WO2021132131A1 - Lamp - Google Patents

Lamp Download PDF

Info

Publication number
WO2021132131A1
WO2021132131A1 PCT/JP2020/047625 JP2020047625W WO2021132131A1 WO 2021132131 A1 WO2021132131 A1 WO 2021132131A1 JP 2020047625 W JP2020047625 W JP 2020047625W WO 2021132131 A1 WO2021132131 A1 WO 2021132131A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
light
phosphor
substrate
led
Prior art date
Application number
PCT/JP2020/047625
Other languages
French (fr)
Japanese (ja)
Inventor
正宏 小西
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to CN202080090138.9A priority Critical patent/CN115135923A/en
Priority to JP2021567428A priority patent/JP7437419B2/en
Priority to KR1020227025210A priority patent/KR20220119119A/en
Publication of WO2021132131A1 publication Critical patent/WO2021132131A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • F21K9/232Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings specially adapted for generating an essentially omnidirectional light distribution, e.g. with a glass bulb
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • F21K9/238Arrangement or mounting of circuit elements integrated in the light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices
    • F21V23/003Arrangement of electric circuit elements in or on lighting devices the elements being electronics drivers or controllers for operating the light source, e.g. for a LED array
    • F21V23/004Arrangement of electric circuit elements in or on lighting devices the elements being electronics drivers or controllers for operating the light source, e.g. for a LED array arranged on a substrate, e.g. a printed circuit board
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/74Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • F21V9/32Elements containing photoluminescent material distinct from or spaced from the light source characterised by the arrangement of the photoluminescent material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the present invention relates to a lamp.
  • Patent Document 1 discloses a light bulb type lighting device including an LED as a light emitting element. Specifically, a plurality of LEDs are arranged in an annular shape on the substrate, and the light emitted from the LEDs is output to the outside via the cover member.
  • An object of the present invention is to provide a lamp capable of adjusting the light emitted from a phosphor substrate when a light emitting element is mounted to a light having an emission color different from the light emitted by the light emitting element.
  • the lamp of the present invention includes a substrate and The light emitting element mounted on the substrate and A drive circuit that supplies electric power to the light emitting element to drive the light emitting element,
  • the substrate is Insulating base material and A phosphor layer which is arranged on one surface of the insulating base material and whose emission peak wavelength is in the visible light region when the emission of the light emitting element is used as excitation light, and a phosphor layer containing an organic resin. To be equipped.
  • the substrate on which the light emitting element is mounted is configured as a phosphor substrate, and the light emitted from the phosphor substrate can be adjusted to light having a different emission color from the light emitted by the light emitting element.
  • FIG. 1 is a perspective view of the LED bulb 100 of the present embodiment.
  • FIG. 2 is an exploded perspective view of the LED bulb 100.
  • the cover member 110 side will be described as the upper side
  • the base 132 side will be described as the lower side.
  • the LED bulb 100 includes a cover member 110, an LED module 120, a body 130, and a drive circuit 140.
  • the LED module 120 includes a phosphor substrate 122 and an LED chip 121.
  • the phosphor substrate 122 has a substantially circular shape when viewed from above.
  • one LED chip 121 is mounted in the center of the phosphor substrate 122.
  • the LED chip 121 is, for example, a CSP (Chip Scale Package) in which a flip chip LED is incorporated.
  • the phosphor substrate 122 As an example of the phosphor substrate 122, a substantially circular shape is shown in the top view, but a rectangle or other appropriate shape is selected according to the shape of the LED bulb 100, the number of mounted LED chips 121, the mounting position, the arrangement, and the like.
  • the LED module 120b has a configuration in which one LED chip 121 is arranged in the center of a rectangular (square) phosphor substrate 122b.
  • a plurality of LED chips 221 may be arranged in a grid pattern on a rectangular phosphor substrate 222.
  • a plurality of LED chips 321 may be arranged in an annular shape on the circular phosphor substrate 322.
  • the phosphor substrate 122 has a configuration in which a phosphor layer is provided on one surface of the insulating substrate.
  • the LED chip 121 is mounted on the phosphor substrate 122. The specific structures and features of the phosphor substrate 122 and the LED chip 121 will be described later in FIGS. 5 to 9.
  • the body portion 130 is formed of, for example, aluminum die-cast.
  • a heat radiation fin 131 is formed in a slit shape on the surface of the body portion 130 as a heat radiation means. Further, the surface of the body 130 is coated with a heat radiating paint and electrically insulated. An internal space is formed in the body portion 130, and a base 132 is attached to the lower portion of the body portion 130.
  • the heat radiating fin 131 is exemplified as the heat radiating means, there are also a heat radiating fan, a heat radiating opening, and a heat radiating slit. Based on the required heat dissipation performance, noise performance, etc., the optimum heat dissipation means is appropriately used.
  • a power supply drive circuit 140 is arranged in the internal space of the body 130, and the above-mentioned LED module 120 is mounted on the power supply drive circuit 140 so as to cover the internal space.
  • a heat radiating fan is provided, a temperature sensor is provided in the LED light bulb 100, and the drive circuit 140 controls the driving of the heat radiating fan, so that the inside of the LED light bulb 100 can be controlled to a desired temperature range.
  • the cover member 110 is made of, for example, a thermoplastic resin or glass, has a spherical shape as shown in the figure, and the lower side in the figure (that is, the body portion 130 side) is open.
  • the cover member 110 is attached at an open portion so as to cover the upper portion of the body portion 130 to which the LED module 120 and the drive circuit 140 are attached.
  • the cover member 110 may contain a diffusing material.
  • the drive circuit 140 includes an LED driver IC, a capacitor, and the like, and controls the on-duty (off-duty) of the drive element Q by PWM (Pulse Width Modulation) by switching operation to bring the current flowing through the LED chip 121 to a desired value. Control.
  • PWM Pulse Width Modulation
  • FIG. 4 is a circuit example focusing on the LED drive circuit for the drive circuit 140.
  • the drive circuit 140 includes a drive element Q of the LED chip 121, an LED driver 141 that PWM-controls the drive element Q, a rectifier circuit 142 that rectifies the power of a commercial AC power supply AC, a step-down chopper circuit 143, and a current detection resistor. It is equipped with 144.
  • This circuit configuration is an example.
  • the drive element Q may be included in the LED driver 141, or the drive circuit 140 may be integrated with the LED module 120.
  • the function of converting the commercial AC power supply AC into direct current may be provided as a separate body (for example, a dedicated power supply).
  • FIG. 5 is a partial cross-sectional view of the light emitting substrate 10 which is a specific structure of the light emitting element 20 (LED module 120).
  • Each of the light emitting elements 20 is a CSP (Chip Scale Package) in which a flip chip LED 22 (hereinafter, simply referred to as “LED 22”) is incorporated as described above.
  • LED 22 a flip chip LED 22
  • One or more light emitting elements 20 are arranged on the surface 31 (an example of one surface) of the phosphor substrate 30.
  • the light emitting elements 20 are provided on the phosphor substrate 30 in a state of being regularly arranged over the entire surface 31.
  • the correlated color temperature of the light emitted by the light emitting element 20 is, for example, 3,018K.
  • the light emitting element 20 is radiated (cooled) so as to fall within the range of 50 ° C. to 100 ° C. from room temperature, taking the phosphor substrate 30 as an example, by using, for example, the above-mentioned heat radiating means during the light emitting operation.
  • the phosphor substrate 30 of the present embodiment includes an insulating layer 32 (an example of an insulating substrate), an electrode layer 34, a phosphor layer 36, and a back surface pattern layer (not shown).
  • the phosphor layer 36 is arranged on the surface 31 of the insulating layer 32 and the electrode layer 34, except for a plurality of electrode pairs 34A, which will be described later.
  • the phosphor substrate 30 of the present embodiment is manufactured by processing (etching or the like) a double-sided plate (hereinafter referred to as "motherboard MB") in which copper foil layers are provided on both sides of the insulating plate.
  • motherboard MB a double-sided plate
  • CS-3305A manufactured by Risho Kogyo Co., Ltd. is used.
  • the shape is circular or rectangular when viewed from the front surface 31 and the back surface 33 as an example.
  • the material is, for example, an insulating material containing a bismaleimide resin and a glass cloth.
  • the thickness is, for example, 100 ⁇ m to 200 ⁇ m.
  • the coefficient of thermal expansion (CTE) in the vertical direction and the horizontal direction is, for example, 10 ppm / ° C. or less in the range of 50 ° C. to 100 ° C., respectively. From another point of view, the coefficient of thermal expansion (CTE) in the vertical direction and the horizontal direction is 6 ppm / K, respectively, as an example.
  • the glass transition temperature for example, is higher than 300 ° C.
  • the storage elastic modulus is larger than 1.0 ⁇ 10 10 Pa and smaller than 1.0 ⁇ 10 11 Pa in the range of 100 ° C to 300 ° C.
  • the electrode layer 34 of the present embodiment is a metal layer provided on the surface 31 side of the insulating layer 32.
  • the electrode layer 34 of this embodiment is, for example, a copper foil layer (a layer made of Cu). In other words, the electrode layer 34 contains copper at least on its surface.
  • the electrode layer 34 has a pattern provided on the insulating layer 32, and is electrically connected to a terminal (not shown) to which a connector (not shown) is joined. Then, the electrode layer 34 supplies the electric power supplied from the external power source (drive circuit 140 in the first embodiment) to the light emitting element 20 at the time of configuring the light emitting substrate 10 by directly attaching the lead wire or through the connector. To do.
  • a part of the electrode layer 34 is a plurality of electrode pairs 34A to which the plurality of light emitting elements 20 are bonded. As shown in the figure, as an example, the plurality of electrode pairs 34A project outward from the wiring portion 34B in the thickness direction of the insulating layer 32 (fluorescent substrate 30).
  • the region on the surface 31 of the insulating layer 32 where the electrode layer 34 is arranged is, for example, a region of 60% or more of the surface 31 of the insulating layer 32.
  • the phosphor layer 36 of the present embodiment is arranged on a portion of the surface 31 of the insulating layer 32 and the electrode layer 34 other than the plurality of electrode pairs 34A.
  • the region where the phosphor layer 36 is arranged on the surface 31 of the insulating layer 32 is, for example, 80% or more of the region on the surface 31 of the insulating layer 32.
  • the phosphor layer 36 of the present embodiment is, for example, an insulating layer containing a phosphor and a binder, which will be described later.
  • the phosphor contained in the phosphor layer 36 is fine particles that are held in a state of being dispersed in a binder, and has a property of exciting the light emitted by each light emitting element 20 as excitation light.
  • the phosphor of the present embodiment has a property that the emission peak wavelength when the emission of the light emitting element 20 is used as excitation light is in the visible light region.
  • the binder may be, for example, an epoxy-based binder, an acrylate-based binder, a silicone-based binder, or the like, and may have an insulating property equivalent to that of the binder contained in the solder resist.
  • the phosphor contained in the phosphor layer 36 of the present embodiment is, for example, an ⁇ -type sialone phosphor containing Eu, a ⁇ -type sialon phosphor containing Eu, a CASN phosphor containing Eu, and Eu. It is considered to be at least one or more phosphors selected from the group consisting of SCASSN phosphors containing.
  • the above-mentioned phosphor is an example of the present embodiment, and may be a phosphor other than the above-mentioned phosphor, such as YAG, LuAG, BOS and other visible light-excited phosphors.
  • M is at least one element containing at least Ca selected from the group consisting of Li, Mg, Ca, Y and lanthanide elements (excluding La and Ce), and has a valence of M.
  • ax + 2y m
  • x is 0 ⁇ x ⁇ 1.5, 0.3 ⁇ m ⁇ 4.5, and 0 ⁇ n ⁇ 2.25.
  • examples of the nitride phosphor include a CASN phosphor containing Eu, a SCANS phosphor containing Eu, and the like.
  • the EU-containing CASN phosphor (an example of a nitride phosphor) is represented by, for example, the formula CaAlSiN 3 : Eu 2+ , using Eu 2+ as an activator and a crystal made of alkaline earth silicate as a base. Refers to a red phosphor.
  • the SCASN phosphor containing Eu is excluded.
  • the Eu-containing SCASSN phosphor (an example of a nitride phosphor) is represented by, for example, the formula (Sr, Ca) AlSiN 3 : Eu 2+ , which comprises Eu 2+ as an activator and is composed of an alkaline earth silicate nitride.
  • a red phosphor whose parent is a crystal. The above is the description of the configuration of the light emitting substrate 10 and the phosphor substrate 30 of the present embodiment.
  • FIG. 6 is a diagram for explaining the light emitting operation of the light emitting substrate 10, and illustrates the light emitting operation of the plurality of light emitting elements 20.
  • the light emitting element 20 of FIG. 6 corresponds to the LED module 120 of FIGS. 1 and 2.
  • the operation switch for operating the light emitting element 20 for example, the function of the drive circuit 140 in FIGS. 1 and 2
  • power supply from the commercial AC power supply AC to the electrode layer 34 via the drive circuit 140 is started.
  • the plurality of light emitting elements 20 radiate and emit light L. A part of the light L reaches the surface 31 of the phosphor substrate 30.
  • the behavior of the light L will be described separately according to the traveling direction of the emitted light L.
  • a part of the light L emitted from each light emitting element 20 is emitted to the outside without being incident on the phosphor layer 36.
  • the wavelength of the light L remains the same as the wavelength of the light L when emitted from each light emitting element 20.
  • the light of the LED 22 itself in a part of the light L emitted from each light emitting element 20 is incident on the phosphor layer 36.
  • the above-mentioned "light of the LED 22 itself in a part of the light L” is the light of the emitted light L that has not been color-converted by the phosphor of each light emitting element 20 (CSP itself), that is, the LED 22. It means its own light (as an example, light having a blue color (wavelength near 470 nm)).
  • the phosphor excites and emits excitation light.
  • the reason why the phosphor is excited is that the phosphor dispersed in the phosphor layer 36 uses a phosphor (visible light excited phosphor) having an excitation peak in blue light.
  • a part of the energy of the light L is used for exciting the phosphor, so that the light L loses a part of the energy.
  • the wavelength of the light L is converted (wavelength conversion is performed). For example, depending on the type of phosphor in the phosphor layer 36 (for example, when a red CASN is used as the phosphor), the wavelength of light L becomes longer (for example, 650 nm).
  • the excitation light in the phosphor layer 36 may be emitted from the phosphor layer 36 as it is, but some of the excitation light goes to the lower electrode layer 34. Then, a part of the excitation light is emitted to the outside by reflection at the electrode layer 34.
  • the wavelength of the excitation light by the phosphor is 600 nm or more, the reflection effect can be expected even if the electrode layer 34 is Cu.
  • the wavelength of the light L differs from the above example depending on the type of the phosphor in the phosphor layer 36, but in any case, the wavelength conversion of the light L is performed.
  • a reflection effect can be expected if the electrode layer 34 or its surface is made of, for example, Ag (plating).
  • a reflective layer may be provided on the lower side (insulating layer 32 side) of the phosphor layer 36.
  • the reflective layer is provided with, for example, a white paint such as a titanium oxide filler.
  • each light emitting element 20 the light L emitted radially by each light emitting element 20
  • the light emitting substrate 10 of the present embodiment is used.
  • the bundle of light L when each light emitting element 20 emits is irradiated together with the excitation light as a bundle of light L containing light L having a wavelength different from the wavelength of light L when each light emitting element 20 emits.
  • the light emitting substrate 10 of the present embodiment includes light L having a wavelength longer than the wavelength of light L when each light emitting element 20 emits a bundle of light L when each light emitting element 20 emits light L. Is irradiated with the above-mentioned excitation light as a bundle of.
  • the emission wavelength of the phosphor contained in the phosphor layer 36 and the emission wavelength of the phosphor that seals (or covers) the LED 22 in the light emitting element 20 (CSP) are the same (at the same correlated color temperature).
  • the light emitting substrate 10 of the present embodiment contains a bundle of light L when each light emitting element 20 emits light L having the same wavelength as the wavelength of light L when each light emitting element 20 emits light L. Is irradiated with the above-mentioned excitation light as a bundle of. The above is the description of the light emitting operation of the light emitting substrate 10 of the present embodiment.
  • FIG. 7 is a diagram for explaining the light emitting operation of the light emitting substrate 10A in the comparative form.
  • the light emitting substrate 10A of the comparative embodiment (the substrate 30A on which the plurality of light emitting elements 20 are mounted) has the same configuration as the light emitting substrate 10 (fluorescent substrate 30) of the present embodiment except that the phosphor layer 36 is not provided. ing.
  • the light L emitted from each light emitting element 20 and incident on the surface 31 of the substrate 30A is reflected or scattered without converting the wavelength.
  • the surface 31 has a structure in which a white reflective paint portion is formed, or a structure in which an electrode portion is exposed as an Ag-plated portion, and is reflected and scattered by such a structure. Therefore, in the case of the substrate 30A of the comparative form, it is not possible to adjust the light to a light emission color different from the light emitted by the light emitting element 20 when the light emitting element 20 is mounted.
  • the light emitting substrate 10A of the comparative form it is not possible to adjust the light to emit light having a different emission color from the light emitted by the light emitting element 20. That is, with the conventional LED bulb, the emission color (chromaticity) varies, and it is difficult to control the chromaticity.
  • the phosphor layer 36 is provided on the surface 31 of the insulating layer 32. Therefore, a part of the light L emitted from each light emitting element 20 is incident on the phosphor layer 36, is wavelength-converted by the phosphor layer 36, and is irradiated to the outside. In this case, a part of the light L radially emitted from each light emitting element 20 is incident on the phosphor layer 36 to excite the phosphor contained in the phosphor layer 36 and generate the excitation light.
  • FIG. 8 is a graph showing the result of the first test of the correlated color temperature of the light emitting substrate 10 of the present embodiment.
  • FIG. 9 is a graph showing the result of the second test of the correlated color temperature of the light emitting substrate 10 of the present embodiment.
  • HE (1) and HE (2) indicate a case where the structure of the electrode layer 34 is the same as that of the present embodiment, and FLT (1) and FLT (2) are a pair of electrode pairs 34A in the electrode layer 34.
  • the correlated color temperature of the light L emitted by the light emitting substrate 10 is lower than the correlated color temperature of the plurality of light emitting elements 20. That is, in the case of the present embodiment (including the above-mentioned modification), the correlated color temperature could be shifted by providing the phosphor layer 36.
  • HE (1) shows a case where the structure of the electrode layer 34 is the same as that of the present embodiment
  • FLT (1) and FLT (2) include a pair of electrode pairs 34A and a wiring portion 34B in the electrode layer 34.
  • the case where the thickness of is the same (modification example) is shown. As shown in the result of FIG.
  • the correlated color temperature of the light L emitted by the light emitting substrate 10 is lower than the correlated color temperature of the plurality of light emitting elements 20. That is, in the case of the present embodiment (including the above-mentioned modification), the correlated color temperature could be shifted by providing the phosphor layer 36.
  • the light L emitted from the phosphor substrate 30 is changed to light having a different emission color from the light L emitted by the light emitting element 20. Can be adjusted.
  • the light L emitted from the phosphor substrate 30 can be adjusted to the light L having a light emitting color different from the light L emitted by the light emitting element 20. From another point of view, according to the light emitting substrate 10 of the present embodiment, it is possible to irradiate the outside with light L having a light emitting color different from the light L emitted by the light emitting element 20.
  • the bundle of light L when each light emitting element 20 emits is used as a bundle of light L containing light L having the same wavelength as the wavelength of light L when each light emitting element 20 emits. Irradiate with the above excitation light. In this case, the effect of alleviating the chromaticity variation of the mounted light emitting element 20 by the phosphor layer 36 can also be exhibited.
  • the lighting equipment having the LED module 120 having such a configuration (the LED lamp 100 described above, the LED lamp 200 described below, the LED lamp 300, and the floodlight 400), high-quality color reproducibility with reduced chromaticity variation. Can be realized. In addition, the color temperature can be adjusted with high accuracy.
  • the region on the surface 31 of the insulating layer 32 where the phosphor layer 36 is arranged is the surface 13. It is effective in the case of 80% or more of the area.
  • the phosphor layer 36 is provided between the adjacent light emitting elements 20 (see FIG. 6). Further, the binder of the phosphor layer 36 has an insulating property equivalent to that of the binder contained in, for example, a solder resist. That is, in the case of the present embodiment, the phosphor layer 36 functions as a solder resist.
  • the phosphor contained in the phosphor layer 36 is a CASN phosphor containing Eu, and the phosphor layer 36 is provided on the wiring portion 34B made of Cu. Therefore, for example, when each light emitting element 20 emits white light L, the excitation light from the CASN phosphor contained in the phosphor layer 36 has a luminous efficiency due to reflection by Cu constituting the lower layer electrode. It is improved (in the configuration of this embodiment, there is a light reflection effect of Cu). Then, in the present embodiment, the white light L can be adjusted to a warmer color light (a color in which the correlated color temperature is shifted to the lower temperature side) by the effect (see FIGS. 8 and 9). In this case, warm color light can be added to the white light of the light emitting element 20, and the special color rendering index R9 value can be increased. This effect is particularly effective for pseudo-white using YAG-based white light (yellow phosphor).
  • the plurality of light emitting elements 20 use a heat radiating means such as the heat radiating fin 131 of FIG. 1 and the cooling fan (heat radiating fan 335 described later in FIG. 11) during the light emitting operation, thereby forming a phosphor substrate.
  • a heat radiating means such as the heat radiating fin 131 of FIG. 1 and the cooling fan (heat radiating fan 335 described later in FIG. 11) during the light emitting operation, thereby forming a phosphor substrate.
  • heat radiating means such as the heat radiating fin 131 of FIG. 1 and the cooling fan (heat radiating fan 335 described later in FIG. 11) during the light emitting operation, thereby forming a phosphor substrate.
  • heat radiating means such as the heat radiating fin 131 of FIG. 1 and the cooling fan (heat radiating fan 335 described later in FIG. 11) during the light emitting operation, thereby forming a phosphor substrate.
  • heat radiating fan 335 heat radiating fan 335 described later in FIG
  • the region (occupied area of the electrode layer 34) on the surface 31 of the insulating layer 32 where the electrode layer 34 is arranged is, for example, a region of 60% or more of the surface 31 of the insulating layer 32 (the area occupied by the electrode layer 34). Area). Therefore, the electrode layer 34 (wiring portion 34B) of the present embodiment functions as a heat radiating plate for heat generated from the plurality of light emitting elements 20 in addition to the function as an electric path for feeding power. Therefore, the light emitting element 20 (LED 22) can stably emit light L in a situation where it is not easily affected by heat.
  • the above is the description of the effect of the first embodiment.
  • the light emitting element 20 includes an LED 22, a chip electrode 23, and a phosphor sealing layer 24, and is provided on the insulating layer 32.
  • the chip electrode 23 is arranged so as to cover the upper surface of the electrode pair 34A as described above, but is shown here as a diagram for arranging the chip electrode 23 on the insulating layer 32 for simplification and not shown.
  • the LED 22 is formed on the chip electrode 23.
  • the LED 22 is composed of N-type and P-type semiconductors, and the boundary portion thereof serves as a light emitting layer called a junction portion.
  • the position on the lowermost side (that is, the insulating layer 32 side) of the light emitting layer is referred to as a junction level 28 for convenience.
  • the position of the junction level 28 is illustrated as the same position as the boundary between the LED 22 and the chip electrode 23, but the position is different depending on the position and orientation of the light emitting layer.
  • the phosphor sealing layer 24 is formed so as to cover the structure in which the chip electrode 23 and the LED 22 are integrated from above. In the figure, the side surface portion of the junction level 28 is covered with the fluorescent material sealing layer 24.
  • the phosphor layer 36 is formed on the insulating layer 32 side from the junction level 28 of the LED 22 which is a light emitting element. More specifically, when the level of the junction level 28 and the level of the upper surface 36a of the phosphor layer 36 are compared, the position in the height direction (board stacking direction) with respect to the upper surface of the insulating layer 32 is the level of the junction level 28. Is higher. For example, in FIG. 10, the height h1 from the insulating layer 32 to the junction level 28 is higher than the height h2 from the insulating layer 32 to the top surface 36a of the phosphor layer.
  • the light emitted from the junction level 28 at an angle of at least upward enters the phosphor layer 36 when it passes through the phosphor sealing layer 24 and is emitted to the outside. There is nothing to do. For example, even the light on the left side in the figure does not hit the phosphor layer 36. Although it depends on the formation position of the phosphor sealing layer 24, the light incident on the phosphor layer 36 is only the light emitted from the junction level 28 at an angle downward.
  • the level of the top surface 36a of the phosphor layer 36 of the phosphor layer 36 (that is, the height h3 from the chip electrode 23) is higher than the junction level 28 and is the same as the position of the top surface of the light emitting element 20. It has become.
  • the level of the upper surface 36a of the phosphor layer is not limited to the same position as the upper surface of the light emitting element 20. Therefore, a part of the light emitted from the junction level 28 through the phosphor sealing layer 24 at an upward angle (for example, the light output from the side surface of the light emitting element 20 like the light on the left side in the drawing). Is incident on the phosphor layer 36. This configuration is suitable when it is desired to incorporate the light output from the side surface side of the light emitting element 20 into the phosphor layer 36.
  • a raised layer 37 is provided between the phosphor layer 36 and the chip electrode 23.
  • the level of the lower surface 36b of the phosphor layer 36 of the phosphor layer 36 (that is, the thickness h4 of the raised layer 37) is higher than the junction level 28. Therefore, a part of the light emitted from the junction level 28 through the phosphor sealing layer 24 at an upward angle (for example, the light on the left side in the figure) is disturbed by the raised layer 37 and fluoresces. Cannot enter the body layer 36. This is because the function of the phosphor layer 36 is not fully exhibited. Therefore, when the raised layer 37 is provided, it is desirable that the level of the lower surface 36b of the phosphor layer is lower than the junction level 28.
  • the light incident on the phosphor layer 36 can be adjusted.
  • the configuration shown in FIG. 12 (the level of the lower surface 36b of the phosphor layer is higher than the junction level 28) is avoided, and the lower surface 36b of the phosphor layer is avoided.
  • FIG. 13 is a diagram showing a schematic configuration of the LED lamp 200 according to the present embodiment.
  • the LED lamp 200 is a so-called horizontal LED lamp, and has a structure of irradiating the lower surface with light by mounting the LED lamp 200 in a horizontal state.
  • the LED lamp 200 includes a tubular housing 210, an LED module 220, a body 230, and a drive circuit (not shown).
  • a transparent cover 211 is attached to the housing 210.
  • the cover 211 may be made of translucent, opalescent, or smoked as well as transparent.
  • the LED module 220 is mounted inside the housing 210.
  • the body portion 230 includes a heat radiation fin 231 and a base 132.
  • a heat radiating fan, a heat radiating opening, and a heat radiating slit may be provided as the heat radiating means.
  • a plurality of LED chips 221 are arranged in a grid pattern on a rectangular phosphor substrate 222.
  • 12 LED chips 221 are provided in a 4 ⁇ 3 arrangement.
  • the basic structure of the phosphor substrate 222 is the same as that of the phosphor substrate 122 of the first embodiment, and the description thereof will be omitted. The difference is that a plurality of LED chips 221 are provided.
  • the plurality of LED chips 221 emit light independently for each row. That is, four LED chips 221 are configured as one series, and three series are arranged in parallel in three rows.
  • the drive circuit has three drive outputs corresponding to the three series bodies, so that each series body can be driven independently. With such a configuration, even if any row (that is, a series) of the LED chips 221 is turned off due to a failure, the entire LED chip 221 is not turned off.
  • the number of LED chips 221 connected to one series is determined by the voltage drop and supply voltage of the LED chips 221.
  • FIG. 14 is a diagram showing a schematic configuration of the LED bulb 300 according to the present embodiment.
  • FIG. 15 shows the LED module 320.
  • the difference from the LED bulb 100 of the first embodiment is that the LED bulb 300 of the present embodiment has a heat dissipation fan 335 and the LED module 320 has a plurality of LED chips 321.
  • the LED bulb 300 includes a cover member 310, an LED module 320, a body portion 330, and a drive circuit (not shown).
  • the LED module 320 includes a phosphor substrate 322 that is substantially circular in top view and a plurality of (here, eight) LED chips 321.
  • the plurality of LED chips 321 are provided in an annular shape on the phosphor substrate 322.
  • the body portion 330 is formed of, for example, aluminum die-cast.
  • the body portion 330 includes a heat radiation fin 333, a body portion main body portion 331, and a base 332 from the upper side (that is, the cover member 310 side).
  • the heat radiation fin 333 includes, for example, a disk-shaped plate provided on the upper side (cover member 310 side) in the drawing, and a plurality of fins extending from the lower side surface of the plate toward the lower side in the drawing at a predetermined height. Each fin extends radially outward, for example in bottom view. Further, the plurality of fins are provided side by side in an annular shape along the radial direction.
  • a region in which the heights of the plurality of fins are shortened is formed in a range of a predetermined diameter from the bottom view center (axis center) of the heat radiation fins 333.
  • a heat dissipation fan 335 is attached to the area.
  • the heat dissipation fan 335 is, for example, a DC fan driven by a brushless motor.
  • the outermost (that is, the outer peripheral edge) of the plurality of fins constituting the heat dissipation fan 335 are not connected and have an open shape. The air flow that cooled the fins is discharged to the outside from the open portion.
  • the LED module 320 (fluorescent substrate 322) is attached to the upper side surface (upper surface of the disk-shaped plate) of the heat radiation fin 333.
  • a concentric body body 331 having a space formed inside is provided below the heat radiation fin 333.
  • the body portion 331 is formed of, for example, aluminum die-cast, and the surface thereof is coated with a heat radiating paint and electrically insulated.
  • the body portion main body portion 331 has an inverted conical trapezium shape that becomes smaller in diameter as it goes downward, and a plurality of slit portions 331a are formed on its side surface.
  • the slit portion 331a communicates the internal space of the body portion main body portion 331 with the outside.
  • a base 332 is provided on the lower side of the body portion 331 in the drawing.
  • a drive circuit (not shown) is arranged in the internal space of the body portion main body 331 as in the first embodiment, and the above-mentioned heat radiation fin 333 is attached on the drive circuit (not shown) so as to cover the internal space.
  • the LED bulb 300 of the present embodiment has the same effect as that of the first and second embodiments. Furthermore, it has the following actions and effects.
  • the heat radiating fan 335 By the action of the heat radiating fan 335, the cooling air flow is taken into the internal space of the body portion 331 from the slit portion 331a and supplied to the heat radiating fin 333.
  • the air flow that has cooled the heat radiating fins 333 is discharged from a portion of the heat radiating fins 333 that is open to the outside.
  • a large number of LED chips 321 are provided in the LED module 320 to provide the LED chip 321 and drive. Even when the heat generated by the circuit 340 is large, it can be effectively cooled (heat radiated). That is, the phosphor substrate 322 can be effectively dissipated (cooled) so as to be within 50 ° C. to 100 ° C. from room temperature as an example. As a result, the LED module 320 can stably emit light L in a situation where it is not easily affected by heat.
  • FIG. 16 is a perspective view of the floodlight 400.
  • FIG. 17 is a perspective view of the LED lamp main body 401, showing a state in which the housing 402 is removed from the floodlight 400 of FIG.
  • the floodlight 400 is used, for example, as lighting for large sports facilities, outdoor commercial facilities, and the like.
  • the floodlight 400 includes a substantially rectangular parallelepiped LED lamp main body 401, a housing 402 for accommodating the LED lamp main body 401, and a power supply device (not shown).
  • the light projection direction that is, the surface on the arrangement side of the LED module 420
  • a plurality of LED lamp main bodies 401 may be configured as one unit and may be integrally housed in the housing 402.
  • the LED lamp main body 401 includes a lamp module 410, a heat radiating plate 440, and a drive circuit (not shown).
  • the lamp module 410 includes a rectangular phosphor substrate 422 and a plurality of LED chips 421 in a plan view (here, when viewed from below).
  • the LED chip 421 is, for example, a CSP in which a flip chip LED is incorporated.
  • the plurality of LED chips 421 are arranged in a houndstooth pattern. More specifically, in the plurality of LED chips 421, a group of 10 LED chips arranged at a predetermined pitch in the longitudinal direction (horizontal direction in the drawing) is arranged in three rows in the lateral direction. Here, the group in the second row is shifted to the right by one LED chip 421 from the groups in the first and third rows in the drawing.
  • the arrangement of the LED chips 421 is not limited to the houndstooth pattern, and may be a regular lattice pattern, and various arrangements can be applied.
  • a heat radiating plate 440 is attached as a heat radiating means on the upper surface of the lamp module 410 (the surface opposite to the surface on which the LED chip 421 is arranged).
  • the heat radiating plate 440 is made of, for example, aluminum die-cast, and a plurality of fins are extended to the upper side in the drawing.
  • a heat dissipation fan may be further provided as the heat dissipation means.
  • the same effect as that of the first to third embodiments can be obtained.
  • the floodlight 400 when the floodlight 400 is installed in a large sports facility, the light emitted from the floodlight 400 is strong, so that it is required to provide a safe environment without adversely affecting the competition of athletes and the like. That is, it is necessary to prevent the competition from being interrupted or injured due to dazzling.
  • the light projected via the phosphor substrate 422 can alleviate the glare of the light directly projected from the LED chip 421, realizing a safe activity environment. it can.
  • an example of the light emitting element 20 is a CSP.
  • an example of the light emitting element 20 may be other than the CSP.
  • it may simply be equipped with a flip chip. It can also be applied to the substrate itself of a COB device.
  • the phosphor layer 36 has a configuration formed on the electrode layer 34 laminated on the insulating layer 32, but the present invention is not limited to this configuration, and the phosphor layer 36 and the electrode layer 34 are not limited to this configuration.
  • An intervening layer layer of insulating material
  • the intervening layer may be provided between the two. By adjusting the thickness and shape of the intervening layer (insulating material layer), the amount of the phosphor layer 36 and the characteristics (direction, amount of fluorescence, etc.) of the light output from the phosphor layer 36 can be adjusted.
  • the lamps (100, 200, 300, 400) according to the embodiment of the present invention are With the substrate (122, 222, 222, 422), The light emitting element (20) mounted on the substrate (122, 222, 222, 422) and A drive circuit (140, 340) that supplies electric power to the light emitting elements (20, 121, 221, 321 and 421) to drive the light emitting element.
  • the substrate (122, 222, 222, 422) is Insulating base material (32) and A phosphor layer composed of phosphor particles arranged on one surface of the insulating base material (32) and having a emission peak wavelength in the visible light region when the emission of the light emitting element (20) is used as excitation light, and an organic resin. (36) and To be equipped. Thereby, the light emitted from the substrate (122, 222, 222, 422) can be adjusted to the light having an emission color different from the light emitted by the light emitting element (20, 121, 222, 222). From another viewpoint, the phosphor layer (36) alleviates the chromaticity variation of the light emitting elements (20, 121, 221, 321 and 421).
  • a heat radiating means (131, 231, 331, 333, 335, 440) that dissipates heat generated by the light emitting drive of the light emitting element (20, 121, 221, 321, 421) is provided.
  • the substrate (122, 222, 222, 422) can be effectively dissipated (cooled) so as to be within 50 ° C. to 100 ° C. from room temperature as an example.
  • a substrate (122, 222, 222, 422) or a drive circuit in which a large number of light emitting elements (20, 121, 221, 321, 421) are provided and the light emitting elements (20, 121, 222, 222) are mounted is provided. Even when the heat generation is large, it can be effectively cooled (heat radiated). As a result, the light L can be stably emitted in a situation where it is not easily affected by heat.
  • the light emitting element (20, 121, 221, 321, 421) is a CSP (121, 221, 321, 421) in which an LED (22) is incorporated and packaged in a chip size.
  • CSP 121, 221, 321, 421
  • board mounting can be realized stably and at low cost.
  • a plurality of the light emitting elements (20, 120, 220, 320, 420) are provided.
  • a phosphor layer (36) is provided between adjacent light emitting elements (20, 120, 220, 320). Therefore, the excitation light is also emitted from the phosphor layer (36). Therefore, the glare can be reduced as compared with the form without the phosphor layer (36). That is, it is possible to realize a lamp with reduced glare.
  • the plurality of light emitting elements (20, 220, 320, 420) are arranged in a grid pattern on the substrate (222, 422). As a result, it is possible to realize a lamp with suppressed variation in light emission.
  • the plurality of light emitting elements (20, 120, 320) are arranged in an annular shape on the substrate (122, 222). As a result, it is possible to realize a lamp with suppressed variation in light emission.
  • the drive circuit (140) independently drives the plurality of light emitting elements (20, 120, 220, 320) to emit light. Even if one of the light emitting elements is turned off, the influence on the light emission of the other light emitting element can be eliminated. That is, it is possible to suppress the deterioration of the light emission intensity and the quality of the lamp due to the non-lighting of a certain light emitting element to the minimum necessary.
  • the insulating base material (32) is at least one selected from the group consisting of an organic resin substrate, a ceramic substrate, and a plastic molded product.
  • the coefficients of thermal expansion (CTE) in the longitudinal direction and the lateral direction of these materials are almost the same as those in the case of the light emitting element (20), respectively, and the influence of the thermal stress acting on the light emitting element (20) can be suppressed. That is, it is possible to realize a lamp with high reliability.
  • the phosphor particles include at least one selected from the group consisting of CASN, SCANSN, LaSiN, Sr 2 Si 5 N 8 , Ba 2 Si 5 N 8 , ⁇ -type sialon, ⁇ -type sialon, and LuAG.
  • the organic resin contained in the phosphor layer (36) includes any of a silicone resin, an acrylic resin, and an epoxy resin.
  • the phosphor layer 36 functions as a solder resist, and desired insulating properties can be obtained. Thereby, the reliability of the phosphor layer (36), that is, the reliability of the lamp can be improved.
  • the surface of the phosphor layer (36) on the insulating base material side is closer to the insulating base material (32) than the junction level (28) of the LED 22 when the light emitting element is the LED 22. It is formed. Light emitted from the junction level (28), which is the light emitting layer, with an upward angular component may enter the phosphor layer 36 without being disturbed by other configurations (for example, the raised layer 37). it can.
  • LED lamp 210 Housing 211 Cover 331 Body body 331a Body top 331b Heat dissipation slit 331c Body bottom 440 Radiation plate 400 Floodlight 401 LED lamp body

Abstract

An LED bulb (100) is provided with a cover member (110), an LED module (120), a barrel part (130), and a drive circuit (140). The LED module (120) is provided with a phosphor substrate (122), and an LED chip (121) mounted on the phosphor substrate (122). The drive circuit (140) supplies electric power to the LED module (120) to drive light emission of the LED chip (121). In the phosphor substrate (122), a phosphor layer is disposed on one surface of an insulating base material.

Description

灯具Lamp
 本発明は、灯具に関する。 The present invention relates to a lamp.
 特許文献1には、発光素子としてLEDを備えた電球型照明装置が開示されている。具体的には、複数のLEDが基板上に円環状に配置され、それらLEDから出射した光がカバー部材を経由して外部に出力される。 Patent Document 1 discloses a light bulb type lighting device including an LED as a light emitting element. Specifically, a plurality of LEDs are arranged in an annular shape on the substrate, and the light emitted from the LEDs is output to the outside via the cover member.
特開2018―45850号公報Japanese Unexamined Patent Publication No. 2018-45850
 特許文献1に開示の構成において、LEDから出力した光は、そのまま出力されてしまうという課題があった。すなわち、発光素子が搭載された場合に基板から発光される光を発光素子が発光する光と異なる発光色の光に調整することができず、そのような構成の灯具では、所望の発光色が得られず、また、発光色にばらつきが発生することもあるという課題があった。 In the configuration disclosed in Patent Document 1, there is a problem that the light output from the LED is output as it is. That is, it is not possible to adjust the light emitted from the substrate when the light emitting element is mounted to a light having an emission color different from the light emitted by the light emitting element, and in a lamp having such a configuration, the desired emission color can be obtained. There is a problem that it cannot be obtained and that the emission color may vary.
 本発明は、発光素子が搭載された場合に蛍光体基板から発光される光を発光素子が発光する光と異なる発光色の光に調整することができる灯具の提供を目的とする。 An object of the present invention is to provide a lamp capable of adjusting the light emitted from a phosphor substrate when a light emitting element is mounted to a light having an emission color different from the light emitted by the light emitting element.
 本発明の灯具は、基板と、
 前記基板に搭載された発光素子と、
 前記発光素子に電力を供給し発光駆動させる駆動回路と、
 を備え、
 前記基板は、
 絶縁基材と、
 前記絶縁基材の一面に配置され、前記発光素子の発光を励起光としたときの発光ピーク波長が可視光領域にある蛍光体粒子と、有機樹脂とを含む蛍光体層と、
 を備える。
The lamp of the present invention includes a substrate and
The light emitting element mounted on the substrate and
A drive circuit that supplies electric power to the light emitting element to drive the light emitting element,
With
The substrate is
Insulating base material and
A phosphor layer which is arranged on one surface of the insulating base material and whose emission peak wavelength is in the visible light region when the emission of the light emitting element is used as excitation light, and a phosphor layer containing an organic resin.
To be equipped.
 本発明の灯具では、発光素子が搭載される基板が蛍光体基板として構成され、蛍光体基板から発光される光を発光素子が発光する光と異なる発光色の光に調整することができる。 In the lamp of the present invention, the substrate on which the light emitting element is mounted is configured as a phosphor substrate, and the light emitted from the phosphor substrate can be adjusted to light having a different emission color from the light emitted by the light emitting element.
第1の実施形態のLED電球の斜視図である。It is a perspective view of the LED bulb of 1st Embodiment. 第1の実施形態のLED電球の分解斜視図である。It is an exploded perspective view of the LED bulb of 1st Embodiment. 第1の実施形態のLEDモジュールの他の形態を示した図である。It is a figure which showed the other embodiment of the LED module of 1st Embodiment. 第1の実施形態のLEDモジュールの駆動回路の例を示した図である。It is a figure which showed the example of the drive circuit of the LED module of 1st Embodiment. 第1の実施形態のLEDモジュールの一形態である発光基板の部分断面図である。It is a partial cross-sectional view of the light emitting substrate which is one form of the LED module of 1st Embodiment. 第1の実施形態の発光基板の発光動作を説明するための図である。It is a figure for demonstrating the light emitting operation of the light emitting substrate of 1st Embodiment. 第1の実施形態の発光基板の発光動作を説明するための図である。It is a figure for demonstrating the light emitting operation of the light emitting substrate of 1st Embodiment. 第1の実施形態の発光基板の相関色温度の第1試験の結果を表すグラフである。It is a graph which shows the result of the 1st test of the correlation color temperature of the light emitting substrate of 1st Embodiment. 第1の実施形態の発光基板の相関色温度の第2試験の結果を表すグラフである。It is a graph which shows the result of the 2nd test of the correlation color temperature of the light emitting substrate of 1st Embodiment. 第1の実施形態の発光基板におけるLEDのジャンクションと蛍光体層の位置関係を説明する図である。It is a figure explaining the positional relationship between the junction of LED and the phosphor layer in the light emitting substrate of 1st Embodiment. 第1の実施形態の発光基板におけるLEDのジャンクションと蛍光体層の位置関係を説明する図である。It is a figure explaining the positional relationship between the junction of LED and the phosphor layer in the light emitting substrate of 1st Embodiment. 第1の実施形態の発光基板におけるLEDのジャンクションと蛍光体層の位置関係を説明する図である。It is a figure explaining the positional relationship between the junction of LED and the phosphor layer in the light emitting substrate of 1st Embodiment. 第2の実施形態のLEDランプの平面図である。It is a top view of the LED lamp of the 2nd Embodiment. 第3の実施形態のLED電球の平面図である。It is a top view of the LED bulb of the 3rd Embodiment. 第3の実施形態のLEDモジュールの形態を示した図である。It is a figure which showed the form of the LED module of the 3rd Embodiment. 第4の実施形態の投光器の斜視図である。It is a perspective view of the floodlight of the 4th Embodiment. 第4の実施形態の投光器に用いられるLEDランプ本体の斜視図である。It is a perspective view of the LED lamp main body used for the floodlight of 4th Embodiment.
≪第1の実施形態≫
 以下、本実施形態の灯具の一形態であるLED電球100の構成および機能について図1~4を参照して説明する。つぎに、LED電球100の発光ユニットであるLEDユニットの構成および機能について、主に発光基板10に着目して図5を参照しながら説明する。次いで、本実施形態の発光基板10の発光動作について図6、7を参照しながら説明する。さらに、本実施形態の効果について図8、図9等を参照しながら説明する。さらに、図10~図12を参照して、発光基板におけるLEDのジャンクションと蛍光体層の位置関係について説明する。なお、以下の説明において参照するすべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
<< First Embodiment >>
Hereinafter, the configuration and function of the LED bulb 100, which is one form of the lamp of the present embodiment, will be described with reference to FIGS. 1 to 4. Next, the configuration and function of the LED unit, which is the light emitting unit of the LED bulb 100, will be described with reference to FIG. 5, mainly focusing on the light emitting substrate 10. Next, the light emitting operation of the light emitting substrate 10 of the present embodiment will be described with reference to FIGS. 6 and 7. Further, the effects of this embodiment will be described with reference to FIGS. 8, 9, and the like. Further, with reference to FIGS. 10 to 12, the positional relationship between the LED junction and the phosphor layer on the light emitting substrate will be described. In all the drawings referred to in the following description, similar components are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
<第1の実施形態のLED電球の構成及び機能>
 図1は本実施形態のLED電球100の斜視図である。図2はLED電球100の分解斜視図である。なお、図1及び図2では、便宜的にカバー部材110側を上側、口金132側を下側として説明する。
<Structure and function of the LED bulb of the first embodiment>
FIG. 1 is a perspective view of the LED bulb 100 of the present embodiment. FIG. 2 is an exploded perspective view of the LED bulb 100. In addition, in FIGS. 1 and 2, for convenience, the cover member 110 side will be described as the upper side, and the base 132 side will be described as the lower side.
 LED電球100は、カバー部材110と、LEDモジュール120と、胴部130と、駆動回路140とを備える。 The LED bulb 100 includes a cover member 110, an LED module 120, a body 130, and a drive circuit 140.
 LEDモジュール120は、蛍光体基板122と、LEDチップ121とを備える。ここでは、蛍光体基板122は、上面視で略円形を呈している。また、蛍光体基板122の中心に一つのLEDチップ121が搭載されている。LEDチップ121は、例えば、フリップチップLEDが組み込まれたCSP(Chip Scale Package)である。 The LED module 120 includes a phosphor substrate 122 and an LED chip 121. Here, the phosphor substrate 122 has a substantially circular shape when viewed from above. Further, one LED chip 121 is mounted in the center of the phosphor substrate 122. The LED chip 121 is, for example, a CSP (Chip Scale Package) in which a flip chip LED is incorporated.
 蛍光体基板122の一例として上面視で略円形を示しているが、LED電球100の形状やLEDチップ121の搭載数、搭載位置、配置等に応じて、矩形やその他の適宜選択される。例えば、図3の例では、LEDモジュール120bは、矩形(正方形)の蛍光体基板122bの中央に一つのLEDチップ121を配置した構成である。また、後述する第2の実施形態(図13参照)のように、矩形の蛍光体基板222上に複数のLEDチップ221を格子状に配置した構成であってもよい。また、後述する第3の実施形態(図15参照)のように、円形の蛍光体基板322上に複数のLEDチップ321を円環状に配置した構成であってもよい。 As an example of the phosphor substrate 122, a substantially circular shape is shown in the top view, but a rectangle or other appropriate shape is selected according to the shape of the LED bulb 100, the number of mounted LED chips 121, the mounting position, the arrangement, and the like. For example, in the example of FIG. 3, the LED module 120b has a configuration in which one LED chip 121 is arranged in the center of a rectangular (square) phosphor substrate 122b. Further, as in the second embodiment (see FIG. 13) described later, a plurality of LED chips 221 may be arranged in a grid pattern on a rectangular phosphor substrate 222. Further, as in the third embodiment (see FIG. 15) described later, a plurality of LED chips 321 may be arranged in an annular shape on the circular phosphor substrate 322.
 図1、2に戻り、蛍光体基板122は、絶縁基板の一方の面に蛍光体層を設けた構成である。蛍光体基板122の上にLEDチップ121が搭載されている。なお、蛍光体基板122およびLEDチップ121の具体的な構造および特長については、図5から図9で後述する。 Returning to FIGS. 1 and 2, the phosphor substrate 122 has a configuration in which a phosphor layer is provided on one surface of the insulating substrate. The LED chip 121 is mounted on the phosphor substrate 122. The specific structures and features of the phosphor substrate 122 and the LED chip 121 will be described later in FIGS. 5 to 9.
 胴部130は、例えばアルミダイキャスト等で形成されている。胴部130の表面に、放熱手段として、放熱フィン131がスリット状に形成されている。また、胴部130の表面には放熱用塗料が塗装され電気的に絶縁されている。胴部130には内部空間が形成されており、胴部130の下部に口金132が取り付けられている。
 なお、放熱手段として放熱フィン131を例示したが、その他に放熱ファンや放熱開口、放熱スリットがある。必要とされる放熱性能や騒音性能等に基づき、適宜最適な放熱手段が用いられる。
The body portion 130 is formed of, for example, aluminum die-cast. A heat radiation fin 131 is formed in a slit shape on the surface of the body portion 130 as a heat radiation means. Further, the surface of the body 130 is coated with a heat radiating paint and electrically insulated. An internal space is formed in the body portion 130, and a base 132 is attached to the lower portion of the body portion 130.
Although the heat radiating fin 131 is exemplified as the heat radiating means, there are also a heat radiating fan, a heat radiating opening, and a heat radiating slit. Based on the required heat dissipation performance, noise performance, etc., the optimum heat dissipation means is appropriately used.
 胴部130の内部空間には電源駆動回路140が配置され、その上に内部空間を蓋するように上述のLEDモジュール120が取り付けられる。放熱ファンを設ける場合には、LED電球100内に温度センサを設け、駆動回路140が放熱ファンの駆動制御を行うことで、LED電球100の内部を所望の温度範囲に制御できる。 A power supply drive circuit 140 is arranged in the internal space of the body 130, and the above-mentioned LED module 120 is mounted on the power supply drive circuit 140 so as to cover the internal space. When a heat radiating fan is provided, a temperature sensor is provided in the LED light bulb 100, and the drive circuit 140 controls the driving of the heat radiating fan, so that the inside of the LED light bulb 100 can be controlled to a desired temperature range.
 カバー部材110は、例えば熱可塑性樹脂やガラスで形成されており、図示のように球形状を呈し、図示下側(すなわち胴部130側)が開放している。カバー部材110は、LEDモジュール120および駆動回路140が取り付けられた胴部130の上部を覆うように、開放部分で取り付けられる。なお、カバー部材110には、拡散材が含まれてもよい。 The cover member 110 is made of, for example, a thermoplastic resin or glass, has a spherical shape as shown in the figure, and the lower side in the figure (that is, the body portion 130 side) is open. The cover member 110 is attached at an open portion so as to cover the upper portion of the body portion 130 to which the LED module 120 and the drive circuit 140 are attached. The cover member 110 may contain a diffusing material.
 駆動回路140は、LEDドライバICやコンデンサ等を備え、スイッチング動作で駆動素子Qのオンデューティ(オフデューティ)をPWM(Pulse Width Modulation)制御することで、LEDチップ121に流れる電流を所望の値に制御する。 The drive circuit 140 includes an LED driver IC, a capacitor, and the like, and controls the on-duty (off-duty) of the drive element Q by PWM (Pulse Width Modulation) by switching operation to bring the current flowing through the LED chip 121 to a desired value. Control.
<LED駆動回路例>
 図4は、駆動回路140についてLED駆動回路に着目した回路例である。図示のように、駆動回路140は、LEDチップ121の駆動素子Q、駆動素子QをPWM制御するLEDドライバ141、商用交流電源ACの電力を整流する整流回路142、降圧チョッパ回路143、電流検出抵抗144を備える。なお、この回路構成は例示であり、例えば、駆動素子QはLEDドライバ141に含まれる構成でもよく、また、駆動回路140は、LEDモジュール120と一体の構成でもよい。また、商用交流電源ACを直流に変換する機能(例えば整流回路142や降圧チョッパ回路143等)は、外部に別体(例えば専用電源)として設けられてもよい。
<Example of LED drive circuit>
FIG. 4 is a circuit example focusing on the LED drive circuit for the drive circuit 140. As shown in the figure, the drive circuit 140 includes a drive element Q of the LED chip 121, an LED driver 141 that PWM-controls the drive element Q, a rectifier circuit 142 that rectifies the power of a commercial AC power supply AC, a step-down chopper circuit 143, and a current detection resistor. It is equipped with 144. This circuit configuration is an example. For example, the drive element Q may be included in the LED driver 141, or the drive circuit 140 may be integrated with the LED module 120. Further, the function of converting the commercial AC power supply AC into direct current (for example, the rectifier circuit 142, the step-down chopper circuit 143, etc.) may be provided as a separate body (for example, a dedicated power supply).
<本実施形態の発光基板の構成及び機能>
 つづいて図5から図9を参照して、発光素子20の具体的な構造を説明する。以下で説明する発光素子20は、上述のLEDモジュール120に対応する。図5は、発光素子20(LEDモジュール120)の具体的構造である発光基板10の部分断面図である。
<Structure and function of the light emitting substrate of this embodiment>
Subsequently, a specific structure of the light emitting element 20 will be described with reference to FIGS. 5 to 9. The light emitting element 20 described below corresponds to the LED module 120 described above. FIG. 5 is a partial cross-sectional view of the light emitting substrate 10 which is a specific structure of the light emitting element 20 (LED module 120).
<発光素子>
 発光素子20は、それぞれ、上述のようにフリップチップLED22(以下、単に「LED22」という。)が組み込まれたCSP(Chip Scale Package)とされている。一つまたは複数の発光素子20は、蛍光体基板30の表面31(一面の一例)に配置される。複数の場合には、発光素子20は、例えば表面31の全体に亘って規則的に配置された状態で、蛍光体基板30に設けられている。なお、発光素子20が発光する光の相関色温度は、例えば3,018Kである。
<Light emitting element>
Each of the light emitting elements 20 is a CSP (Chip Scale Package) in which a flip chip LED 22 (hereinafter, simply referred to as “LED 22”) is incorporated as described above. One or more light emitting elements 20 are arranged on the surface 31 (an example of one surface) of the phosphor substrate 30. In the case of a plurality of light emitting elements 20, for example, the light emitting elements 20 are provided on the phosphor substrate 30 in a state of being regularly arranged over the entire surface 31. The correlated color temperature of the light emitted by the light emitting element 20 is, for example, 3,018K.
 また、発光素子20は、発光動作時に、例えば上述した放熱手段を用いることで、蛍光体基板30を一例として常温から50℃~100℃の範囲に収まるように放熱(冷却)される。 Further, the light emitting element 20 is radiated (cooled) so as to fall within the range of 50 ° C. to 100 ° C. from room temperature, taking the phosphor substrate 30 as an example, by using, for example, the above-mentioned heat radiating means during the light emitting operation.
 ここで、本明細書で数値範囲に使用する「~」の意味について補足すると、例えば「50℃~100℃」は「50℃以上100℃以下」を意味する。そして、本明細書で数値範囲に使用する「~」は、「『~』の前の記載部分以上『~』の後の記載部分以下」を意味する。 Here, supplementing the meaning of "-" used in the numerical range in this specification, for example, "50 ° C to 100 ° C" means "50 ° C or more and 100 ° C or less". And, "-" used in the numerical range in this specification means "more than the description part before"- "and less than the description part after"- "".
<蛍光体基板>
 本実施形態の蛍光体基板30は、絶縁層32(絶縁基板の一例)と、電極層34と、蛍光体層36と、裏面パターン層(図示せず)とを備えている。蛍光体層36は、一例として、絶縁層32及び電極層34の表面31における、後述する複数の電極対34A以外の部分に配置されている。
<Fluorescent substrate>
The phosphor substrate 30 of the present embodiment includes an insulating layer 32 (an example of an insulating substrate), an electrode layer 34, a phosphor layer 36, and a back surface pattern layer (not shown). As an example, the phosphor layer 36 is arranged on the surface 31 of the insulating layer 32 and the electrode layer 34, except for a plurality of electrode pairs 34A, which will be described later.
 なお、本実施形態の蛍光体基板30は、絶縁板の両面に銅箔層が設けられた両面板(以下、「マザーボードMB」という)を加工(エッチング等)して製造されるが、マザーボードMBは一例として利昌工業株式会社製のCS-3305Aが用いられる。 The phosphor substrate 30 of the present embodiment is manufactured by processing (etching or the like) a double-sided plate (hereinafter referred to as "motherboard MB") in which copper foil layers are provided on both sides of the insulating plate. As an example, CS-3305A manufactured by Risho Kogyo Co., Ltd. is used.
<絶縁層>
 以下、本実施形態の絶縁層32の主な特徴について説明する。
 形状は、前述のとおり、一例として表面31及び裏面33から見て円形や矩形である。
 材質は、一例としてビスマレイミド樹脂及びガラスクロスを含む絶縁材である。
 厚みは、一例として100μm~200μmである。
 縦方向及び横方向の熱膨張係数(CTE)は、それぞれ、一例として、50℃~100℃の範囲において10ppm/℃以下である。また、別の見方をすると、縦方向及び横方向の熱膨張係数(CTE)は、それぞれ、一例として、6ppm/Kである。この値は、本実施形態の発光素子20の場合とほぼ同等(90%~110%、すなわち±10%以内)である。
 ガラス転移温度は、一例として、300℃よりも高い。
 貯蔵弾性率は、一例として、100℃~300℃の範囲において、1.0×1010Paよりも大きく1.0×1011Paよりも小さい。
<Insulation layer>
Hereinafter, the main features of the insulating layer 32 of the present embodiment will be described.
As described above, the shape is circular or rectangular when viewed from the front surface 31 and the back surface 33 as an example.
The material is, for example, an insulating material containing a bismaleimide resin and a glass cloth.
The thickness is, for example, 100 μm to 200 μm.
The coefficient of thermal expansion (CTE) in the vertical direction and the horizontal direction is, for example, 10 ppm / ° C. or less in the range of 50 ° C. to 100 ° C., respectively. From another point of view, the coefficient of thermal expansion (CTE) in the vertical direction and the horizontal direction is 6 ppm / K, respectively, as an example. This value is substantially the same as that of the light emitting device 20 of the present embodiment (90% to 110%, that is, within ± 10%).
The glass transition temperature, for example, is higher than 300 ° C.
As an example, the storage elastic modulus is larger than 1.0 × 10 10 Pa and smaller than 1.0 × 10 11 Pa in the range of 100 ° C to 300 ° C.
<電極層>
 本実施形態の電極層34は、絶縁層32の表面31側に設けられた金属層である。本実施形態の電極層34は一例として銅箔層(Cu製の層)である。別言すれば、電極層34は、少なくともその表面が銅を含む。
<Electrode layer>
The electrode layer 34 of the present embodiment is a metal layer provided on the surface 31 side of the insulating layer 32. The electrode layer 34 of this embodiment is, for example, a copper foil layer (a layer made of Cu). In other words, the electrode layer 34 contains copper at least on its surface.
 電極層34は、絶縁層32に設けられたパターンとされ、コネクタ(図示省略)が接合される端子(図示省略)と導通している。そして、電極層34は、リード線の直付けにより又はコネクタを介して外部電源(第1の実施形態では駆動回路140)から給電された電力を、発光基板10の構成時の発光素子20に供給する。発光素子20が複数の場合には、電極層34の一部は、複数の発光素子20がそれぞれ接合される複数の電極対34Aとされている。図示のように、一例として、複数の電極対34Aは、配線部分34Bよりも絶縁層32(蛍光体基板30)の厚み方向外側に突出している。 The electrode layer 34 has a pattern provided on the insulating layer 32, and is electrically connected to a terminal (not shown) to which a connector (not shown) is joined. Then, the electrode layer 34 supplies the electric power supplied from the external power source (drive circuit 140 in the first embodiment) to the light emitting element 20 at the time of configuring the light emitting substrate 10 by directly attaching the lead wire or through the connector. To do. When there are a plurality of light emitting elements 20, a part of the electrode layer 34 is a plurality of electrode pairs 34A to which the plurality of light emitting elements 20 are bonded. As shown in the figure, as an example, the plurality of electrode pairs 34A project outward from the wiring portion 34B in the thickness direction of the insulating layer 32 (fluorescent substrate 30).
 なお、絶縁層32の表面31における電極層34が配置されている領域(電極層34の専有面積)は、一例として、絶縁層32の表面31の60%以上の領域である。 The region on the surface 31 of the insulating layer 32 where the electrode layer 34 is arranged (occupied area of the electrode layer 34) is, for example, a region of 60% or more of the surface 31 of the insulating layer 32.
<蛍光体層>
 本実施形態の蛍光体層36は、一例として、絶縁層32及び電極層34の表面31における、複数の電極対34A以外の部分に配置されている。そして、本実施形態では、絶縁層32の表面31における蛍光体層36が配置されている領域は、一例として、絶縁層32の表面31における80%以上の領域である。
<Fluorescent layer>
As an example, the phosphor layer 36 of the present embodiment is arranged on a portion of the surface 31 of the insulating layer 32 and the electrode layer 34 other than the plurality of electrode pairs 34A. In the present embodiment, the region where the phosphor layer 36 is arranged on the surface 31 of the insulating layer 32 is, for example, 80% or more of the region on the surface 31 of the insulating layer 32.
 本実施形態の蛍光体層36は、一例として、後述する蛍光体とバインダーとを含む絶縁層である。蛍光体層36に含まれる蛍光体は、バインダーに分散された状態で保持されている微粒子であって、各発光素子20の発光を励起光として励起する性質を有する。具体的には、本実施形態の蛍光体は、発光素子20の発光を励起光としたときの発光ピーク波長が可視光領域にある性質を有する。なお、バインダーは、例えば、エポキシ系、アクリレート系、シリコーン系等で、ソルダーレジストに含まれるバインダーと同等の絶縁性を有するものであればよい。 The phosphor layer 36 of the present embodiment is, for example, an insulating layer containing a phosphor and a binder, which will be described later. The phosphor contained in the phosphor layer 36 is fine particles that are held in a state of being dispersed in a binder, and has a property of exciting the light emitted by each light emitting element 20 as excitation light. Specifically, the phosphor of the present embodiment has a property that the emission peak wavelength when the emission of the light emitting element 20 is used as excitation light is in the visible light region. The binder may be, for example, an epoxy-based binder, an acrylate-based binder, a silicone-based binder, or the like, and may have an insulating property equivalent to that of the binder contained in the solder resist.
(蛍光体の具体例)
 ここで、本実施形態の蛍光体層36に含まれる蛍光体は、一例として、Euを含有するα型サイアロン蛍光体、Euを含有するβ型サイアロン蛍光体、Euを含有するCASN蛍光体及びEuを含有するSCASN蛍光体からなる群から選ばれる少なくとも一種以上の蛍光体とされている。なお、前述の蛍光体は、本実施形態の一例であり、YAG、LuAG、BOSその他の可視光励起の蛍光体のように、前述の蛍光体以外の蛍光体であってもよい。
(Specific example of phosphor)
Here, the phosphor contained in the phosphor layer 36 of the present embodiment is, for example, an α-type sialone phosphor containing Eu, a β-type sialon phosphor containing Eu, a CASN phosphor containing Eu, and Eu. It is considered to be at least one or more phosphors selected from the group consisting of SCASSN phosphors containing. The above-mentioned phosphor is an example of the present embodiment, and may be a phosphor other than the above-mentioned phosphor, such as YAG, LuAG, BOS and other visible light-excited phosphors.
 Euを含有するα型サイアロン蛍光体は、一般式:MEuSi12-(m+n)Al(m+n)16-nで表される。上記一般式中、MはLi、Mg、Ca、Y及びランタニド元素(ただし、LaとCeを除く)からなる群から選ばれる、少なくともCaを含む1種以上の元素であり、Mの価数をaとしたとき、ax+2y=mであり、xが0<x≦1.5であり、0.3≦m<4.5、0<n<2.25である。 Α-sialon phosphor containing Eu, the general formula: represented by M x Eu y Si 12- (m + n) Al (m + n) O n N 16-n. In the above general formula, M is at least one element containing at least Ca selected from the group consisting of Li, Mg, Ca, Y and lanthanide elements (excluding La and Ce), and has a valence of M. When a is set, ax + 2y = m, x is 0 <x ≦ 1.5, 0.3 ≦ m <4.5, and 0 <n <2.25.
 Euを含有するβ型サイアロン蛍光体は、一般式:Si6-zAl8-z(z=0.005~1)で表されるβ型サイアロンに発光中心として二価のユーロピウム(Eu2+)を固溶した蛍光体である。 The β-type sialone phosphor containing Eu is a β-type sialon represented by the general formula: Si 6-z Al z Oz N 8-z (z = 0.005 to 1) and has a divalent europium as a light emitting center. It is a phosphor in which (Eu 2+) is dissolved.
 また、窒化物蛍光体として、Euを含有するCASN蛍光体、Euを含有するSCASN蛍光体等が挙げられる。 Further, examples of the nitride phosphor include a CASN phosphor containing Eu, a SCANS phosphor containing Eu, and the like.
 Euを含有するCASN蛍光体(窒化物蛍光体の一例)は、例えば、式CaAlSiN:Eu2+で表され、Eu2+を付活剤とし、アルカリ土類ケイ窒化物からなる結晶を母体とする赤色蛍光体をいう。なお、本明細書におけるEuを含有するCASN蛍光体の定義では、Euを含有するSCASN蛍光体が除かれる。 The EU-containing CASN phosphor (an example of a nitride phosphor) is represented by, for example, the formula CaAlSiN 3 : Eu 2+ , using Eu 2+ as an activator and a crystal made of alkaline earth silicate as a base. Refers to a red phosphor. In addition, in the definition of the CASN phosphor containing Eu in this specification, the SCASN phosphor containing Eu is excluded.
 Euを含有するSCASN蛍光体(窒化物蛍光体の一例)は、例えば、式(Sr,Ca)AlSiN:Eu2+で表され、Eu2+を付活剤とし、アルカリ土類ケイ窒化物からなる結晶を母体とする赤色蛍光体をいう。
 以上が、本実施形態の発光基板10及び蛍光体基板30の構成についての説明である。
The Eu-containing SCASSN phosphor (an example of a nitride phosphor) is represented by, for example, the formula (Sr, Ca) AlSiN 3 : Eu 2+ , which comprises Eu 2+ as an activator and is composed of an alkaline earth silicate nitride. A red phosphor whose parent is a crystal.
The above is the description of the configuration of the light emitting substrate 10 and the phosphor substrate 30 of the present embodiment.
<本実施形態の発光基板の発光動作>
 次に、本実施形態の発光基板10の発光動作について図6を参照しながら説明する。ここで、図6は、発光基板10の発光動作を説明するための図であり、複数の発光素子20の発光動作について例示する。図6の発光素子20は、図1、2のLEDモジュール120に相当する。
<Light emitting operation of the light emitting substrate of this embodiment>
Next, the light emitting operation of the light emitting substrate 10 of the present embodiment will be described with reference to FIG. Here, FIG. 6 is a diagram for explaining the light emitting operation of the light emitting substrate 10, and illustrates the light emitting operation of the plurality of light emitting elements 20. The light emitting element 20 of FIG. 6 corresponds to the LED module 120 of FIGS. 1 and 2.
 まず、発光素子20を作動させる作動スイッチ(例えば図1や図2の駆動回路140の機能)がオンになると、商用交流電源ACから駆動回路140を介して電極層34への給電が開始され、複数の発光素子20は光Lを放射状に発散出射する。その光Lの一部は蛍光体基板30の表面31に到達する。以下、出射された光Lの進行方向に分けて光Lの挙動について説明する。 First, when the operation switch for operating the light emitting element 20 (for example, the function of the drive circuit 140 in FIGS. 1 and 2) is turned on, power supply from the commercial AC power supply AC to the electrode layer 34 via the drive circuit 140 is started. The plurality of light emitting elements 20 radiate and emit light L. A part of the light L reaches the surface 31 of the phosphor substrate 30. Hereinafter, the behavior of the light L will be described separately according to the traveling direction of the emitted light L.
 各発光素子20から出射された光Lの一部は、蛍光体層36に入射することなく外部に出射される。この場合、光Lの波長は、各発光素子20から出射された際の光Lの波長と同じままである。 A part of the light L emitted from each light emitting element 20 is emitted to the outside without being incident on the phosphor layer 36. In this case, the wavelength of the light L remains the same as the wavelength of the light L when emitted from each light emitting element 20.
 また、各発光素子20から出射された光Lの一部分の中のLED22自身の光は、蛍光体層36に入射する。ここで、前述の「光Lの一部分の中のLED22自身の光」とは、出射された光Lのうち各発光素子20(CSP自身)の蛍光体により色変換されていない光、すなわち、LED22自身の光(一例として青色(波長が470nm近傍)の光)を意味する。 Further, the light of the LED 22 itself in a part of the light L emitted from each light emitting element 20 is incident on the phosphor layer 36. Here, the above-mentioned "light of the LED 22 itself in a part of the light L" is the light of the emitted light L that has not been color-converted by the phosphor of each light emitting element 20 (CSP itself), that is, the LED 22. It means its own light (as an example, light having a blue color (wavelength near 470 nm)).
 そして、LED22自身の光Lが蛍光体層36に分散されている蛍光体に衝突すると、蛍光体が励起して励起光を発する。ここで、蛍光体が励起する理由は、蛍光体層36に分散されている蛍光体が青色の光に励起ピークを持つ蛍光体(可視光励起蛍光体)を使用しているためである。これに伴い、光Lのエネルギーの一部は蛍光体の励起に使われることで、光Lはエネルギーの一部を失う。その結果、光Lの波長が変換される(波長変換がなされる)。例えば、蛍光体層36の蛍光体の種類によっては(例えば、蛍光体に赤色系CASNを用いた場合には)光Lの波長が長くなる(例えば650nm等)。 Then, when the light L of the LED 22 itself collides with the phosphor dispersed in the phosphor layer 36, the phosphor excites and emits excitation light. Here, the reason why the phosphor is excited is that the phosphor dispersed in the phosphor layer 36 uses a phosphor (visible light excited phosphor) having an excitation peak in blue light. Along with this, a part of the energy of the light L is used for exciting the phosphor, so that the light L loses a part of the energy. As a result, the wavelength of the light L is converted (wavelength conversion is performed). For example, depending on the type of phosphor in the phosphor layer 36 (for example, when a red CASN is used as the phosphor), the wavelength of light L becomes longer (for example, 650 nm).
 また、蛍光体層36での励起光はそのまま蛍光体層36から出射するものもあるが、一部の励起光は下側の電極層34に向かう。そして、一部の励起光は電極層34での反射により外部に出射する。以上のように、蛍光体による励起光の波長が600nm以上の場合、電極層34がCuでも反射効果が望める。なお、蛍光体層36の蛍光体の種類によっては光Lの波長が前述の例と異なるが、いずれの場合であっても光Lの波長変換がなされることになる。例えば、励起光の波長が600nm未満の場合、電極層34又はその表面を例えばAg(鍍金)とすれば反射効果が望める。また、蛍光体層36の下側(絶縁層32側)に反射層が設けられてもよい。反射層は、例えば、酸化チタンフィラー等の白色塗料により設けられる。 Further, the excitation light in the phosphor layer 36 may be emitted from the phosphor layer 36 as it is, but some of the excitation light goes to the lower electrode layer 34. Then, a part of the excitation light is emitted to the outside by reflection at the electrode layer 34. As described above, when the wavelength of the excitation light by the phosphor is 600 nm or more, the reflection effect can be expected even if the electrode layer 34 is Cu. The wavelength of the light L differs from the above example depending on the type of the phosphor in the phosphor layer 36, but in any case, the wavelength conversion of the light L is performed. For example, when the wavelength of the excitation light is less than 600 nm, a reflection effect can be expected if the electrode layer 34 or its surface is made of, for example, Ag (plating). Further, a reflective layer may be provided on the lower side (insulating layer 32 side) of the phosphor layer 36. The reflective layer is provided with, for example, a white paint such as a titanium oxide filler.
 以上のとおり、各発光素子20が出射した光L(各発光素子20が放射状に出射した光L)は、それぞれ、上記のような複数の光路を経由して上記励起光とともに外部に照射される。そのため、蛍光体層36に含まれる蛍光体の発光波長と、発光素子20(CSP)におけるLED22を封止した(又は覆う)蛍光体の発光波長とが異なる場合、本実施形態の発光基板10は、各発光素子20が出射した際の光Lの束を、各発光素子20が出射した際の光Lの波長と異なる波長の光Lを含む光Lの束として上記励起光とともに照射する。例えば、本実施形態の発光基板10は、各発光素子20が出射した際の光Lの束を、各発光素子20が出射した際の光Lの波長よりも長い波長の光Lを含む光Lの束として上記励起光とともに照射する。
 これに対して、蛍光体層36に含まれる蛍光体の発光波長と、発光素子20(CSP)におけるLED22を封止した(又は覆う)蛍光体の発光波長とが同じ場合(同じ相関色温度の場合)、本実施形態の発光基板10は、各発光素子20が出射した際の光Lの束を、各発光素子20が出射した際の光Lの波長と同じ波長の光Lを含む光Lの束として上記励起光とともに照射する。
 以上が、本実施形態の発光基板10の発光動作についての説明である。
As described above, the light L emitted by each light emitting element 20 (the light L emitted radially by each light emitting element 20) is irradiated to the outside together with the excitation light via the plurality of optical paths as described above. .. Therefore, when the emission wavelength of the phosphor contained in the phosphor layer 36 and the emission wavelength of the phosphor that seals (or covers) the LED 22 in the light emitting element 20 (CSP) are different, the light emitting substrate 10 of the present embodiment is used. The bundle of light L when each light emitting element 20 emits is irradiated together with the excitation light as a bundle of light L containing light L having a wavelength different from the wavelength of light L when each light emitting element 20 emits. For example, the light emitting substrate 10 of the present embodiment includes light L having a wavelength longer than the wavelength of light L when each light emitting element 20 emits a bundle of light L when each light emitting element 20 emits light L. Is irradiated with the above-mentioned excitation light as a bundle of.
On the other hand, when the emission wavelength of the phosphor contained in the phosphor layer 36 and the emission wavelength of the phosphor that seals (or covers) the LED 22 in the light emitting element 20 (CSP) are the same (at the same correlated color temperature). In the case), the light emitting substrate 10 of the present embodiment contains a bundle of light L when each light emitting element 20 emits light L having the same wavelength as the wavelength of light L when each light emitting element 20 emits light L. Is irradiated with the above-mentioned excitation light as a bundle of.
The above is the description of the light emitting operation of the light emitting substrate 10 of the present embodiment.
<第1の実施形態の効果>
 次に、本実施形態の効果について図面を参照しながら説明する。
<第1の効果>
 第1の効果については、本実施形態を以下に説明する比較形態(図7参照)と比較して説明する。ここで、比較形態の説明において、本実施形態と同じ構成要素等を用いる場合は、その構成要素等に本実施形態の場合と同じ名称、符号等を用いることとする。図7は、比較形態の発光基板10Aの発光動作を説明するための図である。比較形態の発光基板10A(複数の発光素子20を搭載する基板30A)は、蛍光体層36を備えていない点以外は、本実施形態の発光基板10(蛍光体基板30)と同じ構成とされている。
<Effect of the first embodiment>
Next, the effect of this embodiment will be described with reference to the drawings.
<First effect>
The first effect will be described by comparing the present embodiment with a comparative embodiment (see FIG. 7) described below. Here, in the description of the comparative embodiment, when the same components and the like as in the present embodiment are used, the same names, symbols and the like as in the case of the present embodiment are used for the components and the like. FIG. 7 is a diagram for explaining the light emitting operation of the light emitting substrate 10A in the comparative form. The light emitting substrate 10A of the comparative embodiment (the substrate 30A on which the plurality of light emitting elements 20 are mounted) has the same configuration as the light emitting substrate 10 (fluorescent substrate 30) of the present embodiment except that the phosphor layer 36 is not provided. ing.
 比較形態の発光基板10Aの場合、各発光素子20から出射され、基板30Aの表面31に入射した光Lは、波長が変換されることなく反射又は散乱する。より具体的には、表面31は白色反射塗料部となった構造か、電極部がAg鍍金部として露出している構造となっており、そのような構造によって反射、散乱される。そのため、比較形態の基板30Aの場合、発光素子20が搭載された場合に発光素子20が発光する光と異なる発光色の光に調整することができない。換言すると、比較形態の発光基板10Aの場合、発光素子20が発光する光と異なる発光色の光に調整することができない。すなわち、従来のLED電球では、発光色(色度)にバラツキが生じたり、色度コントロールが困難であった。 In the case of the light emitting substrate 10A of the comparative form, the light L emitted from each light emitting element 20 and incident on the surface 31 of the substrate 30A is reflected or scattered without converting the wavelength. More specifically, the surface 31 has a structure in which a white reflective paint portion is formed, or a structure in which an electrode portion is exposed as an Ag-plated portion, and is reflected and scattered by such a structure. Therefore, in the case of the substrate 30A of the comparative form, it is not possible to adjust the light to a light emission color different from the light emitted by the light emitting element 20 when the light emitting element 20 is mounted. In other words, in the case of the light emitting substrate 10A of the comparative form, it is not possible to adjust the light to emit light having a different emission color from the light emitted by the light emitting element 20. That is, with the conventional LED bulb, the emission color (chromaticity) varies, and it is difficult to control the chromaticity.
 これに対して、本実施形態の場合、図5や図6に示すように、絶縁層32の表面31に蛍光体層36が備えられている。そのため、各発光素子20から出射された光Lの一部は、蛍光体層36に入射して、蛍光体層36により波長変換されて、外部に照射される。この場合、各発光素子20から放射状に出射された光Lの一部は、蛍光体層36に入射して、蛍光体層36に含まれる蛍光体を励起させ、励起光を発生させる。 On the other hand, in the case of the present embodiment, as shown in FIGS. 5 and 6, the phosphor layer 36 is provided on the surface 31 of the insulating layer 32. Therefore, a part of the light L emitted from each light emitting element 20 is incident on the phosphor layer 36, is wavelength-converted by the phosphor layer 36, and is irradiated to the outside. In this case, a part of the light L radially emitted from each light emitting element 20 is incident on the phosphor layer 36 to excite the phosphor contained in the phosphor layer 36 and generate the excitation light.
 ここで、図8は、本実施形態の発光基板10の相関色温度の第1試験の結果を表すグラフである。また、図9は、本実施形態の発光基板10の相関色温度の第2試験の結果を表すグラフである。 Here, FIG. 8 is a graph showing the result of the first test of the correlated color temperature of the light emitting substrate 10 of the present embodiment. Further, FIG. 9 is a graph showing the result of the second test of the correlated color temperature of the light emitting substrate 10 of the present embodiment.
 第1試験は、相関色温度が2200K~2300K相当である複数の発光素子20を備えた発光基板10に給電して発光させた場合における、複数の発光素子20に電流(mA)と、相関色温度(K)との関係を調べた結果である。ここで、HE(1)及びHE(2)は電極層34の構造が本実施形態と同じ構造の場合を示し、FLT(1)及びFLT(2)は、電極層34における一対の電極対34Aと配線部分34Bとの厚みが同じ場合(変形例)を示す。図8の結果のとおり、いずれの場合であっても、発光基板10が発光する光Lの相関色温度は、複数の発光素子20の相関色温度よりも低くなっている。すなわち、本実施形態(上記変形例も含む)の場合、蛍光体層36を備えることで相関色温度をシフトさせることができていた。 In the first test, when a light emitting substrate 10 having a plurality of light emitting elements 20 having a correlated color temperature equivalent to 2200 K to 2300 K is fed to emit light, the plurality of light emitting elements 20 are subjected to a current (mA) and a correlated color. This is the result of investigating the relationship with the temperature (K). Here, HE (1) and HE (2) indicate a case where the structure of the electrode layer 34 is the same as that of the present embodiment, and FLT (1) and FLT (2) are a pair of electrode pairs 34A in the electrode layer 34. The case where the thickness of the wiring portion 34B is the same as that of the wiring portion 34B (modification example) is shown. As shown in the result of FIG. 8, in any case, the correlated color temperature of the light L emitted by the light emitting substrate 10 is lower than the correlated color temperature of the plurality of light emitting elements 20. That is, in the case of the present embodiment (including the above-mentioned modification), the correlated color temperature could be shifted by providing the phosphor layer 36.
 また、第2試験は、相関色温度が2900K~3000K相当である複数の発光素子20を備えた発光基板10に給電して発光させた場合における、複数の発光素子20に電流(mA)と、相関色温度(K)との関係を調べた結果である。ここで、HE(1)は電極層34の構造が本実施形態と同じ構造の場合を示し、FLT(1)及びFLT(2)は、電極層34における一対の電極対34Aと配線部分34Bとの厚みが同じ場合(変形例)を示す。図9の結果のとおり、いずれの場合であっても、発光基板10が発光する光Lの相関色温度は、複数の発光素子20の相関色温度よりも低くなっている。すなわち、本実施形態(上記変形例も含む)の場合、蛍光体層36を備えることで相関色温度をシフトさせることができていた。 Further, in the second test, a current (mA) was applied to the plurality of light emitting elements 20 when the light emitting substrate 10 provided with the plurality of light emitting elements 20 having a correlated color temperature equivalent to 2900K to 3000K was fed to emit light. This is the result of investigating the relationship with the correlated color temperature (K). Here, HE (1) shows a case where the structure of the electrode layer 34 is the same as that of the present embodiment, and FLT (1) and FLT (2) include a pair of electrode pairs 34A and a wiring portion 34B in the electrode layer 34. The case where the thickness of is the same (modification example) is shown. As shown in the result of FIG. 9, in any case, the correlated color temperature of the light L emitted by the light emitting substrate 10 is lower than the correlated color temperature of the plurality of light emitting elements 20. That is, in the case of the present embodiment (including the above-mentioned modification), the correlated color temperature could be shifted by providing the phosphor layer 36.
 したがって、本実施形態の蛍光体基板30によれば、発光素子20が搭載された場合に、蛍光体基板30から発光される光Lを発光素子20が発光する光Lと異なる発光色の光に調整することができる。これに伴い、本実施形態の発光基板10によれば、蛍光体基板30から発光される光Lを発光素子20が発光する光Lと異なる発光色の光Lに調整することができる。別の見方をすると、本実施形態の発光基板10によれば、発光素子20が発光する光Lと異なる発光色の光Lを外部に照射することができる。 Therefore, according to the phosphor substrate 30 of the present embodiment, when the light emitting element 20 is mounted, the light L emitted from the phosphor substrate 30 is changed to light having a different emission color from the light L emitted by the light emitting element 20. Can be adjusted. Along with this, according to the light emitting substrate 10 of the present embodiment, the light L emitted from the phosphor substrate 30 can be adjusted to the light L having a light emitting color different from the light L emitted by the light emitting element 20. From another point of view, according to the light emitting substrate 10 of the present embodiment, it is possible to irradiate the outside with light L having a light emitting color different from the light L emitted by the light emitting element 20.
 なお、蛍光体層36に含まれる蛍光体の発光波長と、発光素子20(CSP)におけるLED22を封止した(又は覆う)蛍光体の発光波長とが同じ場合(同じ相関色温度の場合)、本実施形態の発光基板10は、各発光素子20が出射した際の光Lの束を、各発光素子20が出射した際の光Lの波長と同じ波長の光Lを含む光Lの束として上記励起光とともに照射する。この場合、搭載される発光素子20の色度ばらつきを蛍光体層36により緩和する効果も発現できる。すなわち、このような構成のLEDモジュール120を有する灯具(上述のLED電球100や後述のLEDランプ200、LED電球300、投光器400)によると、色度のバラツキを低減した、高品位の色再現性を実現できる。また、色温度の調整を高い精度で実現できる。 When the emission wavelength of the phosphor contained in the phosphor layer 36 and the emission wavelength of the phosphor that seals (or covers) the LED 22 in the light emitting element 20 (CSP) are the same (in the case of the same correlated color temperature), In the light emitting substrate 10 of the present embodiment, the bundle of light L when each light emitting element 20 emits is used as a bundle of light L containing light L having the same wavelength as the wavelength of light L when each light emitting element 20 emits. Irradiate with the above excitation light. In this case, the effect of alleviating the chromaticity variation of the mounted light emitting element 20 by the phosphor layer 36 can also be exhibited. That is, according to the lighting equipment having the LED module 120 having such a configuration (the LED lamp 100 described above, the LED lamp 200 described below, the LED lamp 300, and the floodlight 400), high-quality color reproducibility with reduced chromaticity variation. Can be realized. In addition, the color temperature can be adjusted with high accuracy.
<第2の効果>
 比較形態の場合、図7に示されるように、各発光素子20の配置間隔に起因して外部に照射される光Lに斑が発生する。ここで、光Lの斑が大きいほど、グレアが大きいという。
 これに対して、本実施形態の場合、隣接する発光素子20同士の間に蛍光体層36が設けられている。そのため、蛍光体層36からも励起光が発光される。
 したがって、本実施形態によれば、比較形態に比べて、グレアを小さくすることができる。すなわち、グレアを低減した灯具(上述のLED電球100や後述のLEDランプ200、LED電球300、投光器400)を実現できる。
 特に、本効果は、蛍光体層36が絶縁層32の全面に亘って設けられている場合、具体的には、絶縁層32の表面31における蛍光体層36が配置されている領域が表面13の80%以上の領域のような場合に有効である。
<Second effect>
In the case of the comparative form, as shown in FIG. 7, spots are generated in the light L irradiated to the outside due to the arrangement interval of each light emitting element 20. Here, it is said that the larger the spot of light L, the larger the glare.
On the other hand, in the case of the present embodiment, the phosphor layer 36 is provided between the adjacent light emitting elements 20. Therefore, the excitation light is also emitted from the phosphor layer 36.
Therefore, according to the present embodiment, the glare can be reduced as compared with the comparative embodiment. That is, it is possible to realize a lamp with reduced glare (the LED bulb 100 described above, the LED lamp 200 described below, the LED bulb 300, and the floodlight 400).
In particular, in this effect, when the phosphor layer 36 is provided over the entire surface of the insulating layer 32, specifically, the region on the surface 31 of the insulating layer 32 where the phosphor layer 36 is arranged is the surface 13. It is effective in the case of 80% or more of the area.
<第3の効果>
 また、本実施形態では、前述の説明のとおり、隣接する発光素子20同士の間に蛍光体層36が設けられている(図6参照)。また、蛍光体層36のバインダーは、例えばソルダーレジストに含まれるバインダーと同等の絶縁性を有する。すなわち、本実施形態の場合、蛍光体層36がソルダーレジストの機能を果たす。
<Third effect>
Further, in the present embodiment, as described above, the phosphor layer 36 is provided between the adjacent light emitting elements 20 (see FIG. 6). Further, the binder of the phosphor layer 36 has an insulating property equivalent to that of the binder contained in, for example, a solder resist. That is, in the case of the present embodiment, the phosphor layer 36 functions as a solder resist.
<第4の効果>
 また、本実施形態の場合、例えば、蛍光体層36に含まれる蛍光体をEuを含有するCASN蛍光体とし、蛍光体層36をCu製の配線部分34B上に設けている。そのため、例えば、各発光素子20が白色系の光Lを出射した場合に、蛍光体層36に含まれるCASN蛍光体からの励起光は、下層電極を構成しているCuによる反射により発光効率が向上している(本実施形態の構成では、Cuの光反射効果がある)。そして、本実施形態では、当該効果により、白色系の光Lをより暖かい色系の光(相関色温度が低温側にシフトした色)に調整することができる(図8及び図9参照)。この場合、発光素子20の白色系光に暖色系光を加味することができ、特殊演色係数R9値を上げることができる。本効果は、YAG系白色光(黄色蛍光体)を用いた擬似白色に特に有効となる。
<Fourth effect>
Further, in the case of the present embodiment, for example, the phosphor contained in the phosphor layer 36 is a CASN phosphor containing Eu, and the phosphor layer 36 is provided on the wiring portion 34B made of Cu. Therefore, for example, when each light emitting element 20 emits white light L, the excitation light from the CASN phosphor contained in the phosphor layer 36 has a luminous efficiency due to reflection by Cu constituting the lower layer electrode. It is improved (in the configuration of this embodiment, there is a light reflection effect of Cu). Then, in the present embodiment, the white light L can be adjusted to a warmer color light (a color in which the correlated color temperature is shifted to the lower temperature side) by the effect (see FIGS. 8 and 9). In this case, warm color light can be added to the white light of the light emitting element 20, and the special color rendering index R9 value can be increased. This effect is particularly effective for pseudo-white using YAG-based white light (yellow phosphor).
<第5の効果>
 また、前述の説明のとおり、複数の発光素子20は、発光動作時に、図1の放熱フィン131や冷却ファン(図11で後述する放熱ファン335)などの放熱手段を用いることで、蛍光体基板30を一例として常温から50℃~100℃に収まるように放熱(冷却)される。そのため、LED22の発光の際の発熱を、基板全体に拡散させ筐体への熱引き効果を上げる。そして、本実施形態の場合、絶縁層32の表面31における電極層34が配置されている領域(電極層34の専有面積)は、一例として、絶縁層32の表面31の60%以上の領域(面積)とされている。
 したがって、本実施形態の電極層34(配線部分34B)は、給電のための電気経路としての機能以外に、複数の発光素子20から発生する熱の放熱板として機能する。そのため、発光素子20(LED22)は、熱の影響を受け難い状況で安定して光Lを発光することができる。
 以上が、第1の実施形態の効果についての説明である。
<Fifth effect>
Further, as described above, the plurality of light emitting elements 20 use a heat radiating means such as the heat radiating fin 131 of FIG. 1 and the cooling fan (heat radiating fan 335 described later in FIG. 11) during the light emitting operation, thereby forming a phosphor substrate. Taking 30 as an example, heat is dissipated (cooled) so as to be within 50 ° C. to 100 ° C. from room temperature. Therefore, the heat generated when the LED 22 emits light is diffused over the entire substrate to enhance the heat drawing effect on the housing. In the case of the present embodiment, the region (occupied area of the electrode layer 34) on the surface 31 of the insulating layer 32 where the electrode layer 34 is arranged is, for example, a region of 60% or more of the surface 31 of the insulating layer 32 (the area occupied by the electrode layer 34). Area).
Therefore, the electrode layer 34 (wiring portion 34B) of the present embodiment functions as a heat radiating plate for heat generated from the plurality of light emitting elements 20 in addition to the function as an electric path for feeding power. Therefore, the light emitting element 20 (LED 22) can stably emit light L in a situation where it is not easily affected by heat.
The above is the description of the effect of the first embodiment.
 <LEDのジャンクションと蛍光体層の関係>
 ここで、図10~12を参照して、LED22(特にジャンクション部の位置)と蛍光体層36について基板厚み方向の位置関係について、好適な例及び不適な例を説明する。図10及び図11が好適な例を示す。図12が不適な例を示す。
<Relationship between LED junction and phosphor layer>
Here, with reference to FIGS. 10 to 12, suitable examples and unsuitable examples of the positional relationship between the LED 22 (particularly the position of the junction portion) and the phosphor layer 36 in the substrate thickness direction will be described. 10 and 11 show suitable examples. FIG. 12 shows an unsuitable example.
 発光素子20は、LED22と、チップ電極23と、蛍光体封止層24とを備え、絶縁層32に設けられている。チップ電極23は上述のように電極対34Aの上面を覆うように配置されるが、ここでは簡略化して不図示として、絶縁層32に配置する図として示している。
 チップ電極23の上にはLED22が形成される。LED22はN型とP型半導体から構成され、その境界部がジャンクション部と称される発光層となる。以下、発光層の最も下側(すなわち絶縁層32側)の位置を便宜的にジャンクションレベル28と称する。図示の例では、ジャンクションレベル28の位置を、LED22とチップ電極23との境界と同じ位置として例示しているが、発光層の位置や向きに応じて異なる位置となる。
 チップ電極23とLED22とが一体となった構造体を上から覆うように蛍光体封止層24が形成されている。図示では、ジャンクションレベル28の側面部分は蛍光体封止層24により覆われている。
The light emitting element 20 includes an LED 22, a chip electrode 23, and a phosphor sealing layer 24, and is provided on the insulating layer 32. The chip electrode 23 is arranged so as to cover the upper surface of the electrode pair 34A as described above, but is shown here as a diagram for arranging the chip electrode 23 on the insulating layer 32 for simplification and not shown.
The LED 22 is formed on the chip electrode 23. The LED 22 is composed of N-type and P-type semiconductors, and the boundary portion thereof serves as a light emitting layer called a junction portion. Hereinafter, the position on the lowermost side (that is, the insulating layer 32 side) of the light emitting layer is referred to as a junction level 28 for convenience. In the illustrated example, the position of the junction level 28 is illustrated as the same position as the boundary between the LED 22 and the chip electrode 23, but the position is different depending on the position and orientation of the light emitting layer.
The phosphor sealing layer 24 is formed so as to cover the structure in which the chip electrode 23 and the LED 22 are integrated from above. In the figure, the side surface portion of the junction level 28 is covered with the fluorescent material sealing layer 24.
 ここで、図10の好適な例に示すように、蛍光体層36は、発光素子であるLED22のジャンクションレベル28より絶縁層32側に形成されている。より具体的には、ジャンクションレベル28と蛍光体層36の上面36aのレベルを比較した場合、絶縁層32の上面を基準とした高さ方向(基板積層方向)の位置が、ジャンクションレベル28のレベルの方が高い。例えば図10では、絶縁層32からジャンクションレベル28までの高さh1が、絶縁層32から蛍光体層上面36aまでの高さh2よりも高くなっている。したがって、ジャンクションレベル28から少なくとも上方向の角度を有して出射した光(図中太線矢印で示す)は、蛍光体封止層24を透過し外部に出射するときに、蛍光体層36に入射することはない。例えば図示で左側の光でも、蛍光体層36に当たることはない。蛍光体封止層24の形成位置にもよるが、蛍光体層36に入射する光は、ジャンクションレベル28から下方向に角度を持って出射した光だけになる。 Here, as shown in a preferred example of FIG. 10, the phosphor layer 36 is formed on the insulating layer 32 side from the junction level 28 of the LED 22 which is a light emitting element. More specifically, when the level of the junction level 28 and the level of the upper surface 36a of the phosphor layer 36 are compared, the position in the height direction (board stacking direction) with respect to the upper surface of the insulating layer 32 is the level of the junction level 28. Is higher. For example, in FIG. 10, the height h1 from the insulating layer 32 to the junction level 28 is higher than the height h2 from the insulating layer 32 to the top surface 36a of the phosphor layer. Therefore, the light emitted from the junction level 28 at an angle of at least upward (indicated by the thick arrow in the figure) enters the phosphor layer 36 when it passes through the phosphor sealing layer 24 and is emitted to the outside. There is nothing to do. For example, even the light on the left side in the figure does not hit the phosphor layer 36. Although it depends on the formation position of the phosphor sealing layer 24, the light incident on the phosphor layer 36 is only the light emitted from the junction level 28 at an angle downward.
 図11の好適な例では、蛍光体層36の蛍光体層上面36aのレベル(すなわちチップ電極23からの高さh3)が、ジャンクションレベル28よりも高く、発光素子20の上面の位置と同じになっている。なお、蛍光体層上面36aのレベルは、発光素子20の上面と同じ位置に限る趣旨ではない。したがって、ジャンクションレベル28から上方向の角度を持って蛍光体封止層24を通過して出射した光の一部(例えば、図中左側の光のように発光素子20の側面から出力した光)が蛍光体層36に入射する。この構成は、発光素子20の側面側から出力された光を蛍光体層36に取り入れたい場合に好適である。 In a preferred example of FIG. 11, the level of the top surface 36a of the phosphor layer 36 of the phosphor layer 36 (that is, the height h3 from the chip electrode 23) is higher than the junction level 28 and is the same as the position of the top surface of the light emitting element 20. It has become. The level of the upper surface 36a of the phosphor layer is not limited to the same position as the upper surface of the light emitting element 20. Therefore, a part of the light emitted from the junction level 28 through the phosphor sealing layer 24 at an upward angle (for example, the light output from the side surface of the light emitting element 20 like the light on the left side in the drawing). Is incident on the phosphor layer 36. This configuration is suitable when it is desired to incorporate the light output from the side surface side of the light emitting element 20 into the phosphor layer 36.
 図12の不適な例では、蛍光体層36とチップ電極23との間に嵩上げ層37が設けられている。蛍光体層36の蛍光体層下面36bのレベル(すなわち嵩上げ層37の厚さh4)が、ジャンクションレベル28よりも高い位置にある。したがって、ジャンクションレベル28から上方向の角度を持って蛍光体封止層24を通過して出射した光の一部(例えば、図中左側の光)が、嵩上げ層37に邪魔されてしまい、蛍光体層36に入射できない。これは、蛍光体層36の機能が十分に発揮されない。したがって、嵩上げ層37を設ける場合には、蛍光体層下面36bのレベルをジャンクションレベル28より低くすることが望ましい。 In an unsuitable example of FIG. 12, a raised layer 37 is provided between the phosphor layer 36 and the chip electrode 23. The level of the lower surface 36b of the phosphor layer 36 of the phosphor layer 36 (that is, the thickness h4 of the raised layer 37) is higher than the junction level 28. Therefore, a part of the light emitted from the junction level 28 through the phosphor sealing layer 24 at an upward angle (for example, the light on the left side in the figure) is disturbed by the raised layer 37 and fluoresces. Cannot enter the body layer 36. This is because the function of the phosphor layer 36 is not fully exhibited. Therefore, when the raised layer 37 is provided, it is desirable that the level of the lower surface 36b of the phosphor layer is lower than the junction level 28.
 以上、図10や図11に示したように、蛍光体層36の厚さを調整することで、蛍光体層36に入射する光を調整できる。また、蛍光体層36の下側に嵩上げ層37を設ける場合には、図12に示した構成(蛍光体層下面36bのレベルがジャンクションレベル28より高い構成)は避けて、蛍光体層下面36bのレベルをジャンクションレベル28より低くすることで、嵩上げ層37で邪魔されること無く、発光素子20の光を蛍光体層36に入射させることができる。 As described above, as shown in FIGS. 10 and 11, by adjusting the thickness of the phosphor layer 36, the light incident on the phosphor layer 36 can be adjusted. When the raised layer 37 is provided under the phosphor layer 36, the configuration shown in FIG. 12 (the level of the lower surface 36b of the phosphor layer is higher than the junction level 28) is avoided, and the lower surface 36b of the phosphor layer is avoided. By lowering the level of the above to the junction level 28, the light of the light emitting element 20 can be incident on the phosphor layer 36 without being disturbed by the raised layer 37.
≪第2の実施形態≫
 つづいて、第2の実施形態のLEDランプ200について説明する。
<< Second Embodiment >>
Next, the LED lamp 200 of the second embodiment will be described.
 <LEDランプ200の構成>
 図13は本実施形態にかかるLEDランプ200の概略構成を示す図である。このLEDランプ200は、いわゆる横型LEDランプであって、横状態に取り付けることで、下面に光を照射する構造となっている。具体的には、LEDランプ200は、筒状の筐体210と、LEDモジュール220と、胴部230と、駆動回路(図示せず)を備える。筐体210には透明のカバー211が取り付けられている。カバー211は、透明の他に、半透明、乳白、スモークに構成されてもよい。筐体210の内部にはLEDモジュール220が搭載されている。胴部230は、放熱フィン231と、口金132とを備える。なお、放熱手段として、放熱フィン231の他に、放熱ファンや放熱開口、放熱スリットが設けられてもよい。
<Configuration of LED lamp 200>
FIG. 13 is a diagram showing a schematic configuration of the LED lamp 200 according to the present embodiment. The LED lamp 200 is a so-called horizontal LED lamp, and has a structure of irradiating the lower surface with light by mounting the LED lamp 200 in a horizontal state. Specifically, the LED lamp 200 includes a tubular housing 210, an LED module 220, a body 230, and a drive circuit (not shown). A transparent cover 211 is attached to the housing 210. The cover 211 may be made of translucent, opalescent, or smoked as well as transparent. The LED module 220 is mounted inside the housing 210. The body portion 230 includes a heat radiation fin 231 and a base 132. In addition to the heat radiating fins 231, a heat radiating fan, a heat radiating opening, and a heat radiating slit may be provided as the heat radiating means.
 LEDモジュール220には、矩形の蛍光体基板222に複数のLEDチップ221が格子状に配列されている。ここでは、4×3配列で12個のLEDチップ221が設けられている。なお、蛍光体基板222の基本的な構造は第1の実施形態の蛍光体基板122と同一であり、説明は省略する。異なる点は、LEDチップ221を複数設けた点にある。 In the LED module 220, a plurality of LED chips 221 are arranged in a grid pattern on a rectangular phosphor substrate 222. Here, 12 LED chips 221 are provided in a 4 × 3 arrangement. The basic structure of the phosphor substrate 222 is the same as that of the phosphor substrate 122 of the first embodiment, and the description thereof will be omitted. The difference is that a plurality of LED chips 221 are provided.
 具体的には、複数のLEDチップ221は列ごとに独立して発光する。すなわち、4個のLEDチップ221を一つの直列体として構成し、3つの直列体を3列に並列配置している。駆動回路は、3つの直列体に対応して3つの駆動出力を有することで、それぞれの直列体を独立して駆動させることができる。このような構成により、LEDチップ221のいずれかの列(すなわち直列体)が故障により不点灯状態となっても、全体が消灯してしまうことはない。なお、一つの直列体に接続するLEDチップ221の数は、LEDチップ221の電圧降下や供給電圧により定まる。 Specifically, the plurality of LED chips 221 emit light independently for each row. That is, four LED chips 221 are configured as one series, and three series are arranged in parallel in three rows. The drive circuit has three drive outputs corresponding to the three series bodies, so that each series body can be driven independently. With such a configuration, even if any row (that is, a series) of the LED chips 221 is turned off due to a failure, the entire LED chip 221 is not turned off. The number of LED chips 221 connected to one series is determined by the voltage drop and supply voltage of the LED chips 221.
 <第2の実施形態の効果>
 本実施形態においても、第1の実施形態と同様の効果が得られる。
<Effect of the second embodiment>
Also in this embodiment, the same effect as that of the first embodiment can be obtained.
≪第3の実施形態≫
 つづいて、第3の実施形態のLED電球300について説明する。
<< Third Embodiment >>
Next, the LED bulb 300 of the third embodiment will be described.
 <LED電球300の構成>
 図14は本実施形態に係るLED電球300の概略構成を示した図である。図15は、LEDモジュール320を示している。
 第1の実施形態のLED電球100と異なる点は、本実施形態のLED電球300が放熱ファン335を有する点及びLEDモジュール320が複数のLEDチップ321を有する点にある。
<Configuration of LED bulb 300>
FIG. 14 is a diagram showing a schematic configuration of the LED bulb 300 according to the present embodiment. FIG. 15 shows the LED module 320.
The difference from the LED bulb 100 of the first embodiment is that the LED bulb 300 of the present embodiment has a heat dissipation fan 335 and the LED module 320 has a plurality of LED chips 321.
 具体的には、LED電球300は、カバー部材310と、LEDモジュール320と、胴部330と、駆動回路(図示せず)と、を備える。 Specifically, the LED bulb 300 includes a cover member 310, an LED module 320, a body portion 330, and a drive circuit (not shown).
 LEDモジュール320は、図15に示すように、上面視で略円形の蛍光体基板322と、複数(ここでは8個)のLEDチップ321とを備える。複数のLEDチップ321は蛍光体基板322上に円環状に設けられている。 As shown in FIG. 15, the LED module 320 includes a phosphor substrate 322 that is substantially circular in top view and a plurality of (here, eight) LED chips 321. The plurality of LED chips 321 are provided in an annular shape on the phosphor substrate 322.
 胴部330は、例えばアルミダイキャスト等で形成されている。
 胴部330は、上側(すなわちカバー部材310側)から、放熱フィン333と、胴部本体部331と、口金332と、を備える。
The body portion 330 is formed of, for example, aluminum die-cast.
The body portion 330 includes a heat radiation fin 333, a body portion main body portion 331, and a base 332 from the upper side (that is, the cover member 310 side).
 放熱フィン333は、例えば図示上側(カバー部材310側)に設けられた円盤状のプレートと、そのプレートの下側面から図示下側に向かって所定高さで延出する複数のフィンとを備える。それぞれのフィンは、例えば下面視において、径方向外側に向かって放射状に延びている。また、複数のフィンは径方向に沿って円環状に並んで設けられている。 The heat radiation fin 333 includes, for example, a disk-shaped plate provided on the upper side (cover member 310 side) in the drawing, and a plurality of fins extending from the lower side surface of the plate toward the lower side in the drawing at a predetermined height. Each fin extends radially outward, for example in bottom view. Further, the plurality of fins are provided side by side in an annular shape along the radial direction.
 放熱フィン333の下面視中心(軸中心)から所定径の範囲において、複数のフィンの高さが短くなった領域が形成されている。その領域に放熱ファン335が取り付けられる。放熱ファン335は、例えば、ブラシレスモータで駆動するDCファンである。 A region in which the heights of the plurality of fins are shortened is formed in a range of a predetermined diameter from the bottom view center (axis center) of the heat radiation fins 333. A heat dissipation fan 335 is attached to the area. The heat dissipation fan 335 is, for example, a DC fan driven by a brushless motor.
 放熱ファン335を構成する複数のフィンの最も外側(すなわち外周縁)は連結されておらず開放した形状となっている。フィンを冷却した空気流が、その開放した部分から外部に排出される。 The outermost (that is, the outer peripheral edge) of the plurality of fins constituting the heat dissipation fan 335 are not connected and have an open shape. The air flow that cooled the fins is discharged to the outside from the open portion.
 放熱フィン333の上側面(円盤状のプレートの上面)には、LEDモジュール320(蛍光体基板322)に取り付けられる。 The LED module 320 (fluorescent substrate 322) is attached to the upper side surface (upper surface of the disk-shaped plate) of the heat radiation fin 333.
 放熱フィン333の下側には、内部に空間が形成された同心形状の胴部本体部331が設けられている。胴部本体部331は、具体的には、例えばアルミダイキャストで形成されており、その表面には放熱用塗料が塗装され電気的に絶縁されている。 Below the heat radiation fin 333, a concentric body body 331 having a space formed inside is provided. Specifically, the body portion 331 is formed of, for example, aluminum die-cast, and the surface thereof is coated with a heat radiating paint and electrically insulated.
 胴部本体部331は、下側に行くにつれ小径になる逆円錐台形の形状となっており、その側面に複数のスリット部331aが形成されている。スリット部331aは、胴部本体部331の内部空間と外部とを連通している。胴部本体部331の図示下側には口金332が設けられている。 The body portion main body portion 331 has an inverted conical trapezium shape that becomes smaller in diameter as it goes downward, and a plurality of slit portions 331a are formed on its side surface. The slit portion 331a communicates the internal space of the body portion main body portion 331 with the outside. A base 332 is provided on the lower side of the body portion 331 in the drawing.
 胴部本体部331の内部空間には第1の実施形態と同様に駆動回路(図示せず)が配置され、その上に内部空間を蓋するように上述の放熱フィン333が取り付けられる。 A drive circuit (not shown) is arranged in the internal space of the body portion main body 331 as in the first embodiment, and the above-mentioned heat radiation fin 333 is attached on the drive circuit (not shown) so as to cover the internal space.
 <第3の実施形態の効果>
 本実施形態のLED電球300は、第1、第2の実施形態と同様の効果を奏する。さらに、以下のような作用・効果を奏する。
 放熱ファン335の作用により冷却用の空気流がスリット部331aから胴部本体部331の内部空間に取り込まれ、放熱フィン333に供給される。放熱フィン333を冷却した空気流は、放熱フィン333の外部に開放されている部分から排出される。
 本実施の形態のように、放熱フィン333、放熱ファン335及び放熱スリット331aを組み合わせた放熱手段(放熱装置)を設けることで、LEDモジュール320に多数のLEDチップ321が設けられLEDチップ321や駆動回路340の発熱が大きい場合であっても、効果的に冷却(放熱)できる。すなわち、蛍光体基板322を一例として常温から50℃~100℃に収まるように効果的に放熱(冷却)することができる。その結果、LEDモジュール320は、熱の影響を受け難い状況で安定して光Lを発光することができる。
<Effect of the third embodiment>
The LED bulb 300 of the present embodiment has the same effect as that of the first and second embodiments. Furthermore, it has the following actions and effects.
By the action of the heat radiating fan 335, the cooling air flow is taken into the internal space of the body portion 331 from the slit portion 331a and supplied to the heat radiating fin 333. The air flow that has cooled the heat radiating fins 333 is discharged from a portion of the heat radiating fins 333 that is open to the outside.
By providing a heat radiating means (heat radiating device) that combines a heat radiating fin 333, a heat radiating fan 335, and a heat radiating slit 331a as in the present embodiment, a large number of LED chips 321 are provided in the LED module 320 to provide the LED chip 321 and drive. Even when the heat generated by the circuit 340 is large, it can be effectively cooled (heat radiated). That is, the phosphor substrate 322 can be effectively dissipated (cooled) so as to be within 50 ° C. to 100 ° C. from room temperature as an example. As a result, the LED module 320 can stably emit light L in a situation where it is not easily affected by heat.
≪第4の実施形態≫
 つづいて、第4の実施形態の投光器400について、図16及び図17を参照して説明する。図16は投光器400の斜視図である。図17は、LEDランプ本体401の斜視図であり、図16の投光器400から筐体402を取り除いた状態を示している。
<< Fourth Embodiment >>
Subsequently, the floodlight 400 of the fourth embodiment will be described with reference to FIGS. 16 and 17. FIG. 16 is a perspective view of the floodlight 400. FIG. 17 is a perspective view of the LED lamp main body 401, showing a state in which the housing 402 is removed from the floodlight 400 of FIG.
<投光器400の構成>
 投光器400は、例えば、大型スポーツ施設や屋外商業施設等の照明として利用される。投光器400は、略直方体のLEDランプ本体401と、それを収納する筐体402と、電源装置(図示せず)とを備える。図示では、投光方向(すなわちLEDモジュール420の配置側の面)を下側として示している。投光器400として、複数のLEDランプ本体401が一つのユニットとして構成され、筐体402に一体に収納されてもよい。
<Structure of floodlight 400>
The floodlight 400 is used, for example, as lighting for large sports facilities, outdoor commercial facilities, and the like. The floodlight 400 includes a substantially rectangular parallelepiped LED lamp main body 401, a housing 402 for accommodating the LED lamp main body 401, and a power supply device (not shown). In the figure, the light projection direction (that is, the surface on the arrangement side of the LED module 420) is shown as the lower side. As the floodlight 400, a plurality of LED lamp main bodies 401 may be configured as one unit and may be integrally housed in the housing 402.
 LEDランプ本体401は、ランプモジュール410と、放熱板440と、駆動回路(図示せず)とを備える。 The LED lamp main body 401 includes a lamp module 410, a heat radiating plate 440, and a drive circuit (not shown).
 ランプモジュール410は、平面視(ここでは下側から見た状態)で矩形の蛍光体基板422と、複数のLEDチップ421とを備える。LEDチップ421は、例えば、フリップチップLEDが組み込まれたCSPである。 The lamp module 410 includes a rectangular phosphor substrate 422 and a plurality of LED chips 421 in a plan view (here, when viewed from below). The LED chip 421 is, for example, a CSP in which a flip chip LED is incorporated.
 複数のLEDチップ421は、千鳥格子状に配置されている。より具体的には、複数のLEDチップ421は、長手方向(図示で左右方向)に所定ピッチで10個配列した群を、短手方向に3列配置している。ここでは、2列目の群は、1列目及び3列目の群に対して、図示で右方向にLEDチップ421一つ分だけずれている。LEDチップ421の配置は千鳥格子状に限る趣旨では無く、正格子状であってもよいし、各種の配置を適用できる。 The plurality of LED chips 421 are arranged in a houndstooth pattern. More specifically, in the plurality of LED chips 421, a group of 10 LED chips arranged at a predetermined pitch in the longitudinal direction (horizontal direction in the drawing) is arranged in three rows in the lateral direction. Here, the group in the second row is shifted to the right by one LED chip 421 from the groups in the first and third rows in the drawing. The arrangement of the LED chips 421 is not limited to the houndstooth pattern, and may be a regular lattice pattern, and various arrangements can be applied.
 ランプモジュール410の上面(LEDチップ421が配置されている面と反対側の面)には、放熱手段として放熱板440が取り付けられている。放熱板440は例えばアルミダイキャスト製であって、複数のフィンを図示上側に延出させている。なお、放熱手段として、さらに放熱ファンが設けられてもよい。 A heat radiating plate 440 is attached as a heat radiating means on the upper surface of the lamp module 410 (the surface opposite to the surface on which the LED chip 421 is arranged). The heat radiating plate 440 is made of, for example, aluminum die-cast, and a plurality of fins are extended to the upper side in the drawing. A heat dissipation fan may be further provided as the heat dissipation means.
 <第4の実施形態の効果>
 第4の実施形態によると、第1~第3の実施形態と同様の効果が得られる。また、投光器400が大型スポーツ施設に設置されるような場合、投光器400から照射される光が強いことから、運動選手等の競技に悪影響を及ぼさず安全な環境を提供することが求められる。すなわち、眩しくて競技を中断したり、怪我が誘発されないようにすることが必要である。本実施形態の投光器400では、蛍光体基板422を経由して投光される光が、LEDチップ421から直接投光される光の眩しさを緩和することができ、安全な活動の環境を実現できる。
<Effect of Fourth Embodiment>
According to the fourth embodiment, the same effect as that of the first to third embodiments can be obtained. Further, when the floodlight 400 is installed in a large sports facility, the light emitted from the floodlight 400 is strong, so that it is required to provide a safe environment without adversely affecting the competition of athletes and the like. That is, it is necessary to prevent the competition from being interrupted or injured due to dazzling. In the floodlight 400 of the present embodiment, the light projected via the phosphor substrate 422 can alleviate the glare of the light directly projected from the LED chip 421, realizing a safe activity environment. it can.
≪実施形態の変形例≫
 以上のとおり、本発明について第1~第4の実施形態を例として説明したが、本発明は前述の実施形態に限定されるものではない。本発明の技術的範囲には、例えば、下記のような形態(変形例)も含まれる。
<< Modified example of the embodiment >>
As described above, the present invention has been described with reference to the first to fourth embodiments as examples, but the present invention is not limited to the above-described embodiments. The technical scope of the present invention also includes, for example, the following forms (modifications).
 例えば、本実施形態の説明では、発光素子20の一例をCSPであるとした。しかしながら、発光素子20の一例はCSP以外でもよい。例えば、単にフリップチップを搭載したものでもよい。また、COBデバイスの基板自身に応用することもできる。また、図5の発光基板10では、蛍光体層36は絶縁層32に積層された電極層34の上に形成された構成であるが、この構成に限らず、蛍光体層36と電極層34の間に、介在層(絶縁材の層)が設けられてもよい。介在層(絶縁材の層)の厚さ、形状を調整することで、蛍光体層36の量や蛍光体層36から出力する光の特性(向き、蛍光量など)を調整できる。 For example, in the description of this embodiment, an example of the light emitting element 20 is a CSP. However, an example of the light emitting element 20 may be other than the CSP. For example, it may simply be equipped with a flip chip. It can also be applied to the substrate itself of a COB device. Further, in the light emitting substrate 10 of FIG. 5, the phosphor layer 36 has a configuration formed on the electrode layer 34 laminated on the insulating layer 32, but the present invention is not limited to this configuration, and the phosphor layer 36 and the electrode layer 34 are not limited to this configuration. An intervening layer (layer of insulating material) may be provided between the two. By adjusting the thickness and shape of the intervening layer (insulating material layer), the amount of the phosphor layer 36 and the characteristics (direction, amount of fluorescence, etc.) of the light output from the phosphor layer 36 can be adjusted.
≪実施形態の特徴と効果のまとめ≫
 発明の実施形態の特徴および効果をまとめると次の通りである。
<1>本発明の実施形態に係る灯具(100、200、300、400)は、
 基板(122、222、322、422)と、
 前記基板(122、222、322、422)に搭載された発光素子(20)と、
 前記発光素子(20、121、221、321、421)に電力を供給し発光駆動させる駆動回路(140、340)と、
 を備え、
 前記基板(122、222、322、422)は、
 絶縁基材(32)と、
 前記絶縁基材(32)の一面に配置され、前記発光素子(20)の発光を励起光としたときの発光ピーク波長が可視光領域にある蛍光体粒子と、有機樹脂とを含む蛍光体層(36)と、
 を備える。
 これにより、基板(122、222、322、422)から発光される光を、発光素子(20、121、222、322)が発光する光と異なる発光色の光に調整することができる。また、別の観点では、蛍光体層(36)は、発光素子(20、121、221、321、421)の色度ばらつきを緩和する。
<< Summary of features and effects of the embodiment >>
The features and effects of the embodiments of the invention are summarized as follows.
<1> The lamps (100, 200, 300, 400) according to the embodiment of the present invention are
With the substrate (122, 222, 222, 422),
The light emitting element (20) mounted on the substrate (122, 222, 222, 422) and
A drive circuit (140, 340) that supplies electric power to the light emitting elements (20, 121, 221, 321 and 421) to drive the light emitting element.
With
The substrate (122, 222, 222, 422) is
Insulating base material (32) and
A phosphor layer composed of phosphor particles arranged on one surface of the insulating base material (32) and having a emission peak wavelength in the visible light region when the emission of the light emitting element (20) is used as excitation light, and an organic resin. (36) and
To be equipped.
Thereby, the light emitted from the substrate (122, 222, 222, 422) can be adjusted to the light having an emission color different from the light emitted by the light emitting element (20, 121, 222, 222). From another viewpoint, the phosphor layer (36) alleviates the chromaticity variation of the light emitting elements (20, 121, 221, 321 and 421).
<2>前記発光素子(20、121、221、321、421)の発光駆動にともない発生する熱を放熱する放熱手段(131、231、331、333、335、440)を備える。
 これによって、基板(122、222、322、422)を一例として常温から50℃~100℃に収まるように効果的に放熱(冷却)することができる。
 また、多数の発光素子(20、121、221、321、421)が設けられ、発光素子(20、121、222、322)が実装された基板(122、222、322、422)や駆動回路の発熱が大きい場合であっても、効果的に冷却(放熱)できる。その結果、熱の影響を受け難い状況で安定して光Lを発光することができる。
<2> A heat radiating means (131, 231, 331, 333, 335, 440) that dissipates heat generated by the light emitting drive of the light emitting element (20, 121, 221, 321, 421) is provided.
Thereby, the substrate (122, 222, 222, 422) can be effectively dissipated (cooled) so as to be within 50 ° C. to 100 ° C. from room temperature as an example.
Further, a substrate (122, 222, 222, 422) or a drive circuit in which a large number of light emitting elements (20, 121, 221, 321, 421) are provided and the light emitting elements (20, 121, 222, 222) are mounted is provided. Even when the heat generation is large, it can be effectively cooled (heat radiated). As a result, the light L can be stably emitted in a situation where it is not easily affected by heat.
<3>前記発光素子(20、121、221、321、421)は、LED(22)が組み込まれ、チップサイズにパッケージされたCSP(121、221、321、421)である。
 CSPとすることで、基板実装を安定的かつ低コストで実現できる。
<3> The light emitting element (20, 121, 221, 321, 421) is a CSP (121, 221, 321, 421) in which an LED (22) is incorporated and packaged in a chip size.
By using CSP, board mounting can be realized stably and at low cost.
<4>前記発光素子(20、120、220、320、420)は複数設けられている。
発光素子(20、120、220、320、420)が複数の場合に、隣接する発光素子(20、120、220、320)同士の間に蛍光体層(36)が設けられている。そのため、蛍光体層(36)からも励起光が発光される。
 したがって、蛍光体層(36)が無い形態に比べて、グレアを小さくすることができる。すなわち、グレアを低減した灯具を実現できる。
<4> A plurality of the light emitting elements (20, 120, 220, 320, 420) are provided.
When there are a plurality of light emitting elements (20, 120, 220, 320, 420), a phosphor layer (36) is provided between adjacent light emitting elements (20, 120, 220, 320). Therefore, the excitation light is also emitted from the phosphor layer (36).
Therefore, the glare can be reduced as compared with the form without the phosphor layer (36). That is, it is possible to realize a lamp with reduced glare.
<5>前記複数の発光素子(20、220、320、420)は、前記基板(222、422)上に格子状に配列されている。これにより、発光のバラツキを抑えた灯具を実現できる。 <5> The plurality of light emitting elements (20, 220, 320, 420) are arranged in a grid pattern on the substrate (222, 422). As a result, it is possible to realize a lamp with suppressed variation in light emission.
<6>前記複数の発光素子(20、120、320)は、前記基板(122、322)上に円環状に配列されている。これにより、発光のバラツキを抑えた灯具を実現できる。 <6> The plurality of light emitting elements (20, 120, 320) are arranged in an annular shape on the substrate (122, 222). As a result, it is possible to realize a lamp with suppressed variation in light emission.
<7>前記駆動回路(140)は、前記複数の発光素子(20、120、220、320)をそれぞれ独立して発光駆動させる。いずれかの発光素子が不点灯となっても、他の発光素子の発光への影響を排除できる。すなわち、ある発光素子の不点灯による灯具の発光強度低下や品位低下を必要最低限に抑えることができる。 <7> The drive circuit (140) independently drives the plurality of light emitting elements (20, 120, 220, 320) to emit light. Even if one of the light emitting elements is turned off, the influence on the light emission of the other light emitting element can be eliminated. That is, it is possible to suppress the deterioration of the light emission intensity and the quality of the lamp due to the non-lighting of a certain light emitting element to the minimum necessary.
<8>前記絶縁基材(32)は、有機樹脂基板、セラミックス基板およびプラスチック成形体からなる群より選ばれる少なくともいずれかである。
 これら材料の縦方向及び横方向の熱膨張係数(CTE)は、それぞれ、発光素子(20)の場合とほぼ同等であり、発光素子(20)に作用する熱応力の影響を抑制できる。すなわち、高い信頼性を有する灯具を実現できる。
<8> The insulating base material (32) is at least one selected from the group consisting of an organic resin substrate, a ceramic substrate, and a plastic molded product.
The coefficients of thermal expansion (CTE) in the longitudinal direction and the lateral direction of these materials are almost the same as those in the case of the light emitting element (20), respectively, and the influence of the thermal stress acting on the light emitting element (20) can be suppressed. That is, it is possible to realize a lamp with high reliability.
<9>前記蛍光体粒子は、CASN、SCASN、LaSiN、SrSi、BaSi、α型サイアロン、β型サイアロンおよびLuAGからなる群より選ばれるすくなくともいずれかを含む。
 発光素子(光源)と蛍光体粒子を含む波長変換体とを組み合わせることによって高い発光強度を有する光を発光させることができる。
<9> The phosphor particles include at least one selected from the group consisting of CASN, SCANSN, LaSiN, Sr 2 Si 5 N 8 , Ba 2 Si 5 N 8 , α-type sialon, β-type sialon, and LuAG.
By combining a light emitting element (light source) and a wavelength converter containing phosphor particles, it is possible to emit light having high emission intensity.
<10>前記蛍光体層(36)が含む前記有機樹脂は、シリコーン樹脂、アクリル樹脂およびエポキシ樹脂のいずれかを含む。本実施形態の場合、蛍光体層36がソルダーレジストの機能を果し、所望の絶縁性が得られる。これによって、前記蛍光体層(36)の信頼性、すなわち灯具の信頼性を向上させることができる。 <10> The organic resin contained in the phosphor layer (36) includes any of a silicone resin, an acrylic resin, and an epoxy resin. In the case of the present embodiment, the phosphor layer 36 functions as a solder resist, and desired insulating properties can be obtained. Thereby, the reliability of the phosphor layer (36), that is, the reliability of the lamp can be improved.
25
<11>前記蛍光体層(36)の前記絶縁基材側の面は、は、前記発光素子がLED22の場合において、前記LED22のジャンクションのレベル(28)より、絶縁基材(32)側に形成されている。
 発光層であるジャンクションのレベル(28)から上方向の角度成分を有して出射した光が、他の構成(例えば嵩上げ層37)に邪魔されること無く、蛍光体層36に入射することができる。
twenty five
<11> The surface of the phosphor layer (36) on the insulating base material side is closer to the insulating base material (32) than the junction level (28) of the LED 22 when the light emitting element is the LED 22. It is formed.
Light emitted from the junction level (28), which is the light emitting layer, with an upward angular component may enter the phosphor layer 36 without being disturbed by other configurations (for example, the raised layer 37). it can.
 この出願は、2019年12月25日に出願された日本出願特願2019-233867号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Application Japanese Patent Application No. 2019-233867 filed on December 25, 2019, and incorporates all of its disclosures herein.
28 ジャンクションレベル
100、300 LED電球
110、310 カバー部材
120、220、320、420 LEDモジュール
121、221、321、421 LEDチップ
122、222、322、422 蛍光体基板
130、230、330 胴部
131、231、333 放熱フィン
132、232、332 口金
140、240、340 駆動回路
200 LEDランプ
210 筐体
211 カバー
331 胴部本体部
331a 本体上部
331b 放熱スリット
331c 本体下部
440 放熱板
400 投光器
401 LEDランプ本体
28 Junction level 100, 300 LED bulb 110, 310 Cover member 120, 220, 320, 420 LED module 121, 221, 321, 421 LED chip 122, 222, 322, 422 Fluorescent substrate 130, 230, 330 Body 131, 231 and 333 Heat dissipation fins 132, 232, 332 Bases 140, 240, 340 Drive circuit 200 LED lamp 210 Housing 211 Cover 331 Body body 331a Body top 331b Heat dissipation slit 331c Body bottom 440 Radiation plate 400 Floodlight 401 LED lamp body

Claims (11)

  1.  基板と、
     前記基板に搭載された発光素子と、
     前記発光素子に電力を供給し発光駆動させる駆動回路と、
     を備え、
     前記基板は、
     絶縁基材と、
     前記絶縁基材の一面に配置され、前記発光素子の発光を励起光としたときの発光ピーク波長が可視光領域にある蛍光体粒子と、有機樹脂とを含む蛍光体層と、
     を備える、灯具。
    With the board
    The light emitting element mounted on the substrate and
    A drive circuit that supplies electric power to the light emitting element to drive the light emitting element,
    With
    The substrate is
    Insulating base material and
    A phosphor layer which is arranged on one surface of the insulating base material and whose emission peak wavelength is in the visible light region when the emission of the light emitting element is used as excitation light, and a phosphor layer containing an organic resin.
    Equipped with a lamp.
  2.  前記発光素子の発光駆動にともない発生する熱を放熱する放熱手段を備える、請求項1に記載の灯具。 The lamp according to claim 1, further comprising a heat radiating means for radiating heat generated by driving the light emitting element.
  3.  前記発光素子は、LEDが組み込まれ、チップサイズにパッケージされたCSPからなる、請求項1または2に記載の灯具。 The lamp according to claim 1 or 2, wherein the light emitting element comprises a CSP in which an LED is incorporated and packaged in a chip size.
  4.  前記発光素子は複数設けられている、請求項1から3までのいずれか一項に記載の灯具。 The lamp according to any one of claims 1 to 3, wherein a plurality of the light emitting elements are provided.
  5.  前記複数の発光素子は、前記基板上に格子状に配列されている、請求項4に記載の灯具。 The lamp according to claim 4, wherein the plurality of light emitting elements are arranged in a grid pattern on the substrate.
  6.  前記複数の発光素子は、前記基板上に円環状に配列されている、請求項4に記載の灯具。 The lamp according to claim 4, wherein the plurality of light emitting elements are arranged in an annular shape on the substrate.
  7.  前記駆動回路は、前記複数の発光素子をそれぞれ独立して発光駆動させる、請求項4から6までのいずれか一項に記載の灯具。 The lamp according to any one of claims 4 to 6, wherein the drive circuit drives the plurality of light emitting elements independently to emit light.
  8.  前記絶縁基材は、有機樹脂基板、セラミックス基板およびプラスチック成形体からなる群より選ばれる少なくともいずれかである、請求項1から7までのいずれか一項に記載の灯具。 The lamp according to any one of claims 1 to 7, wherein the insulating base material is at least one selected from the group consisting of an organic resin substrate, a ceramic substrate, and a plastic molded body.
  9.  前記蛍光体粒子は、CASN、SCASN、LaSiN、SrSi、BaSi、α型サイアロン、β型サイアロンおよびLuAGからなる群より選ばれるすくなくともいずれかを含む、請求項1から8までのいずれか一項に記載の灯具。 The phosphor particles comprise CASN, SCASN, LaSiN, Sr 2 Si 5 N 8, Ba 2 Si 5 N 8, α -sialon, at least one selected from the group consisting of β-type sialon and LuAG, claim 1 The lamp according to any one of items 1 to 8.
  10.  前記蛍光体層が含む前記有機樹脂は、シリコーン樹脂、アクリル樹脂およびエポキシ樹脂のいずれかを含む、請求項1から9までのいずれか一項に記載の灯具。 The lighting tool according to any one of claims 1 to 9, wherein the organic resin contained in the phosphor layer contains any one of a silicone resin, an acrylic resin and an epoxy resin.
  11.  前記蛍光体層の前記絶縁基材側の面は、前記発光素子がLEDの場合において、前記LEDのジャンクションのレベルより、絶縁基材側に形成されている、請求項1から10までのいずれか一項に記載の灯具。 Any of claims 1 to 10, wherein the surface of the phosphor layer on the insulating base material side is formed on the insulating base material side from the level of the junction of the LED when the light emitting element is an LED. The lighting equipment described in item 1.
PCT/JP2020/047625 2019-12-25 2020-12-21 Lamp WO2021132131A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080090138.9A CN115135923A (en) 2019-12-25 2020-12-21 Lamp fitting
JP2021567428A JP7437419B2 (en) 2019-12-25 2020-12-21 Light equipment
KR1020227025210A KR20220119119A (en) 2019-12-25 2020-12-21 lamp

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-233867 2019-12-25
JP2019233867 2019-12-25

Publications (1)

Publication Number Publication Date
WO2021132131A1 true WO2021132131A1 (en) 2021-07-01

Family

ID=76576089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/047625 WO2021132131A1 (en) 2019-12-25 2020-12-21 Lamp

Country Status (5)

Country Link
JP (1) JP7437419B2 (en)
KR (1) KR20220119119A (en)
CN (1) CN115135923A (en)
TW (1) TW202132719A (en)
WO (1) WO2021132131A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012227021A (en) * 2011-04-20 2012-11-15 Panasonic Corp Illumination light source
JP2015195156A (en) * 2013-06-04 2015-11-05 三菱化学株式会社 Lighting fixture and optical member
JP2019009108A (en) * 2017-06-21 2019-01-17 三菱電機株式会社 Luminaire

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5219331B2 (en) * 2005-09-13 2013-06-26 株式会社住田光学ガラス Method for manufacturing solid element device
JP4905009B2 (en) * 2006-09-12 2012-03-28 豊田合成株式会社 Method for manufacturing light emitting device
JP5345363B2 (en) * 2008-06-24 2013-11-20 シャープ株式会社 Light emitting device
US8858032B2 (en) * 2008-10-24 2014-10-14 Cree, Inc. Lighting device, heat transfer structure and heat transfer element
JP2010103019A (en) 2008-10-24 2010-05-06 Toshiba Lighting & Technology Corp Lighting device
JP5703997B2 (en) * 2011-06-29 2015-04-22 豊田合成株式会社 Light emitting device
KR20130104975A (en) * 2012-03-16 2013-09-25 삼성전자주식회사 Light emitting device
CN104282819B (en) * 2013-07-08 2018-08-28 光宝电子(广州)有限公司 Flip-over type LED encapsulation module and its manufacturing method
US20170317250A1 (en) * 2014-10-28 2017-11-02 Sharp Kabushiki Kaisha Substrate, light-emitting device, and illuminating apparatus
JP2017059493A (en) * 2015-09-18 2017-03-23 東芝ライテック株式会社 Light-emitting device
CN206401316U (en) * 2015-12-29 2017-08-11 中山市圣上光电科技有限公司 CSP LEDs
JP2018045850A (en) 2016-09-14 2018-03-22 日立アプライアンス株式会社 Bulb type lighting device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012227021A (en) * 2011-04-20 2012-11-15 Panasonic Corp Illumination light source
JP2015195156A (en) * 2013-06-04 2015-11-05 三菱化学株式会社 Lighting fixture and optical member
JP2019009108A (en) * 2017-06-21 2019-01-17 三菱電機株式会社 Luminaire

Also Published As

Publication number Publication date
TW202132719A (en) 2021-09-01
KR20220119119A (en) 2022-08-26
CN115135923A (en) 2022-09-30
JPWO2021132131A1 (en) 2021-07-01
JP7437419B2 (en) 2024-02-22

Similar Documents

Publication Publication Date Title
WO2013011594A1 (en) Circuit board for having semiconductor light emitting device mounted thereon, light emitting module, illuminating apparatus, and illuminating system
US8022626B2 (en) Lighting module
US8803201B2 (en) Solid state lighting component package with reflective layer
EP2327112A2 (en) Optical disk for lighting module
WO2015145855A1 (en) Spot lighting apparatus
CA2735508A1 (en) Lighting module
US20100067240A1 (en) Optical Cup For Lighting Module
JP2016171147A (en) Light emission device and luminaire
JP4508034B2 (en) Lighting equipment using white LED
JPWO2020137762A1 (en) Fluorescent substrate, light emitting substrate and lighting equipment
JP2011175950A (en) Circuit board to mount semiconductor light emitting device, light emitting module, and lighting device
WO2021132131A1 (en) Lamp
JP7470257B2 (en) Lighting fixtures
EP3905348B1 (en) Light-emitting substrate, and lighting device
JP2013211456A (en) Semiconductor light-emitting device and illumination device
JPWO2020137761A1 (en) Fluorescent substrate, light emitting substrate and lighting equipment
WO2023276774A1 (en) Lamp
JP2020061521A (en) Light-emitting device
US20230313973A1 (en) Light-emitting device
WO2022025065A1 (en) Light emitting device and illumination device
JP7248939B2 (en) light emitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20907488

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021567428

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227025210

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20907488

Country of ref document: EP

Kind code of ref document: A1