WO2015145855A1 - Spot lighting apparatus - Google Patents
Spot lighting apparatus Download PDFInfo
- Publication number
- WO2015145855A1 WO2015145855A1 PCT/JP2014/079538 JP2014079538W WO2015145855A1 WO 2015145855 A1 WO2015145855 A1 WO 2015145855A1 JP 2014079538 W JP2014079538 W JP 2014079538W WO 2015145855 A1 WO2015145855 A1 WO 2015145855A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat
- light emitting
- spot
- light
- heat radiating
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V29/00—Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
- F21V29/50—Cooling arrangements
- F21V29/70—Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21K—NON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
- F21K9/00—Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
- F21K9/20—Light sources comprising attachment means
- F21K9/23—Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V17/00—Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages
- F21V17/04—Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages the fastening being onto or by the light source
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V17/00—Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages
- F21V17/10—Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages characterised by specific fastening means or way of fastening
- F21V17/12—Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages characterised by specific fastening means or way of fastening by screwing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V23/00—Arrangement of electric circuit elements in or on lighting devices
- F21V23/003—Arrangement of electric circuit elements in or on lighting devices the elements being electronics drivers or controllers for operating the light source, e.g. for a LED array
- F21V23/007—Arrangement of electric circuit elements in or on lighting devices the elements being electronics drivers or controllers for operating the light source, e.g. for a LED array enclosed in a casing
- F21V23/009—Arrangement of electric circuit elements in or on lighting devices the elements being electronics drivers or controllers for operating the light source, e.g. for a LED array enclosed in a casing the casing being inside the housing of the lighting device
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V29/00—Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
- F21V29/50—Cooling arrangements
- F21V29/502—Cooling arrangements characterised by the adaptation for cooling of specific components
- F21V29/505—Cooling arrangements characterised by the adaptation for cooling of specific components of reflectors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V5/00—Refractors for light sources
- F21V5/04—Refractors for light sources of lens shape
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
- F21Y2107/00—Light sources with three-dimensionally disposed light-generating elements
- F21Y2107/30—Light sources with three-dimensionally disposed light-generating elements on the outer surface of cylindrical surfaces, e.g. rod-shaped supports having a circular or a polygonal cross section
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
- F21Y2115/00—Light-generating elements of semiconductor light sources
- F21Y2115/10—Light-emitting diodes [LED]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16151—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/16221—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/16225—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
Definitions
- the present invention relates to a spot lighting device including a semiconductor light emitting device such as an LED (Light Emitting Diode).
- a semiconductor light emitting device such as an LED (Light Emitting Diode).
- Patent Document 1 discloses a spot light source that replaces a halogen bulb with a reflector.
- the spot light source disclosed in Patent Document 1 includes a bowl-shaped radiator having a bottom part and a side part, a light-emitting element provided at the bottom part in the radiator, and light for controlling light emitted from the light-emitting element.
- a control member, a base containing a circuit for lighting the light emitting element, and a base for supplying power to the circuit are provided.
- the spot light source of the said patent document 1 since the side part of a radiator has light transmittance, the light guide
- the heat generated from the semiconductor light emitting device cannot be sufficiently dissipated, and the input power is increased to increase the brightness and the brightness of the semiconductor light emitting device.
- the amount of light or the like is increased, the characteristics of the semiconductor light emitting device are deteriorated, and there is a concern that it may hinder the desired light emission.
- heat generated from the semiconductor light emitting device is conducted to the circuit board for the semiconductor light emitting device, and in some cases, there is a concern that the circuit board may be broken and the life of the spot lighting device itself may be reduced. .
- the present invention has been made in view of the above problems, and an object of the present invention is to provide a small-sized and high-beam spot illumination device that has excellent heat dissipation and can achieve a long life. There is to do.
- a first aspect of the present invention includes a semiconductor light emitting device, a heat sink on which the semiconductor light emitting device is mounted, a first opening located on the mounting surface side of the semiconductor light emitting device, and Heat conduction that includes a second opening that communicates with the first opening and has a larger opening diameter than the first opening and that transmits at least a portion of the light emitted from the semiconductor light emitting device.
- a heat sink made of a material and a circuit board for lighting the semiconductor light emitting device are incorporated, and a driver housing disposed on a surface of the heat sink opposite to the semiconductor light emitting device mounting surface, and connected to the driver housing A base for supplying power to the circuit board, and an end of the radiator on the first opening side is directly connected to the radiator plate on a semiconductor light emitting device mounting surface side of the radiator plate, Generated from the light emitting device Which is a said radiator plate spot lighting device heat dissipation path for dissipating it is formed from the heat radiating body and conducted to the radiator through.
- the heat generated in the semiconductor light emitting device is conducted to the heat radiator via the heat dissipation plate and is well radiated to the outside of the spot lighting device. Failure of the apparatus and the spot illumination device itself can be suppressed, and a long life of the spot illumination device itself can be realized.
- a second aspect of the present invention is that, in the first aspect, the heat radiator is a cylindrical heat radiation cylinder.
- a third aspect of the present invention is that, in the first or second aspect, the thermal conductivity of the radiator plate is higher than the thermal conductivity of the radiator.
- a fourth aspect of the present invention is that in any one of the first to third aspects, the heat radiating plate is made of a metal or metal alloy having a thermal conductivity of 100 W / (m ⁇ K) or more.
- the heat radiating plate is made of a metal or metal alloy having a thermal conductivity of 100 W / (m ⁇ K) or more.
- the thermal expansion coefficient of the radiator plate is higher than the thermal expansion coefficient of the radiator, and the thermal expansion coefficient of the driver housing. Is lower than that. In this way, by adjusting the thermal expansion coefficient of each member, it is possible to relieve stress at the connection portion between the radiator and the driver housing via the radiator plate, and suppress the failure of the spot lighting device itself, Long life can be realized.
- a sixth aspect of the present invention is that in any one of the first to fifth aspects, the radiator is made of at least one material selected from the group of glass, resin, and ceramic.
- the heat generated in the semiconductor light emitting device is favorably conducted in the heat radiating body and is radiated well to the outside of the spot lighting device. Due to such a heat dissipation effect, failure of the semiconductor light emitting device and the spot lighting device itself can be suppressed, and a long life of the spot lighting device itself can be realized. Further, by selecting such a heat radiating member, it is possible to easily relieve stress at the connecting portion between the heat radiating body and the driver housing via the heat radiating plate.
- a seventh aspect of the present invention is that in any one of the first to sixth aspects, the driver housing is made of resin. By selecting such a member of the driver casing, it is possible to easily relieve stress at the connection portion between the radiator and the driver casing via the radiator plate.
- the radiator is made of glass
- the radiator plate is made of aluminum
- the driver casing is made of polycarbonate resin
- the plate is to relieve stress at a connection portion between the heat radiating body and the driver housing via the heat radiating plate.
- the heat dissipation path extends toward a side opposite to an arrangement direction of the driver housing and the base. is there.
- the heat generated from the semiconductor light emitting device is conducted toward the circuit board provided on the mounting surface side of the semiconductor light emitting device and the side opposite to the side where the heat dissipating member is provided.
- the circuit board is not affected by the heat. Therefore, the failure of the circuit board is less likely to occur, and the lifetime of the circuit board and the spot lighting device itself can be extended.
- the radiator includes a reflecting member that reflects at least a part of the light emitted from the semiconductor light emitting device.
- the radiator With such a configuration of the radiator, the light emitted from the semiconductor light emitting device can be collected and emitted, and the light that has not been reflected by the reflecting member can be emitted to the side of the spot illumination device.
- the spot illumination device of this aspect functions as a good LED type dichroic halogen bulb.
- An eleventh aspect of the present invention is that, in the tenth aspect, the reflecting member is a metal thin film or a dielectric multilayer film.
- the balance of the light condensed and emitted from the spot illumination device and the light emitted from the side can be easily adjusted, and an LED type dichroic halogen bulb having better optical characteristics is realized. be able to.
- a twelfth aspect of the present invention is that, in any one of the first to ninth aspects, a lens for condensing light emitted from the semiconductor light emitting device is further provided inside the radiator.
- a lens for condensing light emitted from the semiconductor light emitting device is further provided inside the radiator.
- a thirteenth aspect of the present invention is the reflection lens according to the twelfth aspect, in which the light incident on the lens is reflected by a side surface.
- a fourteenth aspect of the present invention is that, in any one of the first to thirteenth aspects, a heat insulating member is sandwiched between the heat radiating plate and the driver housing. With such a heat insulating member, the circuit board is not affected by heat, the failure of the circuit board is prevented, and the life of the circuit board and the spot lighting device itself can be extended.
- the semiconductor light emitting device is mounted in the vicinity of a central region on one side of the radiator plate, and the radiator is a peripheral region of the radiator plate. Is connected to. With such a configuration, the light emitted from the semiconductor light emitting device can be collected well and emitted to the outside of the spot illumination device.
- the heat-radiating plate is mounted on the semiconductor light-emitting device on the heat-radiating plate as compared with a connection portion of the heat-radiating body on the heat-radiating plate. It has a level
- Such a shape of the heat sink improves the degree of freedom of mounting the semiconductor light emitting device and the degree of freedom of installation of the circuit board, and further facilitates light emitted from the semiconductor light emitting device to be radiated to the outside through the heat sink. . Therefore, the spot lighting device according to this aspect functions as a good LED-type dichroic halogen bulb with more excellent heat dissipation.
- the present invention it is possible to provide a small spotlight illumination device having a large luminous flux that has excellent heat dissipation and can achieve a long life.
- the heat dissipation is excellent, it is possible to reduce the size of the driver housing, and it is possible to provide a spot lighting device in which the entire device is reduced in weight.
- the spot illumination device according to the present invention it is possible to replace a conventional filament type dichroic halogen bulb (halogen bulb with a reflector) with a dichroic halogen bulb equipped with a semiconductor light emitting device.
- FIG. 4 is a cross-sectional view of the light emitting module taken along line IV-IV in FIG. 3. It is a principal part enlarged view of sectional drawing shown by FIG. It is a side view of the lens which comprises the spot illuminating device which concerns on an Example. It is a top view of the lens which comprises the spot illuminating device which concerns on an Example.
- FIG. 4 is a cross-sectional view of the light emitting module taken along line IV-IV in FIG. 3. It is a principal part enlarged view of sectional drawing shown by FIG. It is a side view of the lens which comprises the spot illuminating device which concerns on an Example. It is a top view of the lens which comprises the spot illuminating device which concerns on an Example.
- FIG. 8 is a sectional view of the lens taken along line VIII-VIII in FIG. 7. It is a partially notched front view which shows the whole spot illuminating device which concerns on the modification 1 in a partial longitudinal cross section. It is sectional drawing of the LED package apparatus which comprises the spot illuminating device which concerns on the modification 1. It is an electric circuit diagram which shows the outline of the electric circuit structure of the spot illuminating device which concerns on the modification 1.
- FIG. 12 is a time chart showing an example of an operating state of each transistor and a current value of a driving current of each LED in the circuit configuration of FIG. 11. 12 is a time chart showing an example of an operating state of each transistor and a current value of a driving current of each LED in the circuit configuration of FIG. 11. It is a partially notched front view which shows the whole spot illuminating device which concerns on the modification 2 in a partial longitudinal cross section.
- FIG. 1 is a partially cutaway front view showing a part of the entire spot lighting device according to the present embodiment in a longitudinal section.
- FIG. 2 is a front view of the light emitting module constituting the spot illumination device according to the present embodiment.
- FIG. 3 is a top view of the light emitting module constituting the spot lighting device according to the present embodiment.
- 4 is a cross-sectional view of the light emitting module taken along line IV-IV in FIG. 3
- FIG. 5 is an enlarged view of a main part of the cross-sectional view shown in FIG. 6 is a side view of a lens constituting the spot illumination device according to the present embodiment
- FIG. 7 is a top view of the lens constituting the spot illumination device according to the present embodiment
- FIG. 8 is a line VIII in FIG. It is sectional drawing of the lens along -VIII.
- a spot lighting device 1 includes a driver housing 2, a light emitting module (semiconductor light emitting device) 3 that functions as a light source, and two openings having different sizes (first opening 4a and second opening).
- a heat dissipating cylinder 4 which is an embodiment of a heat dissipating body disposed so as to surround the side of the light emitting module 3, a lens 5 disposed in a cavity 4c of the heat dissipating cylindrical body 4, and a driver housing 2, a heat radiating plate 6 disposed between the light emitting module 3 and the heat radiating cylindrical body 4, a heat insulating member 7 disposed between the driver housing 2 and the heat radiating plate 6, and the driver housing 2.
- It comprises a base 8.
- the spot lighting device 1 according to the present embodiment, power supplied from the outside is fed to the light emitting module 3 through the base 8, and light emitted by driving the light emitting module 3 is the heat radiating cylinder 4 or the lens. 5 is emitted to the outside. That is, the spot lighting device 1 according to the present embodiment has the same external shape and function as a general dichroic halogen bulb (halogen bulb with a reflector).
- the driver housing 2 of the spot lighting device 1 is formed so that the vicinity of the heat sink 6 is formed in a substantially truncated cone shape, and the vicinity of the base 8 is formed in a substantially quadrangular prism shape.
- the cavity 2a is formed.
- the driver housing 2 is formed of a relatively strong material that is not damaged by an external force. Furthermore, it is preferable to use a material having a relatively low thermal conductivity as the material of the driver housing 2.
- the material of the driver housing 2 for example, a material such as resin, ceramic, metal, and the like can be used.
- a material such as resin, ceramic, metal, and the like.
- polybutylene terephthalate, polyethylene terephthalate, polycarbonate, Resins such as polyethylene, polypropylene, ABS resin, phenol resin, epoxy resin, silicone resin, and nylon are preferable.
- the thermal conductivity of the driver housing 2 may be, for example, 30 W / (m ⁇ K) or less, and preferably 5.0 W / (m ⁇ K) or less.
- the thermal conductivity of polycarbonate which is an example of the material of the driver housing 2 is about 0.19 W / (m ⁇ K).
- the thermal expansion coefficient of the driver housing 2 may be, for example, in the range of 10 ⁇ 10 ⁇ 6 / ° C. to 300 ⁇ 10 ⁇ 6 / ° C., and preferably 50 ⁇ 10 ⁇ 6 / ° C. to 150 ⁇ 10 ⁇ Within the range of 6 / ° C.
- the thermal expansion coefficient of the driver housing 2 is particularly preferably as close as possible to the thermal expansion coefficient of the heat sink 6. By adjusting the coefficient of thermal expansion, the difference in coefficient of thermal expansion between the driver housing 2 and the heat sink 6 can be further reduced, and distortion at the connection portion between the driver housing 2 and the heat sink 6 can be reduced. To relieve stress. That is, a physical failure at the connection portion between the driver housing 2 and the heat sink 6 can be suppressed.
- the thermal expansion coefficient of polycarbonate which is an example of the material of the driver housing 2 is about 70 to 80 ⁇ 10 ⁇ 6 / ° C.
- the light emitting module 3 is mounted on the central region of one side of the heat sink 6.
- the light emitting module 3 includes a module main body 3a and a wavelength conversion member 3b stored in the module main body 3a.
- the module main body 3a is provided to protect the wavelength conversion member 3b from externally applied impacts, etc., and the material of the module main body 3a is a material such as a relatively hard metal (for example, iron, aluminum, copper, ceramic). Is used.
- the module main body 3a is provided with a screw hole 12 for screwing a screw 11 used for mounting the light emitting module 3 on the heat radiating plate 6, and the module main body 3a attaches the screw 11 to the heat radiating plate 6. It will be fixed via.
- the module main body 3a is provided with a circular opening for emitting light, and for example, light that has been whitened inside can be taken out from the opening.
- a glass plate or the like may be installed in the opening, and a phosphor may be applied to the inside of the module on the glass surface, and light may be extracted by whitening at this portion.
- the said opening is not restricted to circular, Polygons, such as a rectangle, or other shapes may be sufficient. That is, the shape of the opening can be appropriately changed according to the required shape of the light emitting surface of the light emitting module 3.
- the module main body 3 a has a rectangular outer shape and functions as a wiring board, and is located on the chip mounting surface 21 a of the flat plate portion 21 and has a cylindrical shape. And a side wall portion 22.
- twelve LED chips 23 as semiconductor light emitting elements are regularly arranged on the chip mounting surface 21 a of the flat plate portion 21 and inside the side wall portion 22. Yes. Specifically, four LED chips 23 are arranged at equal intervals in the central portion of the flat plate portion 21, and eight LED chips 23 are arranged so as to surround four sides of the four LED chips 23.
- Each of the four LED chips 23 arranged in the central portion is arranged at a position separated by an equal distance from the center of the flat plate portion 21, and similarly, eight LED chips arranged so as to surround the four sides.
- Each of 23 is arrange
- each of the four LED chips 23 and the eight LED chips are concentrically arranged to form a substantially circular LED chip mounting area as a whole of the twelve LED chips 23.
- a wiring pattern for supplying electric power to each of these LED chips 23 is formed on the flat plate portion 21.
- the LED chip 23 is an LED chip that emits blue light having a peak wavelength of 450 nm.
- an LED chip for example, there is a GaN-based LED chip in which an InGaN semiconductor is used for a light emitting layer.
- the type and emission wavelength characteristics of the LED chip 23 are not limited thereto, and various semiconductor light emitting elements such as LED chips can be used without departing from the gist of the present invention.
- the peak wavelength of light emitted from the LED chip 23 is preferably in the wavelength range of 360 nm to 480 nm, and more preferably in the wavelength range of 440 nm to 470 nm.
- the material of the module main body 3a is not limited to the above-described material, and for example, as a material having excellent electrical insulation, the material is selected from a resin, a glass epoxy, a composite resin containing a filler in the resin, and the like. Materials may be used.
- silicone containing a white pigment such as alumina powder, silica powder, magnesium oxide, titanium oxide or the like. It is preferable to use a resin.
- the module body 3a may be made of a metal such as aluminum, an interlayer insulating film such as a resin is formed on the metal such as aluminum, and the wiring pattern of the flat plate portion 21 is formed. It may be electrically insulated from the metal body.
- a p-electrode 26 and an n-electrode 27 are provided on the surface of the LED chip 23 facing the flat plate portion 21 side.
- the p electrode 26 is bonded to the wiring pattern 28 formed on the chip mounting surface 21a of the flat plate portion 21, and the n electrode 27 is bonded to the wiring pattern 29 also formed on the chip mounting surface 21a.
- the p electrode 26 and the n electrode 27 are connected to the wiring pattern 28 and the wiring pattern 29 through a metal bump (not shown) or by soldering.
- Other LED chips 23 (not shown) have the same p electrodes 26 and n electrodes 27 as the wiring patterns 28 and 29 formed on the chip mounting surface 21a of the flat plate portion 21 corresponding to the respective LED chips 23. Are joined together.
- the method of mounting the LED chip 23 on the flat plate portion 21 is not limited to this, and an appropriate method can be selected according to the type and structure of the LED chip 23.
- two electrodes of each LED chip 23 may be connected to a corresponding wiring pattern by wire bonding, or one electrode may be connected as described above. While joining to a corresponding wiring pattern, you may make it connect the other electrode to a corresponding wiring pattern by wire bonding.
- a wavelength conversion member 3 b that converts the wavelength of the blue light emitted from the LED chip 23 is provided in the inner region surrounded by the side wall portion 22.
- the blue light emitted from the LED chip 23 and the light emitted by wavelength conversion of the blue light by the wavelength conversion member 3b are combined, and the combined light is combined with the module main body.
- the light is emitted from the opening 3a.
- the wavelength conversion member 3b may be configured such that a glass plate or the like is installed in the opening of the module storage case and applied to the inside of the module on the glass surface, and light is extracted by whitening at this portion. .
- the wavelength conversion member 3b absorbs at least part of the blue light incident from the LED chip 23 and emits emitted light having a wavelength different from that of the blue light, and the fluorescent light It is comprised from the base material 25 which hold
- the LED chip 23 that emits blue light is used as a semiconductor light emitting element, so that a part of the blue light can be converted into yellow light to synthesize white light. It is.
- the phosphor 24 in this embodiment is a yellow phosphor that absorbs blue light and is excited to emit light having a wavelength different from that of the blue light when returning to the ground state.
- the emission peak wavelength of a specific yellow phosphor is usually 530 nm or more, preferably 540 nm or more, more preferably 550 nm or more, and usually 620 nm or less, preferably 600 nm or less, more preferably 580 nm or less. Is preferred.
- Y 3 Al 5 O 12 Ce [YAG phosphor], (Y, Gd) 3 Al 5 O 12 : Ce, (Sr, Ca, Ba, Mg) 2 SiO 4 : Eu, (Ca, Sr) Si 2 N 2 O 2 : Eu, ⁇ -sialon, La 3 Si 6 N 11 : Ce (however, a part thereof may be substituted with Ca or O) is preferable.
- the base material 25 a material having translucency such as resin or glass can be used.
- resin is used.
- the wavelength conversion member 3b is formed by kneading the phosphor 24 into a base material 25 that is a resin.
- Specific resins include polycarbonate resin, polyester resin (for example, polyethylene terephthalate resin, polybutylene terephthalate resin), acrylic resin (for example, polymethyl methacrylate resin), polyurethane resin, epoxy resin, and silicone resin. It is preferable to use it.
- the resin preferably does not absorb light emitted from the LED chip (for example, ultraviolet light, near ultraviolet light, or blue light) or visible light emitted from the wavelength conversion member. Furthermore, it is preferable to have sufficient transparency and durability against blue light emitted from the LED chip 23.
- These resins may be used alone or in combination of two or more. Moreover, the copolymer of these resin may be sufficient and it may use it, laminating
- polycarbonate resin is most preferably used because it is excellent in transparency, heat resistance, mechanical properties, and flame retardancy.
- the light emitted from the light emitting module 3 is not limited to white light, and colored light such as blue light, red light, and yellow light may be emitted.
- the heat sink 6 is disposed between the driver housing 2 and the light emitting module 3 and functions as a module mounting board on which the light emitting module 3 is mounted. More specifically, screw holes 6 a are formed in the heat sink 6, communicated with the screw holes 12 of the light emitting module 3, and the light emitting module 3 is attached to the light emitting module mounting surface 6 b of the heat sink 6 using the screws 11. It will be firmly mounted in the central area. The outer edge of the heat sink 6 is firmly connected to the outer edge of one end of the driver housing 2 (the end located on the side opposite to the end where the base 8 is disposed). In addition, a general adhesive agent may be used for the connection between the driver housing 2 and the heat sink 6, or a joining member such as a screw may be used.
- the heat radiating plate 6 is preferably made of a material having a relatively high thermal conductivity and a hard material, for example, a metal such as aluminum, iron, or copper, or an alumina-based ceramic. Aluminum is particularly preferable from the viewpoints of thermal conductivity, ease of processing, and cost. With such a configuration, the heat radiating plate 6 can conduct heat generated in the light emitting module 3 satisfactorily, and can suppress the temperature rise of the light emitting module 3 favorably. That is, the heat sink 6 functions as a heat sink.
- the heat conductivity of the heat sink 6 may be, for example, 20 W / (m ⁇ K) or more, and preferably 150 W / (m ⁇ K) or more.
- the thermal conductivity of aluminum which is an example of the material of the heat sink 6 is about 250 W / (m ⁇ K).
- the thermal expansion coefficient of the heat radiating plate 6 may be in the range of, for example, 2.0 ⁇ 10 ⁇ 6 / ° C. to 100 ⁇ 10 ⁇ 6 / ° C., and preferably 10 ⁇ 10 ⁇ 6 / ° C. to 50 ⁇ 10 -6 / ° C.
- the thermal expansion coefficients of the driver housing 2 and the radiating cylinder 4 are within a range in which the thermal expansion coefficient of the heat radiating plate 6 does not exceed the thermal expansion coefficient of the driver housing 2 and does not become smaller than the thermal expansion coefficient of the radiating cylinder 4. It is particularly preferable that the coefficient be as close as possible.
- the thermal expansion coefficient of the heat radiating plate 6 is higher than the thermal expansion coefficient of the heat radiating cylindrical body 4 and lower than the thermal expansion coefficient of the driver housing 2.
- the members surrounding the light emitting module 3 are not integrally formed, and the thermal expansion coefficient is adjusted as described above.
- Such a connection portion between the driver housing 2 and the heat radiating plate 6 and a connection portion between the heat radiating cylindrical body 4 and the heat radiating plate 6 (that is, a connection portion between the heat radiating cylindrical body 4 and the driver housing 2 via the heat radiating plate 6). ) Can be reduced to relieve stress and suppress physical failure at each connecting portion.
- the spot illuminating device 1 is less likely to be distorted and has a longer life as compared with an illuminating device in which members surrounding a light source are integrally formed.
- the thermal expansion coefficient of aluminum which is an example of the material of the heat sink 6 is about 23 ⁇ 10 ⁇ 6 / ° C.
- the heat radiating cylinder 4 and the heat radiating plate 6 which are members surrounding the light emitting module 3 are not integrally formed, different materials are selected for the heat radiating cylindrical body 4 and the heat radiating plate 6. be able to.
- the optimal structure can be implement
- the convex part 6c is formed in the center part (part which mounts the light emitting module 3) of the heat sink 6.
- the light emitting module mounting surface 6b is shifted to the lens 5 side from the interface between the heat radiating cylindrical body 4 and the heat radiating plate 6.
- the heat radiating plate 6 has a step that brings the mounting portion of the light emitting module 3 on the heat radiating plate 6 closer to the second opening 4b of the heat radiating cylindrical body 4 than the connection portion of the heat radiating plate 6 on the heat radiating plate 6.
- the spot lighting device 1 functions as a good LED type dichroic halogen bulb with better heat dissipation.
- the heat radiating cylindrical body 4 includes a first opening 4a and a second opening 4b having an opening diameter larger than that of the first opening 4a, and the light emitting module 3 and the lens 5 therein.
- a cavity 4c that can be disposed is formed. That is, the first opening 4a and the second opening 4b communicate with each other through the cavity 4C.
- the heat radiating cylindrical body 4 is disposed so that the first opening 4 a having a small opening diameter is located on the mounting side of the light emitting module 3 and surrounds the side of the light emitting module 3.
- the edge part by the side of the 1st opening part 4a of the thermal radiation cylinder 4 is directly connected to the peripheral area
- the direct connection is not limited to the case where the heat radiating cylinder 4 and the heat radiating plate 6 are connected in contact with each other without interposing other members. It is defined as including that the heat radiating cylinder 4 and the heat radiating plate 6 are substantially in contact with each other through an adhesive that hardly affects the heat conduction between the heat radiating cylinder 4 and the heat radiating plate 6.
- the shape of the heat radiating cylindrical body 4 collects the light emitted from the light emitting module 3, and the spot illumination device It is necessary to have a shape capable of irradiating spot light from 1.
- the side surface of the heat radiating cylindrical body 4 is formed in a parabolic shape. That is, the outer shape of the heat radiating cylindrical body 4 is such that the bottom of the ridge is removed.
- the external shape of the thermal radiation cylindrical body 4 is not limited to this, For example, the cone shape with a hollow inside (namely, hollow cone shape) may be sufficient. In other words, the side surface of the heat radiating cylindrical body 4 may be formed flat without being curved.
- the heat radiating cylinder 4 may be formed with a member (so-called wavelength-selective reflecting member) that reflects light only at a certain wavelength on the inner surface thereof.
- the heat radiating cylinder 4 may be formed of a member that reflects light having a short wavelength and may transmit a part of red light having a long wavelength. In such a case, the spot lighting device 1 can emit red light from the side, and can exhibit a reddish color.
- a reflecting member may be formed on the inner surface of the heat radiating cylinder 4.
- a metal thin film or a dielectric multilayer film that functions as a reflecting member is formed using a known film forming technique such as vapor deposition or sputtering.
- the dielectric multilayer film for example, ceramic or tantalum can be used.
- the heat radiating cylinder 4 is made of a material that transmits at least a part of the light emitted from the light emitting module 3.
- the material of the heat radiating cylinder 4 and the light transmittance that transmits all incident light may be provided.
- the thermal radiation cylinder 4 is comprised from the comparatively high and hard material of heat conductivity.
- at least one material selected from the group of glass, resin, and ceramic can be used for the heat radiating cylinder 4.
- the heat radiating cylindrical body 4 is composed of such a material, the light emitted from the light emitting module 3 is transmitted through the heat radiating cylindrical body 4 and also radiated to the side of the spot illumination device 1.
- Such a spot illumination device 1 functions as a good LED type dichroic halogen bulb.
- the thermal conductivity of the heat radiating cylindrical body 4 may be, for example, 0.5 W / (m ⁇ K) or more, and preferably 10 W / (m ⁇ K) or more.
- the thermal conductivity of glass as an example of the material of the heat radiating cylinder 4 is about 1.05 W / (m ⁇ K).
- the thermal expansion coefficient of the radiating cylindrical body 4 may be, for example, in the range of 0.5 ⁇ 10 ⁇ 6 / ° C. to 10 ⁇ 10 ⁇ 6 / ° C., preferably 1.0 ⁇ 10 ⁇ 6 / ° C. It is in the range of 10 ⁇ 10 ⁇ 6 / ° C.
- the thermal expansion coefficient of the heat radiating cylinder 4 is particularly preferably as close as possible to the thermal expansion coefficient of the heat radiating plate 6. By adjusting the coefficient of thermal expansion as described above, the strain at the connecting portion between the heat radiating cylinder 4 and the heat radiating plate 6 as described above can be reduced to relieve stress. It is possible to suppress physical failure in the connection part.
- the thermal expansion coefficient of glass which is an example of the material of the heat radiating cylinder 4 is about 9 ⁇ 10 ⁇ 6 / ° C.
- the heat generated in the light emitting module 3 is conducted to the heat dissipation cylinder 4 via the heat dissipation plate 6. Furthermore, the heat conducted to the heat radiating cylindrical body 4 is radiated to the outside while being conducted from the first opening 4a side toward the second opening 4b side. That is, the heat radiation path A (the broken line arrow A in FIG. 1) conducts heat generated from the light emitting module 3 to the heat radiation cylinder 4 through the heat radiation plate 6 and dissipates heat from the heat radiation cylinder 4 by the heat radiation cylinder 4 and the heat radiation plate 6. Will be formed).
- the heat dissipation path A extends toward the side opposite to the direction in which the driver housing 2 and the base 8 are disposed. By forming such a heat radiation path A, heat generated from the light emitting module 3 can be radiated well to the outside of the spot lighting device 1.
- the heat generated from the light emitting module 3 is not conducted toward the circuit board 9 provided on the side opposite to the mounting surface side of the light emitting module 3 and the side where the heat radiating cylindrical body 4 is disposed. 9 is not affected by the heat. That is, the failure of the circuit board 9 is less likely to occur, and the life of the circuit board 9 and the spot lighting device 1 itself can be extended.
- the cylindrical heat radiating cylindrical body 4 is used as the heat radiating body constituting the heat radiating path A.
- the outer shape of the cylinder that is, the cross-sectional shape in the direction orthogonal to the extending direction of the cylinder) ) Is not limited to a circle, but may be square or elliptical. That is, instead of the heat radiating cylindrical body 4, a heat radiating cylindrical body such as a rectangular shape or an elliptical shape may be used.
- the heat radiating cylindrical body is a concept including a heat radiating cylindrical body having a circular cross-sectional shape, and the cross-sectional shape is any of a circle, an ellipse, an oval, a triangle, a quadrangle, five or more polygons, etc. including.
- the cross-sectional shape of the heat radiating cylindrical body includes one formed by a combination of a plurality of curves and one formed by a combination of one or more curves and one or more straight lines. In such a case, it is necessary to match the shape of various constituent members such as the driver housing 2, the lens 5, the heat radiating plate 6, and the heat insulating member 7 with the shape of the heat radiating cylindrical body 4.
- the lens 5 condenses the light incident from the light emitting module 3 and the lid 5 a that functions as a lid that closes the second opening 2 b of the heat radiating cylinder 4. It is comprised from the condensing part 5b to do.
- the lid portion 5 a is formed in a disc shape, and an outer edge portion thereof is fixed to the inner side surface of the heat radiating cylindrical body 4.
- the condensing part 5b is formed in the substantially truncated cone shape, and the recessed part 5c is formed in the end.
- the lens 5 is disposed so that the concave portion 5c faces the light emitting module 3 in order to introduce the light emitted from the light emitting module 3 into the lens 5 from the concave portion 5c.
- the fixing method of the lens 5 is not limited to an adhesive.
- the diameter of the lid portion 5a of the lens 5 is set slightly larger than the opening diameter of the second opening portion 4b of the heat radiating cylindrical body 4, and the lens 5 May be fitted without using an adhesive. In this way, the lens can be easily attached and detached.
- the lens 5 in this embodiment is a reflective lens that reflects incident light by the inner surface 5d of the light condensing part 5b and condenses it.
- the cover part 5a which concerns on a present Example has a structure which permeate
- the light emitted from the second opening 2 b of the heat radiating cylindrical body 4 is collected, and the object to be irradiated is spot-like using the spot illumination device 1 according to the present embodiment. Can be irradiated.
- the heat insulating member 7 is provided on the opposite side of the heat radiating plate 6 from the light emitting module mounting surface 6b. That is, the heat insulating member 7 is disposed between the heat sink 6 and the driver housing 2.
- the heat insulating member 7 may be any of a fiber material and a foam material.
- the heat insulating member 7 is provided in the vicinity of the cavity 2 a of the driver housing 2 so that the heat radiating plate 6 is not exposed as much as possible. By doing so, heat is prevented from being radiated into the cavity 2a of the driver housing 2 from the surface opposite to the light emitting module mounting surface 6b of the heat radiating plate 6, and the temperature rise of the circuit board 9 is suppressed. can do. Therefore, the failure of the circuit board 9 is less likely to occur, and the life of the circuit board 9 and the spot lighting device 1 itself can be extended.
- the temperature rise of the circuit board 9 can be sufficiently suppressed. May not be provided, or the installation area of the heat insulating member 7 may be reduced.
- the base 8 As shown in FIG. 1, the base 8 is formed in a pin shape so that it can be fitted into a power supply socket (pin hole) provided in the power supply source of the spot lighting device 1.
- the base 8 is electrically connected to a circuit board 9 built in the driver housing 2 via wiring (not shown). Therefore, when the base 8 is inserted into the power supply socket of the power supply source, desired power is supplied from the power supply source to the circuit board 9 via the base 8 and the wiring.
- the base 8 is not limited to the pin type as shown in FIG. 1 and can be appropriately changed according to the shape of the power supply socket of the power supply source.
- the shape of the base 8 is the same size as the substantially quadrangular columnar portion of the driver housing 2 and the surface thereof is threaded. It may be. In such a case, the base 8 is detachable by being screwed into the power supply socket.
- the base 8 is inserted into a power supply socket (not shown) of an illumination system provided indoors or outdoors, and the spot illumination device 1 is attached to the illumination system.
- the power supply switch of the lighting system is shifted to the on state, and power is supplied to the spot lighting device 1.
- the electric power is supplied to the light emitting module 3 through the base 8 and the circuit board 9, and the LED chip 23 of the light emitting module 3 emits light, and desired light is emitted from the light emitting module 3.
- the light emitted from the light emitting module 3 enters the lens 5 from the concave portion 5 c of the lens 5. At this time, since the concave portion 5 c of the lens 5 is disposed so as to surround the light emitting surface of the light emitting module 3, all the light emitted from the light emitting module 3 enters the lens 5.
- the spot illumination device 1 functions as an LED-type dichroic halogen bulb due to such light emission.
- the heat generated by driving the light emitting module 3 is conducted along the heat radiation path A formed by the heat radiating plate 6 and the heat radiating cylindrical body 4 without affecting the circuit board 9 of the driver housing 2. Then, heat is radiated from the heat radiating cylinder 4. Thereby, the heat dissipation of the spot illumination device 1 is improved, the failure of the light emitting module 3 and the circuit board 9 can be prevented, and the life of the spot illumination device 1 itself can be extended.
- Illumination device having a heat dissipation path A in this embodiment (a heat dissipation path is formed by a heat dissipation cylinder and a heat dissipation plate) and an illumination device not having such a heat dissipation path A (for example, a light-transmitting bowl-shaped radiator) (Hereinafter referred to as “comparative example”) is compared with a simulation of the heat dissipation state under the following conditions.
- the shape of the lighting device in this embodiment and the comparative example is the same as that of the spot lighting device 1 shown in FIG.
- the second condition out of the power consumption 3.8 W, the heat generation power 0.7 W by the power supply circuit, the heat generation power 0.62 W by the light emitting element, and the power consumed for light emission 2.48 W.
- the thermal conductivity of the material used in the heat radiating cylindrical body 4 is 1.2 W / m ⁇ K
- the thermal conductivity of the material used in the heat radiating plate 6 is 92 W / m ⁇ K.
- a portion corresponding to the heat radiating cylindrical body 4 and the heat radiating plate 6 of the embodiment is a light-transmitting bowl-shaped heat radiator integrally formed of the same material.
- the thermal conductivity is 1.2 W / m ⁇ K.
- the thermal conductivity of the casing that houses the power supply circuit is 0.19 W / m ⁇ K.
- the emissivity of all members is 0.95.
- this example was 80.8 ° C. and the comparative example was 90.5 ° C.
- heat is radiated through the heat dissipation path A, and the temperature in the heat radiating plate and the circuit board is also about 80 ° C.
- the temperature in the heat radiating plate and the circuit board is Was about 90 ° C. That is, the temperature of the peripheral region of the light emitting element was lower by about 10 ° C. in the lighting device in this example than in the lighting device in the comparative example.
- the lifetime of the light emitting element and the electronic component is doubled when the temperature is lowered by 10 ° C., assuming that the lifetime of the spot illumination of the comparative example is 20000 hours, the lifetime of the spot illumination of this embodiment is 40000. Increase in time.
- the spot lighting device 1 since the heat radiation path A is formed by the heat radiation cylinder 4 and the heat radiation plate 6, the heat generated from the light emitting module 3 is radiated through the heat radiation plate 6. It was confirmed that the heat radiated from the heat radiating cylindrical body 4 was reliably radiated. And compared with the comparative example which does not form the heat radiation path A as in this embodiment, the spot illumination device 1 can be expected to reduce its temperature by 10 ° C. to 20 ° C. And while the lifetime of the said comparative example is about 10,000 hours, the spot lighting apparatus 1 in a present Example implement
- the lifetime is generally halved when the temperature of the spot illumination device 1 itself is increased by 10 ° C., so that the spot illumination device 1 in this embodiment is twice or more compared to the comparative example. It shows that it has a lifetime.
- the chip-on-board (COB) type light emitting module 3 including a plurality of LED chips 23 is fixed to the heat sink 6 as a semiconductor light emitting device. It is not limited to COB as described above.
- COB chip-on-board
- a package type LED package device in which an LED chip is embedded in a wavelength conversion member may be used as the semiconductor light emitting device.
- a spot illumination device 1 ′ using such an LED package device will be described as a modification 1 with reference to FIGS. 9 and 10.
- FIG. 9 is a partially cutaway front view showing the entire spot illumination device 1 ′ according to the first modification in a partially longitudinal section.
- FIG. 10 is a cross-sectional view of the LED package device constituting the spot lighting device according to the first modification.
- symbol is attached
- the difference between the configuration of the spot illumination device 1 ′ according to this modification and the configuration of the spot illumination device 1 according to the above-described embodiment is the first LED package device 41 (hereinafter also referred to as the first LED 41) instead of the light emitting module 3. ), And the second LED package device 42 (hereinafter also referred to as the second LED 42) is fixed to the heat sink 6 only. Therefore, in the spot lighting device 1 ′ according to this modification, the light emitted from the first LED 41 and the second LED 42 is emitted from the lens 5 or the heat radiating cylinder 4.
- the first LED 41 is a light source that emits white light.
- the first LED 41 according to this modification includes a package 43, an LED chip 44 that is a semiconductor light emitting element mounted in the package 43, and at least a part of light emitted from the LED chip 44. It is comprised from the wavelength conversion member 45 which has the function to convert.
- white light that is a combined light of light emitted from the LED chip 44 and light having different wavelengths that have been wavelength-converted by the function of the wavelength conversion member 45, or wavelength conversion.
- the white light which is the combined light of only the light having different wavelengths that has been wavelength-converted by the function of the member 45, is emitted from the wavelength conversion member 45 to the outside.
- the package 43 is made of an alumina-based ceramic having excellent electrical insulation, good heat dissipation, and high reflectivity (preferably a reflectivity of 80% or more).
- the package 43 has an opening 43a for accommodating the LED chip 44, and the LED chip 44 is mounted on the bottom surface of the opening 43a. Furthermore, a wiring pattern (not shown) for mounting the LED chip 44 and supplying current to the LED chip 44 is formed on the mounting surface of the package 43 (that is, on the bottom surface of the opening 43a).
- the material of the package 43 is not limited to alumina-based ceramics.
- a material selected from resin, glass epoxy resin, composite resin containing a filler in the resin, etc. as a material having excellent electrical insulation.
- the body of the package 43 may be formed using Alternatively, in order to improve the light emission efficiency of the first LED 41 by improving the light reflectivity on the chip mounting surface of the package 43, a silicone resin containing a white pigment such as alumina powder, silica powder, magnesium oxide, or titanium oxide is used. Is preferred.
- the package 43 may be made of a metal such as aluminum whose body is covered with an insulator. In such a case, it is necessary to electrically insulate the wiring pattern of the package 43 from the metal main body.
- one LED chip 44 functions as a semiconductor light source that is a light source of the first LED 41.
- the LED chip 44 has a blue light emitting diode that emits blue light having a peak wavelength in the range of 430 nm to 480 nm, or a purple that emits ultraviolet to purple light having a peak wavelength in the range of 360 nm to 430 nm.
- Light emitting diodes can be used.
- the peak wavelength is preferably in the wavelength range of 430 nm to 480 nm, and particularly preferably 450 nm.
- the peak wavelength is preferably in the wavelength range of 360 nm to 430 nm, particularly preferably 400 to 415 nm.
- the number of LED chips 44 is not limited to one, and a plurality of LED chips 44 that emit light having the same peak wavelength may be used as the semiconductor light emitting source. Further, the type and emission wavelength characteristics of the LED chip 44 are not limited thereto, and various semiconductor light emitting elements such as LED chips can be used without departing from the gist of the present invention.
- the LED chip 44 has an electrode (not shown) on the surface side facing the bottom surface (that is, the chip mounting surface) of the opening 43a of the package 43.
- the electrodes are electrically connected to the wiring pattern on the package 43 described above.
- the electrical connection between the electrode and the wiring pattern is performed by soldering, for example, via a metal bump.
- the method for mounting the LED chip 44 on the package 43 is not limited to this, and an appropriate method can be selected according to the type and structure of the LED chip 44. For example, after the LED chip 44 is bonded and fixed to a predetermined position of the package 43, the electrodes of the LED chip 44 may be connected to a corresponding wiring pattern by wire bonding.
- the wavelength conversion member 45 absorbs at least a part of incident light incident from the LED chip 44 and emits emitted light having a wavelength different from the incident light, and a base material that holds the plurality of phosphors. It consists of and. That is, the wavelength conversion member 45 is a member containing a plurality of phosphors.
- the first LED 41 of this modification when a blue light emitting diode that emits blue light is used as the LED chip 44, in order to obtain white light from the first LED 41, at least a part of the blue light is converted into green light and red light. It is necessary to synthesize white light by wavelength conversion and mixing blue light that has not been wavelength-converted by either the green light or red light (that is, transmitted through the wavelength conversion member 45) with the green light and red light. is there.
- the phosphor in the present modification includes a green phosphor that can absorb and excite blue light and emit green light having a wavelength different from that of the blue light when returning to the ground state, and A red phosphor is used that is excited by absorbing blue light and can emit red light having a wavelength different from that of the blue light when returning to the ground state.
- the LED chip 44 when a violet light emitting diode that emits ultraviolet to violet light is used as the LED chip 44, in order to obtain white light from the first LED 41, at least part of the ultraviolet to violet light is blue light, green light, and red light. It is necessary to synthesize the white light by mixing the blue light, the green light and the red light. In such a case, the phosphor in this modification is excited by absorbing ultraviolet to violet light, and can emit blue light having a wavelength different from that of ultraviolet to violet light when returning to the ground state.
- Phosphor absorbs ultraviolet to violet light, excites and emits green light having a wavelength different from ultraviolet to violet light when returning to the ground state, and absorbs ultraviolet to violet light
- a red phosphor that can emit red light having a wavelength different from ultraviolet to violet light when excited and returned to the ground state is used.
- the green phosphor in the first LED 41 according to this modification has an emission peak wavelength of usually 510 nm or more, preferably 530 nm or more, more preferably 535 nm or more, usually less than 570 nm, preferably 550 nm or less, more preferably 545 nm or less. Those in the wavelength range are preferred.
- green phosphors for example, (Y, Lu) 3 Al, Ga) 5 O 12 : Ce, CaSc 2 O 4 : Ce, Ca 3 (Sc, Mg) 2 Si 3 O 12 : Ce, (Sr , Ba) 2 SiO 4 : Eu (BSS), (Si, Al) 6 (O, N) 8 : Eu ( ⁇ -sialon), (Ba, Sr) 3 Si 6 O 12 N 2 : Eu (BSON), SrGa 2 S 4 : Eu, BaMgAl 10 O 17 : Eu, Mn, (Ba, Sr, Ca, Mg) Si 2 O 2 N 2 : Eu are preferably used.
- BSS, ⁇ -sialon, BSON, SrGa 2 S 4 : Eu, BaMgAl 10 O 17 : Eu, Mn are more preferably used
- BSS, ⁇ -sialon, and BSON are more preferably used
- ⁇ - Sialon and BSON are particularly preferably used
- ⁇ -sialon is most preferably used.
- ⁇ -sialon is used as the green phosphor.
- the red phosphor in the first LED 41 according to this modification has an emission peak wavelength of usually 570 nm or more, preferably 580 nm or more, more preferably 600 nm or more, further preferably 630 nm or more, particularly preferably 645 nm or more, and usually 780 nm.
- those having a wavelength range of preferably 700 nm or less, more preferably 680 nm or less are suitable.
- (Sr, Ca) AlSi (N, O) 3 : Eu and SrAlSi 4 N 7 : Eu are more preferable, and (Sr, Ca) AlSi (N, O) 3 : Eu is more preferable.
- CaAlSi (N, O) 3 : Eu (hereinafter also referred to as CASN) is used as the red phosphor.
- red phosphor for example, CaAlSi (N, O) 3 : Eu, (Ca, Sr, Ba) 2 Si 5 (N, O) 8 : Eu, (Ca, Sr, Ba) Si (N, O) 2 : Eu, (Ca, Sr, Ba) AlSi (N, O) 3 : Eu, (Sr, Ba) 3 SiO 5 : Eu, (Ca, Sr) S: Eu, SrAlSi 4 N 7 : Eu, Eu (di) ⁇ -diketone Eu complexes such as benzoylmethane) 3 ⁇ 1,10-phenanthroline complex and carboxylic acid Eu complexes are preferred, and (Ca, Sr, Ba) 2 Si 5 (N, O) 8 : Eu, (Sr, Ca) AlSi (N, O) 3 : Eu and SrAlSi 4 N 7 : Eu are preferably used.
- the emission peak wavelength of the blue phosphor in the first LED 41 according to this modification is usually 420 nm or more, preferably 430 nm or more, more preferably 440 nm or more, usually less than 500 nm, preferably 490 nm or less, more preferably 480 nm or less, More preferred are those in the wavelength range of 470 nm or less, particularly preferably 460 nm or less.
- (Ca, Sr, Ba) MgAl 10 O 17 : Eu, (Sr, Ca, Ba, Mg) 10 (PO 4 ) 6 (Cl, F) 2 : Eu, (Ba, Ca , Mg, Sr) 2 SiO 4 : Eu, (Ba, Ca, Sr) 3 MgSi 2 O 8 : Eu are preferred, and (Ba, Sr) MgAl 10 O 17 : Eu, (Ca, Sr, Ba) 10 (PO 4 ) 6 (Cl, F) 2 : Eu, Ba 3 MgSi 2 O 8 : Eu is more preferable, Sr 10 (PO 4 ) 6 C 12 : Eu, BaMgAl 10 O 17 : Eu is more preferable, and (Sr, Ba , Ca) 5 (PO 4 ) 3 Cl: Eu (more specifically, Sr 5 (PO 4 ) 3 Cl: Eu (hereinafter also referred to as SCA)) or (Sr 1-x Ba x )
- the base material used for the wavelength conversion member 45 of this modification can be the same material as the base material 25 of the wavelength conversion member 3b according to the above-described embodiment. Here, the description of the base material is omitted.
- the color temperature of the emitted white light is adjusted to about 1900K by changing the mixing ratio of the phosphors described above.
- the second LED 42 according to this modification has substantially the same structure as the first LED 41 described above, but a plurality of phosphors are mixed at a mixing ratio different from the mixing ratio of the phosphors in the first LED 41, and the color of the emitted white light The temperature is adjusted to about 2700K.
- ⁇ Electric circuit configuration of spot lighting device> Next, the electric circuit configuration of the spot illumination device 1 ′ and the light emission control of the spot illumination device 1 ′ according to this modification will be described.
- FIG. 11 is an electric circuit diagram showing an outline of the electric circuit configuration of the spot illumination device 1 ′ according to the present modification.
- 12 and 13 are time charts showing an example of the operating state of each transistor and the current value of the drive current of each LED in the circuit configuration of FIG.
- a current limiting resistor R1 and resistor R2 in addition to one first LED 41 and two second LEDs 42, a current limiting resistor R1 and resistor R2, and a drive for driving the LEDs.
- a transistor Q1 and a transistor Q2 for supplying current are provided.
- the resistor R1 is provided to adjust the current flowing through the corresponding first LED 41 to an appropriate magnitude
- the resistor R2 is provided to adjust the current flowing through the corresponding two second LEDs 42 to an appropriate magnitude. It has been.
- the first LED 41 is connected in series with the resistor R1, and the anode of the first LED 41 is connected to the positive electrode of the power source 51a via the resistor R1.
- the cathode of the first LED 41 is connected to the collector of the transistor Q1, and the emitter of the transistor Q1 is connected to the negative electrode of the power source 51a.
- the two second LEDs 42 have the same polarity and are connected in parallel to each other.
- the anode is connected to the positive electrode of the power source 51b via the resistor R2, and the cathode is connected via the transistor Q2. And connected to the negative electrode of the power source 51b.
- the power source 51a is a DC power source including a conversion circuit that converts an AC voltage supplied from the outside of the spot illumination device 1 ′ through the base 8 into a DC voltage, and is applied to the circuit board 9 of the spot illumination device 1 ′.
- the power source 51b is a direct current power source including a conversion circuit that converts an alternating voltage supplied from the outside of the spot illumination device 1 ′ through the base 8 into a direct current voltage, and is applied to the circuit board 9 of the spot illumination device 1 ′. Is provided.
- the power sources 51a and 51b are connected to an external power source of the spot illumination device 1 '.
- the transistors Q1 and Q2 can both be switched on / off according to the respective base signals, and the base signals are individually sent from the current control unit 52 to the respective bases. Yes. More specifically, the constant current control circuit 52a constituting the current control unit 52 is connected to the base of the transistor Q1, and the duty ratio control circuit constituting the current control unit 52 is connected to the base of the transistor Q2. 52b is connected.
- the spot illumination device 1 ′ is connected to an operation unit 53 for externally adjusting light emission characteristics such as luminance of light emitted from the spot illumination device 1 ′.
- the operation unit 53 is connected to the current control unit 52, and a drive signal corresponding to the set luminance according to an operation for setting light emission characteristics such as the luminance of light emitted from the spot illumination device 1 ′. Is transmitted to the current control unit 52.
- the current control unit 52 controls the operation of the transistor Q1 and the transistor Q2 according to the drive signal, and controls the drive current supplied to the first LED 41 and the drive current supplied to the second LED 42.
- the current control unit 52 includes the constant current control circuit 52a and the duty ratio control circuit 52b.
- the constant current control circuit 52a supplies a base signal to the transistor Q1
- the duty ratio control circuit 52b includes the transistor Q2. To supply the base signal.
- the first LED 41 is controlled by the constant current control circuit 52a. More specifically, when the transistor Q1 is turned ON, a constant driving current is always supplied to the first LED 41, and the first LED 41 is supplied to the first LED 41.
- the actual driving current that flows (that is, the amount of power supplied to the second LED 42) is constant.
- the second LED 42 is controlled by the duty ratio control circuit 52b. More specifically, although the magnitude of the base signal supplied to the transistor Q2 does not change, the ratio between the supply time and non-supply time of the base signal is controlled. ing. That is, by intermittently driving the transistor Q2 on and off at a predetermined cycle, the ratio of the supply time and non-supply time of the drive current supplied to the second LED 42 is controlled, and the actual drive current flowing through the second LED 42 (i.e., The amount of power supplied to the second LED 42) is controlled by the duty ratio control circuit 52b. In other words, the drive current supplied to the second LED 42 is controlled by the variable current according to the drive signal described above by the duty ratio control circuit 52b.
- the current control unit 52 may include a storage unit (for example, a memory) that stores control content corresponding to the electrical signal supplied from the operation unit 53. In such a case, the current control unit 52 reads the control content corresponding to the electrical signal supplied from the operation unit 53 from the storage unit, and controls the operation of the transistor Q1 and the transistor Q2 according to the read control content. become.
- a storage unit for example, a memory
- FIG. 12 shows a case where synthetic white light that is relatively dark and reddish is emitted from the spot lighting device 1 ′.
- a driving current having a current value A0 flows through the first LED 41, and 1900K white light is emitted from the first LED 41.
- the transistor Q2 is turned on only during the on period t1 (for example, 3 ms) during the period t0 (for example, 20 ms), and the driving current of the current value A0 flows through the first LED 41 during the on period t1, and the second LED 42 2700K white light is emitted.
- the current value of the drive current that flows instantaneously (that is, the period of t1) through the second LED 42 when the transistor Q2 is ON is A0.
- the current value of the drive current actually supplied to the second LED 42 in the state where the spot illumination device 1 ′ is actually used is as follows. Less than half of A0. Accordingly, in the state shown in FIG.
- the 1900K light emitted from the second LED 42 becomes brighter than the 2700K light emitted from the first LED 41, and the color temperature of the synthesized white light emitted from the spot illumination device 1 ′ is Approaching 1900K, synthetic white light of a reddish color as a whole is emitted.
- the on period of the transistor Q2 is longer than the on period t1 (for example, the on period t2). 18 ms), and the driving time of the transistor Q2 is lengthened.
- the second LED 42 is actually used in the state where the spot illumination device 1 ′ is actually used (that is, the cycle of t0 is repeated a plurality of times).
- the current value of the drive current supplied to is closer to the current value (A0) of the drive current that flows instantaneously (that is, during the period t2) in the second LED 42 as compared to the state of FIG. Accordingly, in the state shown in FIG. 13, the brightness of the 1900K light emitted from the second LED 42 and the light of 2700K emitted from the first LED 41 are substantially the same, and the synthesized white light emitted from the spot illumination device 1 ′.
- the color temperature is closer to 2700K, and light of a color closer to daylight is emitted.
- the timing at which the transistor Q2 is turned on and the drive current is supplied to the second LED 42 may be a case where the drive current supplied to the transistor Q1 becomes a predetermined value (for example, 200 mA) or more.
- a predetermined value for example, 200 mA
- the 2LED 42 can also emit white light of 2700 K, and the color temperature of the synthetic white light can be adjusted according to the intensity of the synthetic white light (that is, the value of the drive current).
- the first LED 41 is controlled by the constant current control circuit 52a, and the second LED 42 has a structure controlled by the duty ratio control circuit 52b. However, the first LED 41 also has a structure controlled by the duty ratio control circuit, When the drive current supplied to the first LED 41 is stopped, the drive current supplied to the first LED 41 may be controlled with a variable current according to the drive signal. Thereby, the behavior until the spot illumination device 1 ′ is turned off can be made closer to that of a filament type dichroic halogen bulb. Note that the drive current supplied to the first LED 41 being stopped means that the supply of the drive current is completely stopped, not a period in which the drive current periodically becomes zero.
- the first LED 41 is controlled by the constant current control circuit 52a, and the second LED 42 has a structure controlled by the duty ratio control circuit 52b. However, when the driving current supplied to the second LED 42 is stopped, the first LED 41 is controlled. The drive current supplied to one LED 41 may be stopped. Thereby, when the drive current supplied to the first LED 41 is stopped, the spot illumination device 1 ′ can be turned off, and the behavior of the spot illumination device 1 ′ can be made closer to that of a filament-type dichroic halogen bulb. .
- the color temperature of the white light radiated from the first LED 41 and the second LED 42 is not limited to the above-described numerical values, and can be appropriately changed according to the use environment, the use application, and the like of the spot lighting device 1 ′.
- one first LED 41 and two second LEDs 42 are fixed to the heat sink 6.
- the first LEDs 41 and the second LEDs 42 are arranged in a matrix and fixed to the heat sink 6. May be.
- fixing a plurality of LED package devices to the heat sink 6 it is not necessary that the color temperatures of all the LED package devices be different, and at least one set selected from the plurality of LED package devices is light having a different color temperature. May be emitted.
- the parameters of the first LED 41 and the second LED 42 are adjusted by adjusting parameters such as the wavelength, the distance from the black body radiation locus, the spectral distribution, and the normalized spectral distribution.
- White light having a natural color from at least one and having excellent saturation in green, yellow, and red may be emitted.
- the transistors Q1 and Q2 which are bipolar transistors are used as switching elements.
- a MOS field effect transistor Metal-Oxide-Semiconductor-Field-Effect-Transistor
- the heat generated in the first LED 41 and the second LED 42 is conducted along the heat radiation path A formed by the heat radiating plate 6 and the heat radiating cylindrical body 4 and affects the circuit board 9 of the driver housing 2. Instead, the heat is radiated from the heat radiating cylinder 4. Thereby, the heat dissipation of the spot lighting device 1 ′ is improved, the failure of the light emitting module 3 and the circuit board 9 can be prevented, and the life of the spot lighting device 1 ′ itself can be extended.
- FIG. 14 shows a part of the entire spot illumination device 1 ′′ according to the modification 2. It is a partially cutaway front view shown in a longitudinal section.
- symbol is attached
- the difference between the configuration of the spot illumination device 1 ′′ according to the present modification and the configuration of the spot illumination device 1 according to the above-described modification 1 ′ is that the plurality of first LEDs 41, the plurality of second LEDs 42, and the support member 61 emit semiconductor light.
- the heat radiating cylindrical body 4 ′′ is provided.
- the other structures and members are the same.
- the LED light source 62 includes a columnar support member 61 fixed to the heat radiating plate 6, a plurality of (for example, four) first LEDs 41 fixed to the side surface of the support member 61, and a plurality of first LEDs 41. It is composed of (for example, four) second LEDs 42.
- the support member 61 is preferably composed of a member having a relatively high thermal conductivity.
- the support member 61 is composed of at least one material selected from the group of glass, resin, and ceramic.
- the first LED 41 and the second LED 42 are supported by the support member 61 using a joining member such as solder so that the first LED 41 and the second LED 42 are positioned at the center of the cavity 4 ′′ c of the heat radiating cylinder 4 ′′. Accordingly, light is emitted from the first LED 41 and the second LED 42 (that is, the LED light source 62) at the central portion of the heat radiating cylindrical body 4 ′′.
- a wiring pattern (on the surface or inside of the support member 61 is provided. The first LED 41 and the second LED 42 are electrically connected to the circuit board 9 through the wiring pattern.
- a reflection member that reflects a part of the light emitted from the LED light source 62 is formed on the inner side surface of the heat radiating cylinder 4 ′′.
- a known film formation technique such as vapor deposition or sputtering is used.
- a metal thin film or a dielectric multilayer film functioning as a reflecting member is formed.
- ceramic or tantalum can be used as the dielectric multilayer film.
- At least a part of the light is reflected by the reflecting member of the heat radiating cylindrical body 4 ′′ and guided to the lid 63. That is, in this modification, the lens 5 in the above-described embodiment and modification 1 is used.
- the light is condensed by using a reflecting member formed on the inner surface of the heat radiating cylindrical body 4 ′′.
- the light that has not been reflected by the metal thin film or the dielectric multilayer film is emitted from the heat radiating cylindrical body 4 ′′ toward the side of the spot illumination device 1 ′′.
- the lid 63 is made of a member having high light transmittance such as glass or resin. Thereby, the light that has reached the lid 63 is emitted outside the spot illumination device 1 ′′ without being reflected by the lid 63.
- the light focus of the spot illumination device 1 ′′ is aligned with the position of the LED light source 62 functioning as a point light source and emitted from the LED light source 62
- Light can be emitted to the outside of the spot illuminating device 1 "while concentrating the light toward the lid 63. That is, spot light is irradiated from the spot illuminating device 1" without using a condensing lens.
- the spot illumination device 1 can function as an LED-type dichroic halogen bulb.
- the support member 61 is composed of a member having a relatively high thermal conductivity, the first LED 41 and the first LED 41 The heat generated in the 2LEDs 42 is conducted to the heat radiating plate 6 through the support member 61, and further conducted to the heat radiating cylinder 4 "through the heat radiating path A. It will be dissipated to the outside of the spot lighting device 1 '. That is, the heat dissipation of the spot lighting device 1 "is improved, the failure of the LED light source 62 and the circuit board 9 can be prevented, and the life of the spot lighting device 1" itself can be extended.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
- Non-Portable Lighting Devices Or Systems Thereof (AREA)
- Led Device Packages (AREA)
Abstract
This spot lighting apparatus is provided with: a semiconductor light emitting apparatus; a heat dissipating plate having the semiconductor light emitting apparatus mounted thereon; a heat dissipating body, which includes a first opening positioned on the semiconductor light emitting apparatus mounting surface side, and a second opening that communicates with the first opening by facing the first opening, said second opening having an opening diameter larger than that of the first opening, and which is formed of a heat conductive material that transmits at least a part of light emitted from the semiconductor light emitting apparatus; a driver housing, which houses a circuit board for lighting the semiconductor light emitting apparatus, and which is disposed on a heat dissipating plate surface on the reverse side of the semiconductor light emitting apparatus mounting surface; and a ferrule, which is connected to the driver housing and which supplies power to the circuit board. On the semiconductor light emitting apparatus mounting surface side of the heat dissipating plate, a heat dissipating body end portion on the first opening side is directly connected to the heat dissipating plate, and a heat dissipating path that dissipates heat from the heat dissipating body by conducting the heat to the heat dissipating body through the heat dissipating plate is formed, said heat having been generated from the semiconductor light emitting apparatus.
Description
本発明は、LED(Light Emitting Diode)等の半導体発光装置を備えるスポット照明装置に関する。
The present invention relates to a spot lighting device including a semiconductor light emitting device such as an LED (Light Emitting Diode).
従来から一般照明器具として、フィラメントを備えるハロゲン電球や当該ハロゲン電球を利用したスポット照明装置が普及していた。しかしながら、近年における省電力、小型化、及び長寿命化のニーズにともない、LED等の発光素子を光源として利用するLED電球若しくはLEDランプ、又はLEDを用いたスポット照明装置の開発及び製造が行われ、当該LED電球の普及が進んできている。例えば、特許文献1には、反射鏡付きハロゲン電球を代替するスポット用光源が開示されている。
Conventionally, halogen lamps equipped with filaments and spot lighting devices using the halogen lamps have been widely used as general lighting fixtures. However, with the recent needs for power saving, downsizing, and long life, LED bulbs or LED lamps that use light emitting elements such as LEDs as light sources have been developed and manufactured. The LED bulb has been widely used. For example, Patent Document 1 discloses a spot light source that replaces a halogen bulb with a reflector.
特許文献1に開示されているスポット用光源は、底部及び側面部を有する椀状の放熱器と、当該放熱器内の底部に設けられた発光素子と、当該発光素子の出射光を制御する光制御部材と、当該発光素子を点灯する回路を内蔵するベースと、当該回路に給電する口金と、を備えている。そして、当該特許文献1のスポット用光源においては、放熱器の側面部が光透過性を有していることから、放熱器の側面部へ導かれた光がスポット用光源の側方へ漏れ出すため、漏れ光を積極的に利用する形態が実現されている。
The spot light source disclosed in Patent Document 1 includes a bowl-shaped radiator having a bottom part and a side part, a light-emitting element provided at the bottom part in the radiator, and light for controlling light emitted from the light-emitting element. A control member, a base containing a circuit for lighting the light emitting element, and a base for supplying power to the circuit are provided. And in the spot light source of the said patent document 1, since the side part of a radiator has light transmittance, the light guide | induced to the side part of a radiator leaks to the side of the spot light source. For this reason, a form in which leakage light is actively used is realized.
しかしながら、特許文献1に開示されているような構造を有するスポット照明装置においては、半導体発光装置から発生する熱を十分に放熱することができず、投入電力を大きくして半導体発光装置の輝度及び光量等を増加させると、半導体発光装置の特性が劣化して所望の光を良好に放射することに支障が生じるおそれがあった。また、半導体発光装置から発生する熱が半導体発光装置用の回路基板に伝導され、場合によっては、当該回路基板の故障及びこれに伴うスポット照明装置自体の寿命の低下という問題が生じる危惧があった。
However, in the spot lighting device having the structure disclosed in Patent Document 1, the heat generated from the semiconductor light emitting device cannot be sufficiently dissipated, and the input power is increased to increase the brightness and the brightness of the semiconductor light emitting device. When the amount of light or the like is increased, the characteristics of the semiconductor light emitting device are deteriorated, and there is a concern that it may hinder the desired light emission. In addition, heat generated from the semiconductor light emitting device is conducted to the circuit board for the semiconductor light emitting device, and in some cases, there is a concern that the circuit board may be broken and the life of the spot lighting device itself may be reduced. .
本発明はこのような課題に鑑みてなされたものであり、その目的とするところは、優れた放熱性を備えるとともに、長寿命を実現することができる、小型で大光束のスポット照明装置を提供することにある。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a small-sized and high-beam spot illumination device that has excellent heat dissipation and can achieve a long life. There is to do.
上記の目的を達成するべく、本発明の第1の態様は、半導体発光装置と、前記半導体発光装置を搭載する放熱板と、前記半導体発光装置の搭載面側に位置する第1開口部、及び前記第1開口部に対向して連通し且つ前記第1開口部よりも大なる開口径を有する第2開口部を含み、前記半導体発光装置から放射された光の少なくとも一部を透過する熱伝導材料からなる放熱体と、前記半導体発光装置を点灯する回路基板を内蔵し、前記放熱板の半導体発光装置搭載面と反対側の面に配設されたドライバ筐体と、前記ドライバ筐体に接続され前記回路基板に給電する口金と、を備え、前記第1開口部側における前記放熱体の端部が前記放熱板の半導体発光装置搭載面側において前記放熱板に直接的に接続され、前記半導体発光装置から発生する熱を前記放熱板を通じて前記放熱体に伝導して前記放熱体から放熱する放熱経路が形成されているスポット照明装置である。
In order to achieve the above object, a first aspect of the present invention includes a semiconductor light emitting device, a heat sink on which the semiconductor light emitting device is mounted, a first opening located on the mounting surface side of the semiconductor light emitting device, and Heat conduction that includes a second opening that communicates with the first opening and has a larger opening diameter than the first opening and that transmits at least a portion of the light emitted from the semiconductor light emitting device. A heat sink made of a material and a circuit board for lighting the semiconductor light emitting device are incorporated, and a driver housing disposed on a surface of the heat sink opposite to the semiconductor light emitting device mounting surface, and connected to the driver housing A base for supplying power to the circuit board, and an end of the radiator on the first opening side is directly connected to the radiator plate on a semiconductor light emitting device mounting surface side of the radiator plate, Generated from the light emitting device Which is a said radiator plate spot lighting device heat dissipation path for dissipating it is formed from the heat radiating body and conducted to the radiator through.
このような放熱経路が形成されることにより、半導体発光装置において発生した熱は、放熱板を経由して放熱体に伝導され、スポット照明装置の外部に良好に放熱されることになり、半導体発光装置及びスポット照明装置自体の故障を抑制して、スポット照明装置自体の長寿命を実現することができる。
By forming such a heat dissipation path, the heat generated in the semiconductor light emitting device is conducted to the heat radiator via the heat dissipation plate and is well radiated to the outside of the spot lighting device. Failure of the apparatus and the spot illumination device itself can be suppressed, and a long life of the spot illumination device itself can be realized.
本発明の第2の態様は、上記第1の態様において、前記放熱体が円筒状の放熱円筒体であることである。これにより、スポット照明装置の外観の審美性を向上させ、設置環境に適合したデザイン性のより優れたスポット照明装置を提供することができる。
A second aspect of the present invention is that, in the first aspect, the heat radiator is a cylindrical heat radiation cylinder. Thereby, the aesthetics of the external appearance of a spot lighting apparatus can be improved, and the spot lighting apparatus more excellent in the design property adapted to the installation environment can be provided.
本発明の第3の態様は、上記第1又は第2の態様において、前記放熱板の熱伝導率が、前記放熱体の熱伝導率よりも高いことである。これにより、放熱板の材料の選択性が高まり、スポット照明装置のコスト低減を容易に図ることができる。
A third aspect of the present invention is that, in the first or second aspect, the thermal conductivity of the radiator plate is higher than the thermal conductivity of the radiator. Thereby, the selectivity of the material of a heat sink increases and it can aim at the cost reduction of a spot illuminating device easily.
本発明の第4の態様は、上記第1乃至第3の態様のいずれかにおいて、前記放熱板が、熱伝導率が100W/(m・K)以上の金属又は金属合金からなることである。このような放熱板の構成により、半導体発光装置において発生した熱は、放熱体において良好に伝導され、放熱体からスポット照明装置の外部に良好に放熱されることになる。このような放熱効果により、半導体発光装置及びスポット照明装置自体の故障を抑制して、スポット照明装置自体の長寿命を実現することができる。また、このような放熱板の部材の選定により、放熱板を介した放熱体とドライバ筐体との接続部分における応力の緩和を容易に図ることが可能になる。
A fourth aspect of the present invention is that in any one of the first to third aspects, the heat radiating plate is made of a metal or metal alloy having a thermal conductivity of 100 W / (m · K) or more. With such a structure of the heat sink, heat generated in the semiconductor light emitting device is conducted well in the heat radiating body and is radiated from the heat radiating body to the outside of the spot lighting device. Due to such a heat dissipation effect, failure of the semiconductor light emitting device and the spot lighting device itself can be suppressed, and a long life of the spot lighting device itself can be realized. Further, by selecting such a member of the heat sink, it is possible to easily relieve stress at the connection portion between the heat radiator and the driver housing via the heat sink.
本発明の第5の態様は、上記第1乃至第4の態様のいずれかにおいて、前記放熱板の熱膨張係数が、前記放熱体の熱膨張係数よりも高く、前記ドライバ筐体の熱膨張係数よりも低いことである。このように各部材の熱膨張係数を調整することにより、放熱板を介した放熱体とドライバ筐体との接続部分における応力の緩和を図ることでき、スポット照明装置自体の故障を抑制して、長寿命を実現することができる。
According to a fifth aspect of the present invention, in any one of the first to fourth aspects, the thermal expansion coefficient of the radiator plate is higher than the thermal expansion coefficient of the radiator, and the thermal expansion coefficient of the driver housing. Is lower than that. In this way, by adjusting the thermal expansion coefficient of each member, it is possible to relieve stress at the connection portion between the radiator and the driver housing via the radiator plate, and suppress the failure of the spot lighting device itself, Long life can be realized.
本発明の第6の態様は、上記第1乃至第5の態様のいずれかにおいて、前記放熱体が、ガラス、樹脂、及びセラミックの群から選ばれる少なくとも1つの材料からなることである。このような放熱体の構成により、半導体発光装置において発生した熱は、放熱体内において良好に伝導され、スポット照明装置の外部に良好に放熱されることになる。このような放熱効果により、半導体発光装置及びスポット照明装置自体の故障を抑制して、スポット照明装置自体の長寿命を実現することができる。また、このような放熱体の部材の選定により、放熱板を介した放熱体とドライバ筐体との接続部分における応力の緩和を容易に図ることが可能になる。
A sixth aspect of the present invention is that in any one of the first to fifth aspects, the radiator is made of at least one material selected from the group of glass, resin, and ceramic. With such a configuration of the heat radiating body, the heat generated in the semiconductor light emitting device is favorably conducted in the heat radiating body and is radiated well to the outside of the spot lighting device. Due to such a heat dissipation effect, failure of the semiconductor light emitting device and the spot lighting device itself can be suppressed, and a long life of the spot lighting device itself can be realized. Further, by selecting such a heat radiating member, it is possible to easily relieve stress at the connecting portion between the heat radiating body and the driver housing via the heat radiating plate.
本発明の第7の態様は、上記第1乃至第6の態様のいずれかにおいて、前記ドライバ筐体が、樹脂からなることである。このようなドライバ筐体の部材の選定により、放熱板を介した放熱体とドライバ筐体との接続部分における応力の緩和を容易に図ることが可能になる。
A seventh aspect of the present invention is that in any one of the first to sixth aspects, the driver housing is made of resin. By selecting such a member of the driver casing, it is possible to easily relieve stress at the connection portion between the radiator and the driver casing via the radiator plate.
本発明の第8の態様は、上記第1乃至第7の態様のいずれかにおいて、前記放熱体がガラスからなり、前記放熱板がアルミニウムからなり、前記ドライバ筐体がポリカーボネート樹脂からなり、前記放熱板が、前記放熱板を介した前記放熱体と前記ドライバ筐体との接続部分における応力緩和をなすことである。このように放熱体、放熱板、及びドライバ筐体の各部材の選定を行い、放熱板を介した放熱体とドライバ筐体との接続部分における応力緩和を図ることができれば、スポット照明装置自体の故障を抑制して、より長寿命化が図られたスポット照明装置の提供を実現することができる。
According to an eighth aspect of the present invention, in any one of the first to seventh aspects, the radiator is made of glass, the radiator plate is made of aluminum, the driver casing is made of polycarbonate resin, The plate is to relieve stress at a connection portion between the heat radiating body and the driver housing via the heat radiating plate. In this way, if each member of the radiator, the radiator plate, and the driver housing is selected and stress relaxation at the connection portion between the radiator and the driver housing via the radiator plate can be achieved, the spot illumination device itself It is possible to provide a spot illuminating device that suppresses a failure and has a longer lifetime.
本発明の第9の態様は、上記第1乃至8の態様のいずれかにおいて、前記放熱経路が前記ドライバ筐体及び前記口金の配設方向とは反対側に向かって延在していることである。このような放熱経路Aが形成されることにより、半導体発光装置から発生する熱は、半導体発光装置の搭載面側及び放熱体の配設側とは反対側に設けられた回路基板に向かって伝導されることがなくなり、回路基板が当該熱の影響を受けることがなくなる。従って、回路基板の故障が発生しにくくなり、回路基板及びスポット照明装置自体の寿命をより長くすることができる。
According to a ninth aspect of the present invention, in any one of the first to eighth aspects, the heat dissipation path extends toward a side opposite to an arrangement direction of the driver housing and the base. is there. By forming such a heat dissipation path A, the heat generated from the semiconductor light emitting device is conducted toward the circuit board provided on the mounting surface side of the semiconductor light emitting device and the side opposite to the side where the heat dissipating member is provided. The circuit board is not affected by the heat. Therefore, the failure of the circuit board is less likely to occur, and the lifetime of the circuit board and the spot lighting device itself can be extended.
本発明の第10の態様は、上記第1乃至9の態様のいずれかにおいて、前記放熱体が前記半導体発光装置から放射された光の少なくとも一部を反射する反射部材を含んでいることである。このような放熱体の構成により、半導体発光装置から放射された光を集光させて出射し、且つ反射部材において反射しなかった光をスポット照明装置の側方に放射することができる。これにより、本態様のスポット照明装置が、良好なLED型のダイクロハロゲン電球として機能することになる。
According to a tenth aspect of the present invention, in any one of the first to ninth aspects, the radiator includes a reflecting member that reflects at least a part of the light emitted from the semiconductor light emitting device. . With such a configuration of the radiator, the light emitted from the semiconductor light emitting device can be collected and emitted, and the light that has not been reflected by the reflecting member can be emitted to the side of the spot illumination device. Thereby, the spot illumination device of this aspect functions as a good LED type dichroic halogen bulb.
本発明の第11の態様は、上記第10の態様において、前記反射部材が金属薄膜又は誘電体多層膜であることである。これにより、スポット照明装置から集光されて出射する光と、側方から放射する光とのバランスを容易に調整することができ、より良好な光学特性を有するLED型のダイクロハロゲン電球を実現することができる。
An eleventh aspect of the present invention is that, in the tenth aspect, the reflecting member is a metal thin film or a dielectric multilayer film. Thereby, the balance of the light condensed and emitted from the spot illumination device and the light emitted from the side can be easily adjusted, and an LED type dichroic halogen bulb having better optical characteristics is realized. be able to.
本発明の第12の態様は、上記第1乃至9の態様のいずれかにおいて、前記半導体発光装置から放出される光を集光するレンズを前記放熱体の内部に更に備えることである。このようなレンズを設けることにより、半導体発光装置から放射された光を集光させて出射し、且つレンズにおいて集光されなかった光をスポット照明装置の側方に放射することができる。これにより、本態様のスポット照明装置が、良好なLED型のダイクロハロゲン電球として機能することになる。
A twelfth aspect of the present invention is that, in any one of the first to ninth aspects, a lens for condensing light emitted from the semiconductor light emitting device is further provided inside the radiator. By providing such a lens, the light emitted from the semiconductor light emitting device can be collected and emitted, and the light not collected by the lens can be emitted to the side of the spot illumination device. Thereby, the spot illumination device of this aspect functions as a good LED type dichroic halogen bulb.
本発明の第13の態様は、上記第12の態様において、前記レンズが入射した光を側面で反射する反射型レンズであることである。これにより、スポット照明装置から集光されて出射する光と、側方から放射する光とのバランスを容易に調整することができ、より良好な光学特性を有するLED型のダイクロハロゲン電球を実現することができる。
A thirteenth aspect of the present invention is the reflection lens according to the twelfth aspect, in which the light incident on the lens is reflected by a side surface. Thereby, the balance of the light condensed and emitted from the spot illumination device and the light emitted from the side can be easily adjusted, and an LED type dichroic halogen bulb having better optical characteristics is realized. be able to.
本発明の第14の態様は、上記第1乃至第13の態様のいずれかにおいて、前記放熱板と前記ドライバ筐体との間に断熱部材が挟まれていることである。このような断熱部材により、回路基板が熱の影響を受けることがなくなり、回路基板の故障が防止されて、回路基板及びスポット照明装置自体の寿命をより長くすることができる。
A fourteenth aspect of the present invention is that, in any one of the first to thirteenth aspects, a heat insulating member is sandwiched between the heat radiating plate and the driver housing. With such a heat insulating member, the circuit board is not affected by heat, the failure of the circuit board is prevented, and the life of the circuit board and the spot lighting device itself can be extended.
本発明の第15の態様は、上記第1乃至第14の態様のいずれかにおいて、前記半導体発光装置が前記放熱板の片面の中心領域付近に搭載され、前記放熱体が前記放熱板の周辺領域に接続されていることである。このような構成により、半導体発光装置から放射される光を良好に集光して、スポット照明装置の外部に出射することができる。
According to a fifteenth aspect of the present invention, in any one of the first to fourteenth aspects, the semiconductor light emitting device is mounted in the vicinity of a central region on one side of the radiator plate, and the radiator is a peripheral region of the radiator plate. Is connected to. With such a configuration, the light emitted from the semiconductor light emitting device can be collected well and emitted to the outside of the spot illumination device.
本発明の第16の態様は、上記第1乃至第15の態様のいずれかにおいて、前記放熱板が前記放熱板における前記放熱体の接続部位と比較して前記放熱板における前記半導体発光装置の搭載部位を前記第2開口部に近づける段差を有することである。このような放熱板の形状により、半導体発光装置の搭載の自由度及び回路基板の設置の自由度が向上され、更には半導体発光装置から出射する光が放熱体を介して外部へ放射されやすくなる。従って、本態様に係るスポット照明装置が、より放熱性の優れた良好なLED型のダイクロハロゲン電球として機能することになる。
According to a sixteenth aspect of the present invention, in any one of the first to fifteenth aspects, the heat-radiating plate is mounted on the semiconductor light-emitting device on the heat-radiating plate as compared with a connection portion of the heat-radiating body on the heat-radiating plate. It has a level | step difference which makes a site | part approach the said 2nd opening part. Such a shape of the heat sink improves the degree of freedom of mounting the semiconductor light emitting device and the degree of freedom of installation of the circuit board, and further facilitates light emitted from the semiconductor light emitting device to be radiated to the outside through the heat sink. . Therefore, the spot lighting device according to this aspect functions as a good LED-type dichroic halogen bulb with more excellent heat dissipation.
以上のことから、本発明によれば、優れた放熱性を備えるとともに、長寿命を実現することができる、小型で大光束のスポット照明装置を提供することができる。また、放熱性が優れているためドライバ筐体の小型化が可能であり、装置全体が軽量化されたスポット照明装置を提供することができる。さらに、本発明に係るスポット照明装置を用いることにより、従来のフィラメント型のダイクロハロゲン電球(反射鏡付きハロゲン電球)から半導体発光装置を備えるダイクロハロゲン電球に代替することができる。
From the above, according to the present invention, it is possible to provide a small spotlight illumination device having a large luminous flux that has excellent heat dissipation and can achieve a long life. In addition, since the heat dissipation is excellent, it is possible to reduce the size of the driver housing, and it is possible to provide a spot lighting device in which the entire device is reduced in weight. Furthermore, by using the spot illumination device according to the present invention, it is possible to replace a conventional filament type dichroic halogen bulb (halogen bulb with a reflector) with a dichroic halogen bulb equipped with a semiconductor light emitting device.
以下、図面を参照し、本発明の実施の形態について、実施例及び各変形例に基づき詳細に説明する。なお、本発明は以下に説明する内容に限定されるものではなく、その要旨を変更しない範囲において任意に変更して実施することが可能である。また、実施例及び各変形例の説明に用いる図面は、いずれも本発明によるスポット照明装置及びその構造部材等を模式的に示すものであって、理解を深めるべく部分的な強調、拡大、縮小、又は省略などを行っており、スポット照明装置及びその構造部材等の縮尺や形状等を正確に表すものとはなっていない場合がある。更に、実施例及び各変形例で用いる様々な数値及び数量は、いずれも一例を示すものであり、必要に応じて適宜変更することが可能である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings based on examples and modifications. In addition, this invention is not limited to the content demonstrated below, In the range which does not change the summary, it can change arbitrarily and can implement. In addition, the drawings used for explaining the embodiments and the respective modifications schematically show the spot illumination device and the structural members thereof according to the present invention, and are partially emphasized, enlarged, and reduced for better understanding. In some cases, the spot lighting device and the structural members thereof are not accurately represented in scale, shape, or the like. Furthermore, various numerical values and quantities used in the examples and the modifications are only examples, and can be appropriately changed as necessary.
≪実施例≫
以下において、図1乃至図8を参照しつつ、本発明の本実施例に係るスポット照明装置及びその構成部材を説明する。図1は、本実施例に係るスポット照明装置の全体を一部縦断面で示す一部切欠正面図である。図2は、本実施例に係るスポット照明装置を構成する発光モジュールの正面図である。図3は、本実施例に係るスポット照明装置を構成する発光モジュールの上面図である。図4は、図3の線IV-IVに沿った発光モジュールの断面図であり、図5は図4に示された断面図の要部拡大図である。図6は本実施例に係るスポット照明装置を構成するレンズの側面図であり、図7は本実施例に係るスポット照明装置を構成するレンズの上面図であり、図8は図7の線VIII-VIIIに沿ったレンズの断面図である。 << Example >>
Hereinafter, the spot illumination device and its constituent members according to this embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a partially cutaway front view showing a part of the entire spot lighting device according to the present embodiment in a longitudinal section. FIG. 2 is a front view of the light emitting module constituting the spot illumination device according to the present embodiment. FIG. 3 is a top view of the light emitting module constituting the spot lighting device according to the present embodiment. 4 is a cross-sectional view of the light emitting module taken along line IV-IV in FIG. 3, and FIG. 5 is an enlarged view of a main part of the cross-sectional view shown in FIG. 6 is a side view of a lens constituting the spot illumination device according to the present embodiment, FIG. 7 is a top view of the lens constituting the spot illumination device according to the present embodiment, and FIG. 8 is a line VIII in FIG. It is sectional drawing of the lens along -VIII.
以下において、図1乃至図8を参照しつつ、本発明の本実施例に係るスポット照明装置及びその構成部材を説明する。図1は、本実施例に係るスポット照明装置の全体を一部縦断面で示す一部切欠正面図である。図2は、本実施例に係るスポット照明装置を構成する発光モジュールの正面図である。図3は、本実施例に係るスポット照明装置を構成する発光モジュールの上面図である。図4は、図3の線IV-IVに沿った発光モジュールの断面図であり、図5は図4に示された断面図の要部拡大図である。図6は本実施例に係るスポット照明装置を構成するレンズの側面図であり、図7は本実施例に係るスポット照明装置を構成するレンズの上面図であり、図8は図7の線VIII-VIIIに沿ったレンズの断面図である。 << Example >>
Hereinafter, the spot illumination device and its constituent members according to this embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a partially cutaway front view showing a part of the entire spot lighting device according to the present embodiment in a longitudinal section. FIG. 2 is a front view of the light emitting module constituting the spot illumination device according to the present embodiment. FIG. 3 is a top view of the light emitting module constituting the spot lighting device according to the present embodiment. 4 is a cross-sectional view of the light emitting module taken along line IV-IV in FIG. 3, and FIG. 5 is an enlarged view of a main part of the cross-sectional view shown in FIG. 6 is a side view of a lens constituting the spot illumination device according to the present embodiment, FIG. 7 is a top view of the lens constituting the spot illumination device according to the present embodiment, and FIG. 8 is a line VIII in FIG. It is sectional drawing of the lens along -VIII.
<スポット照明装置の構成>
図1に示すように、スポット照明装置1は、ドライバ筐体2、光源として機能する発光モジュール(半導体発光装置)3、大きさの異なる2つの開口部(第1開口部4a及び第2開口部4b)を有するとともに発光モジュール3の側方を囲むように配設された放熱体の一態様である放熱円筒体4、放熱円筒体4の空洞4c内に配設されたレンズ5、ドライバ筐体2と発光モジュール3及び放熱円筒体4との間に配設された放熱板6、ドライバ筐体2と放熱板6との間に配設された断熱部材7、並びにドライバ筐体2に接続された口金8から構成されている。本実施例に係るスポット照明装置1においては、外部から供給される電力が口金8を介して発光モジュール3に給電され、発光モジュール3が駆動することによって放射される光が放熱円筒体4又はレンズ5を透過して外部に出射される。すなわち、本実施例に係るスポット照明装置1は、一般的なダイクロハロゲン電球(反射鏡付きハロゲン電球)と同様の外形及び機能を備えている。 <Configuration of spot lighting device>
As shown in FIG. 1, aspot lighting device 1 includes a driver housing 2, a light emitting module (semiconductor light emitting device) 3 that functions as a light source, and two openings having different sizes (first opening 4a and second opening). 4b) and a heat dissipating cylinder 4 which is an embodiment of a heat dissipating body disposed so as to surround the side of the light emitting module 3, a lens 5 disposed in a cavity 4c of the heat dissipating cylindrical body 4, and a driver housing 2, a heat radiating plate 6 disposed between the light emitting module 3 and the heat radiating cylindrical body 4, a heat insulating member 7 disposed between the driver housing 2 and the heat radiating plate 6, and the driver housing 2. It comprises a base 8. In the spot lighting device 1 according to the present embodiment, power supplied from the outside is fed to the light emitting module 3 through the base 8, and light emitted by driving the light emitting module 3 is the heat radiating cylinder 4 or the lens. 5 is emitted to the outside. That is, the spot lighting device 1 according to the present embodiment has the same external shape and function as a general dichroic halogen bulb (halogen bulb with a reflector).
図1に示すように、スポット照明装置1は、ドライバ筐体2、光源として機能する発光モジュール(半導体発光装置)3、大きさの異なる2つの開口部(第1開口部4a及び第2開口部4b)を有するとともに発光モジュール3の側方を囲むように配設された放熱体の一態様である放熱円筒体4、放熱円筒体4の空洞4c内に配設されたレンズ5、ドライバ筐体2と発光モジュール3及び放熱円筒体4との間に配設された放熱板6、ドライバ筐体2と放熱板6との間に配設された断熱部材7、並びにドライバ筐体2に接続された口金8から構成されている。本実施例に係るスポット照明装置1においては、外部から供給される電力が口金8を介して発光モジュール3に給電され、発光モジュール3が駆動することによって放射される光が放熱円筒体4又はレンズ5を透過して外部に出射される。すなわち、本実施例に係るスポット照明装置1は、一般的なダイクロハロゲン電球(反射鏡付きハロゲン電球)と同様の外形及び機能を備えている。 <Configuration of spot lighting device>
As shown in FIG. 1, a
(ドライバ筐体)
スポット照明装置1のドライバ筐体2は、放熱板6の近傍部分が略円錐台状に形成され、口金8の近傍部分が略四角柱状に形成され、その内部には種々の部品を内蔵するための空洞2aが形成されている。ここで種々の部品としては、図1に示すように、発光モジュール3を点灯するためのドライバ回路を含む回路基板9がある。また、ドライバ筐体2は、外力によって破損等が生じることがない、比較的に強固な材料から形成されている。更に、ドライバ筐体2の材料としては、熱伝導性の比較的低い材料を用いることが好ましい。これは、発光モジュール3において生じる熱を、放熱板6を通じてドライバ筐体2側に伝導されることを抑制し、かつ、ドライバ筐体2内のドライバ回路の発熱を外部に放射するためである。ドライバ筐体2の材料として、例えば、樹脂、セラミック、金属等の材料を用いることができるが、特に熱放熱性、熱伝導性、耐久性等の観点から、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリカーボネート、ポリエチレン、ポリプロピレン、ABS樹脂、フェノール樹脂、エポキシ樹脂、シリコーン樹脂、ナイロン等の樹脂が好ましい。 (Driver housing)
Thedriver housing 2 of the spot lighting device 1 is formed so that the vicinity of the heat sink 6 is formed in a substantially truncated cone shape, and the vicinity of the base 8 is formed in a substantially quadrangular prism shape. The cavity 2a is formed. Here, as various components, there is a circuit board 9 including a driver circuit for lighting the light emitting module 3, as shown in FIG. The driver housing 2 is formed of a relatively strong material that is not damaged by an external force. Furthermore, it is preferable to use a material having a relatively low thermal conductivity as the material of the driver housing 2. This is because heat generated in the light emitting module 3 is suppressed from being conducted to the driver housing 2 side through the heat radiating plate 6 and heat generated by the driver circuit in the driver housing 2 is radiated to the outside. As the material of the driver housing 2, for example, a material such as resin, ceramic, metal, and the like can be used. In particular, from the viewpoints of heat dissipation, thermal conductivity, durability, and the like, polybutylene terephthalate, polyethylene terephthalate, polycarbonate, Resins such as polyethylene, polypropylene, ABS resin, phenol resin, epoxy resin, silicone resin, and nylon are preferable.
スポット照明装置1のドライバ筐体2は、放熱板6の近傍部分が略円錐台状に形成され、口金8の近傍部分が略四角柱状に形成され、その内部には種々の部品を内蔵するための空洞2aが形成されている。ここで種々の部品としては、図1に示すように、発光モジュール3を点灯するためのドライバ回路を含む回路基板9がある。また、ドライバ筐体2は、外力によって破損等が生じることがない、比較的に強固な材料から形成されている。更に、ドライバ筐体2の材料としては、熱伝導性の比較的低い材料を用いることが好ましい。これは、発光モジュール3において生じる熱を、放熱板6を通じてドライバ筐体2側に伝導されることを抑制し、かつ、ドライバ筐体2内のドライバ回路の発熱を外部に放射するためである。ドライバ筐体2の材料として、例えば、樹脂、セラミック、金属等の材料を用いることができるが、特に熱放熱性、熱伝導性、耐久性等の観点から、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリカーボネート、ポリエチレン、ポリプロピレン、ABS樹脂、フェノール樹脂、エポキシ樹脂、シリコーン樹脂、ナイロン等の樹脂が好ましい。 (Driver housing)
The
ドライバ筐体2の熱伝導率は、例えば30W/(m・K)以下であってもよく、好ましくは、5.0W/(m・K)以下である。例えば、ドライバ筐体2の材料の一例であるポリカーボネートの熱伝導率は、約0.19W/(m・K)である。
The thermal conductivity of the driver housing 2 may be, for example, 30 W / (m · K) or less, and preferably 5.0 W / (m · K) or less. For example, the thermal conductivity of polycarbonate which is an example of the material of the driver housing 2 is about 0.19 W / (m · K).
ドライバ筐体2の熱膨張係数は、例えば10×10-6/℃~300×10-6/℃の範囲内であってもよく、好ましくは、50×10-6/℃~150×10-6/℃の範囲内である。そして、ドライバ筐体2の熱膨張係数は、放熱板6の熱膨張係数にできる限り近づけることが特に好ましい。このような熱膨張係数の調整により、ドライバ筐体2と放熱板6との熱膨張係数の差をより小さくすることができ、ドライバ筐体2と放熱板6との接続部分における歪みを小さくして応力緩和を図ることができる。すなわち、ドライバ筐体2と放熱板6との接続部分における物理的な故障を抑制することができる。例えば、ドライバ筐体2の材料の一例であるポリカーボネートの熱膨張係数は、約70~80×10-6/℃である。
The thermal expansion coefficient of the driver housing 2 may be, for example, in the range of 10 × 10 −6 / ° C. to 300 × 10 −6 / ° C., and preferably 50 × 10 −6 / ° C. to 150 × 10 − Within the range of 6 / ° C. The thermal expansion coefficient of the driver housing 2 is particularly preferably as close as possible to the thermal expansion coefficient of the heat sink 6. By adjusting the coefficient of thermal expansion, the difference in coefficient of thermal expansion between the driver housing 2 and the heat sink 6 can be further reduced, and distortion at the connection portion between the driver housing 2 and the heat sink 6 can be reduced. To relieve stress. That is, a physical failure at the connection portion between the driver housing 2 and the heat sink 6 can be suppressed. For example, the thermal expansion coefficient of polycarbonate, which is an example of the material of the driver housing 2, is about 70 to 80 × 10 −6 / ° C.
(発光モジュール)
図1に示すように、発光モジュール3は、放熱板6の片面の中心領域に搭載されている。また、発光モジュール3は、モジュール本体3aと、モジュール本体3a内に格納された波長変換部材3bを有している。モジュール本体3aは、外部から加えられる衝撃等から波長変換部材3bを保護するために設けられており、モジュール本体3aの材質は比較的硬い金属等の材料(例えば、鉄、アルミニウム、銅、セラミック)が用いられる。また、モジュール本体3aには、発光モジュール3を放熱板6に搭載するために用いられるネジ11が螺合するためのネジ穴12が設けられており、モジュール本体3aが放熱板6にネジ11を介して固定されることになる。更に、モジュール本体3aには、光が出射するための円形の開口が設けられており、例えば当該開口から内部で白色化を完了した光を取り出すことが可能である。一方、別の場合には、当該開口にガラス板等が設置され、当該ガラス面のモジュール内部側に蛍光体を塗布し、この部分で白色化を行って光を取り出すようにすることもできる。なお、当該開口は、円形に限られることなく、長方形等の多角形又はその他の形であってもよい。すなわち、当該開口の形状は、要求される発光モジュール3の光出射面の形状に合わせて、適宜変更することができる。 (Light emitting module)
As shown in FIG. 1, thelight emitting module 3 is mounted on the central region of one side of the heat sink 6. The light emitting module 3 includes a module main body 3a and a wavelength conversion member 3b stored in the module main body 3a. The module main body 3a is provided to protect the wavelength conversion member 3b from externally applied impacts, etc., and the material of the module main body 3a is a material such as a relatively hard metal (for example, iron, aluminum, copper, ceramic). Is used. The module main body 3a is provided with a screw hole 12 for screwing a screw 11 used for mounting the light emitting module 3 on the heat radiating plate 6, and the module main body 3a attaches the screw 11 to the heat radiating plate 6. It will be fixed via. Furthermore, the module main body 3a is provided with a circular opening for emitting light, and for example, light that has been whitened inside can be taken out from the opening. On the other hand, in another case, a glass plate or the like may be installed in the opening, and a phosphor may be applied to the inside of the module on the glass surface, and light may be extracted by whitening at this portion. In addition, the said opening is not restricted to circular, Polygons, such as a rectangle, or other shapes may be sufficient. That is, the shape of the opening can be appropriately changed according to the required shape of the light emitting surface of the light emitting module 3.
図1に示すように、発光モジュール3は、放熱板6の片面の中心領域に搭載されている。また、発光モジュール3は、モジュール本体3aと、モジュール本体3a内に格納された波長変換部材3bを有している。モジュール本体3aは、外部から加えられる衝撃等から波長変換部材3bを保護するために設けられており、モジュール本体3aの材質は比較的硬い金属等の材料(例えば、鉄、アルミニウム、銅、セラミック)が用いられる。また、モジュール本体3aには、発光モジュール3を放熱板6に搭載するために用いられるネジ11が螺合するためのネジ穴12が設けられており、モジュール本体3aが放熱板6にネジ11を介して固定されることになる。更に、モジュール本体3aには、光が出射するための円形の開口が設けられており、例えば当該開口から内部で白色化を完了した光を取り出すことが可能である。一方、別の場合には、当該開口にガラス板等が設置され、当該ガラス面のモジュール内部側に蛍光体を塗布し、この部分で白色化を行って光を取り出すようにすることもできる。なお、当該開口は、円形に限られることなく、長方形等の多角形又はその他の形であってもよい。すなわち、当該開口の形状は、要求される発光モジュール3の光出射面の形状に合わせて、適宜変更することができる。 (Light emitting module)
As shown in FIG. 1, the
図2乃至図4から分かるように、モジュール本体3aは、外形が四角状であって配線基板として機能する平板部21と、平板部21のチップ実装面21a上に位置し、形状が円筒状の側壁部22と、から構成されている。また、図2及び図3から分かるように、平板部21のチップ実装面21a上であって側壁部22の内側には、12個の半導体発光素子であるLEDチップ23が規則的に配列されている。具体的には、平板部21の中央部に4個のLEDチップ23が等間隔で配置され、当該4個のLEDチップ23の四方を囲むように8個のLEDチップ23が配置されている。そして、中央部に配置された4個のLEDチップ23のそれぞれは、平板部21の中心から等しい距離だけ離間した位置に配置され、同様に、四方を囲むように配置された8個のLEDチップ23のそれぞれは、平板部21の中心から等しい距離だけ離間した位置に配置されている。すなわち、当該4個のLEDチップ23及び当該8個のLEDチップのそれぞれが同心円状に配置され、12個のLEDチップ23全体として、略円形のLEDチップ実装領域を形成している。なお、図2乃至図4には示していないが、平板部21には、これらのLEDチップ23のそれぞれに電力を供給するための配線パターンが形成されている。
As can be seen from FIGS. 2 to 4, the module main body 3 a has a rectangular outer shape and functions as a wiring board, and is located on the chip mounting surface 21 a of the flat plate portion 21 and has a cylindrical shape. And a side wall portion 22. As can be seen from FIGS. 2 and 3, twelve LED chips 23 as semiconductor light emitting elements are regularly arranged on the chip mounting surface 21 a of the flat plate portion 21 and inside the side wall portion 22. Yes. Specifically, four LED chips 23 are arranged at equal intervals in the central portion of the flat plate portion 21, and eight LED chips 23 are arranged so as to surround four sides of the four LED chips 23. Each of the four LED chips 23 arranged in the central portion is arranged at a position separated by an equal distance from the center of the flat plate portion 21, and similarly, eight LED chips arranged so as to surround the four sides. Each of 23 is arrange | positioned in the position spaced apart from the center of the flat plate part 21 by equal distance. In other words, each of the four LED chips 23 and the eight LED chips are concentrically arranged to form a substantially circular LED chip mounting area as a whole of the twelve LED chips 23. Although not shown in FIGS. 2 to 4, a wiring pattern for supplying electric power to each of these LED chips 23 is formed on the flat plate portion 21.
本実施例において、LEDチップ23には、450nmのピーク波長を有した青色光を発するLEDチップを用いる。具体的には、このようなLEDチップとして、例えばInGaN半導体が発光層に用いられるGaN系LEDチップがある。なお、LEDチップ23の種類や発光波長特性はこれに限定されるものではなく、本発明の要旨から逸脱しない限りにおいて、様々なLEDチップなどの半導体発光素子を用いることができる。本実施例においてLEDチップ23が発する光のピーク波長は、360nm~480nmの波長範囲内にあることが好ましく、440nm~470nmの波長範囲内にあることがより好ましい。
In this embodiment, the LED chip 23 is an LED chip that emits blue light having a peak wavelength of 450 nm. Specifically, as such an LED chip, for example, there is a GaN-based LED chip in which an InGaN semiconductor is used for a light emitting layer. Note that the type and emission wavelength characteristics of the LED chip 23 are not limited thereto, and various semiconductor light emitting elements such as LED chips can be used without departing from the gist of the present invention. In this embodiment, the peak wavelength of light emitted from the LED chip 23 is preferably in the wavelength range of 360 nm to 480 nm, and more preferably in the wavelength range of 440 nm to 470 nm.
なお、モジュール本体3aの材質は、上述したものに限定されるものではなく、例えば、電気絶縁性に優れた材料として、樹脂、ガラスエポキシ、樹脂中にフィラーを含有した複合樹脂などから選択された材料を用いてもよい。或いは、平板部21のチップ実装面21aにおける光の反射性を良好にして波長変換部材3bの発光効率を向上させる上では、アルミナ粉末、シリカ粉末、酸化マグネシウム、酸化チタンなどの白色顔料を含むシリコーン樹脂を用いることが好ましい。より優れた放熱性を得るため、モジュール本体3aをアルミニウム等の金属から構成してもよく、当該アルミニウム等の金属の上に樹脂等の層間絶縁膜を形成し、平板部21の配線パターンなどを金属製の本体から電気的に絶縁してもよい。
In addition, the material of the module main body 3a is not limited to the above-described material, and for example, as a material having excellent electrical insulation, the material is selected from a resin, a glass epoxy, a composite resin containing a filler in the resin, and the like. Materials may be used. Alternatively, in order to improve the light reflectivity on the chip mounting surface 21a of the flat plate portion 21 and improve the light emission efficiency of the wavelength conversion member 3b, silicone containing a white pigment such as alumina powder, silica powder, magnesium oxide, titanium oxide or the like. It is preferable to use a resin. In order to obtain better heat dissipation, the module body 3a may be made of a metal such as aluminum, an interlayer insulating film such as a resin is formed on the metal such as aluminum, and the wiring pattern of the flat plate portion 21 is formed. It may be electrically insulated from the metal body.
図5に示すように、LEDチップ23の平板部21側に向く面には、p電極26とn電極27とが設けられている。LEDチップ23においては、平板部21のチップ実装面21aに形成されている配線パターン28にp電極26が接合されると共に、同じくチップ実装面21aに形成された配線パターン29にn電極27が接合されている。これらp電極26及びn電極27の配線パターン28及び配線パターン29への接続は、図示しない金属バンプを介し、または、ハンダ付けによって行っている。図示されていない他のLEDチップ23も、それぞれのLEDチップ23に対応して平板部21のチップ実装面21aに形成された配線パターン28及び配線パターン29に、p電極26及びn電極27が同様にして接合されている。
As shown in FIG. 5, a p-electrode 26 and an n-electrode 27 are provided on the surface of the LED chip 23 facing the flat plate portion 21 side. In the LED chip 23, the p electrode 26 is bonded to the wiring pattern 28 formed on the chip mounting surface 21a of the flat plate portion 21, and the n electrode 27 is bonded to the wiring pattern 29 also formed on the chip mounting surface 21a. Has been. The p electrode 26 and the n electrode 27 are connected to the wiring pattern 28 and the wiring pattern 29 through a metal bump (not shown) or by soldering. Other LED chips 23 (not shown) have the same p electrodes 26 and n electrodes 27 as the wiring patterns 28 and 29 formed on the chip mounting surface 21a of the flat plate portion 21 corresponding to the respective LED chips 23. Are joined together.
なお、LEDチップ23の平板部21への実装方法は、これに限定されるものではなく、LEDチップ23の種類や構造などに応じて適切な方法を選択可能である。例えば、LEDチップ23を平板部21の所定位置に接着固定した後、各LEDチップ23の2つの電極をワイヤボンディングで対応する配線パターンに接続してもよいし、一方の電極を上述のように対応する配線パターンに接合すると共に、他方の電極をワイヤボンディングで対応する配線パターンに接続するようにしてもよい。
Note that the method of mounting the LED chip 23 on the flat plate portion 21 is not limited to this, and an appropriate method can be selected according to the type and structure of the LED chip 23. For example, after the LED chip 23 is bonded and fixed to a predetermined position of the flat plate portion 21, two electrodes of each LED chip 23 may be connected to a corresponding wiring pattern by wire bonding, or one electrode may be connected as described above. While joining to a corresponding wiring pattern, you may make it connect the other electrode to a corresponding wiring pattern by wire bonding.
図2乃至図4から分かるように、側壁部22によって囲まれた内部領域には、LEDチップ23から出射した青色光を波長変換する波長変換部材3bが設けられている。本実施例に係る発光モジュール3においては、LEDチップ23から放射された青色光と、当該青色光が波長変換部材3bによって波長変換されて出射される光とを合成し、当該合成光をモジュール本体3aの開口から出射している。なお、波長変換部材3bは、モジュールの格納ケースの開口にガラス板等が設置され、当該ガラス面のモジュール内部側に塗布され、この部分で白色化を行って光を取り出すようにすることもできる。
As can be seen from FIGS. 2 to 4, a wavelength conversion member 3 b that converts the wavelength of the blue light emitted from the LED chip 23 is provided in the inner region surrounded by the side wall portion 22. In the light emitting module 3 according to the present embodiment, the blue light emitted from the LED chip 23 and the light emitted by wavelength conversion of the blue light by the wavelength conversion member 3b are combined, and the combined light is combined with the module main body. The light is emitted from the opening 3a. Note that the wavelength conversion member 3b may be configured such that a glass plate or the like is installed in the opening of the module storage case and applied to the inside of the module on the glass surface, and light is extracted by whitening at this portion. .
また、図5に示すように、波長変換部材3bは、LEDチップ23から入射する青色光の少なくとも一部を吸収し、当該青色光とは異なる波長の出射光を放出する蛍光体24と、蛍光体24を保持する母材25とから構成されている。本実施例に係る波長変換部材3bにおいては、青色光を放射するLEDチップ23を半導体発光素子として使用しているため、当該青色光の一部を黄色光に波長変換して白色光を合成可能である。従って、本実施例における蛍光体24は、青色光を吸収して励起し、基底状態に戻る際に青色光とは異なる波長の光を発する黄色蛍光体が用いられる。
Further, as shown in FIG. 5, the wavelength conversion member 3b absorbs at least part of the blue light incident from the LED chip 23 and emits emitted light having a wavelength different from that of the blue light, and the fluorescent light It is comprised from the base material 25 which hold | maintains the body 24. FIG. In the wavelength conversion member 3b according to the present embodiment, the LED chip 23 that emits blue light is used as a semiconductor light emitting element, so that a part of the blue light can be converted into yellow light to synthesize white light. It is. Accordingly, the phosphor 24 in this embodiment is a yellow phosphor that absorbs blue light and is excited to emit light having a wavelength different from that of the blue light when returning to the ground state.
具体的な黄色蛍光体の発光ピーク波長は、通常は530nm以上、好ましくは540nm以上、より好ましくは550nm以上で、通常は620nm以下、好ましくは600nm以下、より好ましくは580nm以下の波長範囲にあるものが好適である。中でも、黄色蛍光体として例えば、Y3Al5O12:Ce[YAG蛍光体]、(Y,Gd)3Al5O12:Ce、(Sr,Ca,Ba,Mg)2SiO4:Eu、(Ca,Sr)Si2N2O2:Eu、α-サイアロン、La3Si6N11:Ce(但し、その一部がCaやOで置換されていてもよい)が好ましい。
The emission peak wavelength of a specific yellow phosphor is usually 530 nm or more, preferably 540 nm or more, more preferably 550 nm or more, and usually 620 nm or less, preferably 600 nm or less, more preferably 580 nm or less. Is preferred. Among them, as the yellow phosphor, for example, Y 3 Al 5 O 12 : Ce [YAG phosphor], (Y, Gd) 3 Al 5 O 12 : Ce, (Sr, Ca, Ba, Mg) 2 SiO 4 : Eu, (Ca, Sr) Si 2 N 2 O 2 : Eu, α-sialon, La 3 Si 6 N 11 : Ce (however, a part thereof may be substituted with Ca or O) is preferable.
母材25には、樹脂又はガラス等の透光性を備える材料を用いることができ、本実施例においては、樹脂を使用した。本実施例において、波長変換部材3bは、樹脂である母材25に蛍光体24を練り込むことにより形成されている。
As the base material 25, a material having translucency such as resin or glass can be used. In this embodiment, resin is used. In this embodiment, the wavelength conversion member 3b is formed by kneading the phosphor 24 into a base material 25 that is a resin.
具体的な樹脂としては、ポリカーボネート樹脂、ポリエステル系樹脂(例えば、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂)、アクリル系樹脂(例えば、ポリメタクリル酸メチル樹脂)、ポリウレタン樹脂、エポキシ樹脂、及びシリコーン系樹脂を用いることが好ましい。また、樹脂は、LEDチップから放出される光(例えば、紫外光、近紫外光、又は青色光等)、または、波長変換部材から放出される可視光を吸収しないことが好ましい。更には、LEDチップ23から発せられる青色光に対して十分な透明性と耐久性とを有していることが好ましい。
Specific resins include polycarbonate resin, polyester resin (for example, polyethylene terephthalate resin, polybutylene terephthalate resin), acrylic resin (for example, polymethyl methacrylate resin), polyurethane resin, epoxy resin, and silicone resin. It is preferable to use it. The resin preferably does not absorb light emitted from the LED chip (for example, ultraviolet light, near ultraviolet light, or blue light) or visible light emitted from the wavelength conversion member. Furthermore, it is preferable to have sufficient transparency and durability against blue light emitted from the LED chip 23.
これらの樹脂は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。また、これらの樹脂の共重合体であってもよく、2種類以上を積層して使用してもよい。
These resins may be used alone or in combination of two or more. Moreover, the copolymer of these resin may be sufficient and it may use it, laminating | stacking 2 or more types.
なお、樹脂としては、ポリカーボネート樹脂が、透明性、耐熱性、機械的特性、難燃性に優れる点で、最も好ましく使用できる。
As the resin, polycarbonate resin is most preferably used because it is excellent in transparency, heat resistance, mechanical properties, and flame retardancy.
また、発光モジュール3から出射される光も白色光に限られることなく、青色光、赤色光、黄色光等の有色光を出射するようにしてもよい。
Further, the light emitted from the light emitting module 3 is not limited to white light, and colored light such as blue light, red light, and yellow light may be emitted.
(放熱板)
図1に示すように、放熱板6は、ドライバ筐体2と発光モジュール3との間に配設され、発光モジュール3を搭載するモジュール用実装基板として機能している。より具体的には、放熱板6にはネジ穴6aが形成されており、発光モジュール3のネジ穴12と連通させ、ネジ11を用いて発光モジュール3が放熱板6の発光モジュール搭載面6bの中心領域に強固に搭載されることになる。そして、放熱板6は、その外縁部分がドライバ筐体2の一端(口金8が配設されている端部とは反対側に位置する端部)の外縁部分に強固に接続されている。なお、ドライバ筐体2と放熱板6との接続は、一般的な接着剤を用いてもよいし、或いはネジ等の接合部材を用いてもよい。 (Heatsink)
As shown in FIG. 1, theheat sink 6 is disposed between the driver housing 2 and the light emitting module 3 and functions as a module mounting board on which the light emitting module 3 is mounted. More specifically, screw holes 6 a are formed in the heat sink 6, communicated with the screw holes 12 of the light emitting module 3, and the light emitting module 3 is attached to the light emitting module mounting surface 6 b of the heat sink 6 using the screws 11. It will be firmly mounted in the central area. The outer edge of the heat sink 6 is firmly connected to the outer edge of one end of the driver housing 2 (the end located on the side opposite to the end where the base 8 is disposed). In addition, a general adhesive agent may be used for the connection between the driver housing 2 and the heat sink 6, or a joining member such as a screw may be used.
図1に示すように、放熱板6は、ドライバ筐体2と発光モジュール3との間に配設され、発光モジュール3を搭載するモジュール用実装基板として機能している。より具体的には、放熱板6にはネジ穴6aが形成されており、発光モジュール3のネジ穴12と連通させ、ネジ11を用いて発光モジュール3が放熱板6の発光モジュール搭載面6bの中心領域に強固に搭載されることになる。そして、放熱板6は、その外縁部分がドライバ筐体2の一端(口金8が配設されている端部とは反対側に位置する端部)の外縁部分に強固に接続されている。なお、ドライバ筐体2と放熱板6との接続は、一般的な接着剤を用いてもよいし、或いはネジ等の接合部材を用いてもよい。 (Heatsink)
As shown in FIG. 1, the
また、放熱板6は、熱伝導性の比較的に高く且つ硬質な材料から構成されていることが好ましく、例えば、アルミニウム、鉄、若しくは銅等の金属、又はアルミナ系セラミックから構成されている。熱伝導性、加工の容易性、及びコストの面から、アルミニウムが特に好ましい。このような構成から、放熱板6は、発光モジュール3において発生する熱を良好に伝導することができ、発光モジュール3の温度上昇を良好に抑制することができる。すなわち、放熱板6は、ヒートシンクとして機能していることになる。
Further, the heat radiating plate 6 is preferably made of a material having a relatively high thermal conductivity and a hard material, for example, a metal such as aluminum, iron, or copper, or an alumina-based ceramic. Aluminum is particularly preferable from the viewpoints of thermal conductivity, ease of processing, and cost. With such a configuration, the heat radiating plate 6 can conduct heat generated in the light emitting module 3 satisfactorily, and can suppress the temperature rise of the light emitting module 3 favorably. That is, the heat sink 6 functions as a heat sink.
放熱板6の熱伝導率は、例えば20W/(m・K)以上であってもよく、好ましくは、150W/(m・K)以上である。例えば、放熱板6の材料の一例であるアルミニウムの熱伝導率は、約250W/(m・K)である。
The heat conductivity of the heat sink 6 may be, for example, 20 W / (m · K) or more, and preferably 150 W / (m · K) or more. For example, the thermal conductivity of aluminum which is an example of the material of the heat sink 6 is about 250 W / (m · K).
放熱板6の熱膨張係数は、例えば2.0×10-6/℃~100×10-6/℃の範囲内であってもよく、好ましくは、10×10-6/℃~50×10-6/℃の範囲内である。そして、放熱板6の熱膨張係数は、ドライバ筐体2の熱膨張係数を越えず且つ放熱円筒体4の熱膨張係数よりも小さくならない範囲で、ドライバ筐体2及び放熱円筒体4の熱膨張係数にできる限り近づけることが特に好ましい。すなわち、放熱板6の熱膨張係数は、放熱円筒体4の熱膨張係数よりも高く、ドライバ筐体2の熱膨張係数よりも低くなる。このように、発光モジュール3を囲む部材(本実施例の放熱円筒体4及び放熱板6)を一体的に形成することなく、且つ熱膨張係数を上記のような調整を行うことにより、上述したようなドライバ筐体2と放熱板6との接続部分、及び放熱円筒体4と放熱板6との接続部分(すなわち、放熱板6を介した放熱円筒体4とドライバ筐体2との接続部分)における歪みを小さくして応力緩和を図り、各接続部分における物理的な故障を抑制することができる。換言すると、本実施例に係るスポット照明装置1は、光源を囲む部材が一体的に形成されている照明装置と比較して、歪みの発生が抑制され、長寿命化が図られていることになる。例えば、放熱板6の材料の一例であるアルミニウムの熱膨張係数は、約23×10-6/℃である。
The thermal expansion coefficient of the heat radiating plate 6 may be in the range of, for example, 2.0 × 10 −6 / ° C. to 100 × 10 −6 / ° C., and preferably 10 × 10 −6 / ° C. to 50 × 10 -6 / ° C. The thermal expansion coefficients of the driver housing 2 and the radiating cylinder 4 are within a range in which the thermal expansion coefficient of the heat radiating plate 6 does not exceed the thermal expansion coefficient of the driver housing 2 and does not become smaller than the thermal expansion coefficient of the radiating cylinder 4. It is particularly preferable that the coefficient be as close as possible. That is, the thermal expansion coefficient of the heat radiating plate 6 is higher than the thermal expansion coefficient of the heat radiating cylindrical body 4 and lower than the thermal expansion coefficient of the driver housing 2. As described above, the members surrounding the light emitting module 3 (the heat radiating cylindrical body 4 and the heat radiating plate 6 of this embodiment) are not integrally formed, and the thermal expansion coefficient is adjusted as described above. Such a connection portion between the driver housing 2 and the heat radiating plate 6 and a connection portion between the heat radiating cylindrical body 4 and the heat radiating plate 6 (that is, a connection portion between the heat radiating cylindrical body 4 and the driver housing 2 via the heat radiating plate 6). ) Can be reduced to relieve stress and suppress physical failure at each connecting portion. In other words, the spot illuminating device 1 according to the present embodiment is less likely to be distorted and has a longer life as compared with an illuminating device in which members surrounding a light source are integrally formed. Become. For example, the thermal expansion coefficient of aluminum which is an example of the material of the heat sink 6 is about 23 × 10 −6 / ° C.
また、本実施例においては、発光モジュール3を囲む部材である放熱円筒体4と放熱板6とを一体的に形成しないため、放熱円筒体4と放熱板6とを別々の異なる材料を選択することができる。これにより、本実施例においては、放熱性及び光透過性等のスポット照明装置1の特性に関し、最適の構造物を実現することができる。
Further, in this embodiment, since the heat radiating cylinder 4 and the heat radiating plate 6 which are members surrounding the light emitting module 3 are not integrally formed, different materials are selected for the heat radiating cylindrical body 4 and the heat radiating plate 6. be able to. Thereby, in a present Example, the optimal structure can be implement | achieved regarding the characteristics of the spot illuminating device 1, such as heat dissipation and light transmittance.
そして、図1に示すように、放熱板6の中央部(発光モジュール3を搭載する部分)には凸部6cが形成されている。これにより、発光モジュール搭載面6bが放熱円筒体4と放熱板6との界面よりもレンズ5側に偏移している。換言すれば、放熱板6は、放熱板6における放熱円筒体4の接続部位と比較して、放熱板6における発光モジュール3の搭載部位を放熱円筒体4の第2開口部4bに近づける段差を有している。このような放熱板6の形状により、発光モジュール3の搭載の自由度及び回路基板9の設置の自由度が向上され、更には発光モジュール3から出射する光が放熱円筒体4を介して外部へ放射されやすくなる。従って、本実施例に係るスポット照明装置1が、より放熱性の優れた良好なLED型のダイクロハロゲン電球として機能することになる。
And as shown in FIG. 1, the convex part 6c is formed in the center part (part which mounts the light emitting module 3) of the heat sink 6. As shown in FIG. Thereby, the light emitting module mounting surface 6b is shifted to the lens 5 side from the interface between the heat radiating cylindrical body 4 and the heat radiating plate 6. In other words, the heat radiating plate 6 has a step that brings the mounting portion of the light emitting module 3 on the heat radiating plate 6 closer to the second opening 4b of the heat radiating cylindrical body 4 than the connection portion of the heat radiating plate 6 on the heat radiating plate 6. Have. Such a shape of the heat radiating plate 6 improves the degree of freedom for mounting the light emitting module 3 and the degree of freedom for installing the circuit board 9, and further, the light emitted from the light emitting module 3 is transmitted to the outside via the heat radiating cylindrical body 4. It becomes easy to radiate. Therefore, the spot lighting device 1 according to the present example functions as a good LED type dichroic halogen bulb with better heat dissipation.
(放熱円筒体)
図1に示すように、放熱円筒体4は、第1開口部4a及び第1開口部4aよりも大なる開口径を有する第2開口部4bを含むとともに、その内部に発光モジュール3及びレンズ5を配設することができる空洞4cが形成されている。すなわち、第1開口部4aと第2開口部4bとは、空洞4Cによって連通している。放熱円筒体4は、開口径の小なる第1開口部4aが発光モジュール3の搭載側に位置するとともに、発光モジュール3の側方を囲むように配設されている。そして、放熱円筒体4の第1開口部4a側の端部は、放熱板6の発光モジュール搭載面6b側の周辺領域(外縁部分)に直接的に接続されている。ここで、直接的に接続とは、放熱円筒体4と放熱板6とが他の部材を介在することなく接触して接続されていることに限定されず、放熱円筒体4と放熱板6との間の熱伝導にほとんど影響しない接着剤を介在して放熱円筒体4と放熱板6とが実質的に接触していることを含むものと定義する。 (Heat dissipation cylinder)
As shown in FIG. 1, the heat radiatingcylindrical body 4 includes a first opening 4a and a second opening 4b having an opening diameter larger than that of the first opening 4a, and the light emitting module 3 and the lens 5 therein. A cavity 4c that can be disposed is formed. That is, the first opening 4a and the second opening 4b communicate with each other through the cavity 4C. The heat radiating cylindrical body 4 is disposed so that the first opening 4 a having a small opening diameter is located on the mounting side of the light emitting module 3 and surrounds the side of the light emitting module 3. And the edge part by the side of the 1st opening part 4a of the thermal radiation cylinder 4 is directly connected to the peripheral area | region (outer edge part) by the side of the light emitting module mounting surface 6b of the heat sink 6. Here, the direct connection is not limited to the case where the heat radiating cylinder 4 and the heat radiating plate 6 are connected in contact with each other without interposing other members. It is defined as including that the heat radiating cylinder 4 and the heat radiating plate 6 are substantially in contact with each other through an adhesive that hardly affects the heat conduction between the heat radiating cylinder 4 and the heat radiating plate 6.
図1に示すように、放熱円筒体4は、第1開口部4a及び第1開口部4aよりも大なる開口径を有する第2開口部4bを含むとともに、その内部に発光モジュール3及びレンズ5を配設することができる空洞4cが形成されている。すなわち、第1開口部4aと第2開口部4bとは、空洞4Cによって連通している。放熱円筒体4は、開口径の小なる第1開口部4aが発光モジュール3の搭載側に位置するとともに、発光モジュール3の側方を囲むように配設されている。そして、放熱円筒体4の第1開口部4a側の端部は、放熱板6の発光モジュール搭載面6b側の周辺領域(外縁部分)に直接的に接続されている。ここで、直接的に接続とは、放熱円筒体4と放熱板6とが他の部材を介在することなく接触して接続されていることに限定されず、放熱円筒体4と放熱板6との間の熱伝導にほとんど影響しない接着剤を介在して放熱円筒体4と放熱板6とが実質的に接触していることを含むものと定義する。 (Heat dissipation cylinder)
As shown in FIG. 1, the heat radiating
放熱円筒体4は、光の一部を直接的に反射する場合、又は光を反射する反射部材を有する場合に、その形状は、発光モジュール3から放射される光を集光し、スポット照明装置1からスポット光を照射することができる形状であることが必要となる。本実施例においは、スポット光を照射するために、放熱円筒体4の側面が放物状に形成されている。すなわち、放熱円筒体4の外形は、椀の底部を除去したような形状となっている。また、放熱円筒体4の外形はこれに限定されることなく、例えば、内部に空洞ができた円錐台状(すなわち、中空円錐状)であってもよい。換言すれば、放熱円筒体4の側面は、湾曲することなく、平坦に形成されてもよい。
When the heat radiating cylindrical body 4 directly reflects a part of the light or has a reflecting member that reflects the light, the shape of the heat radiating cylindrical body 4 collects the light emitted from the light emitting module 3, and the spot illumination device It is necessary to have a shape capable of irradiating spot light from 1. In this embodiment, in order to irradiate the spot light, the side surface of the heat radiating cylindrical body 4 is formed in a parabolic shape. That is, the outer shape of the heat radiating cylindrical body 4 is such that the bottom of the ridge is removed. Moreover, the external shape of the thermal radiation cylindrical body 4 is not limited to this, For example, the cone shape with a hollow inside (namely, hollow cone shape) may be sufficient. In other words, the side surface of the heat radiating cylindrical body 4 may be formed flat without being curved.
放熱円筒体4は、その内側面に一定の波長のみ光を反射する部材(いわゆる、波長選択的な反射部材)を形成していてもよい。例えば、放熱円筒体4は、波長が短い光を反射する部材から構成され、波長の長い赤色光の一部を透過してもよい。このような場合、スポット照明装置1は、側方から赤色光を放射し、赤みを帯びた色彩を呈することができる。
The heat radiating cylinder 4 may be formed with a member (so-called wavelength-selective reflecting member) that reflects light only at a certain wavelength on the inner surface thereof. For example, the heat radiating cylinder 4 may be formed of a member that reflects light having a short wavelength and may transmit a part of red light having a long wavelength. In such a case, the spot lighting device 1 can emit red light from the side, and can exhibit a reddish color.
一定の波長のみ光を反射する部材としては、放熱円筒体4の内側面に反射部材を形成してもよい。例えば、蒸着、又はスパッタ等の公知の成膜技術を利用して、反射部材として機能する金属薄膜又は誘電体多層膜が成膜されている。誘電体多層膜としては、例えば、セラミック又はタンタルを用いることができる。これにより、放熱円筒体4に到達した光の少なくとも一部は、放熱円筒体4の反射部材によって反射され、放熱円筒体4の第2開口部4b側に導かれることになる。
As a member that reflects light only at a certain wavelength, a reflecting member may be formed on the inner surface of the heat radiating cylinder 4. For example, a metal thin film or a dielectric multilayer film that functions as a reflecting member is formed using a known film forming technique such as vapor deposition or sputtering. As the dielectric multilayer film, for example, ceramic or tantalum can be used. Thereby, at least a part of the light reaching the heat radiating cylindrical body 4 is reflected by the reflecting member of the heat radiating cylindrical body 4 and guided to the second opening 4 b side of the heat radiating cylindrical body 4.
また、放熱円筒体4は、発光モジュール3から放射された光の少なくとも一部を透過する材料から構成されている。なお、本実施例においては、レンズ5を用いて発光モジュール3から出射した光を集光するため、放熱円筒体4の材料、入射する全ての光を透過する光透過率を備えていてもよい。そして、放熱円筒体4は、熱伝導性の比較的に高く且つ硬質な材料から構成されていることが好ましい。例えば、放熱円筒体4には、ガラス、樹脂、及びセラミックの群から選ばれる少なくとも1つ材料を用いることができる。このような材料から放熱円筒体4が構成されることによって、発光モジュール3から出射した光が放熱円筒体4を透過してスポット照明装置1の側方にも放射されるため、本実施例に係るスポット照明装置1が良好なLED型のダイクロハロゲン電球として機能することになる。
The heat radiating cylinder 4 is made of a material that transmits at least a part of the light emitted from the light emitting module 3. In this embodiment, since the light emitted from the light emitting module 3 is condensed using the lens 5, the material of the heat radiating cylinder 4 and the light transmittance that transmits all incident light may be provided. . And it is preferable that the thermal radiation cylinder 4 is comprised from the comparatively high and hard material of heat conductivity. For example, at least one material selected from the group of glass, resin, and ceramic can be used for the heat radiating cylinder 4. Since the heat radiating cylindrical body 4 is composed of such a material, the light emitted from the light emitting module 3 is transmitted through the heat radiating cylindrical body 4 and also radiated to the side of the spot illumination device 1. Such a spot illumination device 1 functions as a good LED type dichroic halogen bulb.
放熱円筒体4の熱伝導率は、例えば0.5W/(m・K)以上であってもよく、好ましくは、10W/(m・K)以上である。例えば、放熱円筒体4の材料の一例であるガラスの熱伝導率は、約1.05W/(m・K)である。
The thermal conductivity of the heat radiating cylindrical body 4 may be, for example, 0.5 W / (m · K) or more, and preferably 10 W / (m · K) or more. For example, the thermal conductivity of glass as an example of the material of the heat radiating cylinder 4 is about 1.05 W / (m · K).
放熱円筒体4の熱膨張係数は、例えば0.5×10-6/℃~10×10-6/℃の範囲内であってもよく、好ましくは、1.0×10-6/℃~10×10-6/℃の範囲内である。そして、放熱円筒体4の熱膨張係数は、放熱板6の熱膨張係数にできる限り近づけることが特に好ましい。このような熱膨張係数の調整により、上述したような放熱円筒体4と放熱板6との接続部分における歪みを小さくして応力緩和を図ることができ、放熱円筒体4と放熱板6との接続部分における物理的な故障を抑制することができる。例えば、放熱円筒体4の材料の一例であるガラスの熱膨張係数は、約9×10-6/℃である。
The thermal expansion coefficient of the radiating cylindrical body 4 may be, for example, in the range of 0.5 × 10 −6 / ° C. to 10 × 10 −6 / ° C., preferably 1.0 × 10 −6 / ° C. It is in the range of 10 × 10 −6 / ° C. The thermal expansion coefficient of the heat radiating cylinder 4 is particularly preferably as close as possible to the thermal expansion coefficient of the heat radiating plate 6. By adjusting the coefficient of thermal expansion as described above, the strain at the connecting portion between the heat radiating cylinder 4 and the heat radiating plate 6 as described above can be reduced to relieve stress. It is possible to suppress physical failure in the connection part. For example, the thermal expansion coefficient of glass which is an example of the material of the heat radiating cylinder 4 is about 9 × 10 −6 / ° C.
上述したような放熱円筒体4の形状、接続位置、及び材料によって、発光モジュール3において発生した熱は、放熱板6を経由して放熱円筒体4に伝導されることになる。更に、放熱円筒体4に伝導された熱は、第1開口部4a側から第2開口部4b側に向かって伝導されつつ外部に放熱されることになる。すなわち、放熱円筒体4及び放熱板6によって、発光モジュール3から発生する熱を放熱板6を通じて放熱円筒体4に伝導して放熱円筒体4から放熱する放熱経路A(図1においては破線矢印Aによって示す)が形成されていることになる。そして、この放熱経路Aは、ドライバ筐体2及び口金8の配設方向とは反対側に向かって延在している。このような放熱経路Aが形成されることにより、発光モジュール3から発生する熱をスポット照明装置1の外部に良好に放熱することができる。そして、発光モジュール3から発生する熱は、発光モジュール3の搭載面側及び放熱円筒体4の配設側とは反対側に設けられた回路基板9に向かって伝導されることがなくなり、回路基板9が当該熱の影響を受けることがなくなる。すなわち、回路基板9の故障が発生しにくくなり、回路基板9及びスポット照明装置1自体の寿命を長くすることができる。
Depending on the shape, connection position, and material of the heat dissipation cylinder 4 as described above, the heat generated in the light emitting module 3 is conducted to the heat dissipation cylinder 4 via the heat dissipation plate 6. Furthermore, the heat conducted to the heat radiating cylindrical body 4 is radiated to the outside while being conducted from the first opening 4a side toward the second opening 4b side. That is, the heat radiation path A (the broken line arrow A in FIG. 1) conducts heat generated from the light emitting module 3 to the heat radiation cylinder 4 through the heat radiation plate 6 and dissipates heat from the heat radiation cylinder 4 by the heat radiation cylinder 4 and the heat radiation plate 6. Will be formed). The heat dissipation path A extends toward the side opposite to the direction in which the driver housing 2 and the base 8 are disposed. By forming such a heat radiation path A, heat generated from the light emitting module 3 can be radiated well to the outside of the spot lighting device 1. The heat generated from the light emitting module 3 is not conducted toward the circuit board 9 provided on the side opposite to the mounting surface side of the light emitting module 3 and the side where the heat radiating cylindrical body 4 is disposed. 9 is not affected by the heat. That is, the failure of the circuit board 9 is less likely to occur, and the life of the circuit board 9 and the spot lighting device 1 itself can be extended.
なお、本実施例においては、放熱経路Aを構成する放熱体として円筒状の放熱円筒体4を用いているが、筒の外形(すなわち、筒の延在方向に対して直交する方向における断面形状)は円形に限定されることなく、角状又は楕円状であってもよい。すなわち、放熱円筒体4に代えて、角状又は楕円状等の放熱筒状体を用いてもよい。放熱筒状体は、断面形状が円形である放熱円筒体を含む概念であり、その断面形状は、円形、楕円形、卵形、三角形、四角形、5以上の多角形などのいずれかである場合を含む。また、放熱筒状体の断面形状は、上記形状の他、複数の曲線の組合せで形成されるものや、1以上の曲線と1以上の直線との組合せにより形成されるものも含む。このような場合には、ドライバ筐体2、レンズ5、放熱板6、及び断熱部材7等の各種の構成部材の形状を、放熱筒状体4の形状に合わせる必要がある。
In this embodiment, the cylindrical heat radiating cylindrical body 4 is used as the heat radiating body constituting the heat radiating path A. However, the outer shape of the cylinder (that is, the cross-sectional shape in the direction orthogonal to the extending direction of the cylinder) ) Is not limited to a circle, but may be square or elliptical. That is, instead of the heat radiating cylindrical body 4, a heat radiating cylindrical body such as a rectangular shape or an elliptical shape may be used. The heat radiating cylindrical body is a concept including a heat radiating cylindrical body having a circular cross-sectional shape, and the cross-sectional shape is any of a circle, an ellipse, an oval, a triangle, a quadrangle, five or more polygons, etc. including. In addition to the above shape, the cross-sectional shape of the heat radiating cylindrical body includes one formed by a combination of a plurality of curves and one formed by a combination of one or more curves and one or more straight lines. In such a case, it is necessary to match the shape of various constituent members such as the driver housing 2, the lens 5, the heat radiating plate 6, and the heat insulating member 7 with the shape of the heat radiating cylindrical body 4.
(レンズ)
図1、及び図6乃至図8から分かるように、レンズ5は、放熱円筒体4の第2開口部2bを閉塞する蓋として機能する蓋部5a、及び発光モジュール3から入射する光を集光する集光部5bから構成されている。蓋部5aは円盤状に形成されており、その外縁部分が放熱円筒体4の内側面に固着されている。また、集光部5bは略円錐台状に形成されており、その一端には凹部5cが形成されている。更に、レンズ5は、発光モジュール3から出射した光を凹部5cからレンズ5の内部に導入させるため、発光モジュール3に対して凹部5cが対向するように配設される。なお、レンズ5の固着方法は接着剤に限定されることなく、例えば、レンズ5の蓋部5aの直径を放熱円筒体4の第2開口部4bの開口径よりも若干大きく設定し、レンズ5を接着剤を使用することなく嵌合させてもよい。このようにすることで、レンズの着脱を容易に行うことができる。 (lens)
As can be seen from FIG. 1 and FIGS. 6 to 8, thelens 5 condenses the light incident from the light emitting module 3 and the lid 5 a that functions as a lid that closes the second opening 2 b of the heat radiating cylinder 4. It is comprised from the condensing part 5b to do. The lid portion 5 a is formed in a disc shape, and an outer edge portion thereof is fixed to the inner side surface of the heat radiating cylindrical body 4. Moreover, the condensing part 5b is formed in the substantially truncated cone shape, and the recessed part 5c is formed in the end. Further, the lens 5 is disposed so that the concave portion 5c faces the light emitting module 3 in order to introduce the light emitted from the light emitting module 3 into the lens 5 from the concave portion 5c. The fixing method of the lens 5 is not limited to an adhesive. For example, the diameter of the lid portion 5a of the lens 5 is set slightly larger than the opening diameter of the second opening portion 4b of the heat radiating cylindrical body 4, and the lens 5 May be fitted without using an adhesive. In this way, the lens can be easily attached and detached.
図1、及び図6乃至図8から分かるように、レンズ5は、放熱円筒体4の第2開口部2bを閉塞する蓋として機能する蓋部5a、及び発光モジュール3から入射する光を集光する集光部5bから構成されている。蓋部5aは円盤状に形成されており、その外縁部分が放熱円筒体4の内側面に固着されている。また、集光部5bは略円錐台状に形成されており、その一端には凹部5cが形成されている。更に、レンズ5は、発光モジュール3から出射した光を凹部5cからレンズ5の内部に導入させるため、発光モジュール3に対して凹部5cが対向するように配設される。なお、レンズ5の固着方法は接着剤に限定されることなく、例えば、レンズ5の蓋部5aの直径を放熱円筒体4の第2開口部4bの開口径よりも若干大きく設定し、レンズ5を接着剤を使用することなく嵌合させてもよい。このようにすることで、レンズの着脱を容易に行うことができる。 (lens)
As can be seen from FIG. 1 and FIGS. 6 to 8, the
本実施例におけるレンズ5は、入射した光を集光部5bの内側面5dにおいて反射して集光する反射型レンズである。なお、このような集光部5bの構造から、本実施例に係る蓋部5aは単に光を透過する構造となっているが、蓋部5aに光を集光する構造を更に形成してもよい。このようなレンズ5の構造により、放熱円筒体4の第2開口部2bから出射する光は集光されることになり、本実施例に係るスポット照明装置1を用いて被照射物をスポット的に照射することができる。そして、レンズ5の集光部5bの内側面5dにおいて反射されなかった光(内側面5dを透過した光)は、放熱円筒体4に到達し、放熱円筒体4を透過してスポット照明装置1の側方に放射されることになる。
The lens 5 in this embodiment is a reflective lens that reflects incident light by the inner surface 5d of the light condensing part 5b and condenses it. In addition, from the structure of such a condensing part 5b, the cover part 5a which concerns on a present Example has a structure which permeate | transmits light simply, However, Even if the structure which condenses light is further formed in the cover part 5a Good. With such a structure of the lens 5, the light emitted from the second opening 2 b of the heat radiating cylindrical body 4 is collected, and the object to be irradiated is spot-like using the spot illumination device 1 according to the present embodiment. Can be irradiated. And the light (light which permeate | transmitted the inner surface 5d) which was not reflected in the inner surface 5d of the condensing part 5b of the lens 5 reaches | attains the thermal radiation cylindrical body 4, permeate | transmits the thermal radiation cylinder 4, and the spot illuminating device 1 Will be emitted to the side.
(断熱部材)
断熱部材7は、放熱板6の発光モジュール搭載面6bとは反対側に設けられている。すなわち、断熱部材7は、放熱板6とドライバ筐体2との間に配設されている。断熱部材7は、繊維系材料、及び発泡系材料のいずれであってもよい。ここで、断熱部材7は、ドライバ筐体2の空洞2a近傍において、放熱板6ができるかぎり露出しないように設けられることが好ましい。このようにすることで、放熱板6の発光モジュール搭載面6bとは反対側の面からドライバ筐体2の空洞2a内に熱が放熱されることを防止し、回路基板9の温度上昇を抑制することができる。従って、回路基板9の故障が発生しにくくなり、回路基板9及びスポット照明装置1自体の寿命を長くすることができる。 (Insulation member)
Theheat insulating member 7 is provided on the opposite side of the heat radiating plate 6 from the light emitting module mounting surface 6b. That is, the heat insulating member 7 is disposed between the heat sink 6 and the driver housing 2. The heat insulating member 7 may be any of a fiber material and a foam material. Here, it is preferable that the heat insulating member 7 is provided in the vicinity of the cavity 2 a of the driver housing 2 so that the heat radiating plate 6 is not exposed as much as possible. By doing so, heat is prevented from being radiated into the cavity 2a of the driver housing 2 from the surface opposite to the light emitting module mounting surface 6b of the heat radiating plate 6, and the temperature rise of the circuit board 9 is suppressed. can do. Therefore, the failure of the circuit board 9 is less likely to occur, and the life of the circuit board 9 and the spot lighting device 1 itself can be extended.
断熱部材7は、放熱板6の発光モジュール搭載面6bとは反対側に設けられている。すなわち、断熱部材7は、放熱板6とドライバ筐体2との間に配設されている。断熱部材7は、繊維系材料、及び発泡系材料のいずれであってもよい。ここで、断熱部材7は、ドライバ筐体2の空洞2a近傍において、放熱板6ができるかぎり露出しないように設けられることが好ましい。このようにすることで、放熱板6の発光モジュール搭載面6bとは反対側の面からドライバ筐体2の空洞2a内に熱が放熱されることを防止し、回路基板9の温度上昇を抑制することができる。従って、回路基板9の故障が発生しにくくなり、回路基板9及びスポット照明装置1自体の寿命を長くすることができる。 (Insulation member)
The
なお、発光モジュール3から発生した大半の熱を放熱経路Aに沿って伝導させ、放熱円筒体4から良好に放熱することで回路基板9の温度上昇を十分に抑制することができれば、断熱部材7を設けなくてもよく、或いは断熱部材7の設置領域を小さくしてもよい。
If most of the heat generated from the light emitting module 3 is conducted along the heat radiation path A and is radiated well from the heat radiating cylinder 4, the temperature rise of the circuit board 9 can be sufficiently suppressed. May not be provided, or the installation area of the heat insulating member 7 may be reduced.
(口金)
図1に示すように、口金8は、スポット照明装置1の電力供給源に設けられた給電ソケット(ピン孔)に嵌挿することができるように、ピン状に形成されている。また、口金8は、ドライバ筐体2に内蔵された回路基板9と配線(図示せず)を介して電気的に接続されている。従って、口金8を電力供給源の給電ソケットに嵌挿すると、電力供給源から口金8及び当該配線を経由して回路基板9に所望の電力が供給されることになる。 (Base)
As shown in FIG. 1, thebase 8 is formed in a pin shape so that it can be fitted into a power supply socket (pin hole) provided in the power supply source of the spot lighting device 1. The base 8 is electrically connected to a circuit board 9 built in the driver housing 2 via wiring (not shown). Therefore, when the base 8 is inserted into the power supply socket of the power supply source, desired power is supplied from the power supply source to the circuit board 9 via the base 8 and the wiring.
図1に示すように、口金8は、スポット照明装置1の電力供給源に設けられた給電ソケット(ピン孔)に嵌挿することができるように、ピン状に形成されている。また、口金8は、ドライバ筐体2に内蔵された回路基板9と配線(図示せず)を介して電気的に接続されている。従って、口金8を電力供給源の給電ソケットに嵌挿すると、電力供給源から口金8及び当該配線を経由して回路基板9に所望の電力が供給されることになる。 (Base)
As shown in FIG. 1, the
なお、口金8は、図1に示すようなピンタイプに限定されることなく、電力供給源の給電ソケットの形状に合わせて適宜変更することができる。例えば、給電ソケットが日本における一般的な螺合型のソケットである場合、口金8の形状は、ドライバ筐体2の略四角柱状の部分と同等の寸法であって、その表面がねじ切られた形状であってもよい。このような場合には、口金8が当該給電ソケットに螺合することによって着脱自在となっている。
The base 8 is not limited to the pin type as shown in FIG. 1 and can be appropriately changed according to the shape of the power supply socket of the power supply source. For example, when the power supply socket is a general screw-type socket in Japan, the shape of the base 8 is the same size as the substantially quadrangular columnar portion of the driver housing 2 and the surface thereof is threaded. It may be. In such a case, the base 8 is detachable by being screwed into the power supply socket.
<スポット照明装置の動作>
次に、本実施例に係るスポット照明装置1の動作について説明する。 <Operation of spot lighting device>
Next, the operation of thespot lighting device 1 according to the present embodiment will be described.
次に、本実施例に係るスポット照明装置1の動作について説明する。 <Operation of spot lighting device>
Next, the operation of the
先ず、屋内又は屋外に設けられている照明システムの給電ソケット(図示せず)に口金8を嵌挿し、スポット照明装置1を当該照明システムに取り付ける。このような状態において、照明システムの給電スイッチをオン状態に移行させ、スポット照明装置1に電力を供給する。当該電力は口金8及び回路基板9等を介して発光モジュール3に供給され、発光モジュール3のLEDチップ23が発光して、発光モジュール3から所望の光が放射される。
First, the base 8 is inserted into a power supply socket (not shown) of an illumination system provided indoors or outdoors, and the spot illumination device 1 is attached to the illumination system. In such a state, the power supply switch of the lighting system is shifted to the on state, and power is supplied to the spot lighting device 1. The electric power is supplied to the light emitting module 3 through the base 8 and the circuit board 9, and the LED chip 23 of the light emitting module 3 emits light, and desired light is emitted from the light emitting module 3.
発光モジュール3から放射した光は、レンズ5の凹部5cからレンズ5内に向かって入射する。この際、レンズ5の凹部5cが発光モジュール3の光出射面を取り囲むように配置されているため、発光モジュール3から放射される光は全てレンズ5内に入射することになる。
The light emitted from the light emitting module 3 enters the lens 5 from the concave portion 5 c of the lens 5. At this time, since the concave portion 5 c of the lens 5 is disposed so as to surround the light emitting surface of the light emitting module 3, all the light emitted from the light emitting module 3 enters the lens 5.
レンズ5内に入射した光の大部分は、レンズ5の集光部5bの内側面5dにおいて反射することで集光され、蓋部5aを透過してスポット光としてスポット照明装置1から出射することになる。一方、レンズ5内に入射した光のうち、レンズ5の集光部5bの内側面5dにおいて反射することなく透過した光は、放熱円筒体4を透過してスポット照明装置1の側方に放射される。このような光の放射により、本実施例に係るスポット照明装置1は、LED型のダイクロハロゲン電球として機能することになる。
Most of the light incident on the lens 5 is collected by being reflected by the inner surface 5d of the light condensing part 5b of the lens 5, and passes through the lid part 5a to be emitted from the spot illumination device 1 as spot light. become. On the other hand, of the light incident on the lens 5, the light transmitted without being reflected on the inner surface 5 d of the light condensing part 5 b of the lens 5 is transmitted through the heat radiating cylindrical body 4 and radiated to the side of the spot illumination device 1. Is done. The spot illumination device 1 according to the present embodiment functions as an LED-type dichroic halogen bulb due to such light emission.
そして、発光モジュール3の駆動に伴って発生した熱は、放熱板6及び放熱円筒体4によって形成される放熱経路Aに沿って伝導し、ドライバ筐体2の回路基板9に影響を与えることなく、放熱円筒体4から放熱されることになる。これにより、スポット照明装置1の放熱性が向上され、発光モジュール3及び回路基板9の故障を防止し、スポット照明装置1自体の寿命を長くすることができる。
The heat generated by driving the light emitting module 3 is conducted along the heat radiation path A formed by the heat radiating plate 6 and the heat radiating cylindrical body 4 without affecting the circuit board 9 of the driver housing 2. Then, heat is radiated from the heat radiating cylinder 4. Thereby, the heat dissipation of the spot illumination device 1 is improved, the failure of the light emitting module 3 and the circuit board 9 can be prevented, and the life of the spot illumination device 1 itself can be extended.
<本実施例と比較例との比較>
本実施例における放熱経路Aを持つ照明装置(放熱円筒体と放熱板による放熱経路が形成されている)と、そのような放熱経路Aを持たない照明装置(例えば光透過性の椀状放熱器を備えた装置、以下「比較例」と称する)とを、以下の条件にて放熱状態をシミュレーションにより比較する。 <Comparison between Example and Comparative Example>
Illumination device having a heat dissipation path A in this embodiment (a heat dissipation path is formed by a heat dissipation cylinder and a heat dissipation plate) and an illumination device not having such a heat dissipation path A (for example, a light-transmitting bowl-shaped radiator) (Hereinafter referred to as “comparative example”) is compared with a simulation of the heat dissipation state under the following conditions.
本実施例における放熱経路Aを持つ照明装置(放熱円筒体と放熱板による放熱経路が形成されている)と、そのような放熱経路Aを持たない照明装置(例えば光透過性の椀状放熱器を備えた装置、以下「比較例」と称する)とを、以下の条件にて放熱状態をシミュレーションにより比較する。 <Comparison between Example and Comparative Example>
Illumination device having a heat dissipation path A in this embodiment (a heat dissipation path is formed by a heat dissipation cylinder and a heat dissipation plate) and an illumination device not having such a heat dissipation path A (for example, a light-transmitting bowl-shaped radiator) (Hereinafter referred to as “comparative example”) is compared with a simulation of the heat dissipation state under the following conditions.
第1条件として、照明装置の形状により放熱状態が変化する為、本実施例と比較例において、照明装置の形状を図1に示すスポット照明装置1と同一とする。第2条件として、消費電力3.8Wのうち、電源回路による発熱電力0.7W、発光素子による発熱電力0.62W、発光に消費される電力を2.48Wとする。第3条件として、本実施例においては、光透過性を持つ放熱円筒体4で使用する材料の熱伝導率を1.2W/m・Kとし、放熱板6で使用する材料の熱伝導率を92W/m・Kとする。比較例においては、実施例の放熱円筒体4と放熱板6に相当する部位が同一の材料により一体成形された光透過性を持つ椀状放熱体であり、椀状放熱体で使用する材料の熱伝導率を1.2W/m・Kとする。第4条件として、電源回路を収納する筐体部の熱伝導率を0.19W/m・Kとする。第5条件として、全ての部材の放射率を0.95とする。
As the first condition, since the heat dissipation state changes depending on the shape of the lighting device, the shape of the lighting device in this embodiment and the comparative example is the same as that of the spot lighting device 1 shown in FIG. As the second condition, out of the power consumption 3.8 W, the heat generation power 0.7 W by the power supply circuit, the heat generation power 0.62 W by the light emitting element, and the power consumed for light emission 2.48 W. As a third condition, in this embodiment, the thermal conductivity of the material used in the heat radiating cylindrical body 4 is 1.2 W / m · K, and the thermal conductivity of the material used in the heat radiating plate 6 is 92 W / m · K. In the comparative example, a portion corresponding to the heat radiating cylindrical body 4 and the heat radiating plate 6 of the embodiment is a light-transmitting bowl-shaped heat radiator integrally formed of the same material. The thermal conductivity is 1.2 W / m · K. As a fourth condition, the thermal conductivity of the casing that houses the power supply circuit is 0.19 W / m · K. As a fifth condition, the emissivity of all members is 0.95.
上記の条件において、発光素子の接地面の温度を比較すると、本実施例は80.8℃であり、比較例は90.5℃であった。また、本実施例における照明装置では、放熱経路Aを介して放熱がなされ、放熱板及び回路基板における温度も約80℃であったが、比較例における照明装置では、放熱板及び回路基板における温度も約90℃であった。すなわち、本実施例における照明装置は、比較例における照明装置と比較して、発光素子の周辺領域の温度が約10℃低くなっていた。一般的に、発光素子や電子部品の寿命は、温度10℃の低下で2倍になるため、比較例のスポット照明の寿命を例えば20000時間と想定すると、本実施例のスポット照明の寿命は40000時間に伸びる。
When the temperature of the ground plane of the light emitting element was compared under the above conditions, this example was 80.8 ° C. and the comparative example was 90.5 ° C. Moreover, in the illuminating device in the present embodiment, heat is radiated through the heat dissipation path A, and the temperature in the heat radiating plate and the circuit board is also about 80 ° C. However, in the lighting device in the comparative example, the temperature in the heat radiating plate and the circuit board is Was about 90 ° C. That is, the temperature of the peripheral region of the light emitting element was lower by about 10 ° C. in the lighting device in this example than in the lighting device in the comparative example. In general, since the lifetime of the light emitting element and the electronic component is doubled when the temperature is lowered by 10 ° C., assuming that the lifetime of the spot illumination of the comparative example is 20000 hours, the lifetime of the spot illumination of this embodiment is 40000. Increase in time.
以上のことから、本実施例におけるスポット照明装置1においては、放熱円筒体4及び放熱板6によって放熱経路Aが形成されているため、発光モジュール3から発生する熱を放熱板6を通じて放熱円筒体4に伝導して放熱円筒体4から確実に放熱していることが確認できた。そして、本実施例のような放熱経路Aを形成しない比較例と比較すると、スポット照明装置1はその温度を10℃~20℃低減することが期待できる。そして、当該比較例の寿命が10000時間程度であることに対し、本実施例におけるスポット照明装置1は、このような放熱特性によって約25000時間という長寿命を実現し、市場における要求を十分に満たすことができている。このことは、スポット照明装置1自体の温度が10℃上昇すると、一般的に寿命が半減するということから考えて、本実施例におけるスポット照明装置1が当該比較例と比較して、2倍以上の寿命を備えていることを示している。
From the above, in the spot lighting device 1 according to the present embodiment, since the heat radiation path A is formed by the heat radiation cylinder 4 and the heat radiation plate 6, the heat generated from the light emitting module 3 is radiated through the heat radiation plate 6. It was confirmed that the heat radiated from the heat radiating cylindrical body 4 was reliably radiated. And compared with the comparative example which does not form the heat radiation path A as in this embodiment, the spot illumination device 1 can be expected to reduce its temperature by 10 ° C. to 20 ° C. And while the lifetime of the said comparative example is about 10,000 hours, the spot lighting apparatus 1 in a present Example implement | achieves a long life of about 25000 hours by such a thermal radiation characteristic, and fully satisfy | fills the request | requirement in a market. Is able to. This is because the lifetime is generally halved when the temperature of the spot illumination device 1 itself is increased by 10 ° C., so that the spot illumination device 1 in this embodiment is twice or more compared to the comparative example. It shows that it has a lifetime.
≪変形例1≫
上述した実施例においては、複数のLEDチップ23を備えるチップ・オン・ボード(COB:Chip On Board)タイプの発光モジュール3を半導体発光装置として放熱板6に固定していたが、半導体発光装置は上述したようなCOBに限定されることはない。例えば、LEDチップを波長変換部材内に埋設したようなパッケージタイプのLEDパッケージ装置を半導体発光装置として用いてもよい。以下において、図9及び図10を参照しつつ、このようなLEDパッケージ装置を用いたスポット照明装置1’を変形例1として説明する。図9は、変形例1に係るスポット照明装置1’の全体を一部縦断面で示す一部切欠正面図である。図10は、変形例1に係るスポット照明装置を構成するLEDパッケージ装置の断面図である。なお、上述した実施例と同様の構成については、同一の符号を付し、その説明を省略する。 <<Modification 1 >>
In the embodiment described above, the chip-on-board (COB) typelight emitting module 3 including a plurality of LED chips 23 is fixed to the heat sink 6 as a semiconductor light emitting device. It is not limited to COB as described above. For example, a package type LED package device in which an LED chip is embedded in a wavelength conversion member may be used as the semiconductor light emitting device. Hereinafter, a spot illumination device 1 ′ using such an LED package device will be described as a modification 1 with reference to FIGS. 9 and 10. FIG. 9 is a partially cutaway front view showing the entire spot illumination device 1 ′ according to the first modification in a partially longitudinal section. FIG. 10 is a cross-sectional view of the LED package device constituting the spot lighting device according to the first modification. In addition, about the structure similar to the Example mentioned above, the same code | symbol is attached | subjected and the description is abbreviate | omitted.
上述した実施例においては、複数のLEDチップ23を備えるチップ・オン・ボード(COB:Chip On Board)タイプの発光モジュール3を半導体発光装置として放熱板6に固定していたが、半導体発光装置は上述したようなCOBに限定されることはない。例えば、LEDチップを波長変換部材内に埋設したようなパッケージタイプのLEDパッケージ装置を半導体発光装置として用いてもよい。以下において、図9及び図10を参照しつつ、このようなLEDパッケージ装置を用いたスポット照明装置1’を変形例1として説明する。図9は、変形例1に係るスポット照明装置1’の全体を一部縦断面で示す一部切欠正面図である。図10は、変形例1に係るスポット照明装置を構成するLEDパッケージ装置の断面図である。なお、上述した実施例と同様の構成については、同一の符号を付し、その説明を省略する。 <<
In the embodiment described above, the chip-on-board (COB) type
<スポット照明装置の構成>
本変形例に係るスポット照明装置1’の構成と、上述した実施例に係るスポット照明装置1の構成との相違点は、発光モジュール3に代えて第1LEDパッケージ装置41(以下、第1LED41とも称する)、及び第2LEDパッケージ装置42(以下、第2LED42とも称する)を放熱板6に固定している点のみである。従って、本変形例に係るスポット照明装置1’においては、第1LED41及び第2LED42から放射する光をレンズ5又は放熱円筒体4から放射することになる。 <Configuration of spot lighting device>
The difference between the configuration of thespot illumination device 1 ′ according to this modification and the configuration of the spot illumination device 1 according to the above-described embodiment is the first LED package device 41 (hereinafter also referred to as the first LED 41) instead of the light emitting module 3. ), And the second LED package device 42 (hereinafter also referred to as the second LED 42) is fixed to the heat sink 6 only. Therefore, in the spot lighting device 1 ′ according to this modification, the light emitted from the first LED 41 and the second LED 42 is emitted from the lens 5 or the heat radiating cylinder 4.
本変形例に係るスポット照明装置1’の構成と、上述した実施例に係るスポット照明装置1の構成との相違点は、発光モジュール3に代えて第1LEDパッケージ装置41(以下、第1LED41とも称する)、及び第2LEDパッケージ装置42(以下、第2LED42とも称する)を放熱板6に固定している点のみである。従って、本変形例に係るスポット照明装置1’においては、第1LED41及び第2LED42から放射する光をレンズ5又は放熱円筒体4から放射することになる。 <Configuration of spot lighting device>
The difference between the configuration of the
(LEDパッケージ装置)
次に、図10を参照しつつ本発明の変形例に係る第1LED41の構成を説明する。本変形例において、第1LED41は、白色光を放射する光源である。図10に示すように、本変形例に係る第1LED41は、パッケージ43、パッケージ43内に実装された半導体発光素子であるLEDチップ44、及びLEDチップ44から放射される光の少なくとも一部を波長変換する機能を有する波長変換部材45から構成されている。 (LED package device)
Next, the configuration of thefirst LED 41 according to a modification of the present invention will be described with reference to FIG. In the present modification, the first LED 41 is a light source that emits white light. As shown in FIG. 10, the first LED 41 according to this modification includes a package 43, an LED chip 44 that is a semiconductor light emitting element mounted in the package 43, and at least a part of light emitted from the LED chip 44. It is comprised from the wavelength conversion member 45 which has the function to convert.
次に、図10を参照しつつ本発明の変形例に係る第1LED41の構成を説明する。本変形例において、第1LED41は、白色光を放射する光源である。図10に示すように、本変形例に係る第1LED41は、パッケージ43、パッケージ43内に実装された半導体発光素子であるLEDチップ44、及びLEDチップ44から放射される光の少なくとも一部を波長変換する機能を有する波長変換部材45から構成されている。 (LED package device)
Next, the configuration of the
従って、本変形例に係る第1LED41においては、LEDチップ44から放射される光と、波長変換部材45の機能によって波長変換された互いに波長の異なる光との合成光である白色光、又は波長変換部材45の機能によって波長変換された互いに波長の異なる光のみの合成光である白色光が、波長変換部材45のから外部に向かって出射することになる。以下において、第1LED41を構成する各部材を詳細に説明する。
Therefore, in the first LED 41 according to this modification, white light that is a combined light of light emitted from the LED chip 44 and light having different wavelengths that have been wavelength-converted by the function of the wavelength conversion member 45, or wavelength conversion. The white light, which is the combined light of only the light having different wavelengths that has been wavelength-converted by the function of the member 45, is emitted from the wavelength conversion member 45 to the outside. Below, each member which comprises 1st LED41 is demonstrated in detail.
〔パッケージ〕
パッケージ43は、電気絶縁性に優れて良好な放熱性を有し、かつ、反射率の高い(好ましくは反射率が80%以上の)アルミナ系セラミックから構成されている。また、パッケージ43には、LEDチップ44を収納するための開口部43aが形成されており、当該開口部43aの底面にLEDチップ44が実装されている。更に、パッケージ43の実装面(すなわち、開口部43aの底面には、LEDチップ44を実装し且つLEDチップ44に対して電流を供給するための配線パターン(図示せず)が形成されている。 〔package〕
Thepackage 43 is made of an alumina-based ceramic having excellent electrical insulation, good heat dissipation, and high reflectivity (preferably a reflectivity of 80% or more). The package 43 has an opening 43a for accommodating the LED chip 44, and the LED chip 44 is mounted on the bottom surface of the opening 43a. Furthermore, a wiring pattern (not shown) for mounting the LED chip 44 and supplying current to the LED chip 44 is formed on the mounting surface of the package 43 (that is, on the bottom surface of the opening 43a).
パッケージ43は、電気絶縁性に優れて良好な放熱性を有し、かつ、反射率の高い(好ましくは反射率が80%以上の)アルミナ系セラミックから構成されている。また、パッケージ43には、LEDチップ44を収納するための開口部43aが形成されており、当該開口部43aの底面にLEDチップ44が実装されている。更に、パッケージ43の実装面(すなわち、開口部43aの底面には、LEDチップ44を実装し且つLEDチップ44に対して電流を供給するための配線パターン(図示せず)が形成されている。 〔package〕
The
なお、パッケージ43の材質はアルミナ系セラミックに限定されるものではなく、例えば、電気絶縁性に優れた材料として、樹脂、ガラスエポキシ樹脂、樹脂中にフィラーを含有した複合樹脂などから選択された材料を用いてパッケージ43の本体を形成してもよい。或いは、パッケージ43のチップ実装面における光の反射性を良くして第1LED41の発光効率を向上させる上では、アルミナ粉末、シリカ粉末、酸化マグネシウム、酸化チタンなどの白色顔料を含むシリコーン樹脂を用いることが好ましい。一方、より優れた放熱性及び反射性を得るため、パッケージ43の本体を絶縁体で被覆したアルミニウム等の金属製としてもよい。このような場合には、パッケージ43の配線パターンなどを金属製の本体から電気的に絶縁する必要がある。
The material of the package 43 is not limited to alumina-based ceramics. For example, a material selected from resin, glass epoxy resin, composite resin containing a filler in the resin, etc. as a material having excellent electrical insulation. The body of the package 43 may be formed using Alternatively, in order to improve the light emission efficiency of the first LED 41 by improving the light reflectivity on the chip mounting surface of the package 43, a silicone resin containing a white pigment such as alumina powder, silica powder, magnesium oxide, or titanium oxide is used. Is preferred. On the other hand, in order to obtain better heat dissipation and reflectivity, the package 43 may be made of a metal such as aluminum whose body is covered with an insulator. In such a case, it is necessary to electrically insulate the wiring pattern of the package 43 from the metal main body.
〔LEDチップ〕
本変形例においては、1個のLEDチップ44が第1LED41の発光源である半導体光源として機能している。本変形例においてLEDチップ44には、430nm~480nmの範囲内にピーク波長を有した青色光を発する青色発光ダイオード、又は360nm~430nmの範囲内にピーク波長を有した紫外~紫色光を発する紫色発光ダイオードを用いることができる。青色発光ダイオードの場合において、ピーク波長は430nm~480nmの波長範囲内にあることが好ましく、特に450nmであることが好ましい。紫色発光ダイオードの場合においては、ピーク波長は360nm~430nmの波長範囲内にあることが好ましく、特に400~415nmであることが好ましい。 [LED chip]
In the present modification, oneLED chip 44 functions as a semiconductor light source that is a light source of the first LED 41. In this modification, the LED chip 44 has a blue light emitting diode that emits blue light having a peak wavelength in the range of 430 nm to 480 nm, or a purple that emits ultraviolet to purple light having a peak wavelength in the range of 360 nm to 430 nm. Light emitting diodes can be used. In the case of a blue light emitting diode, the peak wavelength is preferably in the wavelength range of 430 nm to 480 nm, and particularly preferably 450 nm. In the case of a violet light emitting diode, the peak wavelength is preferably in the wavelength range of 360 nm to 430 nm, particularly preferably 400 to 415 nm.
本変形例においては、1個のLEDチップ44が第1LED41の発光源である半導体光源として機能している。本変形例においてLEDチップ44には、430nm~480nmの範囲内にピーク波長を有した青色光を発する青色発光ダイオード、又は360nm~430nmの範囲内にピーク波長を有した紫外~紫色光を発する紫色発光ダイオードを用いることができる。青色発光ダイオードの場合において、ピーク波長は430nm~480nmの波長範囲内にあることが好ましく、特に450nmであることが好ましい。紫色発光ダイオードの場合においては、ピーク波長は360nm~430nmの波長範囲内にあることが好ましく、特に400~415nmであることが好ましい。 [LED chip]
In the present modification, one
なお、LEDチップ44の数量は1個に限定されることなく、同一のピーク波長を有する光を出射する複数のLEDチップ44を半導体発光源として用いてもよい。また、LEDチップ44の種類や発光波長特性はこれに限定されるものではなく、本発明の要旨から逸脱しない限りにおいて、様々なLEDチップなどの半導体発光素子を用いることができる。
The number of LED chips 44 is not limited to one, and a plurality of LED chips 44 that emit light having the same peak wavelength may be used as the semiconductor light emitting source. Further, the type and emission wavelength characteristics of the LED chip 44 are not limited thereto, and various semiconductor light emitting elements such as LED chips can be used without departing from the gist of the present invention.
LEDチップ44は、パッケージ43の開口部43aの底面(すなわち、チップ実装面)に対向する面側に、電極(図示せず)を有している。そして、上述したパッケージ43上の配線パターンには、当該電極が電気的に接続されている。当該電極と配線パターンとの電気的な接続は、例えば金属バンプを介し、ハンダ付けによって行われている。なお、LEDチップ44のパッケージ43への実装方法は、これに限定されるものではなく、LEDチップ44の種類や構造などに応じて適切な方法を選択可能である。例えば、LEDチップ44をパッケージ43の所定位置に接着固定した後、LEDチップ44の電極を対応する配線パターンにワイヤボンディングによって接続してもよい。
The LED chip 44 has an electrode (not shown) on the surface side facing the bottom surface (that is, the chip mounting surface) of the opening 43a of the package 43. The electrodes are electrically connected to the wiring pattern on the package 43 described above. The electrical connection between the electrode and the wiring pattern is performed by soldering, for example, via a metal bump. The method for mounting the LED chip 44 on the package 43 is not limited to this, and an appropriate method can be selected according to the type and structure of the LED chip 44. For example, after the LED chip 44 is bonded and fixed to a predetermined position of the package 43, the electrodes of the LED chip 44 may be connected to a corresponding wiring pattern by wire bonding.
〔波長変換部材〕
波長変換部材45は、LEDチップ44から入射する入射光の少なくとも一部を吸収し、当該入射光とは異なる波長の出射光を放出する複数の蛍光体と、複数の蛍光体を保持する母材とから構成されている。すなわち、波長変換部材45は、複数の蛍光体を含有する部材である。 (Wavelength conversion member)
Thewavelength conversion member 45 absorbs at least a part of incident light incident from the LED chip 44 and emits emitted light having a wavelength different from the incident light, and a base material that holds the plurality of phosphors. It consists of and. That is, the wavelength conversion member 45 is a member containing a plurality of phosphors.
波長変換部材45は、LEDチップ44から入射する入射光の少なくとも一部を吸収し、当該入射光とは異なる波長の出射光を放出する複数の蛍光体と、複数の蛍光体を保持する母材とから構成されている。すなわち、波長変換部材45は、複数の蛍光体を含有する部材である。 (Wavelength conversion member)
The
本変形例の第1LED41において、青色光を放射する青色発光ダイオードをLEDチップ44として使用した場合、第1LED41から白色光を得るためには、当該青色光の少なくとも一部を緑色光及び赤色光に波長変換し、当該緑色光及び赤色光のいずれにも波長変換されなかった(すなわち、波長変換部材45を透過する)青色光を当該緑色光及び赤色光と混合して白色光を合成する必要がある。このような場合、本変形例における蛍光体には、青色光を吸収して励起し、基底状態に戻る際に青色光とは異なる波長を有する緑色光を放射することができる緑色蛍光体、及び青色光を吸収して励起し、基底状態に戻る際に青色光とは異なる波長を有する赤色光を放射することができる赤色蛍光体が用いられる。
In the first LED 41 of this modification, when a blue light emitting diode that emits blue light is used as the LED chip 44, in order to obtain white light from the first LED 41, at least a part of the blue light is converted into green light and red light. It is necessary to synthesize white light by wavelength conversion and mixing blue light that has not been wavelength-converted by either the green light or red light (that is, transmitted through the wavelength conversion member 45) with the green light and red light. is there. In such a case, the phosphor in the present modification includes a green phosphor that can absorb and excite blue light and emit green light having a wavelength different from that of the blue light when returning to the ground state, and A red phosphor is used that is excited by absorbing blue light and can emit red light having a wavelength different from that of the blue light when returning to the ground state.
一方、紫外~紫色光を放射する紫色発光ダイオードをLEDチップ44として使用した場合、第1LED41から白色光を得るためには、当該紫外~紫色光の少なくとも一部を青色光、緑色光及び赤色光に波長変換し、当該青色光、緑色光及び赤色光の混合により白色光を合成する必要がある。このような場合、本変形例における蛍光体には、紫外~紫色光を吸収して励起し、基底状態に戻る際に紫外~紫色光とは異なる波長を有する青色光を放射することができる青色蛍光体、紫外~紫色光を吸収して励起し、基底状態に戻る際に紫外~紫色光とは異なる波長を有する緑色光を放射することができる緑色蛍光体、及び紫外~紫色光を吸収して励起し、基底状態に戻る際に紫外~紫色光とは異なる波長を有する赤色光を放射することができる赤色蛍光体が用いられる。
On the other hand, when a violet light emitting diode that emits ultraviolet to violet light is used as the LED chip 44, in order to obtain white light from the first LED 41, at least part of the ultraviolet to violet light is blue light, green light, and red light. It is necessary to synthesize the white light by mixing the blue light, the green light and the red light. In such a case, the phosphor in this modification is excited by absorbing ultraviolet to violet light, and can emit blue light having a wavelength different from that of ultraviolet to violet light when returning to the ground state. Phosphor, absorbs ultraviolet to violet light, excites and emits green light having a wavelength different from ultraviolet to violet light when returning to the ground state, and absorbs ultraviolet to violet light In this case, a red phosphor that can emit red light having a wavelength different from ultraviolet to violet light when excited and returned to the ground state is used.
以下において、各蛍光体の具体例を示す。
In the following, specific examples of each phosphor will be shown.
本変形例に係る第1LED41における緑色蛍光体は、発光ピーク波長が、通常は510nm以上、好ましくは530nm以上、より好ましくは535nm以上で、通常は570nm未満、好ましくは550nm以下、さらに好ましくは545nm以下の波長範囲にあるものが好適である。具体的な緑色蛍光体として、例えば、(Y,Lu)3Al,Ga)5O12:Ce、CaSc2O4:Ce、Ca3(Sc,Mg)2Si3O12:Ce、(Sr,Ba)2SiO4:Eu(BSS)、(Si,Al)6(O,N)8:Eu(β-サイアロン)、(Ba,Sr)3Si6O12N2:Eu(BSON)、SrGa2S4:Eu、BaMgAl10O17:Eu,Mn、(Ba,Sr,Ca,Mg)Si2O2N2:Euが用いられることが好ましい。中でも、BSS、β-サイアロン、BSON、SrGa2S4:Eu、BaMgAl10O17:Eu,Mnが用いられることがより好ましく、BSS、β-サイアロン、BSONが用いられることがさらに好ましく、β-サイアロン、BSONが用いられることが特に好ましく、β-サイアロンが用いられることが最も好ましい。本変形例では、緑色蛍光体としてβ-サイアロンが用いられている。
The green phosphor in the first LED 41 according to this modification has an emission peak wavelength of usually 510 nm or more, preferably 530 nm or more, more preferably 535 nm or more, usually less than 570 nm, preferably 550 nm or less, more preferably 545 nm or less. Those in the wavelength range are preferred. As specific green phosphors, for example, (Y, Lu) 3 Al, Ga) 5 O 12 : Ce, CaSc 2 O 4 : Ce, Ca 3 (Sc, Mg) 2 Si 3 O 12 : Ce, (Sr , Ba) 2 SiO 4 : Eu (BSS), (Si, Al) 6 (O, N) 8 : Eu (β-sialon), (Ba, Sr) 3 Si 6 O 12 N 2 : Eu (BSON), SrGa 2 S 4 : Eu, BaMgAl 10 O 17 : Eu, Mn, (Ba, Sr, Ca, Mg) Si 2 O 2 N 2 : Eu are preferably used. Among these, BSS, β-sialon, BSON, SrGa 2 S 4 : Eu, BaMgAl 10 O 17 : Eu, Mn are more preferably used, BSS, β-sialon, and BSON are more preferably used, and β- Sialon and BSON are particularly preferably used, and β-sialon is most preferably used. In this modification, β-sialon is used as the green phosphor.
本変形例に係る第1LED41における赤色蛍光体は、発光ピーク波長が、通常は570nm以上、好ましくは580nm以上、より好ましくは600nm以上、さらに好ましくは630nm以上、特に好ましくは645nm以上で、通常は780nm以下、好ましくは700nm以下、より好ましくは680nm以下の波長範囲にあるものが好適である。具体的な赤色蛍光体として、例えば、CaAlSi(N,O)3:Eu、(Ca,Sr,Ba)2Si5(N,O)8:Eu、(Ca,Sr,Ba)Si(N,O)2:Eu、(Ca,Sr,Ba)AlSi(N,O)3:Eu、(Sr,Ba)3SiO5:Eu、(Ca,Sr)S:Eu、SrAlSi4N7:Euが好ましく、(Ca,Sr,Ba)2Si5(N,O)8:Eu、(Sr,Ca)AlSi(N,O)3:Eu、SrAlSi4N7:Euが好ましい。中でも、(Sr,Ca)AlSi(N,O)3:Eu、SrAlSi4N7:Euがより好ましく、(Sr,Ca)AlSi(N,O)3:Euがさらに好ましい。本変形例では、赤色蛍光体としてCaAlSi(N,O)3:Eu(以下、CASNとも称する)が用いられている。
The red phosphor in the first LED 41 according to this modification has an emission peak wavelength of usually 570 nm or more, preferably 580 nm or more, more preferably 600 nm or more, further preferably 630 nm or more, particularly preferably 645 nm or more, and usually 780 nm. Hereinafter, those having a wavelength range of preferably 700 nm or less, more preferably 680 nm or less are suitable. As a specific red phosphor, for example, CaAlSi (N, O) 3 : Eu, (Ca, Sr, Ba) 2 Si 5 (N, O) 8 : Eu, (Ca, Sr, Ba) Si (N, O) 2 : Eu, (Ca, Sr, Ba) AlSi (N, O) 3 : Eu, (Sr, Ba) 3 SiO 5 : Eu, (Ca, Sr) S: Eu, SrAlSi 4 N 7 : Eu (Ca, Sr, Ba) 2 Si 5 (N, O) 8 : Eu, (Sr, Ca) AlSi (N, O) 3 : Eu, and SrAlSi 4 N 7 : Eu are preferable. Among these, (Sr, Ca) AlSi (N, O) 3 : Eu and SrAlSi 4 N 7 : Eu are more preferable, and (Sr, Ca) AlSi (N, O) 3 : Eu is more preferable. In this modification, CaAlSi (N, O) 3 : Eu (hereinafter also referred to as CASN) is used as the red phosphor.
赤色蛍光体として、例えば、CaAlSi(N,O)3:Eu、(Ca,Sr,Ba)2Si5(N,O)8:Eu、(Ca,Sr,Ba)Si(N,O)2:Eu、(Ca,Sr,Ba)AlSi(N,O)3:Eu、(Sr,Ba)3SiO5:Eu、(Ca,Sr)S:Eu、SrAlSi4N7:Eu、Eu(ジベンゾイルメタン)3・1,10-フェナントロリン錯体などのβ-ジケトン系Eu錯体、カルボン酸系Eu錯体が好ましく、(Ca,Sr,Ba)2Si5(N,O)8:Eu、(Sr,Ca)AlSi(N,O)3:Eu、SrAlSi4N7:Euが用いられることが好ましい。中でも、(Sr,Ca)AlSi(N,O)3:Eu、SrAlSi4N7:Euがより好ましく、(Sr,Ca)AlSi(N,O)3:Euがさらに好ましい。
As the red phosphor, for example, CaAlSi (N, O) 3 : Eu, (Ca, Sr, Ba) 2 Si 5 (N, O) 8 : Eu, (Ca, Sr, Ba) Si (N, O) 2 : Eu, (Ca, Sr, Ba) AlSi (N, O) 3 : Eu, (Sr, Ba) 3 SiO 5 : Eu, (Ca, Sr) S: Eu, SrAlSi 4 N 7 : Eu, Eu (di) Β-diketone Eu complexes such as benzoylmethane) 3 · 1,10-phenanthroline complex and carboxylic acid Eu complexes are preferred, and (Ca, Sr, Ba) 2 Si 5 (N, O) 8 : Eu, (Sr, Ca) AlSi (N, O) 3 : Eu and SrAlSi 4 N 7 : Eu are preferably used. Among these, (Sr, Ca) AlSi (N, O) 3 : Eu and SrAlSi 4 N 7 : Eu are more preferable, and (Sr, Ca) AlSi (N, O) 3 : Eu is more preferable.
本変形例に係る第1LED41における青色蛍光体の発光ピーク波長は、通常は420nm以上、好ましくは430nm以上、より好ましくは440nm以上で、通常は500nm未満、好ましくは490nm以下、より好ましくは480nm以下、更に好ましくは470nm以下、特に好ましくは460nm以下の波長範囲にあるものが好適である。具体的な青色蛍光体として、(Ca,Sr,Ba)MgAl10O17:Eu、(Sr,Ca,Ba,Mg)10(PO4)6(Cl,F)2:Eu、(Ba,Ca,Mg,Sr)2SiO4:Eu、(Ba,Ca,Sr)3MgSi2O8:Euが好ましく、(Ba,Sr)MgAl10O17:Eu、(Ca,Sr,Ba)10(PO4)6(Cl,F)2:Eu、Ba3MgSi2O8:Euがより好ましく、Sr10(PO4)6C12:Eu、BaMgAl10O17:Euがさらに好ましく、(Sr,Ba,Ca)5(PO4)3Cl:Eu(より具体的には、Sr5(PO4)3Cl:Eu(以下、SCAとも称する。)や、(Sr1-xBax)5(PO4)3Cl:Eu(x>0、好ましくは0.4>x>0.12(以下、SBCAとも称する。))が特に好ましい。本変形例では、青色蛍光体としてSBCAが用いられている。
The emission peak wavelength of the blue phosphor in the first LED 41 according to this modification is usually 420 nm or more, preferably 430 nm or more, more preferably 440 nm or more, usually less than 500 nm, preferably 490 nm or less, more preferably 480 nm or less, More preferred are those in the wavelength range of 470 nm or less, particularly preferably 460 nm or less. As specific blue phosphors, (Ca, Sr, Ba) MgAl 10 O 17 : Eu, (Sr, Ca, Ba, Mg) 10 (PO 4 ) 6 (Cl, F) 2 : Eu, (Ba, Ca , Mg, Sr) 2 SiO 4 : Eu, (Ba, Ca, Sr) 3 MgSi 2 O 8 : Eu are preferred, and (Ba, Sr) MgAl 10 O 17 : Eu, (Ca, Sr, Ba) 10 (PO 4 ) 6 (Cl, F) 2 : Eu, Ba 3 MgSi 2 O 8 : Eu is more preferable, Sr 10 (PO 4 ) 6 C 12 : Eu, BaMgAl 10 O 17 : Eu is more preferable, and (Sr, Ba , Ca) 5 (PO 4 ) 3 Cl: Eu (more specifically, Sr 5 (PO 4 ) 3 Cl: Eu (hereinafter also referred to as SCA)) or (Sr 1-x Ba x ) 5 (PO 4) 3 Cl: Eu (x > 0, preferably 0.4>x> 0.12 (hereinafter, referred to as SBCA That.)) In the particularly preferred. This modification, SBCA is used as a blue phosphor.
本変形例の波長変換部材45に用いられる母材は、上述した実施例に係る波長変換部材3bの母材25と同様の材料を用いることができる。ここでは、当該母材の説明は省略するものとする。
The base material used for the wavelength conversion member 45 of this modification can be the same material as the base material 25 of the wavelength conversion member 3b according to the above-described embodiment. Here, the description of the base material is omitted.
本変形例に係る第1LED41は、上述した蛍光体の混合比率を変えることにより、出射する白色光の色温度が約1900Kに調整されている。
In the first LED 41 according to this modification, the color temperature of the emitted white light is adjusted to about 1900K by changing the mixing ratio of the phosphors described above.
本変形例に係る第2LED42は、上述した第1LED41とほぼ同一の構造であるが、第1LED41における蛍光体の混合比率とは異なる混合比率によって複数の蛍光体が混合され、出射する白色光の色温度が約2700Kに調整されている。
<スポット照明装置の電気回路構成>
次に、本変形例に係るスポット照明装置1’の電気回路構成及びスポット照明装置1’の発光制御を説明する。図11は、本変形例に係るスポット照明装置1’の電気回路構成の概略を示す電気回路図である。また、図12及び図13は、図11の回路構成における各トランジスタの作動状態、及び各LEDの駆動電流の電流値の一例を示すタイムチャートである。 Thesecond LED 42 according to this modification has substantially the same structure as the first LED 41 described above, but a plurality of phosphors are mixed at a mixing ratio different from the mixing ratio of the phosphors in the first LED 41, and the color of the emitted white light The temperature is adjusted to about 2700K.
<Electric circuit configuration of spot lighting device>
Next, the electric circuit configuration of thespot illumination device 1 ′ and the light emission control of the spot illumination device 1 ′ according to this modification will be described. FIG. 11 is an electric circuit diagram showing an outline of the electric circuit configuration of the spot illumination device 1 ′ according to the present modification. 12 and 13 are time charts showing an example of the operating state of each transistor and the current value of the drive current of each LED in the circuit configuration of FIG.
<スポット照明装置の電気回路構成>
次に、本変形例に係るスポット照明装置1’の電気回路構成及びスポット照明装置1’の発光制御を説明する。図11は、本変形例に係るスポット照明装置1’の電気回路構成の概略を示す電気回路図である。また、図12及び図13は、図11の回路構成における各トランジスタの作動状態、及び各LEDの駆動電流の電流値の一例を示すタイムチャートである。 The
<Electric circuit configuration of spot lighting device>
Next, the electric circuit configuration of the
図11から分かるように、スポット照明装置1’の発光モジュール3には、1個の第1LED41、2個の第2LED42に加え、電流制限用の抵抗R1及び抵抗R2、並びにLEDを駆動用の駆動電流を供給するためのトランジスタQ1及びトランジスタQ2が設けられている。ここで、抵抗R1は対応する第1LED41に流れる電流を適正な大きさに調整するために設けられ、抵抗R2は対応する2個の第2LED42に流れる電流を適正な大きさに調整するために設けられている。
As can be seen from FIG. 11, in the light emitting module 3 of the spot lighting device 1 ′, in addition to one first LED 41 and two second LEDs 42, a current limiting resistor R1 and resistor R2, and a drive for driving the LEDs. A transistor Q1 and a transistor Q2 for supplying current are provided. Here, the resistor R1 is provided to adjust the current flowing through the corresponding first LED 41 to an appropriate magnitude, and the resistor R2 is provided to adjust the current flowing through the corresponding two second LEDs 42 to an appropriate magnitude. It has been.
具体的には、第1LED41は抵抗R1に対して直列に接続されており、第1LED41のアノードが抵抗R1を介して電源51aの正極に接続されている。また、第1LED41のカソードは、トランジスタQ1のコレクタに接続され、トランジスタQ1のエミッタが電源51aの負極に接続されている。一方、2個の第2LED42は極性を同じくして互いに並列に接続されており、第1LED41と同様に、アノードが抵抗R2を介して電源51bの正極に接続されると共に、カソードがトランジスタQ2を介して電源51bの負極に接続されている。
Specifically, the first LED 41 is connected in series with the resistor R1, and the anode of the first LED 41 is connected to the positive electrode of the power source 51a via the resistor R1. The cathode of the first LED 41 is connected to the collector of the transistor Q1, and the emitter of the transistor Q1 is connected to the negative electrode of the power source 51a. On the other hand, the two second LEDs 42 have the same polarity and are connected in parallel to each other. Like the first LED 41, the anode is connected to the positive electrode of the power source 51b via the resistor R2, and the cathode is connected via the transistor Q2. And connected to the negative electrode of the power source 51b.
ここで、電源51aは、スポット照明装置1’の外部から口金8を介して供給される交流電圧を直流電圧に変換する変換回路からなる直流電源であり、スポット照明装置1’の回路基板9に設けられている。同様に、電源51bは、スポット照明装置1’の外部から口金8を介して供給される交流電圧を直流電圧に変換する変換回路からなる直流電源であり、スポット照明装置1’の回路基板9に設けられている。また、図11には図示しないもの、電源51a、51bはスポット照明装置1’の外部電源に接続されている。
Here, the power source 51a is a DC power source including a conversion circuit that converts an AC voltage supplied from the outside of the spot illumination device 1 ′ through the base 8 into a DC voltage, and is applied to the circuit board 9 of the spot illumination device 1 ′. Is provided. Similarly, the power source 51b is a direct current power source including a conversion circuit that converts an alternating voltage supplied from the outside of the spot illumination device 1 ′ through the base 8 into a direct current voltage, and is applied to the circuit board 9 of the spot illumination device 1 ′. Is provided. Further, although not shown in FIG. 11, the power sources 51a and 51b are connected to an external power source of the spot illumination device 1 '.
また、トランジスタQ1、Q2は、いずれもそれぞれのベース信号に応じてオン・オフ状態を切り換え可能であり、電流制御部52からそれぞれのベースに対して個別にベース信号が送出されるようになっている。より具体的な接続関係としては、トランジスタQ1のベースには、電流制御部52を構成する定電流制御回路52aが接続され、トランジスタQ2のベースには、電流制御部52を構成するデューティ比制御回路52bが接続されている。
In addition, the transistors Q1 and Q2 can both be switched on / off according to the respective base signals, and the base signals are individually sent from the current control unit 52 to the respective bases. Yes. More specifically, the constant current control circuit 52a constituting the current control unit 52 is connected to the base of the transistor Q1, and the duty ratio control circuit constituting the current control unit 52 is connected to the base of the transistor Q2. 52b is connected.
更に、スポット照明装置1’は、スポット照明装置1’から出射する光の輝度等の発光特性の調整を外部から行うための操作部53に接続している。具体的に、操作部53は、電流制御部52に接続され、スポット照明装置1’から出射する光の輝度等の発光特性を設定するための操作に応じ、設定された輝度に対応した駆動信号を電流制御部52に伝達する。そして、電流制御部52は、当該駆動信号に応じて、トランジスタQ1及びトランジスタQ2の動作を制御し、第1LED41に供給される駆動電流と、第2LED42に供給される駆動電流とを制御する。
Furthermore, the spot illumination device 1 ′ is connected to an operation unit 53 for externally adjusting light emission characteristics such as luminance of light emitted from the spot illumination device 1 ′. Specifically, the operation unit 53 is connected to the current control unit 52, and a drive signal corresponding to the set luminance according to an operation for setting light emission characteristics such as the luminance of light emitted from the spot illumination device 1 ′. Is transmitted to the current control unit 52. Then, the current control unit 52 controls the operation of the transistor Q1 and the transistor Q2 according to the drive signal, and controls the drive current supplied to the first LED 41 and the drive current supplied to the second LED 42.
次に、電流制御部52における具体的な制御について説明する。上述したように、電流制御部52は、定電流制御回路52a及びデューティ比制御回路52bを備えており、定電流制御回路52aがトランジスタQ1にベース信号を供給し、デューティ比制御回路52bがトランジスタQ2にベース信号を供給する。
Next, specific control in the current control unit 52 will be described. As described above, the current control unit 52 includes the constant current control circuit 52a and the duty ratio control circuit 52b. The constant current control circuit 52a supplies a base signal to the transistor Q1, and the duty ratio control circuit 52b includes the transistor Q2. To supply the base signal.
すなわち、第1LED41は定電流制御回路52aによって制御され、より具体的には、トランジスタQ1がON駆動することにより、第1LED41には一定値の駆動電流が常に供給されることになり、第1LED41に流れる実際の駆動電流(すなわち、第2LED42に供給される電力量)は一定となる。
That is, the first LED 41 is controlled by the constant current control circuit 52a. More specifically, when the transistor Q1 is turned ON, a constant driving current is always supplied to the first LED 41, and the first LED 41 is supplied to the first LED 41. The actual driving current that flows (that is, the amount of power supplied to the second LED 42) is constant.
一方、第2LED42はデューティ比制御回路52bによって制御され、より具体的には、トランジスタQ2に供給されるベース信号の大きさは変化しないものの、ベース信号の供給時間と非供給時間の比率が制御されている。すなわち、トランジスタQ2を所定の周期で断続的にオンオフ駆動させることにより、第2LED42に供給される駆動電流の供給時間及び非供給時間の比率が制御され、第2LED42に流れる実際の駆動電流(すなわち、第2LED42に供給される電力量)がデューティ比制御回路52bによって制御されることになる。換言すれば、第2LED42に供給される駆動電流は、デューティ比制御回路52bによって上述した駆動信号に応じて可変電流で制御されることになる。
On the other hand, the second LED 42 is controlled by the duty ratio control circuit 52b. More specifically, although the magnitude of the base signal supplied to the transistor Q2 does not change, the ratio between the supply time and non-supply time of the base signal is controlled. ing. That is, by intermittently driving the transistor Q2 on and off at a predetermined cycle, the ratio of the supply time and non-supply time of the drive current supplied to the second LED 42 is controlled, and the actual drive current flowing through the second LED 42 (i.e., The amount of power supplied to the second LED 42) is controlled by the duty ratio control circuit 52b. In other words, the drive current supplied to the second LED 42 is controlled by the variable current according to the drive signal described above by the duty ratio control circuit 52b.
なお、電流制御部52は、操作部53から供給される電気信号に対応した制御内容を記憶する記憶部(例えば、メモリ)を有していてもよい。このような場合、電流制御部52は、操作部53から供給される電気信号に対応する制御内容を当該記憶部から読み出し、読み出した制御内容に応じてトランジスタQ1及びトランジスタQ2の動作を制御することになる。
Note that the current control unit 52 may include a storage unit (for example, a memory) that stores control content corresponding to the electrical signal supplied from the operation unit 53. In such a case, the current control unit 52 reads the control content corresponding to the electrical signal supplied from the operation unit 53 from the storage unit, and controls the operation of the transistor Q1 and the transistor Q2 according to the read control content. become.
次に、図12及び図13を参照しつつ、定電流制御回路52a及びデューティ比制御回路52bによる駆動電流の制御を具体的に説明する。
Next, the control of the drive current by the constant current control circuit 52a and the duty ratio control circuit 52b will be specifically described with reference to FIGS.
先ず、比較的に暗く且つ赤味をおびている合成白色光をスポット照明装置1’から出射する場合を、図12に示す。図12に示す状態において、トランジスタQ1がオン状態になると第1LED41に電流値A0の駆動電流が流れ、第1LED41から1900Kの白色光が出射する。一方、トランジスタQ2は、周期t0(例えば20ms)の間において、オン期間t1のみ(例えば3ms)オン状態となり、当該オン期間t1の間に第1LED41に電流値A0の駆動電流が流れ、第2LED42から2700Kの白色光が出射する。
First, FIG. 12 shows a case where synthetic white light that is relatively dark and reddish is emitted from the spot lighting device 1 ′. In the state shown in FIG. 12, when the transistor Q1 is turned on, a driving current having a current value A0 flows through the first LED 41, and 1900K white light is emitted from the first LED 41. On the other hand, the transistor Q2 is turned on only during the on period t1 (for example, 3 ms) during the period t0 (for example, 20 ms), and the driving current of the current value A0 flows through the first LED 41 during the on period t1, and the second LED 42 2700K white light is emitted.
このように、トランジスタQ2のオン期間t1を周期t0に対して比較短くすると、トランジスタQ2がオン状態の際に、第2LED42に瞬間的(すなわち、t1の期間)に流れる駆動電流の電流値はA0で同一であるものの、実際にスポット照明装置1’を使用している状態(すなわち、t0の周期が複数回繰り返されている状態)において、第2LED42に実際に供給される駆動電流の電流値はA0よりも半分以下になる。従って、図12に示されている状態においては、第2LED42から出射する1900Kの光が第1LED41から出射する2700Kの光よりも明るくなり、スポット照明装置1’から出射する合成白色光の色温度は1900Kに近づき、全体として均一に赤みがかった色の合成白色光が出射することになる。
As described above, when the ON period t1 of the transistor Q2 is shorter than the period t0, the current value of the drive current that flows instantaneously (that is, the period of t1) through the second LED 42 when the transistor Q2 is ON is A0. However, the current value of the drive current actually supplied to the second LED 42 in the state where the spot illumination device 1 ′ is actually used (that is, the state where the period of t0 is repeated a plurality of times) is as follows. Less than half of A0. Accordingly, in the state shown in FIG. 12, the 1900K light emitted from the second LED 42 becomes brighter than the 2700K light emitted from the first LED 41, and the color temperature of the synthesized white light emitted from the spot illumination device 1 ′ is Approaching 1900K, synthetic white light of a reddish color as a whole is emitted.
上述した状態からスポット照明装置1’の出射光を明るくする(すなわち、調光する)ために、例えば図13に示すように、トランジスタQ2のオン期間をオン期間t1よりも長いオン期間t2(例えば、18ms)とし、トランジスタQ2の駆動時間を長くする。
In order to brighten the light emitted from the spot illumination device 1 ′ from the above-described state (that is, dimming), for example, as shown in FIG. 13, the on period of the transistor Q2 is longer than the on period t1 (for example, the on period t2). 18 ms), and the driving time of the transistor Q2 is lengthened.
このように、トランジスタQ2のオン期間を周期t0に近づけると、実際にスポット照明装置1’を使用している状態(すなわち、t0の周期が複数回繰り返されている状態)において、第2LED42に実際に供給される駆動電流の電流値は、図12の状態と比して、第2LED42に瞬間的(すなわち、t2の期間)に流れる駆動電流の電流値(A0)に近づくことになる。従って、図13に示されている状態においては、第2LED42から出射する1900Kの光と第1LED41から出射する2700Kの光の明るさはほぼ同一になり、スポット照明装置1’から出射する合成白色光の色温度は2700Kにより近づき、より昼白色に近い色の光を出射することになる。
Thus, when the ON period of the transistor Q2 is brought close to the cycle t0, the second LED 42 is actually used in the state where the spot illumination device 1 ′ is actually used (that is, the cycle of t0 is repeated a plurality of times). The current value of the drive current supplied to is closer to the current value (A0) of the drive current that flows instantaneously (that is, during the period t2) in the second LED 42 as compared to the state of FIG. Accordingly, in the state shown in FIG. 13, the brightness of the 1900K light emitted from the second LED 42 and the light of 2700K emitted from the first LED 41 are substantially the same, and the synthesized white light emitted from the spot illumination device 1 ′. The color temperature is closer to 2700K, and light of a color closer to daylight is emitted.
このように、定電流制御回路52aによって第1LED41に流れる実際の駆動電流を一定にしつつ、デューティ比制御回路52bによって第2LED42に供給される駆動電流の供給時間及び非供給時間を調整することにより、1900Kの光を一定の強度で出射しつつ2700Kの光の強度を自在に調整することが可能となり、スポット照明装置1’から出射する合成白色光の強度の変化に応じて色温度を変化させることが可能になる。すなわち、スポット照明装置1’から出射する合成白色光の強度が小さい(すなわち、合成白色光が比較的暗い)場合には、合成白色光の色温度を1900Kに近づけることができ、スポット照明装置1’から出射する合成白色光の強度が大きき(すなわち、合成白色光が比較的明るい)場合には、合成白色光の色温度を2700Kに近づけることができる。
In this way, by adjusting the supply time and non-supply time of the drive current supplied to the second LED 42 by the duty ratio control circuit 52b while making the actual drive current flowing to the first LED 41 constant by the constant current control circuit 52a, It is possible to freely adjust the intensity of 2700K light while emitting 1900K light at a constant intensity, and to change the color temperature according to the change in the intensity of the synthetic white light emitted from the spot illumination device 1 ′. Is possible. That is, when the intensity of the synthetic white light emitted from the spot illumination device 1 ′ is small (that is, the synthetic white light is relatively dark), the color temperature of the synthetic white light can be brought close to 1900K. When the intensity of the synthetic white light emitted from 'is large (that is, the synthetic white light is relatively bright), the color temperature of the synthetic white light can be close to 2700K.
上述した変形例において、トランジスタQ2をオン状態にし、第2LED42に駆動電流を供給するタイミングとしては、トランジスタQ1に供給する駆動電流が所定値(例えば、200mA)以上になった場合としてもよい。このように調整することで、駆動電流の値が小さい状態においては、第1LED41のみから光を出射させて、1900Kの白色光を放射することができ、駆動電流の値が大きい状態になると、第2LED42からも2700Kの白色光を放射させ、合成白色光の強度(すなわち、駆動電流の値)に応じて合成白色光の色温度を調整することができる。
In the above-described modification, the timing at which the transistor Q2 is turned on and the drive current is supplied to the second LED 42 may be a case where the drive current supplied to the transistor Q1 becomes a predetermined value (for example, 200 mA) or more. By adjusting in this way, in a state where the value of the drive current is small, light can be emitted only from the first LED 41 and white light of 1900K can be emitted, and when the value of the drive current becomes large, The 2LED 42 can also emit white light of 2700 K, and the color temperature of the synthetic white light can be adjusted according to the intensity of the synthetic white light (that is, the value of the drive current).
なお、第1LED41は定電流制御回路52aによって制御され、第2LED42はデューティ比制御回路52bによって制御される構造を有していたが、第1LED41もデューティ比制御回路によって制御される構造を有し、第1LED41に供給される駆動電流が停止されたときに、第1LED41に供給される駆動電流が前記駆動信号に応じて可変電流で制御されるようにしてもよい。これにより、スポット照明装置1’が消灯するまでの挙動を一段とフィラメント型のダイクロハロゲン電球に近づけることができる。なお、第1LED41に供給される駆動電流が停止されるとは、周期的に駆動電流が0になる期間ではなく、駆動電流の供給が完全に停止することをいう。
The first LED 41 is controlled by the constant current control circuit 52a, and the second LED 42 has a structure controlled by the duty ratio control circuit 52b. However, the first LED 41 also has a structure controlled by the duty ratio control circuit, When the drive current supplied to the first LED 41 is stopped, the drive current supplied to the first LED 41 may be controlled with a variable current according to the drive signal. Thereby, the behavior until the spot illumination device 1 ′ is turned off can be made closer to that of a filament type dichroic halogen bulb. Note that the drive current supplied to the first LED 41 being stopped means that the supply of the drive current is completely stopped, not a period in which the drive current periodically becomes zero.
また、第1LED41は定電流制御回路52aによって制御され、第2LED42はデューティ比制御回路52bによって制御される構造を有していたが、第2LED42に供給される駆動電流が停止されたときに、第1LED41に供給される駆動電流が停止されるようにしてもよい。これにより、第1LED41に供給される駆動電流が停止されたときに、スポット照明装置1’を消灯することができ、スポット照明装置1’の挙動を一段とフィラメント型のダイクロハロゲン電球に近づけることができる。
The first LED 41 is controlled by the constant current control circuit 52a, and the second LED 42 has a structure controlled by the duty ratio control circuit 52b. However, when the driving current supplied to the second LED 42 is stopped, the first LED 41 is controlled. The drive current supplied to one LED 41 may be stopped. Thereby, when the drive current supplied to the first LED 41 is stopped, the spot illumination device 1 ′ can be turned off, and the behavior of the spot illumination device 1 ′ can be made closer to that of a filament-type dichroic halogen bulb. .
なお、第1LED41及び第2LED42から放射する白色光の色温度は、上述した数値に限定されることなく、スポット照明装置1’の使用環境及び使用用途等に応じて、適宜変更することができる。また、上述した変形例においては、1個の第1LED41、及び2個の第2LED42を放熱板6に固定していたが、第1LED41及び第2LED42をマトリックス状に配列して放熱板6に固定してもよい。更に、複数のLEDパッケージ装置を放熱板6に固定する場合、全てのLEDパッケージ装置の色温度が異なる必要はなく、当該複数のLEDパッケージ装置から選ばれる少なくとも1組が、互いに異なる色温度の光を放射してもよい。
In addition, the color temperature of the white light radiated from the first LED 41 and the second LED 42 is not limited to the above-described numerical values, and can be appropriately changed according to the use environment, the use application, and the like of the spot lighting device 1 ′. In the above-described modification, one first LED 41 and two second LEDs 42 are fixed to the heat sink 6. However, the first LEDs 41 and the second LEDs 42 are arranged in a matrix and fixed to the heat sink 6. May be. Further, when fixing a plurality of LED package devices to the heat sink 6, it is not necessary that the color temperatures of all the LED package devices be different, and at least one set selected from the plurality of LED package devices is light having a different color temperature. May be emitted.
そして、第1LED41及び第2LED42の少なくとも一方から放射される光について、波長、黒体放射軌跡からの距離、分光分布、及び規格化分光分布等のパラメータを調整することにより、第1LED41及び第2LED42の少なくとも一方から自然な色の白色光であって、緑色、黄色、及び赤色における彩度が優れた白色光を放射させてもよい。このように調整された半導体発光装置を用いることにより、照射対象である被照射物の色が異なる場合であっても、種々の色の被照射物に対しても最適な白色光を照射することができ、被照射物をより鮮やか且つ鮮明に照らし出すことができる。
For the light emitted from at least one of the first LED 41 and the second LED 42, the parameters of the first LED 41 and the second LED 42 are adjusted by adjusting parameters such as the wavelength, the distance from the black body radiation locus, the spectral distribution, and the normalized spectral distribution. White light having a natural color from at least one and having excellent saturation in green, yellow, and red may be emitted. By using the semiconductor light emitting device adjusted in this way, even when the color of the irradiated object to be irradiated is different, it is possible to irradiate the irradiated object with various colors with the optimum white light. It is possible to illuminate the irradiated object more vividly and clearly.
なお、上述した実施例に係るスポット照明装置1’においては、バイポーラトランジスタであるトランジスタQ1、Q2がスイッチング素子として用いられていたが、MOS電界効果型トランジスタ(Metal-Oxide-Semiconductor Field-Effect Transistor)をバイポーラトランジスタに代えて用いてもよい。
In the spot illumination device 1 ′ according to the above-described embodiment, the transistors Q1 and Q2 which are bipolar transistors are used as switching elements. However, a MOS field effect transistor (Metal-Oxide-Semiconductor-Field-Effect-Transistor) is used. May be used in place of the bipolar transistor.
本変形例においても、第1LED41及び第2LED42において生じた熱は、放熱板6及び放熱円筒体4によって形成される放熱経路Aに沿って伝導し、ドライバ筐体2の回路基板9に影響を与えることなく、放熱円筒体4から放熱されることになる。これにより、スポット照明装置1’の放熱性が向上され、発光モジュール3及び回路基板9の故障を防止し、スポット照明装置1’自体の寿命を長くすることができる。
Also in this modified example, the heat generated in the first LED 41 and the second LED 42 is conducted along the heat radiation path A formed by the heat radiating plate 6 and the heat radiating cylindrical body 4 and affects the circuit board 9 of the driver housing 2. Instead, the heat is radiated from the heat radiating cylinder 4. Thereby, the heat dissipation of the spot lighting device 1 ′ is improved, the failure of the light emitting module 3 and the circuit board 9 can be prevented, and the life of the spot lighting device 1 ′ itself can be extended.
≪変形例2≫
上述した実施例及び変形例1においては、半導体発光装置である発光モジュール3、第1LED41、又は第2LED42が放熱板6に直接搭載されていたため、放熱円筒体4の第2開口部4b付近において、半導体発光装置から光が出射されていた。そして、このような構造においては、スポット照明装置1、1’の光の焦点位置と点光源である半導体発光装置の位置との関係上、レンズ5が必要になっていた。しかしながら、放熱円筒体4の中央部において、半導体発光装置から光が出射されるように調整し、レンズを放熱円筒体4内に設けない構造を採用してもよい。以下において、図14を参照しつつ、このようなレンズが不要となるスポット照明装置1"を変形例2として説明する。図14は、変形例2に係るスポット照明装置1"の全体を一部縦断面で示す一部切欠正面図である。なお、上述した実施例及び変形例1と同一の構成については、同一符号を付し、その説明を省略する。 <<Modification 2 >>
In the above-described embodiment and modification example 1, thelight emitting module 3, the first LED 41, or the second LED 42, which is a semiconductor light emitting device, is directly mounted on the heat radiating plate 6. Therefore, in the vicinity of the second opening 4b of the heat radiating cylindrical body 4, Light was emitted from the semiconductor light emitting device. In such a structure, the lens 5 is necessary because of the relationship between the focal position of the light of the spot illumination devices 1, 1 ′ and the position of the semiconductor light emitting device that is a point light source. However, a structure in which light is emitted from the semiconductor light emitting device at the center of the heat radiating cylinder 4 and a lens is not provided in the heat radiating cylinder 4 may be employed. In the following, referring to FIG. 14, a spot illumination device 1 ″ that does not require such a lens will be described as a modification 2. FIG. 14 shows a part of the entire spot illumination device 1 ″ according to the modification 2. It is a partially cutaway front view shown in a longitudinal section. In addition, about the structure same as the Example mentioned above and the modification 1, the same code | symbol is attached | subjected and the description is abbreviate | omitted.
上述した実施例及び変形例1においては、半導体発光装置である発光モジュール3、第1LED41、又は第2LED42が放熱板6に直接搭載されていたため、放熱円筒体4の第2開口部4b付近において、半導体発光装置から光が出射されていた。そして、このような構造においては、スポット照明装置1、1’の光の焦点位置と点光源である半導体発光装置の位置との関係上、レンズ5が必要になっていた。しかしながら、放熱円筒体4の中央部において、半導体発光装置から光が出射されるように調整し、レンズを放熱円筒体4内に設けない構造を採用してもよい。以下において、図14を参照しつつ、このようなレンズが不要となるスポット照明装置1"を変形例2として説明する。図14は、変形例2に係るスポット照明装置1"の全体を一部縦断面で示す一部切欠正面図である。なお、上述した実施例及び変形例1と同一の構成については、同一符号を付し、その説明を省略する。 <<
In the above-described embodiment and modification example 1, the
<スポット照明装置の構成>
本変形例に係るスポット照明装置1"の構成と、上述した変形例1’に係るスポット照明装置1の構成との相違点は、複数の第1LED41、複数の第2LED42及び支持部材61から半導体発光装置であるLED光源62を構成している点、レンズ5に代えて放熱円筒体の第2開口部2bを閉塞する蓋体63を配設している点、その内側面に反射部材が形成された放熱円筒体4"を配設している点である。なお、その他の構造及び部材については同一である。 <Configuration of spot lighting device>
The difference between the configuration of thespot illumination device 1 ″ according to the present modification and the configuration of the spot illumination device 1 according to the above-described modification 1 ′ is that the plurality of first LEDs 41, the plurality of second LEDs 42, and the support member 61 emit semiconductor light. The point which comprises the LED light source 62 which is an apparatus, the point which has replaced the lens 5 with the cover body 63 which obstruct | occludes the 2nd opening part 2b of a thermal radiation cylindrical body, and the reflection member is formed in the inner surface. The heat radiating cylindrical body 4 ″ is provided. The other structures and members are the same.
本変形例に係るスポット照明装置1"の構成と、上述した変形例1’に係るスポット照明装置1の構成との相違点は、複数の第1LED41、複数の第2LED42及び支持部材61から半導体発光装置であるLED光源62を構成している点、レンズ5に代えて放熱円筒体の第2開口部2bを閉塞する蓋体63を配設している点、その内側面に反射部材が形成された放熱円筒体4"を配設している点である。なお、その他の構造及び部材については同一である。 <Configuration of spot lighting device>
The difference between the configuration of the
より具体的に、本変形例に係るLED光源62は、放熱板6に固定された円柱状の支持部材61と、支持部材61の側面に固着された複数(例えば4個)の第1LED41及び複数(例えば4個)の第2LED42から構成されている。支持部材61は、熱伝導性の比較的に高い部材から構成されることが好ましく、例えば、ガラス、樹脂、及びセラミックの群から選ばれる少なくととも1つ材料から構成されている。第1LED41及び第2LED42は、放熱円筒体4"の空洞4"cの中央部に位置するように、半田等の接合部材を用いて支持部材61に支持されている。これにより、放熱円筒体4"の中央部において、第1LED41及び第2LED42(すなわち、LED光源62)から光が出射されることになる。ここで、支持部材61の表面又は内部には配線パターン(図示せず)が形成されており、第1LED41及び第2LED42は当該配線パターンを介して回路基板9に電気的に接続されている。
More specifically, the LED light source 62 according to this modification includes a columnar support member 61 fixed to the heat radiating plate 6, a plurality of (for example, four) first LEDs 41 fixed to the side surface of the support member 61, and a plurality of first LEDs 41. It is composed of (for example, four) second LEDs 42. The support member 61 is preferably composed of a member having a relatively high thermal conductivity. For example, the support member 61 is composed of at least one material selected from the group of glass, resin, and ceramic. The first LED 41 and the second LED 42 are supported by the support member 61 using a joining member such as solder so that the first LED 41 and the second LED 42 are positioned at the center of the cavity 4 ″ c of the heat radiating cylinder 4 ″. Accordingly, light is emitted from the first LED 41 and the second LED 42 (that is, the LED light source 62) at the central portion of the heat radiating cylindrical body 4 ″. Here, a wiring pattern (on the surface or inside of the support member 61 is provided. The first LED 41 and the second LED 42 are electrically connected to the circuit board 9 through the wiring pattern.
また、放熱円筒体4"の内側面には、LED光源62から放射した光の一部を反射する反射部材が形成されている。例えば、蒸着、又はスパッタ等の公知の成膜技術を利用して、反射部材として機能する金属薄膜又は誘電体多層膜が成膜されている。誘電体多層膜としては、例えば、セラミック又はタンタルを用いることができる。これにより、放熱円筒体4"に到達した光の少なくとも一部は、放熱円筒体4"の反射部材によって反射され、蓋体63に導かれることになる。すなわち、本変形例においては、上述した実施例及び変形例1におけるレンズ5を利用することなく、放熱円筒体4"の内側面に形成された反射部材を利用して集光している。なお、当該金属薄膜又は誘電体多層膜によって反射しなかった光は、放熱円筒体4"からスポット照明装置1"の側方に向けて放射されることになる。
Further, a reflection member that reflects a part of the light emitted from the LED light source 62 is formed on the inner side surface of the heat radiating cylinder 4 ″. For example, a known film formation technique such as vapor deposition or sputtering is used. Thus, a metal thin film or a dielectric multilayer film functioning as a reflecting member is formed.For example, ceramic or tantalum can be used as the dielectric multilayer film. At least a part of the light is reflected by the reflecting member of the heat radiating cylindrical body 4 ″ and guided to the lid 63. That is, in this modification, the lens 5 in the above-described embodiment and modification 1 is used. Without focusing, the light is condensed by using a reflecting member formed on the inner surface of the heat radiating cylindrical body 4 ″. The light that has not been reflected by the metal thin film or the dielectric multilayer film is emitted from the heat radiating cylindrical body 4 ″ toward the side of the spot illumination device 1 ″.
蓋体63は、高い光透過性を有するガラス、又は樹脂等の部材から構成されている。これにより、蓋体63に到達した光は、蓋体63によって反射されることなく、スポット照明装置1"の外部に出射されることになる。
The lid 63 is made of a member having high light transmittance such as glass or resin. Thereby, the light that has reached the lid 63 is emitted outside the spot illumination device 1 ″ without being reflected by the lid 63.
このようなLED光源62、放熱円筒体4"、 及び蓋体63の構造により、スポット照明装置1"の光の焦点を点光源として機能するLED光源62の位置と合わせ、LED光源62から放射した光を蓋体63に向かって良好に集光させつつスポット照明装置1"の外部に出射することができる。すなわち、集光用のレンズを用いることなく、スポット照明装置1"からスポット光を照射することができ、スポット照明装置1"をLED型のダイクロハロゲン電球として機能させることができる。また、支持部材61が熱伝導性の比較的に高い部材から構成されているため、第1LED41及び第2LED42において発生する熱は、支持部材61を介して放熱板6に伝導し、更には放熱経路Aを介して放熱円筒体4"に伝導し、放熱円筒体4"からスポット照明装置1"の外部に放熱されることになる。すなわち、スポット照明装置1"の放熱性が向上され、LED光源62及び回路基板9の故障を防止し、スポット照明装置1"自体の寿命を長くすることができる。
Due to the structure of the LED light source 62, the heat radiating cylindrical body 4 ″, the ridge, and the lid body 63, the light focus of the spot illumination device 1 ″ is aligned with the position of the LED light source 62 functioning as a point light source and emitted from the LED light source 62 Light can be emitted to the outside of the spot illuminating device 1 "while concentrating the light toward the lid 63. That is, spot light is irradiated from the spot illuminating device 1" without using a condensing lens. The spot illumination device 1 "can function as an LED-type dichroic halogen bulb. Further, since the support member 61 is composed of a member having a relatively high thermal conductivity, the first LED 41 and the first LED 41 The heat generated in the 2LEDs 42 is conducted to the heat radiating plate 6 through the support member 61, and further conducted to the heat radiating cylinder 4 "through the heat radiating path A. It will be dissipated to the outside of the spot lighting device 1 '. That is, the heat dissipation of the spot lighting device 1 "is improved, the failure of the LED light source 62 and the circuit board 9 can be prevented, and the life of the spot lighting device 1" itself can be extended.
1、1’、1" スポット照明装置
2 ドライバ筐体
2a 空洞
3 発光モジュール(半導体発光装置)
3a モジュール本体
3b 波長変換部材
4、 4" 放熱円筒体(放熱体)
4a 第1開口部
4b 第2開口部
4c、4"c 空洞
5 レンズ
5a 蓋部
5b 集光部
5c 凹部
5d 内側面
6 放熱板
6a ネジ穴
6b 発光モジュール搭載面
6c 凸部
7 断熱部材
8 口金
9 回路基板
11 ネジ
12 ネジ穴
21 平板部
22 側壁部
23 LEDチップ
24 蛍光体
25 母材
26 p電極
27 n電極
28、29 配線パターン
41 第1LEDパッケージ装置(第1LED)
42 第2LEDパッケージ装置(第2LED)
43 パッケージ
44 LEDチップ
45 波長変換部材
51a、51b 電源
52 電流制御部
52a 定電流制御回路
52b デューティ比制御回路
53 操作部
61 支持部材
62 LED光源
63 蓋体
R1、R2 抵抗
Q1、Q2 トランジスタ 1, 1 ', 1 "spot illumination device 2 driver housing 2a cavity 3 light emitting module (semiconductor light emitting device)
3a Module body 3b Wavelength conversion member 4, 4 "Heat radiation cylinder (heat radiation body)
4a1st opening part 4b 2nd opening part 4c, 4 "c Cavity 5 Lens 5a Cover part 5b Condensing part 5c Concave part 5d Inner side surface 6 Heat sink 6a Screw hole 6b Light emitting module mounting surface 6c Convex part 7 Thermal insulation member 8 Base 9 Circuit board 11 Screw 12 Screw hole 21 Flat plate part 22 Side wall part 23 LED chip 24 Phosphor 25 Base material 26 P electrode 27 N electrode 28, 29 Wiring pattern 41 First LED package device (first LED)
42 Second LED package device (second LED)
43Package 44 LED chip 45 Wavelength conversion member 51a, 51b Power supply 52 Current control unit 52a Constant current control circuit 52b Duty ratio control circuit 53 Operation unit 61 Support member 62 LED light source 63 Lid R1, R2 Resistor Q1, Q2 Transistor
2 ドライバ筐体
2a 空洞
3 発光モジュール(半導体発光装置)
3a モジュール本体
3b 波長変換部材
4、 4" 放熱円筒体(放熱体)
4a 第1開口部
4b 第2開口部
4c、4"c 空洞
5 レンズ
5a 蓋部
5b 集光部
5c 凹部
5d 内側面
6 放熱板
6a ネジ穴
6b 発光モジュール搭載面
6c 凸部
7 断熱部材
8 口金
9 回路基板
11 ネジ
12 ネジ穴
21 平板部
22 側壁部
23 LEDチップ
24 蛍光体
25 母材
26 p電極
27 n電極
28、29 配線パターン
41 第1LEDパッケージ装置(第1LED)
42 第2LEDパッケージ装置(第2LED)
43 パッケージ
44 LEDチップ
45 波長変換部材
51a、51b 電源
52 電流制御部
52a 定電流制御回路
52b デューティ比制御回路
53 操作部
61 支持部材
62 LED光源
63 蓋体
R1、R2 抵抗
Q1、Q2 トランジスタ 1, 1 ', 1 "
4a
42 Second LED package device (second LED)
43
Claims (16)
- 半導体発光装置と、
前記半導体発光装置を搭載する放熱板と、
前記半導体発光装置の搭載面側に位置する第1開口部、及び前記第1開口部に対向して連通し且つ前記第1開口部よりも大なる開口径を有する第2開口部を含み、前記半導体発光装置から放射された光の少なくとも一部を透過する熱伝導材料からなる放熱体と、
前記半導体発光装置を点灯する回路基板を内蔵し、前記放熱板の半導体発光装置搭載面と反対側の面に配設されたドライバ筐体と、
前記ドライバ筐体に接続され前記回路基板に給電する口金と、を備え、
前記第1開口部側における前記放熱体の端部が前記放熱板の半導体発光装置搭載面側において前記放熱板に直接的に接続され、前記半導体発光装置から発生する熱を前記放熱板を通じて前記放熱体に伝導して前記放熱体から放熱する放熱経路が形成されているスポット照明装置。 A semiconductor light emitting device;
A heat sink mounting the semiconductor light emitting device;
A first opening located on the mounting surface side of the semiconductor light emitting device, and a second opening that communicates with and faces the first opening and has a larger opening diameter than the first opening, A radiator made of a heat conductive material that transmits at least part of the light emitted from the semiconductor light emitting device;
A circuit board for lighting the semiconductor light emitting device is built in, and a driver housing disposed on the surface opposite to the semiconductor light emitting device mounting surface of the heat sink,
A base connected to the driver housing and supplying power to the circuit board,
An end of the radiator on the first opening side is directly connected to the heat sink on the semiconductor light emitting device mounting surface side of the heat sink, and heat generated from the semiconductor light emitting device is radiated through the heat sink. A spot illuminating device in which a heat radiation path for conducting heat to a body and radiating heat from the heat radiator is formed. - 前記放熱体は、円筒状の放熱円筒体である請求項1に記載のスポット照明装置。 The spot illuminating device according to claim 1, wherein the heat radiating body is a cylindrical heat radiating cylindrical body.
- 前記放熱板の熱伝導率は、前記放熱体の熱伝導率よりも高い請求項1又は2に記載のスポット照明装置。 The spot lighting device according to claim 1 or 2, wherein the thermal conductivity of the heat radiating plate is higher than the thermal conductivity of the heat radiating body.
- 前記放熱板は、熱伝導率が100W/(m・K)以上の金属又は金属合金からなる請求項1乃至3のいずれか1項に記載のスポット照明装置。 The spot illuminator according to any one of claims 1 to 3, wherein the heat radiating plate is made of a metal or metal alloy having a thermal conductivity of 100 W / (m · K) or more.
- 前記放熱板の熱膨張係数は、前記放熱体の熱膨張係数よりも高く、前記ドライバ筐体の熱膨張係数よりも低い請求項1乃至4のいずれか1項に記載のスポット照明装置。 The spot illumination device according to any one of claims 1 to 4, wherein a thermal expansion coefficient of the heat radiating plate is higher than a thermal expansion coefficient of the radiator and lower than a thermal expansion coefficient of the driver housing.
- 前記放熱体は、ガラス、樹脂、及びセラミックの群から選ばれる少なくとも1つの材料からなる請求項1乃至5のいずれか1項に記載のスポット照明装置。 The spot illuminating device according to any one of claims 1 to 5, wherein the radiator is made of at least one material selected from the group consisting of glass, resin, and ceramic.
- 前記ドライバ筐体は、樹脂からなる請求項1乃至6のいずれか1項に記載のスポット照明装置。 The spot illumination device according to any one of claims 1 to 6, wherein the driver housing is made of resin.
- 前記放熱体は、ガラスからなり、
前記放熱板は、アルミニウムからなり、
前記ドライバ筐体は、ポリカーボネート樹脂からなり、
前記放熱板は、前記放熱板を介した前記放熱体と前記ドライバ筐体との接続部分における応力緩和をなす請求項1乃至7のいずれか1項に記載のスポット照明装置。 The radiator is made of glass,
The heat sink is made of aluminum,
The driver housing is made of polycarbonate resin,
The spot illuminating device according to claim 1, wherein the heat radiating plate relieves stress at a connection portion between the heat radiating body and the driver housing via the heat radiating plate. - 前記放熱経路は、前記ドライバ筐体及び前記口金の配設方向とは反対側に向かって延在している請求項1乃至8のいずれか1項に記載のスポット照明装置。 The spot illuminating device according to any one of claims 1 to 8, wherein the heat radiation path extends toward a side opposite to a direction in which the driver housing and the base are arranged.
- 前記放熱体は、前記半導体発光装置から放射された光の少なくとも一部を反射する反射部材を含む請求項1乃至9のいずれか1項に記載のスポット照明装置。 The spot illuminating device according to any one of claims 1 to 9, wherein the heat radiator includes a reflecting member that reflects at least a part of light emitted from the semiconductor light emitting device.
- 前記反射部材は、金属薄膜又は誘電体多層膜である請求項10に記載のスポット照明装置。 The spot illumination device according to claim 10, wherein the reflecting member is a metal thin film or a dielectric multilayer film.
- 前記半導体発光装置から放出される光を集光するレンズを前記放熱体の内部に更に備える請求項1乃至9のいずれか1項に記載のスポット照明装置。 The spot illumination device according to any one of claims 1 to 9, further comprising a lens for condensing light emitted from the semiconductor light emitting device, inside the heat radiating body.
- 前記レンズは、入射した光を側面で反射する反射型レンズである請求項12に記載のスポット照明装置。 The spot illumination device according to claim 12, wherein the lens is a reflective lens that reflects incident light on a side surface.
- 前記放熱板と前記ドライバ筐体との間に断熱部材が挟まれている請求項1乃至13のいずれか1項に記載のスポット照明装置。 The spot lighting device according to any one of claims 1 to 13, wherein a heat insulating member is sandwiched between the heat radiating plate and the driver housing.
- 前記半導体発光装置は、前記放熱板の片面の中心領域付近に搭載され、
前記放熱体は、前記放熱板の周辺領域に接続されている請求項1乃至14のいずれか1項に記載のスポット照明装置。 The semiconductor light emitting device is mounted near the central region of one side of the heat sink,
The spot illuminating device according to any one of claims 1 to 14, wherein the radiator is connected to a peripheral region of the radiator plate. - 前記放熱板は、前記放熱板における前記放熱体の接続部位と比較して前記放熱板における前記半導体発光装置の搭載部位を前記第2開口部に近づける段差を有する請求項1乃至15のいずれかに記載のスポット照明装置。 16. The heat sink according to claim 1, wherein the heat sink has a step that brings the mounting portion of the semiconductor light emitting device on the heat sink closer to the second opening compared to a connection portion of the heat sink on the heat sink. The spot illumination device described.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014060041 | 2014-03-24 | ||
JP2014-060041 | 2014-03-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015145855A1 true WO2015145855A1 (en) | 2015-10-01 |
Family
ID=54194425
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/079538 WO2015145855A1 (en) | 2014-03-24 | 2014-11-07 | Spot lighting apparatus |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2015195170A (en) |
WO (1) | WO2015145855A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3208515A1 (en) * | 2016-02-19 | 2017-08-23 | Jussi Numminen | Lighting device |
US11092322B2 (en) * | 2019-09-26 | 2021-08-17 | Savant Technologies Llc | Lamp |
WO2022014421A1 (en) * | 2020-07-17 | 2022-01-20 | ソニーグループ株式会社 | Light-emitting device and image display device |
CN114877265A (en) * | 2022-05-06 | 2022-08-09 | 佛山电器照明股份有限公司 | Laser lighting device and manufacturing method thereof |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017103052A (en) * | 2015-11-30 | 2017-06-08 | 岩崎電気株式会社 | lamp |
JP6750209B2 (en) * | 2015-11-30 | 2020-09-02 | 岩崎電気株式会社 | lamp |
KR102459103B1 (en) * | 2018-02-01 | 2022-10-26 | 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 | Light emitting device package and light source unit |
JP7207853B2 (en) * | 2018-02-26 | 2023-01-18 | 京セラ株式会社 | Light irradiation device and printing device |
JP7231831B2 (en) | 2019-10-30 | 2023-03-02 | 日亜化学工業株式会社 | Light source device |
US11782205B2 (en) | 2021-04-28 | 2023-10-10 | Nichia Corporation | Light-emitting device including movement mechanism |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010086946A (en) * | 2008-09-04 | 2010-04-15 | Panasonic Corp | Light source for illumination and luminaire with reflector using the same |
WO2011158277A1 (en) * | 2010-06-14 | 2011-12-22 | シントク株式会社 | Led lamp |
JP2013214465A (en) * | 2012-04-04 | 2013-10-17 | Iris Ohyama Inc | Led lamp |
-
2014
- 2014-11-07 JP JP2014226871A patent/JP2015195170A/en active Pending
- 2014-11-07 WO PCT/JP2014/079538 patent/WO2015145855A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010086946A (en) * | 2008-09-04 | 2010-04-15 | Panasonic Corp | Light source for illumination and luminaire with reflector using the same |
WO2011158277A1 (en) * | 2010-06-14 | 2011-12-22 | シントク株式会社 | Led lamp |
JP2013214465A (en) * | 2012-04-04 | 2013-10-17 | Iris Ohyama Inc | Led lamp |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3208515A1 (en) * | 2016-02-19 | 2017-08-23 | Jussi Numminen | Lighting device |
US11092322B2 (en) * | 2019-09-26 | 2021-08-17 | Savant Technologies Llc | Lamp |
WO2022014421A1 (en) * | 2020-07-17 | 2022-01-20 | ソニーグループ株式会社 | Light-emitting device and image display device |
CN114877265A (en) * | 2022-05-06 | 2022-08-09 | 佛山电器照明股份有限公司 | Laser lighting device and manufacturing method thereof |
CN114877265B (en) * | 2022-05-06 | 2024-01-23 | 佛山电器照明股份有限公司 | Laser lighting device and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2015195170A (en) | 2015-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015145855A1 (en) | Spot lighting apparatus | |
EP2637224B1 (en) | Light emitting device, illumination apparatus and system using same | |
US9335006B2 (en) | Saturated yellow phosphor converted LED and blue converted red LED | |
JP5914826B2 (en) | Light emitting module, lighting device and lighting fixture | |
US9312302B2 (en) | Light emitting module, lighting apparatus, and lighting fixture | |
US7586127B2 (en) | Light emitting diode | |
WO2012121304A1 (en) | Light-emitting device, and lighting device equipped with light-emitting device | |
WO2014196498A1 (en) | Lighting device and optical member | |
JP2013531376A (en) | LED-based light emitting system and apparatus | |
JP2007324137A (en) | Lighting system | |
JP2007048638A (en) | Lighting fixture | |
JP5443959B2 (en) | Lighting device | |
KR20120044933A (en) | Hot light emitting diode (led) lighting systems and methods | |
JP2007059864A (en) | Lighting device and light emitting diode device | |
US9297500B2 (en) | Light emitting module, lighting device, and lighting apparatus | |
US9013097B2 (en) | Light-emitting module, lighting device, and lighting fixture | |
JP2017163001A (en) | Light-emitting module and lighting device | |
EP2639284A1 (en) | Luminaire | |
JP5828100B2 (en) | LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME | |
JP5540157B2 (en) | Lamp and lighting device | |
JP2013069881A (en) | Lighting device | |
JP2011181252A (en) | Lighting fixture | |
JP2006080334A (en) | Led light emitting device | |
KR101896669B1 (en) | The light emitting system | |
JP2014194858A (en) | Led lighting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14886916 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14886916 Country of ref document: EP Kind code of ref document: A1 |