WO2021134480A1 - 一种冷却装置 - Google Patents
一种冷却装置 Download PDFInfo
- Publication number
- WO2021134480A1 WO2021134480A1 PCT/CN2019/130515 CN2019130515W WO2021134480A1 WO 2021134480 A1 WO2021134480 A1 WO 2021134480A1 CN 2019130515 W CN2019130515 W CN 2019130515W WO 2021134480 A1 WO2021134480 A1 WO 2021134480A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fuel cell
- converter
- radiator
- section
- cooling
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/2089—Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
- H05K7/20927—Liquid coolant without phase change
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K11/00—Arrangement in connection with cooling of propulsion units
- B60K11/02—Arrangement in connection with cooling of propulsion units with liquid cooling
- B60K11/04—Arrangement or mounting of radiators, radiator shutters, or radiator blinds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L3/00—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
- B60L3/0023—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
- B60L3/0053—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to fuel cells
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/30—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
- B60L58/32—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load
- B60L58/33—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load by cooling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K1/00—Arrangement or mounting of electrical propulsion units
- B60K2001/003—Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2200/00—Type of vehicles
- B60L2200/26—Rail vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Y—INDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
- B60Y2200/00—Type of vehicle
- B60Y2200/30—Railway vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/40—Application of hydrogen technology to transportation, e.g. using fuel cells
Definitions
- the invention relates to the technical field of motor cars, in particular to a cooling device installed on the roof of a motor car.
- Traction converters, fuel cells and reactors are key components of trains, which provide power for the normal operation of trains.
- components such as traction converters, fuel cells, and reactors will generate a lot of heat, and special cooling devices need to be set up to dissipate heat for them to avoid serious consequences due to overheating of these specific structures.
- the current cooling device has the following shortcomings: low heat exchange efficiency and heavy weight; after the fan is damaged, the entire cooling circuit fails and stops working, affecting the normal operation of the vehicle; the cooling device is relatively noisy; the cooling performance gear can be adjusted Poor performance, unable to accurately control the energy consumption of the cooling device.
- the present invention proposes a cooling device.
- the cooling device has the advantages of high heat exchange efficiency, light weight, low noise, and accurate control of energy consumption.
- a cooling device which includes:
- a converter cooling circuit, and a converter radiator is provided on the converter cooling circuit
- a fuel cell cooling circuit, a fuel cell radiator is provided on the fuel cell cooling circuit
- An air-cooled component which can perform heat dissipation and cooling for the converter radiator and the fuel cell radiator,
- the converter cooling circuit can dissipate heat for the converter
- the fuel cell cooling circuit can dissipate heat for the fuel cell
- the converter radiator in the horizontal direction, is located in parallel on the first side of the fuel cell radiator, the air-cooled assembly is located on the second side of the fuel cell radiator, and in the longitudinal direction, the converter radiates heat The radiator is located at the second end of the fuel cell radiator, so that the ambient air is sucked in from the first side of the radiator of the converter at the opposite position of the radiator of the converter, and is drawn out by the air-cooled assembly after passing through the fuel cell radiator.
- the converter radiator and the fuel cell radiator are spaced apart so that a cylindrical air duct body is connected between the two, and the upper wall of the air duct body is provided with a cleaning port, and A cleaning cover is hingedly arranged at the cleaning opening.
- the upper wall surface of the air duct body is configured as an inclined surface whose second side is high and the first side is low.
- the fuel cell cooling circuit further includes:
- the first section of the longitudinally extending fuel cell pipe arranged at the upstream end of the fuel cell radiator,
- the second section of the fuel cell pipe that extends transversely and communicates with the first section of the fuel cell
- the third section of the fuel cell pipe extending transversely arranged at the downstream end of the fuel cell radiator,
- the fourth section of the fuel cell pipe that is longitudinally extending in communication with the third section of the fuel cell pipe
- the fuel cell water tank connected in parallel with the fuel cell radiator
- the first end opening of the first section of the fuel cell tube is used to communicate with the fuel cell outlet, and the first end opening of the fourth section of the fuel cell tube is communicated with the fuel cell inlet, and the fuel cell water tank is located at the second fuel cell radiator. The second end.
- the first section of the fuel cell pipe or the second section of the fuel cell pipe is connected with the first section of the air-conditioning pipe, and the first section of the fuel cell pipe or the second section of the fuel cell is downstream of the connection.
- a second section of the air-conditioning pipe is arranged in a connecting type on the tube, the first section of the air-conditioning pipe is used to communicate with the air-conditioning inlet, and the second section of the air-conditioning pipe is used to communicate with the air-conditioning outlet.
- the converter cooling circuit further includes a converter water tank and a converter water pump, wherein,
- the converter water tank is arranged laterally on the first side of the fuel cell radiator, and longitudinally on the first end of the converter radiator,
- the converter water pump is laterally arranged on the first side of the fuel cell radiator, and longitudinally located between the converter water tank and the converter radiator.
- the reactor upstream pipeline is arranged in parallel on the pipeline in the upstream section of the converter radiator of the converter cooling circuit, and the reactor upstream pipeline is arranged in the downstream section of the converter radiator of the converter cooling circuit.
- the downstream pipeline of the reactor is arranged in parallel on the pipeline, the upstream pipeline of the reactor is connected with the outlet of the reactor, and the downstream pipeline of the reactor is connected with the inlet of the reactor.
- the air-cooled assembly includes multiple sets of cooling fans arranged in parallel, the cooling fans are driven by respective matched motors located on the second side of the transverse direction, and the multiple cooling fans are arranged in sequence in the longitudinal direction, wherein,
- sound-absorbing cotton is provided on the other inner walls of the casing of the cooling fan except for the wall of the air outlet.
- it further includes a mounting frame, which has a longitudinally extending support beam that can be connected to the motor, wherein the converter cooling circuit, the fuel cell cooling circuit and the cooling fan are all fixed by the mounting frame.
- the cooling device has two cooling channels, which can simultaneously dissipate heat and reduce temperature for different components such as converters and fuel cells, thereby improving the effective utilization of the cooling device.
- the overall dimensions of the cooling device and the weight of the cooling device are correspondingly reduced.
- Figure 1 shows a system schematic diagram of a cooling device according to an embodiment of the present invention
- Figure 2 shows a perspective view of a cooling device according to an embodiment of the present invention
- Figure 3 shows a front view of a cooling device according to an embodiment of the present invention
- Figure 4 shows a top view of a cooling device according to an embodiment of the present invention
- Figure 5 shows a back view of the cooling device according to an embodiment of the present invention
- Figure 6 shows a left side view of the cooling device according to an embodiment of the present invention.
- Fig. 7 shows a right side view of the cooling device according to an embodiment of the present invention.
- Fig. 1 shows a system schematic diagram of a cooling device 100 according to the present invention.
- the cooling device 100 includes two cooling circuits and an air-cooled component 3.
- One of these two cooling circuits is the converter cooling circuit 1, in which a coolant (such as water, which will be described below with water as an example, but the coolant is not limited to water) can be used for the converter 200.
- Heat dissipation and cooling is provided with a converter radiator 11.
- the other is the fuel cell cooling circuit 2 for dissipating heat for the fuel cell 300, in which a coolant is also circulated (for example, water, water will be used as an example in the following description, but the coolant is not limited to water).
- a fuel cell radiator 21 is provided on the fuel cell cooling circuit.
- the air-cooled assembly 3 is used for heat dissipation and cooling for the converter radiator 11 and the fuel cell radiator 21.
- the cooling air and the coolant fully exchange heat and reduce the temperature of the coolant, so that the coolant can continue to circulate to cool down the relevant converter 200 and the fuel cell 300.
- the cooling device 100 has two cooling circuit channels, which can simultaneously perform heat dissipation and cooling for different component converters, fuel cells, etc., thereby improving the heat dissipation efficiency of the cooling device 100.
- the above-mentioned principle and structure can also reduce the overall size and weight of the cooling device 100 accordingly.
- the cooling device 100 includes a mounting frame 5.
- the mounting frame 5 mainly functions to support and fix other components (such as the air-cooled assembly 3) for integrally installing the cooling device 100 on the roof of the vehicle.
- the mounting frame 5 includes at least two transversely extending transverse beams 51 arranged oppositely and spaced apart, and a plurality of longitudinal beams 52 arranged between the transverse beams 51 and fixedly connected to the transverse beams 51.
- both the converter radiator 11 and the fuel cell radiator 21 are constructed as a substantially rectangular structure.
- the converter radiator 11 is located on the first side of the fuel cell radiator 21 and is arranged substantially in parallel.
- the air-cooled assembly 3 is located on the second side of the fuel cell radiator 21.
- the converter radiator 11 is located at the second end of the fuel cell radiator 21. That is, parts of the converter radiator 11 and the fuel cell radiator 21 overlap in the lateral direction.
- ambient air is drawn in from the first side of the converter radiator 11, and is drawn out by the air-cooled assembly 3 after passing through the fuel cell radiator 21 .
- the above-mentioned arrangement method arranges three relatively large components (air-cooled assembly 3, converter radiator 11 and fuel cell radiator 21) on the mounting frame 5 in a substantially parallel manner in the transverse direction, and is close to the second Side, the layout is reasonable, which is conducive to the use of space on the train roof.
- the above arrangement can ensure sufficient heat dissipation of the converter radiator 11 and the fuel cell radiator 21, thereby helping to ensure efficient heat dissipation.
- the converter radiator 11 and the fuel cell radiator 21 are arranged at intervals to form a gap of a certain distance (for example, 8-15 cm) between the two.
- An air duct body 4 is provided at the gap to connect the converter radiator 11 and the fuel cell radiator 21 to ensure that air enters the fuel cell radiator 21 from the converter radiator 11 when the air-cooled assembly 3 draws air.
- the air duct body 4 may be configured in a cylindrical shape that matches the outer wall of the housing of the converter radiator 11.
- a cleaning port 41 is opened on the upper wall surface of the air duct body 4, and a cleaning cover 42 is hingedly provided at the cleaning port 41.
- the two radiators 11 and 21 can be cleaned separately.
- the cleaning port 41 and the cleaning cover plate 42 on the basis of not affecting the cooling effect, the convenience of the cleaning operation can also be increased.
- the upper wall surface of the air duct body 4 is configured as an inclined surface whose second side is high and the first side is low, and its rotation axis extends in the longitudinal direction and is arranged on the second side of the cleaning cover 42. That is, in the direction from the housing of the fuel cell radiator 2 to the housing of the converter radiator 11, the upper wall surface of the air duct body 4 is configured as a gradually decreasing slope. This arrangement makes use of cleaning the fuel cell radiator 21 on the one hand, and on the other hand, it can ensure that the cleaning cover 42 is more closely covered at the cleaning opening 41 during the air-cooling process of the air-cooled assembly 3.
- the fuel cell cooling circuit 2 further includes a fuel cell first section pipe 22, a fuel cell second section pipe 23, a fuel cell water tank 24, a fuel cell third section pipe 25, and a fuel cell fourth section pipe. 26.
- the first section of the fuel cell tube 22 is provided at the upstream end of the fuel cell radiator 21, which itself is a longitudinally extending tube, and the section of opening 28 is provided at the first end for connecting the outlet of the fuel cell to receive The coolant of the fuel cell 300.
- the second section of the fuel cell tube 23 communicates with the first section of the fuel cell tube 22 and extends in the transverse direction.
- the fuel cell water tank 24 is hung on the cross beam 51 at the second end, and is connected in parallel with the fuel cell radiator 21.
- the downstream end of the fuel cell radiator 21 is provided with a third-stage fuel cell pipe 25 and a fourth-stage fuel cell pipe 26 in sequence.
- the third section of the fuel cell tube 25 extends laterally.
- the fourth section of the fuel cell pipe 26 extends longitudinally, and the section of the opening 29 is provided at the first end, and is used to connect the fuel cell inlet to deliver the coolant to be cooled to the fuel cell 300.
- the coolant from the fuel cell first enters the first section of the fuel cell tube 22 and the second section of the fuel cell tube 23 in sequence, and then enters the fuel cell radiator 21. Through the action of the air-cooled component 3, the water is cooled at the fuel cell radiator 21.
- the coolant that has been dissipated and cooled enters the third-section pipe 25 of the fuel cell, and flows out through the fourth-section pipe 26 of the fuel cell to return to the fuel cell.
- the fuel cell water tank 24 may be configured as a single cavity structure.
- a gas collecting bag is provided at the top of the cavity.
- the gas collecting bag is bowl-shaped, and is used to collect the gas in the coolant entering the fuel cell water tank 24 to prevent the gas from entering the fuel cell cooling circuit 2
- Water pump (It should be noted here that in order to realize the circulation of the coolant in the circuit, the water pump can be installed in the cooling device 100, or in the fuel cell 300 and the air conditioner 400 respectively. The pump configuration is provided in this application.
- a pump 301 is provided in the fuel cell 300, and a pump 401 is provided in the air conditioner 400).
- a pump 301 is provided in the fuel cell 300, and a pump 401 is provided in the air conditioner 400.
- the first section of the fuel cell tube 22 may be an inclined tube, and in the direction from the first end to the second end, the first section of the fuel cell tube 22 gradually rises.
- a ninety-degree elbow joint is used at the pipe-to-pipe connection to increase installation convenience. This structure not only achieves structural optimization and operational convenience, but also enables the gas in the fuel cell cooling circuit 2 to enter the fuel cell water tank 24 through the first section of the fuel cell pipe 22 and the second section of the fuel cell pipe 23. It helps to eliminate the gas in the coolant and ensures the safe operation of the fuel cell cooling circuit 2.
- the first section of the fuel cell pipe 22 or the second section of the fuel cell pipe 23 is provided with a first section of air-conditioning pipe 61 in a communicating manner.
- the first section of the air conditioner pipe 61 extends in the longitudinal direction, and the section of the opening 69 is provided at the second end for connecting the air conditioner inlet.
- downstream of the connection between the first section of the air-conditioning pipe 61 and the first section of the fuel cell pipe 22 or the second section of the fuel cell pipe 23 downstream of the connection between the first section of the air-conditioning pipe 61 and the first section of the fuel cell pipe 22 or the second section of the fuel cell pipe 23, the first section of the fuel cell pipe 22 or the second section of the fuel cell pipe 23 is connected in a connected manner.
- the second section of the air conditioner pipe 62 extends in the longitudinal direction, and the opening 68 is provided at the second end for connecting the outlet of the air conditioner.
- the water that flows in through the first section of the fuel cell pipe 22 enters the air conditioner 400 through the first section pipe 61 of the air conditioner to exchange heat in the air conditioner 400, and then flows back through the second section pipe 62 of the air conditioner.
- the converter cooling circuit 1 also includes a converter water tank 12 and a converter water pump 13.
- the converter water tank 12 is arranged in parallel with the converter radiator 11 to play the role of supplementing water and collecting gas.
- the converter water pump 13 is arranged on the upstream end pipeline of the converter radiator 11 so that the coolant flowing out of the converter 200 and the reactor 500 enters the converter radiator 11 through the converter water pump 13 .
- the converter water tank 12 is arranged on the first side of the fuel cell radiator 11.
- the converter water tank 12 is located at the first end of the converter radiator 11.
- the converter water pump 13 is arranged on the first side of the fuel cell heat dissipation 11.
- the converter water pump 13 is located between the converter water tank 12 and the converter radiator 11. That is, in the longitudinal direction of the first side of the fuel cell radiator 11, from the first end to the second end, the converter water tank 12, the converter water pump 13, and the converter radiator 11 are sequentially arranged.
- this arrangement makes the converter water tank 12, the converter water pump 13 and the converter radiator 11 substantially on the same longitudinal line, which utilizes and occupies the first section of the fuel cell tube 22 and the fuel cell radiator 11 The space between makes the structure compact.
- the above arrangement makes the connection relationship of the converter cooling circuit 1 simple, reduces pipeline connections and facilitates the connection operation.
- the above arrangement enables the converter water tank 12 and the converter water pump 13 to be located on the first side of the fuel cell radiator 11, so that during the operation of the air-cooled assembly 3, the converter water tank 12 and the converter can be driven.
- the air flows near the water pump 13 to dissipate temperature for both, which further improves the heat dissipation efficiency.
- the opening 18 of the pipeline upstream of the converter radiator 11 is provided at the second end and close to the second side for communicating with the converter outlet.
- the opening 19 of the pipeline downstream of the converter radiator 11 is also provided at the second end and at a position close to the second side for communicating with the inlet of the converter.
- the coolant in the converter 200 enters the converter cooling circuit 1 through the opening 18 of the pipeline upstream of the converter radiator 11, and then passes through the converter radiator 11 to dissipate heat, and then passes through the converter radiator 11
- the opening 19 of the downstream pipeline enters the converter 200 to realize the circulation of the cooling liquid to cool the converter 200. It should be noted that, whether the pipes used for communication in the converter cooling circuit 1 are located upstream or downstream of the converter radiator 11, they can be arranged according to actual needs.
- a reactor upstream pipeline 71 is provided in parallel on the pipeline of the upstream section of the converter radiator 11 of the converter cooling circuit 1 for connecting with the reactor outlet.
- the opening 78 of the upstream pipeline 71 of the reactor is provided at the first end.
- a reactor downstream pipeline 72 is provided in parallel on the pipeline of the downstream section of the converter radiator 11 of the converter cooling circuit 1 for connection with the reactor inlet.
- the opening 79 of the pipeline 72 downstream of the reactor is provided at the first end.
- the openings 78 and 79 of the upstream pipeline 71 of the reactor and the downstream pipeline 72 of the reactor and the openings 28 and 29 of the first section pipe 22 of the fuel cell and the fourth section pipe 26 of the fuel cell are in the first section of the entire cooling device 100.
- the openings 78, 79 of the reactor upstream pipeline 71 and the reactor downstream pipeline 72 are vertically lower than the openings 28, 29 of the first section of the fuel cell tube 22 and the fourth section of the fuel cell tube 26.
- the reactor upstream pipeline 71 is located between the first section of the fuel cell pipe 22 and the fuel cell fourth section pipe 26, while the reactor downstream pipeline 72 is located at the first section of the fuel cell first section pipe 22. side.
- the above arrangement method utilizes the converter cooling circuit 1 to provide heat dissipation for the reactor 500, which improves the cooling efficiency.
- the above-mentioned installation space structure layout is reasonable, which makes installation and operation simple and convenient.
- the air-cooled assembly 3 includes multiple sets of cooling fans 31 and motors 32 arranged in parallel. Each cooling fan 31 is driven by a corresponding motor 32, and the motor 32 is located on the second side of the cooling fan 31. For example, there may be four groups of air-cooled components 3.
- the above arrangement increases the work safety. Even if the individual air-cooled components 3 are damaged, the cooling device 100 can continue to work, thereby ensuring the normal operation of the train.
- the above arrangement has multiple air-cooled components 3 connected in parallel, and the motor 32 of each air-cooled component 3 has high-speed and low-speed adjustment modes. During operation, the gear position of the air-cooled component 3 can be adjusted according to the actual working conditions.
- the precise energy consumption control of 9-level gears and the number of work of air-cooled components 3 make the cooling efficiency in various forms to ensure the most efficient use of energy consumption.
- the redundant design of the cooling fan 31 increases gear adjustability and reduces energy consumption.
- the motor 32 is arranged on the support beam 53 of the mounting frame 5.
- the support beam 53 is in the shape of a flat plate and extends longitudinally, and its two ends are respectively fixedly connected with the cross beam 51.
- Corresponding support seats are provided on the support beam 53 to define a motor 32 matching it.
- Each support seat has two support columns 54 arranged relatively spaced apart, and the support columns 54 extend vertically.
- a support plate 55 is fixed to each support column 54.
- the support plate 55 is configured as an arc-shaped plate.
- the two oppositely arranged supporting plates 55 can be clamped to the motor 32.
- a rubber pad (not shown in the figure) may be provided between the support plate 55 and the motor 32.
- This arrangement can separate the casing of the cooling fan 31 from the motor 32, increase the overall rigidity of the cooling device 100, and reduce the structural noise of the cooling device 100.
- sound-absorbing cotton (not shown) is provided on the inner wall of the cooling fan 31 except for the wall of the air outlet. After field tests, the above settings have reduced operating aerodynamic noise by at least 2dB.
- the converter radiator 11 is connected with more than one cooling fan 31 to ensure the safety of heat dissipation of the converter radiator 11. Even if one cooling fan 31 is damaged, other cooling fans 31 can be ensured. Dissipate heat for the converter radiator 11. Specifically, for example, the converter radiator 11 occupies about one and a half cooling fans 31 in the longitudinal dimension. Then the converter radiator 11 can dissipate heat through two different cooling fans 31. This arrangement not only ensures the heat dissipation efficiency, but also ensures the rationality of the space layout.
- Both the fins of the converter radiator 11 and the fuel cell radiator 21 can adopt sawtooth fins to improve the heat transfer efficiency, reduce the overall size, and reduce its own weight.
- the cooling device 100 further includes a filter 9, which is arranged on the pipeline downstream of the converter radiator 11 to filter the coolant entering the converter 200 to improve the safety and safety of the converter. Service life.
- a valve 9 is provided at the opening or entrance of each pipeline of the cooling device 100 for convenient control of the opening or closing of the corresponding pipeline.
- orientation terms “horizontal” and “longitudinal” in this application refer to the orientation of the train itself, that is, “horizontal” is consistent with the front and rear directions in FIG. 4, and “longitudinal” is the same as the left and right directions in FIG. The direction is the same.
- terms such as “first” and “second” are used. Specifically, “first end” is consistent with the left end in FIG. 4, and “second end” is consistent with the right end in FIG. "One side” is consistent with the lower end in FIG. 4, and “the second side” is consistent with the upper end in FIG. 4.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Sustainable Energy (AREA)
- Transportation (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Fuel Cell (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
一种冷却装置(100),该冷却装置(100)包括变流器冷却回路(1),在所述变流器冷却回路(1)上设置有变流器散热器(11);燃料电池冷却回路(2),在所述燃料电池冷却回路(2)上设置有燃料电池散热器(21);风冷组件(3),所述风冷组件(3)能为所述变流器散热器(11)和所述燃料电池散热器(21)进行散热冷却,其中,所述变流器冷却回路(1)可以为变流器(200)进行散热,而所述燃料电池冷却回路(2)能为燃料电池(300)进行散热,该冷却装置具有换热效率高、重量轻、噪音小、可精准控制能耗的优点。
Description
本发明涉及动车技术领域,具体涉及一种安装在动车车顶的冷却装置。
牵引变流器、燃料电池和电抗器器等式列车的关键部件,为列车的正常运行提供动力等。在车辆行驶过程中,牵引变流器、燃料电池和电抗器器等部件会产生大量的热量,则需要设置专门的冷却装置以为其进行散热降温,用于避免这些特定结构过热而出现严重后果。
然而,目前的冷却装置具有以下不足:换热效率比较低,重量重;风机损坏后,整个冷却回路发生故障,停止工作,影响车辆的正常运行;冷却装置噪音比较大;冷却性能档位可调节性差,不能精准控制冷却装置的能耗。
因此,需要发明一种更加稳定、可靠的冷却装置来解决现有技术中所存在的问题。
发明内容
针对现有技术中所存在的上述技术问题的部分或者全部,本发明提出了一种冷却装置。该冷却装置具有换热效率高、重量轻、噪音小、可精准控制能耗的优点。
根据本发明提出了一种冷却装置,包括:
变流器冷却回路,在所述变流器冷却回路上设置有变流器散热器,
燃料电池冷却回路,在所述燃料电池冷却回路上设置有燃料电池散热器,
风冷组件,所述风冷组件能为所述变流器散热器和所述燃料电池散热器进行散热冷却,
其中,所述变流器冷却回路可以为变流器进行散热,而所述燃料电池冷却回路能为燃料电池进行散热。
在一个实施例中,在横向上,变流器散热器平行式位于燃料电池散热器的第一侧,风冷组件位于燃料电池散热器的第二侧,而在纵向方向上,变流器散热器位于燃料电池 散热器的第二端,以使得在变流器散热器相对位置处,环境空气从变流器散热器的第一侧吸入,经过燃料电池散热器后由风冷组件抽出。
在一个实施例中,横向上,变流器散热器和燃料电池散热器间隔,以在两者之间连通式设置筒状的风道体,风道体的上壁面上开设有清扫口,并在清扫口处铰接式设置有清扫盖板。
在一个实施例中,风道体的上壁面构造为第二侧高而第一侧低的倾斜面。
在一个实施例中,燃料电池冷却回路还包括:
设置在燃料电池散热器的上游端的纵向延伸的燃料电池第一段管,
与燃料电池第一段管连通的横向延伸的燃料电池第二段管,
设置在燃料电池散热器的下游端的横向延伸的燃料电池第三段管,
与燃料电池第三段管连通的纵向延伸的燃料电池第四段管,
与燃料电池散热器并联的燃料电池水箱,
其中,燃料电池第一段管的第一端开口用于与燃料电池的出口连通,而燃料电池第四段管的第一端开口与燃料电池的进口连通,燃料电池水箱位于第燃料电池散热器的第二端。
在一个实施例中,在燃料电池第一段管或燃料电池第二段管上连通式设置有空调第一段管,并在连接处的下游的燃料电池第一段管或燃料电池第二段管上连通式设置有空调第二段管,空调第一段管用于与空调进口连通,而空调第二段管用于与空调出口连通。
在一个实施例中,变流器冷却回路还包括变流器水箱和变流器水泵,其中,
变流器水箱横向上设置在燃料电池散热器的第一侧,纵向上位于变流器散热器的第一端,
而变流器水泵横向上设置在燃料电池散热器的第一侧,纵向上位于变流器水箱和变流器散热器之间。
在一个实施例中,在变流器冷却回路的变流器散热器的上游段的管线上并联式设置有电抗器上游管路,而在变流器冷却回路的变流器散热器的下游段的管线上并联式设置有电抗器下游管路,电抗器上游管路与电抗器出口连接,而电抗器下游管路与电抗器入口连接。
在一个实施例中,风冷组件包括多组并联式设置的冷却风机,冷却风机由位于横向的第二侧的各自匹配的电机驱动,多个冷却风机在纵向上依次排开,其中,
变流器散热器连通有多余一个冷却风机,
或/和,冷却风机的壳体的除了出风口壁面的其它内壁上均设置有吸音棉。
在一个实施例中,还包括安装架,安装架具有纵向延伸的能与电机连接的支撑梁,其中,变流器冷却回路、燃料电池冷却回路以及冷却风机均由安装架固定。
与现有技术相比,本发明至少具有下列优点中的一个,该冷却装置具有两条冷却通道,能同时为不同的部件比如变流器和燃料电池进行散热降温,进而提高冷却装置的有效利用率,同时,相应减小冷却装置的外形尺寸以及冷却装置的重量。
下面将结合附图来对本发明的优选实施例进行详细地描述,在图中:
图1显示了根据本发明的一个实施例的冷却装置的系统原理图;
图2显示了根据本发明的一个实施例的冷却装置的立体图;
图3显示了根据本发明的一个实施例的冷却装置的主视图;
图4显示了根据本发明的一个实施例的冷却装置的俯视图;
图5显示了根据本发明的一个实施例的冷却装置的背视图;
图6显示了根据本发明的一个实施例的冷却装置的左视图;
图7显示了根据本发明的一个实施例的冷却装置的右视图。
以上附图中,相同的部件使用相同的附图标记。附图并未按照实际的比例绘制。
下面将结合附图对本发明做进一步说明。
图1显示了根据本发明的冷却装置100的系统原理图。如图1所示,冷却装置100包括两条冷却回路和风冷组件3。这两条冷却回路中的一条为变流器冷却回路1,其中循环有冷却剂(例如水,下文会以水为例进行描述说明,但是冷却剂不限于水)而能为变流器200进行散热降温。该变流器冷却回路1上设置有变流器散热器11。另一条是为燃料电池300进行散热的燃料电池冷却回路2,其中也循环有冷却剂(例如水,后续会以水为例进行说明,但是冷却剂不限于水)。并且,在燃料电池冷却回路上设置有燃料电池散热器21。风冷组件3用于为变流器散热器11和燃料电池散热器21进行散热冷却。在风冷组件3工作中,冷却风与冷却剂充分换热并使得冷却剂的温度降低,以备冷却剂继续循环而为相关变流器200和燃料电池300等进行降温处理。由此,该冷却装置100具有两条 冷却回路通道,能同时为不同的部件变流器和燃料电池等进行散热降温,进而提高冷却装置100的散热效率。同时,上述原理和结构还能相应减小冷却装置100的外形尺寸以及重量。
如图2到7所示,冷却装置100包括安装架5。该安装架5主要起到支撑和固定其它部件(比如风冷组件3)的作用,以用于将该冷却装置100整体式设置到车顶上。例如,安装架5包括至少两个相对式间隔设置的横向延伸的横梁51,以及设置在横梁51之间并与横梁51固定连接的多个纵向梁52。
结构上,变流器散热器11和燃料电池散热器21均构造为大体的矩形体结构。在横向上,变流器散热器11位于燃料电池散热器21的第一侧,且呈大体平行式设置。而风冷组件3位于燃料电池散热器21的第二侧。在纵向方向上,变流器散热器11位于燃料电池散热器21的第二端。也就是,变流器散热器11与燃料电池散热器21的部分横向上重叠。在风冷组件3工作过程中,在变流器散热器11相对应的位置处,环境空气从变流器散热器11的第一侧吸入,经过燃料电池散热器21后由风冷组件3抽出。在未与变流器散热器11重叠的位置处,环境空气从燃料电池散热器21的第一侧吸入后由风冷组件3抽出。上述的这种设置方式将三个体积比较大的部件(风冷组件3、变流器散热器11和燃料电池散热器21)横向上大体平行的方式设置在安装架5上,并靠近第二侧,布局合理,有利于列车车顶的空间利用。并且上述设置方式能保证变流器散热器11和燃料电池散热器21的充分散热,进而有助于保证高效散热。
优选地,横向上,变流器散热器11和燃料电池散热器21间隔式设置,以在两者之间形成一定距离(例如8-15厘米)的间隙。在该间隙处设置风道体4,用于连通变流器散热器11和燃料电池散热器21,保证风冷组件3抽风时空气由变流器散热器11进入燃料电池散热器21。例如,风道体4可以构造为与变流器散热器11的壳体的外壁相匹配的筒状。另外,在风道体4的上壁面上开设有清扫口41,并在清扫口41处铰接式设置有清扫盖板42。通过变流器散热器11和燃料电池散热器21间隔式设置,则可以方便的对两个散热器11、21分别进行清扫。而通过设置清扫口41和清扫盖板42,在既不影响冷却效果的基础上,还可以增加清扫操作的便利性。进一步优选地,风道体4的上壁面构造为第二侧高而第一侧低的倾斜面,其旋转轴沿着纵向延伸并设置在清扫盖板42的第二侧。也就是,在从燃料电池散热器2外壳到变流器散热器11外壳方向上,风道体4的上壁面构造为逐渐降低的斜面。这种设置一方面利用对燃料电池散热器21进行清洁,另一方能在风冷组件3抽风过程中,保证清扫盖板42更加紧密的盖合在清扫口41处。
在一个具体的实施例中,燃料电池冷却回路2还包括燃料电池第一段管22、燃料电池第二段管23、燃料电池水箱24、燃料电池第三段管25和燃料电池第四段管26。其中,燃料电池第一段管22设置在燃料电池散热器21的上游端,其自身为纵向延伸管状,并且该段开口28设置在第一端,以用于连接燃料电池的出口,从而接收来自燃料电池300的冷却剂。而燃料电池第二段管23与燃料电池第一段管22连通,且沿着横向延伸。燃料电池水箱24挂设在位于第二端的横梁51处,并与燃料电池散热器21并联。燃料电池散热器21的下游端依次设置有燃料电池第三段管25和燃料电池第四段管26。其中,燃料电池第三段管25横向延伸。而燃料电池第四段管26纵向延伸,其该段开口29设置在第一端,用于连接燃料电池进口,以向燃料电池300输送被冷却处理的冷却剂。在循环过程中,由燃料电池出来的冷却剂先依次进入到燃料电池第一段管22和燃料电池第二段管23后,再到燃料电池散热器21中。通过风冷组件3的作用,水在该燃料电池散热器21处进行降温处理。最后,被散热降温的冷却剂进入到燃料电池第三段管25中,并通过燃料电池第四段管26流出以回流到燃料电池中。上述结构布局合理,空间利用高效。
通过与燃料电池散热器21并联的燃料电池水箱24,可以实现为燃料电池冷却回路2补充冷却剂,以及排放燃料电池冷却回路2中气体的目的。例如,该燃料电池水箱24可以设置为单腔体的结构。在腔体顶部设置有集气包,例如该集气包为碗形,用于聚集进入到燃料电池水箱24中的冷却剂中的气体,防止气体通过进入到设置在燃料电池冷却回路2中的水泵(此处需要说明的是,为了实现冷却剂在回路中的流通,水泵可以设置在冷却装置100中,也可以分别设置在燃料电池300中和空调400中。而本申请给出了泵设置在了燃料电池300中和空调400中的实施例,以促动燃料电池冷却回路2中的冷却剂的循环,例如,在燃料电池300中设置泵301,而在空调400中设置泵401)中,避免气蚀现象的发生,保护燃料电池冷却回路2,尤其是燃料电池水泵的使用寿命。
在结构上,例如燃料电池第一段管22可以为倾斜管,及在从第一端到第二端方向上,燃料电池第一段管22逐渐升高。另外,在管与管的连接处采用九十度弯管接头进行过度,以增加安装便利性。这种结构不仅实现了结构优化以及操作便利性,还使得燃料电池冷却回路2中的气体能通过燃料电池第一段管22和燃料电池第二段管23进入到燃料电池水箱24中,从而有助于冷却剂中的气体的排除,保证燃料电池冷却回路2的运行安全。
在一个实施例中,在燃料电池第一段管22或燃料电池第二段管23上连通式设置有 空调第一段管61。该空调第一段管61沿着纵向延伸,其该段开口69设置在第二端,以用于连接空调进口。同时,在空调第一段管61与燃料电池第一段管22或燃料电池第二段管23连接处的下游,于燃料电池第一段管22或燃料电池第二段管23上连通式设置有空调第二段管62。该空调第二段管62沿着纵向延伸,其开口68设置在第二端,以用于连接空调出口。也就是说,通过燃料电池第一段管22流入的水,部分通过空调第一段管61进入到空调400,以在空调400内进行热交换后,再通过空调第二段管62流回到燃料电池第一段管22或燃料电池第二段管23。这种设置进一步利用了燃料电池冷却剂与空调400的温度差,在空调400内完成了第二次热交换,从而提高了换热效率。
变流器冷却回路1还包括变流器水箱12和变流器水泵13。该变流器水箱12与变流器散热器11并联式布设,以起到补水以及收集气体的作用。变流器水泵13设置在变流器散热器11的上游端管线上,以使得由变流器200和电抗器500流出的冷却剂通过变流器水泵13而进入到变流器散热器11内。结构上,横向上,变流器水箱12设置在燃料电池散热器11的第一侧。纵向上,变流器水箱12位于变流器散热器11的第一端。横向上,变流器水泵13设置在燃料电池散热11的第一侧。纵向上,变流器水泵13位于变流器水箱12和变流器散热器11之间。也就是说,在燃料电池散热器11的第一侧的纵向上,从第一端到第二端的方向,依次设置有变流器水箱12、变流器水泵13和变流器散热器11。这种设置方式一方面使得变流器水箱12、变流器水泵13和变流器散热器11大体在同一纵向线上,其利用和占据了燃料电池第一段管22与燃料电池散热器11之间的空间,使得结构紧凑。再一方面,上述设置使得变流器冷却回路1的自身连接关系简单,减少管路连接及方便连接操作。尤其是,上述设置使得变流器水箱12和变流器水泵13能位于燃料电池散热器11的第一侧,以使得在风冷组件3工作过程中,能带动变流器水箱12和变流器水泵13附近的空气流动,从而为两者起到散温作用,进一步地提高了散热效率。
变流器冷却回路1中,处于变流器散热器11上游的管路的开口18设置在第二端,并靠近第二侧的位置处,用于连通变流器出口。同时,处于变流器散热器11下游的管路的开口19也设置在第二端,并靠近第二侧的位置处,用于连通变流器进口。变流器200中的冷却液通过变流器散热器11上游的管路的开口18进入到变流器冷却回路1中,再经过变流器散热器11散热后,通过变流器散热器11下游的管路的开口19进入到变流器200中,以实现冷却液循环为变流器200进行降温。需要说明的是,在变流器冷却回路1中用于连通的管道,不论是处于变流器散热器11上游还是下游,均可以根据实际需要布 设。
在一个实施例中,在变流器冷却回路1的变流器散热器11的上游段的管线上并联式设置有电抗器上游管路71,用于与电抗器出口连接。该电抗器上游管路71的开口78设置在第一端。在变流器冷却回路1的变流器散热器11的下游段的管线上并联式设置有电抗器下游管路72,用于与电抗器入口连接。该电抗器下游管路72的开口79设置在第一端。另外,电抗器上游管路71和电抗器下游管路72的开口78、79均与燃料电池第一段管22和燃料电池第四段管26的开口28、29均处于整个冷却装置100的第一端,并靠近第一侧的位置处。而为了连接操作便利,电抗器上游管路71和电抗器下游管路72的开口78、79竖直方向上低于燃料电池第一段管22和燃料电池第四段管26的开口28、29,同时,在横向上,电抗器上游管路71位于燃料电池第一段管22和燃料电池第四段管26之间,而电抗器下游管路72位于燃料电池第一段管22的第一侧。上述设置方式利用变流器冷却回路1为电抗器器500提供散热,提高了冷却效率。同时,上述设置空间结构布局合理,使得安装操作等简单便利。
在一个实施例中,风冷组件3包括多组并联式设置的冷却风机31和电机32。各冷却风机31分别由对应的电机32驱动,且电机32位于冷却风机31的第二侧。例如,风冷组件3可以有四组。上述设置增加工作安全性,即便在个别风冷组件3损坏的情况下,冷却装置100能继续工作,进而保证列车的正常运行。上述设置具有多个并联的风冷组件3,再加上各风冷组件3的电机32具有高速和低速的调节模式,在运行过程中,根据实际工况可以通过调整风冷组件3的档位而进行9级档位的精准能耗控制,以及风冷组件3的工作数量等使得冷却效率有多种形式,保证能耗最高效利用。这种冷却风机31的冗余设计增加了档位调节性,降低了能量耗损。
在安装过程中,电机32设置在安装架5的支撑梁53上。具体地,该支撑梁53为平板状,并纵向延伸,两端分别与横梁51固定连接。在支撑梁53上设置有相应个支撑座以限定与其匹配的电机32。各支撑座具有相对间隔式设置有两个支撑柱54,该支撑柱54竖直延伸。在各支撑柱54上固定有支撑板55。支撑板55构造为弧状板。两个相对式设置的支撑板55能卡接电机32。另外,在支撑板55与电机32之间可以设置橡胶垫(图中未示出)。这种设置可以将冷却风机31的机壳与电机32分离,增加冷却装置100整体的刚性,降低冷却装置100的结构噪音。另外,为了进一步降低气动噪音,在冷却风机31的壳体内,除了出风口壁面的其它内壁上均设置有吸音棉(未示出)。经过现场试验,上述设置至少减低了2dB的运行气动噪音。
在结构上,变流器散热器11连通有多余一个的冷却风机31,以保证变流器散热器11的散热安全,即便在有一个冷却风机31损坏的情况下,还能确保其它冷却风机31为变流器散热器11进行散热。具体地,例如,变流器散热器11在纵向尺寸上,占有约一个半的冷却风机31。则变流器散热器11可以通过两个不同的冷却风机31进行散热。这种设置既保证了散热效率,还保证了空间布局合理性。
变流器散热器11和燃料电池散热器21的翅片均可以采用锯齿片,以提高传热效率,减小其外形尺寸,降低自身重量。
如图1所示的,冷却装置100还包括过滤器9,设置在变流器散热器11下游的管路上,以用于过滤进入变流器200的冷却剂,提高变流器的安全性和使用寿命。另外,在冷却装置100的各管路的开口或者入口处均设置有阀9,以用于方便控制相应管路的打开或者关闭。
需要说明的是,本申请的方位用语“横向”和“纵向”以列车自身的方位为参照,也就是,“横向”与图4中的前后方向一致,而“纵向”与图4中的左右方向一致。而为了描述便利,使用了“第一”、“第二”等术语,具体地,“第一端”与图4中的左端一致,“第二端”与图4中的右端一致,“第一侧”与图4中的下端一致,“第二侧”与图4中的上端一致。
以上仅为本发明的优选实施方式,但本发明保护范围并不局限于此,任何本领域的技术人员在本发明公开的技术范围内,可容易地进行改变或变化,而这种改变或变化都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求书的保护范围为准。
Claims (11)
- 一种冷却装置,其特征在于,包括:变流器冷却回路,在所述变流器冷却回路上设置有变流器散热器,燃料电池冷却回路,在所述燃料电池冷却回路上设置有燃料电池散热器,风冷组件,所述风冷组件能为所述变流器散热器和所述燃料电池散热器进行散热冷却,其中,所述变流器冷却回路可以为变流器进行散热,而所述燃料电池冷却回路能为燃料电池进行散热。
- 根据权利要求1所述的冷却装置,其特征在于,在横向上,所述变流器散热器平行式位于所述燃料电池散热器的第一侧,所述风冷组件位于所述燃料电池散热器的第二侧,而在纵向方向上,所述变流器散热器位于所述燃料电池散热器的第二端,以使得在所述变流器散热器相对位置处,环境空气从所述变流器散热器的第一侧吸入,经过所述燃料电池散热器后由所述风冷组件抽出。
- 根据权利要求2所述的冷却装置,其特征在于,横向上,所述变流器散热器和所述燃料电池散热器间隔,以在两者之间连通式设置筒状的风道体,所述风道体的上壁面上开设有清扫口,并在所述清扫口处铰接式设置有清扫盖板。
- 根据权利要求3所述的冷却装置,其特征在于,所述风道体的上壁面构造为第二侧高而第一侧低的倾斜面。
- 根据权利要求2到4中任一项所述的冷却装置,其特征在于,所述燃料电池冷却回路还包括:设置在所述燃料电池散热器的上游端的纵向延伸的燃料电池第一段管,与所述燃料电池第一段管连通的横向延伸的燃料电池第二段管,设置在所述燃料电池散热器的下游端的横向延伸的燃料电池第三段管,与所述燃料电池第三段管连通的纵向延伸的燃料电池第四段管,与所述燃料电池散热器并联的燃料电池水箱,其中,所述燃料电池第一段管的第一端开口用于与燃料电池的出口连通,而燃料电池第四段管的第一端开口与燃料电池的进口连通,所述燃料电池水箱位于所述燃料电池散热器的第二端。
- 根据权利要求5所述的冷却装置,其特征在于,在所述燃料电池第一段管或所述燃料电池第二段管上连通式设置有空调第一段管,并在连接处的下游的所述燃料电池第一段管或所述燃料电池第二段管上连通式设置有空调第二段管,所述空调第一段管用于与空 调进口连通,而所述空调第二段管用于与空调出口连通。
- 根据权利要求5或6所述的冷却装置,其特征在于,所述变流器冷却回路还包括变流器水箱和变流器水泵,其中,所述变流器水箱横向上设置在所述燃料电池散热器的第一侧,纵向上位于所述变流器散热器的第一端,而所述变流器水泵横向上设置在所述燃料电池散热器的第一侧,纵向上位于所述变流器水箱和所述变流器散热器之间。
- 根据权利要求2到7中任一项所述的冷却装置,其特征在于,在变流器冷却回路的所述变流器散热器的上游段的管线上并联式设置有电抗器上游管路,而在所述变流器冷却回路的所述变流器散热器的下游段的管线上并联式设置有电抗器下游管路,所述电抗器上游管路与所述电抗器出口连接,而所述电抗器下游管路与所述电抗器入口连接。
- 根据权利要求2到8中任一项所述的冷却装置,其特征在于,所述风冷组件包括多组并联式设置的冷却风机,所述冷却风机由位于横向的第二侧的各自匹配的电机驱动,多个所述冷却风机在纵向上依次排开,其中,所述变流器散热器连通有多余一个所述冷却风机。
- 根据权利要求9所述的冷却装置,其特征在于,所述冷却风机的壳体的除了出风口壁面的其它内壁上均设置有吸音棉。
- 根据权利要求9或10所述的冷却装置,其特征在于,还包括安装架,所述安装架具有纵向延伸的能与所述电机连接的支撑梁,其中,所述变流器冷却回路、所述燃料电池冷却回路以及所述冷却风机均由安装架固定。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19958401.2A EP4087377B1 (en) | 2019-12-31 | 2019-12-31 | Cooling device |
PCT/CN2019/130515 WO2021134480A1 (zh) | 2019-12-31 | 2019-12-31 | 一种冷却装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2019/130515 WO2021134480A1 (zh) | 2019-12-31 | 2019-12-31 | 一种冷却装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021134480A1 true WO2021134480A1 (zh) | 2021-07-08 |
Family
ID=76687490
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/130515 WO2021134480A1 (zh) | 2019-12-31 | 2019-12-31 | 一种冷却装置 |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP4087377B1 (zh) |
WO (1) | WO2021134480A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114190035A (zh) * | 2021-12-10 | 2022-03-15 | 深圳市偶然科技有限公司 | 一种新能源汽车放电仪智能环保型散热结构 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006107969A (ja) * | 2004-10-07 | 2006-04-20 | Toyota Motor Corp | Fc車の冷却システム |
CN200988410Y (zh) * | 2006-12-22 | 2007-12-12 | 上海燃料电池汽车动力系统有限公司 | 燃料电池电动车主辅冷凝器强化传热智能空调系统 |
CN102442199A (zh) * | 2010-10-06 | 2012-05-09 | 现代自动车株式会社 | 用于车辆的冷却装置 |
JP2014151722A (ja) * | 2013-02-07 | 2014-08-25 | Toyota Industries Corp | 産業車両 |
US20150047814A1 (en) * | 2013-08-14 | 2015-02-19 | Halla Visteon Climate Control Corp. | Cooling module |
CN107323285A (zh) * | 2017-06-28 | 2017-11-07 | 奇瑞汽车股份有限公司 | 电动车辆热管理系统 |
CN209472955U (zh) * | 2018-12-24 | 2019-10-08 | 湖南联诚轨道装备有限公司 | 一种冷却装置 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102449831B (zh) * | 2009-06-03 | 2015-05-13 | 丰田自动车株式会社 | 燃料电池系统 |
DE102016203985A1 (de) * | 2016-03-10 | 2017-09-14 | Mahle International Gmbh | Verfahren zum Betreiben eines Kühlsystems für ein Fahrzeug sowie Kühlsystem |
-
2019
- 2019-12-31 WO PCT/CN2019/130515 patent/WO2021134480A1/zh unknown
- 2019-12-31 EP EP19958401.2A patent/EP4087377B1/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006107969A (ja) * | 2004-10-07 | 2006-04-20 | Toyota Motor Corp | Fc車の冷却システム |
CN200988410Y (zh) * | 2006-12-22 | 2007-12-12 | 上海燃料电池汽车动力系统有限公司 | 燃料电池电动车主辅冷凝器强化传热智能空调系统 |
CN102442199A (zh) * | 2010-10-06 | 2012-05-09 | 现代自动车株式会社 | 用于车辆的冷却装置 |
JP2014151722A (ja) * | 2013-02-07 | 2014-08-25 | Toyota Industries Corp | 産業車両 |
US20150047814A1 (en) * | 2013-08-14 | 2015-02-19 | Halla Visteon Climate Control Corp. | Cooling module |
CN107323285A (zh) * | 2017-06-28 | 2017-11-07 | 奇瑞汽车股份有限公司 | 电动车辆热管理系统 |
CN209472955U (zh) * | 2018-12-24 | 2019-10-08 | 湖南联诚轨道装备有限公司 | 一种冷却装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4087377A4 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114190035A (zh) * | 2021-12-10 | 2022-03-15 | 深圳市偶然科技有限公司 | 一种新能源汽车放电仪智能环保型散热结构 |
Also Published As
Publication number | Publication date |
---|---|
EP4087377A4 (en) | 2023-04-05 |
EP4087377B1 (en) | 2024-07-10 |
EP4087377C0 (en) | 2024-07-10 |
EP4087377A1 (en) | 2022-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014190688A1 (zh) | 牵引系统用冷却单元 | |
JP2013057309A (ja) | 燃料電池車両用冷却装置 | |
CN109835356B (zh) | 轨道车辆牵引系统水冷却装置 | |
CN109588000A (zh) | 一种集成式牵引变流器冷却系统 | |
WO2023231220A1 (zh) | 轨道交通车辆牵引变压器总成 | |
CN201789409U (zh) | 变频器冷冻水冷却装置 | |
CN104767398A (zh) | 一种高集成变流装置 | |
WO2021134480A1 (zh) | 一种冷却装置 | |
CN113133266A (zh) | 一种冷却装置 | |
CN211210320U (zh) | 一种冷却装置 | |
CN116279604B (zh) | 一种轨道车辆用内外双效复合散热装置 | |
CN111237140B (zh) | 风力发电机组 | |
CN215935381U (zh) | 一种用于氢能源机车的冷却装置 | |
CN110471513A (zh) | 一种散热器组件、风冷散热器以及空调设备 | |
CN110809392B (zh) | 一种侧向进出风的动车组冷却装置 | |
KR20120056969A (ko) | 연료전지 차량용 쿨링 모듈 및 시스템 | |
CN219494536U (zh) | 一种增程式电动汽车散热器 | |
CN201307823Y (zh) | 牵引辅助供电一体式变流装置 | |
CN110792506A (zh) | 一种用于内燃机的水冷空冷一体式冷却器 | |
CN214221576U (zh) | 风机控制器 | |
CN217582304U (zh) | 一种箱体式发电机房 | |
CN220254335U (zh) | 一种用于电动汽车电网充放电的多端口变换器 | |
CN218839180U (zh) | 液冷系统和车辆 | |
CN210570165U (zh) | 散热器和车辆 | |
CN221220618U (zh) | 一种柴油发动机散热器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19958401 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019958401 Country of ref document: EP Effective date: 20220801 |