有限公司 一种电热式mems微镜阵列器件及其制造方法
CN108249387A (zh) * 2016-12-28 2018-07-06 意法半导体股份有限公司 具有可移动结构的微机电设备及其制造工艺
CN107082405A (zh) * 2017-05-26 2017-08-22 深迪半导体(上海)有限公司 一种mems器件结构
CN110531112A (zh) * 2019-09-17 2019-12-03 东南大学 基于双层静电弱耦合效应的石墨烯谐振式加速度计装置
CN111153378A (zh) * 2019-12-31 2020-05-15 瑞声科技(南京)有限公司 一种mems驱动器及成像防抖装置

Similar Documents

Publication Publication Date Title
CN111153378B (zh) 一种mems驱动器及成像防抖装置
JP4891559B2 (ja) チップ・チルト・ピストン動作アクチュエータ
JP5190528B2 (ja) レンズモジュールの防震装置
US10516348B2 (en) MEMS actuator package architecture
WO2018018998A1 (zh) 成像方法、成像装置及电子装置
US8456727B2 (en) Actuator device for optical deflector
US10473917B2 (en) Movable reflection device and reflection surface drive system utilizing same
US7271946B2 (en) Micromirror and micromirror device
US10411182B2 (en) Drive apparatus
US9778549B2 (en) Optical element
US10179405B2 (en) Piezoelectric drive device, robot, and drive method thereof
JPWO2007083752A1 (ja) 超音波アクチュエータ
JP2008170565A (ja) 揺動体装置、及び揺動体装置を用いた画像形成装置
WO2021135135A1 (zh) 一种压电驱动结构和成像模组
WO2021134676A1 (zh) 一种mems驱动器及成像防抖装置
JP2005169553A (ja) マイクロアクチュエータ
JP2004280355A (ja) 移動装置およびそれを用いた位置決め装置
US8575821B2 (en) Piezoelectric actuator and piezoelectric actuator array
JP2003195204A (ja) 光偏向器及び光偏向器アレイ
JP2009071663A (ja) 移動機構および撮像装置
JP2009122304A (ja) アクチュエータ、光スキャナおよび画像形成装置
WO2023185617A1 (zh) 电磁振镜及振镜系统
US20230324674A1 (en) Microelectromechanical mirror device with piezoelectric actuation having improved stress resistance
CN112817141B (zh) Mems扫描镜及其驱动方法、激光投影仪
KR101677989B1 (ko) 정밀 스테이지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19958660

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19958660

Country of ref document: EP

Kind code of ref document: A1