WO2021132271A1 - 光治療装置 - Google Patents

光治療装置 Download PDF

Info

Publication number
WO2021132271A1
WO2021132271A1 PCT/JP2020/048017 JP2020048017W WO2021132271A1 WO 2021132271 A1 WO2021132271 A1 WO 2021132271A1 JP 2020048017 W JP2020048017 W JP 2020048017W WO 2021132271 A1 WO2021132271 A1 WO 2021132271A1
Authority
WO
WIPO (PCT)
Prior art keywords
intake port
main body
laser
air
irradiation field
Prior art date
Application number
PCT/JP2020/048017
Other languages
English (en)
French (fr)
Inventor
卓也 南條
直也 石橋
Original Assignee
帝人ファーマ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 帝人ファーマ株式会社 filed Critical 帝人ファーマ株式会社
Priority to CN202080089295.8A priority Critical patent/CN114786766A/zh
Priority to CA3148961A priority patent/CA3148961C/en
Priority to US17/635,571 priority patent/US20220266053A1/en
Priority to JP2021567495A priority patent/JPWO2021132271A1/ja
Priority to KR1020217039689A priority patent/KR20220004749A/ko
Priority to EP20906460.9A priority patent/EP4082464A4/en
Publication of WO2021132271A1 publication Critical patent/WO2021132271A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/203Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser applying laser energy to the outside of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/04Protection of tissue around surgical sites against effects of non-mechanical surgery, e.g. laser surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00005Cooling or heating of the probe or tissue immediately surrounding the probe
    • A61B2018/00011Cooling or heating of the probe or tissue immediately surrounding the probe with fluids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00005Cooling or heating of the probe or tissue immediately surrounding the probe
    • A61B2018/00011Cooling or heating of the probe or tissue immediately surrounding the probe with fluids
    • A61B2018/00029Cooling or heating of the probe or tissue immediately surrounding the probe with fluids open
    • A61B2018/00035Cooling or heating of the probe or tissue immediately surrounding the probe with fluids open with return means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00452Skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/04Protection of tissue around surgical sites against effects of non-mechanical surgery, e.g. laser surgery
    • A61B2090/049Protection of tissue around surgical sites against effects of non-mechanical surgery, e.g. laser surgery against light, e.g. laser
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N2005/002Cooling systems
    • A61N2005/007Cooling systems for cooling the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0664Details
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0613Apparatus adapted for a specific treatment
    • A61N5/0616Skin treatment other than tanning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/067Radiation therapy using light using laser light

Definitions

  • the present invention relates to a phototherapy device.
  • a phototherapy device is used to irradiate a living tissue with a laser for the purpose of treatment or assistance of treatment such as blood circulation promotion and metabolism promotion.
  • a laser for the purpose of treatment or assistance of treatment such as blood circulation promotion and metabolism promotion.
  • conformity with class 1C is an indispensable requirement.
  • the part and condition of the skin at a predetermined location which is the target tissue, and the degree of skin color, mole, body hair, etc. are different, even if the laser irradiation has the same output and the same time, it is absorbed by the skin.
  • the amount of heat energy is different.
  • a black race with black skin on the whole body or a person with black and dark hair has a relatively large amount of heat energy absorbed and may suffer burns.
  • a phototherapy device including a cooling device that cools a target portion of a laser by using a cooling fluid, for example, cooling air, is known in order to prevent burns due to laser irradiation (Patent Document 1).
  • the cooling device described in Patent Document 1 injects cooling air through a pipe.
  • Patent Document 1 merely states that the cooling air is injected into an area slightly larger than the area of the focused light, and does not describe the optimum injection direction, that is, the angle of the pipe or the like. .. Further, Patent Document 1 does not describe how the pipe is provided with respect to the handpiece, and whether it is inside or outside the handpiece, and the cooling air injected by the pipe is determined. The impact will also be different. As a result, it is doubtful whether the cooling device described in Patent Document 1 efficiently cools the target site.
  • An object of the present invention is to provide a phototherapy device provided with a cooling device capable of efficiently cooling a target site.
  • a laser light source that irradiates a target portion with a laser, a main body portion, an intake port provided on a side surface of the main body portion, and the main body opposite to the intake port.
  • An exhaust port provided on the side surface of the unit and an air supply device for supplying air injected into the main body from the intake port are provided, and the direction of air injection is the irradiation field of the laser at the target portion.
  • a phototherapy device characterized in that the inspiratory port is configured to face the center of the air.
  • the exhaust port may be provided on the side surface near the front end portion of the main body portion, and the intake port may be provided at a position separated from the exhaust port and the front end portion of the main body portion.
  • the air supply device has a fan arranged adjacent to the side surface of the main body portion, and a duct connecting the fan and the intake port, and the direction in which the fan is separated from the side surface of the main body portion. It may be configured to generate an air flow of. It further includes an optical sensor that has a light emitting part that emits light to the target part and a light receiving part that receives light reflected from the target part, and detects that the laser light source has approached the target part to a predetermined distance. However, the light emitting portion and the light receiving portion of the optical sensor may be arranged inside the main body portion so as to be exposed to the air injected from the intake port. The optical sensor may be arranged away from the flow path directly from the intake port to the exhaust port.
  • the common effect of providing a phototherapy device provided with a cooling device capable of efficiently cooling the target site is obtained.
  • FIG. 1 is a schematic view of a phototherapy device according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing the operation of the probe.
  • FIG. 3 is a view of the laser irradiation field at the target site as viewed from directly above.
  • FIG. 4 is a diagram showing the flow velocity distribution of the air flow according to the embodiment of the present invention.
  • FIG. 5 is a diagram showing the flow velocity distribution of the air flow according to the comparative example.
  • FIG. 6 is a diagram showing the flow velocity distribution of the air flow according to another comparative example.
  • FIG. 7 is a diagram showing the flow velocity distribution of the air flow according to yet another comparative example.
  • FIG. 1 is a schematic view of the phototherapy device 1 according to the embodiment of the present invention
  • FIG. 2 is a diagram showing the operation of the probe 3.
  • the phototherapy device 1 has a control device 2, a probe 3, and a cable 4 that electrically connects the control device 2 and the probe 3.
  • the control device 2 has one or more processors, a storage unit, a peripheral circuit thereof, and the like.
  • the control device 2 comprehensively controls the overall operation of the probe 3 based on a computer program stored in the storage unit in advance.
  • the control device 2 receives signals from various sensors such as an optical sensor described later, and transmits control signals related to laser irradiation and stop, fan start and stop, and the like.
  • the control device 2 may have an input / output unit, for example, a display unit such as a display, or an input interface such as an operation button or a touch panel.
  • the probe 3 has a cylindrical main body 5.
  • the main body 5 includes a cylindrical movable portion 6 arranged so as to be movable along the axial direction of the main body 5 in the main body 5, four optical sensors 7, and a laser arranged inside the main body 5. It has a light source 8, an optical window 9 provided on the front surface of the main body 5, and a limit switch 10 arranged in the main body 5.
  • the movable portion 6 is urged forward with respect to the main body portion 5 by an elastic member (not shown).
  • the movable portion 6 may be integrally formed with the main body portion 5.
  • the laser emitted from the laser light source 8 is emitted to the target portion T through the optical window 9 and the opening 11 provided on the front end surface of the movable portion 6.
  • the surface portion of the target portion T irradiated with the laser is referred to as the laser irradiation field A (FIG. 2 (B)).
  • An intake port 12 is provided on the side surface of the main body portion 5, specifically, the side surface of the movable portion 6.
  • An exhaust port 13 is provided on the side surface of the main body portion 5 opposite to the intake port 12, specifically, on the side surface of the movable portion 6.
  • the exhaust port 13 is provided near the front end portion of the main body portion 5, specifically, on the side surface near the front end portion of the movable portion 6, and the intake port 12 is provided at a position separated from the front end portion of the exhaust port 13. .
  • the probe 3 has an air supply device 14 that supplies air injected from the intake port 12 into the main body 5.
  • the air supply device 14 has a fan 15 arranged adjacent to the side surface of the main body 5, and a duct 16 connecting the fan 15 and the intake port 12. Therefore, the air taken in by the rotation of the fan 15 is guided to the intake port 12 through the duct 16.
  • the duct 16 is configured to be expandable and contractible according to the movement of the movable portion 6 in the main body 5 along the axial direction, that is, the movement of the intake port 12.
  • the fan 15 is configured to generate an air flow in a direction away from the side surface of the main body 5. That is, the blade shape of the fan 15 and the rotation direction of the fan 15 are determined so that such an air flow is generated.
  • the air flow in the direction away from the side surface of the main body 5 can take heat from the surface of the main body 5 and cool the main body 5, and thus the entire probe 3.
  • the optical sensor 7 and the limit switch 10 are arranged inside the probe 3.
  • the four optical sensors 7 are arranged so as not to come into contact with the surface of the target site during use. Further, the optical sensor 7 and the limit switch 10 are arranged so as not to interfere with the movement of the movable portion 6 and the irradiation of the laser by the laser light source 8.
  • the four optical sensors 7 are arranged at equal intervals along the circumferential direction inside the main body portion 5, specifically, inside the front end portion of the movable portion 6. All of the optical sensors 7 are arranged apart from the air flow path directly from the intake port 12 to the exhaust port 13. That is, none of the optical sensors 7 is arranged on a virtual flow path that directly connects the intake port 12 and the exhaust port 13. As a result, the optical sensor 7 does not significantly impede the air flow F.
  • the phototherapy device 1 may have one, two or three optical sensors 7, or may have five or more optical sensors 7. When the phototherapy device 1 has a plurality of optical sensors 7, it is preferable that the plurality of optical sensors 7 are arranged at equal intervals along the circumferential direction.
  • Each of the one or a plurality of optical sensors 7 is a detection unit, and as a whole, constitutes a distance detection unit that detects the distance to the target site T and outputs a distance signal according to the distance.
  • the output distance signal is detected by the control device 2.
  • the optical sensor 7 has a light emitting portion (not shown) that emits light with respect to the target portion T, and a light receiving portion (not shown) that receives light reflected from the target portion T.
  • the optical sensor 7 evaluates the distance from the target portion T by the displacement of the reflected light intensity received by the light receiving unit. From the distance signal, for example, the distance from the laser light source 8 to the target site T can be calculated.
  • the distance detection unit may be another sensor or the like as long as it can detect the distance to the target site T and output a distance signal according to the distance.
  • the optical sensor 7 is arranged away from the air flow path directly from the intake port 12 to the exhaust port 13, but the light emitting portion and the light receiving portion of the optical sensor 7 are arranged from the intake port 12. It is arranged so that it is exposed to the injected air. As a result, the air flow can remove dust and dirt adhering to the surfaces of the light emitting portion and the light receiving portion of the optical sensor 7, and the optical sensor 7 can always function normally.
  • the phototherapy device 1 when the phototherapy device 1 equipped with the high-power laser light source 8 of class 3 or higher is used for home medical care, the phototherapy device 1 must conform to class 1C. However, it is not limited to this.
  • a laser light source 8 suitable for home medical care can be applied according to other criteria or the like.
  • FIG. 2A shows a state before the probe 3 is pressed against the target tissue of the living body, that is, the target site T
  • FIG. 2B shows a state where the probe 3 is pressed against the target site T.
  • the main body portion 5, that is, the front end portion of the movable portion 6 abuts on the target tissue of the living body, that is, the target site T.
  • the limit switch 10 constitutes a proximity detection unit that detects that the laser light source 8 has approached the target portion T to a predetermined distance and outputs a proximity signal.
  • the output proximity signal is detected by the control device 2.
  • the control device 2 On the other hand, when the pressure of the probe 3 on the target portion T is released, the movable portion 6 retracts due to the urging force of the elastic member, and the limit switch 10 is turned off (FIG. 2A).
  • the control device 2 permits the target portion T to be irradiated with the laser by the laser light source 8, and the laser irradiation is performed. Is done. At this time, the laser irradiation may not be performed unless a distance signal indicating that the distance is close to a predetermined distance is detected from all four optical sensors 7. Further, the fan may be started and stopped according to the irradiation and stopping of the laser. Thereby, the target site T can be cooled only when the laser irradiation is performed, and the target site T is prevented from being unnecessarily cooled.
  • FIG. 3 is a view of the laser irradiation field A at the target site T as viewed from directly above.
  • the irradiation field A is formed in a rhombus shape by the configuration of the laser light source 8 or the laser passing through a lens (not shown).
  • the right side is the intake port 12 side
  • the left side is the exhaust port 13 side. Therefore, an air flow F flowing from right to left is formed.
  • the rhombus showing the irradiation field A is divided into upper and lower parts as two triangles shown by a solid line and a broken line. That is, the rhombus is divided into upper and lower parts along the air flow F passing through the center C of the irradiation field A.
  • the direction of the air flow F when the air supplied by the air supply device 14 is injected into the main body 5 from the intake port 12 is defined as the injection direction F0.
  • the injection direction F0 is the direction when the air flow having the highest flow velocity at the intake port 12 is injected into the main body 5.
  • FIG. 4 is a diagram showing the flow velocity distribution of the air flow F according to the embodiment of the present invention.
  • FIG. 4A is a vertical cross-sectional view of the front end portion of the probe 3
  • FIG. 4B is a diagram showing a half region of the laser irradiation field A.
  • the right side is the intake port 12 side
  • the left side is the exhaust port 13 side.
  • the intake port 12 has the air injection direction F0 facing toward the front side of the center C of the laser irradiation field A at the target site T, that is, toward the intake port 12. It is configured.
  • the exhaust port 13 is provided on the side surface near the front end portion of the main body portion 5.
  • the intake port 12 is provided on a side surface of the main body 5 that is separated from the front end of the main body 5 with respect to the exhaust port 13.
  • the periphery of the center C of the irradiation field A which is the surface of the target site T, is shown darker.
  • FIG. 4B it is shown broadly and darkly in the direction extending from the vicinity of the exhaust port 13 to the center C of the irradiation field A and orthogonal to the injection direction F0.
  • the irradiation field A of the laser that is, the target site T can be efficiently cooled.
  • the air flow F may be defined by the shape of the intake port 12 or the duct 16 instead of the air injection direction F0. That is, in the vertical cross section passing through the center of the intake port 12 and the center C of the laser irradiation field as shown in FIG. 4A, the first extension line 16a in the upper part of the duct 16 near the intake port 12 and the intake port 12 A second extension line 16b at the lower part of the duct 16 in the vicinity is defined. At this time, as shown in FIG. 4A, both the first extension line 16a and the second extension line 16b are configured to pass in front of the center C of the laser irradiation field A at the target site. Thereby, instead of the air injection direction F0, the first extension line 16a and the second extension line 16b define a configuration in which the laser irradiation field A, that is, the target portion T can be efficiently cooled. be able to.
  • FIG. 5 is a diagram showing the flow velocity distribution of the air flow F according to the comparative example.
  • FIG. 5A is a vertical cross-sectional view of the front end portion of the probe 3
  • FIG. 5B is a diagram showing a half region of the laser irradiation field A.
  • the right side is the intake port 12 side
  • the left side is the exhaust port 13 side.
  • the intake port 12 is configured such that the air injection direction F0 directly faces the center C of the laser irradiation field A at the target portion T.
  • the exhaust port 13 is provided on the side surface near the front end portion of the main body portion 5.
  • the intake port 12 is provided on a side surface of the main body 5 that is separated from the front end of the main body 5 with respect to the exhaust port 13.
  • the first extension line 16a is configured to pass through the center C of the laser irradiation field A at the target site
  • the second extension line 16b is configured to pass in front of the center C of the laser irradiation field A. Therefore, both the first extension line 16a and the second extension line 16b are not configured to pass in front of the center C of the laser irradiation field A at the target site.
  • FIG. 6 is a diagram showing the flow velocity distribution of the air flow F according to another comparative example.
  • FIG. 6A is a vertical cross-sectional view of the front end portion of the probe 3
  • FIG. 6B is a diagram showing a half region of the laser irradiation field A.
  • the right side is the intake port 12 side
  • the left side is the exhaust port 13 side.
  • the air injection direction F0 faces the back side with respect to the center C of the laser irradiation field A at the target portion T, that is, toward the exhaust port 13. It is configured.
  • the exhaust port 13 is provided on the side surface near the front end portion of the main body portion 5.
  • the intake port 12 is provided on a side surface of the main body 5 that is separated from the front end of the main body 5 with respect to the exhaust port 13.
  • both the first extension line 16a and the second extension line 16b are configured to pass through the center C of the laser irradiation field A at the target site. Therefore, both the first extension line 16a and the second extension line 16b are not configured to pass in front of the center C of the laser irradiation field A at the target site.
  • FIG. 7 is a diagram showing the flow velocity distribution of the air flow F according to yet another comparative example.
  • FIG. 7A is a vertical cross-sectional view of the front end portion of the probe 3
  • FIG. 7B is a diagram showing a half region of the laser irradiation field A.
  • the right side is the intake port 12 side
  • the left side is the exhaust port 13 side.
  • the intake port 12 is configured such that the air injection direction F0 faces the back side with respect to the center C of the laser irradiation field A at the target portion T.
  • the exhaust port 13 is provided on a side surface of the main body 5 away from the front end.
  • the intake port 12 is provided on a side surface of the main body 5 separated from the front end portion to the same extent as the exhaust port 13.
  • both the first extension line 16a and the second extension line 16b are configured to pass through the center C of the laser irradiation field A at the target site. Therefore, both the first extension line 16a and the second extension line 16b are not configured to pass in front of the center C of the laser irradiation field A at the target site.
  • the target portion T is configured by configuring the intake port 12 so that the air injection direction F0 faces the center C of the laser irradiation field A at the target portion T. Can be cooled efficiently.
  • the intake port 12 is configured so that the air injection direction F0 faces the center C of the irradiation field A of the laser, the target portion T can be cooled more efficiently.
  • the angle of the injection direction F0 with respect to the vertical direction that is, the angle of the intake port 12 or the duct 16 in the vicinity of the intake port 12 is determined according to the size and shape of the intake port 12 and the flow velocity of the air injected from the intake port 12. To.
  • the air supply device 14 supplies air by a fan 15 arranged adjacent to the side surface of the main body 5 of the probe 3, but supplies air by a compressor or the like provided separately from the probe 3. You may.
  • Phototherapy device 2 Control device 3 Probe 4 Cable 5 Main body 6 Moving part 7 Optical sensor 8 Laser light source 9 Optical window 10 Limit switch 11 Opening 12 Intake port 13 Exhaust port 14 Air supply device 15 Fan 16 Duct T Target site A Irradiation field

Abstract

光治療装置が、標的部位に対してレーザを照射するレーザ光源8と、本体部5と、本体部5の側面に設けられた吸気口12と、吸気口12に対して反対側の本体部5の側面に設けられた排気口13と、吸気口12から本体部5内に噴射される空気を供給する空気供給装置14と、を具備し、空気の噴射方向F0が、標的部位Tにおけるレーザの照射野Aの中心に対して手前を向くように吸気口12が構成されている。

Description

光治療装置
 本発明は、光治療装置に関する。
 血行促進及び代謝促進等、治療や治療の補助の目的で生体組織にレーザを照射するために、光治療装置が用いられる。中でもレーザの安全基準JIS C 6802におけるレーザクラスにおいて、クラス3以上の高出力な光治療装置を在宅医療として使用する場合、クラス1Cの適合が必須要件となる。
 ところで、標的組織である所定箇所の皮膚の部位や状態、及び、皮膚の色、ほくろ及び体毛等の程度が異なれば、同一出力且つ同一時間のレーザの照射であっても、皮膚に吸収される熱エネルギー量が異なる。特に、全身の皮膚が黒い黒色人種や体毛が黒く且つ濃い人は、相対的に熱エネルギーの吸収量が大きくなり、火傷を負う可能性がある。
 レーザの照射による火傷を防止するため、冷却流体、例えば冷却空気を利用してレーザの標的部位を冷却する冷却装置を備えた光治療装置が公知である(特許文献1)。特許文献1に記載の冷却装置は、パイプを介して冷却空気を噴射している。
特開2002-272861号公報
 特許文献1には、収束光の面積よりも若干広い面積に冷却空気を噴射する、と単に記載されているだけであって、最適な噴射の向き、すなわちパイプの角度等について一切記載されていない。また特許文献1には、パイプがハンドピースに対してどのように設けられているのか記載されておらず、それがハンドピースの内部にあるのか外部にあるのか、それによって噴射された冷却空気が受ける影響も異なってくる。その結果、特許文献1に記載の冷却装置では、標的部位の効率的な冷却を行われているのかどうか疑わしい。
 本発明は、標的部位を効率的に冷却することができる冷却装置を備えた光治療装置を提供することを目的とする。
 本発明の一態様によれば、標的部位に対してレーザを照射するレーザ光源と、本体部と、前記本体部の側面に設けられた吸気口と、前記吸気口に対して反対側の前記本体部の前記側面に設けられた排気口と、前記吸気口から前記本体部内に噴射される空気を供給する空気供給装置と、を具備し、空気の噴射方向が、標的部位における前記レーザの照射野の中心に対して手前を向くように前記吸気口が構成されていることを特徴とする光治療装置が提供される。
 前記排気口が前記本体部の前端部近傍の前記側面に設けられ、前記吸気口が前記排気口よりも前記本体部の前端部から離間した位置に設けられていてもよい。前記空気供給装置が、前記本体部の前記側面に隣接して配置されたファンと、前記ファン及び前記吸気口を接続するダクトとを有し、前記ファンが前記本体部の前記側面から離間する方向の空気流を生成するように構成されていてもよい。標的部位に対して発光する発光部と標的部位から反射した光を受光する受光部とを有し、前記レーザ光源が標的部位に対して所定の距離まで接近したことを検出する光学センサをさらに具備し、前記光学センサの発光部及び受光部が、前記吸気口から噴射される空気に曝されるように、前記本体部の内部に配置されていてもよい。前記光学センサが、前記吸気口から前記排気口に直接向かう流路から離間して配置されていてもよい。
 本発明の態様によれば、標的部位を効率的に冷却することができる冷却装置を備えた光治療装置を提供するという共通の効果を奏する。
図1は、本発明の実施形態による光治療装置の概略図である。 図2は、プローブの動作を示す図である。 図3は、標的部位におけるレーザの照射野を真上から見た図である。 図4は、本発明の実施例による空気流の流速分布を示す図である。 図5は、比較例による空気流の流速分布を示す図である。 図6は、別の比較例による空気流の流速分布を示す図である。 図7は、さらに別の比較例による空気流の流速分布を示す図である。
 以下、図面を参照しながら本発明の実施の形態を詳細に説明する。全図面に渡り、対応する構成要素には共通の参照符号を付す。
 図1は、本発明の実施形態による光治療装置1の概略図であり、図2は、プローブ3の動作を示す図である。
 光治療装置1は、制御装置2と、プローブ3と、制御装置2及びプローブ3とを電気的に接続するケーブル4とを有している。制御装置2は、1つ又は複数のプロセッサ、記憶部及びその周辺回路等を有している。制御装置2は、予め記憶部に記憶されているコンピュータプログラムに基づいて、プローブ3の全体的な動作を統括的に制御する。その処理の際に、制御装置2は、後述する光学センサ等の各種センサから信号を受信し、レーザの照射及び停止並びにファンの起動及び停止等に関する制御信号を送信する。制御装置2は、入出力部、例えば、ディスプレイ等の表示部や、操作ボタンやタッチパネル等の入力インターフェースを有していてもよい。
 プローブ3は、円筒状の本体部5を有している。本体部5は、本体部5内において本体部5の軸線方向に沿って移動可能に配置された円筒状の可動部6と、4つの光学センサ7と、本体部5の内部に配置されたレーザ光源8と、本体部5の前面に設けられた光学窓9と、本体部5内に配置されたリミットスイッチ10と、を有している。可動部6は、図示しない弾性部材によって本体部5に対して前方に付勢されている。可動部6を本体部5と一体的に構成してもよい。レーザ光源8から照射されたレーザは、光学窓9を通って、可動部6の前端面に設けられた開口11を介して標的部位Tに照射される。レーザが照射された標的部位Tの表面の部分を、レーザの照射野Aという(図2(B))。
 本体部5の側面、具体的には可動部6の側面には、吸気口12が設けられている。吸気口12に対して反対側の本体部5の側面、具体的には可動部6の側面には、排気口13が設けられている。排気口13は、本体部5の前端部近傍、具体的には可動部6の前端部近傍の側面に設けられ、吸気口12が排気口13よりも前端部から離間した位置に設けられている。
 プローブ3は、吸気口12から本体部5内に噴射される空気を供給する空気供給装置14を有している。空気供給装置14は、本体部5の側面に隣接して配置されたファン15と、ファン15及び吸気口12を接続するダクト16とを有している。したがって、ファン15の回転によって取り込まれた空気は、ダクト16を介して吸気口12に導かれる。なお、ダクト16は、本体部5内における可動部6の軸線方向に沿った移動、すなわち吸気口12の移動に応じて伸縮自在に構成されている。
 ファン15は、本体部5の側面から離間する方向の空気流を生成するように構成されている。すなわち、こうした空気流が生成されるように、ファン15の羽形状及びファン15の回転方向が決定される。本体部5の側面から離間する方向の空気流によって、本体部5の表面から熱を奪い、本体部5、ひいてはプローブ3全体を冷却することが可能となる。
 光学センサ7及びリミットスイッチ10は、プローブ3の内部に配置されている。4つの光学センサ7は、使用時に、標的部位の表面に接触しないように配置されている。また、光学センサ7及びリミットスイッチ10は、可動部6の移動及びレーザ光源8によるレーザの照射を妨げないように配置されている。
 4つの光学センサ7は、本体部5の内部、具体的には可動部6の前端部内において、周方向に沿って等間隔に配置されている。光学センサ7はいずれも、吸気口12から排気口13に直接向かう空気の流路から離間して配置されている。すなわち、光学センサ7はいずれも、吸気口12と排気口13とを直接連結するような仮想的な流路上に配置されていない。それによって、光学センサ7は、空気流Fを大きく阻害することはない。光治療装置1は、1つ、2つ又は3つの光学センサ7を有するようにしてもよく、5つ以上の光学センサ7を有するようにしてもよい。光治療装置1が複数の光学センサ7を有する場合、複数の光学センサ7は、周方向に沿って等間隔に配置されていることが好ましい。
 1つ又は複数の光学センサ7の各々は、検出部であり、全体として、標的部位Tまでの距離を検出して距離に応じた距離信号を出力する距離検出部を構成する。出力された距離信号は、制御装置2によって検出される。光学センサ7は、標的部位Tに対して発光する、図示しない発光部と、標的部位Tから反射した光を受光する、図示しない受光部とを有する。光学センサ7は、標的部位Tとの距離を、受光部によって受光された反射光強度の変位で評価する。距離信号によって、例えばレーザ光源8から標的部位Tまでの距離を算出することができる。距離検出部は、標的部位Tまでの距離を検出して距離に応じた距離信号を出力することができる限りにおいて、他のセンサ等であってもよい。
 なお、上述したように、光学センサ7が吸気口12から排気口13に直接向かう空気の流路から離間して配置されているが、光学センサ7の発光部及び受光部は、吸気口12から噴射される空気に曝されるように配置されている。その結果、空気流によって、光学センサ7の発光部及び受光部の表面に付着した塵や埃を除去することができ、光学センサ7を常に正常に機能させることが可能となる。
 レーザの安全基準JIS C 6802におけるレーザクラスにおいて、クラス3以上の高出力なレーザ光源8を搭載した光治療装置1を在宅医療として使用する場合、光治療装置1はクラス1Cに適合する必要があるが、これに限定されない。その他の基準等で在宅医療に適合したレーザ光源8を適用することができる。
 図2(A)は、プローブ3を、生体の標的組織、すなわち標的部位Tに押圧する前の状態を示し、図2(B)は、プローブ3を標的部位Tに押圧している状態を示している。したがって、本体部5、すなわち可動部6の前端部は、生体の標的組織、すなわち標的部位Tに当接する。図2(A)に示された状態から、プローブ3を標的部位Tに押圧すると、可動部6が後退し、リミットスイッチ10がONとなる(図2(B))。すなわち、リミットスイッチ10は、レーザ光源8が標的部位Tに対して所定の距離まで接近したことを検出して近接信号を出力する近接検出部を構成する。出力された近接信号は、制御装置2によって検出される。一方、プローブ3の標的部位Tに対する押圧を解除すると、可動部6は弾性部材の付勢力によって後退し、リミットスイッチ10がOFFとなる(図2(A))。
 光治療装置1では、リミットスイッチ10がONになることによって出力された近接信号が検出されると、制御装置2によって標的部位Tに対してレーザ光源8によるレーザの照射が許可され、レーザの照射が行われる。このとき、4つの光学センサ7すべてから、所定の距離に近接したことを示す距離信号が検出されないと、レーザの照射が行われないようにしてもよい。また、レーザの照射及び停止に応じて、ファンの起動及び停止が行われるようにしてもよい。それによって、レーザの照射がなされたときにのみ標的部位Tを冷却することができ、不必要に標的部位Tを冷却することが防止される。
 以下、図3乃至図7を参照しながら、本発明の実施形態に基づきモデルを作成して流体解析を行った結果について説明する。
 図3は、標的部位Tにおけるレーザの照射野Aを真上から見た図である。照射野Aは、レーザ光源8の構成、又は、レーザが図示しないレンズを介すことによって、菱形に形成される。図3において、右側が吸気口12側であり、左側が排気口13側である。したがって、右から左に流れる空気流Fが形成される。図3において、照射野Aを示す菱形が、実線及び破線によって示された2つの三角形として、上下に分割されている。すなわち、菱形は、照射野Aの中心Cを通る空気流Fに沿って上下に分割されている。
 上下の三角形における流速分布は線対称となることから、図4乃至図7では、照射野Aの分割された一方の三角形に着目して、空気流Fの流速分布について説明する。また、各図において、グレースケールの濃淡の違いによって、流速の速い領域ほど濃淡が濃く示され、流速の遅い領域ほど濃淡が白く示されている。したがって、黒い領域が最も流速が速いことを示し、白い領域が最も流速が遅いことを示す。そして、可能な限り照射野Aの全面を冷却することが好ましいことから、三角形に示された部分において、より広い面積について濃淡がより濃いほど好ましい。
 なお、図4乃至図7において、空気供給装置14によって供給された空気が、吸気口12から本体部5内に噴射されるときの空気流Fの方向を、噴射方向F0とする。詳細には、噴射方向F0は、吸気口12において最も流速の速い空気流が本体部5内に噴射されるときの方向とする。
 図4は、本発明の実施例による空気流Fの流速分布を示す図である。図4(a)は、プローブ3の前端部の縦断面図であり、図4(b)は、レーザの照射野Aの半分の領域を示す図である。図4(b)において、右側が吸気口12側であり、左側が排気口13側である。
 図4(a)に示されるように、吸気口12は、空気の噴射方向F0が、標的部位Tにおけるレーザの照射野Aの中心Cに対して手前側、すなわち吸気口12寄りを向くように構成されている。排気口13は、本体部5の前端部近傍の側面に設けられている。吸気口12は、排気口13よりも本体部5の前端部から離間した側面に設けられている。
 図4(a)を参照すると、標的部位Tの表面である照射野Aの中心Cの周辺がより濃く示されている。図4(b)を参照すると、排気口13近傍から照射野Aの中心Cに亘り且つ噴射方向F0に対して直交する方向に幅広く濃く示されている。特に、図4(a)に示されるように、噴射方向F0に沿った方向のみならず、中心Cを超えるように噴射方向F0から上方に向かう方向も濃く示されていることから、本体部5の前端部内部の全体を空気流Fが満遍なく行き渡っている。したがって、図4に示された実施例によれば、レーザの照射野A、すなわち標的部位Tを効率的に冷却することができる。
 なお、空気の噴射方向F0に代えて、吸気口12又はダクト16の形状で空気流Fを規定してもよい。すなわち、図4(a)に示されるような吸気口12の中心及びレーザの照射野の中心Cを通る縦断面において、吸気口12近傍のダクト16上部における第1延長線16aと、吸気口12近傍のダクト16下部における第2延長線16bとを規定する。このとき、図4(a)に示されるように、第1延長線16a及び第2延長線16bのいずれもが、標的部位におけるレーザの照射野Aの中心Cの手前を通るように構成する。それによって、空気の噴射方向F0に代えて、第1延長線16a及び第2延長線16bで以て、レーザの照射野A、すなわち標的部位Tを効率的に冷却することができる構成を規定することができる。
 図5は、比較例による空気流Fの流速分布を示す図である。図5(a)は、プローブ3の前端部の縦断面図であり、図5(b)は、レーザの照射野Aの半分の領域を示す図である。図5(b)において、右側が吸気口12側であり、左側が排気口13側である。
 図5(a)に示されるように、吸気口12は、空気の噴射方向F0が、標的部位Tにおけるレーザの照射野Aの中心Cを直接向くように構成されている。排気口13は、本体部5の前端部近傍の側面に設けられている。吸気口12は、排気口13よりも本体部5の前端部から離間した側面に設けられている。また、第1延長線16aは、標的部位において、レーザの照射野Aの中心Cを通り、第2延長線16bは、レーザの照射野Aの中心Cの手前を通るように構成されている。したがって、第1延長線16a及び第2延長線16bの両方が、標的部位におけるレーザの照射野Aの中心Cの手前を通るようには構成されてない。
 図5(a)及び図5(b)を参照すると、図4に示された実施例と比較して濃く示されている領域が少なく且つその濃度も薄い。特に、排気口13近傍が比較的濃く示されていることから、噴射方向F0が照射野Aの中心Cを向いていると、空気流Fが直接排気口13に向かってしまい、照射野Aを十分に冷却させることができない。
 図6は、別の比較例による空気流Fの流速分布を示す図である。図6(a)は、プローブ3の前端部の縦断面図であり、図6(b)は、レーザの照射野Aの半分の領域を示す図である。図6(b)において、右側が吸気口12側であり、左側が排気口13側である。
 図6(a)に示されるように、吸気口12は、空気の噴射方向F0が、標的部位Tにおけるレーザの照射野Aの中心Cに対して奥側、すなわち排気口13寄りを向くように構成されている。排気口13は、本体部5の前端部近傍の側面に設けられている。吸気口12は、排気口13よりも本体部5の前端部から離間した側面に設けられている。また、第1延長線16a及び第2延長線16bの両方が、標的部位において、レーザの照射野Aの中心Cを通るように構成されている。したがって、第1延長線16a及び第2延長線16bの両方が、標的部位におけるレーザの照射野Aの中心Cの手前を通るようには構成されてない。
 図6(a)及び図6(b)を参照すると、図4に示された実施例と比較して濃く示されている領域が少なく且つその濃度も薄い。特に、排気口13近傍が比較的濃く示されていることから、噴射方向F0が照射野Aの中心Cの奥側を向いていると、空気流Fが直接排気口13に向かってしまい、照射野Aを十分に冷却させることができない。
 図7は、さらに別の比較例による空気流Fの流速分布を示す図である。図7(a)は、プローブ3の前端部の縦断面図であり、図7(b)は、レーザの照射野Aの半分の領域を示す図である。図7(b)において、右側が吸気口12側であり、左側が排気口13側である。
 図7(a)に示されるように、吸気口12は、空気の噴射方向F0が、標的部位Tにおけるレーザの照射野Aの中心Cに対して奥側を向くように構成されている。排気口13は、本体部5の前端部から離間した側面に設けられている。吸気口12は、排気口13と同程度に本体部5の前端部から離間した側面に設けられている。また、第1延長線16a及び第2延長線16bの両方が、標的部位において、レーザの照射野Aの中心Cを通るように構成されている。したがって、第1延長線16a及び第2延長線16bの両方が、標的部位におけるレーザの照射野Aの中心Cの手前を通るようには構成されてない。
 図7(a)及び図7(b)を参照すると、図4に示された実施例と比較して濃く示されている領域がほとんどない。噴射方向F0が照射野Aの中心Cの奥側を向いており且つ排気口13が本体部5の前端部から離間した側面に設けられていると、空気流Fが直接排気口13に向かってしまい、照射野Aを十分に冷却させることができない。
 図4を参照しながら上述したように、空気の噴射方向F0が、標的部位Tにおけるレーザの照射野Aの中心Cに対して手前を向くように吸気口12を構成することによって、標的部位Tを効率的に冷却することができる。言い換えると、空気の噴射方向F0がレーザの照射野Aの中心Cに対して手前を向くように吸気口12を構成する際に、標的部位Tをより効率的に冷却することができるように、吸気口12の大きさ及び形状や吸気口12から噴射される空気の流速等に応じて、鉛直方向に対する噴射方向F0の角度、すなわち吸気口12又は吸気口12近傍のダクト16の角度が決定される。
 上述した実施形態では、空気供給装置14は、プローブ3の本体部5の側面に隣接して配置されたファン15によって空気を供給したが、プローブ3とは別に設けられたコンプレッサ等によって空気を供給してもよい。
 1  光治療装置
 2  制御装置
 3  プローブ
 4  ケーブル
 5  本体部
 6  可動部
 7  光学センサ
 8  レーザ光源
 9  光学窓
 10 リミットスイッチ
 11 開口
 12 吸気口
 13 排気口
 14 空気供給装置
 15 ファン
 16 ダクト
 T  標的部位
 A  照射野

Claims (6)

  1.  標的部位に対してレーザを照射するレーザ光源と、
     本体部と、
     前記本体部の側面に設けられた吸気口と、
     前記吸気口に対して反対側の前記本体部の前記側面に設けられた排気口と、
     前記吸気口から前記本体部内に噴射される空気を供給する空気供給装置と、を具備し、
     空気の噴射方向が、標的部位における前記レーザの照射野の中心に対して手前を向くように前記吸気口が構成されていることを特徴とする光治療装置。
  2.  前記排気口が前記本体部の前端部近傍の前記側面に設けられ、前記吸気口が前記排気口よりも前記本体部の前端部から離間した位置に設けられている請求項1に記載の光治療装置。
  3.  前記空気供給装置が前記吸気口に接続されたダクトを有し、前記吸気口の中心及び前記レーザの照射野の中心を通る縦断面において、前記吸気口近傍の前記ダクト上部における第1延長線と、前記吸気口近傍の前記ダクト下部における第2延長線とを規定したとき、前記第1延長線及び前記第2延長線が、標的部位における前記レーザの照射野の前記中心の手前を通る請求項1又は2に記載の光治療装置。
  4.  前記空気供給装置が、前記本体部の前記側面に隣接して配置されたファンを有し、前記ダクトが、前記ファン及び前記吸気口を接続し、前記ファンが前記本体部の前記側面から離間する方向の空気流を生成するように構成されている請求項3に記載の光治療装置。
  5.  標的部位に対して発光する発光部と標的部位から反射した光を受光する受光部とを有し、前記レーザ光源が標的部位に対して所定の距離まで接近したことを検出する光学センサをさらに具備し、前記光学センサの発光部及び受光部が、前記吸気口から噴射される空気に曝されるように、前記本体部の内部に配置されている請求項1乃至4のいずれか一項に記載の光治療装置。
  6.  前記光学センサが、前記吸気口から前記排気口に直接向かう流路から離間して配置されている請求項5に記載の光治療装置。
PCT/JP2020/048017 2019-12-23 2020-12-22 光治療装置 WO2021132271A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202080089295.8A CN114786766A (zh) 2019-12-23 2020-12-22 光治疗装置
CA3148961A CA3148961C (en) 2019-12-23 2020-12-22 Phototherapy device
US17/635,571 US20220266053A1 (en) 2019-12-23 2020-12-22 Phototherapy device
JP2021567495A JPWO2021132271A1 (ja) 2019-12-23 2020-12-22
KR1020217039689A KR20220004749A (ko) 2019-12-23 2020-12-22 광 치료 장치
EP20906460.9A EP4082464A4 (en) 2019-12-23 2020-12-22 LIGHT THERAPY DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-231711 2019-12-23
JP2019231711 2019-12-23

Publications (1)

Publication Number Publication Date
WO2021132271A1 true WO2021132271A1 (ja) 2021-07-01

Family

ID=76575940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/048017 WO2021132271A1 (ja) 2019-12-23 2020-12-22 光治療装置

Country Status (7)

Country Link
US (1) US20220266053A1 (ja)
EP (1) EP4082464A4 (ja)
JP (1) JPWO2021132271A1 (ja)
KR (1) KR20220004749A (ja)
CN (1) CN114786766A (ja)
CA (1) CA3148961C (ja)
WO (1) WO2021132271A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023243577A1 (ja) * 2022-06-13 2023-12-21 帝人ファーマ株式会社 光治療装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002272861A (ja) 2001-03-16 2002-09-24 Terabyt:Kk 光エネルギー水虫治療機
US20020183724A1 (en) * 1998-12-08 2002-12-05 Joseph Neev Energy application with cooling
JP2011515201A (ja) * 2008-03-27 2011-05-19 ザ ジェネラル ホスピタル コーポレイション 表面冷却用の装置及び方法
US20190274608A1 (en) * 2018-03-09 2019-09-12 Lameditech Co., Ltd. Laser lancing device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5344418A (en) * 1991-12-12 1994-09-06 Shahriar Ghaffari Optical system for treatment of vascular lesions
US6638272B2 (en) * 2001-06-04 2003-10-28 Cynosure, Inc Cooling delivery guide attachment for a laser scanner apparatus
US6918905B2 (en) * 2002-03-21 2005-07-19 Ceramoptec Industries, Inc. Monolithic irradiation handpiece
US20100121418A1 (en) * 2008-11-13 2010-05-13 Dae Sic Lee Skin cooling system
KR101818144B1 (ko) * 2017-07-12 2018-01-12 스페클립스 주식회사 레이저 장치 및 이 레이저 장치에서의 레이저 출력 제어 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020183724A1 (en) * 1998-12-08 2002-12-05 Joseph Neev Energy application with cooling
JP2002272861A (ja) 2001-03-16 2002-09-24 Terabyt:Kk 光エネルギー水虫治療機
JP2011515201A (ja) * 2008-03-27 2011-05-19 ザ ジェネラル ホスピタル コーポレイション 表面冷却用の装置及び方法
US20190274608A1 (en) * 2018-03-09 2019-09-12 Lameditech Co., Ltd. Laser lancing device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4082464A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023243577A1 (ja) * 2022-06-13 2023-12-21 帝人ファーマ株式会社 光治療装置

Also Published As

Publication number Publication date
EP4082464A1 (en) 2022-11-02
KR20220004749A (ko) 2022-01-11
CA3148961C (en) 2024-04-23
US20220266053A1 (en) 2022-08-25
CN114786766A (zh) 2022-07-22
JPWO2021132271A1 (ja) 2021-07-01
EP4082464A4 (en) 2024-01-03
CA3148961A1 (en) 2021-07-01

Similar Documents

Publication Publication Date Title
US10791977B2 (en) Laser lancing device
KR102137728B1 (ko) 고강도 집속 초음파 발생 장치
KR102138736B1 (ko) 하나 이상의 레이저 다이오드 바를 구비한 피부 치료 장치
US10653483B2 (en) Reconfigurable handheld laser treatment systems and methods
US7713265B2 (en) Apparatus and method for medically treating a tattoo
JP2009028267A (ja) 光照射美容器具
JP2007520285A5 (ja)
WO2021132271A1 (ja) 光治療装置
KR101824460B1 (ko) 레이저 피부 치료장치
US20210267436A1 (en) Endoscope hood and endoscope system
US11497928B2 (en) Laser therapy device and method of use
US9078681B2 (en) Reconfigurable handheld laser treatment systems and methods
JP4804534B2 (ja) 電磁放射線供給機器
US10518103B2 (en) Skin treatment device for locally treating skin
JP2016533252A (ja) 皮膚組織の光ベースの処理のための皮膚処理装置
KR102266349B1 (ko) 동물 실험용 융합 이미징 시스템 및 방법
WO2023243577A1 (ja) 光治療装置
WO2021040008A1 (ja) 光治療装置及び光治療装置の作動方法
WO2019130465A1 (ja) 外科処置装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20906460

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021567495

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217039689

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3148961

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020906460

Country of ref document: EP

Effective date: 20220725