WO2021132231A1 - 血清検体の品質評価方法 - Google Patents

血清検体の品質評価方法 Download PDF

Info

Publication number
WO2021132231A1
WO2021132231A1 PCT/JP2020/047912 JP2020047912W WO2021132231A1 WO 2021132231 A1 WO2021132231 A1 WO 2021132231A1 JP 2020047912 W JP2020047912 W JP 2020047912W WO 2021132231 A1 WO2021132231 A1 WO 2021132231A1
Authority
WO
WIPO (PCT)
Prior art keywords
abundance
serum sample
mirna
mirnas
sample
Prior art date
Application number
PCT/JP2020/047912
Other languages
English (en)
French (fr)
Inventor
敦子 宮野
愛子 高山
敦嗣 小川
裕子 須藤
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2020571894A priority Critical patent/JPWO2021132231A1/ja
Publication of WO2021132231A1 publication Critical patent/WO2021132231A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/49Blood
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B25/00ICT specially adapted for hybridisation; ICT specially adapted for gene or protein expression

Definitions

  • the present invention relates to a method for evaluating the quality of a serum sample (typically, contamination with platelets) based on the abundance of a specific miRNA contained in the serum sample.
  • MiRNA is transcribed from genomic DNA as RNA (pre-mRNA) with a hairpin-like structure.
  • This precursor is cleaved by a dsRNA cleavage enzyme (Drosha, Dicer) having a specific enzyme RNAse III cleavage activity, then changes to a double-stranded form, and then becomes single-stranded.
  • RISC protein complex
  • miRNA since miRNA has a different mode at each stage after transcription, usually, when miRNA is to be detected, various forms such as a hairpin structure, a double-stranded structure, and a single-stranded structure are used. Need to consider. miRNA consists of 15 to 25 bases of RNA, and its existence has been confirmed in various organisms.
  • miRNAs are abundant not only in cells but also in body fluids such as serum, plasma, urine, and cerebrospinal fluid, which are cell-free samples, and their abundance is found in various diseases such as cancer. It has been suggested that it may be a biomarker. As of July 2019, there are more than 2,600 types of miRNAs in humans, and when a measurement system such as a highly sensitive DNA microarray is used, the expression of more than 1000 types of miRNAs is detected simultaneously in serum and plasma. It is possible. Therefore, biomarker search research targeting body fluids such as serum / plasma, urine, and cerebrospinal fluid is being conducted using the DNA microarray method, and it is expected that biomarker tests that can detect diseases at an early stage will be developed. ..
  • RNAs derived from these blood cells are mixed in the sample.
  • body fluids such as serum, plasma and urine.
  • Platelets have a lighter specific density than other blood cells and can be contaminated with the supernatant sample when preparing serum samples by centrifugation. When platelets are mixed in a sample, it becomes difficult to accurately measure the expression level of miRNA to be tested.
  • a blood cell analyzer is generally used as a method for measuring the contamination of platelets in blood.
  • the number of platelets in a blood sample is determined from the size and cell density. Can be measured.
  • a method of quantitative evaluation by ELISA using platelet-specific CD41 and CD63 surface antigen-specific antibodies has been proposed.
  • the measurement limit is generally about 5 million in 500 ⁇ l. Therefore, in the case of a sample containing a smaller amount of platelets than this limit, the measurement sensitivity is insufficient and platelets are contained. If it is not, it may make an erroneous judgment. Therefore, this method cannot be an effective method for measuring the quality of a sample.
  • the evaluation method by ELISA using a platelet-specific surface antigen as an index the residual surface antigen may be erroneously measured even in a fragment containing platelet-derived RNA. Therefore, this method cannot be an effective method for measuring the quality of a sample.
  • Non-Patent Document 1 shows that platelets remaining in plasma fluctuate the measured values of target miRNAs, and the number of platelets mixed in plasma samples using quantitative PCR and miR-21-5p. It has been reported that the expression levels of 11 types of miRNAs such as plasma and miR-425-5p have a positive correlation.
  • Non-Patent Document 2 reports 50 types of platelet-derived miRNAs such as miR-126-3p, as platelets remaining in plasma affect the measurement of miRNA.
  • the serum sample does not contain platelets. For example, it is required to detect contamination of a very small amount of about 100,000 platelets in 300 ⁇ l of a serum sample.
  • a very small amount of blood cells For example, when performing gene expression analysis using a DNA microarray, especially when the deterioration of sample quality due to contamination with a very small amount of platelets affects the measurement and diagnosis results of the target gene, a very small amount of blood cells.
  • Non-Patent Document 1 As described above, it is considered possible to detect platelet contamination by measuring the expression levels of 11 types of miRNA shown in Non-Patent Document 1 and 50 types of miRNA shown in Non-Patent Document 2 in a sample.
  • the expression levels of these miRNAs in serum were measured with a DNA microarray, the expression levels were all low, and no change was observed even in a sample contaminated with a very small amount of platelets. From this, it was found that even if these miRNAs were used, the quality of serum samples could not be measured at the desired level.
  • Non-Patent Document 1 indicates that miR-425-5p can measure platelet contamination using 100 ⁇ l of plasma contaminated with 191,000 platelets per ⁇ l (that is, plasma contaminated with about 19 million platelets).
  • a sample containing a very small amount of platelets of about 100,000 in 300 ⁇ l of serum it may be erroneously determined that platelets are not contained, and this fluctuation of miR-425-5p may be observed. Measuring the quality of a sample using it cannot be an effective technique.
  • An object of the present invention is to find a method for sensitively detecting a deterioration in the quality of a serum sample by detecting a very small amount of platelets contained in the serum sample, particularly the serum sample after the sample is collected.
  • the present inventors have added platelets after collecting a sample to change the abundance of miRNA (hereinafter referred to as "reference miRNA”), which is contaminated with a very small amount of platelets.
  • the present invention has been completed by finding that it can be used as a detectable miRNA even if it exists, and that the quality of a serum sample can be evaluated by measuring the abundance of the miRNA. That is, in the present invention, one or more of the miRNAs shown in SEQ ID NOs: 1 to 8 is used as a reference miRNA, and the abundance of the reference miRNA contained in the serum sample and the standard in which platelets are not contaminated. It is a method for evaluating the quality of a serum sample by comparing it with the abundance of the reference miRNA contained in the serum sample, and includes the following aspects.
  • a method for evaluating the quality of serum samples A measurement step of measuring the abundance of one or more reference miRNAs selected from the miRNAs consisting of the nucleotide sequences shown in SEQ ID NOs: 1 to 8 in a serum sample and the abundance in a standard serum sample; The abundance or index value of the one or more reference miRNAs contained in the serum sample obtained in the measurement step is used as the abundance or index value of one or more reference miRNAs contained in the standard serum sample. Comparison step to obtain the difference or ratio of the abundance of one or more reference miRNAs or the index value thereof between the serum sample and the standard serum sample by comparison; and one or more kinds obtained in the comparison step.
  • the method comprising a determination step of determining the quality of a serum sample based on the abundance of the reference miRNA or the difference or ratio of the index value thereof.
  • the determination step the abundance of one or more reference miRNAs contained in the serum sample or its index value and the abundance of one or more reference miRNAs contained in the standard serum sample or its index thereof.
  • the method according to (1) wherein the quality of the serum sample is judged to be poor when the difference or ratio from the value exceeds a predetermined threshold as a reference.
  • the measurement step uses a probe for capturing one or more reference miRNAs selected from miRNAs consisting of the nucleotide sequences represented by SEQ ID NOs: 1 to 8 immobilized on the support, and a labeling substance.
  • the labeled serum sample-derived nucleic acid sample and the standard serum sample-derived nucleic acid sample are brought into contact with each other for hybridization, and the abundance of the one or more reference miRNAs in the serum sample and the standard serum sample is measured.
  • the determination step is further included to correct the measured value of the abundance of the one or more reference miRNAs obtained in the measurement step, and the determination step is carried out using the corrected abundance value.
  • (1) to (4) include measuring the abundance of one or a plurality of reference miRNAs in the serum sample and simultaneously measuring the abundance of the target miRNA in the serum sample.
  • the measurement step uses one or a plurality of reference miRNAs selected from a probe for capturing the target miRNA immobilized on the support and a miRNA consisting of the nucleotide sequences shown in SEQ ID NOs: 1 to 8.
  • the probe for capture and the nucleic acid sample derived from the serum sample labeled with the labeling substance are brought into contact with each other for hybridization, and the abundance of the target miRNA and the one or more reference miRNAs in the serum sample is measured, respectively.
  • the method according to (5) which includes the above.
  • a correction step for correcting the measured value of the abundance of the target miRNA in the serum sample obtained in the measuring step and the measured value of the abundance of the one or more reference miRNAs is further included (5).
  • a comparison step to obtain the difference or ratio of one or more reference miRNA abundance measurements or index values thereof between standard serum samples; and the presence of one or more reference miRNAs obtained in the comparison step.
  • a computer-readable recording medium on which the program described in (8) is recorded.
  • a chip for evaluating miRNA quality which comprises a support on which a probe for capturing one or a plurality of reference miRNAs selected from miRNAs consisting of the nucleotide sequences shown in SEQ ID NOs: 1 to 8 is immobilized.
  • a device for evaluating the quality of serum samples is
  • the apparatus including a determination means for determining the quality of a serum sample based on the difference or ratio of abundance measurement values of one or a plurality of reference miRNAs or index values thereof obtained by the comparison means. ..
  • INDUSTRIAL APPLICABILITY it is possible to evaluate the degree of quality deterioration of a serum sample with high accuracy and easily, and in particular, blood collection conditions such as a blood collection tube to be used after sample collection, which are difficult with conventional methods, are different. It is possible to evaluate whether or not deterioration of sample quality (mainly contamination of blood cells) has occurred due to the above. Further, according to the present invention, it is possible to accurately and easily evaluate whether or not the serum sample has a quality suitable for gene expression analysis using, for example, miRNA, and thus the abundance of biomarkers in the serum sample. It is possible to obtain more accurate test results in the test of diseases using the above as an index.
  • the present invention is a method for evaluating the quality of a serum sample, in which one or more miRNAs selected from miRNAs consisting of the base sequences shown in SEQ ID NOs: 1 to 8 are used as reference miRNAs, and serum samples of the reference miRNAs are used. And a measurement step for measuring the abundance in the standard serum sample; the abundance of one or more reference miRNAs in the serum sample obtained in the measurement step or its index value, and one or more kinds in the standard serum sample.
  • a method including a comparison step of obtaining a difference or ratio of the abundance of the reference miRNA or an index value thereof; and a determination step of determining the quality of the body fluid sample based on the difference or ratio obtained in the comparison step. ..
  • the method of the present invention is to evaluate the quality of miRNA contained in a serum sample in advance in gene expression analysis, for example, analysis using an array chip such as a microarray, or analysis by a polymerase chain reaction (PCR) method or a sequence method. , Can be used to determine the suitability of performing these analyzes.
  • each miRNA is labeled with miRNAs in serum and uses a support on which a probe for capturing one or more target miRNAs and a probe for capturing reference miRNAs are fixed.
  • a primer for amplifying one or more target miRNAs and a primer for amplifying a reference miRNA etc.
  • these results are used to analyze and test gene expression, for example, to measure gene expression in clinical specimens in order to understand the pathological condition.
  • RNA is a type of non-coding RNA (ncRNA) that means a short RNA with a chain length of about 15 to 25 bases that is produced in vivo, and is considered to have a function of regulating the expression of mRNA. miRNAs are transcribed from genomic DNA as RNAs (pre-mRNA) with a hairpin-like structure. This precursor is cleaved by a dsRNA cleavage enzyme (Drosha, Dicer) having a specific enzyme RNAse III cleavage activity, then changes to a double-stranded form, and then becomes single-stranded.
  • dsRNA cleavage enzyme Rosha, Dicer
  • RISC protein complex
  • the sample to which the present invention can be applied is a serum sample separated and prepared from a living body.
  • the type of organism from which the serum sample is derived is not particularly limited and includes various species, but is typically a mammal, particularly a human.
  • biomolecules are contained in the serum sample.
  • proteins, peptides, nucleic acids such as DNA and RNA, metabolites and the like can be mentioned. These biomolecules are suitable as biomarkers for various diseases.
  • Deterioration (deterioration) or poor quality of the serum sample means that the biomolecule was originally present in the whole blood sample at the time of blood collection and should be reflected in the prepared serum sample. It changes from the amount, and mainly means that the amount of miRNA mixed in platelets increases in the RNA sample extracted from the serum sample.
  • the quality of the serum sample is poor mainly means that the RNA sample extracted from the serum sample contains miRNA in platelets, or that A state in which the amount of contamination is so large that it cannot be said that the amount is very small, and "the quality of the serum sample is good” mainly means that the RNA sample extracted from the serum sample does not contain miRNA in platelets.
  • the term "miRNA contained in a serum sample” means miRNA contained in an RNA sample extracted (prepared) from a serum sample, and when blood cells are contaminated in the serum sample, the term “miRNA” is used.
  • the miRNA contained in the blood cell is also included in the "miRNA contained in the serum sample”.
  • the term "quality of miRNA contained in a serum sample” can be used interchangeably with “quality of a serum sample”.
  • the causes of deterioration of serum sample quality include blood collection conditions such as the type of blood collection tube, centrifugal speed, and blood collection needle type, such as the presence or absence of a separating agent, as well as temperature and heat, external force such as vibration and ultrasonic waves on the sample, and electric field.
  • blood collection conditions such as the type of blood collection tube, centrifugal speed, and blood collection needle type, such as the presence or absence of a separating agent, as well as temperature and heat, external force such as vibration and ultrasonic waves on the sample, and electric field.
  • Various direct and indirect physical forces including magnetic fields and magnetic fields can be considered, but the causes of quality deterioration are not limited to these.
  • RNA can be extracted from these samples and the abundance of miRNA can be measured using this RNA.
  • known methods for example, the method of Favaloro et al. (Favaloro et.al., Methods Enzymol.65: 718 (1980)), etc.
  • various commercially available kits for RNA extraction for example, Qiagen's miRNeasy, Toray Industries, Inc.'s "3D-Gene” RNA extraction reagent from liquid sample, etc.
  • the abundance of one or more reference miRNAs selected from miRNAs consisting of the nucleotide sequences shown in SEQ ID NOs: 1 to 8 in serum samples and standard serum samples is measured. Further, the abundance of the target miRNA contained in the serum sample may be measured at the same time as the measurement of the abundance of the reference miRNA contained in the serum sample.
  • the target miRNA is defined as the miRNA to be measured according to each purpose among the miRNAs contained in the serum sample.
  • the standard serum sample is a serum sample whose quality has not deteriorated as defined above, and is mainly a serum sample in which blood cells such as platelets are not contaminated or suppressed in a very small amount.
  • a serum sample collected under the same blood collection conditions as the test serum sample whose quality should be evaluated and cryopreserved immediately after the serum is prepared, or a commercially available serum sample can be used as a standard serum sample. It may be a serum sample derived from the same individual as the test serum sample, or a serum sample derived from a separate body of the same species.
  • the miRNA consisting of the nucleotide sequences represented by SEQ ID NOs: 1 to 8 that can be used as the reference miRNA in the present invention has been found by the present inventors as a miRNA whose abundance changes depending on the change in the quality of the serum sample. It is a miRNA.
  • the quality of the serum sample changes (deteriorates)
  • the abundance of individual gene RNA contained in the sample changes.
  • RNA in a serum sample (deteriorated serum sample) that has deteriorated due to blood cell contamination, etc. and the freshest serum sample (standard serum sample) that has not deteriorated. Correlation with RNA is reduced, for example, the correlation coefficient is 0.95 or less.
  • the degree of deterioration of the quality of the deteriorated serum sample is determined by using, for example, a value that is twice the standard deviation (2SD) of the abundance ratio (FC i) of each miRNA that can be calculated by the following formulas 1 and 2. Can be evaluated.
  • this 2SD value is referred to as an overall fluctuation index value.
  • the overall fluctuation index value is 0.5 or more, it means that the degree of fluctuation in the abundance of each miRNA measured in the deteriorated serum sample is large, and therefore the degree of quality deterioration of the deteriorated serum sample is large.
  • the reference miRNA used in the present invention is a miRNA whose abundance fluctuates in correlation with such an overall variation in RNA.
  • miRNA i_control is the abundance of the i-th miRNA in the standard serum sample
  • miRNA i_sample is the abundance of the i-th miRNA in the degraded serum sample.
  • the FC average value is the average value of the abundance ratio of n miRNAs (abundance in standard serum sample / abundance in deteriorated serum sample). Is.
  • a miRNA whose abundance changes depending on the type of blood collection tube (presence or absence of a separating agent, etc.), centrifugation conditions, etc. can be selected.
  • MiRNA whose abundance changes depending on the blood collection tube and centrifugation conditions in the serum state is separated into platelets and serum from the collected whole blood, and the serum has certain conditions (for example, 100,000 platelets, 1 million platelets).
  • platelets (10 million platelets) a deteriorated serum sample in which serum was intentionally deteriorated was prepared, and the deteriorated serum sample and the non-deteriorated serum sample to which no platelet was added were included in the sample. It can be selected by measuring the abundance of miRNA and comparing the degree of change.
  • a reference miRNA can be selected by comparing the abundance of miRNAs obtained from degraded serum samples with the abundance of miRNAs obtained from non-degraded serum samples and selecting miRNAs that differ.
  • a fluctuation of 2 times in abundance is considered as a sufficient difference, so it is preferable to select miRNAs having a difference of 2 times or more between a deteriorated serum sample and a non-deteriorated serum sample.
  • the abundance of one or more reference miRNAs selected from miRNAs consisting of the nucleotide sequences represented by SEQ ID NOs: 1 to 8 in serum samples and standard serum samples is measured.
  • the reference miRNA and the probe for capturing the target miRNA are also generally referred to as “capture probe” or simply “probe”.
  • the abundance of miRNA contained in serum samples and standard serum samples is measured, for example, by a hybridization assay using an array chip such as a microarray in which a probe that specifically binds to the target miRNA is immobilized on a support. be able to.
  • an array chip containing a support on which a "reference miRNA capture probe" for capturing one or more reference miRNAs is immobilized can be used.
  • an array chip containing a support on which a "target miRNA capture probe" for capturing the target miRNA is further immobilized may be used.
  • the "capture probe” or “probe for capture” means a substance capable of directly or indirectly, preferably directly and selectively binding to the miRNA to be captured, as a typical example. , Nucleic acids, proteins, sugars and other antigenic compounds. In the present invention, a nucleic acid probe can be preferably used.
  • nucleic acid in addition to DNA and RNA, nucleic acid derivatives such as PNA (peptide nucleic acid) and LNA (Locked Nucleic Acid) can be used.
  • a labeled derivative such as a fluorescent group
  • a modified nucleotide for example, an alkyl such as halogen or methyl, an alkoxy such as methoxy, a nucleotide containing a group such as thio or carboxymethyl, and a re-base.
  • a chemically modified derivative such as a derivative containing (such as a nucleotide having undergone composition, saturation of a double bond, deamination, substitution of an oxygen molecule with a sulfur molecule, etc.).
  • the strand length of the nucleic acid probe is preferably longer than the length of the miRNA to be detected from the viewpoint of ensuring the stability and specificity of hybridization. Usually, if the chain length is about 17 to 25 bases, the probe can sufficiently exert selective binding property to the target miRNA.
  • Such an oligonucleic acid probe having a short chain length can be easily prepared by a well-known chemical synthesis method or the like.
  • stringency during hybridization is a function of temperature, salt concentration, probe chain length, GC content of probe nucleotide sequence, and concentration of chaotropic agent in hybridization buffer.
  • stringent conditions for example, the conditions described in Sambrook, J. et al. (1998) Molecular Cloning: A Laboratory Manual (2nd ed.), Cold Spring Harbor Laboratory Press, New York, etc. can be used. ..
  • the stringent temperature condition is about 30 ° C. or higher.
  • Other conditions include hybridization time, concentration of detergent (for example, SDS), presence / absence of carrier DNA, and the like, and various stringencies can be set by combining these conditions.
  • concentration of detergent for example, SDS
  • presence / absence of carrier DNA and the like
  • the nucleic acid probe is a complementary strand of the miRNA to be captured, but it is clear to those skilled in the art that there is a sequence other than the capture target to be bound by cross-hybridization. That is, in the present invention, when the abundance of the reference miRNA is measured using the complementary strand of the reference miRNA shown in SEQ ID NOs: 1 to 8 as a probe, the "reference miRNA presence" including the change in the abundance of cross-hybrid RNA other than the reference miRNA is included. It will be detected as a "change in quantity". In the present invention, the quality of the serum sample can be judged by the judgment including the change in the abundance of such cross-hybridizing RNA.
  • MiRNA sequence information can be obtained from databases such as GenBank (http://www.ncbi.nlm.nih.gov/genbank/) and the miRBase website (http://www.mirbase.org/). it can. Reference miRNA capture probes and target miRNA capture probes can be designed based on the sequence information available from these sites.
  • the number of miRNA capture probes immobilized on the support is not particularly limited.
  • the abundance of miRNA may be measured using a number of miRNA capture probes immobilized on a support that covers all known miRNAs whose sequences have been identified, or for testing purposes, etc. Depending on the situation, a desired number of miRNA capture probes immobilized on a support may be used.
  • the same support as that used in known microarrays, macroarrays and the like can be used, and for example, slide glass, membranes, beads and the like can be used. it can. It is also possible to use a support having a shape having a plurality of convex portions on the surface, which is described in Japanese Patent No. 4244788 and the like.
  • the material of the support is not particularly limited, and examples thereof include inorganic materials such as glass, ceramics, and silicon; polymers such as polyethylene terephthalate, cellulose acetate, polycarbonate, polystyrene, polymethylmethacrylate, and silicone rubber.
  • a method of immobilizing the capture probe on the support As a method of immobilizing the capture probe on the support, a method of synthesizing an oligo DNA on the surface of the support and a method of dropping and immobilizing the oligo DNA synthesized in advance on the surface of the support are known.
  • the former method examples include the method of Ronald et al. (US Pat. No. 5,705,610), the method of Michel et al. (US Pat. No. 6,142,266), and the method of Francesco et al. (US Pat. No. 7037659). .. Since an organic solvent is used in the DNA synthesis reaction in these methods, it is desirable that the support is made of a material resistant to the organic solvent. Further, in the method of Francesco et al., Since DNA synthesis is controlled by irradiating light from the back surface of the support, the support is preferably made of a translucent material.
  • Examples of the latter method include the method of Hirota et al. (Patent No. 3922454) and the method using a spotter.
  • Examples of the spot method include a pin method by mechanically contacting the tip of a pin with a solid phase, an inkjet method using the principle of an inkjet printer, and a capillary method using a capillary tube.
  • post-treatment such as cross-linking by UV irradiation and surface blocking is performed as necessary.
  • a functional group such as an amino group or an SH group is introduced at the end of the oligo DNA.
  • the surface modification of the support is usually performed by a silane coupling agent treatment having an amino group or the like.
  • a nucleic acid sample labeled with a labeling substance is prepared from RNA (sample RNA) extracted from the sample, and this labeling is performed. This is done by contacting the nucleic acid sample with the probe.
  • the "nucleic acid sample derived from a sample” includes RNA extracted from the sample, and cDNA and cRNA prepared from the RNA by a reverse transcription reaction.
  • the nucleic acid sample derived from the labeled sample may be a sample RNA directly or indirectly labeled with a labeling substance, or a cDNA or cRNA prepared from the sample RNA may be directly or indirectly labeled with a labeling substance. It may be labeled.
  • a method of binding the labeling substance to the nucleic acid sample derived from the sample a method of binding the labeling substance to the 3'end of the nucleic acid sample, a method of binding the labeling substance to the 5'end, and a nucleotide to which the labeling substance is bound are incorporated into the nucleic acid.
  • An enzymatic reaction can be used in the method of binding the labeling substance to the 3'end and the method of binding the labeling substance to the 5'end.
  • T4 RNA Ligase, Terminal Deoxitidil Transferase, Poly A polymerase and the like can be used.
  • kits for directly or indirectly binding a labeling substance to the end of RNA are commercially available.
  • "3D-Gene” miRNA labeling kit manufactured by Toray Industries, Inc.
  • miRCURY miRNA HyPower labeling kit Exicon
  • NCode miRNA Labeling system Life Technologies
  • FlashTag Biotin, RNA, Labeling Kit, etc.
  • cDNA or cDNA incorporating the labeling substance is prepared by synthesizing cDNA or cDNA from the sample RNA in the presence of the labeled deoxyribonucleotide or labeled ribonucleotide, and the cDNA or cRNA incorporating the labeling substance is prepared and arrayed. It is also possible to hybridize with the above probe.
  • examples of the labeling substance that can be used include various labeling substances that are also used in known microarray analysis. Specific examples thereof include, but are not limited to, fluorescent dyes, phosphorescent dyes, enzymes, and radioisotopes. Fluorescent dyes that are easy to measure and easy to detect are preferred. Specifically, cyanine (cyanine 2), aminomethylcoumarin, fluorosane, indocarbocyanine (cyanine 3), cyanine 3.5, tetramethylrhodamine, rhodamine red, Texas red, indocarbocyanine (cyanine 5), cyanine. Known fluorescent dyes such as 5.5, cyanine 7, and oyster can be mentioned, but are not limited thereto.
  • semiconductor fine particles having luminescence may be used as the labeling substance.
  • semiconductor fine particles include cadmium selenium (CdSe), cadmium telluride (CdTe), indium gallium phosphide (InGaP), and silver indium zinc sulfide (AgInZnS).
  • the nucleic acid sample derived from the sample labeled as described above is brought into contact with the miRNA capture probe on the support, and the nucleic acid sample and the probe are hybridized.
  • This hybridization step can be performed in exactly the same manner as before.
  • the reaction temperature and time are appropriately selected according to the chain length of the nucleic acid to be hybridized, but in the case of nucleic acid hybridization, it is usually about 30 ° C. to 70 ° C. for 1 minute to a dozen hours.
  • Hybridization is performed, and after washing, the signal intensity from the labeling substance in each probe-immobilized region on the support is detected.
  • the signal intensity is detected by using an appropriate signal reader according to the type of labeling substance.
  • a fluorescent dye is used as a labeling substance, a fluorescence microscope, a fluorescence scanner, or the like may be used.
  • the measured value of the detected fluorescence intensity is compared with the ambient noise. Specifically, the measured values obtained from the probe-immobilized region are compared with the measured values obtained from other positions, and the case where the former value is exceeded is regarded as detected (valid judgment positive). ..
  • the background noise may be subtracted.
  • Ambient noise can also be subtracted from the detected measurements as background noise.
  • the method described in “Kou Fujibuchi, Katsuhisa Horimoto, Microarray Data Statistical Analysis Protocol, Yodosha, 2008" may be used.
  • the measured value of the abundance of the reference miRNA obtained in the measurement step may be used as it is in the determination step described later, but for example, when performing gene expression analysis of the target miRNA contained in the serum sample,
  • the measured value may be corrected by various methods illustrated below to obtain a corrected abundance value, which may be used in the determination step.
  • a conventional method can be used, and examples thereof include a global normalization method and a quantile normalization method in which correction is performed using the measured values of all detected miRNAs. It may also be corrected using housekeeping RNAs such as U1 snoRNA, U2 snoRNA, U3 snoRNA, U4 snoRNA, U5 snoRNA, U6 snoRNA, 5S rRNA, 5.8S rRNA, or specific correction endogenous miRNAs, or RNA. May be corrected using an external standard nucleic acid added at the time of extraction or labeling. By “endogenous” is meant that it is not artificially added to the specimen, but is naturally present in the specimen.
  • the term "endogenous miRNA” refers to a miRNA that is naturally present in a sample and is derived from the organism that provided the sample.
  • a correction method using an external standard nucleic acid such as spike control that does not depend on the sample.
  • the abundance of one or more reference miRNAs selected from the miRNAs consisting of the base sequences shown by SEQ ID NOs: 1 to 8 obtained in the measurement step in the serum sample and the standard serum sample.
  • the difference or ratio between the abundance or index value of one or more reference miRNAs contained in the serum sample and the abundance or index value of one or more reference miRNAs contained in the standard body fluid sample. Is the process of obtaining.
  • the abundance of the reference miRNA contained in the serum sample is used.
  • the difference or ratio of the abundance of the reference miRNA contained in the standard serum sample may be obtained and used for the determination.
  • the index value of the abundance of the plurality of reference miRNAs contained in the serum sample and the index value of the abundance of the plurality of reference miRNAs contained in the standard serum sample are obtained.
  • the difference or ratio between the two index values can be obtained and used.
  • the difference or ratio between the abundance contained in the serum sample and the abundance contained in the standard serum sample can be determined and used for each reference miRNA.
  • the difference or ratio between the abundance contained in the serum sample and the abundance contained in the standard serum sample for each reference miRNA is added, and in the next determination step, the determination is made for each reference miRNA according to a predetermined criterion. This can be performed to determine the quality of the miRNA contained in the serum sample.
  • the determination step of the present invention includes the abundance of one or a plurality of reference miRNAs selected from the miRNAs consisting of the nucleotide sequences represented by SEQ ID NOs: 1 to 8 contained in the serum samples obtained in the comparison step or their index values.
  • the quality is judged in advance by setting a threshold value as a reference for judging the quality of the abundance of one or more reference miRNAs contained in the serum sample and the standard serum sample or the difference or ratio of the index values thereof. It can be set and the quality (good or bad) can be judged depending on whether or not the threshold value is exceeded. That is, when the difference or ratio of the abundance of the reference miRNA or its index value exceeds a predetermined threshold, it is determined that the quality of the serum sample is poor, and the abundance of the reference miRNA or its index value is determined. When the difference or ratio is less than or equal to the reference threshold, it can be determined that the quality of miRNA contained in the serum sample is good.
  • the determination step of this aspect can be said to be a second comparison step of comparing with the threshold value.
  • the abundance of the reference miRNA obtained in the comparison step or the difference or ratio of the index value thereof may be converted into a logarithm, and the determination may be made using the logarithm.
  • logarithm conversion it is common to convert to a logarithm with a base of 2.
  • the abundance of the reference miRNA contained in the serum sample and the reference miRNA contained in the standard serum sample are included in the comparison step.
  • the difference or ratio of the abundance of the reference miRNA can be obtained, and the quality can be judged by whether or not this value exceeds the reference threshold.
  • the index value of the abundance of the plurality of reference miRNAs contained in the serum sample and the standard serum sample are used as the reference miRNAs.
  • the index value of the abundance of the plurality of reference miRNAs contained can be obtained, and the quality can be judged by whether the difference or ratio of these index values exceeds the reference threshold.
  • the index value the total value, the average value, or the median value of the abundance of a plurality of reference miRNAs can be used.
  • the abundance contained in the serum sample and the abundance contained in the standard serum sample for each reference miRNA are included.
  • the difference or ratio from the abundance may be determined to determine whether or not the reference threshold is exceeded for each reference miRNA. In this case, it is preferable to set further judgment criteria by prioritizing or weighting individual judgments by a plurality of reference miRNAs.
  • one miRNA may be arbitrarily selected from the miRNAs shown in SEQ ID NOs: 1 to 8, but in the following examples, it is shown that the abundance thereof changes particularly sharply by the addition of platelets. It is preferable to select one of the above, and for example, it is preferable to select either hsa-miR-1973 (SEQ ID NO: 1) or hsa-miR-3907 (SEQ ID NO: 2).
  • the miRNAs whose abundance has been shown to change significantly due to the addition of platelets are said to be miRNAs that can detect the deterioration of serum samples that occur depending on the blood sampling conditions in the field of clinical examination with particular sensitivity. I can say.
  • reference miRNAs when performing a more rigorous or highly accurate evaluation, it is preferable to use a plurality of reference miRNAs. For example, it is more preferable to use 2 to 6 reference miRNAs, and in particular, hsa-miR-1973 and hsa-miR-3907 are preferably included. Further, for example, when the purpose is gene expression analysis and the target miRNA corresponds to any of the miRNAs shown in SEQ ID NOs: 1 to 8, the reference miRNA may be selected from the miRNAs excluding the target miRNA. ..
  • the threshold value used as the criterion for judgment can be arbitrarily set according to the purpose of evaluation and the required accuracy.
  • the abundance of the reference miRNA contained in the standard serum sample can be set as a threshold value (formula 3A below).
  • the abundance of the reference miRNA contained in the body fluid sample and the abundance of the reference miRNA contained in the standard serum sample are compared according to the criteria shown in the following formulas 1 to 9. , It is possible to judge the quality.
  • the abundance e of the reference miRNA contained in the serum sample and the abundance E of the reference miRNA contained in the standard serum sample were measured, and the abundance ratio (e / E) was obtained.
  • the threshold value t1 is exceeded, the quality of miRNA contained in the body fluid sample can be determined to be poor.
  • the threshold value t1 is preferably 1 or more, for example 1. e / E> t1 (Equation 1A).
  • the difference (e) between the abundance e of the reference miRNA contained in the serum sample and the abundance E of the reference miRNA contained in the standard serum sample is obtained, and this value exceeds the threshold value t2.
  • the quality of miRNA contained in the serum sample can be determined to be poor.
  • the threshold value t2 is set to 0 and the difference in abundance (e—E) is greater than 0 (plus), the quality of miRNA contained in the body fluid sample can be determined to be poor.
  • the threshold value t2 is, for example, 0. EE> t2 (Equation 2A).
  • the threshold t3 the abundance E of the reference miRNA contained in the standard serum sample may be adopted.
  • the abundance e of the reference miRNA contained in the serum sample is the threshold t3. That is, when the abundance E of the reference miRNA contained in the standard serum sample is exceeded, the quality of the miRNA contained in the serum sample can be determined to be poor. This corresponds to the case where the threshold value t2 is set to 0 when the formula 2A is adopted.
  • E> E ( t3) (Equation 3A).
  • stable endogenous miRNA which is a stable miRNA that does not depend on blood cell contamination. You may make a judgment.
  • a stable endogenous miRNA is a miRNA in which a certain amount is contained in a serum sample regardless of its quality, and is preferably under certain blood collection conditions (constant blood collection conditions and centrifugation conditions are used).
  • hsa-miR-4463 or the like consisting of the nucleotide sequence shown in SEQ ID NO: 17 can be used as a stable endogenous miRNA.
  • the "correction endogenous miRNA" used in the correction step can be commonly used as the "stable endogenous miRNA".
  • the threshold value t4 in this case is preferably 1.
  • the abundance difference (EC) between the abundance E of miRNA and the abundance C of stable endogenous miRNA is determined, and when the ratio of each of these two abundance differences exceeds the threshold t5, it is included in the serum sample.
  • the quality of miRNA can be determined to be poor.
  • the threshold value t5 in this case is preferably 1. (E / c) / (E / C)> t4 (Equation 4A) (Ec) / (EC)> t5 (Equation 5A).
  • the abundance ratio (E / C) of the abundance E of miRNA and the abundance C of stable endogenous miRNA is obtained, and when the difference between these two abundance ratios exceeds the threshold t6, it is included in the body fluid sample.
  • the quality of miRNA can be determined to be poor.
  • the threshold value t6 is, for example, 0.
  • the abundance difference (EC) between the abundance E of miRNA and the abundance C of stable endogenous miRNA is determined, and when the difference between these two abundance differences exceeds the threshold t7, it is included in the serum sample.
  • the quality of miRNA can be determined to be poor.
  • the threshold value t7 is, for example, 0. (E / c)-(E / C)> t6 (Equation 6A) (EC)-(EC)> t7 (Equation 7A).
  • the threshold value t8 the abundance ratio (E / C) of the abundance E of the reference miRNA contained in the standard serum sample and the abundance C of the stable endogenous miRNA may be adopted.
  • the formula 8A may be adopted.
  • the abundance ratio (e / c) of the abundance e of the reference miRNA contained in the serum sample and the abundance c of the stable endogenous miRNA is the threshold t8, that is, the reference miRNA contained in the standard serum sample.
  • the threshold value t6 is set to 0 when the formula 6A is adopted.
  • the abundance difference (EC) between the abundance E of the reference miRNA contained in the standard serum sample and the abundance C of the stable endogenous miRNA may be adopted as the threshold t9, in which case the formula 9A may be adopted.
  • the abundance difference (ec) between the abundance e of the reference miRNA contained in the serum sample and the abundance c of the stable endogenous miRNA is the threshold t9, that is, the reference miRNA contained in the standard body fluid sample.
  • the threshold value t7 is set to 0 when the formula 7A is adopted.
  • the index value of the abundance of the plurality of reference miRNAs contained in the serum sample and the index value of the abundance of the plurality of reference miRNAs contained in the standard serum sample are obtained, and both of them are obtained. It can be used to obtain the difference or ratio of index values. Specifically, in the criteria shown in the above formulas 1A to 9A, instead of the abundance e of the reference miRNA contained in the serum sample, the index value r of the abundance of the plurality of reference miRNA contained in the serum sample is used.
  • the determination is made using the formulas 1B to 9B. be able to.
  • the index value the total value, the average value or the median value of each abundance can be used.
  • the threshold values t1 to t9 are provided with a certain error ⁇ width, and "t1 ⁇ ⁇ " to "t1 ⁇ ⁇ ", respectively. It may be "t9 ⁇ ⁇ ".
  • the error ⁇ in this case may be set arbitrarily.
  • about 10% of E can be set as ⁇ to give a range to the threshold value t2.
  • the threshold value of each abundance amount the value of the abundance amount converted into a logarithm may be used.
  • an appropriate threshold value may be set according to the conversion.
  • the abundance ratio (e / E) of the reference miRNA may be converted into a logarithmic value, and the threshold value t1 may be set according to the conversion. In this case, as a result, the difference between the logarithmic values of the abundance amounts e and E is obtained.
  • the difference or ratio between the abundance contained in the serum sample and the abundance contained in the standard serum sample for each reference miRNA is determined, and the judgment is made according to the judgment criteria for each reference miRNA, and the results are integrated to make serum. It is possible to judge the quality of the sample.
  • the quality of the serum sample is good when the number of reference miRNAs determined to be good exceeds the number of reference miRNAs determined to be poor or an arbitrary predetermined number. Can be determined.
  • the quality of the serum sample can be determined to be defective.
  • the quality of the serum sample may be determined to be defective when the determination result of one specific type of reference miRNA is defective.
  • the target miRNA in the analysis corresponds to any of the miRNAs shown in SEQ ID NOs: 1 to 8, select the reference miRNA from the miRNAs excluding the target miRNA. Just do it.
  • the present invention also applies to one or more computers in order to evaluate the quality of the serum sample according to the method for evaluating the quality of the serum sample of the present invention.
  • One or more reference miRNAs selected from miRNAs consisting of the nucleotide sequences shown in SEQ ID NOs: 1 to 8 measured using RNA samples prepared from serum samples and standard RNA samples prepared from standard serum samples.
  • a comparison step to obtain the difference or ratio of one or more reference miRNA abundance measurements or index values thereof between standard serum samples; and the presence of one or more reference miRNAs obtained in the comparison step.
  • a program and a computer-readable recording medium on which the program is recorded are provided.
  • the program was incorporated into a miRNA expression analyzer that analyzes the expression level of a desired target miRNA, and in the measurement value acquisition step, an expression measuring unit included in the device or an expression measuring device separate from the device measured the measurement.
  • a measured value of the abundance of the reference miRNA in the serum sample and the standard serum sample may be obtained, and each step may be carried out using the measured value.
  • the measurement value acquisition step in addition to the measured value of the abundance of the reference miRNA, the abundance of one or more target miRNAs to be analyzed for expression measured by the above-mentioned expression measuring unit or expression measuring device in the serum sample. The measured value may also be acquired.
  • the acquisition of the measured value of one or more target miRNAs may be performed at the same time as the acquisition of the measured value of the reference miRNA, or according to the quality determination result by the determination means (that is, when the determination result is good quality). ) May be done.
  • Each measured value to be acquired may be a corrected measured value.
  • the program may include an instruction to cause the computer to execute a process of correcting the acquired measured value. The details of each step are as described above with respect to the method for evaluating the quality of the serum sample of the present invention.
  • the miRNA expression level analyzer may execute the expression analysis of one or more target miRNAs described above and output the analysis result to a monitor or the like.
  • the expression analysis of the target miRNA is performed at the same time as or sequentially with the quality evaluation of the serum sample, and if the judgment result is good quality, it is clearly indicated that the expression analysis result of the target miRNA is reliable, and the quality is judged to be poor.
  • the expression analysis result may be output by clearly indicating that the expression analysis result of the target miRNA is unreliable or low reliable.
  • the present invention also provides an apparatus for evaluating the quality of a serum sample (hereinafter referred to as a quality evaluation apparatus) according to the above-mentioned method for evaluating the quality of a serum sample of the present invention.
  • the quality evaluation device is One or more reference miRNAs selected from miRNAs consisting of the nucleotide sequences shown in SEQ ID NOs: 1 to 8 measured using RNA samples prepared from serum samples and standard RNA samples prepared from standard serum samples.
  • As a storage means for storing abundance measurements in serum samples and standard serum samples Compare the abundance measurement value of one or more reference miRNAs in the serum sample or its index value with the abundance measurement value of one or more reference miRNAs in the standard serum sample or its index value, and compare the serum sample.
  • comparative means to obtain the difference or ratio of abundance measurements of one or more reference miRNAs or their index values between standard serum samples; It includes a determination means for determining the quality of a serum sample based on the difference or ratio of the abundance measurement value of one or more kinds of reference miRNAs or the index value thereof obtained by the comparison means.
  • the measured values of the abundance of one or more reference miRNAs stored in the storage means in the serum sample and the standard serum sample are measured by the expression measuring unit included in the quality evaluation device or an expression measuring device separate from the quality evaluation device. It is a measured value measured.
  • the measurement value of the abundance value of one or more target miRNAs to be analyzed for expression in the serum sample measured by the expression measuring unit or the expression measuring device. You may remember.
  • the details of the measurement of miRNA in the sample are as described in ⁇ Measurement step> of the quality evaluation method of the serum sample of the present invention.
  • Each measured value stored by the storage means may be a corrected measured value.
  • the quality evaluation device may further include a correction means for performing a process of correcting the measured value. The details of the correction are as described in ⁇ Correction step> in the quality evaluation method for the serum sample of the present invention.
  • the comparison means is a means for carrying out the comparison step in the quality evaluation method for serum samples of the present invention. Details are as described in ⁇ Comparison step>.
  • the determination means is a means for carrying out the determination step in the quality evaluation method for serum samples of the present invention.
  • the details are as described in ⁇ Judgment process>.
  • the determination means determines the quality of the serum sample based on the difference or ratio of the abundance measurement value of one or more kinds of reference miRNAs or the index value thereof obtained by the comparison means, and determines the quality of the determined quality. It can be rephrased as a quality quality output means that outputs quality. Quality quality is typically output to the display unit such as a monitor of the device, but the comparison analysis result and statistical analysis result are output to an external storage device such as a database existing outside the device via a network. It can also be configured to.
  • the quality is judged in advance by setting a threshold value as a reference for judging the quality of the abundance of one or more reference miRNAs contained in the serum sample and the standard serum sample or the difference or ratio of the index values thereof. It may be a means for setting and determining the quality (good or bad) depending on whether or not the threshold value is exceeded.
  • the determination means of this aspect can be said to be a second comparison means for comparing with the threshold value.
  • the quality evaluation device may be incorporated as a quality evaluation unit into a miRNA expression analysis device that analyzes the expression level of a desired target miRNA, and may form a part of the miRNA expression analysis device.
  • the measured value stored in the storage means is a measured value measured by an expression measuring unit included in the miRNA expression analyzer or an expression measuring device separate from the device.
  • the measured value stored in the storage unit may be a corrected measured value, or the miRNA expression analyzer may further include a correction means.
  • the miRNA expression level analyzer may execute the expression analysis of one or more target miRNAs described above and output the analysis result.
  • the expression analysis of the target miRNA is performed at the same time as or sequentially with the quality evaluation of the serum sample, and if the judgment result is good quality, it is clearly indicated that the expression analysis result of the target miRNA is reliable, and the quality is judged to be poor.
  • the expression analysis result may be output by clearly indicating that the expression analysis result of the target miRNA is unreliable or low reliable.
  • a “program” is a data processing method described in any language or description method, regardless of the format such as source code or binary code.
  • the "program” is not necessarily limited to a single program, but is distributed as a plurality of modules or libraries, or cooperates with a separate program represented by an OS (Operating System). Including those that achieve the function.
  • OS Operating System
  • a well-known configuration or procedure can be used for a specific configuration for reading a recording medium, a reading procedure, an installation procedure after reading, and the like.
  • the “recording medium” can be any "portable physical medium” (non-transient recording medium) such as a flexible disk, a magneto-optical disk, a ROM, an EPROM, an EEPROM, a CD-ROM, an MO, or a DVD.
  • a “communication medium” that holds the program in a short period of time, such as a communication line or a carrier wave when the program is transmitted via a network, such as LAN, WAN, and the Internet.
  • the present invention also includes a support for immobilizing a probe for capturing one or more reference miRNAs selected from miRNAs consisting of the nucleotide sequences shown in SEQ ID NOs: 1 to 8.
  • the chip may further include one or more probes for capturing the target miRNA so that the quality of the miRNA (of the serum sample) can be evaluated during miRNA expression analysis of the serum sample.
  • the target miRNA, one or more reference miRNAs selected from the miRNAs consisting of the nucleotide sequences represented by SEQ ID NOs: 1 to 8, probes for capturing them, and these capture probes are immobilized.
  • the support is as described above.
  • the chip of the present invention further includes a probe for capturing a correction nucleic acid such as a housekeeping RNA used in the correction step, a specific correction endogenous miRNA, and an external standard nucleic acid to be added, particularly a correction endogenous miRNA. It may be fixed to the support.
  • a correction nucleic acid such as a housekeeping RNA used in the correction step, a specific correction endogenous miRNA, and an external standard nucleic acid to be added, particularly a correction endogenous miRNA. It may be fixed to the support.
  • miRNA-1973 gene or "miR-1973” used as a reference miRNA refers to the hsa-miR-1973 gene (miRBase Accession No. MIMAT0009448) consisting of the nucleotide sequence shown in SEQ ID NO: 1 and other species homologues. Or it includes orthologs.
  • the hsa-miR-1973 gene can be obtained by the method described in Shotte D et al., 2009, Leukemia, Vol. 23, p313-322.
  • hsa-miR-1973 As the precursor of "hsa-miR-1973", “hsa-miR-1973” (miRBaseAccessionNo.MI0009983, SEQ ID NO: 9) having a hairpin-like structure is known.
  • the terms “miR-1973” and “hsa-miR-1973” also include precursors of such hairpin-like structures.
  • miRNA-3907 gene refers to the hsa-miR-3907 gene (miRBase Accession No. MIMAT0018179) consisting of the nucleotide sequence shown in SEQ ID NO: 2 and other species homologues. Or it includes orthologs.
  • the hsa-miR-3907 gene can be obtained by the method described in Creighton CJ et al., 2010, PLoS One, Volume 5, e9637.
  • hsa-miR-3907 As the precursor of "hsa-miR-3907”, “hsa-miR-3907” (miRBaseAccessionNo.MI0016410, SEQ ID NO: 10) having a hairpin-like structure is known.
  • the terms “miR-3907” and “hsa-miR-3907” also include precursors of such hairpin-like structures.
  • miRNA-7851-3p gene or "miR-7851-3p" used as a reference miRNA refers to the hsa-miR-7851-3p gene (miRBase Accession No. MIMAT0030426) consisting of the nucleotide sequence shown in SEQ ID NO: 3. ) And other species such as homologs or orthologs.
  • the hsa-miR-7851-3p gene can be obtained by the method described in Ple H et al., 2012, PLoS One, Volume 7, e50746.
  • hsa-miR-7851-3p As the precursor of "hsa-miR-7851-3p", “hsa-miR-7851” (miRBaseAccessionNo.MI0025521, SEQ ID NO: 11) having a hairpin-like structure is known.
  • the terms “miR-7851” and “hsa-miR-7851” also include precursors of such hairpin-like structures.
  • miRNA-4454 gene or "miR-4454" used as a reference miRNA refers to the hsa-miR-4454 gene (miRBase Accession No. MIMAT0018976) consisting of the nucleotide sequence shown in SEQ ID NO: 4 and other species homologues. Or it includes orthologs.
  • the hsa-miR-4454 gene can be obtained by the method described in Jima DD et al., 2010, Blood, Vol. 116, e118-e127.
  • hsa-miR-4454 (miRBaseAccessionNo.MI0016800, SEQ ID NO: 12) having a hairpin-like structure is known.
  • the terms “miR-4454" and “hsa-miR-4454" also include precursors of such hairpin-like structures.
  • miRNA-6822-5p gene or "miR-6822-5p" used as a reference miRNA refers to the hsa-miR-6822-5p gene (miRBase Accession No. MIMAT0027544) consisting of the nucleotide sequence shown in SEQ ID NO: 5. ) And other species such as homologs or orthologs.
  • the hsa-miR-6822-5p gene can be obtained by the method described in Ladewig E et al., 2012, Genome Res, Vol. 22, p1634-1645.
  • hsa-miR-6822-5p As the precursor of "hsa-miR-6822-5p", “hsa-miR-6822” (miRBaseAccessionNo.MI0022667, SEQ ID NO: 13) having a hairpin-like structure is known.
  • the terms “miR-6822” and “hsa-miR-6822” also include precursors of such hairpin-like structures.
  • miR-940 gene or "miR-940" used as a reference miRNA refers to the hsa-miR-940 gene (miRBase Accession No. MIMAT0004983) consisting of the nucleotide sequence shown in SEQ ID NO: 6 and other species homologues. Or it includes orthologs.
  • the hsa-miR-940 gene can be obtained by the method described in Lui WO et al., 2007, Cancer Res, Vol. 67, p6031-6043.
  • hsa-miR-940 As the precursor of "hsa-miR-940", “hsa-miR-940” (miRBaseAccessionNo.MI0005762, SEQ ID NO: 14) having a hairpin-like structure is known.
  • the terms “miR-940” and “hsa-miR-940” also include precursors of such hairpin-like structures.
  • miRNA-7975 gene refers to the hsa-miR-7975 gene (miRBase Accession No. MIMAT0031178) consisting of the nucleotide sequence shown in SEQ ID NO: 7 and other species homologues. Or it includes orthologs.
  • the hsa-miR-7975 gene can be obtained by the method described in Velthut-Meikas et al., 2013, Mol Endocrinol, Vol. 27, p1128-1141.
  • hsa-miR-7975 As the precursor of "hsa-miR-7975”, “hsa-miR-7975” (miRBaseAccessionNo.MI0025751, SEQ ID NO: 15) having a hairpin-like structure is known.
  • the terms “miR-7975” and “hsa-miR-7975” also include precursors of such hairpin-like structures.
  • miRNA-7977 gene or "miR-7977” used as a reference miRNA refers to the hsa-miR-7977 gene (miRBase Accession No. MIMAT0031180) consisting of the nucleotide sequence shown in SEQ ID NO: 8 and other species homologues. Or it includes orthologs.
  • the hsa-miR-7977 gene can be obtained by the method described in Velthut-Meikas et al., 2013, Mol Endocrinol, Vol. 27, p1128-1141.
  • hsa-miR-7977 As the precursor of "hsa-miR-7977", “hsa-miR-7977” (miRBaseAccessionNo.MI0025753, SEQ ID NO: 16) having a hairpin-like structure is known.
  • the terms “miR-7977” and “hsa-miR-7977” also include precursors of such hairpin-like structures.
  • the process of selecting a reference miRNA that varies depending on the quality of the serum sample of the present invention (contamination of platelets in the serum sample) will be described more specifically.
  • the present invention is not limited to the following examples.
  • the value after the measured value of the abundance of miRNA in the sample is corrected by an external standard nucleic acid or the like is expressed as the "expression level" of the miRNA.
  • Example 1 Selection of reference miRNA capable of detecting platelet contamination (DNA microarray) The following experiments were conducted using a "3D-Gene” human miRNA oligo chip (compatible with miRBase release 21) manufactured by Toray Industries, Inc.
  • Plasma separation blood collection tubes were centrifuged at 800 G for 10 minutes at room temperature to obtain platelets.
  • the blood collection tube for serum separation was allowed to stand for 0.5 hours under the condition of room temperature (23 ° C.) and centrifuged at 2300 G for 10 minutes at room temperature to obtain serum.
  • Blood cell-contaminated serum was prepared by adding 100,000, 1 million, and 10 million platelets to 300 ⁇ l of this serum, and stored at -80 ° C together with serum without blood cells (reference condition).
  • sample RNA RNA contained in the serum sample (hereinafter referred to as sample RNA) was extracted.
  • sample RNA RNA contained in the serum sample
  • a “3D-Gene” RNA extraction reagent from liquid sample kit Toray Industries, Inc.
  • the obtained sample RNA was labeled using a "3D-Gene” miRNA labeling kit (Toray Industries, Inc.). At the time of labeling, an external standard nucleic acid was added to correct the measured value of miRNA abundance to the expression level.
  • the labeled sample RNA was hybridized using "3D-Gene” miRNA chip (Toray Industries, Inc.) according to the standard protocol.
  • the DNA microarray after hybridization was subjected to a microarray scanner (Toray Industries, Inc.) to measure the fluorescence intensity. As for the scanner settings, the laser output was 100% and the voltage setting of the photo multiplier was set to AUTO.
  • the measured value of each miRNA detected by the DNA microarray was converted to a logarithm with a base of 2, and corrected with an external standard nucleic acid added at the time of labeling to obtain the expression level of each miRNA.
  • the reference miRNA was selected by comparing the miRNA abundance of each serum sample obtained as described above and extracting a miRNA having a large abundance that varies depending on the number of added platelets.
  • the ratio to the expression level of each miRNA of serum with 100,000, 1 million, and 10 million platelets added to 300 ⁇ l of serum 100,000, The expression level when 1 million or 10 million pieces were added / the expression level without addition) was obtained.
  • the miRNAs that are stably detected in the platelet-specific high expression region were narrowed down.
  • Non-Patent Document 1 Got 11 types of miRNA found in Non-Patent Document 1 (miR-126-3p, miR-126-5p, miR-145-5p, miR-17-5p, miR-19a-5p, miR-19b-5p, miR-21 -5p, miR-222-3p, miR-26b-5p, miR-425-5p, miR-93-5p) were not selected because of their low expression.
  • Non-Patent Document 2 50 species (miR-126-3p, miR-191-5p, miR-16-5p, miR-24-3p, miR-223-3p, miR-17, miR-106a) reported in Non-Patent Document 2 , MiR-103a-3p, miR-15b, miR-320a, miR-20a, miR-146a, miR-21, miR-199a-3p, miR-185-5p, miR-92a-3p, miR-151a-3p , MiR-27a-3p, miR-93-5p, miR-106b, miR-26a-5p, miR-130a, miR-221-3p, let-7i-5p, miR-720, miR-222, let-7d -5p, let-7g-5p, miR-30b, miR-19b, let-7a-5p, miR-22, miR-342-3p, miR-486-5p, miR-19a, miR-29a-3p, miR -484, miR
  • Table 1 shows the average variation value of the abundance of eight types of reference miRNAs (SEQ ID NOs: 1 to 8) from the reference conditions of each condition among individuals, and among the samples obtained by the above formulas 1 and 2.
  • the overall variation index value of miRNA is shown.
  • the expression levels of miRNAs (SEQ ID NOs: 1 to 8) shown in Table 1 increased depending on the amount of platelets contaminated, and the abundance amount fluctuated by 1.4 times or more (0.5 or more by the logarithmic difference of the base 2).
  • the miRNA can be used as a miRNA index whose abundance varies depending on the quality of the serum sample. That is, it was found that the quality of the serum sample can be known by measuring the abundance of the reference miRNA shown in Table 1.
  • FIG. 1 shows the abundance of eight types of reference miRNAs shown in Table 1 under the reference conditions and the conditions (3 conditions) in which the amount of platelet contamination was changed.
  • the abundance of hsa-miR-1973 (SEQ ID NO: 1) was sharply increased by the addition of platelets.
  • the abundance 3 of hsa-miR-1973 is set as a threshold value, and hsa-miR in a certain serum sample is set. -1973 If the abundance exceeds that value, it can be determined that the sample is deteriorated, that is, the sample is of poor quality.
  • Example 2 Detection of deterioration at the time of platelet contamination with a plurality of miRNAs It is also possible to judge the deterioration of serum sample quality by combining any two types of reference miRNAs instead of a single miRNA.
  • the abundances of hsa-miR-1973 (SEQ ID NO: 1) and hsa-miR-3907 (SEQ ID NO: 2) were used under the reference conditions of Example 1 and the conditions in which 100,000 or more platelets were mixed.
  • the average value of the abundance of these two types of miRNA was used as the index value of the serum sample under each condition.
  • the individual abundance of these miRNAs under each condition is as shown in FIG. 1, and the index value (that is, the average value) of the abundance of these two types of miRNAs under the condition of mixing 100,000 or more platelets is shown in FIG. The result was that the price became higher more sensitively.
  • the average value of the abundance of hsa-miR-1973 and hsa-miR-3907 in the standard serum, or The average value ⁇ ⁇ is set as a threshold value, and when the index value (average value) of the abundance of hsa-miR-1973 and hsa-miR-3907 in a certain serum sample exceeds the threshold value, it is deteriorated, that is, the sample. Can be determined to be of poor quality.
  • This mode of determination corresponds to the mode in which the threshold value t3 is set to R or R ⁇ ⁇ in the above formula 3B.
  • the same determination is made using two or more miRNAs in a combination other than the combination of hsa-miR-1973 (SEQ ID NO: 1) and hsa-miR-3907 (SEQ ID NO: 2) two or more of them
  • the above reference miRNAs may be selected from the reference miRNAs shown in Table 1.
  • the average value of the abundance of these two or more types of miRNA is used as the index value
  • the average value of the abundance of the miRNA in the standard serum sample or the average value ⁇ ⁇ is set as the threshold value t3, and the formula 3B
  • the judgment may be made according to the above. That is, when the average value of the abundance of the miRNA in a certain serum sample exceeds the threshold value t3, it can be determined that the quality is poor.
  • the combination of SEQ ID NO: 1 and others is shown in FIG.
  • RNA extraction reagent from liquid sample kit (Toray Industries, Inc.) was used for RNA extraction.
  • the obtained sample RNA was labeled with a “3D-Gene” miRNA labeling kit (Toray), and at the time of labeling, an external standard nucleic acid was added in order to correct the measured value of miRNA abundance to the expression level. ..
  • the labeled sample-derived RNA was hybridized using a “3D-Gene” miRNA chip (Toray Industries, Inc.) according to its standard protocol.
  • the DNA microarray after hybridization was subjected to a microarray scanner (Toray Industries, Inc.) to measure the fluorescence intensity. As for the scanner settings, the laser output was 100% and the voltage setting of the photo multiplier was set to AUTO.
  • the signal value of the detected miRNA was corrected by the signal value of the external standard nucleic acid to obtain the expression level.
  • Hsa-miR-1973 (SEQ ID NO: 1) was selected as the reference miRNA used for quality determination.
  • a commercially available serum sample was used as a standard serum sample not contaminated with platelets, and the expression level of hsa-miR-1973 contained in the standard serum sample was obtained in the same manner as described above.
  • the expression level of miRNA derived from the serum sample was divided by the expression level of the corresponding miRNA derived from the standard serum sample to determine the expression level ratio between the two.
  • the threshold was set to 1. Since the expression level ratio was 0.7, which was below the threshold value, the quality of miRNA contained in this serum sample was judged to be good.
  • the correlation coefficient between the expression level of all miRNAs derived from the detected serum samples and the expression level of all miRNAs derived from standard body fluid samples is 0.99, which is a high value exceeding 0.95, and is not contaminated with platelet-derived miRNAs. was shown. This was in agreement with the quality determination result according to the present invention.
  • Example 4 After preparing the serum, the serum sample was changed to one in which 100,000 platelets were artificially mixed, and other than this, two types of miRNAs derived from the serum sample and the standard serum sample were obtained in the same manner as in Example 3.
  • the expression levels of both samples were compared using the average value of the expression levels of the two miRNAs as an index value.
  • the threshold was set to 1. As a result, the expression level ratio was 1.07, which exceeded the threshold value, and therefore, the quality of miRNA contained in this serum sample was judged to be poor.
  • the correlation coefficient between the expression level of all miRNAs derived from the detected serum samples and the expression level of all miRNAs derived from standard body fluid samples was 0.94, which is a low value of 0.95 or less, and platelet-derived miRNAs were contaminated. It was shown that the quality had deteriorated. This was in agreement with the quality determination result according to the present invention.
  • ⁇ Comparative example 1> In order to compare the quality evaluation method of the serum sample of the present invention with the method using the blood cell analyzer which is the conventional quality evaluation method, the blood cell analyzer (XT-200i (Cysmex)) using the serum sample used in Example 4 above. The quality was evaluated using the company)). As a result, even when comparing the RNA extracted from the serum sample when 100,000 platelets were mixed with the RNA extracted from the commercially available serum sample which is a standard serum sample without platelets, the result of the blood cell analyzer It was not possible to confirm the presence or absence of contamination with 100,000 platelets.
  • ⁇ Comparative example 3> In order to compare the quality evaluation method of the serum sample of the present invention with the method by ELISA (enzyme-linked immunosorbent assay) which is a conventional quality evaluation method, the serum sample used in Example 4 above and the CD41 antibody and CD63 antibody are used. The quality was evaluated by ELISA. As a result of first measuring the standard serum samples, all of them showed high values, and the difference due to blood cell contamination could not be measured. It is considered that this is because surface molecules derived from broken platelets were mixed in the serum and could not be separated from the platelets. With either method, the presence or absence of blood cell contamination could not be confirmed and the quality could not be judged correctly.
  • ELISA enzyme-linked immunosorbent assay
  • Example 5 Similar to Example 3, in addition to using hsa-miR-3907 (SEQ ID NO: 2) as the reference miRNA used for quality determination, hsa-miR-4463 (SEQ ID NO: 17) is a stable endogenous miRNA. ) was also used to measure the expression levels of these two types of miRNAs derived from serum samples and standard body fluid samples. The quality was judged by the above formula 4A. The threshold was set to 1.
  • the expression level ratio obtained by dividing the expression level of hsa-miR-3907 by the expression level of hsa-miR-4463 was 0.16 from the serum sample and 0.15 from the standard body fluid sample. Since the ratio of these expression level ratios was 0.92, which was below the threshold value, the quality of miRNA contained in the sample was judged to be good.
  • the correlation coefficient between the expression level of all miRNAs derived from the detected serum samples and the expression level of all miRNAs derived from standard body fluid samples is 0.99, which is a high value exceeding 0.95, and the quality of miRNAs contained in the serum samples. was good and was shown to be free of miRNA in platelets. This was in agreement with the quality determination result according to the present invention.

Abstract

血清検体、特に、検体採取後の血清検体に含まれるごく微量の血小板をも検知して、血清検体の品質低下を鋭敏に検知する手法が開示されている。本発明による血清検体の品質を評価する方法は、配列番号1~8に示すmiRNAのうち1つまたは複数のmiRNAを基準miRNAとし、血清検体に含まれる当該基準miRNAの存在量と、血小板が混入していない状態にある標準血清検体に含まれる当該基準miRNAの存在量とを比較することにより、血清検体の品質を評価する。

Description

血清検体の品質評価方法
 本発明は、血清検体の品質(典型的には、血小板の混入)を、その血清検体中に含まれる特定のmiRNAの存在量によって評価する方法に関する。
 miRNA(マイクロRNA)は、ゲノムDNAからヘアピン様構造のRNA(前駆体)として転写されてくる。この前駆体は、特定の酵素RNAse III切断活性を有するdsRNA切断酵素(Drosha、Dicer)により切断された後、二本鎖の形態へと変化し、その後一本鎖となる。そして、片方のアンチセンス鎖がRISCと称するタンパク質複合体に取り込まれ、mRNAの翻訳抑制に関与すると考えられている。このように、miRNAは、転写後、各段階においてその態様は異なるため、通常、miRNAを検出対象とする場合は、ヘアピン構造体、二本鎖構造体、一本鎖構造体等の各種形態を考慮する必要がある。miRNAは15~25塩基のRNAからなり、様々な生物でその存在が確認されている。
 近年、miRNAは、細胞内のみならず、細胞を含まない検体である血清、血漿、尿、脊髄液等の体液にも多く存在し、その存在量が、がんをはじめとした様々な疾患のバイオマーカーとなる可能性が示唆されている。miRNAは、2019年7月現在、ヒトで2600種以上が存在し、高感度なDNAマイクロアレイ等の測定系を利用した場合、そのうちの1000種を超えるmiRNAの発現を血清・血漿中で同時に検出することが可能である。そこで、DNAマイクロアレイ法を用いて血清・血漿、尿、脊髄液等の体液を対象としたバイオマーカー探索研究が実施されており、疾患を早期に発見できるバイオマーカー検査への展開が期待されている。
 一方、血液中には血小板、白血球、赤血球など内部にRNAをもつ血球が存在しており、DNAマイクロアレイなどを用いて遺伝子発現解析を行う場合は、これら血球由来のmiRNAが検体に混入することで、血清、血漿、尿等の体液由来のmiRNAの測定に影響を及ぼすことが知られている。血小板は、他の血球よりも比重が軽く、遠心によって血清検体を調製するときに上清である検体に混入する可能性がある。血小板が検体に混入すると、検査標的とするmiRNAの正確な発現量の測定が困難となる。疾患のバイオマーカーとして、体液に含まれるmiRNAの存在量を測定する検査においては、不確実性を有する存在量の測定値をもとに検査・診断してしまうと、適切な治療の機会を逃したり、間違った医療を適用することで患者に不要な経済的、体力的負担を強いたりすることになる。したがって、血清検体や血漿検体を用いて検査する場合には、検査標的とするmiRNAの存在量を正確に測定するために、血小板中のmiRNAが含まれていない検体を使用することがきわめて重要である。
 従来、血液中の血小板の混入を測定する手法としては、一般的に血球分析機器が用いられており、例えば、XT-2000i(シスメックス社)では、大きさと細胞密度から血液検体中の血小板数を測定できる。また、別の手法としては、例えば、血小板特異的なCD41とCD63表面抗原に対する特異的抗体を用いてELISAで定量評価する方法が提案されている。
 しかしながら、上記の血球分析機器を用いた方法は、一般に測定限界は500μl中に500万個程度であるため、この限界より少量の血小板が混入した検体の場合、測定感度が不足し、血小板は含まれていないと誤った判定を行うことがある。従って、この方法は検体の品質を測定する有効な手法になりえない。また、血小板特異的な表面抗原を指標としたELISAによる評価方法は、血小板由来のRNAが含まれない断片であっても、誤って残存の表面抗原が測定されることがある。従って、この方法も検体の品質を測定する有効な手法になりえない。
 一方、非特許文献1では、血漿中に残留する血小板が標的のmiRNAの測定値を変動させることが示されており、定量PCRを用いて血漿検体に混入した血小板の数とmiR-21-5pやmiR-425-5pなど11種のmiRNAの発現量が正の相関をとると報告されている。
 また、非特許文献2では、血漿に残留した血小板がmiRNAの測定に影響を及ぼすとして、miR-126-3pなど血小板由来のmiRNA50種が報告されている。
SCIENTIFIC REPORTS 2016;6:32651 Platelets confound the measurement of extracellular miRNA in archived plasma Circulation Research 2017;120(2):418-435 MicroRNA Biomarkers and Platelet Reactivity: The Clot Thickens
 上記のように、標的とする血清検体中のRNAの存在量を正確に測定するためには、その血清検体中に血小板が含まれていないことを確認することが重要である。例えば、血清検体300μl中に10万個程度のごく微量の血小板の混入を検出することが求められる。例えば、DNAマイクロアレイを用いて遺伝子発現解析を行う場合で、特にごく微量の血小板の混入による検体の品質低下が標的遺伝子の測定および診断結果に影響を及ぼすような場合には、ごく微量の血球の混入を高感度に検知でき、その結果、発現解析の可否を判定できる鋭敏な指標や手法が必要となる。
 上記のように、非特許文献1に示すmiRNA11種及び非特許文献2に示すmiRNA50種について、検体中でのその発現量を測定することにより、血小板の混入を検出できる可能性が考えられる。しかし、後述する実施例で示すように、DNAマイクロアレイで血清中のこれらのmiRNAの発現量を測定したところ、いずれも発現量が低く、ごく微量の血小板を混入した検体においても変動が見られないことから、これらのmiRNAを利用しても、目的とするレベルで血清検体の品質を測定することはできないことがわかった。
 例えば、非特許文献1では、miR-425-5pは、1μlあたり血小板19万1千個が混入した血漿100μl(すなわち約1900万個混入した血漿)を用いて血小板混入を測定できると示されているが、血清300μl中に10万個程度のごく少量の血小板が混入した検体を用いた場合、血小板が含まれていないと誤った判定を行うことがあり、このmiR-425-5pの変動を用いて検体の品質を測定することは有効な手法になりえない。
 本発明の課題は、血清検体、特に、検体採取後の血清検体に含まれるごく微量の血小板をも検知して、血清検体の品質低下を鋭敏に検知する手法を見出すことである。
 上記課題を解決するため、本発明者らは、検体採取後、血小板を添加して存在量が変動するmiRNA(以下、「基準miRNA」という。)が、目的とするごく微量の血小板の混入であっても検出可能なmiRNAとして利用できること、また、当該miRNAの存在量の測定により血清検体の品質を評価することができることを見出し、本発明を完成させた。すなわち、本発明は、配列番号1~8に示すmiRNAのうち1つまたは複数のmiRNAを基準miRNAとし、血清検体に含まれる当該基準miRNAの存在量と、血小板が混入していない状態にある標準血清検体に含まれる当該基準miRNAの存在量とを比較することにより、血清検体の品質を評価する方法であり、以下の態様を包含する。
(1)血清検体の品質を評価する方法であって、
 配列番号1~8で示される塩基配列からなるmiRNAから選択される1又は複数種の基準miRNAの、血清検体中の存在量及び標準血清検体中の存在量を測定する、測定工程;
 前記測定工程で得られた血清検体に含まれる前記1又は複数種の基準miRNAの存在量又はその指標値を、標準血清検体に含まれる1又は複数種の基準miRNAの存在量又はその指標値と比較して、血清検体及び標準血清検体間での1又は複数の基準miRNAの存在量又はその指標値の差又は比を得る、比較工程;及び
 前記比較工程で得られた、1又は複数種の基準miRNAの存在量又はその指標値の差又は比に基づいて、血清検体の品質の良否を判定する、判定工程
を含む、前記方法。
(2)前記判定工程では、前記血清検体に含まれる1又は複数種の基準miRNAの存在量又はその指標値と、前記標準血清検体に含まれる1又は複数種の基準miRNAの存在量又はその指標値との差又は比が、基準として予め定める閾値を超える場合に血清検体の品質を不良と判定する、(1)に記載の方法。
(3)前記測定工程が、支持体上に固定化された配列番号1~8で示される塩基配列からなるmiRNAから選択される1又は複数の基準miRNAを捕捉するためのプローブと、標識物質で標識された、血清検体由来核酸試料及び標準血清検体由来核酸試料とをそれぞれ接触させてハイブリダイゼーションを行ない、血清検体及び標準血清検体中の当該1又は複数の基準miRNAの存在量を測定することを含む、(1)または(2)に記載の方法。
(4)前記測定工程で得られた前記1又は複数種の基準miRNAの存在量の測定値を補正する補正工程をさらに含み、補正済みの存在量の値を用いて前記判定工程が実施される、(1)~(3)のいずれか1項に記載の方法。
(5)前記測定工程において、血清検体中の1又は複数種の基準miRNAの存在量の測定と同時に、当該血清検体中の標的miRNAの存在量を測定することを含む、(1)~(4)のいずれか1項に記載の方法。
(6)前記測定工程が、支持体上に固定化された標的miRNAを捕捉するためのプローブ及び配列番号1~8で示される塩基配列からなるmiRNAから選択される1又は複数種の基準miRNAを捕捉するためのプローブと、標識物質で標識された血清検体由来核酸試料とを接触させてハイブリダイゼーションを行ない、血清検体中の標的miRNA及び当該1又は複数種の基準miRNAの存在量をそれぞれ測定することを含む、(5)に記載の方法。
(7)測定工程で得られた、血清検体中の標的miRNAの存在量の測定値、及び前記1又は複数種の基準miRNAの存在量の測定値を補正する補正工程をさらに含む、(5)又は(6)に記載の方法。
(8)血清検体の品質を評価するために、1又は複数のコンピュータに、
 血清検体より調製されたRNAサンプル及び標準血清検体より調製された標準RNAサンプルを用いて測定された、配列番号1~8で示される塩基配列からなるmiRNAから選択される1又は複数種の基準miRNAの血清検体及び標準血清検体中の存在量測定値を取得する、測定値取得工程;
 血清検体中の1又は複数種の基準miRNAの存在量測定値又はその指標値を、標準血清検体中の1又は複数種の基準miRNAの存在量測定値又はその指標値と比較して、血清検体及び標準血清検体間での1又は複数の基準miRNAの存在量測定値又はその指標値の差又は比を得る、比較工程;及び
 前記比較工程で得られた、1又は複数種の基準miRNAの存在量測定値又はその指標値の差又は比に基づいて、血清検体の品質の良否を判定する、判定工程
を実行させるためのプログラム。
(9)(8)に記載のプログラムを記録した、コンピュータ読み取り可能な記録媒体。
(10)配列番号1~8で示される塩基配列からなるmiRNAから選択される1又は複数種の基準miRNAを捕捉するためのプローブが固定化された支持体を含む、miRNA品質評価用チップ。
(11)血清検体の品質を評価する装置であって、
 血清検体より調製されたRNAサンプル及び標準血清検体より調製された標準RNAサンプルを用いて測定された、配列番号1~8で示される塩基配列からなるmiRNAから選択される1又は複数種の基準miRNAの血清検体及び標準血清検体中の存在量測定値を記憶する、記憶手段と;
 血清検体中の1又は複数種の基準miRNAの存在量測定値又はその指標値を、標準血清検体中の1又は複数種の基準miRNAの存在量測定値又はその指標値と比較して、血清検体及び標準血清検体間での1又は複数の基準miRNAの存在量測定値又はその指標値の差又は比を得る、比較手段と;
 前記比較手段によって得られた、1又は複数種の基準miRNAの存在量測定値又はその指標値の差又は比に基づいて、血清検体の品質の良否を判定する、判定手段と
を含む、前記装置。
 本発明により、血清検体の品質劣化の程度を高精度かつ簡便に評価することが可能となり、特に、従来の方法では困難であった、検体採取後、使用する採血管などの採血条件が異なることによる検体品質の劣化(主に、血球の混入)が生じたかどうかを評価することが可能となる。また、本発明によれば、血清検体が、例えばmiRNAを用いた遺伝子発現解析に適する品質を有するかどうかを高精度でかつ簡便に評価することができるので、血清検体中のバイオマーカーの存在量を指標とした疾患の検査において、より正確な検査結果を得ることが可能となる。
実施例1においてDNAマイクロアレイにより検出した、血清に血小板を添加した場合(3条件)の8種のmiRNAの存在量の変化を示す。 実施例2においてDNAマイクロアレイにより検出した、血小板を混入させた場合の2種のmiRNAの存在量を足し合わせた値の変化を示す。
 本発明は、血清検体の品質を評価する方法であって、配列番号1~8で示される塩基配列からなるmiRNAから選択される1又は複数のmiRNAを基準miRNAとし、当該基準miRNAの、血清検体及び標準血清検体中の存在量を測定する測定工程;当該測定工程で得られた血清検体中の1又は複数種の基準miRNAの存在量又はその指標値と、標準血清検体中の1又は複数種の基準miRNAの存在量又はその指標値の差又は比を得る比較工程;当該比較工程で得られた差又は比に基づいて、体液検体の品質の良否を判定する判定工程、を含む方法である。
 本発明の方法は、遺伝子発現解析、例えばマイクロアレイ等のアレイチップを用いた解析や、ポリメラーゼ連鎖反応(PCR)法、シークエンス法による解析において、血清検体に含まれるmiRNAの品質を予め評価することにより、これらの解析を行うことの適否を判断することに用いることができる。遺伝子発現解析には、例えば、血清中のmiRNAを標識し、1又は複数の標的miRNAを捕捉するためのプローブと、基準miRNAを捕捉するためのプローブとが固定された支持体を用いて各miRNAの存在量を測定すること、1又は複数の標的miRNAを増幅するためのプライマーと、基準miRNAを増幅するためのプライマーとを使用して増幅反応を行い、標的miRNAの存在量を測定することなどが含まれ、さらにこれらの結果を利用して遺伝子発現の解析や検査、例えば、病態を把握するために臨床検体中の遺伝子発現を測定する検査を行うことが含まれる。
 「miRNA」は、生体内で作られる鎖長15~25塩基程度の短鎖RNAを意味するノンコーディングRNA(ncRNA)の一種であり、mRNAの発現を調節する機能を有すると考えられている。miRNAは、ゲノムDNAからからヘアピン様構造のRNA(前駆体)として転写されてくる。この前駆体は、特定の酵素RNAse III切断活性を有するdsRNA切断酵素(Drosha、Dicer)により切断された後、二本鎖の形態へと変化し、その後一本鎖となる。そして、片方のアンチセンス鎖がRISCと称するタンパク質複合体に取り込まれ、mRNAの翻訳抑制に関与すると考えられている。このように、miRNAは、転写後、各段階においてその態様は異なるので、通常、miRNAを標的(検出対象)とする場合は、ヘアピン構造体、二本鎖構造体、一本鎖構造体等の各種形態を考慮する必要がある。miRNAは様々な生物でその存在が確認されている。
 本発明を適用できる検体は、生体から分離、調製された血清検体である。血清検体が由来する生体の種類は特に限定されず、各種の生物種が包含されるが、典型的には哺乳動物、特にヒトである。
 血清検体中には、様々な生体分子が含まれている。例えば、タンパク質、ペプチド、DNA、RNA等の核酸、代謝産物等が挙げられる。これらの生体分子は種々の疾患のバイオマーカーとして適している。
 血清検体の品質が低下(劣化)する、あるいは不良であるとは、上記生体分子が採血時の全血検体中にそもそも存在し、調製後の血清検体中にも反映されるはずであった存在量から変化することであり、主として、血清検体から抽出されたRNAサンプルへの、血小板中のmiRNAの混入量が増加することをいう。本発明の方法による血清検体の品質良否の判定において、「血清検体の品質が不良である」とは、主として、血清検体から抽出されたRNAサンプル中に血小板中miRNAが混入している、又はその混入量がごく微量とは言えない程度に多い状態をいい、「血清検体の品質が良好である」とは、主として、血清検体から抽出されたRNAサンプル中に血小板中miRNAが混入していない、又はその混入量がごく微量に抑制されている状態をいう。本発明において、「血清検体に含まれるmiRNA」という語は、血清検体から抽出(調製)されたRNAサンプルに含まれるmiRNAを意味しており、血清検体に血球が混入している場合には、その血球中に含まれるmiRNAも「血清検体に含まれるmiRNA」に含まれる。本発明において、「血清検体に含まれるmiRNAの品質」という語は、「血清検体の品質」と同じ意味で用いられ得る。血清検体の品質低下の原因としては、分離剤の有無など採血管の種類や遠心速度、採血針の種類などの採血条件の他、温度や熱、検体に対する振動や超音波などの外部力、電場や磁場などを含めた各種の直接、間接的の物理的な力などが考えられるが、品質低下の原因はこれらに限定されるものではない。
 本発明においては、これらの検体からRNAを抽出し、このRNAを用いてmiRNAの存在量を測定することができる。RNAの抽出には、公知の方法(例えば、Favaloroらの方法(Favaloro et.al., Methods Enzymol.65: 718 (1980))等)や、RNA抽出のための各種の市販のキット(例えば、キアゲン社のmiRNeasy、東レ(株)製の“3D-Gene” RNA extraction reagent from liquid sample等)を適用することができる。
 <測定工程>
 本発明では、配列番号1~8で示される塩基配列からなるmiRNAから選択される1又は複数の基準miRNAの、血清検体及び標準血清検体中の存在量の測定を行う。また、血清検体に含まれる基準miRNAの存在量の測定と同時に、血清検体に含まれる標的miRNAの存在量の測定を行ってもよい。標的miRNAとは、血清検体中に含まれるmiRNAのうち、それぞれの目的によって測定対象とするmiRNAと定義される。
 標準血清検体とは、上記に定義した品質の劣化が進行していない血清検体であり、主として、血小板等の血球が混入していないないしはごく微量に抑制された血清検体である。例えば、品質を評価すべき被検血清検体と同じ採血条件で採血され、血清を調製した直後に凍結保存された血清検体や、市販されている血清検体を、標準血清検体として用いることができる。被検血清検体と同一個体に由来する血清検体でもよいし、同一生物種の別個体に由来する血清検体でもよい。
 本発明において基準miRNAとして用いることができる、配列番号1~8で示される塩基配列からなるmiRNAは、血清検体の品質の変化に依存して存在量が変化するmiRNAとして本願発明者らにより見いだされたmiRNAである。血清検体の品質が変化(劣化)すると、検体中に含まれる個々の遺伝子RNAの存在量は変化する。この場合、遺伝子発現解析で検出された全遺伝子において、血球混入等によって劣化が生じた血清検体(劣化血清検体)中のRNAと、劣化していない最も新鮮な血清検体(標準血清検体)中のRNAとの相関は低下し、例えば相関係数は0.95以下になる。劣化血清検体の品質がどの程度劣化しているかは、例えば、以下の式1、2で算出できる個々のmiRNAの存在量比(FCi)の標準偏差の2倍(2SD)の値を用いて評価できる。本発明において、この2SDの値を全体変動指標値と呼ぶ。全体変動指標値が0.5以上となる場合、その劣化血清検体で測定した各miRNAの存在量の変動の程度が大きいこと、従って当該劣化血清検体の品質劣化の程度が大きいことを意味する。本発明で用いる基準miRNAは、このような全体的なRNAの変動と相関して存在量が変動するmiRNAである。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 ここで、式1、式2中、
 miRNAi_controlは、i番目のmiRNAの、標準血清検体中の存在量、
 miRNAi_sampleは、i番目のmiRNAの、劣化血清検体中の存在量、
 FC平均値は、n個のmiRNAの存在量比(標準血清検体中の存在量/劣化血清検体中の存在量)の平均値、
である。
 本発明で用いる基準miRNAとしては、採血管の種類(分離剤の有無など)や遠心条件などに依存して存在量が変化するmiRNAを選択することができる。血清状態で採血管や遠心条件などに依存して存在量が変化するmiRNAは、例えば、採血した全血から血小板と血清に分離し、血清に、ある条件(例えば、血小板10万個、100万個、1000万個)で血小板を添加することにより、血清を意図的に劣化させた劣化血清サンプルを調製し、当該劣化血清サンプルと、血小板を添加していない非劣化血清サンプルについて、サンプル中のmiRNAの存在量を測定し、その変化の程度を比較することで、選択することができる。劣化血清サンプルから得られたmiRNAの存在量を、非劣化血清サンプルから得られたmiRNAの存在量との間で比較し、差のあるmiRNAを選抜することにより、基準miRNAを選択できる。一般的にDNAマイクロアレイの測定において、存在量2倍の変動は十分な差として考えられるため、劣化血清サンプルと非劣化血清サンプルの間で2倍以上差のあるmiRNAを選抜することが好ましい。
 本発明の測定工程では、配列番号1~8で示される塩基配列からなるmiRNAから選択される1又は複数の基準miRNAの、血清検体および標準血清検体中の存在量を測定する。
 以下、基準miRNAや、標的miRNAを捕捉するためのプローブを、総じて「捕捉プローブ」又は単に「プローブ」ともいう。
 血清検体及び標準血清検体に含まれるmiRNAの存在量の測定は、例えば、対象のmiRNAに特異的に結合するプローブを支持体上に固定化したマイクロアレイ等のアレイチップを用いたハイブリダイゼーションアッセイにより行なうことができる。本発明においては、1又は複数の基準miRNAを捕捉するための「基準miRNA捕捉プローブ」が固定化された支持体を含むアレイチップを用いることができる。また、標的miRNAを捕捉するための「標的miRNA捕捉プローブ」がさらに固定化された支持体を含むアレイチップを用いてもよい。
 「捕捉プローブ」又は「捕捉するためのプローブ」とは、捕捉対象のmiRNAと直接的又は間接的に、好ましくは直接的に、かつ選択的に結合し得る物質を意味し、代表的な例として、核酸、タンパク質、糖類及び他の抗原性化合物を挙げることができる。本発明においては、核酸プローブを好ましく用いることができる。核酸は、DNAやRNAのほか、PNA(ペプチド核酸)やLNA(Locked Nucleic Acid)などの核酸誘導体を用いることができる。ここで誘導体とは、核酸の場合、蛍光団などによるラベル化誘導体、修飾ヌクレオチド(例えば、ハロゲン、メチルなどのアルキル、メトキシなどのアルコキシ、チオ、カルボキシメチルなどの基を含むヌクレオチド、及び塩基の再構成、二重結合の飽和、脱アミノ化、酸素分子の硫黄分子への置換などを受けたヌクレオチドなど)を含む誘導体などの化学修飾誘導体を意味する。
 核酸プローブの鎖長は、ハイブリダイゼーションの安定性と特異性を確保する観点から、検出対象とするmiRNAの長さ以上とすることが好ましい。通常、17~25塩基程度の鎖長とすれば、プローブが対象とするmiRNAへの選択的結合性を十分に発揮することができる。そのような鎖長の短いオリゴ核酸プローブは、周知の化学合成法等により容易に調製することができる。
 ハイブリダイゼーション時のストリンジェンシーは、温度、塩濃度、プローブの鎖長、プローブのヌクレオチド配列のGC含量及びハイブリダイゼーション緩衝液中のカオトロピック剤の濃度の関数であることが知られている。ストリンジェントな条件としては、例えば、Sambrook, J. et al. (1998) Molecular Cloning: A Laboratory Manual (2nd ed.), Cold Spring Harbor Laboratory Press, New Yorkに記載された条件などを用いることができる。ストリンジェントな温度条件は、約30℃以上である。その他の条件としては、ハイブリダイゼーション時間、洗浄剤(例えば、SDS)の濃度、及びキャリアDNAの存否等であり、これらの条件を組み合わせることによって、様々なストリンジェンシーを設定することができる。当業者は、所望する検体RNAの検出のために用意した捕捉プローブとしての機能を得るための条件を適宜決定することができる。
 核酸プローブは捕捉対象のmiRNAの相補鎖であるが、クロスハイブリによって結合する捕捉対象以外の配列があることは当業者には明らかである。すなわち、本発明において、配列番号1~8に示す基準miRNAの相補鎖をプローブとして基準miRNAの存在量を測定した場合、基準miRNA以外のクロスハイブリするRNAの存在量変化も含めて「基準miRNA存在量の変化」として検出されることになる。本発明では、そのようなクロスハイブリするRNAの存在量変化も含めた判定により、血清検体の品質の良否を判定することができる。
 miRNAの配列情報は、GenBank(http://www.ncbi.nlm.nih.gov/genbank/)等のデータベースやmiRBaseのウェブサイト(http://www.mirbase.org/)から入手することができる。基準miRNA捕捉プローブ、標的miRNA捕捉プローブは、これらのサイトから入手できる配列情報に基づいて設計することができる。
 支持体上に固定化されるmiRNA捕捉プローブの数は特に限定されない。例えば、配列が同定されている公知のmiRNAの全てを網羅する数のmiRNA捕捉プローブを支持体上に固定化したものを用いて、miRNAの存在量を測定してもよいし、検査目的等に応じて所望の数のmiRNA捕捉プローブを支持体上に固定化したものを用いてもよい。
 捕捉プローブが整列固定化される支持体としては、公知のマイクロアレイやマクロアレイ等で使用されている支持体と同様のものを用いることができ、例えば、スライドガラスや膜、ビーズなどを用いることができる。特許第4244788号等に記載されている、表面に複数の凸部を有する形状の支持体を用いることもできる。支持体の材質は、特に限定されないが、ガラス、セラミック、シリコンなどの無機材料;ポリエチレンテレフタレート、酢酸セルロース、ポリカーボネート、ポリスチレン、ポリメチルメタクリレート、シリコーンゴム等のポリマーなどを挙げることができる。
 支持体に捕捉プローブを固定化する方法としては、支持体表面上でオリゴDNAを合成する方法と、あらかじめ合成しておいたオリゴDNAを支持体表面へ滴下し固定する方法が知られている。
 前者の方法としては、Ronaldらの方法(米国特許第5705610号明細書)、Michelらの方法(米国特許第6142266号明細書)、Francescoらの方法(米国特許第7037659号明細書)が挙げられる。これらの方法ではDNA合成反応時に有機溶媒を用いるため、支持体は有機溶媒に耐性のある材質であることが望ましい。また、Francescoらの方法では、支持体の裏面から光を照射してDNA合成を制御するため、支持体は透光性を有する材質であることが好ましい。
 後者の方法としては、廣田らの方法(特許第3922454号)やスポッターを用いる方法を挙げることができる。スポットの方式としては、固相へのピン先端の機械的な接触によるピン方式、インクジェットプリンターの原理を利用したインクジェット方式、毛細管によるキャピラリー方式等が挙げられる。スポット処理した後は、必要に応じてUV照射によるクロスリンキング、表面のブロッキング等の後処理が行なわれる。表面処理した支持体表面に共有結合でオリゴDNAを固定化させるため、オリゴDNAの末端にはアミノ基やSH基等の官能基が導入される。支持体の表面修飾は、通常、アミノ基等を有するシランカップリング剤処理によって行なわれる。
 支持体上に固定化された各miRNA捕捉プローブとのハイブリダイゼーションは、検体から抽出したRNA(検体RNA)から、標識物質で標識された核酸試料(検体由来の核酸試料)を調製し、この標識核酸試料をプローブと接触させることにより実施する。「検体由来の核酸試料」には、検体から抽出したRNAのほか、該RNAから逆転写反応により調製されたcDNA及びcRNAが包含される。標識された検体由来の核酸試料は、検体RNAを直接的又は間接的に標識物質で標識したものでもよいし、また、検体RNAから調製されたcDNAやcRNAを直接的又は間接的に標識物質で標識したものでもよい。
 検体由来の核酸試料に標識物質を結合させる方法としては、核酸試料の3'末端に標識物質を結合させる方法、5'末端に標識物質を結合させる方法、標識物質が結合したヌクレオチドを核酸に取り込ませる方法を挙げることができる。3'末端に標識物質を結合させる方法、及び5'末端に標識物質を結合させる方法では、酵素反応を用いることができる。酵素反応には、T4 RNA LigaseやTerminal Deoxitidil Transferase、Poly A polymeraseなどを用いることができる。いずれの標識方法も「Shao-Yao Ying編、miRNA実験プロトコール、羊土社、2008年」に記載されている方法を参考にすることができる。また、RNAの末端に直接又は間接的に標識物質を結合させるためのキットが各種市販されている。例えば、3'末端に直接又は間接的に標識物質を結合させるキットとしては、“3D-Gene” miRNA labeling kit(東レ(株)製)、miRCURY miRNA HyPower labeling kit(エキシコン社)、NCode miRNA Labeling system(ライフテクノロジーズ社)、FlashTag Biotin RNA Labeling Kit(ジェニスフィア社)等を例示することができる。
 このほか、従来法と同様に、標識したデオキシリボヌクレオチド又は標識したリボヌクレオチドの存在下で検体RNAからcDNA又はcRNAを合成することにより、標識物質が取り込まれたcDNA又はcRNAを調製し、これをアレイ上のプローブとハイブリダイズさせる、という方法も可能である。
 本発明において、使用できる標識物質としては、公知のマイクロアレイ解析においても使用されている各種の標識物質を挙げることができる。具体的には、蛍光色素、りん光色素、酵素、放射線同位体などが挙げられるが、これらに限定されない。好ましいのは、測定が簡便で、検出しやすい蛍光色素である。具体的には、シアニン(シアニン2)、アミノメチルクマリン、フルオロセイン、インドカルボシアニン(シアニン3)、シアニン3.5、テトラメチルローダミン、ローダミンレッド、テキサスレッド、インドカルボシアニン(シアニン5)、シアニン5.5、シアニン7、オイスターなどの公知の蛍光色素が挙げられるが、これらに限定されない。
 また、標識物質としては、発光性を有する半導体微粒子を用いてもよい。このような半導体微粒子としては、例えばカドミウムセレン(CdSe)、カドミウムテルル(CdTe)、インジウムガリウムリン(InGaP)、シルバーインジウム硫化亜鉛(AgInZnS)などが挙げられる。
 上記のようにして標識された検体由来の核酸試料を支持体上のmiRNA捕捉プローブと接触させ、核酸試料とプローブをハイブリダイズさせる。このハイブリダイゼーション工程は、従来と全く同様に行うことができる。反応温度及び時間は、ハイブリダイズさせる核酸の鎖長に応じて適宜選択されるが、核酸のハイブリダイゼーションの場合、通常、30℃~70℃程度で1分間~十数時間である。ハイブリダイゼーションを行ない、洗浄後、支持体上の個々のプローブ固定化領域における標識物質からのシグナル強度を検出する。シグナル強度の検出は、標識物質の種類に応じて適当なシグナル読取装置を用いて行なう。蛍光色素を標識物質として用いた場合には、蛍光顕微鏡や蛍光スキャナー等を用いればよい。
 検出された蛍光強度の測定値は、周辺ノイズと比較される。具体的には、プローブ固定化領域から得られた測定値と、それ以外の位置から得られた測定値を比較し、前者の数値が上回っている場合を検出された(有効判定陽性)とする。
 検出された測定値に、バックグラウンドノイズが含まれている場合には、バックグラウンドノイズを減算してもよい。周辺ノイズをバックグラウンドノイズとして、検出した測定値から減算することもできる。その他、「藤淵航、堀本勝久編、マイクロアレイデータ統計解析プロトコール、羊土社、2008年」に記載されている方法を用いてもよい。
<補正工程>
 本発明において、測定工程で得られた基準miRNAの存在量の測定値をそのまま後述する判定工程で用いてもよいが、例えば、血清検体に含まれる標的miRNAの遺伝子発現解析を行う場合には、下記に例示する各種方法で測定値を補正して補正済みの存在量の値を得て、これを判定工程で用いてもよい。
 補正方法としては、従来法を用いることができ、例えば、検出された全miRNAの測定値を用いて補正を行うグローバルノーマリゼーション法、クォンタイルノーマリゼーション法などが挙げられる。また、U1 snoRNA、U2 snoRNA、U3 snoRNA、U4 snoRNA、U5 snoRNA、U6 snoRNA、5S rRNA、5.8S rRNAといったハウスキーピングRNAや、特定の補正用内因性miRNAを用いて補正してもよいし、RNAの抽出時や標識時に添加した外部標準核酸を用いて補正してもよい。「内因性」とは、人工的に検体に添加されたものではなく、検体に自然に存在することを意味する。例えば「内因性miRNA」と言った場合、検体中に自然に存在している、その検体を提供した生物に由来するmiRNAを示す。本発明の方法を適用して、血清検体に含まれる標的miRNAの遺伝子発現解析を行う場合は、検体に依存されないスパイクコントロールなどの外部標準核酸を利用した補正方法を用いることが好ましい。
<比較工程>
 本発明の比較工程は、前記測定工程で得られた、配列番号1~8で示される塩基配列からなるmiRNAから選択される1又は複数種の基準miRNAの血清検体及び標準血清検体中の存在量を用いて、血清検体に含まれる1又は複数種の基準miRNAの存在量又はその指標値と、標準体液検体に含まれる1又は複数種の基準miRNAの存在量又はその指標値との差又は比を得る工程である。
 判定工程の説明で後述するように、配列番号1~8で示される塩基配列からなるmiRNAのうち、1つのmiRNAを基準miRNAとして用いる場合には、血清検体に含まれる当該基準miRNAの存在量と標準血清検体に含まれる当該基準miRNAの存在量の差又は比を求めて判定に用いればよい。また、複数のmiRNAを基準miRNAとして用いる場合には、血清検体に含まれる当該複数の基準miRNAの存在量の指標値と標準血清検体に含まれる当該複数の基準miRNAの存在量の指標値を求め、その両指標値の差又は比を求めて使用することができる。あるいは、個々の基準miRNAごとに血清検体に含まれる存在量と標準血清検体に含まれる存在量との差又は比を求めて使用することができる。あるいはまた、個々の基準miRNAごとに血清検体に含まれる存在量と標準血清検体に含まれる存在量との差又は比を足し合わせて、次の判定工程において、基準miRNAごとに所定基準に従って判定を行い、血清検体に含まれるmiRNAの品質の良否を判定することができる。
<判定工程>
 本発明の判定工程は、比較工程で得られた血清検体に含まれる配列番号1~8で示される塩基配列からなるmiRNAから選択される1又は複数種の基準miRNAの存在量又はその指標値と、標準体液検体に含まれる1又は複数種の基準miRNAの存在量又はその指標値との差又は比を用いて、血清検体の品質の良否を判定する工程である。
 品質の良否の判定は、血清検体と標準血清検体に含まれる1又は複数種の基準miRNAの存在量又はその指標値の差又は比について、品質の良否を判定するための基準とする閾値を予め設定し、その閾値を超えるか否かによって品質の良否(良又は不良)を判定することができる。すなわち、当該基準miRNAの存在量又はその指標値の差又は比が、予め任意に定める閾値を超える場合に、血清検体の品質が不良であると判定し、当該基準miRNAの存在量又はその指標値の差又は比が基準とする閾値以下である場合に、血清検体に含まれるmiRNAの品質を良であると判定することができる。この態様の判定工程は、閾値との比較を行なう第2の比較工程ということができる。
 判定工程においては、比較工程で得られた基準miRNAの存在量又はその指標値の差又は比を対数に変換し、その対数値を用いて判定を行ってもよい。対数変換を行なう場合、底が2の対数に変換することが一般的である。
 配列番号1~8で示される塩基配列からなるmiRNAのうち、1つのmiRNAを基準miRNAとして用いる場合には、比較工程において、血清検体に含まれる当該基準miRNAの存在量と標準血清検体に含まれる当該基準miRNAの存在量の差又は比を求め、この値が基準とする閾値を超えるか否かによって品質の良否を判定することができる。
 基準miRNAとして、配列番号1~8で示される塩基配列からなるmiRNAのうち複数の基準miRNAを用いる場合には、血清検体に含まれる当該複数の基準miRNAの存在量の指標値と標準血清検体に含まれる当該複数の基準miRNAの存在量の指標値を求め、これら指標値の差又は比が基準とする閾値を超えるか否かによって品質の良否を判定することができる。ここで、指標値としては、複数の基準miRNAの存在量の合計値、平均値または中央値を用いることができる。
 また基準miRNAとして、配列番号1~8で示される塩基配列からなるmiRNAのうち複数の基準miRNAを用いる場合には、個々の基準miRNAごとに血清検体に含まれる存在量と標準血清検体に含まれる存在量との差又は比を求め、基準miRNAごとに基準とする閾値を超えるか否かを判定してもよい。この場合には、複数の基準miRNAによる個々の判定に優先順位付けや重み付けをすること等により、さらなる判断基準を設けることが好ましい。
 1つの基準miRNAを用いる場合には、配列番号1~8に示すmiRNAから1つのmiRNAを任意に選択すればよいが、下記実施例において血小板添加によりその存在量が特に鋭敏に変動することが示されているものを選択することが好ましく、例えば、hsa-miR-1973(配列番号1)、hsa-miR-3907(配列番号2)のいずれかを選択することが好ましい。下記実施例において、血小板添加により存在量が顕著に変動することが示されているmiRNAは、臨床検査の現場において採血条件に依存して生じる血清検体の劣化を特に鋭敏に検知できるmiRNAであるといえる。また、より厳格な又は高精度の評価を行う場合には、複数の基準miRNAを用いることが好ましい。例えば、2~6個の基準miRNAを用いることがより好ましく、特に、hsa-miR-1973及びhsa-miR-3907の2つが含まれることが好ましい。また、例えば遺伝子発現解析を目的とする場合であって、その標的miRNAが配列番号1~8に示すmiRNAのいずれかに該当する場合は、当該標的miRNAを除くmiRNAから基準miRNAを選択すればよい。
 判定の基準とする閾値は、評価の目的や求める精度などに応じて任意に設定することができる。例えば、標準血清検体に含まれる基準miRNAの存在量を閾値に設定することができる(下記式3A)。
 1つの基準miRNAを用いる場合には、例えば、以下の式1~9に示す判断基準に従って、体液検体に含まれる基準miRNAの存在量と標準血清検体に含まれる基準miRNAの存在量とを比較し、品質の良否を判定することができる。
 式1Aに示すように、血清検体に含まれる基準miRNAの存在量eと標準血清検体に含まれる基準miRNAの存在量Eを測定し、その存在量比(e/E)を求め、この値が閾値t1を上回る場合に体液検体に含まれるmiRNAの品質を不良と判定することができる。閾値t1としては、好ましくは1以上、例えば1である。
  e/E>t1  (式1A)。
 また、式2Aに示すように、血清検体に含まれる基準miRNAの存在量eと標準血清検体に含まれる基準miRNAの存在量Eの差(e-E)を求め、この値が閾値t2を上回る場合に血清検体に含まれるmiRNAの品質を不良と判定することができる。例えば、閾値t2を0とし、存在量の差(e-E)が0より大きい(プラス)である場合に、体液検体に含まれるmiRNAの品質を不良と判定することができる。閾値t2は、例えば0である。
  e-E>t2  (式2A)。
 また、閾値t3として、標準血清検体に含まれる基準miRNAの存在量Eを採用してもよく、その場合は、式3Aに示すように、血清検体に含まれる基準miRNAの存在量eが閾値t3、すなわち標準血清検体に含まれる基準miRNAの存在量Eを上回る場合に、血清検体に含まれるmiRNAの品質を不良と判定することができる。これは、式2Aを採用する場合において、閾値t2を0とする場合に相当する。
  e>E(=t3)  (式3A)。
 実験操作上、測定結果へ影響を与える要因を考慮する場合には、血球の混入に依存しない安定に存在するmiRNAである内因性miRNA(以下、「安定的内因性miRNA」という。)を利用して判定をしてもよい。安定的内因性miRNAは、血清検体中に、その品質に依存せず一定量が含まれているmiRNAであり、好ましくは、一定の採血条件(使用する採血管及び遠心の条件が一定)の下で調製された血清検体において、RNA分解前(検体を入手又は調製した直後等で、それに含まれる核酸試料の分解が進行していないような時点)とRNA分解後(検体の入手又は調製後、一定時間が経過しており、それに含まれる核酸試料の分解が進行していると予想される時点)で比較してその存在量の比が0.90以上、より好ましくは0.95以上であるようなmiRNAを選定することができる。例えば、配列番号17で示される塩基配列からなるhsa-miR-4463等を安定的内因性miRNAとして用いることができる。血清検体に含まれる標的miRNAの遺伝子発現解析を行う場合には、前記の補正工程で用いる「補正用内因性miRNA」を「安定的内因性miRNA」として共通に使用することができる。
 安定的内因性miRNAを利用して血清検体に含まれるmiRNAの品質の良否を判定する場合には、例えば、式4Aに示すように、血清検体に含まれる基準miRNAの存在量eと安定的内因性miRNAの存在量cとの存在量比(e/c)、及び、標準血清検体に含まれる基準miRNAの存在量Eと安定的内因性miRNAの存在量Cとの存在量比(E/C)を求め、これら2つの各存在量比の比が閾値t4を上回る場合に、血清検体に含まれるmiRNAの品質を良と判定することができる。この場合の閾値t4は、好ましくは1である。
 あるいは、式5Aに示すように、血清検体に含まれる基準miRNAの存在量eと安定的内因性miRNAの存在量cとの存在量差(e-c)、及び、標準血清検体に含まれる基準miRNAの存在量Eと安定的内因性miRNAの存在量Cとの存在量差(E-C)を求め、これら2つの各存在量差の比が閾値t5を上回る場合に、血清検体に含まれるmiRNAの品質を不良と判定することができる。この場合の閾値t5は、好ましくは1である。
  (e/c)/(E/C)>t4  (式4A)
  (e-c)/(E-C)>t5  (式5A)。
 また、式6Aに示すように、血清検体に含まれる基準miRNAの存在量eと安定的内因性miRNAの存在量cとの存在量比(e/c)、及び、標準血清検体に含まれる基準miRNAの存在量Eと安定的内因性miRNAの存在量Cとの存在量比(E/C)を求め、これら2つの各存在量比の差が閾値t6を上回る場合に、体液検体に含まれるmiRNAの品質を不良と判定することができる。閾値t6は、例えば0である。
 あるいは、式7Aに示すように、体液検体に含まれる基準miRNAの存在量eと安定的内因性miRNAの存在量cとの存在量差(e-c)、及び、標準血清検体に含まれる基準miRNAの存在量Eと安定的内因性miRNAの存在量Cとの存在量差(E-C)を求め、これら2つの各存在量差の差が閾値t7を上回る場合に、血清検体に含まれるmiRNAの品質を不良と判定することができる。閾値t7は、例えば0である。
  (e/c)-(E/C)>t6  (式6A)
  (e-c)-(E-C)>t7  (式7A)。
 また、閾値t8として標準血清検体に含まれる基準miRNAの存在量Eと安定的内因性miRNAの存在量Cとの存在量比(E/C)を採用してもよく、その場合は、式8Aに示すように、血清検体に含まれる基準miRNAの存在量eと安定的内因性miRNAの存在量cとの存在量比(e/c)が閾値t8、すなわち標準血清検体に含まれる基準miRNAの存在量Eと安定的内因性miRNAの存在量Cとの存在量比(E/C)を上回る場合に、血清検体に含まれるmiRNAの品質を不良と判定することができる。これは、式6Aを採用する場合において、閾値t6を0とする場合に相当する。
 あるいは、閾値t9として標準血清検体に含まれる基準miRNAの存在量Eと安定的内因性miRNAの存在量Cとの存在量差(E-C)を採用してもよく、その場合は、式9Aに示すように、血清検体に含まれる基準miRNAの存在量eと安定的内因性miRNAの存在量cとの存在量差(e-c)が閾値t9、すなわち標準体液検体に含まれる基準miRNAの存在量Eと安定的内因性miRNAの存在量Cとの存在量差(E-C)を上回る場合に、血清検体に含まれるmiRNAの品質を不良と判定することができる。これは、式7Aを採用する場合において、閾値t7を0とする場合に相当する。
  e/c>E/C(=t8)  (式8A)
  e-c>E-C(=t9)  (式9A)。
 複数のmiRNAを基準miRNAとして用いる場合には、血清検体に含まれる複数の基準miRNAの存在量の指標値と標準血清検体に含まれる当該複数の基準miRNAの存在量の指標値を求め、その両指標値の差又は比を求めて使用することができる。具体的には、上記式1A~式9Aに示す判断基準において、血清検体に含まれる基準miRNAの存在量eに代えて、血清検体に含まれる複数の基準miRNAの存在量の指標値rを、標準血清検体に含まれる基準miRNAの存在量Eに代えて、標準血清検体に含まれる複数の基準miRNAの存在量の指標値Rを、それぞれ用いることにより、式1B~式9Bを用いて判定することができる。指標値としては、各存在量の合計値、平均値又は中央値を使用することができる。
  r/R>t1  (式1B)
  r-R>t2  (式2B)
  r>R(=t3)  (式3B)
  (r/c)/(R/C)>t4  (式4B)
  (r-c)/(R-C)>t5  (式5B)
  (r/c)-(R/C)>t6  (式6B)
  (r-c)-(R-C)>t7  (式7B)
  r/c>R/C(=t8)  (式8B)
  r-c>R-C(=t9)  (式9B)。
 ここで、上記の式1A~式9A、式1B~式9Bにおいて、実験の誤差等を考慮して、閾値t1~t9に一定の誤差αの幅を持たせて、それぞれ「t1±α」~「t9±α」としてもよい。この場合の誤差αは任意に設定すればよいが、例えば、式2Aにおいては、Eの10%程度をαとして設定して閾値t2に幅を持たせることができる。
 また、各存在量の閾値として、存在量の値を対数に変換したものを用いてもよい。この場合、その変換にあわせて適切な閾値を設定すればよい。例えば、式1Aを適用する場合に、基準miRNAの存在量比(e/E)を対数値に変換し、その変換にあわせて閾値t1を設定すればよい。この場合、結果的に、存在量e、Eの各対数値の差を求めることになる。
 また、個々の基準miRNAごとに血清検体に含まれる存在量と標準血清検体に含まれる存在量との差又は比を求め、基準miRNAごとに判定基準に従って判定を行い、その結果を総合して血清検体の品質の良否を判定することができる。
 具体的には、例えば、基準miRNAごとの判定において、良と判定された基準miRNAの数が、不良と判定された基準miRNAの数又は任意の所定数を上回る場合に、血清検体の品質を良と判定することができる。逆に、不良と判定された基準miRNAの数が、良と判定された基準miRNAの数又は所定数を上回る場合に、血清検体の品質を不良と判定することができる。また、より厳格な又は高精度の評価を行う場合には、特定の1種の基準miRNAの判定結果が不良の場合に、血清検体の品質を不良と判定してもよい。
 また、例えば遺伝子発現解析を目的とする場合であって、その解析における標的miRNAが配列番号1~8に示すmiRNAのいずれかに該当する場合は、当該標的miRNAを除くmiRNAから基準miRNAを選択すればよい。
 本発明はまた、上記本発明の血清検体の品質評価方法に従い、血清検体の品質を評価するために、1又は複数のコンピュータに、
 血清検体より調製されたRNAサンプル及び標準血清検体より調製された標準RNAサンプルを用いて測定された、配列番号1~8で示される塩基配列からなるmiRNAから選択される1又は複数種の基準miRNAの血清検体及び標準血清検体中の存在量測定値を取得する、測定値取得工程;
 血清検体中の1又は複数種の基準miRNAの存在量測定値又はその指標値を、標準血清検体中の1又は複数種の基準miRNAの存在量測定値又はその指標値と比較して、血清検体及び標準血清検体間での1又は複数の基準miRNAの存在量測定値又はその指標値の差又は比を得る、比較工程;及び
 前記比較工程で得られた、1又は複数種の基準miRNAの存在量測定値又はその指標値の差又は比に基づいて、血清検体の品質の良否を判定する、判定工程
を実行させるための(すなわち、1又は複数のコンピュータに上記各工程を実行させる命令を含む)プログラム、及び該プログラムを記録したコンピュータ読み取り可能な記録媒体を提供する。
 例えば、所望の標的miRNAの発現量を解析するmiRNA発現解析装置に該プログラムが組み込まれ、測定値取得工程において、該装置に含まれる発現測定部又は該装置とは別個の発現測定装置が測定した、血清検体及び標準血清検体中の基準miRNAの存在量の測定値を取得し、該測定値を用いて各工程が実施されてよい。測定値取得工程では、基準miRNAの存在量の測定値に加え、上記の発現測定部又は発現測定装置が測定した、発現解析の対象とする1以上の標的miRNAの、血清検体中の存在量の測定値も取得してよい。1以上の標的miRNAの測定値の取得は、基準miRNAの測定値の取得と同時に行なわれてもよいし、判定手段による品質判定結果に応じて(すなわち、判定結果が品質良であった場合に)行なわれてもよい。取得する各測定値は、補正済みの測定値であってもよい。または、該プログラムが、取得した測定値を補正する処理をコンピュータに実行させる命令を含んでいてもよい。各工程の詳細は、本発明の血清検体の品質評価方法に関して上記に説明した通りである。品質が良という判定結果が得られた場合に、miRNA発現量解析装置が上記した1以上の標的miRNAの発現解析を実行して解析結果をモニター等に出力する構成としてもよい。あるいは、標的miRNAの発現解析が血清検体の品質評価と同時に又は順次に実行され、品質良という判定結果の場合には、標的miRNAの発現解析結果がreliableである旨を明示し、品質不良という判定結果の場合には、標的miRNAの発現解析結果がunreliableないしはlow reliableである旨を明示して、発現解析結果が出力される構成にしてもよい。
 また、本発明は、上記本発明の血清検体の品質評価方法に従い、血清検体の品質を評価する装置(以下、品質評価装置)を提供する。該品質評価装置は、
 血清検体より調製されたRNAサンプル及び標準血清検体より調製された標準RNAサンプルを用いて測定された、配列番号1~8で示される塩基配列からなるmiRNAから選択される1又は複数種の基準miRNAの血清検体及び標準血清検体中の存在量測定値を記憶する、記憶手段と;
 血清検体中の1又は複数種の基準miRNAの存在量測定値又はその指標値を、標準血清検体中の1又は複数種の基準miRNAの存在量測定値又はその指標値と比較して、血清検体及び標準血清検体間での1又は複数の基準miRNAの存在量測定値又はその指標値の差又は比を得る、比較手段と;
 前記比較手段によって得られた、1又は複数種の基準miRNAの存在量測定値又はその指標値の差又は比に基づいて、血清検体の品質の良否を判定する、判定手段と
を含む。
 記憶手段が記憶する、1又は複数種の基準miRNAの血清検体及び標準血清検体中の存在量の測定値は、品質評価装置に含まれる発現測定部又は品質評価装置とは別個の発現測定装置が測定した測定値である。1又は複数種の基準miRNAの存在量測定値に加えて、発現測定部又は発現測定装置が測定した、発現解析の対象とする1以上の標的miRNAの、血清検体中の存在量の測定値を記憶してもよい。検体中のmiRNAの測定の詳細は、本発明の血清検体の品質評価方法のうちの<測定工程>で説明した通りである。
 記憶手段が記憶する各測定値は、補正済みの測定値であってもよい。あるいは、品質評価装置が、測定値を補正する処理を実行する補正手段をさらに備えていてもよい。補正の詳細は、本発明の血清検体の品質評価方法のうちの<補正工程>で説明した通りである。
 比較手段は、本発明の血清検体の品質評価方法のうちの比較工程を実施する手段である。詳細は<比較工程>の説明の通りである。
 判定手段は、本発明の血清検体の品質評価方法のうちの判定工程を実施する手段である。詳細は<判定工程>の説明の通りである。
 判定手段は、前記比較手段によって得られた、1又は複数種の基準miRNAの存在量測定値又はその指標値の差又は比に基づいて、血清検体の品質の良否を決定し、決定した品質の良否を出力する、品質良否出力手段と言い換えることができる。品質良否は、典型的には、装置が有するモニター等の表示部に出力されるが、ネットワークを介して装置外部に存在するデータベース等の外部記憶装置に対比解析結果や統計解析結果を出力するように構成することもできる。
 品質の良否の判定は、血清検体と標準血清検体に含まれる1又は複数種の基準miRNAの存在量又はその指標値の差又は比について、品質の良否を判定するための基準とする閾値を予め設定し、その閾値を超えるか否かによって品質の良否(良又は不良)を判定する手段であってよい。この態様の判定手段は、閾値との比較を行なう第2の比較手段ということができる。
 品質評価装置は、所望の標的miRNAの発現量を解析するmiRNA発現解析装置に品質評価部として組み込まれ、miRNA発現解析装置の一部を構成する形態であってもよい。この場合、記憶手段が記憶する測定値とは、miRNA発現解析装置に含まれる発現測定部又は該装置とは別個の発現測定装置が測定した測定値である。上述の通り、記憶部に記憶される測定値は、補正済みの測定値であってもよいし、miRNA発現解析装置が補正手段をさらに備えていてもよい。
 判定手段により、品質が良という判定結果が得られた場合に、miRNA発現量解析装置が上記した1以上の標的miRNAの発現解析を実行して解析結果を出力する構成としてもよい。あるいは、標的miRNAの発現解析が血清検体の品質評価と同時に又は順次に実行され、品質良という判定結果の場合には、標的miRNAの発現解析結果がreliableである旨を明示し、品質不良という判定結果の場合には、標的miRNAの発現解析結果がunreliableないしはlow reliableである旨を明示して、発現解析結果が出力される構成にしてもよい。
 「プログラム」とは、任意の言語や記述方法にて記述されたデータ処理方法であり、ソースコードやバイナリコード等の形式を問わない。なお、「プログラム」は必ずしも単一的に構成されるものに限られず、複数のモジュールやライブラリとして分散構成されるものや、OS(Operating System)に代表される別個のプログラムと協働してその機能を達成するものをも含む。記録媒体を読み取るための具体的な構成、読み取り手順、あるいは、読み取り後のインストール手順等については、周知の構成や手順を用いることができる。
 「記録媒体」は、フレキシブルディスク、光磁気ディスク、ROM、EPROM、EEPROM、CD-ROM、MO、DVD等の任意の「可搬用の物理媒体」(非一過性の記録媒体)であり得る。あるいは、LAN、WAN、インターネットに代表される、ネットワークを介してプログラムを送信する場合の通信回線や搬送波のように、短期にプログラムを保持する「通信媒体」であり得る。
 本発明はまた、配列番号1~8で示される塩基配列からなるmiRNAから選択される1又は複数種の基準miRNAを捕捉するためのプローブが固定化された支持体を含む、miRNA品質評価用チップを提供する。該チップは、標的miRNAを捕捉するための1又は複数のプローブをさらに含み、血清検体のmiRNA発現解析時にmiRNAの(血清検体の)品質を評価できるようにしたものであってもよい。ここで、標的miRNA、配列番号1~8で示される塩基配列からなるmiRNAから選択される1又は複数種の基準miRNA、これらを捕捉するためのプローブ、また、これらの捕捉プローブが固定化される支持体は、前記のとおりである。
 本発明のチップは、前記の補正工程で用いるハウスキーピングRNA、特定の補正用内因性miRNA、添加する外部標準核酸等の補正用核酸、特に補正用内因性miRNAを捕捉するためのプローブが、さらに支持体に固定化されていてもよい。
 以下、本発明において基準miRNAとして使用し得る、配列番号1~8で示される塩基配列からなるmiRNAについて、公知の情報等を説明する。
 基準miRNAとして使用される「miR-1973遺伝子」又は「miR-1973」という用語は、配列番号1で示される塩基配列からなるhsa-miR-1973遺伝子(miRBase Accession No. MIMAT0009448)やその他生物種ホモログもしくはオーソログなどを包含する。hsa-miR-1973遺伝子は、Shotte Dら、2009年、Leukemia、23巻、p313-322に記載される方法によって得ることができる。また、「hsa-miR-1973」は、その前駆体としてヘアピン様構造をとる「hsa-miR-1973」(miRBase Accession No. MI0009983、配列番号9)が知られている。「miR-1973」や「hsa-miR-1973」という語には、このようなヘアピン様構造の前駆体も包含される。
 基準miRNAとして使用される「miR-3907遺伝子」又は「miR-3907」という用語は、配列番号2で示される塩基配列からなるhsa-miR-3907遺伝子(miRBase Accession No. MIMAT0018179)やその他生物種ホモログもしくはオーソログなどを包含する。hsa-miR-3907遺伝子は、Creighton CJら、2010年、PLoS One、5巻、e9637に記載される方法によって得ることができる。また、「hsa-miR-3907」は、その前駆体としてヘアピン様構造をとる「hsa-miR-3907」(miRBase Accession No. MI0016410、配列番号10)が知られている。「miR-3907」や「hsa-miR-3907」という語には、このようなヘアピン様構造の前駆体も包含される。
 基準miRNAとして使用される「miR-7851-3p遺伝子」又は「miR-7851-3p」という用語は、配列番号3で示される塩基配列からなるhsa-miR-7851-3p遺伝子(miRBase Accession No. MIMAT0030426)やその他生物種ホモログもしくはオーソログなどを包含する。hsa-miR-7851-3p遺伝子は、Ple Hら、2012年、PLoS One、7巻、e50746に記載される方法によって得ることができる。また、「hsa-miR-7851-3p」は、その前駆体としてヘアピン様構造をとる「hsa-miR-7851」(miRBase Accession No. MI0025521、配列番号11)が知られている。「miR-7851」や「hsa-miR-7851」という語には、このようなヘアピン様構造の前駆体も包含される。
 基準miRNAとして使用される「miR-4454遺伝子」又は「miR-4454」という用語は、配列番号4で示される塩基配列からなるhsa-miR-4454遺伝子(miRBase Accession No. MIMAT0018976)やその他生物種ホモログもしくはオーソログなどを包含する。hsa-miR-4454遺伝子は、Jima DDら、2010年、Blood、116巻、e118-e127に記載される方法によって得ることができる。また、「hsa-miR-4454」は、その前駆体としてヘアピン様構造をとる「hsa-miR-4454」(miRBase Accession No. MI0016800、配列番号12)が知られている。「miR-4454」や「hsa-miR-4454」という語には、このようなヘアピン様構造の前駆体も包含される。
 基準miRNAとして使用される「miR-6822-5p遺伝子」又は「miR-6822-5p」という用語は、配列番号5で示される塩基配列からなるhsa-miR-6822-5p遺伝子(miRBase Accession No. MIMAT0027544)やその他生物種ホモログもしくはオーソログなどを包含する。hsa-miR-6822-5p遺伝子は、Ladewig Eら、2012年、Genome Res、22巻、p1634-1645に記載される方法によって得ることができる。また、「hsa-miR-6822-5p」は、その前駆体としてヘアピン様構造をとる「hsa-miR-6822」(miRBase Accession No. MI0022667、配列番号13)が知られている。「miR-6822」や「hsa-miR-6822」という語には、このようなヘアピン様構造の前駆体も包含される。
 基準miRNAとして使用される「miR-940遺伝子」又は「miR-940」という用語は、配列番号6で示される塩基配列からなるhsa-miR-940遺伝子(miRBase Accession No. MIMAT0004983)やその他生物種ホモログもしくはオーソログなどを包含する。hsa-miR-940遺伝子は、Lui WOら、2007年、Cancer Res、67巻、p6031-6043に記載される方法によって得ることができる。また、「hsa-miR-940」は、その前駆体としてヘアピン様構造をとる「hsa-miR-940」(miRBase Accession No. MI0005762、配列番号14)が知られている。「miR-940」や「hsa-miR-940」という語には、このようなヘアピン様構造の前駆体も包含される。
 基準miRNAとして使用される「miR-7975遺伝子」又は「miR-7975」という用語は、配列番号7で示される塩基配列からなるhsa-miR-7975遺伝子(miRBase Accession No. MIMAT0031178)やその他生物種ホモログもしくはオーソログなどを包含する。hsa-miR-7975遺伝子は、Velthut-Meikasら、2013年、Mol Endocrinol、27巻、p1128-1141に記載される方法によって得ることができる。また、「hsa-miR-7975」は、その前駆体としてヘアピン様構造をとる「hsa-miR-7975」(miRBase Accession No. MI0025751、配列番号15)が知られている。「miR-7975」や「hsa-miR-7975」という語には、このようなヘアピン様構造の前駆体も包含される。
 基準miRNAとして使用される「miR-7977遺伝子」又は「miR-7977」という用語は、配列番号8で示される塩基配列からなるhsa-miR-7977遺伝子(miRBase Accession No. MIMAT0031180)やその他生物種ホモログもしくはオーソログなどを包含する。hsa-miR-7977遺伝子は、Velthut-Meikasら、2013年、Mol Endocrinol、27巻、p1128-1141に記載される方法によって得ることができる。また、「hsa-miR-7977」は、その前駆体としてヘアピン様構造をとる「hsa-miR-7977」(miRBase Accession No. MI0025753、配列番号16)が知られている。「miR-7977」や「hsa-miR-7977」という語には、このようなヘアピン様構造の前駆体も包含される。
 以下、本発明の血清検体の品質(血清検体への血小板の混入)に依存して変動する基準miRNAを選択した過程を、より具体的に説明する。もっとも、本発明は下記実施例に限定されるものではない。なお、下記実施例では、検体中のmiRNA存在量の測定値を外部標準核酸等により補正した後の数値を当該miRNAの「発現量」と表現している。
<実施例1>血小板混入を検知できる基準miRNAの選択
(DNAマイクロアレイ)
 東レ株式会社製の“3D-Gene” human miRNA oligo chip(miRBase release 21対応)を用いて以下の実験を行なった。
(血清検体の調製)
 健常人3名よりそれぞれ血清分離用採血管1本、血漿分離用採血管1本ずつ採血した。採血後、血漿分離用採血管を800G10分室温で遠心し、血小板を得た。また、血清分離用採血管は室温(23℃)条件下で0.5時間静置し室温で2300G10分遠心して血清を得た。この血清300μlにそれぞれ血小板10万個、100万個、1000万個を添加した血球混入血清を作製し、血球を添加しない血清(基準条件)と共に-80℃に保存した。
(検体RNAの調製とmiRNA存在量の測定)
 上記のように調製され、冷凍庫に保存された血清を同時に融解し、血清検体に含まれるRNA(以下、検体RNAという。)を抽出した。抽出には、“3D-Gene” RNA extraction reagent from liquid sample kit(東レ社)を用いた。
 得られた検体RNAを、“3D-Gene” miRNA labeling kit(東レ社)を用いて標識した。標識時には、miRNAの存在量の測定値を発現量に補正するために、外部標準核酸を添加した。標識した検体RNAについて、“3D-Gene” miRNA chip(東レ社)を用い、その標準プロトコールに従い、ハイブリダイゼーションを行った。ハイブリダイゼーション後のDNAマイクロアレイをマイクロアレイスキャナー(東レ社)に供して蛍光強度を測定した。スキャナーの設定は、レーザー出力100%、フォトマルチプライヤーの電圧設定をAUTO設定にした。
 DNAマイクロアレイで検出された各miRNAの測定値を、底が2の対数に変換し、標識時に添加した外部標準核酸による補正を行い、各miRNAの発現量を取得した。
(基準miRNAの選択)
 上記のようにして得られた各血清検体のmiRNA存在量を比較し、添加した血小板数に依存して存在量が変動する程度の大きいmiRNAを抽出することで、基準miRNAの選択を行った。
 まず、血小板を添加しない血清のみの各miRNAの発現量を基準とし、血清300μlに血小板10万個、100万個、1000万個を添加した血清の各miRNAの発現量との比(10万、100万又は1000万個添加時の発現量/添加なしの発現量)を得た。次に、添加した血小板数に依存して存在量が変動する検出されたmiRNAのうち、血小板特異的に高発現領域で安定して検出されるmiRNAに絞込みをした結果、表1に示す基準miRNAを得た。非特許文献1で見られたmiRNA11種(miR-126-3p、miR-126-5p、miR-145-5p、miR-17-5p、miR-19a-5p、miR―19b-5p、miR-21-5p、miR-222-3p、miR-26b-5p、miR-425-5p、miR-93-5p)はいずれも発現が低く選択されなかった。また、非特許文献2で報告された50種(miR-126-3p、miR-191-5p、miR-16-5p、miR-24-3p、miR-223-3p、miR-17、miR-106a、miR-103a-3p、miR-15b、miR-320a、miR-20a、miR-146a、miR-21、miR-199a-3p、miR-185-5p、miR-92a-3p、miR-151a-3p、miR-27a-3p、miR-93-5p、miR-106b、miR-26a-5p、miR-130a、miR-221-3p、let-7i-5p、miR-720、miR-222、let-7d-5p、let-7g-5p、miR-30b、miR-19b、let-7a-5p、miR-22、miR-342-3p、miR-486-5p、miR-19a、miR-29a-3p、miR-484、miR-151a-3p、miR-197、miR-107、miR-27b-3p、miR-25、miR-423-3p、miR-30d-5p、let-7e-5p、miR-30c、miR-28-5p、let-7b-5p、miR-15a、miR-18b)はいずれも発現が低く変動量も小さく選択されなかった。
 表1には、8種類(配列番号1~8)の基準miRNAおよび各条件の基準条件からの存在量の個人間の平均変動値、ならびに、上記した式1、式2により求めた各検体中のmiRNAの全体変動指標値を示した。表1に示すmiRNA(配列番号1~8)は、血小板の混入量に依存して発現量が増加し、存在量が1.4倍以上(底2の対数値の差で0.5以上)変動した。
 一般的に、DNAマイクロアレイにおける測定において、存在量1.4倍の変動は十分な差として考えられる。全体変動指標値は、血小板の添加が大きい条件ほど2以上の高い値を示し、検体品質劣化の程度が高いことが確認された。このことから、当該miRNAは、血清検体の品質に依存して、その存在量が変動するmiRNA指標として利用できることが確認された。すなわち、表1に示す基準miRNAは、その存在量を測定することによって、血清検体の品質を知ることが可能であることが分かった。
Figure JPOXMLDOC01-appb-T000003
 図1に、基準条件と血小板の混入量を変化させた条件(3条件)の表1に示す8種類の基準miRNAの存在量を示した。hsa-miR-1973(配列番号1)は血小板添加によりその存在量が鋭敏に高値になる結果となった。例えば、血小板が10万個以上血清検体に混入することによる血清検体品質の劣化を判定する場合には、hsa-miR-1973の存在量3を閾値として設定し、ある血清検体中のhsa-miR-1973存在量がその値を上回る場合には劣化、つまりその検体は品質不良であると判定することが可能である。
 本実施例1の結果より、基準条件の血清検体を標準血清検体として用いて、本発明の方法に従い上記式3Aにより血清検体の品質を評価する場合の閾値t3の具体例を下記表2に示した。表2の例では、閾値t3をE±α(α=0.1~0.7)に設定している。血清検体に含まれる基準miRNAの存在量eが該当する閾値を超える場合に、当該血清検体を品質不良と判定することができる。
Figure JPOXMLDOC01-appb-T000004
<実施例2>複数のmiRNAで血小板混入時における劣化を検知
 単一のmiRNAではなく、任意の2種類の基準miRNAを組み合わせて血清検体品質の劣化を判定することも可能である。
 実施例1の基準条件及び血小板10万個以上混入した条件における、hsa-miR-1973(配列番号1)およびhsa-miR-3907(配列番号2)の存在量を使用した。各条件の血清検体の指標値として、これら2種類のmiRNAの存在量の平均値を用いた。例えば、基準条件の血清の指標値は(2.8 + 4.4) / 2 = 3.6となる。各条件下でのこれらmiRNAの個別の存在量は図1に示す通りであり、血小板10万個以上混入した条件下におけるこれら2種類のmiRNAの存在量の指標値(すなわち平均値)は図2のようになりより鋭敏に高値になる結果となった。例えば、血小板が10万個血清検体に混入することによる血清検体の品質の劣化を判定する場合には、標準血清中のhsa-miR-1973及びhsa-miR-3907の存在量の平均値、又は該平均値±αを閾値として設定し、ある血清検体中のhsa-miR-1973及びhsa-miR-3907の存在量の指標値(平均値)がその閾値を上回る場合には劣化、つまりその検体は品質不良であると判定することが可能である。この判定の態様は、上記した式3Bにおいて、閾値t3をR又はR±αに設定した態様に該当する。
 hsa-miR-1973(配列番号1)およびhsa-miR-3907(配列番号2)の組み合わせ以外の組み合わせで2種類又はそれ以上のmiRNAを用いて同様の判定を行う場合には、2種類又はそれ以上の基準miRNAを表1に示した基準miRNAから選択すればよい。指標値としてそれら2種以上のmiRNAの存在量の平均値を用いる場合には、標準血清検体中の当該miRNAの存在量の平均値、又は該平均値±αを閾値t3として設定し、式3Bに従い判定を行えばよい。つまり、ある血清検体中の当該miRNAの存在量の平均値がその閾値t3を上回った場合に品質不良と判定することができる。例として配列番号1とそれ以外との組合せを図2に示す。
<実施例3>
 健常ヒト1名より採血し、血清検体を調製した。得られた血清を300μL分注し、ただちに-80℃に設定した冷凍庫に収容した。RNAの抽出には、“3D-Gene” RNA extraction reagent from liquid sample kit(東レ社)を用いた。
 得られた検体RNAを、“3D-Gene” miRNA labeling kit(東レ社)を用いて標識し、標識時には、miRNAの存在量の測定値を発現量に補正するために、外部標準核酸を添加した。標識した検体由来RNAは、“3D-Gene” miRNA chip(東レ社)を用い、その標準プロトコールに従い、ハイブリダイゼーションを行った。ハイブリダイゼーション後のDNAマイクロアレイをマイクロアレイスキャナー(東レ社)に供して蛍光強度を測定した。スキャナーの設定は、レーザー出力100%、フォトマルチプライヤーの電圧設定をAUTO設定にした。検出されたmiRNAのシグナル値を、外部標準核酸のシグナル値により補正して、発現量を得た。
 品質の判定に用いる基準miRNAとして、hsa-miR-1973(配列番号1)を選択した。また、市販されている血清検体を、血小板が混入していない標準血清検体として使用し、上記と同様にして、その標準血清検体に含まれるhsa-miR-1973の発現量を得た。血清検体由来のmiRNAの発現量を、標準血清検体由来の対応するmiRNAの発現量で割り返して、両者の発現量比を求めた。閾値は1と設定した。発現量比は0.7であり、閾値を下回ったことから、この血清検体に含まれるmiRNAの品質を良と判定した。
 一方、検出された血清検体由来の全miRNAの発現量と、標準体液検体由来の全miRNAの発現量との相関係数は0.99で0.95を超える高い値であり、血小板由来miRNAが混入していないことが示された。これは、上記本発明による品質の判定結果と一致していた。
<実施例4>
 血清検体を、血清を調製後、血小板10万個を人為的に混入させたものに変更し、これ以外は実施例3と同様にして、血清検体由来及び標準血清検体由来の2種のmiRNA(hsa-miR-1973(配列番号1)とhsa-miR-7977(配列番号8))の発現量を測定した。両検体の発現量の比較は、2種のmiRNAの発現量の平均値を指標値として行った。閾値は1と設定した。その結果、発現量比は1.07であり、閾値を上回ったことから、この血清検体に含まれるmiRNAの品質を不良と判定した。
 一方、検出された血清検体由来の全miRNAの発現量と、標準体液検体由来の全miRNAの発現量との相関係数は0.94で0.95以下の低い値であり、血小板由来miRNAの混入が生じ、品質が悪化していたことが示された。これは、上記本発明による品質の判定結果と一致していた。
<比較例1>
 本発明の血清検体の品質の評価方法を、従来の品質評価方法である血球分析機器による方法と比較するため、上記実施例4で使用した血清検体を用いて血球分析機器(XT-200i(シスメックス社))を用いた品質の評価を実施した。その結果、上記血小板10万個混入時の血清検体から抽出されたRNAと、血小板が混入していない標準血清検体である市販の血清検体から抽出されたRNAを比べても、血球分析機器の結果から血小板10万個混入の有無が確認できなかった。
<比較例2>
 本発明の血清検体の品質の評価方法を、従来の品質評価方法であるフローサイトメーター(Gallios、ベックマンコールター社)による方法と比較するため、上記実施例4で使用した血清検体を用いてフローサイトメーターによる品質の評価を実施した。測定では、血小板に非特異的な蛍光標識抗体を血清と反応させたときの値47万個/300μLをバックグラウンドとして、CD41-APCの蛍光強度を測定した。その結果、上記血小板10万個混入時の血清検体から抽出されたRNAと、血小板が混入していない標準血清検体である市販の血清検体から抽出されたRNAを比べても、フローサイトメーターの結果からはいずれもバックグラウンド以下となり、血小板の10万個混入の有無を確認できなかった。
<比較例3>
 本発明の血清検体の品質の評価方法を、従来の品質評価方法であるELISA(酵素結合免疫吸着法)による方法と比較するため、上記実施例4で使用した血清検体とCD41抗体及びCD63抗体を用いてELISAによる品質の評価を実施した。最初に標準血清検体を測定した結果、いずれも高値を示し、血球混入による差を測定することはできなかった。これは、壊れた血小板由来の表面分子が血清中に混在したため血小板と分離できなかったためと考えられる。いずれの方法でも血球の混入有無を確認できず正しく品質の判定ができなかった。
 <実施例5>
 実施例3と同様にして、品質の判定に用いる基準miRNAとして、hsa-miR-3907(配列番号2)を用いることに加えて、安定的内因性miRNAであるhsa-miR-4463(配列番号17)も利用して、血清検体由来及び標準体液検体由来のこれら2種のmiRNAの発現量を測定した。上記した式4Aにより、品質の判定を行なった。閾値は1と設定した。
 その結果、hsa-miR-3907の発現量をhsa-miR-4463の発現量で割り返した発現量比は、血清検体由来では0.16であり、標準体液検体由来では0.15であった。これら発現量比の比は0.92であり、閾値を下回ったため、検体に含まれるmiRNAの品質を良と判定した。
 一方、検出された血清検体由来の全miRNAの発現量と、標準体液検体由来の全miRNAの発現量との相関係数は0.99で0.95を超える高い値であり、血清検体に含まれるmiRNAの品質が良好で血小板中miRNAが混入していなかったことが示された。これは、上記本発明による品質の判定結果と一致していた。

Claims (11)

  1.  血清検体の品質を評価する方法であって、
     配列番号1~8で示される塩基配列からなるmiRNAから選択される1又は複数種の基準miRNAの、血清検体中の存在量及び標準血清検体中の存在量を測定する、測定工程;
     前記測定工程で得られた血清検体に含まれる前記1又は複数種の基準miRNAの存在量又はその指標値を、標準血清検体に含まれる1又は複数種の基準miRNAの存在量又はその指標値と比較して、血清検体及び標準血清検体間での1又は複数の基準miRNAの存在量又はその指標値の差又は比を得る、比較工程;及び
     前記比較工程で得られた、1又は複数種の基準miRNAの存在量又はその指標値の差又は比に基づいて、血清検体の品質の良否を判定する、判定工程
    を含む、前記方法。
  2.  前記判定工程では、前記血清検体に含まれる1又は複数種の基準miRNAの存在量又はその指標値と、前記標準血清検体に含まれる1又は複数種の基準miRNAの存在量又はその指標値との差又は比が、基準として予め定める閾値を超える場合に血清検体の品質を不良と判定する、請求項1に記載の方法。
  3.  前記測定工程が、支持体上に固定化された配列番号1~8で示される塩基配列からなるmiRNAから選択される1又は複数の基準miRNAを捕捉するためのプローブと、標識物質で標識された、血清検体由来核酸試料及び標準血清検体由来核酸試料とをそれぞれ接触させてハイブリダイゼーションを行ない、血清検体及び標準血清検体中の当該1又は複数の基準miRNAの存在量を測定することを含む、請求項1または2に記載の方法。
  4.  前記測定工程で得られた前記1又は複数種の基準miRNAの存在量の測定値を補正する補正工程をさらに含み、補正済みの存在量の値を用いて前記判定工程が実施される、請求項1~3のいずれか1項に記載の方法。
  5.  前記測定工程において、血清検体中の1又は複数種の基準miRNAの存在量の測定と同時に、当該血清検体中の標的miRNAの存在量を測定することを含む、請求項1~4のいずれか1項に記載の方法。
  6.  前記測定工程が、支持体上に固定化された標的miRNAを捕捉するためのプローブ及び配列番号1~8で示される塩基配列からなるmiRNAから選択される1又は複数種の基準miRNAを捕捉するためのプローブと、標識物質で標識された血清検体由来核酸試料とを接触させてハイブリダイゼーションを行ない、血清検体中の標的miRNA及び当該1又は複数種の基準miRNAの存在量をそれぞれ測定することを含む、請求項5に記載の方法。
  7.  測定工程で得られた、血清検体中の標的miRNAの存在量の測定値、及び前記1又は複数種の基準miRNAの存在量の測定値を補正する補正工程をさらに含む、請求項5又は6に記載の方法。
  8.  血清検体の品質を評価するために、1又は複数のコンピュータに、
     血清検体より調製されたRNAサンプル及び標準血清検体より調製された標準RNAサンプルを用いて測定された、配列番号1~8で示される塩基配列からなるmiRNAから選択される1又は複数種の基準miRNAの血清検体及び標準血清検体中の存在量測定値を取得する、測定値取得工程;
     血清検体中の1又は複数種の基準miRNAの存在量測定値又はその指標値を、標準血清検体中の1又は複数種の基準miRNAの存在量測定値又はその指標値と比較して、血清検体及び標準血清検体間での1又は複数の基準miRNAの存在量測定値又はその指標値の差又は比を得る、比較工程;及び
     前記比較工程で得られた、1又は複数種の基準miRNAの存在量測定値又はその指標値の差又は比に基づいて、血清検体の品質の良否を判定する、判定工程
    を実行させるためのプログラム。
  9.  請求項8に記載のプログラムを記録した、コンピュータ読み取り可能な記録媒体。
  10.  配列番号1~8で示される塩基配列からなるmiRNAから選択される1又は複数種の基準miRNAを捕捉するためのプローブが固定化された支持体を含む、miRNA品質評価用チップ。
  11.  血清検体の品質を評価する装置であって、
     血清検体より調製されたRNAサンプル及び標準血清検体より調製された標準RNAサンプルを用いて測定された、配列番号1~8で示される塩基配列からなるmiRNAから選択される1又は複数種の基準miRNAの血清検体及び標準血清検体中の存在量測定値を記憶する、記憶手段と;
     血清検体中の1又は複数種の基準miRNAの存在量測定値又はその指標値を、標準血清検体中の1又は複数種の基準miRNAの存在量測定値又はその指標値と比較して、血清検体及び標準血清検体間での1又は複数の基準miRNAの存在量測定値又はその指標値の差又は比を得る、比較手段と;
     前記比較手段によって得られた、1又は複数種の基準miRNAの存在量測定値又はその指標値の差又は比に基づいて、血清検体の品質の良否を判定する、判定手段と
    を含む、前記装置。
PCT/JP2020/047912 2019-12-26 2020-12-22 血清検体の品質評価方法 WO2021132231A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020571894A JPWO2021132231A1 (ja) 2019-12-26 2020-12-22

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-235355 2019-12-26
JP2019235355 2019-12-26

Publications (1)

Publication Number Publication Date
WO2021132231A1 true WO2021132231A1 (ja) 2021-07-01

Family

ID=76574149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/047912 WO2021132231A1 (ja) 2019-12-26 2020-12-22 血清検体の品質評価方法

Country Status (2)

Country Link
JP (1) JPWO2021132231A1 (ja)
WO (1) WO2021132231A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015190586A1 (ja) * 2014-06-13 2015-12-17 東レ株式会社 大腸がんの検出キット又はデバイス及び検出方法
WO2015194627A1 (ja) * 2014-06-18 2015-12-23 東レ株式会社 食道がんの検出キット又はデバイス及び検出方法
WO2017146033A1 (ja) * 2016-02-22 2017-08-31 東レ株式会社 体液由来miRNAの品質を評価する方法
WO2018056432A1 (ja) * 2016-09-26 2018-03-29 東レ株式会社 血液検体の溶血を検出する方法及び溶血検出用チップ
WO2019068139A1 (en) * 2017-10-03 2019-04-11 GeneSeq Pty Ltd METHOD FOR DIAGNOSING, STADIFYING AND MONITORING A MELANOMA USING MICROARN GENE EXPRESSION
US20190177770A1 (en) * 2017-12-08 2019-06-13 Roche Molecular Systems, Inc. Detection of nucleic acids from platelet enriched plasma samples
WO2020027098A1 (ja) * 2018-07-31 2020-02-06 東レ株式会社 体液検体の品質評価方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015190586A1 (ja) * 2014-06-13 2015-12-17 東レ株式会社 大腸がんの検出キット又はデバイス及び検出方法
WO2015194627A1 (ja) * 2014-06-18 2015-12-23 東レ株式会社 食道がんの検出キット又はデバイス及び検出方法
WO2017146033A1 (ja) * 2016-02-22 2017-08-31 東レ株式会社 体液由来miRNAの品質を評価する方法
WO2018056432A1 (ja) * 2016-09-26 2018-03-29 東レ株式会社 血液検体の溶血を検出する方法及び溶血検出用チップ
WO2019068139A1 (en) * 2017-10-03 2019-04-11 GeneSeq Pty Ltd METHOD FOR DIAGNOSING, STADIFYING AND MONITORING A MELANOMA USING MICROARN GENE EXPRESSION
US20190177770A1 (en) * 2017-12-08 2019-06-13 Roche Molecular Systems, Inc. Detection of nucleic acids from platelet enriched plasma samples
WO2020027098A1 (ja) * 2018-07-31 2020-02-06 東レ株式会社 体液検体の品質評価方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BLONDAL, T. ET AL.: "Assessing sample and miRNA profile quality in serum and plasma or other biofluids.", METHODS, vol. 59, no. 1, 2013, pages S1 - S6, XP055198603, DOI: 10.1016/j.ymeth.2012.09.015 *

Also Published As

Publication number Publication date
JPWO2021132231A1 (ja) 2021-07-01

Similar Documents

Publication Publication Date Title
JP6939546B2 (ja) 体液由来miRNAの品質を評価する方法
JPWO2018056432A1 (ja) 血液検体の溶血を検出する方法及び溶血検出用チップ
US9856532B2 (en) Markers and methods for detecting posttraumatic stress disorder (PTSD)
JP6819848B2 (ja) miRNA発現量の比較解析方法及び装置
JP7363478B2 (ja) 体液検体の品質評価方法
CN103687963A (zh) 利用与转移相关的多基因标签来确定肝细胞癌的预后的方法
WO2021132231A1 (ja) 血清検体の品質評価方法
CN107460256B (zh) 一种lncRNA作为生物标志物在检测肠道病毒EV71中的应用
JP6705171B2 (ja) 小型rnaの発現量の補正方法及び装置
WO2021132232A1 (ja) 血清検体の品質評価方法
JP5998674B2 (ja) 小型rna発現量の比較解析方法
CN112513267B (zh) 体液样本的品质评价方法
JP2021153487A (ja) 血液検体からのmiRNAを含む血清検体の調製方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020571894

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20906850

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20906850

Country of ref document: EP

Kind code of ref document: A1