WO2021134297A1 - 一种镜筒、镜头模组及其组装方法 - Google Patents

一种镜筒、镜头模组及其组装方法 Download PDF

Info

Publication number
WO2021134297A1
WO2021134297A1 PCT/CN2019/130115 CN2019130115W WO2021134297A1 WO 2021134297 A1 WO2021134297 A1 WO 2021134297A1 CN 2019130115 W CN2019130115 W CN 2019130115W WO 2021134297 A1 WO2021134297 A1 WO 2021134297A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
barrel
lens barrel
groove
wall
Prior art date
Application number
PCT/CN2019/130115
Other languages
English (en)
French (fr)
Inventor
许凌云
Original Assignee
诚瑞光学(常州)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 诚瑞光学(常州)股份有限公司 filed Critical 诚瑞光学(常州)股份有限公司
Priority to PCT/CN2019/130115 priority Critical patent/WO2021134297A1/zh
Publication of WO2021134297A1 publication Critical patent/WO2021134297A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses

Definitions

  • the invention relates to the technical field of optical lenses, in particular to a lens barrel, a lens module and an assembly method thereof.
  • the related art lens module includes a lens barrel with a light hole and a lens assembly housed in the lens barrel.
  • an assembly impact force will be generated, and the assembly impact force is completely absorbed by the lens assembly ;
  • Due to the low strength of the lens assembly the lens assembly is prone to plastic deformation due to excessive assembly impact, which affects the optical performance of the lens assembly; in severe cases, the lens may even crack, resulting in a decrease in the assembly yield of the lens module.
  • the purpose of the present invention is to provide a lens barrel, a lens module and an assembly method thereof, which can absorb the impact of the lens when the lens module is assembled, so as to solve the problem that the lens is prone to plastic deformation and may even crack when the lens is subjected to excessive impact. technical problem.
  • a lens barrel includes a first barrel wall with a light-passing hole and a second barrel wall bent and extended from the first barrel wall.
  • the first barrel wall includes an outer wall surface close to the object side.
  • a groove for filling buffer gas is opened on the wall, and the lens barrel further includes an air stopper arranged in the groove, and the air stopper seals the buffer gas in the groove, and the gas The plug can move relative to the lens barrel along the optical axis.
  • the groove is annularly arranged around the light-passing hole.
  • the groove is arranged in a circular structure with the center of the light passing hole as the center.
  • first tube wall and the second tube wall form a receiving cavity for accommodating a lens, and the air plug passes through the receiving cavity along an orthographic projection line in the optical axis direction.
  • the upper surface of the air plug is flush with the outer wall surface.
  • a lens module includes the lens barrel as described above and a lens housed in the lens barrel.
  • the lens includes an optical part for imaging and a fixed part extending around the optical part, and the orthographic projection of the air plug along the optical axis direction falls within the orthographic projection of the fixed part along the optical axis direction.
  • a method for assembling a lens module includes:
  • the lenses are sequentially installed in the receiving cavity of the lens barrel from the object side to the image side;
  • the support column compresses the buffer gas through the air plug to buffer the impact force during the installation of the lens module.
  • the beneficial effect of the present invention is that a groove is opened on the top wall surface, the buffer gas is filled in the groove, and the buffer gas is sealed in the groove by the gas plug.
  • the gas plug It can move relative to the lens barrel along the optical axis, so the impact of the lens barrel can be absorbed by compressed buffer gas, thereby reducing the mutual impact force between the lens barrel and the lens assembly, alleviating the deformation of the lens assembly, and solving the problem that the lens is too large.
  • the impact of this product is prone to plastic deformation, or even cracking in severe cases, and it can also improve the assembly yield.
  • FIG. 1 is a schematic diagram of the structure of a lens barrel in an embodiment of the present invention
  • FIG. 2 is a schematic diagram of the structure of a lens module in an embodiment of the present invention.
  • Fig. 3 is a schematic diagram of an assembly of a lens barrel in an embodiment of the present invention.
  • a lens barrel 10 includes: the lens barrel 10 includes a first barrel wall 11 having a light through hole 11a and a second barrel wall 12 bent and extended from the first barrel wall 11, the first barrel wall 11 includes The outer wall surface 111 near the object side is provided with a groove 111a for filling buffer gas on the outer wall surface 111.
  • the lens barrel 10 also includes an air plug 30 arranged in the groove 111a. The air plug 30 seals the buffer gas in the recess. Groove 111a, the air plug 30 can move relative to the lens barrel 10 along the optical axis.
  • a groove 111a is opened on the outer wall surface 111, a buffer gas is filled in the groove 111a, and the buffer gas is sealed in the groove 111a by the gas plug 30.
  • the plug 30 can move relative to the lens barrel 10 along the optical axis.
  • the impact of the lens barrel 10 can be absorbed by the air plug 30 compressing the buffer gas, thereby reducing the mutual impact force between the lens barrel 10 and the lens 20, and alleviating
  • the groove 111a is annularly arranged around the light-passing hole 11a.
  • the groove 111a is annularly arranged around the light-passing hole 11a.
  • the groove 111a is arranged in a circular structure with the center of the light-passing hole 11a as the center, indicating that the distance between any groove section of the groove 111a and the light-passing hole 11a is equal, that is, any groove section of the groove 111a is located.
  • the absorbed assembly impact force is the same, which further ensures that the groove 111a can evenly absorb the impact received by the lens 20, and ensures that the lens 20 is not deformed or even cracked due to excessive impact.
  • first cylindrical wall 11 and the second cylindrical wall 12 are enclosed to form a receiving cavity 10a for accommodating the lens 20, and the orthographic projection line of the air plug 30 along the optical axis direction passes through the receiving cavity 10a.
  • the housing cavity 10a of the lens barrel 10 is jointly enclosed by the first cylinder wall 11 and the second cylinder wall 12, the lens 20 is set in the housing cavity 10a, and the air plug 30 is set so as to be aligned along the optical axis.
  • the orthographic projection line passes through the accommodating cavity 10a, so it can better absorb the impact received by the lens 20 in the accommodating cavity 10a when the lens module is assembled.
  • the upper surface of the air plug 30 is flush with the outer wall 111 to maintain the aesthetics of the lens barrel 10, and at the same time to ensure that the outer wall 111 is not flat and accidentally touched during the assembly process, which affects the assembly of the lens module. process.
  • a groove 111 a is opened on the outer wall surface 111 of the lens barrel 10, and the shape and position of the groove 111 a are set, and then the buffer gas is sealed in the groove 111 a by the gas plug 30.
  • the shock received by the lens 20 can be effectively and uniformly absorbed by the buffer gas in the groove 111a, thereby solving the problem of deformation of the lens 20 due to assembly shock.
  • the present invention also provides a lens module, which includes the aforementioned lens barrel 10 and a lens 20 housed in the lens barrel 10, as shown in FIG. 2,
  • each lens 20 includes an optical part 21 for imaging and a fixing part 22 extending around the optical part 21.
  • the orthographic projection of the air plug 30 along the optical axis direction falls within the orthographic projection of the fixing portion 22 along the optical axis direction, so that the impact on the lens can be better absorbed, and the lens will not be deformed.
  • the lens 20 is held in the lens barrel 10 by the fixing portion 22, that is, the assembly impact of the lens 20 is basically borne by the fixing portion 22.
  • the air plug 30 is projected along the optical axis. It overlaps with the orthographic projection of the fixing portion 22 along the optical axis direction, so that the buffer gas in the groove 111a can directly and effectively absorb the assembly shock received by the fixing portion 22.
  • the present invention also provides an assembling method of the lens module, the assembling method includes:
  • the lens 20 is sequentially installed in the receiving cavity 10a of the lens barrel 10 from the object side to the image side;
  • the support column 40 compresses the buffer gas through the air plug 30 to buffer the impact force during the installation of the lens module.
  • the lens module When assembling the lens module, first abut the support post 40 of the assembly tooling with the air plug 30 to support the lens barrel 10, and finally the multiple lenses 20 are sequentially housed in the direction from the object side to the image side In the receiving cavity 10a of the lens barrel 10. Since the groove 111a is filled with buffer gas, when the lens 20 is assembled, the air plug 30 can move relative to the lens barrel 10 along the optical axis, compress the buffer gas to absorb the impact force received by the lens barrel 10 during assembly, and then The mutual impact force between the lens barrel 10 and the lens 20 is weakened, the deformation of the lens 20 is relieved, and the assembly yield of the lens module is improved.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lens Barrels (AREA)

Abstract

一种镜筒(10)、镜头模组及其组装方法,镜筒(10)包括:具有通光孔(11a)的第一筒壁(11)和自第一筒壁(11)弯折延伸的第二筒壁(12),第一筒壁(11)包括靠近物侧的外壁面(111),外壁面(111)上开设用于填充缓冲气体的凹槽(111a),镜筒(10)还包括设置在凹槽(111a)中的气塞件(30),气塞件(30)将缓冲气体封存于凹槽(111a),气塞件(30)可以沿光轴相对于镜筒(10)运动。在对镜头模组进行组装时,镜筒(10)受到的冲击可以通过压缩缓冲气体来吸收,缓解了镜筒(10)在组装过程中的变形问题,进而减弱了镜筒(10)与镜片(20)之间的相互冲击力,缓解镜片(20)组件变形,解决了镜片(20)受到过大的冲击容易产生塑性变形、严重时甚至可能开裂的技术问题,同时可以提高组装良率。

Description

一种镜筒、镜头模组及其组装方法 技术领域
本发明涉及光学镜头技术领域,尤其涉及一种镜筒、镜头模组及其组装方法。
背景技术
随着科技的不断发展,电子设备不断朝着智能化发展,除了数码相机外,便携式电子设备例如平板电脑、手机等也配备拍照摄像功能的镜头模组,以满足用户随时拍照的需要。相关技术的镜头模组包括具有通光孔的镜筒和收容在镜筒内的镜片组件,在将镜片组件组装固定于镜筒内时,会产生组装冲击力,组装冲击力完全由镜片组件吸收;由于镜片组件的强度较低,因而镜片组件受到过大的组装冲击力容易产生塑性变形,进而影响镜片组件的光学性能;严重时镜片甚至可能开裂,导致镜头模组的组装良率下降。
因此,有必要提供一种镜筒。
技术问题
本发明的目的在于提供一种镜筒、镜头模组及其组装方法,可以吸收镜头模组组装时镜片受到的冲击,以解决镜片受到过大的冲击容易产生塑性变形、严重时甚至可能开裂的技术问题。
技术解决方案
本发明的技术方案如下:
一种镜筒,其包括具有通光孔的第一筒壁和自所述第一筒壁弯折延伸的第二筒壁,所述第一筒壁包括靠近物侧的外壁面,所述外壁面上开设有用于填充缓冲气体的凹槽,所述镜筒还包括设置在所述凹槽中的气塞件,所述气塞件将所述缓冲气体封存于所述凹槽,所述气塞件可以沿光轴相对于所述镜筒运动。
进一步地,所述凹槽围绕所述通光孔呈环形设置。
进一步地,所述凹槽以所述通光孔的中心为圆心呈圆形结构设置。
进一步地,所述第一筒壁和所述第二筒壁形成用于收容镜片的收容腔,所述气塞件沿光轴方向的正投影线经过所述收容腔。
进一步地,所述气塞件的上表面与所述外壁面齐平。
进一步地,一种镜头模组,所述镜头模组包括如前所述的镜筒以及收容于所述镜筒内部的镜片。
进一步地,所述镜片包括用于成像的光学部和围绕所述光学部延伸的固定部,所述气塞件沿光轴方向的正投影落在所述固定部沿光轴方向的正投影内。
进一步地,一种镜头模组的组装方法,所述镜头模组为前述的镜头模组,包括:
S1:组装工装的支撑柱抵接所述气塞件以支撑所述镜筒;
S2:将所述镜片自物侧往像侧方向依次安装于所述镜筒的收容腔内;
S3:所述支撑柱通过所述气塞件压缩所述缓冲气体,缓冲镜头模组安装过程中的冲击力。
有益效果
本发明的有益效果在于:在顶壁天面上开设凹槽,在凹槽中填充缓冲气体,并通过气塞件将缓冲气体封存在凹槽中,在对镜筒进行组装时,气塞件可以沿光轴相对于镜筒运动,因而镜筒受到的冲击可以通过压缩缓冲气体来吸收,进而减弱了镜筒与镜片组件之间的相互冲击力,缓解镜片组件变形,解决了镜片受到过大的冲击容易产生塑性变形、严重时甚至可能开裂的技术问题,同时可以提高组装良率。
附图说明
图1为本发明实施例中一种镜筒的结构示意图;
图2为本发明实施例中一种镜头模组的结构示意图;
图3为本发明实施例中一种镜筒的组装示意图。
本发明的实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本实用新型。
应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
下面结合附图和实施方式对本实用新型作进一步说明。参见图1,一种镜筒10,包括:镜筒10包括具有通光孔11a的第一筒壁11和自第一筒壁11弯折延伸的第二筒壁12,第一筒壁11包括靠近物侧的外壁面111,外壁面111上开设用于填充缓冲气体的凹槽111a,镜筒10还包括设置在凹槽111a中的气塞件30,气塞件30将缓冲气体封存于凹槽111a,气塞件30可以沿光轴相对于镜筒10运动。
在本发明中,在外壁面111上开设凹槽111a,在凹槽111a中填充缓冲气体,并通过气塞件30将缓冲气体封存在凹槽111a中,在对镜头模组进行组装时,由于气塞件30可以沿光轴相对于镜筒10运动,因而镜筒10受到的冲击可以通过气塞件30压缩缓冲气体来吸收,进而减弱了镜筒10与镜片20之间的相互冲击力,缓解了在组装过程中镜筒发生变形的问题,进而缓解镜片20变形,解决了镜片20受到过大的冲击容易产生塑性变形、严重时甚至可能开裂的技术问题,同时可以提高组装良率。
进一步地,凹槽111a围绕通光孔11a呈环形设置,通过将凹槽111a设置成环形,使其周向围绕通光孔11a设置,可以大范围且均匀的吸收镜片20所受的冲击。
优选地,凹槽111a以通光孔11a的中心为圆心呈圆形结构设置,说明凹槽111a的任意一槽段与通光孔11a的距离都相等,即凹槽111a的任意一槽段所吸收的组装冲击力均相同,进一步确保了凹槽111a可以均匀吸收镜片20受到的冲击,保证镜片20不因冲击过大而变形甚至开裂。
进一步地,第一筒壁11和第二筒壁12围设成用于收容镜片20的收容腔10a,气塞件30沿光轴方向的正投影线经过收容腔10a。镜筒10的收容腔10a由第一筒壁11和第二筒壁12共同围合而成,将镜片20设置在收容腔10a中,并对气塞件30进行设置使其沿光轴方向的正投影线经过收容腔10a,因此能够更好的吸收收容腔10a内镜片20在镜头模组组装时收到的冲击。进一步地,气塞件30的上表面与外壁面111齐平,以保持镜筒10的美观性,同时确保组装过程中不会由于外壁面111不平整而发生误碰,影响镜头模组的组装过程。
本技术方案通过在镜筒10的外壁面111开设凹槽111a,并对凹槽111a的形状、位置进行设置,然后通过气塞件30将缓冲气体封存在凹槽111a中。当镜头模组进行组装时,镜片20所受的冲击可以由凹槽111a中的缓冲气体进行有效均匀的吸收,从而解决镜片20因受组装冲击而变形的问题。
进一步地,本发明还提供了一种镜头模组,该镜头模组包括如前述的镜筒10以及收容于镜筒10内部的镜片20,如图2所示,
在镜筒10的收容腔10a中,由自物侧往像侧方向依次设置有的多个镜片20,每个镜片20均包括用于成像的光学部21和围绕光学部21延伸的固定部22,气塞件30沿光轴方向的正投影落在固定部22沿光轴方向的正投影内,使得镜片受到的冲击能够更好的被吸收,不至于导致镜片的变形。镜片20通过固定部22固持在镜筒10中,即镜片20所受的组装冲击基本由固定部22承受,通过进一步限制气塞件30的位置,使气塞件30沿光轴方向的正投影与固定部22沿光轴方向的正投影重叠,从而凹槽111a的缓冲气体可以直接有效的吸收固定部22所受的组装冲击。
本发明还提供了一种镜头模组的组装方法,该组装方法包括:
S1:组装工装的支撑柱40抵接气塞件30以支撑镜筒10;
S2:将镜片20自物侧往像侧方向依次安装于镜筒10的收容腔10a内;
S3:所述支撑柱40通过所述气塞件30压缩所述缓冲气体,缓冲镜头模组安装过程中的冲击力。
在对镜头模组进行组装时,首先将组装工装的支撑柱40与气塞件30抵接,以实现对镜筒10的支撑,最后将多个镜片20自物侧往像侧方向依次收容于镜筒10的收容腔10a中。由于凹槽111a中填充有缓冲气体,当对镜片20进行组装时,气塞件30可以沿光轴相对于镜筒10运动,压缩缓冲气体从而吸收镜筒10在组装时受到的冲击力,进而减弱了镜筒10与镜片20之间的相互冲击力,缓解镜片20变形,提高镜头模组的组装良率。
以上所述的仅是本发明的实施方式,在此应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出改进,但这些均属于本发明的保护范围。

Claims (8)

  1. 一种镜筒,其包括具有通光孔的第一筒壁和自所述第一筒壁弯折延伸的第二筒壁,所述第一筒壁包括靠近物侧的外壁面,其特征在于,所述外壁面上开设有用于填充缓冲气体的凹槽,所述镜筒还包括设置在所述凹槽中的气塞件,所述气塞件将所述缓冲气体封存于所述凹槽,所述气塞件可以沿光轴相对于所述镜筒运动。
  2. 根据权利要求1所述的镜筒,其特征在于,所述凹槽围绕所述通光孔呈环形设置。
  3. 根据权利要求2所述的镜筒,其特征在于,所述凹槽以所述通光孔的中心为圆心呈圆形结构设置。
  4. 根据权利要求3所述的镜筒,其特征在于,所述第一筒壁和所述第二筒壁围设成用于收容镜片的收容腔,所述气塞件沿光轴方向的正投影线经过所述收容腔。
  5. 根据权利要求1所述的镜筒,其特征在于,所述气塞件的上表面与所述外壁面齐平。
  6. 一种镜头模组,其特征在于,所述镜头模组包括如权利要求1-5中任一项所述的镜筒以及收容于所述镜筒内部的镜片。
  7. 根据权利要求6所述的镜头模组,其特征在于,所述镜片包括用于成像的光学部和围绕所述光学部延伸的固定部,所述气塞件沿光轴方向的正投影落在所述固定部沿光轴方向的正投影内。
  8. 一种镜头模组的组装方法,其特征在于,所述镜头模组为权利要求6或7所述的镜头模组,包括:
    S1:组装工装的支撑柱抵接所述气塞件以支撑所述镜筒;
    S2:将所述镜片自物侧往像侧方向依次安装于所述镜筒的收容腔内;
    S3:所述支撑柱通过所述气塞件压缩所述缓冲气体,缓冲镜头模组安装过程中的冲击力。
PCT/CN2019/130115 2019-12-30 2019-12-30 一种镜筒、镜头模组及其组装方法 WO2021134297A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/130115 WO2021134297A1 (zh) 2019-12-30 2019-12-30 一种镜筒、镜头模组及其组装方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/130115 WO2021134297A1 (zh) 2019-12-30 2019-12-30 一种镜筒、镜头模组及其组装方法

Publications (1)

Publication Number Publication Date
WO2021134297A1 true WO2021134297A1 (zh) 2021-07-08

Family

ID=76686157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/130115 WO2021134297A1 (zh) 2019-12-30 2019-12-30 一种镜筒、镜头模组及其组装方法

Country Status (1)

Country Link
WO (1) WO2021134297A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201352268Y (zh) * 2008-03-31 2009-11-25 富士能株式会社 透镜组装体及摄像装置
CN207051568U (zh) * 2017-08-19 2018-02-27 江西兴邦光电股份有限公司 一种超薄1300万像素的手机镜头
CN207396822U (zh) * 2017-10-19 2018-05-22 鹰潭市永威光电仪器有限公司 一种短焦镜头
JP2018100996A (ja) * 2016-12-19 2018-06-28 マクセル株式会社 レンズユニット
CN108594397A (zh) * 2018-06-20 2018-09-28 襄阳市雄狮光电科技有限公司 一种抗冲击红外镜头结构
CN208026962U (zh) * 2018-02-09 2018-10-30 瑞声科技(新加坡)有限公司 一种镜筒及镜头模组
CN208636516U (zh) * 2018-08-08 2019-03-22 瑞声科技(新加坡)有限公司 镜头模组

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201352268Y (zh) * 2008-03-31 2009-11-25 富士能株式会社 透镜组装体及摄像装置
JP2018100996A (ja) * 2016-12-19 2018-06-28 マクセル株式会社 レンズユニット
CN207051568U (zh) * 2017-08-19 2018-02-27 江西兴邦光电股份有限公司 一种超薄1300万像素的手机镜头
CN207396822U (zh) * 2017-10-19 2018-05-22 鹰潭市永威光电仪器有限公司 一种短焦镜头
CN208026962U (zh) * 2018-02-09 2018-10-30 瑞声科技(新加坡)有限公司 一种镜筒及镜头模组
CN108594397A (zh) * 2018-06-20 2018-09-28 襄阳市雄狮光电科技有限公司 一种抗冲击红外镜头结构
CN208636516U (zh) * 2018-08-08 2019-03-22 瑞声科技(新加坡)有限公司 镜头模组

Similar Documents

Publication Publication Date Title
US9817205B2 (en) Lens module
US10606020B2 (en) Lens module
JP2017090875A (ja) レンズモジュール
US20170139174A1 (en) Lens Module
US11029481B2 (en) Lens module
US11029500B2 (en) Lens module
US20170139173A1 (en) Lens Module
US11029482B2 (en) Pressing ring and lens module
US20200409108A1 (en) Optical lens module
JP6990275B2 (ja) レンズモジュール及び電子機器
WO2020258325A1 (zh) 光学镜头
CN208907939U (zh) 镜头模组
US10648853B2 (en) Lens module comprising a bracket with a side wall bending and extending from a top wall to form a sensor receiving space
CN206671661U (zh) 一种微型成像镜头组
WO2021134297A1 (zh) 一种镜筒、镜头模组及其组装方法
CN206532016U (zh) 镜头模组
EP3680698B1 (en) Method of processing camera lens, camera lens, camera assembly and electronic device
CN210270346U (zh) 镜头模组
US11209718B2 (en) Lens module
CN201804150U (zh) 一种微型投影成像镜头
CN208636550U (zh) 一种镜头模组
JP2018010270A (ja) レンズモジュール
WO2020103600A1 (zh) 镜头模组
CN206523683U (zh) 镜头模组
US11314151B2 (en) Lens module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19958156

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19958156

Country of ref document: EP

Kind code of ref document: A1