WO2021134395A1 - 叉车电池状态监测方法、装置及嵌入式设备、存储介质 - Google Patents

叉车电池状态监测方法、装置及嵌入式设备、存储介质 Download PDF

Info

Publication number
WO2021134395A1
WO2021134395A1 PCT/CN2019/130300 CN2019130300W WO2021134395A1 WO 2021134395 A1 WO2021134395 A1 WO 2021134395A1 CN 2019130300 W CN2019130300 W CN 2019130300W WO 2021134395 A1 WO2021134395 A1 WO 2021134395A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
forklift
type
lead
forklift battery
Prior art date
Application number
PCT/CN2019/130300
Other languages
English (en)
French (fr)
Inventor
李陆洋
蔡晓亮
方牧
鲁豫杰
郑帆
杨建辉
Original Assignee
视航机器人(佛山)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 视航机器人(佛山)有限公司 filed Critical 视航机器人(佛山)有限公司
Priority to PCT/CN2019/130300 priority Critical patent/WO2021134395A1/zh
Publication of WO2021134395A1 publication Critical patent/WO2021134395A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/378Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] specially adapted for the type of battery or accumulator
    • G01R31/379Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] specially adapted for the type of battery or accumulator for lead-acid batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements

Definitions

  • This application relates to the field of battery monitoring, and in particular to a method, device, embedded device, and storage medium for monitoring the battery status of a forklift.
  • Forklifts are industrial handling vehicles, which refer to various wheeled handling vehicles for loading, unloading, stacking and short-distance transportation of palletized goods. It is often used for the transportation of large objects in storage, and is usually driven by fuel engines or batteries. Commonly used batteries for driving forklifts currently on the market include lithium batteries and lead-acid batteries. Lithium batteries and lead-acid batteries have their own advantages, and the forklift does not distinguish between lithium batteries and lead-acid batteries.
  • the battery condition of the forklift needs to be monitored.
  • the traditional method of monitoring the battery status of the forklift requires a lot of time and effort of the staff, which will cause the problem of not being able to know the battery status of the forklift in time.
  • the method of monitoring the battery condition of the forklift in the traditional solution has the problem of poor timeliness.
  • the present application discloses a method and device for monitoring the battery status of a forklift, an embedded device, and a storage medium.
  • the purpose of this application is to address the problem of poor timeliness in the method of monitoring the battery condition of the forklift in the traditional solution, and provide a method, device, embedded device, and storage medium for monitoring the battery condition of the forklift.
  • a method for monitoring the state of a forklift battery includes the following steps:
  • the type of the forklift battery is a lead-acid battery
  • a monitoring device for the battery status of a forklift including:
  • the judgment module is used to determine whether there is battery information
  • the first battery type determining module is configured to determine that the type of the forklift battery is a lithium battery if battery information exists;
  • the voltage signal determination module determines whether there is a voltage signal at the analog input port
  • the second battery type determination module determines that the forklift battery type is a lead-acid battery
  • the battery status monitoring module is used to monitor the status of the forklift battery according to the type of the forklift battery.
  • An embedded device includes a memory and a processor, and the memory stores a computer program.
  • the processor causes the processor to execute the steps of the method for monitoring the battery status of a forklift as described above .
  • An embedded readable storage medium has a computer program stored thereon, and when the computer program is executed by a processor, the steps of the method for monitoring the battery state of a forklift as described above are realized.
  • the present application provides a method for monitoring the state of a forklift battery, including detecting the type of the forklift battery and obtaining information about the state of the forklift battery. It is understandable that the single-chip microcomputer on the forklift can determine whether the forklift battery is a lithium battery by determining whether the battery information is detected. If the battery information is detected, it is determined that the type of the forklift battery is a lithium battery. If the battery information is not detected, then detect whether the analog input port has voltage information. If there is the voltage signal, it is proved that the type of the forklift battery is a lead-acid battery. If the type of the forklift battery is a lithium battery, the status information of the lithium battery is acquired.
  • the status information of the lead-acid battery is acquired.
  • the forklift battery monitoring method provided in this application does not require staff to manually distinguish the forklift battery types, and can obtain the status of the forklift battery in time after learning the forklift battery type, which solves the problem of the traditional method of monitoring the forklift battery status. Problem with battery condition.
  • FIG. 1 is a schematic flowchart of a method for monitoring a battery condition of a forklift provided by an embodiment of the application.
  • FIG. 2 is a schematic flowchart of a method for monitoring a battery condition of a forklift provided by another embodiment of the application.
  • FIG. 3 is a schematic flowchart of a method for monitoring a battery condition of a forklift provided by another embodiment of the application.
  • Fig. 4 is a schematic diagram of a forklift battery state monitoring device provided by an embodiment of the application.
  • Fig. 5 is an internal structure diagram of an embedded device provided by an embodiment of the application.
  • Forklifts are industrial handling vehicles, which refer to various wheeled handling vehicles for loading, unloading, stacking and short-distance transportation of palletized goods. It is often used for the transportation of large objects in storage, and is usually driven by fuel engines or batteries. Commonly used batteries for driving forklifts currently on the market include lithium batteries and lead-acid batteries. Lithium batteries and lead-acid batteries have their own advantages, and the forklift does not distinguish between lithium batteries and lead-acid batteries. In the daily use of the forklift, the battery condition of the forklift needs to be monitored. However, the traditional method of monitoring the battery status of the forklift requires a lot of time and energy of the staff, which will cause the problem of not being able to know the battery status of the forklift in time. Therefore, the method of monitoring the battery condition of the forklift in the traditional solution has the problem of poor timeliness. Based on this, the present application provides a method, device, embedded device, and storage medium for monitoring the battery status of a forklift.
  • forklift batteries generally include lithium batteries and lead-acid batteries.
  • the forklift battery state monitoring methods, devices, embedded devices, and storage media provided in this embodiment mainly distinguish between lithium batteries and lead-acid batteries, and then monitor them separately The status of lithium batteries and lead-acid batteries.
  • the forklift battery state monitoring method, device, embedded device, and storage medium provided in this embodiment are not limited to only being applied to forklift batteries, and can also be applied to other devices, as long as the other devices include lithium batteries and lead-acid batteries.
  • the method for monitoring the battery status of the forklift is executed by a single-chip microcomputer (Microcontroller Unit, micro-control unit) in the forklift.
  • the application premise of the method for monitoring the state of the forklift battery is that the forklift battery is in communication with the single-chip computer.
  • the present application provides a method for monitoring the battery status of a forklift, including:
  • forklift batteries generally include lithium batteries and lead-acid batteries.
  • the single-chip microcomputer can obtain battery information of the lithium battery through CAN (Controller Area Network).
  • the battery information includes at least battery capacity information and power information of the lithium battery.
  • the single-chip microcomputer can detect the battery information, it can be determined that the type of the forklift battery at this time is a lithium battery.
  • the single-chip microcomputer cannot detect the battery information, it is necessary to determine whether the analog input port of the single-chip microcomputer has voltage information.
  • the voltage information exists, it can be determined that the lead-acid battery is connected to the single-chip microcomputer at this time. Therefore, it can be confirmed that the type of the forklift battery is a lead-acid battery. If neither the battery information nor the voltage information exists, it can be determined that no battery is connected at this time, and the single-chip microcomputer cannot determine whether the type of the forklift battery is a lithium battery or a lead-acid battery.
  • S500 Monitor the state of the forklift battery according to the type of the forklift battery.
  • the monitoring of the state of the forklift battery mainly refers to the power information of the forklift battery. It is understandable that if the type of the forklift battery is a lithium battery, the power information of the forklift battery can be directly obtained. If the forklift battery is a lead-acid battery, a battery voltage conversion circuit needs to be provided between the single-chip microcomputer and the analog input port. The battery voltage conversion circuit is used for step-down, so that the lead-acid battery The output voltage is converted into a voltage range that the single-chip microcomputer can detect. For example, the voltage range that the single-chip microcomputer can detect is 0V to 5V, and the lead-acid battery is a battery with a rated voltage of 24V.
  • the battery voltage conversion circuit needs to convert the voltage output from the lead-acid battery into a range of 0V to 5V.
  • the battery voltage conversion circuit needs to be selected according to the maximum value of the rated voltage of the lead-acid battery and the voltage detection range of the single-chip microcomputer. For example, when a worker selects a lead-acid battery as a forklift battery, he only selects a lead-acid battery with a rated voltage of 24V and a rated voltage of 48V. At this time, the maximum value of the rated voltage of the lead-acid battery to be considered is 48V.
  • This embodiment provides a method for monitoring the state of a forklift battery, which includes detecting the type of the forklift battery and obtaining information about the state of the forklift battery. It is understandable that the single-chip microcomputer on the forklift can determine whether the forklift battery is a lithium battery by determining whether the battery information is detected. If the battery information is detected, it is determined that the type of the forklift battery is a lithium battery. If the battery information is not detected, then detect whether the analog input port has voltage information. If there is the voltage signal, it is proved that the type of the forklift battery is a lead-acid battery. If the type of the forklift battery is a lithium battery, the status information of the lithium battery is acquired.
  • the status information of the lead-acid battery is acquired.
  • the forklift battery monitoring method provided in this application does not require staff to manually distinguish the forklift battery types, and can obtain the status of the forklift battery in time after learning the forklift battery type, which solves the problem of the traditional method of monitoring the forklift battery status. Problem with battery condition.
  • S400 includes:
  • the voltage detection range of the single-chip microcomputer can cover the rated voltage of the lead-acid battery, for example, the voltage detection range of the single-chip microcomputer is 0V to 30V, at this time the rated voltage of the lead-acid battery is 24V, then The voltage value of the analog input port can be directly obtained.
  • the voltage detection range of the single-chip microcomputer cannot cover the rated voltage of the lead-acid battery, for example, the voltage detection range of the single-chip microcomputer is 0V to 12V, and the rated voltage of the lead-acid battery is 24V at this time, the single-chip microcomputer
  • the voltage value of the analog input port cannot be directly obtained, but the conversion ratio of the battery voltage conversion circuit needs to be obtained.
  • the voltage of the analog input port can be calculated value. For example, if the conversion ratio of the battery voltage conversion circuit is 0.5, and the voltage value collected by the single-chip microcomputer is 8V, the voltage value of the analog input port can be calculated at this time to be 16V.
  • the first type of lead-acid battery refers to a battery with a rated voltage of 48V
  • the second type of lead-acid battery refers to a battery with a rated voltage of 24V
  • the preset voltage value is not necessarily 24V, and is generally determined according to the actual condition of the lead-acid battery.
  • the second type of lead-acid battery is a 24V battery
  • the voltage value input to the analog input port may reach 28V
  • the first type of lead-acid battery is input to the analog input port.
  • the voltage value will not reach 28V.
  • the preset voltage value must be the maximum value of the voltage input from the second type lead-acid battery to the analog input port, but at this time the first type lead-acid battery is input to the analog input port The voltage of will not be the maximum voltage input to the analog input port of the second type of lead-acid battery.
  • the method provided in this embodiment can further determine which type of lead-acid battery the forklift battery is after determining the type of the forklift battery is a lead-acid battery, so that the staff can understand the type of the forklift battery in more detail.
  • the lead-acid battery does not necessarily include only the first type lead-acid battery and the second type lead-acid battery.
  • the lead-acid battery may be divided into many types of lead-acid batteries according to different rated voltages. battery. However, when distinguishing the type of the lead-acid battery, it is necessary to distinguish based on the voltage value of the analog input port.
  • S500 includes:
  • S510 If the type of the forklift battery is a lithium battery, monitor the power level of the forklift battery based on the controller area network;
  • S520 If the type of the forklift battery is a lead-acid battery, determine the power level of the forklift battery according to the voltage value, and monitor the power level of the forklift battery.
  • the single-chip microcomputer can directly obtain the power of the lithium battery through CAN (Controller Area Network), and check the power of the lithium battery, that is, the The power level of the forklift battery is monitored. If the type of the forklift battery is a lead-acid battery, the single-chip microcomputer needs to determine the power of the forklift battery according to the voltage value of the analog input port.
  • CAN Controller Area Network
  • the voltage detection range of the single-chip microcomputer cannot cover the rated voltage of the lead-acid battery, for example, the voltage detection range of the single-chip microcomputer is 0V to 12V, at this time the rated voltage of the lead-acid battery is 24V, then At this time, the single-chip microcomputer cannot directly obtain the voltage value of the analog input port, but needs to obtain the conversion ratio of the battery voltage conversion circuit. Based on the conversion ratio and the voltage value collected by the single-chip microcomputer, the analog Measure the voltage value of the input port. For example, if the conversion ratio of the battery voltage conversion circuit is 0.5, and the voltage value collected by the single-chip microcomputer is 8V, the voltage value of the analog input port can be calculated at this time to be 16V.
  • the power of the lead-acid battery can be calculated, that is, when the type of the forklift battery is a lead-acid battery, the power of the forklift battery .
  • the method for monitoring the state of a forklift battery further includes:
  • the preset power level may be 10% or 20% of the full power of the forklift battery, and the staff can set the value of the preset power level according to actual needs. If the power of the forklift battery is less than or equal to the preset power, it means that the forklift battery needs to be charged, and the alarm command needs to be generated at this time.
  • S530 includes:
  • the first preset power level and the second preset power level can be selected according to actual needs, which is not limited in this application. It should be noted that the first preset power level may be greater than the second preset power level, and the first preset power level may also be less than the second preset power level, which can be specifically selected according to actual needs. This application does not Make a limit. In an embodiment, the first preset power level may be 20% of the total power of the forklift battery, and the second preset power level may be 10% of the total power of the forklift battery.
  • the method for monitoring the state of a forklift battery further includes:
  • the second preset amount of power is less than the first preset amount of power. If the power level of the forklift battery is less than or equal to the second preset power level, it is proved that reusing the forklift battery will cause serious damage to the forklift battery. At this time, the single-chip microcomputer is required to control and cut off the electrical connection relationship of the forklift battery to protect the forklift battery from being damaged.
  • the method further includes:
  • S220 Perform information matching between the battery information and the lithium battery information database, and determine the lithium battery type according to the matching result.
  • the lithium battery information database includes different types of lithium batteries, and the different types of lithium batteries have different battery capacities.
  • the lithium battery information database can be entered into the single-chip microcomputer in advance by the staff. After acquiring the battery information, the single-chip microcomputer can match the battery information with the information in the lithium battery information library, and search for the lithium battery type that is the same as the battery information, so that the battery information can be determined. The type of lithium battery corresponding to the battery information.
  • the present application also provides a forklift battery state monitoring device 10, and the forklift battery state monitoring device 10 includes:
  • the judging module 100 is used to determine whether there is battery information.
  • the first battery type determining module 200 is configured to determine that the type of the forklift battery is a lithium battery if battery information exists; the first battery type determining module 200 is also configured to obtain a lithium battery information database; combine the battery information with all The lithium battery information database performs information matching, and determines the lithium battery type according to the matching result.
  • the voltage signal determining module 300 determines whether there is a voltage signal at the analog input port;
  • the second battery type determination module 400 determines that the forklift battery type is a lead-acid battery; the second battery type determination module 400 is also used to determine if the forklift battery type is a lead-acid battery , The voltage value of the analog input port is acquired; if the voltage value is greater than the preset voltage value, it is determined that the forklift battery is a first-type lead-acid battery; if the voltage value is less than the preset voltage value , It is determined that the forklift battery is the second type of lead-acid battery.
  • the battery state monitoring module 500 is used to monitor the state of the forklift battery according to the type of the forklift battery.
  • the battery status monitoring module 500 is also used to monitor the power of the forklift battery based on the controller area network if the type of the forklift battery is a lithium battery; if the type of the forklift battery is a lead-acid battery, perform The voltage value determines the power of the forklift battery, and monitors the power of the forklift battery.
  • the structure of the forklift battery state monitoring device 10 provided above is shown in FIG. 4, and the working principle of the forklift battery state monitoring device 10 is as described in the embodiment of the forklift battery state monitoring method, which will not be repeated here.
  • an embedded device is provided.
  • the embedded device may be a terminal, and its internal structure diagram may be as shown in FIG. 5.
  • the embedded device includes a processor, a memory, a network interface, a display screen and an input device connected through a system bus.
  • the processor of the embedded device is used to provide computing and control capabilities.
  • the memory of the embedded device includes a non-volatile storage medium and an internal memory.
  • the non-volatile storage medium stores an operating system and a computer program.
  • the internal memory provides an environment for the operation of the operating system and computer programs in the non-volatile storage medium.
  • the network interface of the embedded device is used to communicate with an external terminal through a network connection.
  • the display screen of the embedded device can be a liquid crystal display screen or an electronic ink display screen
  • the input device of the embedded device can be a touch layer covered on the display screen, or a button, trackball or trackball set on the shell of the embedded device.
  • the touchpad can also be an external keyboard, touchpad, or mouse.
  • FIG. 5 is only a block diagram of part of the structure related to the solution of the present application, and does not constitute a limitation on the embedded device to which the solution of the present application is applied.
  • the specific embedded The device may include more or fewer parts than shown in the figures, or combine certain parts, or have a different arrangement of parts.
  • an embedded device including a memory and a processor, and a computer program is stored in the memory, and the processor implements the following steps when the processor executes the computer program:
  • the type of the forklift battery is a lead-acid battery
  • the state of the forklift battery is monitored.
  • an embedded device including a memory and a processor, and a computer program is stored in the memory, and the processor implements the following steps when the processor executes the computer program:
  • the forklift battery is a first-type lead-acid battery
  • the forklift battery is a second-type lead-acid battery.
  • an embedded device including a memory and a processor, and a computer program is stored in the memory, and the processor implements the following steps when the processor executes the computer program:
  • the type of the forklift battery is a lithium battery, monitor the power level of the forklift battery based on the controller area network;
  • the power of the forklift battery is determined according to the voltage value, and the power of the forklift battery is monitored.
  • an embedded device including a memory and a processor, and a computer program is stored in the memory, and the processor implements the following steps when the processor executes the computer program:
  • an embedded device including a memory and a processor, and a computer program is stored in the memory, and the processor implements the following steps when the processor executes the computer program:
  • an embedded device including a memory and a processor, and a computer program is stored in the memory, and the processor implements the following steps when the processor executes the computer program:
  • an embedded device including a memory and a processor, and a computer program is stored in the memory, and the processor implements the following steps when the processor executes the computer program:
  • the battery information is matched with the lithium battery information database, and the lithium battery type is determined according to the matching result.
  • Non-volatile memory may include read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or flash memory.
  • Volatile memory may include random access memory (RAM) or external cache memory.
  • RAM is available in many forms, such as static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDRSDRAM), enhanced SDRAM (ESDRAM), synchronous chain Channel (Synchlink) DRAM (SLDRAM), memory bus (Rambus) direct RAM (RDRAM), direct memory bus dynamic RAM (DRDRAM), and memory bus dynamic RAM (RDRAM), etc.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)

Abstract

一种叉车电池状态监测方法、装置及嵌入式设备、存储介质。叉车电池状态监测方法包括确定是否存在电池信息(S100);若存在电池信息,则确定叉车电池的类型为锂电池(S200);若不存在电池信息,则确定模拟量输入口是否存在电压信号(S300);若存在所述电压信号,则确定所述叉车电池类型为铅酸电池(S400);根据所述叉车电池的类型,监测所述叉车电池的状态(S500)。该叉车电池状态监测方法、装置及嵌入式设备、存储介质可以解决传统方案中对叉车电池状况进行监测的方法存在及时性差的问题。

Description

叉车电池状态监测方法、装置及嵌入式设备、存储介质 技术领域
本申请涉及电池监测领域,特别是涉及一种叉车电池状态监测方法、装置及嵌入式设备、存储介质。
背景技术
叉车是工业搬运车辆,是指对成件托盘货物进行装卸、堆垛和短距离运输作业的各种轮式搬运车辆。常用于仓储大型物件的运输,通常使用燃油机或者电池驱动。目前市面上常见的驱动叉车的电池包括锂电池和铅酸电池。锂电池和铅酸电池各有优势,叉车在使用时没有对锂电池和铅酸电池进行区分。
在叉车的日常使用中,需要对叉车的电池状况进行监测。然而,传统的监测叉车电池状况的方法需要耗费工作人员大量的时间和精力,这就会造成不能及时获知叉车电池状况的问题。
因此,传统方案中对叉车电池状况进行监测的方法存在及时性差的问题。
发明内容
有鉴于此,本申请公开一种叉车电池状态监测方法、装置及嵌入式设备、存储介质。本申请的目的在于针对传统方案中对叉车电池状况进行监测的方法存在及时性差的问题,提供一种叉车电池状态监测方法、装置及嵌入式设备、存储介质。
一种叉车电池状态监测方法,包括以下步骤:
确定是否存在电池信息;
若存在电池信息,则确定叉车电池的类型为锂电池;
若不存在电池信息,则确定模拟量输入口是否存在电压信号;
若存在所述电压信号,则确定所述叉车电池类型为铅酸电池;
一种叉车电池状态监测装置,包括:
判断模块,用于确定是否存在电池信息;
第一电池类型确定模块,用于若存在电池信息,则确定叉车电池的类型为锂电池;
电压信号确定模块,若不存在电池信息,则确定模拟量输入口是否存在电压信号;
第二电池类型确定模块,若存在所述电压信号,则确定所述叉车电池类型为铅酸电池;
电池状态监测模块,用于根据所述叉车电池的类型,监测所述叉车电池的状态。
一种嵌入式设备,包括存储器及处理器,所述存储器中储存有计算机程序,所述计算机 程序被所述处理器执行时,使得所述处理器执行如上所述的叉车电池状态监测方法的步骤。
一种嵌入式可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如上所述的叉车电池状态监测方法的步骤。
本申请的有益效果是:
本申请提供一种叉车电池状态监测方法,包括检测叉车电池类型和获取叉车电池状态信息。可以理解的是,叉车上的单片机可以通过是否检测到所述电池信息,确定叉车电池是否为锂电池。若检测到所述电池信息,则确定所述叉车电池的类型为锂电池。若没有检测到所述电池信息,则检测所述模拟量输入口是否存在电压信息。若是有所述电压信号,则证明所述叉车电池的类型为铅酸电池。若所述叉车电池的类型为锂电池,则获取所述锂电池的状态信息。若所述叉车电池的类型为铅酸电池,则获取所述铅酸电池的状态信息。本申请提供的叉车电池监测方法无需工作人员人工进行叉车电池类型的区分,可以在获知叉车电池类型之后及时获取叉车电池的状况,解决了传统方案中对叉车电池状况进行监测的方法存在无法及时获知电池状况的问题。
附图说明
构成本申请的一部分的附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据公开的附图获得其他的附图。
图1为本申请的一个实施例提供的叉车电池状态监测方法的流程示意图。
图2为本申请的另一个实施例提供的叉车电池状态监测方法的流程示意图。
图3为本申请的又一个实施例提供的叉车电池状态监测方法的流程示意图。
图4为本申请的一个实施例提供的叉车电池状态监测装置的示意图。
图5为本申请的一个实施例提供的嵌入式设备的内部结构图。
具体实施方式
叉车是工业搬运车辆,是指对成件托盘货物进行装卸、堆垛和短距离运输作业的各种轮式搬运车辆。常用于仓储大型物件的运输,通常使用燃油机或者电池驱动。目前市面上常见的驱动叉车的电池包括锂电池和铅酸电池。锂电池和铅酸电池各有优势,叉车在使用时没有对锂电池和铅酸电池进行区分。在叉车的日常使用中,需要对叉车的电池状况进行监测。然而,传统的监测叉车电池状况的方法需要耗费工作人员大量的时间和精力,这就会造成不能 及时获知叉车电池状况的问题。因此,传统方案中对叉车电池状况进行监测的方法存在及时性差的问题。基于此,本申请提供一种叉车电池状态监测方法、装置及嵌入式设备、存储介质。
为使本申请的上述目的、特征和优点能够更加明显易懂,下面结合附图对本申请的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本申请。但是本申请能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本申请内涵的情况下做类似改进,因此本申请不受下面公开的具体实施的限制。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
需要说明的是,叉车电池一般包括锂电池和铅酸电池,本实施例提供的叉车电池状态监测方法、装置及嵌入式设备、存储介质主要是对锂电池和铅酸电池进行区分,进而分别监测锂电池和铅酸电池的状态。但是,本实施例提供的叉车电池状态监测方法、装置及嵌入式设备、存储介质不限定只应用于叉车电池,还可以应用于其他设备,只要其他设备包括锂电池和铅酸电池。
需要说明的是,所述叉车电池状态监测方法由叉车中的单片机(Microcontroller Unit,微控制单元)执行。所述叉车电池状态监测方法的应用前提是叉车电池与单片机通信连接。
请参见图1,本申请提供一种叉车电池状态监测方法,包括:
S100,确定是否存在电池信息。
需要说明的是,叉车电池一般包括锂电池和铅酸电池。当锂电池与所述单片机通信连接时,所述单片机可以通过CAN(Controller Area Network,控制器局域网络)获取锂电池的电池信息。所述电池信息至少包括锂电池的电池容量信息和电量信息。
S200,若存在电池信息,则确定叉车电池的类型为锂电池。
若所述单片机可以检测到所述电池信息,则可以确定此时所述叉车电池的类型为锂电池。
S300,若不存在电池信息,则确定模拟量输入口是否存在电压信号。
若所述单片机检测不到所述电池信息,则需要确定所述单片机的模拟输入口是否存在电压信息。
S400,若存在所述电压信号,则确定所述叉车电池类型为铅酸电池。
若存在所述电压信息,则可以确定此时为铅酸电池与单片机连接。因此,可以确认所述叉车电池的类型为铅酸电池。若既不存在所述电池信息,又不存在所述电压信息,则可以确定此时没有电池接入,则单片机无法判断所述叉车电池的类型为锂电池还是铅酸电池。
S500,根据所述叉车电池的类型,监测所述叉车电池的状态。
所述监测所述叉车电池的状态,主要指的是所述叉车电池的电量信息。可以理解的是,若所述叉车电池的类型为锂电池,则可以直接获取所述叉车电池的电量信息。若所述叉车电池为铅酸电池,则需要在所述单片机和所述模拟量输入口之间设置电池电压转换电路,所述电池电压转换电路用于降压,以使从所述铅酸电池输出的电压被转换为所述单片机可以进行检测的电压范围。例如,所述单片机可以进行检测的电压范围在0V至5V,而所述铅酸电池为额定电压为24V的电池。此时,所述电池电压转换电路需要将从所述铅酸电池输出的电压转换为0V至5V的范围。所述电池电压转换电路需要根据铅酸电池的额定电压的最大值和所述单片机的电压检测范围选择。例如,工作人员在选择铅酸电池作为叉车电池时只选择了额定电压为24V和额定电压为48V的铅酸电池,此时需要考虑的所述铅酸电池的额定电压的最大值为48V。
本实施例提供一种叉车电池状态监测方法,包括检测叉车电池类型和获取叉车电池状态信息。可以理解的是,叉车上的单片机可以通过是否检测到所述电池信息,确定叉车电池是否为锂电池。若检测到所述电池信息,则确定所述叉车电池的类型为锂电池。若没有检测到所述电池信息,则检测所述模拟量输入口是否存在电压信息。若是有所述电压信号,则证明所述叉车电池的类型为铅酸电池。若所述叉车电池的类型为锂电池,则获取所述锂电池的状态信息。若所述叉车电池的类型为铅酸电池,则获取所述铅酸电池的状态信息。本申请提供的叉车电池监测方法无需工作人员人工进行叉车电池类型的区分,可以在获知叉车电池类型之后及时获取叉车电池的状况,解决了传统方案中对叉车电池状况进行监测的方法存在无法及时获知电池状况的问题。
请参阅图2,在本申请的一个实施例中,S400包括:
S410,若所述叉车电池的类型为铅酸电池,则获取所述模拟量输入口的电压值;
S420,若所述电压值大于预设电压值,则确定所述叉车电池为第一类铅酸电池;
S430,若所述电压值小于所述预设电压值,则确定所述叉车电池为第二类铅酸电池。
需要说明的是,若所述单片机的电压检测范围可以覆盖所述铅酸电池的额定电压,例如,所述单片机的电压检测范围为0V至30V,此时铅酸电池的额定电压为24V,则可以直接获取所述模拟量输入口的电压值。
若所述单片机的电压检测范围不能覆盖所述铅酸电池的额定电压,例如,所述单片机的电压检测范围为0V至12V,此时铅酸电池的额定电压为24V,则此时所述单片机不能直接获取所述模拟量输入口的电压值,而需要获取电池电压转换电路的转换比例,基于所述转换比例和所述单片机采集到的电压值,可以计算得到所述模拟量输入口的电压值。例如,所述电池电压转换电路的转换比例为0.5,所述单片机采集到的电压值为8V,则此时可以计算得到所述模拟量输入口的电压值为16V。
可以理解的是,在本实施例中,所述第一类铅酸电池指的是额定电压为48V的电池,所 述第二类铅酸电池指的是额定电压为24V的电池。所述预设电压值不一定为24V,一般是根据铅酸电池的实际状况决定。例如,所述第二类铅酸电池虽然为24V电池,但是输入至所述模拟量输入口的电压值可能会达到28V,但是所述第一类铅酸电池输入至所述模拟量输入口的电压值不会到28V。此时,便于区分所述第一类铅酸电池和所述第二类铅酸电池,可以将所述预设电压值设定为28V。即,所述预设电压值必须为所述第二类铅酸电池输入至所述模拟量输入口的电压最大值,但此时所述第一类铅酸电池输入至所述模拟量输入口的电压不会为所述第二类铅酸电池输入至所述模拟量输入口的电压最大值。
本实施例提供的方法可以在判断所述叉车电池类型为铅酸电池之后,进一步判断所述叉车电池为哪一种铅酸电池,使工作人员更详细的了解所述叉车电池的类型。可以理解的是,所述铅酸电池不一定只包括所述第一类铅酸电池和所述第二类铅酸电池,所述铅酸电池可能会根据额定电压的不同分为很多类铅酸电池。但是在区分所述铅酸电池的类型的时候都是需要基于所述模拟量输入口的电压值进行区分。
请参见图3,在本申请的一个实施例中,S500包括:
S510,若所述叉车电池的类型为锂电池,则基于控制器局域网络监测所述叉车电池的电量;
S520,若所述叉车电池的类型为铅酸电池,则根据所述电压值确定所述叉车电池的电量,并监测所述叉车电池的电量。
可以理解的是,若所述叉车电池的类型为锂电池,则单片机可以直接通过CAN(Controller Area Network,控制器局域网络)获取锂电池的电量,并对所述锂电池的电量,即所述叉车电池的电量进行监测。若所述叉车电池的类型为铅酸电池,则单片机需要根据所述模拟量接入口的电压值确定所述叉车电池的电量。需要说明的是,若所述单片机的电压检测范围不能覆盖所述铅酸电池的额定电压,例如,所述单片机的电压检测范围为0V至12V,此时铅酸电池的额定电压为24V,则此时所述单片机不能直接获取所述模拟量输入口的电压值,而需要获取电池电压转换电路的转换比例,基于所述转换比例和所述单片机采集到的电压值,可以计算得到所述模拟量输入口的电压值。例如,所述电池电压转换电路的转换比例为0.5,所述单片机采集到的电压值为8V,则此时可以计算得到所述模拟量输入口的电压值为16V。根据所述模拟量输入口的电压值和所述铅酸电池的额定电压值,就可以推算出铅酸电池的电量,即所述叉车电池的类型为铅酸电池时,所述叉车电池的电量。
在本申请的一个实施例中,所述叉车电池状态监测方法还包括:
S530,若所述叉车电池的电量小于等于预设电量,则生成报警命令。
所述预设电量可以为所述叉车电池满电量的百分之十或者百分之二十,工作人员可以根据实际需要设置所述预设电量的值。若所述叉车电池的电量小于等于所述预设电量,则说明所述叉车电池需要进行充电,此时就需要生成所述报警命令。
在本申请的一个实施例中,S530包括:
S531,若所述叉车电池的电量小于等于第一预设电量,则生成一级报警命令;
S532,若所述叉车电池的电量小于等于第二预设电量,则生成二级报警命令。
所述第一预设电量和所述第二预设电量可以根据实际需要选择,本申请不做限定。需要说明的是,所述第一预设电量可以大于所述第二预设电量,所述第一预设电量也可以小于所述第二预设电量,具体可以根据实际需要选择,本申请不做限定。在一个实施例中,所述第一预设电量可以为所述叉车电池总电量的百分之二十,所述第二预设电量可以为所述叉车电池总电量的百分之十。
在本申请的一个实施例中,所述叉车电池状态监测方法还包括:
若所述叉车电池的电量小于等于所述第二预设电量,则控制切段所述叉车电池的电连接关系。
在一个实施例中,所述第二预设电量小于所述第一预设电量。若所述叉车电池的电量小于等于所述第二预设电量,则证明再使用所述叉车电池会对所述叉车电池造成比较严重的损坏。此时,需要所述单片机控制切断所述叉车电池的电连接关系,以保护所述叉车电池不被损坏。
在本申请的一个实施例中,S200之后,所述方法还包括:
S210,获取锂电池信息库;
S220,将所述电池信息和所述锂电池信息库进行信息匹配,并根据匹配结果确定锂电池类型。
可以理解的是,所述锂电池信息库包括不同类型的锂电池,所述不同类型的锂电池有不同的电池容量。所述锂电池信息库可以由工作人员提前录入至所述单片机中。所述单片机在获取了所述电池信息之后,可以将所述电池信息与所述锂电池信息库中的信息进行匹配,寻找与所述电池信息相同的锂电池类型,由此,就可以确定所述电池信息对应的锂电池类型。
请参见图4,本申请还提供一种叉车电池状态监测装置10,所述叉车电池状态监测装置10包括:
判断模块100,用于确定是否存在电池信息。
第一电池类型确定模块200,用于若存在电池信息,则确定叉车电池的类型为锂电池;所述第一电池类型确定模块200还用于获取锂电池信息库;将所述电池信息和所述锂电池信息库进行信息匹配,并根据匹配结果确定锂电池类型。
电压信号确定模块300,若不存在电池信息,则确定模拟量输入口是否存在电压信号;
第二电池类型确定模块400,若存在所述电压信号,则确定所述叉车电池类型为铅酸电池;所述第二电池类型确定模块400还用于若所述叉车电池的类型为铅酸电池,则获取所述模拟量输入口的电压值;若所述电压值大于预设电压值,则确定所述叉车电池为第一类铅酸 电池;若所述电压值小于所述预设电压值,则确定所述叉车电池为第二类铅酸电池。
电池状态监测模块500,用于根据所述叉车电池的类型,监测所述叉车电池的状态。所述电池状态监测模块500还用于若所述叉车电池的类型为锂电池,则基于控制器局域网络监测所述叉车电池的电量;若所述叉车电池的类型为铅酸电池,则根据所述电压值确定所述叉车电池的电量,并监测所述叉车电池的电量。
以上提供的叉车电池状态监测装置10的结构如图4所示,所述叉车电池状态监测装置10的工作原理如所述叉车电池状态监测方法的实施例所述,在此不再赘述。
在一个实施例中,提供了一种嵌入式设备,该嵌入式设备可以是终端,其内部结构图可以如图5所示。该嵌入式设备包括通过系统总线连接的处理器、存储器、网络接口、显示屏和输入装置。其中,该嵌入式设备的处理器用于提供计算和控制能力。该嵌入式设备的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统和计算机程序。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该嵌入式设备的网络接口用于与外部的终端通过网络连接通信。该计算机程序被处理器执行时以实现一种叉车电池状态监测方法。该嵌入式设备的显示屏可以是液晶显示屏或者电子墨水显示屏,该嵌入式设备的输入装置可以是显示屏上覆盖的触摸层,也可以是嵌入式设备外壳上设置的按键、轨迹球或触控板,还可以是外接的键盘、触控板或鼠标等。
本领域技术人员可以理解,图5中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的嵌入式设备的限定,具体的嵌入式设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
在一个实施例中,提供了一种嵌入式设备,包括存储器和处理器,存储器中存储有计算机程序,该处理器执行计算机程序时实现以下步骤:
确定是否存在电池信息;
若存在电池信息,则确定叉车电池的类型为锂电池;
若不存在电池信息,则确定模拟量输入口是否存在电压信号;
若存在所述电压信号,则确定所述叉车电池类型为铅酸电池;
根据所述叉车电池的类型,监测所述叉车电池的状态。
在一个实施例中,提供了一种嵌入式设备,包括存储器和处理器,存储器中存储有计算机程序,该处理器执行计算机程序时实现以下步骤:
若所述叉车电池的类型为铅酸电池,则获取所述模拟量输入口的电压值;
若所述电压值大于预设电压值,则确定所述叉车电池为第一类铅酸电池;
若所述电压值小于所述预设电压值,则确定所述叉车电池为第二类铅酸电池。
在一个实施例中,提供了一种嵌入式设备,包括存储器和处理器,存储器中存储有计算机程序,该处理器执行计算机程序时实现以下步骤:
若所述叉车电池的类型为锂电池,则基于控制器局域网络监测所述叉车电池的电量;
若所述叉车电池的类型为铅酸电池,则根据所述电压值确定所述叉车电池的电量,并监测所述叉车电池的电量。
在一个实施例中,提供了一种嵌入式设备,包括存储器和处理器,存储器中存储有计算机程序,该处理器执行计算机程序时实现以下步骤:
若所述叉车电池的电量小于等于预设电量,则生成报警命令。
在一个实施例中,提供了一种嵌入式设备,包括存储器和处理器,存储器中存储有计算机程序,该处理器执行计算机程序时实现以下步骤:
若所述叉车电池的电量小于等于第一预设电量,则生成一级报警命令;
若所述叉车电池的电量小于等于第二预设电量,则生成二级报警命令。
在一个实施例中,提供了一种嵌入式设备,包括存储器和处理器,存储器中存储有计算机程序,该处理器执行计算机程序时实现以下步骤:
若所述叉车电池的电量小于等于所述第二预设电量,则控制切断所述叉车电池的电连接关系。
在一个实施例中,提供了一种嵌入式设备,包括存储器和处理器,存储器中存储有计算机程序,该处理器执行计算机程序时实现以下步骤:
获取锂电池信息库;
将所述电池信息和所述锂电池信息库进行信息匹配,并根据匹配结果确定锂电池类型。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性嵌入式可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)等。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因 此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种叉车电池状态监测方法,其特征在于,包括以下步骤:
    确定是否存在电池信息;
    若存在电池信息,则确定叉车电池的类型为锂电池;
    若不存在电池信息,则确定模拟量输入口是否存在电压信号;
    若存在所述电压信号,则确定所述叉车电池类型为铅酸电池;
    根据所述叉车电池的类型,监测所述叉车电池的状态。
  2. 根据权利要求1所述的叉车电池状态监测方法,其特征在于,所述若存在所述电压信号,则确定所述叉车电池类型为铅酸电池,所述方法还包括:
    若所述叉车电池的类型为铅酸电池,则获取所述模拟量输入口的电压值;
    若所述电压值大于预设电压值,则确定所述叉车电池为第一类铅酸电池;
    若所述电压值小于所述预设电压值,则确定所述叉车电池为第二类铅酸电池。
  3. 根据权利要求2所述的叉车电池状态监测方法,其特征在于,所述根据所述叉车电池的类型,监测叉车电池的状态,包括:
    若所述叉车电池的类型为锂电池,则基于控制器局域网络监测所述叉车电池的电量;
    若所述叉车电池的类型为铅酸电池,则根据所述电压值确定所述叉车电池的电量,并监测所述叉车电池的电量。
  4. 根据权利要求3所述的叉车电池状态监测方法,其特征在于,所述方法还包括:
    若所述叉车电池的电量小于等于预设电量,则生成报警命令。
  5. 根据权利要求4所述的叉车电池状态监测方法,其特征在于,所述若所述叉车电池的电量小于等于预设电量,则生成报警命令,包括:
    若所述叉车电池的电量小于等于第一预设电量,则生成一级报警命令;
    若所述叉车电池的电量小于等于第二预设电量,则生成二级报警命令。
  6. 根据权利要求5所述的叉车电池状态监测方法,其特征在于,所述方法还包括:
    若所述叉车电池的电量小于等于所述第二预设电量,则控制切断所述叉车电池的电连接关系。
  7. 根据权利要求1所述的叉车电池状态监测方法,其特征在于,若存在电池信息,则确定叉车电池的类型为锂电池之后,所述方法还包括:
    获取锂电池信息库;
    将所述电池信息和所述锂电池信息库进行信息匹配,并根据匹配结果确定锂电池类型。
  8. 一种叉车电池状态监测装置,其特征在于,包括:
    判断模块,用于确定是否存在电池信息;
    第一电池类型确定模块,用于若存在电池信息,则确定叉车电池的类型为锂电池;
    电压信号确定模块,若不存在电池信息,则确定模拟量输入口是否存在电压信号;
    第二电池类型确定模块,若存在所述电压信号,则确定所述叉车电池类型为铅酸电池;
    电池状态监测模块,用于根据所述叉车电池的类型,监测所述叉车电池的状态。
  9. 根据权利要求8所述的叉车电池状态监测装置,其特征在于,所述第一电池类型确定模块还用于获取锂电池信息库;将所述电池信息和所述锂电池信息库进行信息匹配,并根据匹配结果确定锂电池类型。
  10. 根据权利要求8所述的叉车电池状态监测装置,其特征在于,所述第二电池类型确定模块还用于若所述叉车电池的类型为铅酸电池,则获取所述模拟量输入口的电压值;若所述电压值大于预设电压值,则确定所述叉车电池为第一类铅酸电池;若所述电压值小于所述预设电压值,则确定所述叉车电池为第二类铅酸电池。
  11. 根据权利要求8所述的叉车电池状态监测装置,其特征在于,所述电池状态监测模块还用于若所述叉车电池的类型为锂电池,则基于控制器局域网络监测所述叉车电池的电量。
  12. 根据权利要求11所述的叉车电池状态监测装置,其特征在于,电池状态监测模块还用于若所述叉车电池的类型为铅酸电池,则根据所述电压值确定所述叉车电池的电量,并监测所述叉车电池的电量。
  13. 一种嵌入式设备,包括存储器及处理器,所述存储器中储存有计算机程序,其特征在于,所述计算机程序被所述处理器执行时,使得所述处理器执行步骤:
    确定是否存在电池信息;
    若存在电池信息,则确定叉车电池的类型为锂电池;
    若不存在电池信息,则确定模拟量输入口是否存在电压信号;
    若存在所述电压信号,则确定所述叉车电池类型为铅酸电池;
    根据所述叉车电池的类型,监测所述叉车电池的状态。
  14. 根据权利要求13所述的嵌入式设备,其特征在于,所述计算机程序被所述处理器执行时,使得所述处理器执行步骤:
    若所述叉车电池的类型为铅酸电池,则获取所述模拟量输入口的电压值;
    若所述电压值大于预设电压值,则确定所述叉车电池为第一类铅酸电池;
    若所述电压值小于所述预设电压值,则确定所述叉车电池为第二类铅酸电池。
  15. 根据权利要求13所述的嵌入式设备,其特征在于,所述计算机程序被所述处理器执行时,使得所述处理器执行步骤:
    若所述叉车电池的类型为锂电池,则基于控制器局域网络监测所述叉车电池的电量;
    若所述叉车电池的类型为铅酸电池,则根据所述电压值确定所述叉车电池的电量,并监 测所述叉车电池的电量。
  16. 根据权利要求13所述的嵌入式设备,其特征在于,所述计算机程序被所述处理器执行时,使得所述处理器执行步骤:
    若所述叉车电池的电量小于等于预设电量,则生成报警命令。
  17. 根据权利要求13所述的嵌入式设备,其特征在于,所述计算机程序被所述处理器执行时,使得所述处理器执行步骤:
    若所述叉车电池的电量小于等于第一预设电量,则生成一级报警命令;
    若所述叉车电池的电量小于等于第二预设电量,则生成二级报警命令。
  18. 根据权利要求13所述的嵌入式设备,其特征在于,所述计算机程序被所述处理器执行时,使得所述处理器执行步骤:
    若所述叉车电池的电量小于等于所述第二预设电量,则控制切断所述叉车电池的电连接关系。
  19. 根据权利要求13所述的嵌入式设备,其特征在于,所述计算机程序被所述处理器执行时,使得所述处理器执行步骤:
    获取锂电池信息库;
    将所述电池信息和所述锂电池信息库进行信息匹配,并根据匹配结果确定锂电池类型。
  20. 一种嵌入式可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至7中任一项所述的叉车电池状态监测方法的步骤。
PCT/CN2019/130300 2019-12-31 2019-12-31 叉车电池状态监测方法、装置及嵌入式设备、存储介质 WO2021134395A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/130300 WO2021134395A1 (zh) 2019-12-31 2019-12-31 叉车电池状态监测方法、装置及嵌入式设备、存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/130300 WO2021134395A1 (zh) 2019-12-31 2019-12-31 叉车电池状态监测方法、装置及嵌入式设备、存储介质

Publications (1)

Publication Number Publication Date
WO2021134395A1 true WO2021134395A1 (zh) 2021-07-08

Family

ID=76685832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/130300 WO2021134395A1 (zh) 2019-12-31 2019-12-31 叉车电池状态监测方法、装置及嵌入式设备、存储介质

Country Status (1)

Country Link
WO (1) WO2021134395A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201819976U (zh) * 2008-01-25 2011-05-04 永备电池有限公司 燃料计量系统和计量方法
CN103035961A (zh) * 2011-10-10 2013-04-10 波音公司 电池组适应性学习管理系统
CN204405807U (zh) * 2015-01-28 2015-06-17 中塔新兴通讯技术有限公司 智能型多功能蓄电池检测仪
US9467000B2 (en) * 2013-05-31 2016-10-11 Raytheon Company Intelligent independent battery management system and method
US20170126040A1 (en) * 2014-06-30 2017-05-04 International Business Machines Corporation Wireless communication controlled battery charging station
CN107634559A (zh) * 2017-10-25 2018-01-26 上海伊控动力系统有限公司 一种新能源汽车废旧电池的梯次利用系统及使用方法
CN109073712A (zh) * 2016-05-13 2018-12-21 舒马克电器公司 电池状态检测系统和方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201819976U (zh) * 2008-01-25 2011-05-04 永备电池有限公司 燃料计量系统和计量方法
CN103035961A (zh) * 2011-10-10 2013-04-10 波音公司 电池组适应性学习管理系统
US9467000B2 (en) * 2013-05-31 2016-10-11 Raytheon Company Intelligent independent battery management system and method
US20170126040A1 (en) * 2014-06-30 2017-05-04 International Business Machines Corporation Wireless communication controlled battery charging station
CN204405807U (zh) * 2015-01-28 2015-06-17 中塔新兴通讯技术有限公司 智能型多功能蓄电池检测仪
CN109073712A (zh) * 2016-05-13 2018-12-21 舒马克电器公司 电池状态检测系统和方法
CN107634559A (zh) * 2017-10-25 2018-01-26 上海伊控动力系统有限公司 一种新能源汽车废旧电池的梯次利用系统及使用方法

Similar Documents

Publication Publication Date Title
US11408942B2 (en) Method for predicting service life of retired power battery
TWI573363B (zh) 電源故障預測的方法、設備及系統
US9476947B2 (en) Method for ascertaining operating parameters of a battery, battery management system, and battery
US11557798B2 (en) Method and system for predicting onset of capacity fading in a battery
KR101798201B1 (ko) 이차 전지의 방전 출력 추정 방법 및 장치
KR102039954B1 (ko) 배터리 모듈 밸런싱 시스템
CN106772091A (zh) 电池容量值的更新方法、装置及终端
CN108347068B (zh) 一种充电的方法及移动终端
EP3185348B1 (en) A battery information detection and control method, smart battery,terminal and computer storage medium
US9664745B1 (en) Computer implemented system and method and computer program product for using battery information to automatically charge a battery
KR102281384B1 (ko) 배터리 충전 상태 추정 장치 및 방법
CN111361448A (zh) 电池的自放电检测方法、装置、电池控制器和存储介质
US20190041940A1 (en) Vehicle charge resource management
WO2021134395A1 (zh) 叉车电池状态监测方法、装置及嵌入式设备、存储介质
CN111077458A (zh) 叉车电池状态监测方法、装置及嵌入式设备、存储介质
CN116487743A (zh) 一种充电末端的soc修正方法、装置、电池组及存储介质
CN114509695B (zh) 电池析锂检测方法、装置、设备、存储介质和计算机程序
US20220198843A1 (en) Vehicle and control method thereof
CN112083340B (zh) 蓄电池组性能检测方法及装置、存储介质、终端
CN205508969U (zh) 铅酸电池管理系统
CN116552316B (zh) 一种充电控制方法、装置及相关设备
CN109617175A (zh) 移动终端充电器检测控制方法、移动终端及存储介质
CN116298523A (zh) 车辆绝缘电阻检测方法、装置、设备、介质和产品
CN113844332B (zh) 电动挖掘机及电动挖掘机的充电方法、装置和存储介质
CN117228021B (zh) 用于高粱害虫类别识别的无人机充放电调节方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19958442

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19958442

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07/03/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 19958442

Country of ref document: EP

Kind code of ref document: A1