WO2021134618A1 - 通信方法及装置 - Google Patents

通信方法及装置 Download PDF

Info

Publication number
WO2021134618A1
WO2021134618A1 PCT/CN2019/130817 CN2019130817W WO2021134618A1 WO 2021134618 A1 WO2021134618 A1 WO 2021134618A1 CN 2019130817 W CN2019130817 W CN 2019130817W WO 2021134618 A1 WO2021134618 A1 WO 2021134618A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
information
network device
terminal device
location
Prior art date
Application number
PCT/CN2019/130817
Other languages
English (en)
French (fr)
Inventor
黄曲芳
曾清海
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201980103217.6A priority Critical patent/CN114846810B/zh
Priority to EP19958410.3A priority patent/EP4064712A4/en
Priority to PCT/CN2019/130817 priority patent/WO2021134618A1/zh
Publication of WO2021134618A1 publication Critical patent/WO2021134618A1/zh
Priority to US17/853,446 priority patent/US20220330074A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/25Management operations performed by the server for facilitating the content distribution or administrating data related to end-users or client devices, e.g. end-user or client device authentication, learning user preferences for recommending movies
    • H04N21/266Channel or content management, e.g. generation and management of keys and entitlement messages in a conditional access system, merging a VOD unicast channel into a multicast channel
    • H04N21/2662Controlling the complexity of the video stream, e.g. by scaling the resolution or bitrate of the video stream based on the client capabilities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/24Monitoring of processes or resources, e.g. monitoring of server load, available bandwidth, upstream requests
    • H04N21/2402Monitoring of the downstream path of the transmission network, e.g. bandwidth available
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/60Network structure or processes for video distribution between server and client or between remote clients; Control signalling between clients, server and network components; Transmission of management data between server and client, e.g. sending from server to client commands for recording incoming content stream; Communication details between server and client 
    • H04N21/63Control signaling related to video distribution between client, server and network components; Network processes for video distribution between server and clients or between remote clients, e.g. transmitting basic layer and enhancement layers over different transmission paths, setting up a peer-to-peer communication via Internet between remote STB's; Communication protocols; Addressing
    • H04N21/647Control signaling between network components and server or clients; Network processes for video distribution between server and clients, e.g. controlling the quality of the video stream, by dropping packets, protecting content from unauthorised alteration within the network, monitoring of network load, bridging between two different networks, e.g. between IP and wireless
    • H04N21/64723Monitoring of network processes or resources, e.g. monitoring of network load
    • H04N21/64738Monitoring network characteristics, e.g. bandwidth, congestion level
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/80Generation or processing of content or additional data by content creator independently of the distribution process; Content per se
    • H04N21/81Monomedia components thereof
    • H04N21/816Monomedia components thereof involving special video data, e.g 3D video

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a communication method and device.
  • the experience that users can obtain through electronic devices is becoming more and more abundant.
  • users can get an immersive experience through electronic devices such as glasses or helmets, and this immersive experience allows users to get an immersive experience.
  • the immersive experience has a large amount of data demand, and the demand for data transmission delay is also very high.
  • this immersive video starts from the physical location of the audience and shows the audience the immersive experience. The location of the viewer changes, and the video and/or audio content seen and/or heard also changes accordingly.
  • the embodiment of the present application provides a communication method in order to improve user experience.
  • a communication method determines the air interface status or the amount of stored data, and sends information indicating the air interface status or the amount of data stored by the network device to a terminal device. Further, the network device sends data to the terminal device, where the information indicates the air interface status or the amount of data stored by the network device is used to determine the processing mode of the data.
  • the terminal indicates the state of the air interface from the network device or the information used to indicate the amount of data stored by the network device, and processes the data received from the network device according to the state of the air interface or the amount of data stored by the network device.
  • a communication method determines the status of the air interface and sends information indicating the status of the air interface to a database server; and then obtains data generated according to the air interface status from the database server and receives the data The data is sent to the terminal device.
  • the database server receives the information indicating the air interface status and the location information of the terminal device from the network device, generates data according to the air interface status and the location of the terminal device, and sends the data to the network device.
  • the information that the network device sends to the terminal device to indicate the state of the air interface or the amount of data stored by the network device is transmitted through radio resource control (RRC) messages, packet data convergence protocol control protocol data unit (PDCP control) PDU), or media access control control element (MAC CE) bearer.
  • RRC radio resource control
  • PDCP control packet data convergence protocol control protocol data unit
  • MAC CE media access control control element
  • the MAC CE When the information is carried by the MAC CE, the MAC CE is located in the MAC subPDU, the MAC subPDU includes the MAC subheader and the MAC CE, the MAC subheader includes the logical channel identifier (LCID), and the LCID takes a preset value. The value is used to indicate that the MAC CE includes the above information.
  • the MAC CE also includes time information, which is used to indicate that the data is transmitted within the time indicated by the time information.
  • the MAC CE does not include time information, and the terminal device receives an RRC message from the network device.
  • the RRC message includes time information, which is used to indicate that data is transmitted within the time indicated by the time information.
  • the information (that is, the MAC CE) sent by the network device to the terminal device for indicating the state of the air interface or indicating the amount of data stored by the network device includes at least one layer of information and at least one cell, and each cell corresponds to A piece of layer information is used to indicate the status or data volume of the layer indicated by the layer information.
  • the terminal device may periodically receive information used to indicate the air interface status or the amount of data stored in the network device from the network device. Alternatively, the information may be received from the network device when the amount of data stored by the network device is greater than or equal to the threshold value.
  • the terminal device may also send first location information to the network device, where the first location information is used to indicate the location of the terminal device.
  • the network device may further provide the location information to the database server, and the database server may generate data on the location of the terminal device based on the location information; or, the network device may generate data on the location of the terminal device based on the location information; or, the network device may The location information is further provided to the database server, and the database server determines whether to provide more data to the terminal device according to the location information; or the network device can determine whether to provide more data to the terminal device according to the location information.
  • the network device or the database server determines whether to provide more data of the reference location or more data of the current reference location to the terminal device according to the location information.
  • the current reference location may be determined by the terminal device.
  • the terminal device may also send second location information to the database server, where the second location information is used to indicate the reference location.
  • the terminal device may also send status indication information to the network device, where the status indication information is used to indicate the status of the terminal device. So that the network equipment adjusts the data transmission rate according to the state of the terminal.
  • a communication method in a third aspect, a communication method is provided.
  • a network device obtains data of a reference location from a database server, and receives location information from a terminal device, and the location information is used to indicate the location of the terminal device. Based on the location of the terminal device, the network device uses the data of the reference location to generate downlink data to be sent to the terminal device.
  • a communication device which includes units or means for executing each step of any one of the above aspects.
  • a communication device including a processor and an interface circuit, where the processor is configured to communicate with other devices through the interface circuit, and execute the method provided in any one of the above aspects.
  • the processor includes one or more.
  • a communication device including a processor, configured to call a program stored in a memory to execute the method provided in any one of the above aspects.
  • the memory can be located inside the device or outside the device.
  • the processor includes one or more.
  • the above communication devices are located in the terminal, network equipment, or database server.
  • a computer program is provided.
  • the program is called by a processor, the method provided by any one of the above aspects is executed.
  • a computer-readable storage medium including a program.
  • the program is called by a processor, the method provided in any one of the above aspects is executed.
  • FIG. 1 is a schematic diagram of a communication system provided by an embodiment of this application.
  • Figure 2 is a schematic diagram of a protocol architecture provided by an embodiment of the application.
  • FIG. 3 is a schematic diagram of a network architecture provided by an embodiment of this application.
  • FIG. 4 is a schematic diagram of another network architecture provided by an embodiment of the application.
  • FIG. 5 is a schematic diagram of a communication process provided by an embodiment of this application.
  • FIG. 6 is a schematic diagram of a communication method provided by an embodiment of this application.
  • FIG. 7 is a schematic diagram of the format of several MAC sub-PDUs provided by an embodiment of the application.
  • FIG. 8 is a schematic diagram of another communication method provided by an embodiment of this application.
  • FIG. 9 is a schematic diagram of a first reference position determination method provided by an embodiment of this application.
  • FIG. 10 is a schematic diagram of another communication method provided by an embodiment of this application.
  • FIG. 11 is a schematic diagram of yet another communication method provided by an embodiment of this application.
  • FIG. 12 is a schematic diagram of another communication method provided by an embodiment of this application.
  • FIG. 13 is a schematic diagram of another communication method provided by an embodiment of this application.
  • FIG. 14 is a schematic diagram of a communication device provided by an embodiment of this application.
  • 15 is a schematic diagram of another communication device provided by an embodiment of this application.
  • FIG. 16 is a schematic diagram of another communication device provided by an embodiment of this application.
  • FIG. 17 is a schematic structural diagram of a terminal provided by an embodiment of this application.
  • FIG. 18 is a schematic structural diagram of a network device provided by an embodiment of this application.
  • FIG. 19 is a schematic diagram of the structure of a database server provided by an embodiment of the application.
  • FIG. 1 is a schematic diagram of a communication system provided by an embodiment of this application.
  • the terminal device 110 communicates with other devices through a wireless network.
  • the wireless network includes a radio access network (RAN) and a core network (CN).
  • the terminal accesses the wireless network, and the CN is used to manage the terminal and provide a gateway for communication with the external network.
  • the wireless network includes a network device 120, which is, for example, a RAN device.
  • the network device 120 is connected to a database 130, and the database 130 may be located in the network device 120 or outside the network device 120. When the database 130 is located outside the network device 120, the connection between the network device 120 and the database 130 can be a direct connection or an indirect connection.
  • the so-called indirect connection means a connection through other devices, such as a CN device or a gateway.
  • the database 130 may be located on a server, which is referred to as a database server.
  • the connection between the network device 120 and the database 130 can be realized through cloud technology, which enables the sharing of resources such as hardware, software, and network in the area, so that the network device 120 can quickly access the database 130.
  • a collection point (also referred to as a sampling point) in the environment 100.
  • a data collection device such as a camera, is set at the collection points A, B, and C.
  • the data collected by the data collection device forms a data set, which is stored in the database 130.
  • the network device 120 obtains the location E of the terminal device 110, and notifies the location E to the database server.
  • the database server uses the data stored in the database to generate the data (for example, audio and video data) of the location E according to the location E and transmit it to the network
  • the device 120 the network device 120 transmits the data of the location E to the terminal device 110
  • the terminal device 110 receives the data sent by the network device 120, renders the data, generates the image and/or audio of the location E, and uses the display device 140 Show it to users.
  • the location of the user that is, the location of the terminal device 110
  • the timing of data transmission Yan put forward higher requirements.
  • the terminal device 110 may be a terminal, or a device located in the terminal (such as a chip in the terminal), where the terminal is also called user equipment (UE), mobile station (MS), or mobile terminal (mobile terminal).
  • Terminal, MT), etc. are devices that provide users with data connectivity, such as handheld devices or vehicle-mounted devices with wireless connection capabilities.
  • examples of terminals are: mobile phones (mobile phones), tablets, notebook computers, handheld computers, mobile internet devices (MID), wearable devices, virtual reality (VR) devices, augmented reality ( Augmented reality (AR) equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical surgery, and smart grids.
  • the network device 120 is a device in a wireless network, for example, a RAN node that connects a terminal to the wireless network.
  • RAN nodes are: gNB, transmission reception point (TRP), evolved Node B (evolved Node B, eNB), radio network controller (RNC), Node B (Node B) , NB), base station controller (BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home eNodeB, or home Node B), base band unit (BBU), Or wireless fidelity (Wi-Fi) access point (AP), etc.
  • the network device may be a centralized unit (CU) node, or a distributed unit (DU) node, or a RAN device including a CU node and a DU node.
  • FIG. 2 is a schematic diagram of a protocol architecture provided by an embodiment of this application.
  • the communication between the RAN device and the terminal device follows a certain protocol layer architecture.
  • the control plane protocol layer architecture may include the radio resource control (RRC) layer, the packet data convergence protocol (PDCP) layer, the radio link control (RLC) layer, and the media access Control (media access control, MAC) layer and physical layer and other protocol layer functions.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • RLC radio link control
  • MAC media access Control
  • the user plane protocol layer architecture can include the functions of the PDCP layer, the RLC layer, the MAC layer, and the physical layer; in one implementation, the PDCP layer can also include a service data adaptation protocol (SDAP) layer
  • SDAP service data adaptation protocol
  • the physical layer can be called layer 1, and the PDCP layer to the MAC layer can be called layer 2.
  • the SDAP layer may be classified as layer 2, or may not be classified as layer 2.
  • the network architecture includes CN equipment and RAN equipment.
  • the RAN equipment includes a baseband device and a radio frequency device.
  • the baseband device can be implemented by one node or by multiple nodes.
  • the radio frequency device can be implemented remotely from the baseband device, and can also be integrated into the baseband device, or part of it.
  • the radio frequency device includes a remote radio unit (RRU), the baseband device includes a BBU, and the RRU is arranged remotely relative to the BBU.
  • RRU remote radio unit
  • the function of the protocol layer shown in Figure 2 can be implemented by one node or multiple nodes in the RAN device; for example, in an evolution structure, the RAN device can include a centralized unit (CU) and a distributed unit (distributed unit, DU), multiple DUs can be centrally controlled by one CU.
  • CU and DU can be divided according to the protocol layers of the wireless network. For example, the functions of the PDCP layer and above protocol layers are set in the CU, and the protocol layers below the PDCP, such as the RLC layer and MAC layer, are set in the DU.
  • This type of protocol layer division is just an example, it can also be divided in other protocol layers, for example, in the RLC layer, the functions of the RLC layer and above protocol layers are set in the CU, and the functions of the protocol layers below the RLC layer are set in the DU; Or, in a certain protocol layer, for example, part of the functions of the RLC layer and the functions of the protocol layer above the RLC layer are set in the CU, and the remaining functions of the RLC layer and the functions of the protocol layer below the RLC layer are set in the DU. In addition, it can also be divided in other ways, for example, by time delay. The functions that need to meet the time delay requirements for processing time are set in the DU, and the functions that do not need to meet the delay requirements are set in the CU.
  • the radio frequency device can be remote, not placed in the DU, can also be integrated in the DU, or part of the remote part is integrated in the DU, and there is no restriction here.
  • control plane (CP) and the user plane (UP) of the CU can also be separated and divided into different entities for implementation, respectively, the control plane CU entity (CU-CP entity) ) And the user plane CU entity (CU-UP entity).
  • the signaling generated by the CU can be sent to the terminal device through the DU, or the signaling generated by the terminal device can be sent to the CU through the DU.
  • the DU may directly pass the protocol layer encapsulation without analyzing the signaling and transparently transmit it to the terminal device or the CU. If the following embodiments involve the transmission of such signaling between the DU and the terminal device, at this time, the sending or receiving of the signaling by the DU includes this scenario.
  • RRC or PDCP layer signaling will eventually be processed as PHY layer signaling and sent to the terminal device, or converted from received PHY layer signaling.
  • the RRC or PDCP layer signaling can also be considered to be sent by the DU, or sent by the DU and radio frequency.
  • the CU is divided into network equipment on the RAN side.
  • the CU may also be divided into network equipment on the CN side, which is not limited here.
  • the devices in the following embodiments of the present application may be located in terminal devices or network devices according to the functions they implement.
  • the network device may be a CU node, or a DU node, or a RAN device including a CU node and a DU node.
  • the database 130 stores the data collected by all the collection points.
  • the server where the database 130 is located ie the database server
  • the terminal device 110 After the received data is processed, it is displayed to the user through the display device 140.
  • the collection points A, B, and C in the environment 100 are equipped with data collection devices.
  • the data collection devices at each collection point collect data, and provide the collected data to the server in step S510, and the server stores the obtained data in the database 130 in.
  • the data acquisition device includes, for example, a video acquisition device and/or an audio acquisition device, and the collected data includes, for example, video data and/or audio data.
  • the data collected by the data collection device at collection point A is called data A
  • the data collected by the data collection device at collection point B is called data B
  • the data collected by the data collection device at collection point C is called data C.
  • data A, B, C can be collected by the same device and sent to the server uniformly, or various data collection devices can be sent to the server independently.
  • the device responsible for uniformly sending data can be any one of the data collection devices set at collection points A, B, and C, or it can be independently set
  • the data collection device is used to collect data from the data collection device and send it to the server uniformly.
  • the above data collection process can be triggered by an event, can also be started periodically, or can be carried out continuously for a period of time. And after the data collection process is started, data collection can be performed periodically or continuously, and the period of data collection can be set according to actual needs without limitation.
  • the server can pre-collect the time-frequency and/or audio data of the collection points (which can be understood as multiple observation points) and store them in the database, and the data in the database can be continuously or periodically updated.
  • the terminal device 110 is marked as location E, generates location information of the terminal device, and sends the location information to the network device 120 in step S520.
  • the network device 120 obtains the data of the location E from the database 130 according to the location information. If the database 130 is located in the network device 120, the network device 120 uses the data stored in the local database to generate the data of the location E directly according to the location E; if the database 130 is independent of the network device 120, for example, is located in the server, the network device 120 is in step In S530, the location information of the terminal device is sent to the server.
  • the server generates the data of the location E according to the location information of the terminal device using the stored data, and sends the data of the location E to the network device 120 in step S540.
  • step S550 the data of the position E is sent to the terminal device 110.
  • the terminal device 110 renders the received data of the position E, generates video and/or audio, and displays it to the user through the display device 140 in step S560.
  • the video and/or audio of different locations relative to the collection point ABC are different.
  • the database server can determine the location of the location E relative to the collection point ABC according to the location information. With the position of the terminal device as a parameter, the data of the collection point ABC can be generated to generate the location E Data, the data of the location E can reflect the video and/or audio that can be observed at the location E. And images with different definitions can use different algorithms to generate data at position E. The higher the definition, the more complex the algorithm and the greater the processing delay.
  • the transmission capacity between the network device 120 and the terminal device 110 is limited, and the amount of video and/or audio (especially high-definition video) data is very large, so the data at location E transmitted in step S540 may be the complete video and video at location E. Or audio data can also be part of the complete data, that is, partial data.
  • the data transmitted in step S550 may be complete data or partial data.
  • the data of the location E transmitted in step S540 may be complete data, and the network device 120 decides to transmit complete data or partial data by itself.
  • the data transmitted in step S550 may be complete data or partial data.
  • the terminal device 110 receives part of the data, it may render the received data to supplement the missing part, thereby displaying video and/or audio to the user.
  • the data finally used for display includes both real data and rendered data.
  • Rendering refers to the use of algorithms to infer the details of the image according to the main part of the image to complement the image, thereby improving the image quality.
  • the server when the server generates the data at location E, it does not know how much data can be transmitted by the air interface, so the data is generated according to the highest definition, the complexity is high, and the corresponding processing delay is large, but in the end, only a part of the data may be transmitted to Terminal device.
  • the terminal device after acquiring the data of the location E from the network device, the rendering algorithm is determined according to the amount of data, and the rendering is performed, and the corresponding processing delay is relatively large.
  • the network device can provide the air interface information to the server, so that the server can know the air interface information when generating data at location E, so as to optimize the algorithm for generating data based on the air interface information , Thereby speeding up the processing speed of the data generating the position E, reducing the processing time delay, and thereby improving the user experience.
  • the air interface information includes one or more of the following information: rate, bandwidth (or frequency resource size), wireless signal quality, or number of antennas.
  • the server can determine the connection between the network device and the terminal device based on the air interface information.
  • the transmission capacity and then generate the data of the position E that can be accommodated by the transmission capacity, that is, the smaller the transmission capacity, the lower the resolution data is generated, and the lower the resolution data, the lower the algorithm complexity and the processing delay The lower. Moreover, because even if the highest definition data is generated, the transmission capacity between the network equipment and the terminal device is limited, and it cannot be transmitted to the terminal device. Therefore, this method can reduce the processing delay without reducing the video and / Or audio quality.
  • the network device can provide the air interface information to the terminal device, so that the terminal device can estimate or determine the amount of data sent by the network device in advance.
  • the processing method for example, rendering algorithm
  • the processing method can be determined in advance to prepare for processing. , Thereby speeding up processing, reducing processing delay, and improving user experience.
  • FIG. 6 is a schematic diagram of a communication method provided by an embodiment of the application. As shown in Figure 6, the method includes the following steps:
  • the terminal device determines its own location and instructs it to the network device; that is, the terminal device sends location information to the network device.
  • the network device receives the location information of the terminal device from the terminal device, that is, receives the location information from the terminal device.
  • the location information is used to indicate the location of the terminal device, and the location of the terminal is represented by E.
  • the location of the terminal device includes, for example, the coordinates of the terminal device.
  • the coordinates are, for example, latitude and longitude.
  • the position information of the terminal device is used to indicate the latitude and longitude.
  • set a reference point can be an actually set collection point or a virtual reference point.
  • the coordinates of the terminal device include the north-south horizontal line, the east-west horizontal line, and the coordinate value of the vertical line relative to the reference point.
  • the coordinate value can determine the position of the terminal device in the coordinate system; at this time, the position information of the terminal device is used to indicate the coordinate value of the terminal device relative to the reference point.
  • the above coordinate lines are the north-south horizontal line, the east-west horizontal line, and the vertical line, which are not limited in the embodiment of the present application, and may also be coordinate lines in other directions.
  • S620 The network device determines the state of the air interface.
  • the air interface state is the air interface state of the terminal device. In an implementation, it can reflect how much data the network device can transmit to the terminal device, for example, how much data can be transmitted to the terminal in a time unit. In the same understanding, at this time, the state of the air interface can be the amount of data.
  • the unit may be a bit, or a byte, etc.
  • the embodiment of the present application does not limit the unit.
  • the time unit is, for example, a time slot, an orthogonal frequency division multiplexing (OFDM) symbol, a subframe or a frame, or may be a preset time value, such as 0.5 ms, 1 ms, or other times, etc. The embodiment is not limited.
  • the air interface status can be reflected by the air interface rate, that is, the amount of data transmitted per unit time, and the unit time can be the above time unit. It can be seen that the realization of data volume and rate is similar, the difference lies in the different units, and for the data volume, the network equipment and the database server have the same understanding of the data volume and the time unit.
  • the rate or data volume can be refined by layer, for example, divided into the rate of the first layer and the rate of the second layer; or divided in proportion, for example, the ratio of the rate of the first layer and the second layer is given.
  • the rate of the first layer is N1 bytes/unit time
  • the rate of the second layer is N2 bytes/unit time
  • the ratio of the amount of data transmitted per unit time between the first and second layers M1: M2 or the number transmitted per unit time of the first layer accounts for P% of the total or the number transmitted per unit time of the second layer accounts for Q% of the total, where N1, N2, P and Q are all non-negative numbers, M1 and M2 are positive integers.
  • the first layer is for example the basic layer
  • the second layer is for example the enhancement layer.
  • the data of the basic layer can reflect the basic skeleton of the image. It can be understood that the terminal device can generate an image according to the data of the basic layer (the image has a lower definition)
  • the data of the enhancement layer contains the detailed information of the image
  • the terminal device can generate a higher definition image according to the data of the base layer and the enhancement layer.
  • two-layer division is taken as an example.
  • the embodiment of this application does not limit the data of the terminal device.
  • the data of the terminal device can be divided into more than two layers of data, which includes a basic layer and more than one enhancement layer, and each level of enhancement layer corresponds to The sharpness of the image is different.
  • the priority between multiple layers is different, but when the air interface state is not enough to accommodate the data of all layers, the data of the higher priority layer is transmitted first.
  • the base layer has the highest priority.
  • the image definition corresponding to the enhancement layer is higher and the priority is lower.
  • the state of the air interface may be reflected in the size of the frequency resource of the air interface.
  • the size of the frequency resource is, for example, the maximum frequency resource that the network device can allocate to the terminal device, or the bandwidth of the current carrier used by the network device or the current Part of the bandwidth (bandwidth part, BP) size.
  • BP bandwidth part
  • the air interface state may be reflected in the wireless signal quality (or referred to as the quality of the channel), for example, reference signal received power (RSRP) or reference signal received quality (reference signal received quality, RSRQ).
  • RSRP reference signal received power
  • RSRQ reference signal received quality
  • the air interface state may be reflected in the number of antennas.
  • the above air interface status includes, for example, one or more of the following information: information such as rate, bandwidth (or called frequency resource size), wireless signal quality, or number of antennas.
  • information such as rate, bandwidth (or called frequency resource size), wireless signal quality, or number of antennas.
  • the rate can also be called the transmission rate.
  • the network device can determine the air interface status according to the service priority of the terminal device, or quality of service (QoS) and other information. For example, the rate is determined according to the service priority of the terminal device.
  • QoS quality of service
  • the network device provides the air interface status to the database server, that is, the network device sends information indicating the air interface status to the database server (hereinafter referred to as information I1), where the database server is the server where the database is located.
  • the above step S610 may be performed before the step S630, or may be performed after the step S630.
  • the network device can obtain the location information of the terminal device before sending the information I1 to the data server.
  • the network device can send the information I1 and the location information to the database server together, thereby saving the signaling process.
  • the information I1 and the location information can also be independently sent to the database server.
  • the network device After the network device provides the air interface status to the data server, when acquiring the location information of the terminal device, it may send the location information to the database server after sending the information I1.
  • the network device can notify the database server of the refined rate or data volume.
  • the information I1 includes the rate information or data volume information of multiple layers, such as the rate information of the first layer and the rate information of the second layer; or the rate ratio between multiple layers, such as the rate information of the first layer and the second layer. Rate ratio.
  • the information I1 may include data volume information of multiple layers, such as the data volume information of the first layer and the data volume information of the second layer; or include the data volume ratio between multiple layers, such as the first layer and the second layer. The data volume ratio of the layer.
  • the database server receives the information I1 and the position information of the terminal device (that is, the information of the position E), and performs the following operations according to the received information:
  • the database server generates data of the location (hereinafter may be referred to as data D1), that is, data of the location E, according to the air interface status and the location of the terminal device.
  • the database server generates the preset definition data of the position according to the position of the terminal device, and divides the data into several layers. The specific division is the same as in the above embodiment and will not be repeated; then, it is determined according to the air interface status. Which layer or layers of data is transmitted.
  • the database server is pre-configured with a default data generation algorithm and/or parameters.
  • the data generation algorithm and/or parameters use the data collected from the collection point to generate data with a preset definition at the location of the terminal.
  • the default data generation Algorithms and/or parameters generate high-definition data, and then because the air interface state does not allow the transmission of so much data, some layers of data can be transmitted to network devices.
  • the data transmitted to the network device is understood as the data D1, that is, the data of the location E. In other words, the data D1 is part or all of the data generated by the database server.
  • the database server determines the data generation algorithm and/or parameter according to the air interface status, wherein different data generation algorithms and/or parameters correspond to different definition data.
  • the database server generates data D1 according to the position of the terminal device and the selected data generation algorithm and/or parameters, that is, the data of the position E, and sends the data D1 to the network device.
  • the database server can be preset with multiple data generation algorithms, and each data generation algorithm corresponds to a different definition and is suitable for different air interface states.
  • the database server may be preset with a data generation algorithm, and different parameters correspond to different definitions, and are suitable for different air interface states.
  • the database server not only presets a variety of data generation algorithms, but also has different parameters suitable for different data generation algorithms to generate data with different definitions; or each algorithm uses different parameters to further generate more fine-grained data. Clarity of the data.
  • the database server sends data D1 to the network device.
  • the network device obtains data D1, that is, data at location E, from the database server.
  • S660 The network device sends data D1, that is, the data of location E, to the terminal device.
  • the network equipment can also provide the above air interface status to the terminal device, so that the terminal device can determine the processing method for the data according to the air interface status, so as to prepare for the processing of the received data in advance, thereby speeding up the processing speed and reducing the processing delay. , Improve user experience.
  • the above method also includes:
  • the network device provides the air interface status to the terminal device, that is, the network device sends information indicating the air interface status to the terminal device.
  • the description of the air interface status is the same as the description in step S630 above, and will not be repeated here.
  • the air interface state is the amount of data
  • the network equipment and the terminal device have the same understanding of the time unit.
  • the network device can send the data amount indication information to the terminal device, and the data amount indication information is used to indicate , The amount of data that the network device is about to transmit to the terminal device or the amount of data stored by the network device.
  • the amount of data that the network device is about to transmit to the terminal device can be understood as a situation when the air interface state is the amount of data.
  • the amount of data stored by the network device can be understood as a situation when the air interface status is the amount of data, or it can be determined by the network device alone according to the amount of data stored.
  • the network device may send information indicating the air interface status to the terminal device, or may send information indicating the amount of data stored by the network device to the terminal device. That is, the network device sends information I2 to the terminal, where the information I2 is used to indicate the state of the air interface or the amount of data stored by the network device, that is, the state of the network device's cache.
  • the information I2 When the information I2 indicates the amount of data, it can directly indicate the amount of data, or it can be indicated in a proportional manner.
  • the data amount corresponding to the preset definition data is 100%, and the current data amount accounts for the amount of the preset definition.
  • the data volume corresponding to the data is S%, and the information I2 is used to indicate S%.
  • the preset preset definition is, for example, the highest definition.
  • the terminal device receives the information I2 and performs the following operations:
  • S680 The terminal device processes the received data D1, that is, the data at the position E, according to the information I2.
  • the terminal device can receive the data of position E after receiving the information I2. At this time, the terminal device determines the data processing method, such as the rendering algorithm and/or parameters, according to the information I2. In this way, the data processing is done in advance. Preparation. When the data D1 is received, the data D1 is processed, and the processed data is displayed on the display device. The terminal device may have received the data of location E before receiving the information I2. At this time, the terminal device determines the way to process the data according to the information I2 or according to the received data, and performs data processing on the previously stored data of location E. Processing: After the terminal device subsequently receives new data, the processed data is updated, and the processed data is displayed on the display device.
  • the data processing method such as the rendering algorithm and/or parameters
  • the terminal device may be preset with multiple data processing algorithms (for example, rendering algorithms), and each data processing algorithm corresponds to a different definition and is suitable for different air interface states or data volumes.
  • the terminal device may be preset with a data processing algorithm (for example, a rendering algorithm), and different parameters correspond to different definitions, and are suitable for different air interface states or data volumes.
  • the terminal device not only presets multiple data processing algorithms, but also has different parameters suitable for different data processing algorithms to process data with different definitions; or each algorithm uses different parameters to further process more fine-grained data. Clarity of the data.
  • the terminal device may also indicate the viewing angle to the network device, that is, the above method may further include: the terminal device sends viewing angle information to the network device; correspondingly, the network device receives the terminal device's information from the terminal device. Viewing angle information, that is, receiving viewing angle information from the terminal device, and the viewing angle information is used to indicate the viewing angle of the terminal device.
  • the subsequent network equipment further provides the perspective information and location information to the database server, so that the database server generates data corresponding to the location and perspective. In this way, the database server can limit the generated data to a certain perspective, thereby further reducing the generation The amount of data is reduced, processing delay is reduced, and user experience is further improved.
  • the terminal device in addition to providing location information to the network device or database server, the terminal device may also provide viewing angle information, which will not be repeated in the following embodiments.
  • the network device may use an RRC message, a PDCP control protocol data unit (protocol data unit, PDU) or a MAC control element (MAC control element, MAC CE) to send the information I2 to the terminal device.
  • PDU protocol data unit
  • MAC control element MAC control element
  • the subheader of the MAP subPDU where the MAC CE is located includes the logical channel ID (LCID), the LCID takes a reserved value, and the reserved value is assigned to the new
  • LCID logical channel ID
  • the LCID takes a reserved value
  • the reserved value is assigned to the new The meaning of indicates that the MAC CE is used to indicate the air interface status or the amount of data stored by the network device.
  • the MAC CE is located in the MAC sub-PDU, the MAC sub-PDU includes the MAC sub-header and the MAC CE, the MAC sub-header includes the LCID, and the LCID takes a preset value, which is used to indicate that the MAC CE includes the above information I2.
  • FIG. 7 is a schematic diagram of the format of several MAC sub-PDUs provided in an embodiment of the application.
  • the MAC subheader of the MAC subPDU only shows related fields, such as the LCID field in the MAC subheader.
  • the MAC subheader may also include other fields, which is not limited in the embodiment of the present application.
  • MAC CE only includes information I2, which indicates the air interface status or the amount of data stored by the network device.
  • the information I2 indicates that the data amount corresponding to N (N is a positive integer greater than or equal to 1) frames is 5000 bytes.
  • MAC CE includes not only information I2, but also time information T, which is used to indicate that data is transmitted or arrived within the time indicated by the time information, where information I2 indicates the transmission rate or data volume of the data. Therefore, the MAC CE indicates that within time T, the network device will send data to the terminal device, and the same information I2 indicates that the data volume corresponding to N (N is a positive integer greater than or equal to 1) frames is 5000 bytes. For example, the MAC CE indicates that within the time T, the network device will transmit 5000 bytes of data to the terminal device. For format one, the network device may also indicate the time T to the terminal device. The difference from format two is that the network device pre-configures the time T to the terminal device through an RRC message.
  • the data of the terminal device is divided into at least one layer of data, and the information I2 includes at least one layer of information and at least one cell, and each cell corresponds to one layer of information, which is used to indicate the layer indicated by the layer of information.
  • the MAC CE includes layer 1 and layer 2 information, cell one is used to indicate that the data volume of the first layer in N frames is 5000 bytes, and cell two is used to indicate N
  • the data volume of the second layer in a frame is 3000 bytes, where the first layer is the base layer and the second layer is the enhancement layer.
  • only two layers are taken as an example in the figure. In other implementations, there may be one layer or more than two layers.
  • information indicating the time T may also be added to the MAC CE.
  • the network device can notify the terminal device of the rate ratio or data volume ratio between the layers in advance, and then only indicate the rate or data volume of one layer in the MAC CE, and the terminal device can know the rate or data volume of other layers. .
  • the terminal device can determine that the data volume of the second layer is 3000 bytes or confirm that the total data volume is 4000 bytes.
  • the network device may periodically send information I2 to the terminal device.
  • the network device can send information I2 to the terminal device when the number of storages exceeds the threshold (including greater than or equal to the threshold). In this way, signaling interaction can be reduced, processing speed can be further improved, and processing delay can be reduced.
  • the network device can send the information I2 to multiple terminal devices separately. If the network device wants to send the above data to multiple terminal devices, it can send the information I2 to multiple terminal devices in a broadcast or multicast manner; or, it can send the information I2 to multiple terminal devices separately. Each terminal device sends information I2. In an implementation, multiple terminal devices can be divided into a group, and the information I2 is sent to all terminal devices in the group through a common message. The terminal devices of the group can be assigned the same group identifier for receiving the information I2.
  • the data D1 is determined by the database server according to the location of the terminal and the state of the air interface.
  • the network device may not provide the air interface status to the database server.
  • the database server generates the data of location E (denoted as data D2) according to the location of the terminal, and sends it to the network device, and then the network device according to the air interface status , Use data D2 to generate data D1.
  • the data D2 is divided into several layers, and according to the air interface state, only the data of a part of the layer is transmitted, and the data of this part of the layer is D1.
  • the data D2 is compressed or the data D2 is converted into the lower definition data D1, which is not limited in the embodiment of the present application.
  • the above steps S630 and S670 can perform only one of the steps, or both, that is to say, the network device can provide the air interface status or the amount of stored data to the terminal device, and/or provide the air interface status to the database server; thus, the terminal device
  • the data processing method can be prepared in advance according to the state of the air interface or according to the amount of data stored by the network device to improve the efficiency of data processing.
  • the data at location E generated by the database server is high-definition video and/or audio data. Due to the limited air interface transmission capacity, all the generated data cannot be transmitted to the terminal device.
  • the database server is notified of the air interface status, and the database server adjusts the algorithm for generating data at position E according to the air interface status.
  • the amount of data generated is in line with the air interface transmission capability, or only part of the generated data is transmitted to the network device according to the air interface status. Therefore, The complexity of data generation is reduced or the air interface resources are effectively used, the data processing efficiency is improved, and the user experience is improved.
  • the database server uses the stored data (for example, sampling point ABC) data to generate the data of the location E according to the location E of the terminal device, and sends the data to the terminal device through the network device.
  • the function of "generating location E data" is implemented on the network device, and the database server transmits the data collected by the reference point (all or part of the sampling point) to the network device in advance, and The network device generates data on the location of the terminal according to the location of the terminal.
  • the data of the location of the terminal can be generated in the above embodiment, that is, generated according to the air interface status; or, regardless of the air interface status, it can be generated according to the location of the terminal device, and then part of the generated data is transmitted.
  • this embodiment can be combined with the above embodiments.
  • the data of location E generated according to the air interface status is executed by the database server, while in this embodiment, it is executed by the network device.
  • the network device For details, please refer to The above embodiments will not be repeated here.
  • the network device can send a request message to the database server to obtain more reference point data or obtain the current reference point. More reference data to generate further data on the location of the terminal device.
  • the terminal device processes (for example, renders) the received data, and displays video and/or audio to the user through the display device.
  • the processing method of the terminal device may adopt the method of the above embodiment, that is, the processing method is determined in advance according to the air interface status or the amount of data stored by the network device, and the determined processing method is used to process the received data.
  • the processing method may be determined when the data is received, which is not limited in this embodiment.
  • the terminal device receives the data of the location of the terminal device further generated by the network device, the processing result can be updated.
  • FIG. 8 is a schematic diagram of another communication method provided by an embodiment of the application. As shown in Figure 8, the method includes the following steps:
  • the database server sends the data of the first reference position to the network device.
  • the first reference position includes at least one reference point.
  • the collection points A, B, and C are taken as reference points as an example.
  • the database server stores the data collected by each collection point, where the collection points A, B, and C are reference points, and the database server stores all the data of the reference points A, B, and C.
  • the database server can send all the data of points A, B, and C to the network device, or it can send part of the data of points A, B, and C to the network device.
  • the network device receives the data of the first reference position, namely the data of points A, B, and C (all or part of the data of points A, B, and C stored in the database), and saves the received A, B, and C points Point data.
  • the network device obtains the location information of the terminal device, that is, the location E information.
  • the network device uses the data of the first reference location to generate downlink data according to the location of the terminal device, that is, the data sent to the terminal device, that is, the data of location E.
  • the method of generating the data of the position E is the same as the above description, and will not be repeated here.
  • the network device sends the downlink data (that is, the data at the location E) to the terminal device.
  • the terminal device receives the data of location E and performs the following operations:
  • the terminal device processes the downlink data (that is, the data at the position E).
  • the processing method of the data at the position E is the same as the above description, and will not be repeated here.
  • the network device may send a request message to the database server to obtain more reference position data. Or get more reference data from the current reference position to generate further data at position E, that is, perform the following operations:
  • the network device sends a request message to the database server, where the request message is used to request data of the second reference position.
  • the second reference position may be different from the first reference position, or may be the same as the first reference position.
  • the second reference position may include the first reference position, or may not include the first reference position.
  • reference point D is taken as an example.
  • the embodiment of the present application does not limit it, and may include more reference points, such as F and H.
  • the network device may determine the second reference location according to the location information of the terminal device; or the location information of the terminal device may be sent to the database server, and the database server determines the second reference location.
  • the above request message may include the terminal Location information of the device.
  • the above method further includes:
  • S870 The database server obtains the data of the second reference position.
  • the database server determines the second reference location according to the location of the terminal device, such as reference points A, B, C, and D, and obtains the data of the second reference location.
  • the database server sends the data of the second reference position to the network device, for example, sends the data of the reference points A, B, C, and D.
  • the network device receives the data of the second reference position and executes:
  • the network device uses the data of the second reference location to further generate downlink data, that is, the data of location E, according to the location of the terminal device.
  • the method of generating the data of the position E is the same as the above description, and will not be repeated here.
  • the network device sends the further generated downlink data (that is, the data of the location E) to the terminal device.
  • the terminal device repeats the above step S850 to process the further received downlink data, or combines the downlink data in steps S840 and S800, and processes the combined data.
  • the database server sends the data of the first reference location to the network server.
  • the determination of the first reference location can be implemented in different ways. The following provides examples of several implementation ways in conjunction with the accompanying drawings.
  • FIG. 9 is a schematic diagram of a first reference position determination method provided by an embodiment of this application:
  • the first implementation mode (mode A1 in Figure 9): The network device determines the possible location interval of the terminal device according to the location information previously reported by the terminal device (which can be called historical location information), and indicates to the database server that the terminal device is likely to be The location range.
  • the position interval is embodied by, for example, three-dimensional coordinate values and radius values, indicating the range of a virtual sphere where the terminal device may be located.
  • the center of the virtual sphere is determined by the three-dimensional coordinate values, and the radius is predicted by the network device.
  • the above method further includes: the network device reports the location interval information to the database server, the location interval information is used to indicate the location interval of the terminal device, and the data server determines the first reference location according to the location interval information.
  • the information of the above position interval includes the information of the center position coordinates of the terminal and the information of the radius of the position interval.
  • the network device can also send the focus angle information to the database server.
  • the focus angle is used to indicate the depth of focus, such as close-up or long-range.
  • the viewing angle information in the above embodiments is used to indicate the user's viewing angle range, and the focus angle is used to indicate the depth of focus. It is assumed that the user's viewing angle remains unchanged but the target of attention has changed, such as viewing a landscape, a close view for a while, and a distant view for a while.
  • the second way of implementation (A2 in Figure 9):
  • the information of the location interval of the terminal device is provided by the terminal device to the network device, which is transparently transmitted or parsed by the network device and then transmitted to the database server.
  • the information of the location interval is the same as the first This implementation method will not be repeated here.
  • the terminal device can also provide focus angle information to the database server.
  • the third implementation mode (mode A3 in Figure 9): the information of the location interval of the terminal device is provided by the display device to the network device, and the terminal device and the network device are transparently transmitted or parsed and then transmitted to the database server, or by the display device It is directly transmitted to the network device, and is transmitted to the database server after being transparently transmitted or parsed by the network device.
  • the information of the location interval is the same as that of the first implementation method, and will not be repeated.
  • the display device can also provide focus angle information to the database server.
  • the database server determines the first reference location.
  • the network device, terminal device, or display device may also determine the first reference location, and request the data of the first reference location from the database server.
  • the fourth implementation manner (mode B1 in FIG. 9): the network device determines the first reference location, that is, which reference point data is to be requested from the database server, and requests the data of the first reference location from the database server.
  • the above method further includes: the network device determines the first reference position, and requests the data of the first reference position from the database server.
  • the first reference position is taken as reference points A, B, C, and D as an example. Requesting the data of the first reference location from the database server may be by sending the information of the first reference location to the database server, for example, the information of A, B, C, and D. All collection points can be indexed, and the information of the first reference position can include the index of reference points A, B, C, and D.
  • the network device can also provide focus angle information to the database server.
  • the fifth implementation manner (method B2 in FIG. 9): similar to the fourth implementation manner, the difference is that the terminal device determines the first reference position, and transparently transmits the information of the first reference position to the database server through the network device. Similarly, the terminal device can also provide focus angle information to the database server.
  • the sixth implementation manner (method B3 in FIG. 9): similar to the fourth implementation manner, the difference is that the display device determines the first reference position, and transparently transmits the information of the first reference position to the database server through the network device; Or transparently transmit the information of the first reference location to the database server through the terminal device and the network device. Similarly, the display device can also provide focus angle information to the database server.
  • the database server can provide the data of the first reference position to the network device in advance.
  • the data server can also provide additional data to the network device, such as data from other collection points or other focus angles. Data, etc., are not limited in the embodiment of this application.
  • the part after S810 in Fig. 8 has relatively high requirements for real-time performance. Therefore, after the network device stores the data of the first reference position, if it receives the position information of the terminal device, it will generate the data of the location of the terminal (ie the data of position E). ) And sent to the terminal device so that the terminal device can start the rendering process. If the network device considers that the stored data is insufficient to generate the time-frequency and/or audio data of the location of the terminal, it may further request the data of the second reference location from the database server. While performing the rendering process, the terminal device waits for the data of the terminal location (that is, the data of location E) further sent by the network device. When receiving the data of the terminal location further sent by the network device, the rendering is completed, and the display device sends the data to the user display.
  • the network device when the stored data is not enough to generate the time-frequency and/or audio data of the terminal location, the network device still generates and transmits part of the data first. In this way, the terminal device can be prepared for rendering based on this part of the data. When further data arrives, rendering processing can be completed more quickly and data processing efficiency can be improved.
  • the generated data is layered according to priority, or multiple layers of data with different priorities are generated, and then according to the state of the air interface, it is determined which layer or layers of data are to be transmitted. The higher the priority layer, the more priority the data of that layer is transmitted.
  • the amount or method of generating data is determined according to the state of the air interface and the data stored by the network device.
  • the terminal device may be notified of the air interface status or the amount of stored data, so that the terminal device can prepare for data processing in advance. For details, refer to the above embodiments, which will not be repeated here.
  • the data provided by the data server to the network device and the data of the terminal device provided by the network device are different in content, and the amount of data is also very different.
  • the core network counts how much traffic the terminal device consumes and charges them. In this way, the charging method is inconsistent with the actual air interface consumption. Therefore, in the embodiment of the present application, after the network device transmits data to the terminal device, it can report the amount of data transmitted by the air interface to the charging device of the core network.
  • the charging device counts the terminal based on the amount of data reported by the network device.
  • the amount of data transmitted by the device over the air interface is billed. In this way, the billing is more reasonable.
  • connections between the network equipment and the data server, and between the database server and the data acquisition device are shown in a straight line, but the connections between them may pass through multiple routers, gateways, etc.
  • the network device and the database server may be connected through a core network device, or may be connected through other network elements, which is not limited in the embodiment of the present application.
  • the database server or the network device generates the data of the location E according to the location E of the terminal device.
  • the function of "generating data of position E" is implemented in the terminal device.
  • the difference from the embodiment shown in FIG. 8 is that the data of the first reference position is further processed by the network device. The data is sent to the terminal device, and the terminal device generates the data of the position E based on the data of the first reference position.
  • the further request for the data of the second reference position it can be initiated by the network device or by the terminal device.
  • FIG. 10 is a schematic diagram of another communication method provided by an embodiment of the application. As shown in Figure 10, the method includes the following steps:
  • the database server sends the first data of the first reference position to the network device.
  • the first reference position includes at least one reference point.
  • the collection points A, B, and C are taken as reference points as an example.
  • the network device receives the first data of the first reference position.
  • the first data of the first reference position sent by the database server to the network device may be all the data of the first reference position stored in the server or may be part of the data of the first reference position stored in the server
  • the database server stores the data of reference points A, B, and C, and the database server can send all the data of reference points A, B, and C to the network device, or , Can be partially sent to network devices.
  • the network device sends the second data of the first reference position to the terminal device, where the second data includes all or part of the first data.
  • the network device may send all or part of the received first data of the first reference position to the terminal device. For example, when the air interface status does not allow all transmissions, the network device transmits part of the first data at the first reference position to the terminal device.
  • the terminal device receives the second data of the first reference position from the network device, and stores the second data.
  • the terminal device uses the second data of the first reference position to generate the data of the location of the terminal device, that is, the data of the location E, according to the location of the terminal device.
  • the terminal device further processes the data of the position E, and provides it to the display device for display to the user.
  • the database server can transmit all or part of the stored data of the first reference position to the network device, and the specific transmission amount can be determined according to the capacity of the transmission channel between the database server and the network device.
  • the network device may transmit all or part of the received first data at the first reference position to the terminal device, and the specific transmission amount may be determined according to the air interface state.
  • the terminal device When the terminal device generates the data of the position E, if it considers that the information of the second data of the first reference position currently stored is too little to achieve the required accuracy, it can request more information from the network device, such as requesting the second reference position
  • the second reference position may be the same as the first reference position, or may be the same as the first reference position.
  • the second reference position may include the first reference position, and may also include a reference point other than the first reference position.
  • the above method also includes:
  • the terminal device sends a first request message to the network device, where the first request message is used to request data of the second reference position.
  • the terminal device determines the second reference position according to its position, and indicates the second reference position in the first request message. That is, the first request message includes information indicating the second reference position (S1051).
  • the network device determines the second reference location according to the information indicating the second reference location, and sends the stored data of the second reference location to the terminal device (S1052). If in step S101 above, in addition to providing the data of the first reference position, the database server also provides the data of the second reference position, the network device may send all or part of the stored data of the second reference position to the terminal device.
  • the network device may further request the data of the second reference location from the database server.
  • the network device indicates the second reference location to the database server, so that the database server provides all or part of the data of the second reference location stored in the network device according to the second reference location.
  • the network device determines that it stores the data of part of the reference points of the second reference position, and requests the data of the remaining reference points from the database server.
  • the network device stores data of reference points A, B, and C, and the network device requests the data of reference point D from the database server, and the database server sends all or part of the stored data of reference point D to the network device.
  • the terminal device sends its location information to the network device (S1061), and the network device determines the second reference location (S1062) according to the location information of the terminal device (S1062), and stores it The data of the second reference position is sent to the terminal device (S1063). If in step S910 above, in addition to providing the data of the first reference location, the database server also provides the data of the second reference location, the network device may send all or part of the stored data of the second reference location to the terminal device. If the network device does not store the data of the second reference location or the stored data of the second reference location is insufficient, the network device may further request the data of the second reference location from the database server.
  • the network device indicates the second reference location to the database server, so that the database server provides the network device with all or part of the stored data of the second reference location according to the second reference location.
  • the network device sends the location information of the terminal device to the database server, so that the database server determines the second reference location according to the location information of the terminal device, and provides the network device with all or part of its stored data of the second reference location .
  • the network device determines that it stores the data of part of the reference points of the second reference position, and requests the data of the remaining reference points from the database server.
  • the network device stores data of reference points A, B, and C, and the network device requests the data of reference point D from the database server, and the database server sends all or part of the stored data of reference point D to the network device.
  • the terminal device sends its location information to the network device (S1071), and the network device sends the location information of the terminal device to the database server (S1072), where the network device can be transparent
  • the location information of the terminal device is transmitted, and the network device does not know the location of the terminal device at this time; or the location information can be transmitted to the data server after parsing, and the network device can know the location of the terminal device at this time.
  • the database server determines the second reference location according to the location information of the terminal device (S1073), and provides all or part of the stored data of the second reference location to the network device according to the second reference location (S1074).
  • the location information of the terminal device is the same as in the above embodiment, and will not be repeated here.
  • the terminal device provides its location information to the network device, and the network device further provides it to the database server, so that both the network device and the database server can make judgments and continue to supplement those that meet the accuracy requirements.
  • the network equipment uses the stored data to generate part of the data of the location of the terminal device based on the location information of the terminal device, and provides it to the terminal device.
  • the terminal device can process this part of the data first; in addition, the database server uses the location information of the terminal device.
  • the stored data generates another part of the data at the location of the terminal device and provides it to the terminal device.
  • the terminal device can further update the received data, and after further processing, provide it to the display device and display it to the user.
  • the network equipment determines the data to be transmitted to the terminal device according to the air interface status, but does not take into account the terminal device's own conditions, such as overheating or low power of the terminal device.
  • the terminal device reports its status information to the network device. Without affecting the user experience, the network device adjusts the amount of data transmitted to the terminal device according to the status information. .
  • FIG. 11 is a schematic diagram of another communication method provided by an embodiment of the application. As shown in Figure 11, the method includes the following steps:
  • S111 The terminal device sends status indication information to the network device, where the status indication information is used to indicate the status of the terminal device.
  • the network device receives the status indication information.
  • the terminal device sends status indication information to the network device according to its own status.
  • the status of the terminal device includes one or more of the following statuses: power, processor occupancy rate, memory occupancy rate, etc. heat.
  • the heat is the heat measured by the heat sensor.
  • the terminal device when the power of the terminal device is lower than or equal to a preset value, the terminal device sends a low power indication to the network device.
  • the terminal device Taking the occupancy rate of the processor or the occupancy rate of the memory for example, when the occupancy rate of the processor or the memory occupancy rate of the terminal device is higher than or equal to a preset value, the terminal device sends a high occupancy rate indication to the network device.
  • the terminal device sends a high-calorie indication to the network device.
  • the terminal device may indicate its recommended rate to the network device, that is, in addition to the status indication information, the terminal device also sends rate indication information to the network device.
  • the rate indication information is used to indicate the data transmission rate recommended by the terminal device or the recommended rate. The value at which the data transfer rate drops.
  • the network device adjusts the data transmission rate to the terminal device based on the received rate indication information.
  • the status indication information and the rate indication information may be sent at the same time, for example, carried in the same message, or the terminal device may only send the rate indication information, and the network device directly adjusts the data transmission rate to the terminal device according to the rate indication information.
  • each rate is indicated by an index value.
  • the above rate indication information may be an index value of a rate.
  • S112 The network device adjusts the data transmission rate to the terminal device according to the status indication information.
  • the network device when the network device receives the status indication information, the network device reduces the data transmission rate to the terminal device.
  • the rate When the status indication is received, the rate will be lowered by a step value; when the status indication information is received again, the rate will decrease by a step value, and so on.
  • a preset value can be set, and when the status indication information is received, the rate can be reduced to the preset value.
  • the network device adjusts the data transmission rate to the terminal device based on the received rate indication information.
  • the network device may notify the database server and/or the terminal device of the adjusted rate, which is the same as the description of the embodiment shown in FIG. 6, which is equivalent to notifying the database server and/or the terminal device of the adjusted air interface status.
  • the database server can adjust the algorithm for generating data at the location of the terminal device according to the adjusted rate, and reduce the amount of generated data to adapt to the reduced rate;
  • the terminal device can adjust the data processing method according to the adjusted rate, for example, The rendering algorithm is adjusted, and the received data is rendered in depth to reduce the impact on the user.
  • the above method also includes:
  • the network device sends information indicating the adjusted rate to the database server.
  • the database server receives information indicating the adjusted rate.
  • S114 The database server generates data of the terminal device according to the adjusted rate. And the data of the terminal device is sent to the network device, so as to be sent to the terminal device through the network device.
  • S115 The network device sends information indicating the adjusted rate to the terminal device.
  • the network device may not perform step S103, and the terminal device can adjust the data processing mode according to the recommended rate.
  • S116 The terminal device processes the data received by the terminal device according to the adjusted rate.
  • the data processed in step S116 above may be the data generated in step S114, or it may be part of the data generated in step S114, or it may be the data received by the terminal device before or after step S114. No restrictions.
  • the data of the location of the terminal device may be generated by the database server, or may be generated by the network device.
  • the network device When generated by the network device, another communication method provided by the embodiment of the present application is shown in FIG. 12. The method includes the following steps:
  • the terminal device sends status indication information to the network device, where the status indication information is used to indicate the status of the terminal device.
  • the network device receives the status indication information.
  • step S121 is the same as the above step S111, and the terminal device may also send rate indication information, or the status indication information may be replaced by rate indication information.
  • S122 The network device adjusts the data transmission rate to the terminal device according to the status indication information.
  • S123 The network device generates data of the terminal device according to the adjusted rate.
  • the network device may also perform one or all of the above steps S113 and S115, and its subsequent terminal device may perform step S116.
  • the above step S113 may be replaced by the network device sending the reference frame requirement information to the database server.
  • the demand information of the reference frame is used to indicate the period for the database server to send the reference frame, so that the database server can periodically send the reference frame according to the demand information of the reference frame.
  • a reference frame is a frame that can be decoded independently by the receiver without referring to other frames. If the air interface status is relatively poor, the network device may require more frequent transmission of reference frames.
  • the network device can also request the database server to send the reference frame once, or can request it once and send it once.
  • the database server performs the following operations according to the received information indicating the adjusted rate or reference frame requirement information:
  • the database server reduces the amount of data sent to the network device or the amount of reference frame sent to the network device according to the information indicating the adjusted rate or the reference frame requirement information, that is, sends the adjusted data to the network device the amount.
  • the data processed in the above step S116 may be the data generated in the step S123, or may be the data received by the terminal device before or after the step S123, which is not limited in the embodiment of the present application.
  • the data of the location of the terminal device may be generated by the terminal device.
  • the terminal device When generated by the terminal device, another communication method provided by the embodiment of the present application is shown in FIG. 13, and the method includes the following steps:
  • the terminal device sends status indication information to the network device, where the status indication information is used to indicate the status of the terminal device.
  • the network device receives the status indication information.
  • step S131 is the same as the above S111, and the terminal device may also send rate indication information, or the status indication information may be replaced by rate indication information.
  • S132 The network device adjusts the data transmission rate to the terminal device according to the adjusted rate.
  • the data transmitted to the terminal device is not the data of the location of the terminal device, but the data of the reference location.
  • the process of obtaining the data of the reference position is the same as in the above embodiment, and will not be repeated here.
  • reference positions before and after adjustment may be the same or different.
  • first reference position in the above embodiment and after adjustment, it is the first reference position or the second reference position in the above embodiment.
  • the network device may also perform one or all of the above steps S113 and S115, and its subsequent terminal device may perform step S116.
  • the processing of the data by the terminal device may be executed in the display device.
  • the terminal device provides the received data to the display device, which is processed and displayed by the display device.
  • the display device can be understood as a kind of terminal device.
  • a communication device that includes units (or means) for implementing each step performed by the terminal device in any of the above methods.
  • another communication device is also provided, including a unit (or means) for implementing each step performed by the network device in any of the above methods.
  • another communication device is also provided, including a unit (or means) for implementing each step executed by the database server in any of the above methods.
  • FIG. 14 is a schematic diagram of a communication device provided by an embodiment of the application.
  • the device is used in a terminal device to execute any method executed by the terminal device in any of the above embodiments.
  • the device 1400 includes a receiving unit 1410, a sending unit 1420, and a processing unit 1430.
  • the receiving unit 1410 is configured to receive from the network device any information sent from any one of the above embodiments to the terminal device
  • the sending unit 1420 is configured to send any one type of information sent from the terminal to the network device in any of the above embodiments .
  • the processing unit 1430 processes the data according to the air interface status or the amount of data stored by the network device when the receiving unit 1410 receives the information used to indicate the air interface status or the amount of data stored by the network device.
  • FIG. 15 is a schematic diagram of another communication device provided by an embodiment of the application.
  • the device is used in a network device, and is used to execute any method executed by the network device in any of the above embodiments.
  • the device 1500 includes a first communication unit 1510, a second communication unit 1520 and a processing unit 1530.
  • the first communication unit 1510 is used to communicate with a terminal device, receive data or information from the terminal device, or send data or information to the terminal device.
  • the first communication unit 1520 is used to communicate with the database server, receive data or information from the database server, or send data or information to the database server.
  • the processing unit 1530 is used to perform operations other than receiving and sending, such as determining the state of the air interface or the amount of stored data.
  • the timer in the running state includes at least one of a first timer, a second timer, and a third timer.
  • the description of these timers is the same as in the above method embodiment, and will not be repeated.
  • FIG. 16 is a schematic diagram of another communication device provided by an embodiment of the application.
  • the device is used in a database server to execute any method executed by the database server in any of the above embodiments.
  • the apparatus 1600 includes a communication unit 1610 and a processing unit 1620.
  • the communication unit 1610 is used for network device communication, receiving data or information from the network device, or sending data or information to the network device.
  • the processing unit 1620 is used to perform operations other than receiving and sending, for example, generating data according to the state of the air interface and the location of the terminal device.
  • each unit in the device can be all implemented in the form of software called by processing elements; they can also be all implemented in the form of hardware; part of the units can also be implemented in the form of software called by the processing elements, and some of the units can be implemented in the form of hardware.
  • each unit can be a separate processing element, or it can be integrated in a certain chip of the device for implementation.
  • it can also be stored in the memory in the form of a program, which is called by a certain processing element of the device and executed Features.
  • all or part of these units can be integrated together or implemented independently.
  • the processing element described here can also become a processor, which can be an integrated circuit with signal processing capabilities.
  • each step of the above method or each of the above units may be implemented by an integrated logic circuit of hardware in a processor element or implemented in a form of being called by software through a processing element.
  • the unit in any of the above devices may be one or more integrated circuits configured to implement the above methods, for example: one or more application specific integrated circuits (ASICs), or, one or Multiple microprocessors (digital singnal processors, DSPs), or, one or more field programmable gate arrays (Field Programmable Gate Arrays, FPGAs), or a combination of at least two of these integrated circuits.
  • ASICs application specific integrated circuits
  • DSPs digital singnal processors
  • FPGAs Field Programmable Gate Arrays
  • the unit in the device can be implemented in the form of a processing element scheduler
  • the processing element can be a general-purpose processor, such as a central processing unit (CPU) or other processors that can call programs.
  • CPU central processing unit
  • these units can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • the above receiving unit is an interface circuit of the device for receiving signals from other devices.
  • the receiving unit is an interface circuit used by the chip to receive signals from other chips or devices.
  • the above unit for sending is an interface circuit of the device for sending signals to other devices.
  • the sending unit is an interface circuit used by the chip to send signals to other chips or devices.
  • FIG. 17 is a schematic structural diagram of a terminal provided in an embodiment of the application.
  • the terminal device in the above embodiment may be located in the terminal or the terminal, and is used to implement the operation of the terminal device in the above embodiment.
  • the terminal includes: an antenna 1710, a radio frequency part 1720, and a signal processing part 1730.
  • the antenna 1710 is connected to the radio frequency part 1720.
  • the radio frequency part 1720 receives the information sent by the network device through the antenna 1710, and sends the information sent by the network device to the signal processing part 1730 for processing.
  • the signal processing part 1730 processes the terminal information and sends it to the radio frequency part 1720
  • the radio frequency part 1720 processes the terminal information and sends it to the network device via the antenna 1710.
  • the signal processing part 1730 may include a modem subsystem, which is used to process the various communication protocol layers of the data; it may also include a central processing subsystem, which is used to process the terminal operating system and the application layer; in addition, it may also include Other subsystems, such as multimedia subsystems, peripheral subsystems, etc., where the multimedia subsystem is used to control the terminal camera, screen display, etc., and the peripheral subsystem is used to realize the connection with other devices.
  • the modem subsystem can be a separate chip.
  • the above apparatus for the terminal may be located in the modem subsystem.
  • the modem subsystem may include one or more processing elements 1731, for example, including a main control CPU and other integrated circuits.
  • the modem subsystem may also include a storage element 1732 and an interface circuit 1733.
  • the storage element 1732 is used to store data and programs, but the program used to execute the method executed by the terminal in the above method may not be stored in the storage element 1732, but stored in a memory outside the modem subsystem, using When the modem subsystem is loaded and used.
  • the interface circuit 1733 is used to communicate with other subsystems.
  • the above device for the terminal may be located in the modem subsystem, the modem subsystem may be implemented by a chip, the chip includes at least one processing element and an interface circuit, wherein the processing element is used to execute any of the methods performed by the above terminal In each step, the interface circuit is used to communicate with other devices.
  • the unit for the terminal to implement each step in the above method can be implemented in the form of a processing element scheduler.
  • the device for the terminal includes a processing element and a storage element, and the processing element calls the program stored by the storage element to execute the above The method executed by the terminal in the method embodiment.
  • the storage element may be a storage element whose processing element is on the same chip, that is, an on-chip storage element.
  • the program used to execute the method executed by the terminal in the above method may be a storage element on a different chip from the processing element, that is, an off-chip storage element.
  • the processing element calls or loads a program from the off-chip storage element on the on-chip storage element to call and execute the method executed by the terminal in the above method embodiment.
  • the unit that the terminal implements each step in the above method may be configured as one or more processing elements, and these processing elements are arranged on the modem subsystem, where the processing elements may be integrated circuits, such as : One or more ASICs, or, one or more DSPs, or, one or more FPGAs, or a combination of these types of integrated circuits. These integrated circuits can be integrated together to form a chip.
  • the units of the terminal that implement the steps in the above method can be integrated together and implemented in the form of a system-on-a-chip (SOC), and the SOC chip is used to implement the above method.
  • SOC system-on-a-chip
  • At least one processing element and storage element can be integrated in the chip, and the above terminal execution method can be implemented by the processing element calling the stored program of the storage element; or, at least one integrated circuit can be integrated in the chip for realizing the above terminal execution Or, can be combined with the above implementations, the functions of some units are implemented in the form of calling programs by processing elements, and the functions of some units are implemented in the form of integrated circuits.
  • the above apparatus for a terminal may include at least one processing element and an interface circuit, wherein at least one processing element is used to execute any of the methods performed by the terminal provided in the above method embodiments.
  • the processing element can execute part or all of the steps executed by the terminal in the first way: calling the program stored in the storage element; or in the second way: combining instructions through the integrated logic circuit of the hardware in the processor element Part or all of the steps executed by the terminal are executed in a manner; of course, part or all of the steps executed by the terminal may be executed in combination with the first manner and the second manner.
  • the processing element here is the same as the above description, and it may be a general-purpose processor, such as a CPU, or one or more integrated circuits configured to implement the above methods, such as: one or more ASICs, or, one or more micro-processing DSP, or, one or more FPGAs, etc., or a combination of at least two of these integrated circuit forms.
  • a general-purpose processor such as a CPU
  • integrated circuits configured to implement the above methods, such as: one or more ASICs, or, one or more micro-processing DSP, or, one or more FPGAs, etc., or a combination of at least two of these integrated circuit forms.
  • the storage element can be a memory or a collective term for multiple storage elements.
  • FIG. 18 is a schematic structural diagram of a network device provided by an embodiment of this application. It is used to implement the operation of the network device in the above embodiment.
  • the network equipment includes: an antenna 1810, a radio frequency device 1820, and a baseband device 1830.
  • the antenna 1810 is connected to the radio frequency device 1820.
  • the radio frequency device 1820 receives the information sent by the terminal through the antenna 1810, and sends the information sent by the terminal to the baseband device 1830 for processing.
  • the baseband device 1830 processes the terminal information and sends it to the radio frequency device 1820, and the radio frequency device 1820 processes the terminal information and sends it to the terminal via the antenna 1810.
  • the baseband device 1830 may include one or more processing elements 1831, for example, including a main control CPU and other integrated circuits.
  • the baseband device 1830 may also include a storage element 1831 and an interface 1833.
  • the storage element 1832 is used to store programs and data; the interface 1833 is used to exchange information with the radio frequency device 1820.
  • the interface is, for example, a common public radio interface. , CPRI).
  • the above device for network equipment may be located in the baseband device 1830.
  • the above device for network equipment may be a chip on the baseband device 1830.
  • the chip includes at least one processing element and an interface circuit, wherein the processing element is used to execute the above network. For each step of any method executed by the device, the interface circuit is used to communicate with other devices.
  • the unit for the network device to implement each step in the above method can be implemented in the form of a processing element scheduler.
  • the device for the network device includes a processing element and a storage element, and the processing element calls the program stored by the storage element to Perform the method performed by the network device in the above method embodiment.
  • the storage element may be a storage element with the processing element on the same chip, that is, an on-chip storage element, or a storage element on a different chip from the processing element, that is, an off-chip storage element.
  • the unit of the network device that implements each step in the above method may be configured as one or more processing elements, and these processing elements are arranged on the baseband device.
  • the processing elements here may be integrated circuits, such as one Or multiple ASICs, or, one or more DSPs, or, one or more FPGAs, or a combination of these types of integrated circuits. These integrated circuits can be integrated together to form a chip.
  • the units for the network equipment to implement each step in the above method can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • the baseband device includes the SOC chip for implementing the above method.
  • At least one processing element and storage element can be integrated in the chip, and the processing element can call the stored program of the storage element to implement the method executed by the above network device; or, at least one integrated circuit can be integrated in the chip to implement the above network The method executed by the device; or, it can be combined with the above implementations.
  • the functions of some units are implemented in the form of calling programs by processing elements, and the functions of some units are implemented in the form of integrated circuits.
  • the above apparatus for a network device may include at least one processing element and an interface circuit, wherein at least one processing element is used to execute any of the methods performed by the network device provided in the above method embodiments.
  • the processing element can execute part or all of the steps executed by the network device in the first way: calling the program stored in the storage element; or in the second way: combining instructions through the integrated logic circuit of the hardware in the processor element Part or all of the steps performed by the network device are executed in the method; of course, part or all of the steps executed by the network device above can also be executed in combination with the first method and the second method.
  • the processing element here is the same as the above description, and it may be a general-purpose processor, such as a CPU, or one or more integrated circuits configured to implement the above methods, such as: one or more ASICs, or, one or more micro-processing DSP, or, one or more FPGAs, etc., or a combination of at least two of these integrated circuit forms.
  • a general-purpose processor such as a CPU
  • integrated circuits configured to implement the above methods, such as: one or more ASICs, or, one or more micro-processing DSP, or, one or more FPGAs, etc., or a combination of at least two of these integrated circuit forms.
  • the storage element can be a memory or a collective term for multiple storage elements.
  • FIG. 19 is a schematic structural diagram of a database server provided by an embodiment of the application. It may be the database server in the above embodiment, and is used to implement the operation of the database server in the above embodiment.
  • the network device includes: a processor 1910, a memory 1920, and an interface 1930, and the processor 1910, the memory 1920, and the interface 1930 are signal-connected.
  • the above method for the database server can be implemented by the processor 1910 calling a program stored in the memory 1920. That is, the above apparatus for a database server includes a memory and a processor, and the memory is used to store a program, and the program is called by the processor to execute the method in the above method embodiment.
  • the processor here may be an integrated circuit with signal processing capability, such as a CPU.
  • the above method for the database server can be implemented by one or more integrated circuits configured to implement the above method. For example: one or more ASICs, or, one or more microprocessors DSP, or, one or more FPGAs, etc., or a combination of at least two of these integrated circuit forms. Or, the above implementations can be combined.
  • “a plurality of” refers to two or more.
  • “And/or” describes the association relationship of the associated object, which means that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone.
  • a and/or B which can mean: A alone exists, A and B exist at the same time, and B exists alone.
  • “a device” means to one or more such devices.
  • At least one (at least one of)" means one or any combination of subsequent associated objects, for example, "at least one of A, B and C" includes A, B, C, AB, AC, BC, or ABC. Determining Y based on X does not mean determining Y based only on X, but also based on X and other information.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Multimedia (AREA)
  • Databases & Information Systems (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种通信方法被提供,以提高用户沉浸式体验。在一种实现中,网络设备可以将空口的信息提供给服务器,从而服务器在生成终端装置所在位置的数据时,可以知道空口的信息,从而根据该空口的信息优化生成数据的过程,从而加快生成数据的处理速度,减少处理时延,进而提高用户体验。在另一种实现中,网络设备可以将空口的信息提供给终端装置,如此终端装置能够预先估计或确定网络设备发送的数据量,如此,可以提前确定处理方式,准备处理,从而加快处理速度,降低处理时延,提高用户体验。

Description

通信方法及装置 技术领域
本申请实施例涉及通信技术领域,特别是涉及一种通信方法及装置。
背景技术
随着通信技术的发展,用户通过电子设备所能获得的体验越来越丰富。例如,用户通过眼镜或头盔等电子设备可以获得沉浸式体验,这种沉浸式体验能让用户获得身临其境的感受。然后,沉浸式体验有很大的数据量需求,且对数据的传输时延要求也很高。以演唱会的直播为例,与3D视频相比,这种沉浸式的视频,从观众所在的物理位置出发,向观众展示了身临其境的感受。观众的位置变化,所看到和/或听到的视频和/或音频内容也随之改变。
可见,这种通信场景对数据的传输时延提出了较高的要求,而现有的无线通信技术无法满足该场景对传输时延的要求。
发明内容
本申请实施例提供一种通信方法,以期提高用户体验。
第一方面,提供一种通信方法,在该方法中,网络设备确定空口状态或存储的数据量,并向终端装置发送用于指示空口状态或用于指示网络设备存储的数据量的信息。进一步的,网络设备向终端装置发送数据,其中信息指示空口状态或网络设备存储的数据量用于确定该数据的处理方式。
相应的,终端从网络设备指示空口状态或用于指示网络设备存储的数据量的信息,并根据空口状态或网络设备存储的数据量,处理从网络设备接收的数据。
第二方面,提供一种通信方法,在该方法中,网络设备确定空口状态,并向数据库服务器发送用于指示空口状态的信息;进而从数据库服务器获取根据该空口状态生成的数据并将接收的数据发送给终端装置。
相应的,数据库服务器从网络设备接收用于指示空口状态的信息以及终端装置的位置信息,根据空口状态和终端装置的位置,生成数据,并向网络设备发送该数据。
在以上各个方面,网络设备发送给终端装置的用于指示空口状态或用于指示网络设备存储的数据量的信息,通过无线资源控制(RRC)消息、分组数据汇聚协议控制协议数据单元(PDCP control PDU)、或媒体接入控制控制元素(MAC CE)承载。
当该信息通过MAC CE承载时,该MAC CE位于MAC子PDU中,MAC子PDU包括MAC子头和该MAC CE,MAC子头包括逻辑信道标识(LCID),LCID取预设值,该预设值用于指示MAC CE包括以上信息。
可选的,MAC CE还包括时间信息,用于指示数据在时间信息所指示的时间内传输。或者,MAC CE不包括时间信息,终端装置从网络设备接收RRC消息,该RRC消息包括时间信息,用于指示数据在该时间信息所指示的时间内传输。
可选的,网络设备发送给终端装置的用于指示空口状态或用于指示网络设备存储 的数据量的信息(即该MAC CE)包括至少一个层信息和至少一个信元,每个信元对应一个层信息,用于指示该层信息所指示的层的状态或数据量。
终端装置可以周期性的从网络设备接收用于指示空口状态或用于指示网络设备存储的数据量的信息。或者,可以在网络设备存储的数据量大于或等于阈值时,从网络设备接收该信息。
终端装置还可以向网络设备发送第一位置信息,该第一位置信息用于指示终端装置的位置。网络设备可以进一步将该位置信息提供给数据库服务器,由数据库服务器根据该位置信息生成终端装置所在位置的数据;或者,网络设备可以根据该位置信息生成终端装置所在位置的数据;或者,网络设备可以进一步将该位置信息提供给数据库服务器,由数据库服务器根据该位置信息确定是否要提供更多数据给终端装置;或者,网络设备可以根据该位置信息确定是否要提供更多数据给终端装置。此时,网络设备或数据库服务器根据位置信息确定是否提供更多参考位置的数据或当前参考位置的更多数据给终端装置。当前参考位置可以由终端装置确定,例如终端装置还可以向数据库服务器发送第二位置信息,该第二位置信息用于指示参考位置。
终端装置还可以向网络设备发送状态指示信息,该状态指示信息用于指示终端装置的状态。以便网络设备根据终端的状态调整数据传输的速率。
第三方面,提供一种通信方法,在该方法中,网络设备从数据库服务器获取参考位置的数据,且从终端装置接收位置信息,该位置信息用于指示终端装置的位置。网络设备根据终端装置的位置,利用参考位置的数据,生成向终端装置发送的下行数据。
第四方面,提供一种通信装置,包括用于执行以上各个方面中任一种实现方式的各个步骤的单元或手段(means)。
第五方面,提供一种通信装置,包括处理器和接口电路,所述处理器用于通过接口电路与其它装置通信,并执行以上各个方面中任一种实现方式提供的方法。该处理器包括一个或多个。
第六方面,提供一种通信装置,包括处理器,用于调用存储器中存储的程序,以以执行以上各个方面中任一种实现方式提供的方法。该存储器可以位于该装置之内,也可以位于该装置之外。且该处理器包括一个或多个。
以上通信装置位于终端,网络设备,或数据库服务器。
第七方面,提供一种计算机程序,该程序在被处理器调用时,以上各个方面中任一种实现方式提供的方法被执行。
第八方面,提供一种计算机可读存储介质,包括程序,该程序在被处理器调用时,以上各个方面中任一种实现方式提供的方法被执行。
附图说明
图1为本申请实施例提供的一种通信系统的示意图;
图2为本申请实施例提供的一种协议架构的示意图;
图3为本申请实施例提供的一种网络架构的示意图;
图4为本申请实施例提供的另一种网络架构的示意图;
图5为本申请实施例提供的一种通信流程的示意图;
图6为本申请实施例提供的一种通信方法的示意图;
图7为本申请实施例提供的几种MAC子PDU的格式示意图;
图8为本申请实施例提供的另一种通信方法的示意图;
图9为本申请实施例提供的第一参考位置确定方法的示意图;
图10为本申请实施例提供的另一种通信方法的示意图;
图11为本申请实施例提供的又一种通信方法的示意图;
图12为本申请实施例提供的又一种通信方法的示意图;
图13为本申请实施例提供的又一种通信方法的示意图;
图14为本申请实施例提供的一种通信装置的示意图;
图15为本申请实施例提供的另一种通信装置的示意图;
图16为本申请实施例提供的又一种通信装置的示意图;
图17为本申请实施例提供的一种终端的结构示意图;
图18为本申请实施例提供的一种网络设备的结构示意图;
图19为本申请实施例提供的数据库服务器的结构示意图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的其它实施例,都属于本申请保护的范围。
随着通信技术的发展,用户通过电子设备所能获得的体验越来越丰富。例如,用户通过眼镜或头盔等电子设备可以获得沉浸式体验,这种沉浸式体验能让用户获得身临其境的感受。下面以图1为例,描述一种能提供沉浸式服务的通信系统。
图1为本申请实施例提供的一种通信系统的示意图。如图1所示,在该通信系统中,终端装置110通过无线网络与其它装置通信,该无线网络包括无线接入网(radio access network,RAN)和核心网(CN),其中RAN用于将终端接入到无线网络,CN用于对终端进行管理并提供与外网通信的网关。该无线网络包括网络设备120,该网络设备120例如为RAN设备。网络设备120与数据库130连接,该数据库130可以位于网络设备120之中,也可以位于网络设备120之外。当数据库130位于网络设备120之外时,网络设备120与数据库130的连接可以是直接连接,也可以是间接连接,所谓间接连接即通过其他设备的连接,例如通过CN设备或网关连接,此时数据库130可以位于服务器,该服务器称为数据库服务器。此外,网络设备120和数据库130的连接可以通过云技术实现,云技术使得区域内的硬件、软件、网络等资源共享,如此,网络设备120可以快速的访问数据库130。
环境100中具有至少一个采集点(又可以称为采样点),在此,以采集点A,B,C为例,本申请不限制采集点的数量和位置。采集点A,B,C处设置有数据采集装置,例如摄像头,数据采集装置采集到的数据形成数据集,存放在数据库130中。网络设备120获取终端装置110的位置E,并将该位置E通知给数据库服务器,数据库服务器根据位置E,利用数据库中存储的数据,生成位置E的数据(例如,音频和视频数据)传输给网络设备120,网络设备120将位置E的数据传输给终端装置110,终端装置110收到的网络设备120发送的数据,对该数据进行渲染,生成位置E的图像和/ 或音频,通过显示设备140展示给用户。
在该通信系统中,用户的位置,即终端装置110的位置是可以变化的,而对于其位置的变化,希望可以获得实时的数据更新,以为用户提供良好的体验,因此,对数据传输的时延提出了较高的要求。
在本申请的以上或以下实施例中:
终端装置110可以是终端,或位于终端内的装置(例如终端内的芯片),其中终端又称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、或移动终端(mobile terminal,MT)等,是一种向用户提供数据连通性的设备,例如,具有无线连接功能的手持式设备或车载设备等。目前,终端的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、或智慧家庭(smart home)中的无线终端等。
网络设备120是无线网络中的设备,例如将终端接入到无线网络的RAN节点。目前,RAN节点的举例为:gNB、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home eNodeB,或home Node B)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wi-Fi)接入点(access point,AP)等。在一种网络结构中,网络设备可以为集中单元(centralized unit,CU)节点、或分布单元(distributed unit,DU)节点、或包括CU节点和DU节点的RAN设备。
请参考图2,其为本申请实施例提供的一种协议架构的示意图。如图2所示,RAN设备和终端装置之间的通信遵循一定的协议层架构。例如控制面协议层架构可以包括无线资源控制(radio resource control,RRC)层、分组数据汇聚协议(packet data convergence protocol,PDCP)层、无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理层等协议层的功能。用户面协议层架构可以包括PDCP层、RLC层、MAC层和物理层等协议层的功能;在一种实现中,PDCP层之上还可以包括业务数据适配(service data adaptation protocol,SDAP)层,物理层可以称为层1,PDCP层到MAC层可以称为层2。SDAP层可以归为层2,或者可以不归为层2,。
请参考图3,其为本申请实施例提供的一种网络架构的示意图。如图3所示,该网络架构包括CN设备和RAN设备。其中RAN设备包括基带装置和射频装置,其中基带装置可以由一个节点实现,也可以由多个节点实现,射频装置可以从基带装置拉远独立实现,也可以集成基带装置中,或者部分拉远部分集成在基带装置中。例如,射频装置包括射频拉远单元(remote radio unit,RRU),基带装置包括BBU,RRU相对于BBU拉远布置。
图2所示协议层的功能在RAN设备中可以由一个节点实现,或者可以由多个节点实现;例如,在一种演进结构中,RAN设备可以包括集中单元(centralized unit,CU)和分布单元(distributed unit,DU),多个DU可以由一个CU集中控制。如图3所示,CU和DU可以根据无线网络的协议层划分,例如PDCP层及以上协议层的功能设置在CU,PDCP以下的协议层,例如RLC层和MAC层等的功能设置在DU。
这种协议层的划分仅仅是一种举例,还可以在其它协议层划分,例如在RLC层划分,将RLC层及以上协议层的功能设置在CU,RLC层以下协议层的功能设置在DU;或者,在某个协议层中划分,例如将RLC层的部分功能和RLC层以上的协议层的功能设置在CU,将RLC层的剩余功能和RLC层以下的协议层的功能设置在DU。此外,也可以按其它方式划分,例如按时延划分,将处理时间需要满足时延要求的功能设置在DU,不需要满足该时延要求的功能设置在CU。
此外,射频装置可以拉远,不放在DU中,也可以集成在DU中,或者部分拉远部分集成在DU中,在此不作任何限制。
请继续参考图4,相对于图3所示的架构,还可以将CU的控制面(CP)和用户面(UP)分离,分成不同实体来实现,分别为控制面CU实体(CU-CP实体)和用户面CU实体(CU-UP实体)。
在以上网络架构中,CU产生的信令可以通过DU发送给终端装置,或者终端装置产生的信令可以通过DU发送给CU。DU可以不对该信令进行解析而直接通过协议层封装而透传给终端装置或CU。以下实施例中如果涉及这种信令在DU和终端装置之间的传输,此时,DU对信令的发送或接收包括这种场景。例如,RRC或PDCP层的信令最终会处理为PHY层的信令发送给终端装置,或者,由接收到的PHY层的信令转变而来。在这种架构下,该RRC或PDCP层的信令,即也可以认为是由DU发送的,或者,由DU和射频发送的。
在以上实施例中CU划分为RAN侧的网络设备,此外,也可以将CU划分为CN侧的网络设备,在此不做限制。
本申请以下实施例中的装置,根据其实现的功能,可以位于终端装置或网络设备。当采用以上CU-DU的结构时,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的RAN设备。
请继续参考图5,其提供了一种通信流程,通过该通信流程,用户可以获得沉浸式体验。在通信流程中,数据库130存储所有采集点收集的数据,根据终端装置110的位置E,由数据库130所在的服务器(即数据库服务器)生成位置E的数据,并传输给终端装置110,终端装置110对接收到数据进行处理后,通过显示设备140向用户展示。如图5所示,以采集点A,B,C为例进行描述。环境100中的采集点A,B,C处设置有数据采集装置,各采集点的数据采集装置采集数据,并在步骤S510中将采集到的数据提供给服务器,服务器将获得的数据存储于数据库130中。数据采集装置例如包括视频采集装置和/或音频采集装置,其采集的数据例如包括视频数据和/或音频数据。将数据采集装置在采集点A采集到的数据称为数据A,数据采集装置在采集点B采集到的数据称为数据B;数据采集装置在采集点C采集到的数据称为数据C。其中数据A,B,C可以由同一个装置收集后统一发送给服务器,也可以各种数据采集装 置独立发送给服务器。对于由同一个装置收集后统一发送给服务器的场景,该负责统一发送数据的装置可以为采集点A,B,C处设置的数据采集装置中的任一个数据采集装置,也可以为独立设置的数据搜集装置,用于从数据采集装置收集数据,并统一发送给服务器。
以上数据采集过程可以因事件触发而启动,也可以周期性启动,或者可以在一段时间内持续性进行。且数据采集过程启动之后,数据采集可以周期性进行,也可以持续性进行,数据采集的周期可以应实际需要而设定,不做限制。
如此,服务器可以预先收集到采集点(可以理解为多个观测点)的时频和/或音频数据,并存储于数据库中,且该数据库中的数据可以持续性或周期性更新。
终端装置110根据其位置,记为位置E,生成终端装置的位置信息,并在步骤S520中,向网络设备120发送该位置信息。网络设备120根据该位置信息从数据库130获得位置E的数据。如果数据库130位于网络设备120中,则网络设备120直接根据位置E,利用本地数据库存储的数据生成位置E的数据;如果数据库130独立于网络设备120,例如位于服务器中,则网络设备120在步骤S530中向服务器发送终端装置的位置信息。服务器根据终端装置的位置信息,利用存储的数据,生成位置E的数据,并在步骤S540中,将位置E的数据发送给网络设备120。而后在步骤S550中,将位置E的数据发送给终端装置110。终端装置110对接收到的位置E的数据进行渲染,生成视频和/或音频,并在步骤S560中,通过显示设备140展示给用户。
不同位置相对于采集点ABC的视频和/或音频不同,数据库服务器根据位置信息可以确定位置E相对于采集点ABC的位置,以终端装置的位置为参数,可以采集点ABC的数据生成位置E的数据,该位置E的数据即可以体现位置E所能观测到的视频和/或音频。且不同清晰度的图像可以采用不同的算法来生成位置E的数据,清晰度越高,算法越复杂,处理时延越大。
网络设备120与终端装置110之间的传输容量有限,而视频和/或音频(尤其是高清视频)的数据量又很大,所以步骤S540传输的位置E的数据可以是位置E的完整视频和/或音频数据,也可以是完整数据的一部分,即部分数据。相应的,步骤S550中传输的数据可以是完整数据,也可以是部分数据。或者,步骤S540中传输的位置E的数据可以是完整数据,而网络设备120自行决定传输完整数据或部分数据,此时,步骤S550中传输的数据可以是完整数据,也可以是部分数据。当终端装置110接收到部分数据时,可以对接收到的数据进行渲染,以对缺失的部分进行补充,从而向用户显示视频和/或音频。此时,最终用于显示的数据,既包含真实的数据,也包含渲染的数据。渲染是指是根据图像的主干部分,利用算法推测出图像的细节部分以对图像进行补足,从而提升图像画面质量。
通过以上通信流程,用户可以获得沉浸式体验。对于服务器来说,服务器生成位置E的数据时,不知道空口能传输多少数据,所以按最高清晰度生成数据,复杂度较高,相应的处理时延较大,但最终可能只有一部分数据传输到终端装置。对于终端装置来说,从网络设备获取位置E的数据之后,根据数据量确定渲染算法,实施渲染,相应的处理时延较大。
考虑到以上技术问题,在一种实现中,网络设备可以将空口的信息提供给服务器, 从而服务器在生成位置E的数据时,可以知道空口的信息,从而根据该空口的信息优化生成数据的算法,从而加快生成位置E的数据的处理速度,减少处理时延,进而提高用户体验。例如空口的信息包括以下信息中的一个或多个:速率、带宽(或称为频率资源大小)、无线信号质量或天线数量等信息,服务器根据该空口的信息可以确定网络设备和终端装置之间的传输容量,进而生成该传输容量可以容纳的位置E的数据,即传输容量越小,生成清晰度越低的数据,而清晰度越低的数据所需的算法复杂度越低,处理时延越低。且,由于即使生成了最高清晰度的数据,由于网络设备和终端装置之间的传输容量有限,也无法传输给终端装置,因此这种方式,即可以降低处理时延,又不会降低视频和/或音频质量。
在另一种实现中,网络设备可以将空口的信息提供给终端装置,如此终端装置能够预先估计或确定网络设备发送的数据量,如此,可以提前确定处理方式(例如,渲染算法),准备处理,从而加快处理速度,降低处理时延,提高用户体验。
下面结合附图,进行描述。
请参考图6,其为本申请实施例提供的一种通信方法的示意图。如图6所示,该方法包括如下步骤:
S610:终端装置确定自身的位置,并指示给网络设备;即终端装置向网络设备发送位置信息。相应的,网络设备从终端装置接收该终端装置的位置信息,即从终端装置接收位置信息,该位置信息用于指示终端装置的位置,该终端的位置用E来表示。
可选的,该终端装置的位置例如包括终端装置的坐标。该坐标例如为经纬度,此时终端装置的位置信息用于指示所述经纬度。或者,设置一个基准点,该基准点可以为一个实际设置的采集点或一个虚拟的基准点,终端装置的坐标包括南北水平线、东西水平线、和垂直线相对于该基准点的坐标值,根据这些坐标值,可以确定终端装置在该坐标系中的位置;此时,终端装置的位置信息用于指示终端装置相对于基准点的坐标值。以上坐标线为南北水平线、东西水平线、和垂直线,本申请实施例不做限制,也可以为其它方向的坐标线。
S620:网络设备确定空口状态。
该空口状态是对于终端装置的空口状态,在一种实现中,可以体现网络设备可以向该终端装置传输多少数据,例如时间单元内可以向终端传输多少数据,网络设备和数据库服务器对于时间单元具有相同的理解,此时,该空口状态可以为数据量。单位可以为比特,或字节(byte)等,本申请实施例对单位不做限制。时间单元例如为时隙,正交频分复用(orthogonal frequency division multiplexing,OFDM)符号,子帧或帧,或者可以为预设的时间值,例如0.5ms,1ms,或其它时间等,本申请实施例不做限制。
在另一种实现中,空口状态可以通过空口的速率来体现,即单位时间内传输的数据量,该单位时间可以为以上的时间单元。可见数据量和速率的实现是类似的,区别在于单位不同,且对于数据量,网络设备和数据库服务器对数据量对于时间单元具有相同的理解。
进一步地,可以将速率或数据量按层进行细化,例如划分为第一层的速率和第二层的速率;或者按比例进行划分,例如给出第一层和第二层速率的比例。以字节为例, 第一层的速率为N1字节/单位时间,第二层的速率为N2字节/单位时间;或者,第一层和第二层单位时间内传输的数据量的比例为M1:M2或第一层单位时间内传输的数量占总量的P%或第二层单位时间内传输的数量占总量的Q%,其中N1,N2,P和Q均为非负数,M1和M2为正整数。第一层例如基本层,第二层例如为增强层,其中基础层的数据可以体现图像的基本骨架,可以理解为,终端装置根据基础层的数据能产生图像(该图像的清晰度较低),增强层的数据包含图像的细节信息,终端装置根据基础层和增强层的数据能产生更高清晰度的图像。这里仅以两层划分为例,本申请实施例不做限制,可以将终端装置的数据划分为多于两层的数据,其包括基本层和多于一个增强层,每个层级的增强层对应的图像的清晰度不同。多层之间的优先级不同,但空口状态不足以容纳所有层的数据时,优先传输优先级高的层级的数据。在一种实现中,基本层的优先级最高,有多个增强层时,增强层对应的图像清晰度越高,优先级月低。
在另一种实现中,该空口状态可体现为空口的频率资源大小,该频率资源大小例如是网络设备可以分配给终端装置的最大频率资源,或者是网络设备使用的当前载波的带宽大小或当前部分带宽(bandwidth part,BP)大小。频率资源越大,网络设备可以利用的资源越多,因此,网络设备和终端之间传输的容量越大。
在又一种实现中,该空口状态可以体现为无线信号质量(或者称为信道的质量),例如,参考信号接收功率(reference signal received power,RSRP)或参考信号接收质量(reference signal received quality,RSRQ)。无线信号质量越好,网络设备可以传输的数据越多,因此,网络设备和终端之间传输的容量越大。
在又一种实现中,该空口状态可以体现为天线数量,天线数量越大,网络设备的传输能力越强,因此,网络设备和终端之间传输的容量越大。
因此,以上空口状态例如包括包括以下信息中的一个或多个:速率、带宽(或称为频率资源大小)、无线信号质量或天线数量等信息。其中,速率又可以称为传输速率。
一种实现中,网络设备可以根据终端装置的业务优先级、或服务质量(quality of service,QoS)等信息,确定空口状态。例如根据终端装置的业务优先级确定速率。
S630:网络设备向数据库服务器提供空口状态,即网络设备向数据库服务器发送指示空口状态的信息(以下称为信息I1),其中数据库服务器即数据库所在的服务器。
以上步骤S610可以在该步骤S630之前进行,也可以在步骤S630之后进行。也就是说,网络设备可以在向数据服务器发送信息I1之前,获取终端装置的位置信息,此时,网络设备可以将信息I1和位置信息一起发送给数据库服务器,从而节省信令流程。可选的,也可以将信息I1和位置信息独立发送给数据库服务器。网络设备在向数据服务器提供空口状态之后,获取终端装置的位置信息时,可以在发送信息I1之后,再向数据库服务器发送位置信息。
如果之前空口的速率或数据量按层进行了细化,此时,网络设备可以向数据库服务器通知细化的速率或数据量。例如信息I1包括多个层的速率信息或数据量信息,例如第一层的速率信息和第二层的速率信息;或者包括多个层之间的速率比例,例如第一层和第二层的速率比例。或者,信息I1可以包括多个层的数据量信息,例如第一层 的数据量信息和第二层的数据量信息;或者包括多个层之间的数据量比例,例如第一层和第二层的数据量比例。
相应的,数据库服务器接收信息I1和终端装置的位置信息(即位置E的信息),并根据接收到的信息执行以下操作:
S640:数据库服务器根据空口状态和终端装置的位置生成该位置的数据(以下可以称为数据D1),即位置E的数据。
在一种实现中,数据库服务器根据终端装置的位置生成该位置的预设清晰度数据,并且把这些数据划分为若干层,具体划分同以上实施例,不再赘述;而后,根据空口状态,确定传输哪层或哪些层的数据。其中数据库服务器预先配置默认的数据生成算法和/或参数,该数据生成算法和/或参数利用从采集点搜集到的数据,生成终端所在位置的预设清晰度的数据,通常该默认的数据生成算法和/或参数生成高清晰度的数据,而后由于空口状态不允许这么多数据的传输,因此,可以传输部分层的数据给网络设备。在此,将传输给网络设备的数据理解为数据D1,即位置E的数据。也就是说,数据D1是数据库服务器生成的数据的部分或全部。
在另一种实现中,数据库服务器根据空口状态,确定数据生成算法和/或参数,其中不同的数据生成算法和/或参数对应生成不同的清晰度的数据。数据库服务器根据终端装置的位置和选择的数据生成算法和/或参数生成数据D1,即位置E的数据,并将数据D1发送给网络设备。
数据库服务器可以预设有多种数据生成算法,每个数据生成算法对应不同的清晰度,适用于不同的空口状态。或者,数据库服务器可以预设有一种数据生成算法,不同的参数对应不同的清晰度,适用于不同的空口状态。或者,数据库服务器既预设有多种数据生成算法,又有不同的参数适用于不同的数据生成算法,以生成不同清晰度的数据;或者每种算法下利用不同的参数进一步生成更细粒度的清晰度的数据。
S650:数据库服务器向网络设备发送数据D1,相应的,网络设备从数据库服务器获取数据D1,即位置E的数据。
S660:网络设备向终端装置发送数据D1,即位置E的数据。
另一方面,网络设备还可以向终端装置提供以上空口状态,以便终端装置根据空口状态确定对数据的处理方式,从而提前准备好对接收到的数据的处理,从而加快处理速度,降低处理时延,提高用户体验。此时,以上方法还包括:
S670:网络设备向终端装置提供空口状态,即网络设备向终端装置发送指示空口状态的信息。
关于空口状态的描述同以上步骤S630中的描述,在此不再赘述。其中对于空口状态为数据量时,网络设备和终端装置对于时间单元具有相同的理解。
如果网络设备已经存储了即将发送给终端装置的数据或者可以根据空口状态预判即将发送给终端装置的数据量,则网络设备可以向终端装置发送数据量指示信息,该数据量指示信息用于指示,网络设备即将向终端装置传输的数据量或网络设备存储的数据量。
网络设备即将向终端装置传输的数据量可以理解为空口状态为数据量时的一种情况。网络设备存储的数据量可以理解为空口状态为数据量时的一种情况,也可以单独 由网络设备根据其存储的数据量来确定。
因此,以上步骤S670中,网络设备可以向终端装置发送指示空口状态的信息,或者,可以向终端装置发送指示网络设备存储的数据量的信息。即,网络设备向终端发送信息I2,其中信息I2用于指示空口状态或用于指示网络设备存储的数据量,即网络设备缓存的状态。
当信息I2指示数据量时,其可以直接指示数据量,也可以以一种占比的方式指示,例如预设清晰度的数据对应的数据量为100%,当前数据量占预设清晰度的数据对应的数据量为S%,则信息I2用于指示S%。该预设预设清晰度例如为最高清晰度。
相应的,终端装置接收信息I2,并执行以下操作:
S680:终端装置根据信息I2,处理接收到的数据D1,即位置E的数据。
终端装置可以在接收到信息I2之后,才收到位置E的数据,此时,终端装置根据信息I2,确定处理数据的方式,例如渲染算法和/或参数,如此,提前做好了处理数据的准备,当收到数据D1时,对数据D1进行处理,并将处理后的数据通过显示设备进行显示。终端装置可以在接收到信息I2之前,就已经收到位置E的数据,此时,终端装置根据信息I2或根据收到的数据,确定处理数据的方式,并对之前存储的位置E的数据进行处理,等到终端装置后续再收到新的数据之后,更新处理的数据,并将处理后的数据通过显示设备进行显示。
终端装置可以预设有多种数据处理算法(例如,渲染算法),每个数据处理算法对应不同的清晰度,适用于不同的空口状态或数据量。或者,终端装置可以预设有一种数据处理算法(例如,渲染算法),不同的参数对应不同的清晰度,适用于不同的空口状态或数据量。或者,终端装置既预设有多种数据处理算法,又有不同的参数适用于不同的数据处理算法,以处理不同清晰度的数据;或者每种算法下利用不同的参数进一步处理更细粒度的清晰度的数据。
可选的,在以上步骤S610中,终端装置还可以将视角指示给网络设备,即以上方法还可以包括:终端装置向网络设备发送视角信息;相应的,网络设备从终端装置接收该终端装置的视角信息,即从终端装置接收视角信息,该视角信息用于指示终端装置的视角。而后续网络设备进一步将该视角信息和位置信息提供给数据库服务器,以便数据库服务器生成对应位置和视角的数据,如此,可以数据库服务器可以将生成的数据限定到某个视角范围内,因此进一步减少生成的数据量,降低处理时延,进一步提高用户体验。以下其它实施例中,终端装置除了向网络设备或数据库服务器提供位置信息,还可以提供视角信息,在以下实施例中不再赘述。
在以上步骤S670中,网络设备可以采用RRC消息,PDCP控制协议数据单元(protocol data unit,PDU)或MAC控制元素(MAC control element,MAC CE)向终端装置发送信息I2。当该信息通过MAC CE发送时,该MAC CE所在的MAP子PDU的子头中包括逻辑信道标识(logical channel ID,LCID),该LCID的取一预留值,并将该预留值赋予新的含义,即指示MAC CE用于指示空口状态或网络设备存储的数据量。也就是说,MAC CE位于MAC子PDU中,该MAC子PDU包括MAC子头和MAC CE,MAC子头包括LCID,LCID取预设值,该预设值用于指示MAC CE包括以上信息I2。
请参考图7,其为本申请实施例提供的几种MAC子PDU的格式示意图。如图7所示,该MAC子PDU的MAC子头仅示出了相关域,例如MAC子头中的LCID域,该MAC子头还可以包括其它域,本申请实施例不做限制。在格式一中:MAC CE仅包括信息I2,其指示了空口状态或网络设备存储的数据量。例如信息I2指示了N(N为大于或等于1的正整数)个帧所对应的数据量是5000字节。在格式二中:MAC CE除了包括信息I2,还包括时间信息T,用于指示数据在时间信息所指示的时间内传输或到达,其中信息I2指示了该数据的传输速率或数据量。因此,该MAC CE表示在时间T内,网络设备会向终端装置发送数据,同样以信息I2指示了N(N为大于或等于1的正整数)个帧所对应的数据量是5000字节为例,则该MAC CE指示了时间T内,网络设备会向终端装置传输5000字节的数据量。对于格式一,网络设备也可以向终端装置指示时间T,与格式二的区别在于,网络设备通过RRC消息预先向终端装置配置时间T。在格式三中,终端装置的数据被划分为至少一个层的数据,信息I2包括至少一个层信息和至少一个信元,每个信元对应一个层信息,用于指示该层信息所指示的层的状态或数据量,例如,该MAC CE包括第一层和第二层的信息,信元一用于指示N个帧内第一层的数据量为5000字节,信元二用于指示N个帧内第二层的数据量为3000字节,其中第一层为基础层,第二层为增强层。此外,图中仅以两层为例,在其它实现方式中,可以有一层或多于两层。可选的,当采用格式三时,也可以在MAC CE中增加指示时间T的信息。此外,网络设备可以预先将各层之间的速率比例或数据量比例通知给终端装置,而后仅在MAC CE中指示一个层的速率或数据量,终端装置即可以知道其他层的速率或数据量。同样以两层为例,假设第一层和第二层的数据量比例为1:3,MAC CE指示第一层的数据量为1000字节,则终端装置可以确定第二层的数据量为3000字节或者确定总的数据量为4000字节。这里仅以数据量为例,关于其它空口状态与之类似,不再赘述。
网络设备可以周期性向终端装置发送信息I2。或者,网络设备可以在其存储的数量超过阈值(包括大于或等于阈值)时,向终端装置发送信息I2,如此,可以减少信令交互,进一步提升处理速度,降低处理时延。
网络设备可以分别向多个终端装置发送信息I2,如果网络设备要向多个终端装置发送以上数据,则可以以广播或组播的方式将信息I2发送给多个终端装置;或者,可以单独向每个终端装置发送信息I2。在一种实现中,可以将多个终端装置划分为一个组,通过一个公共的消息,将信息I2发送给组内的所有终端装置。可以为该组的终端装置分配相同的组标识,用于接收该信息I2。
在以上的实施例中,数据D1是通过数据库服务器根据终端的位置和空口状态确定的。在另一种实现中,网络设备可以不向数据库服务器提供空口状态,而是数据库服务器根据终端的位置生成位置E的数据(记为数据D2),发送给网络设备,而后由网络设备根据空口状态,利用数据D2生成数据D1。例如,将数据D2分成若干层,根据空口状态,仅传输部分层的数据,该部分层的数据即为D1。再如,将数据D2压缩或将数据D2转换为更低清晰度的数据D1,本申请实施例不做限制。
以上步骤S630和S670可以仅执行其中一个步骤,也可以都执行,也就是说网络设备可以向终端装置提供空口状态或存储的数据量,和/或,向数据库服务器提供空口 状态;从而使得终端装置可以根据空口状态或根据网络设备存储的数据量提前准备数据处理方式,提高数据处理效率。此外,在图5所示的方法中,数据库服务器生成的位置E的数据为高清视频和/或音频数据,由于空口传输容量受限,不能将生成的数据全部传输到终端装置,而本申请实施例中,将空口状态通知数据库服务器,数据库服务器根据空口状态调整生成位置E的数据的算法,生成的数据量符合空口传输的能力,或者根据空口状态仅传输部分生成的数据给网络设备,因此,减少了数据生成的复杂度或有效利用了空口资源,提升了数据处理效率,进而提升了用户体验。
在以上实施例中,数据库服务器根据终端装置的位置E,利用存储的数据(例如采样点ABC)的数据,生成位置E的数据,通过网络设备发送给终端装置。在本申请的另一实施例中,将“生成位置E的数据”这一功能放到网络设备实现,数据库服务器预先将参考点(全部或部分采样点)采集到的数据传输到网络设备,由网络设备根据终端的位置生成终端所在位置的数据。该终端所在位置的数据的生成可以采用以上实施例中的方式生成,即根据空口状态生成;或者,可以不考虑空口状态,根据终端装置的位置生成,而后传输部分生成的数据。也就是说,本实施例可以与以上实施例结合,区别在于,以上实施例中根据空口状态生成位置E的数据是由数据库服务器执行的,而本实施例中,由网络设备执行,具体可以参照以上实施例,在此不再赘述。
进一步的,如果网络设备还需要更多参考点的数据,或者还需要当前参考点的进一步的数据时,可以向数据库服务器发送请求消息,以获得更多的参考点的数据,或获得当前参考点更多的参考数据,以生成进一步的终端装置所在位置的数据。
终端装置处理(例如,渲染)接收到的数据,并通过显示设备向用户显示视频和/或音频。该终端装置的处理方式可以采用以上实施例的方式,即根据空口状态或网络设备存储的数据量,提前确定处理方式,而利用确定的处理方式处理接收到的数据。或者,可以在接收到数据时,再确定处理方式,本实施例不做限制。此外,终端装置收到网络设备进一步生成的终端装置所在位置的数据时,可以更新处理结果。
下面结合附图进行描述。
请参考图8,其为本申请实施例提供的另一种通信方法的示意图。如图8所示,该方法包括如下步骤:
S810:数据库服务器将第一参考位置的数据发送给网络设备。第一参考位置包括至少一个参考点,在此以采集点A,B,C为参考点为例。
数据库服务器中存储有各个采集点采集的数据,其中采集点A,B,C为参考点,数据库服务器中存储有参考点A,B,C点的全部数据。而数据库服务器可以将A,B,C点的全部数据发送给网络设备,或者,可以将A,B,C点的部分数据发送给网络设备。
相应的,网络设备接收第一参考位置的数据,即A,B,C点的数据(数据库中存储的A,B,C点的全部或部分数据),并保存接收到的A,B,C点的数据。
S820:网络设备获取终端装置的位置信息,即位置E的信息。
S830:网络设备根据终端装置的位置,利用第一参考位置的数据,生成下行数据,也就是发送给终端装置的数据,即位置E的数据。
关于位置E的数据的生成方式同以上描述,在此不再赘述。
S840:网络设备将下行数据(即位置E的数据)发送给终端装置。
相应的,终端装置接收位置E的数据,并执行以下操作:
S850:终端装置对下行数据(即位置E的数据)进行处理。
关于位置E的数据的处理方式同以上描述,在此不再赘述。
可选的,网络设备确定当前精度不足,还需要更多参考点的数据,或者还需要当前参考点的进一步的数据时,可以向数据库服务器发送请求消息,以获得更多的参考位置的数据,或获得当前参考位置更多的参考数据,以生成进一步的位置E的数据,即执行以下操作:
S860:网络设备向数据库服务器发送请求消息,该请求消息用于请求第二参考位置的数据。
第二参考位置可以与第一参考位置不同,或者可以与第一参考位置相同。此外,第二参考位置可以包括第一参考位置,或者,不包括第一参考位置。
例如,用于请求相同参考点A,B,C的进一步的数据,或者用于请求其它参考点D的数据;或者用于请求当前参考点A,B,C和其它参考点D的数据。其它参考点以参考点D为例,本申请实施例不做限制,还可以包括更多的参考点,例如F和H等。
可选的,可以由网络设备根据终端装置的位置信息确定第二参考位置;或者可以将终端装置的位置信息发送给数据库服务器,由数据库服务器确定第二参考位置,此时以上请求消息可以包括终端装置的位置信息。
在此,以数据库服务器确定第二参考位置为例,且以第二参考位置为参考点A,B,C和D为例,如图8所示,以上方法还包括:
S870:数据库服务器获取第二参考位置的数据。
例如,数据库服务器根据终端装置的位置确定第二参考位置,例如参考点A,B,C和D,并获取第二参考位置的数据。
S880:数据库服务器将第二参考位置的数据发送给网络设备,例如发送参考点A,B,C和D的数据。
相应的,网络设备接收第二参考位置的数据,并执行:
S890:网络设备根据终端装置的位置,利用第二参考位置的数据,进一步生成下行数据,即位置E的数据。
关于位置E的数据的生成方式同以上描述,在此不再赘述。
S800:网络设备将进一步生成的下行数据(即位置E的数据)发送给终端装置。
终端装置重复以上步骤S850,对进一步接收到的下行数据进行处理,或者合并步骤S840和S800中的下行数据,对合并后的数据进行处理。
在以上步骤S810中,数据库服务器将第一参考位置的数据发送给网络服务器,关于第一参考位置的确定,可以通过不同的方式实现,以下结合附图提供几种实现方式的示例。
请参考图9,其为本申请实施例提供的第一参考位置确定方法的示意图:
第一种实现方式(如图9中的方式A1):网络设备根据终端装置以前上报的位置信息(可以称为历史位置信息),确定终端装置可能的位置区间,并向数据库服务器指示终端装置可能的位置区间。该位置区间例如通过三维坐标值和半径值体现,表示 终端装置可能位于的一个虚拟的球体范围,该虚拟球体的圆心由三维坐标值确定,半径由网络设备预测。此时,以上方法还包括:网络设备向数据库服务器上报位置区间的信息,所述位置区间的信息用于指示终端装置的位置区间,数据服务器根据该位置区间的信息,确定第一参考位置。以上位置区间的信息包括终端的中心位置坐标的信息和位置区间半径的信息。此外,网络设备还可以向数据库服务器发送聚焦角度的信息。聚焦角度用于指示聚焦的深度,例如近景或远景。以上实施例中的视角信息用于指示用户视角范围,而聚焦角度用于指示聚焦的深度,假设用户视角不变,但是关注的目标发生了变化,比如看风景,一会儿看近景,一会儿看远景。
第二种实现方式(如图9中的方式A2):终端装置的位置区间的信息由终端装置提供给网络设备,由网络设备透传或解析后传输给数据库服务器,位置区间的信息同第一种实现方式,不再赘述。类似的,终端装置还可以向数据库服务器提供聚焦角度的信息。
第三种实现方式(如图9中的方式A3):终端装置的位置区间的信息由显示设备提供给网络设备,由终端装置和网络设备透传或解析后传输给数据库服务器,或者由显示设备直接传输给网络设备,由网络设备透传或解析后传输给数据库服务器,位置区间的信息同第一种实现方式,不再赘述。类似的,显示设备还可以向数据库服务器提供聚焦角度的信息。
以上实现方式中,由数据库服务器确定第一参考位置,此外,也可以由网络设备、终端装置或显示设备确定第一参考位置,并向数据库服务器请求第一参考位置的数据。继续参考图9:
第四种实现方式(如图9中的方式B1):网络设备确定第一参考位置,即要向数据库服务器请求哪些参考点的数据,并向数据库服务器请求第一参考位置的数据。此时以上方法还包括:网络设备确定第一参考位置,向数据库服务器请求第一参考位置的数据。图中,以第一参考位置为参考点A,B,C,D为例。向数据库服务器请求第一参考位置的数据可以通过向数据库服务器发送第一参考位置的信息,例如A,B,C,D的信息。可以将所有采集点进行索引,第一参考位置的信息可以包括参考点A,B,C,D的索引。类似的,网络设备还可以向数据库服务器提供聚焦角度的信息。
第五种实现方式(如图9中的方式B2):与第四种实现方式类似,区别在于由终端装置确定第一参考位置,并通过网络设备透传第一参考位置的信息给数据库服务器。类似的,终端装置还可以向数据库服务器提供聚焦角度的信息。
第六种实现方式(如图9中的方式B3):与第四种实现方式类似,区别在于由显示设备确定第一参考位置,并通过网络设备透传第一参考位置的信息给数据库服务器;或通过终端装置和网络设备透传第一参考位置的信息给数据库服务器。类似的,显示设备还可以向数据库服务器提供聚焦角度的信息。
通过以上实现方式中的任一种,数据库服务器可以预先向网络设备提供第一参考位置的数据,此外,数据服务器还可以提供额外的数据给网络设备,例如其它采集点的数据或其它聚焦角度的数据等,本申请实施例不做限制。
图8中S810之后的部分,对实时性要求比较高,因此网络设备存储了第一参考位置的数据之后,如果收到终端装置的位置信息,则生成终端所在位置的数据(即位置 E的数据),并发送给终端装置,以便终端装置开始渲染流程。如果网络设备认为存储的数据不足以生成终端所在位置的时频和/或音频数据,则可以向数据库服务器进一步请求第二参考位置的数据。终端装置一边执行渲染流程,一边等待网络设备进一步发送的终端所在位置的数据(即位置E的数据),当接收到网络设备进一步发送的终端所在位置的数据时,完成渲染,通过显示设备向用户显示。
以上过程中,网络设备在存储的数据不足以生成终端所在位置的时频和/或音频数据时,仍然先生成并传输一部分数据,如此,可以让终端装置先根据这部分数据做好渲染准备,等到进一步的数据到达时,可以更加快速的完成渲染处理,提高数据处理效率。
在另一种情形中,网络设备存储的数据足以生成终端所在位置的时频和/或音频数据时,但当前空口状态不足以在短时间内传输这么多数据,如此,可以与以上实施例结合,采用以上实施例描述任一种实现方式来生成位置E的数据。例如,将生成的数据按照优先级分层,或者生成不同优先级的多层数据,而后根据空口状态,确定传输哪个或哪些层的数据。优先级越高的层,该层的数据越优先被传输。再如,根据空口状态和网络设备存储的数据,确定生成数据的量或方式,例如,数据的传输速率越高,生成的数据越多,反之,生成的数据越少。此外,在传输数据之前,可以将空口状态或存储的数据量通知给终端装置,以便终端装置提前做好数据处理准备,具体参考以上实施例,在此不再赘述。
以上实施例中,数据服务器向网络设备提供的数据,和网络设备提供的终端装置的数据,内容不同,数据量相差也很大。在现有技术中,由核心网统计终端装置消耗了多少流量,并计费,如此,该计费方式与实际空口消耗不一致。因此,在本申请实施例中,网络设备向终端装置传输数据后,可以向核心网的计费装置上报空口传输的数据量,该计费装置根据收到网络设备上报的数据量后,统计终端装置在空口传输的数据量,并计费,如此,计费更加合理。
图中为了简化,网络设备和数据服务器之间、数据库服务器和数据采集装置之间的连接都通过直线显示,但其间连接可能经过多个路由器、网关等。例如,网络设备和数据库服务器之间可能通过核心网设备连接,也可能通过其它网元连接,本申请实施例不做限制。
在以上实施例中,数据库服务器或网络设备根据终端装置的位置E生成位置E的数据。在本申请的另一实施例中,将“生成位置E的数据”这一功能放到终端装置实现,其与图8所示的实施例的区别在于,第一参考位置的数据由网络设备进一步发送到终端装置,由终端装置根据第一参考位置的数据生成位置E的数据。至于进一步请求第二参考位置的数据可以由网络设备发起,也可以由终端装置发起。
下面结合图10,进行描述:
请参考图10,其为本申请实施例提供的另一种通信方法的示意图。如图10所示,该方法包括如下步骤:
S101:数据库服务器将第一参考位置的第一数据发送给网络设备。第一参考位置包括至少一个参考点,在此以采集点A,B,C为参考点为例。
相应的,网络设备接收第一参考位置的第一数据。数据库服务器发送给网络设备 的第一参考位置的第一数据可以是服务器中存储的第一参考位置的全部数据或者可以是服务器中存储的第一参考位置的部分数据
以第一参考位置包括参考点A,B,C为例,数据库服务器中存储参考点A,B,C的数据,数据库服务器可以将参考点A,B,C的数据全部发送给网络设备,或者,可以部分发送给网络设备。
S102:网络设备将第一参考位置的第二数据发送给终端装置,其中第二数据包括第一数据的全部或部分。
网络设备可以将接收到的全部或部分第一参考位置的第一数据发送给终端装置。例如,当空口状态不允许进行全部发送时,网络设备将部分第一参考位置的第一数据发送给终端装置。
相应的,终端装置从网络设备接收第一参考位置的第二数据,并存储第二数据。
S103:终端装置根据该终端装置的位置,利用第一参考位置的第二数据,生成该终端装置所在位置的数据,即位置E的数据。
S104:终端装置进一步对位置E的数据进行处理,并提供给显示设备,向用户显示。
在以上过程中,数据库服务器可以将存储的第一参考位置的全部或部分数据传输给网络设备,具体传输的量可以根据数据库服务器与网络设备之间的传输通道的能力来确定。网络设备可以将接收到的第一参考位置的第一数据的全部或部分数据传输给终端装置,具体传输的量可以根据空口状态确定。
终端装置生成位置E的数据时,如果认为当前存储的第一参考位置的第二数据的信息太少,不足以达到要求的精度,可以向网络设备请求更多的信息,例如请求第二参考位置的信息,该第二参考位置可以与第一参考位置相同,或者,可以与第一参考位置相同。此外,第二参考位置可以包括第一参考位置,还可以包括第一参考位置以外的参考点。
此时,以上方法还包括:
终端装置向网络设备发送第一请求消息,所述第一请求消息用于请求第二参考位置的数据。
在一种实现方式中(如图中方式一):终端装置根据其位置确定第二参考位置,并在第一请求消息中指示第二参考位置。即第一请求消息中包括指示第二参考位置的信息(S1051)。网络设备根据指示第二参考位置的信息,确定第二参考位置,并将存储的第二参考位置的数据发送给终端装置(S1052)。如果在以上步骤S101中,数据库服务器除了提供第一参考位置的数据,还提供了第二参考位置的数据,则网络设备可以将存储的第二参考位置的数据全部或部分发送给终端装置。如果网络设备没有存储第二参考位置的数据或者存储的第二参考位置的数据不足,网络设备可以进一步向数据库服务器请求第二参考位置的数据。例如网络设备将第二参考位置指示给数据库服务器,以便数据库服务器根据第二参考位置向网络设备提供其存储的全部或部分第二参考位置的数据。再如,网络设备确定其存储有第二参考位置的部分参考点的数据,向数据库服务器请求其余参考点的数据,以第二参考位置包括参考点A,B,C,D为例,假设网络设备存储有参考点A,B,C的数据,则网络设备向数据库服务器请求参考点D 的数据,数据库服务器将存储的参考点D的数据全部或部分发送给网络设备。
在另一种实现方式中(如图中方式二),终端装置将其位置信息发送给网络设备(S1061),网络设备根据终端装置的位置信息,确定第二参考位置(S1062),并将存储的第二参考位置的数据发送给终端装置(S1063)。如果在以上步骤S910中,数据库服务器除了提供第一参考位置的数据,还提供了第二参考位置的数据,则网络设备可以将存储的第二参考位置的数据全部或部分发送给终端装置。如果网络设备没有存储第二参考位置的数据或者存储的第二参考位置的数据不足,网络设备可以进一步向数据库服务器请求第二参考位置的数据。请求方式可以有多种:例如网络设备将第二参考位置指示给数据库服务器,以便数据库服务器根据第二参考位置向网络设备提供其存储的全部或部分第二参考位置的数据。再如,网络设备将终端装置的位置信息发送给数据库服务器,以便数据库服务器根据该终端装置的位置信息,确定第二参考位置,并向网络设备提供其存储的全部或部分第二参考位置的数据。再如,网络设备确定其存储有第二参考位置的部分参考点的数据,向数据库服务器请求其余参考点的数据,以第二参考位置包括参考点A,B,C,D为例,假设网络设备存储有参考点A,B,C的数据,则网络设备向数据库服务器请求参考点D的数据,数据库服务器将存储的参考点D的数据全部或部分发送给网络设备。
在又一种实现方式中(如图中方式三),终端装置将其位置信息发送给网络设备(S1071),网络设备将终端装置的位置信息发送给数据库服务器(S1072),其中网络设备可以透传终端装置的位置信息,此时网络设备不知道终端装置的位置;或者可以解析后将该位置信息传输给数据服务器,此时网络设备可以知道终端装置的位置。数据库服务器根据终端装置的位置信息,确定第二参考位置(S1073),并根据第二参考位置向网络设备提供其存储的全部或部分第二参考位置的数据(S1074)。
其中,终端装置的位置信息同以上实施例,在此不再赘述。
以上方式可以结合使用,例如后种方式结合时,终端装置将其位置信息提供给网络设备,网络设备进而提供给数据库服务器,这样网络设备和数据库服务器都可以做成判断,不断补充满足精度要求的参考位置的数据,提高用户体验和数据处理效率。例如,网络设备根据终端装置的位置信息利用存储的数据生成终端装置所在位置的一部分数据,提供给终端装置,终端装置可以先对这部分数据进行处理;此外,数据库服务器根据终端装置的位置信息利用存储的数据生成终端装置所在位置的另一部分数据,提供给终端装置,终端装置可以进一步对接收到的数据进行更新,进一步处理后,提供给显示设备,显示给用户。
在以上实施例中,网络设备根据空口状态,确定向终端装置传输的数据,但并没有考虑到终端装置自身的情况,比如,终端装置过热或低电量等。本申请实施例考虑到这种情况终端装置的处理能下降,则终端装置向网络设备上报其状态信息,在不影响用户体验的情况下,网络设备根据该状态信息调整传输给终端装置的数据量。
下面结合附图进行描述,请参考图11,其为本申请实施例提供的又一种通信方法的示意图。如图11所示,该方法包括如下步骤:
S111:终端装置向网络设备发送状态指示信息,该状态指示信息用于指示终端装置的状态。相应的,网络设备接收该状态指示信息。
终端装置根据自身的状态向网络设备发送状态指示信息,终端装置的状态包括以下状态的一种或多种:电量、处理器的占用率、内存的占用率,等热量等。其中热量为热量传感器测得的热量。
以电量为例,当终端装置的电量低于或等于预设值时,终端装置向网络设备发送低电量指示。以处理器的占用率或内存的占用率为例,当终端装置的处理器的占用率或内存的占用率高于或等于预设值时,终端装置向网络设备发送高占用率指示。以热量为例,当终端装置的热量高于或等于预设值时,终端装置向网络设备发送高热量指示。
可选的,终端装置可以向网络设备指示其建议的速率,即终端装置除了状态指示信息,还向网络设备发送速率指示信息,该速率指示信息用于指示终端装置建议的数据传输速率或建议的数据传输速率下降的值。如此,网络设备基于接收到的速率指示信息调整向终端装置传输数据的速率。状态指示信息和速率指示信息可以同时发送,例如承载于同一消息中,或者,终端装置可以仅发送速率指示信息,网络设备根据该速率指示信息直接调整向终端装置传输数据的速率。
为了减少空口资源的占用,可以预先设定几个备选的速率,每个速率由一个索引值指示。则以上速率指示信息可以为一个速率的索引值。
S112:网络设备根据状态指示信息,调整向终端装置传输数据的速率。
例如,当网络设备接收到状态指示信息时,网络设备降低向终端装置传输数据的速率。在一种实现中,可以设置速率下降的步进值,当收到状态指示时,将速率下行一个步进值;当再次收到状态指示信息,再下降一个步进值,依次类推。在另一种实现中,可以设置一个预设值,当收到状态指示信息时,可以将速率下降到预设值。再有一种实现中,网络设备基于接收到的速率指示信息调整向终端装置传输数据的速率。
进一步的,网络设备可以将调整后的速率通知数据库服务器和/或终端装置,同以上图6所示实施例的描述,相当于将调整后的空口状态通知数据库服务器和/或终端装置,如此,数据库服务器可以根据调整后的速率,调整生成终端装置所在位置的数据的算法,降低生成的数据量,以适配降低后的速率;终端装置可以根据调整后的速率,调整数据处理方式,例如对渲染算法进行调整,对接收到的数据进行深度渲染,以降低对用户的影响。
此时,以上方法还包括:
S113:网络设备向数据库服务器发送指示调整后的速率的信息。相应的,数据库服务器接收指示调整后的速率的信息。
S114:数据库服务器根据调整后的速率,生成终端装置的数据。并将终端装置的数据发送给网络设备,以通过网络设备发送给终端装置。
S115:网络设备向终端装置发送指示调整后的速率的信息。
当终端装置网络设备设备建议调整后的速率时,网络设备可以不执行该步骤S103,终端装置即可以自己根据建议的速率调整数据处理方式。
S116:终端装置根据调整后的速率,处理终端装置接收到的数据。
以上步骤S116中处理的数据可以是步骤S114中生成的数据,或者,可以是步骤S114中生成的数据的部分数据,或者,可以是步骤S114之前或之后,终端装置接收 的数据,本申请实施例不做限制。
在以上实施例已经描述,终端装置所在位置的数据可以由数据库服务器生成,或者可以由网络设备生成,当由网络设备生成时,本申请实施例提供的又一种通信方法如图12所示,该方法包括如下步骤:
S121:终端装置向网络设备发送状态指示信息,该状态指示信息用于指示终端装置的状态。相应的,网络设备接收该状态指示信息。
步骤S121的实现同以上步骤S111,且终端装置还可以发送速率指示信息,或者状态指示信息可以由速率指示信息替代。
S122:网络设备根据状态指示信息,调整向终端装置传输数据的速率。
S123:网络设备根据调整后的速率,生成终端装置的数据。
此外,网络设备也可以执行以上步骤S113和S115之一或全部,其后续终端装置可以执行步骤S116。
可选的,以上步骤S113可以替换为网络设备向数据库服务器发送参考帧需求信息。参考帧的需求信息用于指示数据库服务器发送参考帧的周期,如此数据库服务器可以根据参考帧的需求信息周期性发送参考帧。参考帧是不需要参照其它帧,接收方就能独立解码的帧。如果空口状态比较差,网络设备可以要求更频繁地传输参考帧。网络设备也可以一次性请求数据库服务器发送参考帧,或者可以请求一次,发一次。
数据库服务器根据接收到的指示调整后的速率的信息或参考帧需求信息,执行以下操作:
S123:数据库服务器根据指示调整后的速率的信息或参考帧需求信息,减小向网络设备发送的数据量,或减少向网络设备发送的参考帧的数据量,即向网络设备发送调整后的数据量。
类似的,以上步骤S116中处理的数据可以是步骤S123中生成的数据,或者,可以是步骤S123之前或之后,终端装置接收的数据,本申请实施例不做限制。
在以上实施例已经描述,终端装置所在位置的数据可以由终端装置生成,当由终端装置生成时,本申请实施例提供的又一种通信方法如图13所示,该方法包括如下步骤:
S131:终端装置向网络设备发送状态指示信息,该状态指示信息用于指示终端装置的状态。相应的,网络设备接收该状态指示信息。
步骤S131的实现同以上S111,且终端装置还可以发送速率指示信息,或者状态指示信息可以由速率指示信息替代。
S132:网络设备根据调整后的速率,调整向终端装置传输数据的速率。
与图11所示实施例不同的是,向终端装置传输的数据不是终端装置所在位置的数据,而是参考位置的数据。参考位置的数据的获取过程同以上实施例,在此不再赘述。
此外,在调整前和调整后的参考位置可以相同,也可以不同,例如调整前为以上实施例中的第一参考位置,调整后为以上实施例中第一参考位置或第二参考位置。再如调整前为以上实施例中的第二参考位置,调整后为以上实施例中第二参考位置。
此外,网络设备也可以执行以上步骤S113和S115之一或全部,其后续终端装置可以执行步骤S116。
在以上各个实施例中,终端装置对数据的处理,例如渲染,可以在显示设备中执行,此时,终端装置将接收到的数据提供给显示设备,由显示设备进行处理并显示。此时,该显示设备可以理解为一种终端装置。
本申请实施例还提供用于实现以上任一种方法的装置,例如,提供一种通信装置包括用以实现以上任一种方法中终端装置所执行的各个步骤的单元(或手段)。再如,还提供另一种通信装置,包括用以实现以上任一种方法中网络设备所执行的各个步骤的单元(或手段)。再如,还提供另一种通信装置,包括用以实现以上任一种方法中数据库服务器所执行的各个步骤的单元(或手段)。
例如,请参考图14,其为本申请实施例提供的一种通信装置的示意图。该装置用于终端装置,用于执行以上任一实施例中的终端装置执行的任一种方法。如图14所示,该装置1400包括接收单元1410,发送单元1420和处理单元1430。接收单元1410用于从网络设备接收以上任一实施例中任一种网络设备发送给终端装置的信息,发送单元1420用于发送以上任一实施例中终端装置向网络设备发送的任一种信息。处理单元1430在接收单元1410接收到用于指示空口状态或用于指示网络设备存储的数据量的信息时,根据空口状态或网络设备存储的数据量,处理数据。
关于终端装置的其它操作同以上实施例,在此不再赘述。
再如,请参考图15,其为本申请实施例提供的另一种通信装置的示意图。该装置用于网络设备,用于执行以上任一实施例中的网络设备执行的任一种方法。如图15所示,该装置1500包括第一通信单元1510和第二通信单元1520和处理单元1530。第一通信单元1510用于与终端装置通信,从终端装置接收数据或信息,或向终端装置发送数据或信息。第一通信单元1520用于与数据库服务器通信,从数据库服务器接收数据或信息,或向数据库服务器发送数据或信息。处理单元1530用于执行接收和发送以外的其它操作,例如确定空口状态或存储的数据量。
处于运行状态的定时器包括第一定时器,第二定时器和第三定时器中的至少一种。关于这些定时器的描述同以上方法实施例,不再赘述。
关于网络设备的其它操作同以上实施例,在此不再赘述。
再如,请参考图16,其为本申请实施例提供的又一种通信装置的示意图。该装置用于数据库服务器,用于执行以上任一实施例中的数据库服务器执行的任一种方法。。如图16所示,该装置1600包括通信单元1610和处理单元1620,通信单元1610用于网络设备通信,从网络设备接收数据或信息,或向网络设备发送数据或信息。处理单元1620用于执行接收和发送以外的其它操作,例如根据空口状态和终端装置的位置,生成数据。
应理解以上装置中单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且装置中的单元可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分单元以软件通过处理元件调用的形式实现,部分单元以硬件的形式实现。例如,各个单元可以为单独设立的处理元件,也可以集成在装置的某一个芯片中实现,此外,也可以以程序的形式存储于存储器中,由装置的某一个处理元件调用并执行该单元的功能。此外这些单元全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件又可以成为处理器,可以是一种具有信号的处理能力的集成电路。在实现过程中,上述方法的各步骤或以上各个单元可以通过处理器元件中的硬件的集成逻辑电路实现或者以软件通过处理元件调用的形式实现。
在一个例子中,以上任一装置中的单元可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA),或这些集成电路形式中至少两种的组合。再如,当装置中的单元可以通过处理元件调度程序的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,CPU)或其它可以调用程序的处理器。再如,这些单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
以上用于接收的单元是一种该装置的接口电路,用于从其它装置接收信号。例如,当该装置以芯片的方式实现时,该接收单元是该芯片用于从其它芯片或装置接收信号的接口电路。以上用于发送的单元是一种该装置的接口电路,用于向其它装置发送信号。例如,当该装置以芯片的方式实现时,该发送单元是该芯片用于向其它芯片或装置发送信号的接口电路。
请参考图17,其为本申请实施例提供的一种终端的结构示意图。以上实施例中的终端装置可以位于该终端或为该终端,用于实现以上实施例中终端装置的操作。如图17所示,该终端包括:天线1710、射频部分1720、信号处理部分1730。天线1710与射频部分1720连接。在下行方向上,射频部分1720通过天线1710接收网络设备发送的信息,将网络设备发送的信息发送给信号处理部分1730进行处理。在上行方向上,信号处理部分1730对终端的信息进行处理,并发送给射频部分1720,射频部分1720对终端的信息进行处理后经过天线1710发送给网络设备。
信号处理部分1730可以包括调制解调子系统,用于实现对数据各通信协议层的处理;还可以包括中央处理子系统,用于实现对终端操作系统以及应用层的处理;此外,还可以包括其它子系统,例如多媒体子系统,周边子系统等,其中多媒体子系统用于实现对终端相机,屏幕显示等的控制,周边子系统用于实现与其它设备的连接。调制解调子系统可以为单独设置的芯片。可选的,以上用于终端的装置可以位于该调制解调子系统。
调制解调子系统可以包括一个或多个处理元件1731,例如,包括一个主控CPU和其它集成电路。此外,该调制解调子系统还可以包括存储元件1732和接口电路1733。存储元件1732用于存储数据和程序,但用于执行以上方法中终端所执行的方法的程序可能不存储于该存储元件1732中,而是存储于调制解调子系统之外的存储器中,使用时调制解调子系统加载使用。接口电路1733用于与其它子系统通信。以上用于终端的装置可以位于调制解调子系统,该调制解调子系统可以通过芯片实现,该芯片包括至少一个处理元件和接口电路,其中处理元件用于执行以上终端执行的任一种方法的各个步骤,接口电路用于与其它装置通信。在一种实现中,终端实现以上方法中各个步骤的单元可以通过处理元件调度程序的形式实现,例如用于终端的装置包括处理元件和存储元件,处理元件调用存储元件存储的程序,以执行以上方法实施例中终端执行的方法。存储元件可以为处理元件处于同一芯片上的存储元件,即片内存储元件。
在另一种实现中,用于执行以上方法中终端所执行的方法的程序可以在与处理元件处于不同芯片上的存储元件,即片外存储元件。此时,处理元件从片外存储元件调用或加载程序于片内存储元件上,以调用并执行以上方法实施例中终端执行的方法。
在又一种实现中,终端实现以上方法中各个步骤的单元可以是被配置成一个或多个处理元件,这些处理元件设置于调制解调子系统上,这里的处理元件可以为集成电路,例如:一个或多个ASIC,或,一个或多个DSP,或,一个或者多个FPGA,或者这些类集成电路的组合。这些集成电路可以集成在一起,构成芯片。
终端实现以上方法中各个步骤的单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现,该SOC芯片,用于实现以上方法。该芯片内可以集成至少一个处理元件和存储元件,由处理元件调用存储元件的存储的程序的形式实现以上终端执行的方法;或者,该芯片内可以集成至少一个集成电路,用于实现以上终端执行的方法;或者,可以结合以上实现方式,部分单元的功能通过处理元件调用程序的形式实现,部分单元的功能通过集成电路的形式实现。
可见,以上用于终端的装置可以包括至少一个处理元件和接口电路,其中至少一个处理元件用于执行以上方法实施例所提供的任一种终端执行的方法。处理元件可以以第一种方式:即调用存储元件存储的程序的方式执行终端执行的部分或全部步骤;也可以以第二种方式:即通过处理器元件中的硬件的集成逻辑电路结合指令的方式执行终端执行的部分或全部步骤;当然,也可以结合第一种方式和第二种方式执行终端执行的部分或全部步骤。
这里的处理元件同以上描述,可以是通用处理器,例如CPU,还可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个ASIC,或,一个或多个微处理器DSP,或,一个或者多个FPGA等,或这些集成电路形式中至少两种的组合。
存储元件可以是一个存储器,也可以是多个存储元件的统称。
请参考图18,其为本申请实施例提供的一种网络设备的结构示意图。用于实现以上实施例中网络设备的操作。如图18所示,该网络设备包括:天线1810、射频装置1820、基带装置1830。天线1810与射频装置1820连接。在上行方向上,射频装置1820通过天线1810接收终端发送的信息,将终端发送的信息发送给基带装置1830进行处理。在下行方向上,基带装置1830对终端的信息进行处理,并发送给射频装置1820,射频装置1820对终端的信息进行处理后经过天线1810发送给终端。
基带装置1830可以包括一个或多个处理元件1831,例如,包括一个主控CPU和其它集成电路。此外,该基带装置1830还可以包括存储元件1831和接口1833,存储元件1832用于存储程序和数据;接口1833用于与射频装置1820交互信息,该接口例如为通用公共无线接口(common public radio interface,CPRI)。以上用于网络设备的装置可以位于基带装置1830,例如,以上用于网络设备的装置可以为基带装置1830上的芯片,该芯片包括至少一个处理元件和接口电路,其中处理元件用于执行以上网络设备执行的任一种方法的各个步骤,接口电路用于与其它装置通信。在一种实现中,网络设备实现以上方法中各个步骤的单元可以通过处理元件调度程序的形式实现,例如用于网络设备的装置包括处理元件和存储元件,处理元件调用存储元件存储的程序,以执行以上方法实施例中网络设备执行的方法。存储元件可以为处理元件处于同一芯片上的存储元件,即片内存储元件,也可以为与处理元件处于不同芯片上的存储元件,即片外存储元件。
在另一种实现中,网络设备实现以上方法中各个步骤的单元可以是被配置成一个或多个处理元件,这些处理元件设置于基带装置上,这里的处理元件可以为集成电路,例如:一个或多个ASIC,或,一个或多个DSP,或,一个或者多个FPGA,或者这些类集成电路的组合。这些集成电路可以集成在一起,构成芯片。
网络设备实现以上方法中各个步骤的单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现,例如,基带装置包括该SOC芯片,用于实现以上方法。该芯片内可以集成至少一个处理元件和存储元件,由处理元件调用存储元件的存储的程序的形式实现以上网络设备执行的方法;或者,该芯片内可以集成至少一个集成电路,用于实现以上网络设备执行的方法;或者,可以结合以上实现方式,部分单元的功能通过处理元件调用程序的形式实现,部分单元的功能通过集成电路的 形式实现。
可见,以上用于网络设备的装置可以包括至少一个处理元件和接口电路,其中至少一个处理元件用于执行以上方法实施例所提供的任一种网络设备执行的方法。处理元件可以以第一种方式:即调用存储元件存储的程序的方式执行网络设备执行的部分或全部步骤;也可以以第二种方式:即通过处理器元件中的硬件的集成逻辑电路结合指令的方式执行网络设备执行的部分或全部步骤;当然,也可以结合第一种方式和第二种方式执行以上网络设备执行的部分或全部步骤。
这里的处理元件同以上描述,可以是通用处理器,例如CPU,还可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个ASIC,或,一个或多个微处理器DSP,或,一个或者多个FPGA等,或这些集成电路形式中至少两种的组合。
存储元件可以是一个存储器,也可以是多个存储元件的统称。
请参考图19,其为本申请实施例提供的数据库服务器的结构示意图。其可以为以上实施例中的数据库服务器,用于实现以上实施例中数据库服务器的操作。
如图19所示,该网络设备包括:处理器1910,存储器1920,和接口1930,处理器1910、存储器1920和接口1930信号连接。
以上用于数据库服务器的方法可以通过处理器1910调用存储器1920中存储的程序来实现。即,以上用于数据库服务器的装置包括存储器和处理器,存储器用于存储程序,该程序被处理器调用,以执行以上方法实施例中的方法。这里的处理器可以是一种具有信号的处理能力的集成电路,例如CPU。或者以上用于数据库服务器的方法可以通过配置成实施以上方法的一个或多个集成电路来实现。例如:一个或多个ASIC,或,一个或多个微处理器DSP,或,一个或者多个FPGA等,或这些集成电路形式中至少两种的组合。或者,可以结合以上实现方式。
此外,本申请实施例中,“多个”是指两个或两个以上。“和/或”描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。此外,对于单数形式“a”,“an”和“the”出现的元素(element),除非上下文另有明确规定,否则其不意味着“一个或仅一个”,而是意味着“一个或多于一个”。例如,“a device”意味着对一个或多个这样的device。再者,至少一个(at least one of).......”意味着后续关联对象中的一个或任意组合,例如“A,B和C中的至少一个”包括A,B,C,AB,AC,BC,或ABC。根据X确定Y并不意味着仅仅根据X确定Y,还可以根据X和其它信息确定Y。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (47)

  1. 一种通信方法,其特征在于,包括:
    终端装置从网络设备接收信息,所述信息用于指示空口状态或用于指示所述网络设备存储的数据量;
    所述终端装置从所述网络设备接收数据;
    所述终端装置根据所述空口状态或所述网络设备存储的数据量,处理所述数据。
  2. 根据权利要求1所述的方法,其特征在于,所述信息通过无线资源控制RRC消息、分组数据汇聚协议控制协议数据单元PDCP control PDU、或媒体接入控制控制元素MAC CE承载。
  3. 根据权利要求2所述的方法,其特征在于,所述信息通过所述MAC CE承载,所述MAC CE位于MAC子PDU中,所述MAC子PDU包括MAC子头和所述MAC CE,所述MAC子头包括逻辑信道标识LCID,所述LCID取预设值,所述预设值用于指示所述MAC CE包括所述信息。
  4. 根据权利要求3所述的方法,其特征在于,所述MAC CE还包括时间信息,用于指示所述数据在所述时间信息所指示的时间内传输。
  5. 根据权利要求3所述的方法,其特征在于,还包括:
    所述终端装置从所述网络设备接收RRC消息,所述RRC消息包括时间信息,用于指示所述数据在所述时间信息所指示的时间内传输。
  6. 根据权利要求3所述的方法,其特征在于,所述信息包括至少一个层信息和至少一个信元,每个信元对应一个层信息,用于指示该层信息所指示的层的状态或数据量。
  7. 根据权利要求1至6任一项所述的方法,其特征在于,所述终端装置从网络设备接收信息,包括:
    所述终端装置周期性从所述网络设备接收所述信息;或者,
    所述终端装置在所述网络设备存储的数据量大于或等于阈值时,从所述网络设备接收所述信息。
  8. 根据权利要求1至7任一项所述的方法,其特征在于,还包括:
    所述终端装置向所述网络设备发送第一位置信息,所述第一位置信息用于指示所述终端装置的位置。
  9. 根据权利要求1至8任一项所述的方法,其特征在于,还包括:
    所述终端装置向数据库服务器发送第二位置信息,所述第二位置信息用于指示参考位置。
  10. 根据权利要求1至9任一项所述的方法,其特征在于,还包括:
    所述终端装置向所述网络设备发送状态指示信息,所述状态指示信息用于指示所述终端装置的状态。
  11. 一种通信方法,其特征在于,包括:
    网络设备确定空口状态或存储的数据量;
    所述网络设备向终端装置发送第一信息,所述第一信息用于指示所述空口状态或用于指示所述网络设备存储的数据量;
    所述网络设备向所述终端装置发送数据,其中所述空口状态或网络设备存储的数据量用于确定所述数据的处理方式。
  12. 根据权利要求11所述的方法,其特征在于,还包括:
    所述网络设备从所述终端装置接收位置信息,所述位置信息用于指示所述终端装置的位置;
    所述网络设备向数据库服务器发送所述位置信息。
  13. 根据权利要求12所述的方法,其特征在于,还包括:
    所述网络设备向数据库服务器发送第二信息,所述第二信息用于指示所述空口状态;
    所述网络设备从所述数据库服务器获取根据所述空口状态和所述终端装置的位置生成的所述数据。
  14. 根据权利要求11所述的方法,其特征在于,还包括:
    所述网络设备从所述数据库服务器获取根据所述终端装置的位置生成的第一数据,其中向所述终端装置发送的数据为第二数据;
    所述网络设备根据所述空口状态,利用所述第一数据生成所述第二数据。
  15. 根据权利要求11所述的方法,其特征在于,所述第一信息通过无线资源控制RRC消息、分组数据汇聚协议控制协议数据单元PDCP control PDU、或媒体接入控制控制元素MAC CE传输。
  16. 根据权利要求15所述的方法,其特征在于,所述第一信息通过所述MAC CE传输,所述MAC CE位于MAC子PDU中,所述MAC子PDU包括MAC子头和所述MAC CE,所述MAC子头包括逻辑信道标识LCID,所述LCID取预设值,所述预设值用于指示所述MAC CE包括所述第一信息。
  17. 根据权利要求16所述的方法,其特征在于,所述MAC CE还包括时间信息,用于指示所述数据在所述时间信息所指示的时间内传输。
  18. 根据权利要求16所述的方法,其特征在于,还包括:
    所述网络设备向所述终端装置发送RRC消息,所述RRC消息包括时间信息,用于指示所述数据在所述时间信息所指示的时间内传输。
  19. 根据权利要求16所述的方法,其特征在于,所述第一信息包括至少一个层信息和至少一个信元,每个信元对应一个层信息,用于指示该层信息所指示的层的状态或数据量。
  20. 根据权利要求11至19任一项所述的方法,其特征在于,所述网络设备向所述终端装置发送第一信息,包括:
    所述网络设备周期性向所述终端装置所述第一信息;或者,
    所述网络设备在存储的数据量大于或等于阈值时,向所述终端装置发送所述第一信息。
  21. 一种通信方法,其特征在于,包括:
    网络设备确定空口状态;
    所述网络设备向数据库服务器发送第一信息,所述第一信息用于指示所述空口状态;
    所述网络设备从所述数据库服务器获取根据所述空口状态生成的数据;
    所述网络设备向终端装置发送所述数据。
  22. 根据权利要求21所述的方法,其特征在于,还包括:
    所述网络设备从终端装置接收位置信息,所述位置信息用于指示所述终端装置的位置;
    所述网络设备向所述数据库服务器发送所述位置信息,且
    所述网络设备从所述数据库服务器获取根据所述空口状态生成的数据,包括:
    所述网络设备从所述数据库服务器获取根据所述空口状态和所述终端装置的位置 生成的所述数据。
  23. 根据权利要求21或22所述的方法,其特征在于,还包括:
    所述网络设备向终端装置发送第二信息,所述第二信息用于指示所述空口状态或用于指示所述网络设备存储的数据量。
  24. 根据权利要求23所述的方法,其特征在于,所述第二信息通过无线资源控制RRC消息、分组数据汇聚协议控制协议数据单元PDCP control PDU、或媒体接入控制控制元素MAC CE传输。
  25. 根据权利要求24所述的方法,其特征在于,所述第二信息通过所述MAC CE传输,所述MAC CE位于MAC子PDU中,所述MAC子PDU包括MAC子头和所述MAC CE,所述MAC子头包括逻辑信道标识LCID,所述LCID取预设值,所述预设值用于指示所述MAC CE包括所述第二信息。
  26. 根据权利要求25所述的方法,其特征在于,所述MAC CE还包括时间信息,用于指示所述数据在所述时间信息所指示的时间内传输。
  27. 根据权利要求25所述的方法,其特征在于,还包括:
    所述网络设备向所述终端装置发送RRC消息,所述RRC消息包括时间信息,用于指示所述数据在所述时间信息所指示的时间内传输。
  28. 根据权利要求25所述的方法,其特征在于,所述第二信息包括至少一个层信息和至少一个信元,每个信元对应一个层信息,用于指示该层信息所指示的层的状态或数据量。
  29. 根据权利要求23至28任一项所述的方法,其特征在于,所述网络设备向所述终端装置发送第二信息,包括:
    所述网络设备周期性向所述终端装置所述第二信息;或者,
    所述网络设备在存储的数据量大于或等于阈值时,向所述终端装置发送所述第二信息。
  30. 根据权利要求11至29任一项所述的方法,其特征在于,还包括:
    所述网络设备从所述数据库服务器获取第一参考位置的数据;
    所述网络设备根据所述终端装置的位置,利用所述第一参考位置的数据,生成向所述终端装置发送的所述数据。
  31. 根据权利要求30所述的方法,其特征在于,还包括:
    所述网络设备向所述数据库服务器发送第一请求消息,该第一请求消息用于请求所述第一参考位置的数据
  32. 根据权利要求30或31所述的方法,其特征在于,还包括:
    所述网络设备向所述数据库服务器发送第二请求消息,该第二请求消息用于请求第二参考位置的数据;
    所述网络设备从所述数据库服务器接收所述第二参考位置的数据。
  33. 根据权利要求31所述的方法,其特征在于,所述第一请求消息包括位置信息,所述位置信息用于指示所述终端装置的位置。
  34. 一种通信方法,其特征在于,包括:
    数据库服务器从网络设备接收信息,所述信息用于指示空口状态;
    数据库服务器从网络设备终端装置的位置信息,所述位置信息用于指示所述终端装置的位置;
    所述数据库服务器根据所述空口状态和所述终端装置的位置,生成数据;
    所述数据库服务器向所述网络设备发送所述数据。
  35. 根据权利要求1至34任一项所述的方法,其特征在于,所述空口状态包括速 率或数据量或频率资源大小或无线信号质量或天线数据量。
  36. 一种通信方法,其特征在于,包括:
    网络设备从数据库服务器获取参考位置的数据;
    所述网络设备从终端装置接收位置信息,所述位置信息用于指示所述终端装置的位置;
    所述网络设备根据所述终端装置的位置,利用所述参考位置的数据,生成下行数据;
    所述网络设备向所述终端装置发送所述下行数据。
  37. 一种通信装置,其特征在于,包括:用于执行如权利要求1-10,35中任一项所述各步骤的单元或手段。
  38. 一种通信装置,其特征在于,包括:处理器和接口电路,所述接口电路用于与其它装置通信,所述处理器用于执行权利要求1-10,35中任一项所述的方法。
  39. 一种通信装置,其特征在于,包括:处理器,用于调用存储器中的程序,以执行权利要求1-10,35中任一项所述的方法。
  40. 一种通信装置,其特征在于,包括:用于执行如权利要求11-33,35,36中任一项所述各步骤的单元或手段。
  41. 一种通信装置,其特征在于,包括:处理器和接口电路,所述接口电路用于与其它装置通信,所述处理器用于执行权利要求11-33,35,36中任一项所述的方法。
  42. 一种通信装置,其特征在于,包括:处理器,用于调用存储器中的程序,以执行权利要求11-33,35,36中任一项所述的方法。
  43. 一种通信装置,其特征在于,包括:用于执行如权利要求34或35所述各步骤的单元或手段。
  44. 一种通信装置,其特征在于,包括:处理器和接口电路,所述接口电路用于与其它装置通信,所述处理器用于执行权利要求34或35所述的方法。
  45. 一种通信装置,其特征在于,包括:处理器,用于调用存储器中的程序,以执行权利要求34或35所述的方法。
  46. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储程序,所述程序被处理器调用时,权利要求1至36任一项所述的方法被执行。
  47. 一种计算机程序,其特征在于,当所述程序被处理器调用时,权利要求1至36任一项所述的方法被执行。
PCT/CN2019/130817 2019-12-31 2019-12-31 通信方法及装置 WO2021134618A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980103217.6A CN114846810B (zh) 2019-12-31 2019-12-31 通信方法、装置及存储介质
EP19958410.3A EP4064712A4 (en) 2019-12-31 2019-12-31 COMMUNICATION METHOD AND DEVICE
PCT/CN2019/130817 WO2021134618A1 (zh) 2019-12-31 2019-12-31 通信方法及装置
US17/853,446 US20220330074A1 (en) 2019-12-31 2022-06-29 Communication method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/130817 WO2021134618A1 (zh) 2019-12-31 2019-12-31 通信方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/853,446 Continuation US20220330074A1 (en) 2019-12-31 2022-06-29 Communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2021134618A1 true WO2021134618A1 (zh) 2021-07-08

Family

ID=76686853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/130817 WO2021134618A1 (zh) 2019-12-31 2019-12-31 通信方法及装置

Country Status (4)

Country Link
US (1) US20220330074A1 (zh)
EP (1) EP4064712A4 (zh)
CN (1) CN114846810B (zh)
WO (1) WO2021134618A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117544762B (zh) * 2023-11-17 2024-04-19 广东信佰工程监理有限公司 一种基于大数据分析的项目监理方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140047485A1 (en) * 2012-08-10 2014-02-13 At&T Intellectual Property I, Lp Method and apparatus for delivery of application services
CN106937128A (zh) * 2015-12-31 2017-07-07 幸福在线(北京)网络技术有限公司 一种视频直播方法、服务器及系统和相关用途
CN107613338A (zh) * 2017-09-25 2018-01-19 中兴通讯股份有限公司 视频传输方法、服务器、vr播放终端及计算机可读存储介质
CN109426333A (zh) * 2017-08-23 2019-03-05 腾讯科技(深圳)有限公司 一种基于虚拟空间场景的信息交互方法及装置
CN110234023A (zh) * 2019-02-22 2019-09-13 华为技术有限公司 一种处理视频业务的方法和设备

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110216821A1 (en) * 2010-03-02 2011-09-08 Samsung Electronics Co., Ltd. Method and apparatus for adaptive streaming using scalable video coding scheme
CN102857791B (zh) * 2012-09-14 2015-07-08 武汉善观科技有限公司 用移动终端对pacs系统中图像数据的处理及显示方法
EP3261354A1 (en) * 2013-06-05 2017-12-27 Thomson Licensing Method and apparatus for content distribution for multi-screen viewing
CN103607564B (zh) * 2013-11-11 2016-08-17 天脉聚源(北京)传媒科技有限公司 一种基于摄像头的视频采集实现的方法及装置
US10555208B2 (en) * 2015-03-30 2020-02-04 Lg Electronics Inc. Method for performing a buffer status reporting in a wireless communication system and device therefor
KR102480856B1 (ko) * 2016-06-17 2022-12-23 삼성전자주식회사 블루투스 기반의 무선 통신 시스템에서 스트리밍 데이터의 통신 방법 및 장치
CN106792110A (zh) * 2016-12-07 2017-05-31 北京小米移动软件有限公司 标签设置方法及装置
CN108932948B (zh) * 2017-05-26 2021-12-14 腾讯科技(深圳)有限公司 音频数据处理方法、装置、计算机设备和计算机可读存储介质
WO2019139369A1 (en) * 2018-01-11 2019-07-18 Samsung Electronics Co., Ltd. Method and apparatus for csi reporting in wireless communication system
US10834749B2 (en) * 2018-02-19 2020-11-10 Electronics And Telecommunications Research Institute Method for bandwidth part management in communication system and apparatus for the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140047485A1 (en) * 2012-08-10 2014-02-13 At&T Intellectual Property I, Lp Method and apparatus for delivery of application services
CN106937128A (zh) * 2015-12-31 2017-07-07 幸福在线(北京)网络技术有限公司 一种视频直播方法、服务器及系统和相关用途
CN109426333A (zh) * 2017-08-23 2019-03-05 腾讯科技(深圳)有限公司 一种基于虚拟空间场景的信息交互方法及装置
CN107613338A (zh) * 2017-09-25 2018-01-19 中兴通讯股份有限公司 视频传输方法、服务器、vr播放终端及计算机可读存储介质
CN110234023A (zh) * 2019-02-22 2019-09-13 华为技术有限公司 一种处理视频业务的方法和设备

Also Published As

Publication number Publication date
EP4064712A1 (en) 2022-09-28
EP4064712A4 (en) 2022-12-07
CN114846810A (zh) 2022-08-02
CN114846810B (zh) 2023-08-22
US20220330074A1 (en) 2022-10-13

Similar Documents

Publication Publication Date Title
US10477105B2 (en) Method and system for transmitting virtual reality (VR) content
WO2019158102A1 (zh) 一种确定QoS描述信息的方法和装置
US11979450B2 (en) Communication method and apparatus
US20210007118A1 (en) Communication Method And Related Device
WO2022068620A1 (zh) 一种数据传输方法以及装置
WO2021164526A1 (zh) 一种通信方法及装置
WO2020125573A1 (zh) 通信方法、装置、终端、网络设备及存储介质
WO2020199923A1 (zh) 一种通信方法及装置
WO2023046118A1 (zh) 一种通信方法及装置
JP2017527220A (ja) 制御メッセージの伝送方法、装置及びコンピュータ記憶媒体
CN116112946A (zh) 一种通信方法及装置
WO2022237505A1 (zh) 一种通信方法、设备及系统
US20220330074A1 (en) Communication method and apparatus
WO2022022471A1 (zh) 一种媒体流切换方法及装置
JP2023500081A (ja) データ伝送方法
WO2024140600A1 (zh) 通信方法、通信装置及通信系统
WO2023185769A1 (zh) 通信方法、通信装置和通信系统
WO2023185402A1 (zh) 通信方法及装置
WO2019028920A1 (zh) 一种数据传输方法及设备
WO2024140257A1 (zh) 一种基于配置授权的通信方法及装置
WO2024067062A1 (zh) 数据传输方法和相关产品
WO2023125192A1 (zh) 一种数据传输方法、装置、终端及网络设备
US20240305574A1 (en) Quality of service qos management method and apparatus
WO2024065136A1 (zh) 一种控制方法及其装置
WO2023045714A1 (zh) 一种调度方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19958410

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019958410

Country of ref document: EP

Effective date: 20220624

NENP Non-entry into the national phase

Ref country code: DE