WO2014196498A1 - Lighting device and optical member - Google Patents

Lighting device and optical member Download PDF

Info

Publication number
WO2014196498A1
WO2014196498A1 PCT/JP2014/064608 JP2014064608W WO2014196498A1 WO 2014196498 A1 WO2014196498 A1 WO 2014196498A1 JP 2014064608 W JP2014064608 W JP 2014064608W WO 2014196498 A1 WO2014196498 A1 WO 2014196498A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light emitting
light distribution
light guide
emitting device
Prior art date
Application number
PCT/JP2014/064608
Other languages
French (fr)
Japanese (ja)
Inventor
修治 大中
Original Assignee
三菱化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱化学株式会社 filed Critical 三菱化学株式会社
Publication of WO2014196498A1 publication Critical patent/WO2014196498A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/502Cooling arrangements characterised by the adaptation for cooling of specific components
    • F21V29/503Cooling arrangements characterised by the adaptation for cooling of specific components of light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • F21K9/232Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings specially adapted for generating an essentially omnidirectional light distribution, e.g. with a glass bulb
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/61Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using light guides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/62Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using mixing chambers, e.g. housings with reflective walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2105/00Planar light sources
    • F21Y2105/10Planar light sources comprising a two-dimensional array of point-like light-generating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0005Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being of the fibre type
    • G02B6/0008Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being of the fibre type the light being emitted at the end of the fibre

Definitions

  • the present invention relates to a lighting fixture including a semiconductor light emitting device such as an LED (Light Emitting Diode), and an optical member used therefor.
  • a semiconductor light emitting device such as an LED (Light Emitting Diode)
  • an optical member used therefor.
  • Patent Literature 1 and Patent Literature 2 disclose LED lamps including LEDs that are a plurality of light emitting elements.
  • the LED lamp disclosed in Patent Document 1 includes a plurality of LEDs, a support on which the LED is mounted at a tip portion, a base for supporting the support, and a reflector that reflects light emitted from the LED. ing.
  • the LED lamp disclosed in Patent Document 2 includes a plurality of LEDs, a prism portion in which the LED is disposed at a tip portion, an exterior portion that supports the prism portion, a reflective surface that reflects light emitted from the LED, A cover is provided that covers the rectangular column part in a spaced manner.
  • a structure is adopted in which light is emitted from the central portion of the LED lamp by disposing the LED at a position shifted in the optical axis direction of the LED lamp from the reflection surface.
  • the light guide is provided on the end surface on the other end side, and has a substantially conical shape with a diameter substantially the same as the center of the shaft portion and reduced in diameter toward the one end side. It has a 1st curved surface provided so that a recessed part and the end surface and side surface of the other end side may become substantially continuous.
  • the light source guide disclosed in Patent Document 4 has a light guide part, a refracting part, and a top part, and a fine structure is formed in the light guiding part and the refracting part, and light from the light emitting diode unit is guided to the light guide part. And it is the structure radiate
  • the light emitting device disclosed in Patent Document 5 includes a semiconductor laser diode that emits laser light, and a light emitting body that is provided apart from the semiconductor laser diode and absorbs the laser light and emits visible light.
  • the body has an optical path for allowing laser light to enter the center of the light emitter.
  • the light-emitting diode illuminating device disclosed in Patent Document 6 guides light from a surface-emitting first light source emitted from a light-emitting diode to a spherical phosphor by a light guide means such as an optical fiber, and the light-emitting diode emits light.
  • a structure is adopted in which a point light source is formed by light from a second light source that is excited by light and generates light having a long wavelength.
  • the amount of light in the upper oblique direction of the expanded diameter portion is smaller than that in the upper and side directions, and uniform light may be emitted in all directions. could not.
  • the light source guide disclosed in Patent Document 4 has a structure that emits light in the lateral or upward oblique direction from the light guide and emits light in the upward direction from the top, and therefore also emits uniform light in all directions. I could't.
  • the phosphor or the light emitter generates heat by the incidence of light from the semiconductor laser diode or the light emitting diode.
  • both the phosphor and the light emitter are in contact with the light guide or the light guide means and float in the air, and are separated from the heat radiating part such as a heat sink.
  • the illumination light becomes unstable due to a temperature rise due to continuous use (light emission) of the lighting device (light bulb) (lightness (brightness) decreases). Or the chromaticity may change).
  • This invention is made
  • the place made into the objective is a simple structure, is equipped with the outstanding heat dissipation, and is excellent in light distribution, and the said lighting fixture. It is to provide an optical member to be used.
  • a substrate at least one semiconductor light emitting device fixed on the substrate, and one end disposed on a light emitting surface side of the semiconductor light emitting device.
  • a light guide portion having translucency to guide and emit the light of the semiconductor light emitting device incident from the one end to the other end, and disposed so as to surround the periphery of the other end of the light guide portion,
  • a lighting apparatus comprising: a light distribution unit that diffuses light emitted from the light guide unit and emits the light in all directions; and a covering that covers the semiconductor light emitting device, the light guide unit, and the light distribution unit in a spaced manner. It is.
  • the light emitted from the substrate is diffused from the light distribution part and emitted in all directions through the light guide part and the light distribution part. Can do.
  • the semiconductor light emitting device is fixed on the substrate, not on the central portion of the light distribution portion, which is a position where light is emitted in all directions, wiring can be easily formed on the substrate, and the cost of the lighting fixture can be reduced. Reduction can be achieved.
  • the semiconductor light emitting device is fixed on the substrate, heat generated from the semiconductor light emitting device can be radiated well through the substrate.
  • a second aspect of the present invention is that, in the first aspect described above, the light distribution section is connected to the other end of the light guide section.
  • a third aspect of the present invention is that, in the first aspect or the second aspect described above, the light distribution section is made of a resin containing a light diffusing element. With such a structure of the light distribution part, light can be diffused satisfactorily from the light distribution part in all directions.
  • a fourth aspect of the present invention is that, in the first aspect or the second aspect described above, the light distribution section has a two-layer structure including an inner layer and an outer layer having a refractive index larger than that of the inner layer.
  • the light distribution part when the light incident on the light distribution part is radiated to the outside, it can be diffused while being refracted well.
  • the central part of the light distribution part by making the central part of the light distribution part a fluid layer having higher thermal conductivity than air, the heat dissipation of the light distribution part can be improved.
  • helium can be suitably used as the fluid layer having high thermal conductivity.
  • a fifth aspect of the present invention is that, in the fourth aspect described above, the inner layer of the light distribution section is an air layer. With such a structure of the light distribution unit, the cost of the light distribution unit can be reduced.
  • a sixth aspect of the present invention is that, in the above-described fourth aspect or fifth aspect, the surface of the other end of the light guide is subjected to a rough surface treatment or a coating treatment.
  • the light extraction efficiency in the light guide unit can be improved.
  • light can be diffused on the surface of the other end of the light guide unit, and unevenness is less likely to occur on the irradiation surface of the light emitted from the light distribution unit.
  • a seventh aspect of the present invention is that in any one of the first to sixth aspects described above, the surface of the light distribution section is subjected to a rough surface treatment or a coating treatment. With such a configuration of the light distribution unit, the light emitted from the light distribution unit is diffused well, and unevenness is less likely to occur on the light irradiation surface. Moreover, the light extraction efficiency in the light distribution section is also improved.
  • the light guide portion extends so that the light distribution portion is located at a central portion of the inner region of the covering body. Is. By extending the light guide portion in this way, light can be emitted from all directions in the luminaire, and a luminaire having excellent optical characteristics can be provided.
  • the shape of the said light distribution part is a spherical form in any one of the 1st thru
  • a tenth aspect of the present invention is that, in any one of the first to ninth aspects described above, the light guide section and the light distribution section are integrally formed by two-color molding. As a result, a process for accurately positioning and fixing the light guide unit and the light distribution unit becomes unnecessary, and the light guide unit and the light distribution unit can be formed easily and at low cost.
  • An eleventh aspect of the present invention is that in any one of the first to tenth aspects described above, a heat sink is disposed on the surface of the substrate opposite to the fixed surface of the semiconductor light emitting device. . Thereby, the heat generated from the semiconductor light emitting device can be radiated better.
  • the light emitted from the semiconductor light emitting device is emitted in all directions via the light guide unit and the light distribution unit.
  • the light to be used is the same chromaticity.
  • emitted from a semiconductor light-emitting device can be used as the light radiate
  • a thirteenth aspect of the present invention is that in any one of the first to twelfth aspects described above, the light emitted from the semiconductor light emitting device is white light.
  • the illuminating device which concerns on this aspect can be used as a general halogen light bulb which radiates
  • a plurality of the semiconductor light emitting devices are fixed to the substrate, and at least one set selected from the plurality of semiconductor light emitting devices is It emits light of different color temperatures.
  • the color temperature of the synthesized light emitted from the lighting fixture can be changed as appropriate, and optimal light can be provided according to the demand of the user of the lighting fixture. For example, the behavior of the lighting fixture can be approximated to that of a general halogen bulb.
  • a fifteenth aspect of the present invention is an optical member attached to a semiconductor light emitting device, wherein one end is disposed on the light emitting surface side of the semiconductor light emitting device, and the light of the semiconductor light emitting device incident from the one end is connected to the other end.
  • a light guide part having translucency to guide and radiate the light, and to surround the other end of the light guide part, diffusing light emitted from the light guide part in all directions
  • an optical member having a light distribution part that radiates to the light source.
  • the light emitted from the substrate is diffused from the light distribution part and emitted in all directions through the light guide part and the light distribution part. Can do.
  • the semiconductor light emitting device is fixed on the substrate, not on the central portion of the light distribution portion, which is a position where light is emitted in all directions, wiring can be easily formed on the substrate, and the cost of the lighting fixture can be reduced. Reduction can be achieved.
  • the semiconductor light emitting device is fixed on the substrate, heat generated from the semiconductor light emitting device can be radiated well through the substrate.
  • a sixteenth aspect of the present invention is that, in the fifteenth aspect described above, the light distribution section is connected to the other end of the light guide section.
  • a seventeenth aspect of the present invention is that, in the fifteenth aspect or the sixteenth aspect described above, the light distribution section is made of a resin containing a light diffusing element. With such a structure of the light distribution part, light can be diffused satisfactorily from the light distribution part in all directions.
  • An eighteenth aspect of the present invention is that, in the fifteenth aspect described above, the surface of the other end of the light guide is subjected to a rough surface treatment or a coating treatment. With such a configuration of the light guide unit, the light extraction efficiency in the light guide unit can be improved. Further, light can be diffused on the surface of the other end of the light guide unit, and unevenness is less likely to occur on the irradiation surface of the light emitted from the light distribution unit.
  • a nineteenth aspect of the present invention is that in any one of the fifteenth to eighteenth aspects described above, the surface of the light distribution section is subjected to a rough surface treatment or a coating treatment. With such a configuration of the light distribution unit, the light emitted from the light distribution unit is diffused well, and unevenness is less likely to occur on the light irradiation surface. Moreover, the light extraction efficiency in the light distribution section is also improved.
  • the present invention may include the following aspects.
  • the lighting fixture characterized by including.
  • the lighting fixture characterized by including.
  • the semiconductor light emitting device may be configured to emit light that has been wavelength-converted by the wavelength conversion member.
  • the wavelength-converted light emitted from the semiconductor light emitting device is guided to the light distribution unit by the light guide unit, diffused by the light distribution unit, and radiated in all directions.
  • the illumination light includes white light.
  • the semiconductor light emitting device may be configured to emit diffused light (surface emitting light).
  • the present invention it is possible to provide a lighting apparatus having a simple configuration, excellent heat dissipation, and wide light distribution, and an optical member used in the lighting apparatus. According to the present invention, it is possible to provide a lighting fixture having a function similar to a general light bulb using a semiconductor light emitting device.
  • FIG. 4 is a cross-sectional view of the light emitting module taken along line IV-IV in FIG. 3. It is a principal part enlarged view of sectional drawing shown by FIG. It is a perspective view of the optical member which comprises the lighting fixture which concerns on an Example. It is a top view of the optical member which comprises the lighting fixture which concerns on an Example. It is sectional drawing of the optical member along line VIII-VIII of FIG.
  • FIG. 12 is a time chart showing an example of an operating state of each transistor and a current value of a driving current of each LED in the circuit configuration of FIG. 11. 12 is a time chart showing an example of an operating state of each transistor and a current value of a driving current of each LED in the circuit configuration of FIG. 11. 10 is a perspective view of an optical member according to Modification 2. FIG. 10 is a top view of an optical member according to Modification 2. FIG. FIG.
  • FIG. 16 is a cross-sectional view of the optical member taken along line XVI-XVI in FIG. 15. It is a schematic diagram which shows the modification of a light guide part. It is a schematic diagram which shows the modification of a light guide part. It is a schematic diagram which shows the modification of a light guide part. It is a schematic diagram which shows the modification of a light guide part. It is a schematic diagram which shows the modification of a light guide part.
  • FIG. 1 is a partially cutaway front view showing the whole lighting apparatus according to the present embodiment in a partially longitudinal section.
  • FIG. 2 is a perspective view of a light emitting module constituting the lighting fixture according to the present embodiment.
  • FIG. 3 is a top view of the light emitting module constituting the lighting fixture according to the present embodiment.
  • 4 is a cross-sectional view of the light emitting module taken along line IV-IV in FIG. 3, and
  • FIG. 5 is an enlarged view of a main part of the cross-sectional view shown in FIG.
  • FIG. 6 is a perspective view of an optical member constituting the lighting fixture according to the present embodiment
  • FIG. 7 is a top view of the optical member constituting the lighting fixture according to the present embodiment
  • FIG. 8 is a line VIII in FIG. It is sectional drawing of the optical member in alignment with -VIII.
  • the luminaire 1 includes a housing 2, a light source unit 3 provided in the housing 2, a light source cover 4 that functions as a cover that separates and covers the light source unit 3, and the interior of the housing 2.
  • the heat sink 5 is provided on the opposite side of the light source 3 and the base 6 is disposed on the opposite side of the light source 3.
  • electric power supplied from the outside is supplied to the light source unit 3 via the base unit 6, and light emitted by driving the light source unit 3 passes through the light source cover 4. Is emitted to the outside. That is, the lighting fixture 1 according to the present embodiment has the same outer shape as a general light bulb.
  • the housing 2 of the luminaire 1 is formed in a substantially truncated cone shape, and a cavity 2a for incorporating various components is formed therein. Further, an opening 2b for fitting the heat sink 5 is formed at one end of the housing 2, and the heat sink 5 is disposed from the opening 2b toward the inside of the housing 2 (that is, the cavity 2a). Yes. Furthermore, the housing 2 is made of a metal material having excellent heat dissipation properties such as aluminum in order to efficiently dissipate heat generated with light emission from the light source unit 3 to the outside.
  • the light source cover 4 is formed using a material having translucency, for example, a material such as glass, polycarbonate resin, or acrylic resin, in order to radiate light emitted from the light source unit 3 to the outside.
  • the light source cover 4 has a substantially spherical shape, and a cavity 4a for accommodating the light source unit 3 is formed in the inside thereof.
  • the distance (that is, radius) from the cover surface to the center of the cavity 4a is about 30 mm.
  • the shape, dimension, etc. of the light source cover 4 can be changed according to the environment where the lighting fixture 1 is used, the application, and the like.
  • the shape of the light source cover 4 may be hemispherical.
  • the light source unit 3 is disposed on the side of the housing 2 where the opening 2b is formed. That is, the light source unit 3 is disposed so as to be located above the opening 2 b of the housing 2.
  • the light source unit 3 includes a light emitting module 11 that is a semiconductor light emitting device, a fixed substrate 12 that supports the light emitting module 11, an optical member 13 that emits light emitted from the light emitting module 11 in a desired direction, and an optical member 13.
  • the fixing member 14 for fixing the to the fixed substrate 12 and the housing 2 is provided.
  • emitted from the light emitting module 11 is diffused by the optical member 13, and is radiated
  • the substantially unchanged chromaticity is not limited to the fact that the light emitted from the light emitting module 11 and the light emitted from the optical member 13 and the lighting fixture 1 are completely the same chromaticity, This means that it includes a change (a slight change in chromaticity and wavelength) that is not noticed by the user who visually recognizes the light of the lighting fixture 1.
  • the light emitting module 11 used for the lighting fixture 1 includes a module main body 11a and a wavelength conversion member 11b stored in the module main body 11a.
  • the module main body 11a is provided to protect the wavelength conversion member 11b from an impact applied from the outside.
  • the material of the module main body 11a is a material such as a relatively hard metal (for example, iron, aluminum, copper, ceramic). Is used.
  • the module main body 11a is provided with a screw hole 16 for screwing a screw 15 used for fixing the light emitting module 11, and the module main body 11a is fixed to the fixed substrate 12 and the heat sink 5 via the screw 15. Will be.
  • the module main body 11a is provided with a circular opening for emitting light, and for example, light that has been whitened inside can be taken out from the opening.
  • a glass plate or the like may be installed in the opening, and a phosphor may be applied to the inside of the module on the glass surface, and light may be extracted by whitening at this portion.
  • the said opening is not restricted to circular, Polygons, such as a rectangle, or other shapes may be sufficient. That is, the shape of the opening can be appropriately changed according to the required shape of the light emitting surface of the light emitting module 11.
  • the module main body 11 a has a rectangular outer shape and functions as a wiring board, and is located on the chip mounting surface 21 a of the flat plate portion 21, and the outer shape is cylindrical. And a side wall portion 22.
  • twelve LED chips 23 as semiconductor light emitting elements are regularly arranged on the chip mounting surface 21 a of the flat plate portion 21 and inside the side wall portion 22. Yes. Specifically, four LED chips 23 are arranged at equal intervals in the central portion of the flat plate portion 21, and eight LED chips 23 are arranged so as to surround four sides of the four LED chips 23.
  • Each of the four LED chips 23 arranged in the central portion is arranged at a position separated by an equal distance from the center of the flat plate portion 21, and similarly, eight LED chips arranged so as to surround the four sides.
  • Each of 23 is arrange
  • a wiring pattern for supplying power to each of these LED chips 23 is formed on the flat plate portion 21.
  • the LED chip 23 is an LED chip that emits blue light having a peak wavelength of 450 nm.
  • an LED chip for example, there is a GaN-based LED chip in which an InGaN semiconductor is used for a light emitting layer.
  • the type and emission wavelength characteristics of the LED chip 23 are not limited thereto, and various semiconductor light emitting elements such as LED chips can be used without departing from the gist of the present invention.
  • the peak wavelength of light emitted from the LED chip 23 is preferably in the wavelength range of 360 nm to 480 nm, and more preferably in the wavelength range of 440 nm to 470 nm.
  • the material of the module main body 11a is not limited to the above-described material, and is selected from, for example, a resin, glass epoxy, a composite resin containing a filler in the resin, and the like as a material having excellent electrical insulation. Materials may be used. Alternatively, in order to improve the light reflectivity on the chip mounting surface 21a of the flat plate portion 21 and improve the light emission efficiency of the wavelength conversion member 11b, silicone containing white pigment such as alumina powder, silica powder, magnesium oxide, titanium oxide or the like is used. It is preferable to use a resin.
  • the module body 11a may be made of a metal such as aluminum, an interlayer insulating film such as a resin is formed on the metal such as aluminum, and the wiring pattern of the flat plate portion 21 is formed. It may be electrically insulated from the metal body.
  • a p-electrode 26 and an n-electrode 27 are provided on the surface of the LED chip 23 facing the flat plate portion 21 side.
  • the p electrode 26 is bonded to the wiring pattern 28 formed on the chip mounting surface 21a of the flat plate portion 21, and the n electrode 27 is bonded to the wiring pattern 29 also formed on the chip mounting surface 21a.
  • the p electrode 26 and the n electrode 27 are connected to the wiring pattern 28 and the wiring pattern 29 through a metal bump (not shown) or by soldering.
  • Other LED chips 23 (not shown) have the same p electrodes 26 and n electrodes 27 as the wiring patterns 28 and 29 formed on the chip mounting surface 21a of the flat plate portion 21 corresponding to the respective LED chips 23. Are joined together.
  • the method of mounting the LED chip 23 on the flat plate portion 21 is not limited to this, and an appropriate method can be selected according to the type and structure of the LED chip 23.
  • two electrodes of each LED chip 23 may be connected to a corresponding wiring pattern by wire bonding, or one electrode may be connected as described above. While joining to a corresponding wiring pattern, you may make it connect the other electrode to a corresponding wiring pattern by wire bonding.
  • a wavelength conversion member 11 b that converts the wavelength of the blue light emitted from the LED chip 23 is provided in the inner region surrounded by the side wall portion 22.
  • the blue light emitted from the LED chip 23 and the light emitted by wavelength conversion of the blue light by the wavelength conversion member 11b are combined, and the combined light is combined with the module main body.
  • the light is emitted from the opening 11a.
  • the wavelength conversion member 11b can be configured such that a glass plate or the like is installed in the opening of the module storage case and applied to the inside of the module on the glass surface, and whitening is performed at this portion to extract light. .
  • the wavelength conversion member 11b absorbs at least a part of the blue light incident from the LED chip 23 and emits emission light having a wavelength different from that of the blue light, and the fluorescent light. It is comprised from the base material 25 which hold
  • the emission peak wavelength of a specific yellow phosphor is usually 530 nm or more, preferably 540 nm or more, more preferably 550 nm or more, and usually 620 nm or less, preferably 600 nm or less, more preferably 580 nm or less. Is preferred.
  • Y 3 Al 5 O 12 Ce [YAG phosphor], (Y, Gd) 3 Al 5 O 12 : Ce, (Sr, Ca, Ba, Mg) 2 SiO 4 : Eu, (Ca, Sr) Si 2 N 2 O 2 : Eu, ⁇ -sialon, La 3 Si 6 N 11 : Ce (however, a part thereof may be substituted with Ca or O) is preferable.
  • the base material 25 a material having translucency such as resin or glass can be used.
  • resin is used.
  • the wavelength conversion member 11b is formed by kneading the phosphor 24 into a base material 25 that is a resin.
  • Specific resins include polycarbonate resin, polyester resin (for example, polyethylene terephthalate resin, polybutylene terephthalate resin), acrylic resin (for example, polymethyl methacrylate resin), polyurethane resin, epoxy resin, and silicone resin. It is preferable to use it.
  • the resin preferably does not absorb light emitted from the LED chip (for example, ultraviolet light, near ultraviolet light, or blue light) or visible light emitted from the wavelength conversion member. Furthermore, it is preferable to have sufficient transparency and durability against blue light emitted from the LED chip 23.
  • These resins may be used alone or in combination of two or more. Moreover, the copolymer of these resin may be sufficient and it may use it, laminating
  • polycarbonate resin is most preferably used because it is excellent in transparency, heat resistance, mechanical properties, and flame retardancy.
  • the light emitted from the light emitting module 11 is not limited to white light, and may emit colored light such as blue light, red light, and yellow light.
  • the fixed substrate 12 is disposed on the surface of the housing 2 where the opening 2b is formed.
  • the fixed substrate 12 has a disk shape and is fixed to the housing 2 by a bonding member such as an adhesive or a screw.
  • the light emitting module 11 is fixed (mounted) on the first surface 12a
  • the heat sink 5 is fixed (mounted) on the second surface 12b located on the opposite side of the first surface 12a.
  • the fixed substrate 12 is formed with screw holes so as to penetrate the fixed substrate 12 in the thickness direction, and the light emitting module 11 is fixed to the fixed substrate 12 by screwing screws 15 into the screw holes. ing.
  • a resistor, a capacitor, and the like are mounted on the first surface 12 a of the fixed substrate 12, and a circuit pattern for controlling the driving of the light emitting module 11 is formed. Yes.
  • the material of the fixed substrate 12 can be an alumina-based ceramic having excellent electrical insulation and good heat dissipation.
  • the fixed substrate 12 may be made of a material selected from a resin, glass epoxy, a composite resin containing a filler in the resin, or other general substrate materials, as in the module body 11a described above. Good.
  • the optical member 13 constituting the light source unit 3 includes a light guide unit 31 disposed so as to cover the light emitting surface of the light emitting module 11, and the light guide unit 31.
  • the light distribution section 32 is fixed (connected) to the end portion of the light guide section 31 so as to surround the periphery of the end section. That is, the optical member 13 guides the light emitted from the light emitting module 11 from one end of the light guide unit 31 toward the other end, and all the light emitted from the light guide unit 31 through the light distribution unit 32. Radiates almost evenly in the direction.
  • the light guide unit 31 and the light distribution unit 32 are fixed by an adhesive from resin or the like.
  • the omnidirectional means that the light distribution angle is not limited to 360 °, but substantially means the omnidirectional (wider light distribution angle). That is, the omnidirectional in the present invention means that the light distribution angle is usually 180 ° or more, preferably 240 ° or more, more preferably 300 ° or more.
  • the light guide unit 31 is made of a transparent material having translucency such as glass, polycarbonate, or resin (for example, poly (methyl methacrylate) (PMMA)). Further, as can be seen from FIGS. 1, 6 and 8, the shape of the light guide 31 is substantially a truncated cone. More specifically, as shown in FIG. 8, a concave portion 31b is formed on the first surface 31a side on which the light emitting module 11 is disposed, and the second surface located on the opposite side to the first surface 31a.
  • the surface 31c is generally flat, and the side surface 31d is inclined so that the diameter of the light guide portion 31 decreases from the first surface 31a side to the second surface 31c side. In the present embodiment, the diameter of the light guide 31 on the first surface 31a side is about 16 mm, and the diameter on the second surface 31c side is about 12 mm.
  • the light guide unit 31 preferably covers the entire light emitting module 11.
  • the diameter on the surface 31 a side of the light emitting module 11 is appropriately changed according to the dimensions of the light emitting module 11.
  • the shape of the light guide unit 31 is not limited to a truncated cone, and may be another three-dimensional shape such as a cylinder or a prism.
  • the light guide 31 extends from the light emitting module 11 toward the center of the cavity 4a in order to arrange the light distribution unit 32 in the center of the cavity 4a, which is the inner region of the light source cover 4.
  • the height of the light guide portion 31 is about 20 mm.
  • the second surface 31c of the light guide unit 31 is subjected to a rough surface treatment to form minute irregularities.
  • the reason why the second surface 31c is a rough surface is to improve the light extraction efficiency and diffuse the light on the second surface 31c.
  • the side surface 31d of the light guide 31 functions so as to reflect the light incident from the first surface 31a and not leak from the side 31d of the light guide 31.
  • the height of the light guide portion 31 is increased, there is a case where light cannot be favorably reflected on the side surface 31d, and light may leak from the side surface 31d.
  • the height of the light guide unit 31 is such that light incident from the first surface 31a leaks while the light distribution unit 32 is disposed at the center of the cavity 4a, which is the inner region of the light source cover 4. There is no need to adjust within the range. That is, the height of the light guide unit 31 is appropriately adjusted according to the dimensions of the lighting fixture 1, the light source cover 4, and the light distribution unit 32.
  • the light distribution part 32 is made of a transparent material having translucency such as glass or resin (for example, polycarbonate, poly (methyl methacrylate): PMMA), like the light guide part 31. .
  • the light distribution part 32 may be comprised from the transparent material same as the light guide part 31, and may be comprised from a different transparent material.
  • the light distribution portion 32 has a substantially spherical shape, and a substantially spherical cavity 32 a is formed inside the light distribution portion 32.
  • the light distribution unit 32 has a two-layer structure including an outer layer made of the transparent material and an inner layer located inside the outer layer (that is, an air layer in the cavity 32a).
  • the transparent material has a higher refractive index than air.
  • glass is a material that can easily form a sphere.
  • the light distribution unit 32 when the light incident on the light distribution unit 32 is radiated to the outside, it can be diffused while being refracted well. Moreover, the cost of the light distribution part 32 can be reduced by making the center part of the light distribution part 32 into a cavity (that is, an air layer).
  • the cavity 32a of the light distribution part 32 may be filled with the other member whose refractive index is smaller than a transparent material.
  • the cavity 32a can be filled with helium, and the central portion of the light distribution part can be a fluid layer having higher thermal conductivity than air.
  • the heat dissipation of the light distribution part 32 can be improved.
  • the shape of the light distribution part 32 is not limited to a substantially spherical shape, and may be another three-dimensional shape such as a polygonal body.
  • the distance (namely, radius) from the outer surface 32b of the light distribution part 32 to the center of the cavity 32a is about 7.5 mm.
  • the said dimension is suitably changed according to the dimension of the lighting fixture 1, the light source cover 4, the light emitting module 11, etc., and the light radiate
  • the outer surface 32b of the light distribution part 32 is roughened, and minute irregularities are formed.
  • the reason why the outer surface 32b is rough is to improve the light extraction efficiency and not to cause unevenness on the irradiation surface irradiated with the light emitted from the light distribution section 32.
  • the rough surface treatment and the coating treatment are not limited to being performed only on the outer surface 32b, but are performed only on the inner surface of the light distribution unit 32, or the outer surface 32b and the inner surface of the light distribution unit 32 (that is, the distribution surface). You may implement on the whole surface of the optical part 32).
  • the light guide unit 31 bites into the cavity 32a of the light distribution unit 32 as shallowly as possible. That is, it is preferable that the second surface 31 c of the light guide unit 31 is arranged as far as possible from the center of the cavity 32 a of the light distribution unit 32. Therefore, it is preferable that the light distribution unit 32 is fixed to a predetermined position of the side surface 31d closer to the second surface 31c of the light guide unit 31 or the second surface 31c. Thereby, the light distribution of the light radiated from the light guide unit 31 to the light distribution unit 32 can be further expanded.
  • the light guided from the light guide section 31 into the cavity 32a of the light distribution section 32 is radiated well in all directions of the light distribution section 32. . That is, the light distribution part 32 can be visually recognized as a light source, and can be visually recognized as light is emitted from the center of the cavity 4a of the light source cover 4 to the outside like a general halogen light bulb.
  • the light guide unit 31 and the light distribution unit 32 are separately formed and the optical member 13 is formed by fixing the two members with an adhesive.
  • the light part 32 may be integrally formed by two-color molding. Thereby, a process for accurately positioning and fixing the light guide unit 31 and the light distribution unit 32 becomes unnecessary, and the light guide unit 31 and the light distribution unit 32 can be formed easily and at low cost.
  • the optical member 13 is fixed to the housing 2 and the fixed substrate 12 by the fixing member 14, but an adhesive is further applied to the first surface 31 a side of the light guide unit 31 to fix the optical member 13.
  • the substrate 12 may be firmly fixed.
  • the fixing member 14 is provided to fix the optical member 13 to the fixed substrate 12 and the housing 2.
  • the fixing member 14 covers the fixed substrate 12, the first surface 31 a side of the light guide unit 31, and the light emitting surface side of the light emitting module, and supports the side surface 31 d of the light guide unit 31.
  • the fixing member 14 has an opening for fitting a disk-shaped fixing substrate 12 on one end side, and has a through-hole for penetrating the optical member 13 on the other end side. ing. Further, the portion of the fixing member 14 that comes into contact with the fixed substrate 12 and the housing 2 is joined to the fixed substrate 12 and the housing 2 via a joining member such as an adhesive or a screw.
  • a flange made of a material such as plastic, resin, or metal may be used as the fixing member 14.
  • the light guide part 31 and the light distribution part 32 can be fixed firmly, and the lighting fixture 1 provided with the outstanding reliability can be provided.
  • the surface 14a of the fixing member 14 is roughened. Thereby, circuit components such as resistors and capacitors mounted on the first surface 12a of the fixed substrate 12 cannot be visually recognized from the outside, and the aesthetic appearance of the lighting fixture 1 is not impaired.
  • the heat sink 5 is disposed in the cavity 2 a of the housing 2 and is in contact with the light source unit 3. Specifically, the heat sink 5 is disposed on the opposite side of the fixed surface (mounting surface) of the light emitting module 11 of the fixed substrate 12 constituting the light source unit 3. The heat sink 5 is fixed to the fixed substrate 12 with screws 15 and further fixed to the opening 2b of the housing 2 with an adhesive or the like.
  • a fan may be provided in place of the heat sink 5.
  • the air discharge port may be provided on the side surface of the housing 2 or the like so that warm air in the cavity 2a of the housing 2 can be exhausted and air having a relatively low temperature can be sucked.
  • the base part 6 includes a base body 6 a that is a part that is attached to and detached from a power supply socket provided in a power supply source of the lighting fixture 1, and a connection part 6 b that connects the base body 6 a and the housing 2. .
  • the surface of the base body 6a is threaded and can be attached and detached by screwing the base body 6a into the power supply socket.
  • the connecting portion 6b is made of an insulating material in order to electrically insulate the base body 6a and the housing 2 from each other.
  • the base part 6 is screwed into a power supply socket (not shown) of an illumination system provided indoors or outdoors, and the luminaire 1 is attached to the illumination system.
  • the power supply switch of the lighting system is shifted to the on state, and power is supplied to the lighting fixture 1.
  • the electric power is supplied to the light emitting module 11 via the base 6 and a driving circuit formed on the fixed substrate 12, and the LED chip 23 of the light emitting module 11 emits light, and desired light is emitted from the light emitting module 11. Is done.
  • the light emitted from the light emitting module 11 enters the light guide 31 from the first surface 31 a of the light guide 31. At this time, since the light guide unit 31 is disposed so as to surround the light emitting surface of the light emitting module 11, all the light emitted from the light emitting module 11 enters the light guide unit 31.
  • the light incident on the light guide 31 is reflected directly or on the side surface 31d of the light guide 31 and reaches the second surface 31c of the light guide 31.
  • the height of the light guide unit 31 is such that the light distribution unit 32 is disposed at the center of the cavity 4a, which is the inner region of the light source cover 4, and light incident from the first surface 31a leaks out. Since the adjustment is made within a range that does not occur, most of the light entering the light guide portion 31 reaches the second surface 31 c of the light guide portion 31.
  • the light that has reached the second surface 31 c of the light guide part 31 is emitted toward the cavity 32 a of the light distribution part 32.
  • the rough surface treatment is performed on the second surface 31 c of the light guide unit 31
  • light is diffused on the second surface 31 c of the light guide unit 31, and the second surface 31 c of the light guide unit 31 is processed.
  • the light reaching the second surface 31c is emitted in a wide range.
  • the light guided into the cavity 32 a of the light distribution unit 32 is emitted from the outer surface 32 b of the light distribution unit 32 toward the light source cover 4, and is further transmitted through the light source cover 4 and emitted to the outside.
  • the outer surface 32b is roughened, light is diffused on the outer surface 32b, and the light reaching the outer surface 32b is emitted in a wide range.
  • the shape of the light distribution part 32 is substantially spherical, light is radiated substantially uniformly from the center of the light distribution part 32 in all directions, thereby realizing a wide light distribution of the lighting fixture 1.
  • Evenness is hardly formed on the irradiation surface of the lighting fixture 1.
  • the light emitting module 11 is not disposed in the center in the cavity 4a of the light source cover 4, but is fixed to the fixed substrate 12 and close to the heat sink 5, and thus the light emitting module 11
  • the heat generated during the light emission of 11 is radiated well through the fixed substrate 12 and the heat sink. Thereby, it becomes difficult to produce the problem by the heat_generation
  • the light emitted from the light emitting module 11 on the fixed substrate 12 is caused to pass through the light guide unit 31 and the light distribution unit 32, thereby distributing the light distribution unit 32. Can diffuse and radiate in all directions.
  • the light emitting module 11 is fixed on the fixed substrate 12 instead of the central portion of the light distribution unit 32 that is a position for emitting light in all directions, wiring can be easily formed on the fixed substrate 12. Cost reduction of the lighting fixture 1 can be aimed at.
  • the light emitting module 11 is fixed on the fixed substrate 12, heat generated from the light emitting module 11 can be radiated well through the fixed substrate 12.
  • the lighting fixture 1 according to the present embodiment has a simple configuration and has excellent heat dissipation and light distribution.
  • the optical member 13 according to the present embodiment is used for the lighting fixture 1 and is an important member for realizing a simple configuration and excellent heat dissipation of the lighting fixture 1.
  • the light guide part 31 which concerns on a present Example is extended so that the light distribution part 32 may be located in the center part of the cavity 4a of the light source cover 4, light is omnidirectional from the center of the lighting fixture 1
  • the luminaire 1 that can be radiated and has excellent optical characteristics can be provided.
  • the shape of the light distribution unit 32 according to the present embodiment is a sphere, light incident from the light guide unit 31 is radiated in all directions from the center of the lighting device 1. It can look like a typical halogen bulb.
  • the chip-on-board (COB) type light emitting module 11 including the plurality of LED chips 23 is fixed to the fixed substrate 12 as a semiconductor light emitting device. It is not limited to COB as described above.
  • a package type LED package device in which an LED chip is embedded in a wavelength conversion member may be used as the semiconductor light emitting device.
  • FIGS. 9 and 10 a lighting apparatus 1 ′ including the light source unit 3 ′ using such an LED package device will be described as a first modification.
  • FIG. 9 is a partially cutaway front view showing the entire lighting fixture 1 ′ according to the modified example 1 in a partly longitudinal section.
  • FIG. 10 is a cross-sectional view of the LED package device constituting the lighting fixture according to the first modification.
  • symbol is attached
  • the difference between the configuration of the lighting fixture 1 ′ according to this modification and the configuration of the lighting fixture 1 according to the above-described embodiment is that the first LED package device 41 (hereinafter also referred to as the first LED 41) instead of the light emitting module 11.
  • the second LED package device 42 (hereinafter also referred to as a second LED 42) is fixed to the fixed substrate 12 only. Therefore, in the lighting fixture 1 ′ according to the present modification, the light emitted from the first LED 41 and the second LED 42 is guided to the light distribution unit 32 through the light guide unit 31, and all of the light distribution unit 32 diffuses the light. It will radiate substantially uniformly toward the direction.
  • the first LED 41 is a light source that emits white light.
  • the first LED 41 according to this modification includes a package 43, an LED chip 44 that is a semiconductor light emitting element mounted in the package 43, and at least a part of light emitted from the LED chip 44. It is comprised from the wavelength conversion member 45 which has the function to convert.
  • white light that is a combined light of light emitted from the LED chip 44 and light having different wavelengths that have been wavelength-converted by the function of the wavelength conversion member 45, or wavelength conversion.
  • the white light which is the combined light of only the light having different wavelengths that has been wavelength-converted by the function of the member 45, is emitted from the wavelength conversion member 45 to the outside.
  • the package 43 is made of an alumina-based ceramic having excellent electrical insulation, good heat dissipation, and high reflectivity (preferably a reflectivity of 80% or more).
  • the package 43 has an opening 43a for accommodating the LED chip 44, and the LED chip 44 is mounted on the bottom surface of the opening 43a. Furthermore, a wiring pattern (not shown) for mounting the LED chip 44 and supplying current to the LED chip 44 is formed on the mounting surface of the package 43 (that is, on the bottom surface of the opening 43a).
  • the material of the package 43 is not limited to alumina-based ceramics.
  • a material selected from resin, glass epoxy resin, composite resin containing a filler in the resin, etc. as a material having excellent electrical insulation.
  • the body of the package 43 may be formed using Alternatively, in order to improve the light emission efficiency of the first LED 41 by improving the light reflectivity on the chip mounting surface of the package 43, a silicone resin containing a white pigment such as alumina powder, silica powder, magnesium oxide, or titanium oxide is used. Is preferred.
  • the package 43 may be made of a metal such as aluminum whose body is covered with an insulator. In such a case, it is necessary to electrically insulate the wiring pattern of the package 43 from the metal main body.
  • one LED chip 44 functions as a semiconductor light source that is a light source of the first LED 41.
  • the LED chip 44 has a blue light emitting diode that emits blue light having a peak wavelength in the range of 430 nm to 480 nm, or a purple that emits ultraviolet to purple light having a peak wavelength in the range of 360 nm to 430 nm.
  • Light emitting diodes can be used.
  • the peak wavelength is preferably in the wavelength range of 430 nm to 480 nm, and particularly preferably 450 nm.
  • the peak wavelength is preferably in the wavelength range of 360 nm to 430 nm, particularly preferably 400 to 415 nm.
  • the number of LED chips 44 is not limited to one, and a plurality of LED chips 44 that emit light having the same peak wavelength may be used as the semiconductor light emitting source. Further, the type and emission wavelength characteristics of the LED chip 44 are not limited thereto, and various semiconductor light emitting elements such as LED chips can be used without departing from the gist of the present invention.
  • the LED chip 44 has an electrode (not shown) on the surface side facing the bottom surface (that is, the chip mounting surface) of the opening 43a of the package 43.
  • the electrodes are electrically connected to the wiring pattern on the package 43 described above.
  • the electrical connection between the electrode and the wiring pattern is performed by soldering, for example, via a metal bump.
  • the method for mounting the LED chip 44 on the package 43 is not limited to this, and an appropriate method can be selected according to the type and structure of the LED chip 44. For example, after the LED chip 44 is bonded and fixed to a predetermined position of the package 43, the electrodes of the LED chip 44 may be connected to a corresponding wiring pattern by wire bonding.
  • the wavelength conversion member 45 absorbs at least a part of incident light incident from the LED chip 44 and emits emitted light having a wavelength different from the incident light, and a base material that holds the plurality of phosphors. It consists of and. That is, the wavelength conversion member 45 is a member containing a plurality of phosphors.
  • the first LED 41 of this modification when a blue light emitting diode that emits blue light is used as the LED chip 44, in order to obtain white light from the first LED 41, at least a part of the blue light is converted into green light and red light. It is necessary to synthesize white light by wavelength conversion and mixing blue light that has not been wavelength-converted by either the green light or red light (that is, transmitted through the wavelength conversion member 45) with the green light and red light. is there.
  • the phosphor in the present modification includes a green phosphor that can absorb and excite blue light and emit green light having a wavelength different from that of the blue light when returning to the ground state, and A red phosphor is used that is excited by absorbing blue light and can emit red light having a wavelength different from that of the blue light when returning to the ground state.
  • the LED chip 44 when a violet light emitting diode that emits ultraviolet to violet light is used as the LED chip 44, in order to obtain white light from the first LED 41, at least part of the ultraviolet to violet light is blue light, green light, and red light. It is necessary to synthesize the white light by mixing the blue light, the green light and the red light. In such a case, the phosphor in this modification is excited by absorbing ultraviolet to violet light, and can emit blue light having a wavelength different from that of ultraviolet to violet light when returning to the ground state.
  • Phosphor absorbs ultraviolet to violet light, excites and emits green light having a wavelength different from ultraviolet to violet light when returning to the ground state, and absorbs ultraviolet to violet light
  • a red phosphor that can emit red light having a wavelength different from ultraviolet to violet light when excited and returned to the ground state is used.
  • the green phosphor in the first LED 41 according to this modification has an emission peak wavelength of usually 510 nm or more, preferably 530 nm or more, more preferably 535 nm or more, usually less than 570 nm, preferably 550 nm or less, more preferably 545 nm or less. Those in the wavelength range are preferred.
  • green phosphors for example, (Y, Lu) 3 Al, Ga) 5 O 12 : Ce, CaSc 2 O 4 : Ce, Ca 3 (Sc, Mg) 2 Si 3 O 12 : Ce, (Sr , Ba) 2 SiO 4 : Eu (BSS), (Si, Al) 6 (O, N) 8 : Eu ( ⁇ -sialon), (Ba, Sr) 3 Si 6 O 12 N 2 : Eu (BSON), SrGa 2 S 4 : Eu, BaMgAl 10 O 17 : Eu, Mn, (Ba, Sr, Ca, Mg) Si 2 O 2 N 2 : Eu are preferably used.
  • BSS, ⁇ -sialon, BSON, SrGa 2 S 4 : Eu, BaMgAl 10 O 17 : Eu, Mn are more preferably used
  • BSS, ⁇ -sialon, and BSON are more preferably used
  • ⁇ - Sialon and BSON are particularly preferably used
  • ⁇ -sialon is most preferably used.
  • ⁇ -sialon is used as the green phosphor.
  • the red phosphor in the first LED 41 according to this modification has an emission peak wavelength of usually 570 nm or more, preferably 580 nm or more, more preferably 600 nm or more, further preferably 630 nm or more, particularly preferably 645 nm or more, and usually 780 nm.
  • those having a wavelength range of preferably 700 nm or less, more preferably 680 nm or less are suitable.
  • (Sr, Ca) AlSi (N, O) 3 : Eu and SrAlSi 4 N 7 : Eu are more preferable, and (Sr, Ca) AlSi (N, O) 3 : Eu is more preferable.
  • CaAlSi (N, O) 3 : Eu (hereinafter also referred to as CASN) is used as the red phosphor.
  • red phosphor for example, CaAlSi (N, O) 3 : Eu, (Ca, Sr, Ba) 2 Si 5 (N, O) 8 : Eu, (Ca, Sr, Ba) Si (N, O) 2 : Eu, (Ca, Sr, Ba) AlSi (N, O) 3 : Eu, (Sr, Ba) 3 SiO 5 : Eu, (Ca, Sr) S: Eu, SrAlSi 4 N 7 : Eu, Eu (di) ⁇ -diketone Eu complexes such as benzoylmethane) 3 ⁇ 1,10-phenanthroline complex and carboxylic acid Eu complexes are preferred, and (Ca, Sr, Ba) 2 Si 5 (N, O) 8 : Eu, (Sr, Ca) AlSi (N, O) 3 : Eu and SrAlSi 4 N 7 : Eu are preferably used.
  • the emission peak wavelength of the blue phosphor in the first LED 41 according to this modification is usually 420 nm or more, preferably 430 nm or more, more preferably 440 nm or more, usually less than 500 nm, preferably 490 nm or less, more preferably 480 nm or less, More preferred are those in the wavelength range of 470 nm or less, particularly preferably 460 nm or less.
  • (Ca, Sr, Ba) MgAl 10 O 17 : Eu, (Sr, Ca, Ba, Mg) 10 (PO 4 ) 6 (Cl, F) 2 : Eu, (Ba, Ca , Mg, Sr) 2 SiO 4 : Eu, (Ba, Ca, Sr) 3 MgSi 2 O 8 : Eu are preferred, and (Ba, Sr) MgAl 10 O 17 : Eu, (Ca, Sr, Ba) 10 (PO 4 ) 6 (Cl, F) 2 : Eu, Ba 3 MgSi 2 O 8 : Eu is more preferable, Sr 10 (PO 4 ) 6 C 12 : Eu, BaMgAl 10 O 17 : Eu is more preferable, and (Sr, Ba , Ca) 5 (PO 4 ) 3 Cl: Eu (more specifically, Sr 5 (PO 4 ) 3 Cl: Eu (hereinafter also referred to as SCA)) or (Sr 1-x Ba x )
  • the base material used for the wavelength conversion member 45 of the present modification can be the same material as the base material 25 of the wavelength conversion member 11b according to the above-described embodiment. Here, the description of the base material is omitted.
  • the color temperature of the emitted white light is adjusted to about 1900K by changing the mixing ratio of the phosphors described above.
  • the second LED 42 according to this modification has substantially the same structure as the first LED 41 described above, but a plurality of phosphors are mixed at a mixing ratio different from the mixing ratio of the phosphors in the first LED 41, and the color of the emitted white light The temperature is adjusted to about 2700K.
  • FIG. 11 is an electric circuit diagram showing an outline of an electric circuit configuration of the lighting fixture 1 ′ according to the present modification.
  • 12 and 13 are time charts showing an example of the operating state of each transistor and the current value of the drive current of each LED in the circuit configuration of FIG.
  • the light emitting module 11 of the luminaire 1 ′ includes one first LED 41, two second LEDs 42, a current limiting resistor R 1 and a resistor R 2, and a driving current for driving the LED.
  • Transistor Q1 and transistor Q2 are provided.
  • the resistor R1 is provided to adjust the current flowing through the corresponding first LED 41 to an appropriate magnitude
  • the resistor R2 is provided to adjust the current flowing through the corresponding two second LEDs 42 to an appropriate magnitude. It has been.
  • the first LED 41 is connected in series with the resistor R1, and the anode of the first LED 41 is connected to the positive electrode of the power source 51a via the resistor R1.
  • the cathode of the first LED 41 is connected to the collector of the transistor Q1, and the emitter of the transistor Q1 is connected to the negative electrode of the power source 51a.
  • the two second LEDs 42 have the same polarity and are connected in parallel to each other.
  • the anode is connected to the positive electrode of the power source 51b via the resistor R2, and the cathode is connected via the transistor Q2. And connected to the negative electrode of the power source 51b.
  • the power source 51a is a DC power source composed of a conversion circuit that converts an AC voltage supplied from the outside of the lighting fixture 1 'through the base 6 into a DC voltage, and the inside of the lighting fixture 1' (for example, a housing) It is provided in the cavity 2a of the body 2 or the fixed substrate 12).
  • the power source 51b is a DC power source including a conversion circuit that converts an AC voltage supplied from the outside of the lighting fixture 1 'through the base unit 6 into a DC voltage. It is provided in the cavity 2a of the body 2 or the fixed substrate 12).
  • the power supplies 51a and 51b are connected to the external power supply of the lighting fixture 1 ′.
  • the transistors Q1 and Q2 can both be switched on / off according to the respective base signals, and the base signals are individually sent from the current control unit 52 to the respective bases. Yes. More specifically, the constant current control circuit 52a constituting the current control unit 52 is connected to the base of the transistor Q1, and the duty ratio control circuit constituting the current control unit 52 is connected to the base of the transistor Q2. 52b is connected.
  • the luminaire 1 ' is connected to an operation unit 53 for adjusting the light emission characteristics such as the luminance of light emitted from the luminaire 1' from the outside.
  • the operation unit 53 is connected to the current control unit 52 and outputs a drive signal corresponding to the set luminance in accordance with an operation for setting a light emission characteristic such as the luminance of light emitted from the lighting fixture 1 ′. This is transmitted to the current control unit 52.
  • the current control unit 52 controls the operation of the transistor Q1 and the transistor Q2 according to the drive signal, and controls the drive current supplied to the first LED 41 and the drive current supplied to the second LED 42.
  • the current control unit 52 includes the constant current control circuit 52a and the duty ratio control circuit 52b.
  • the constant current control circuit 52a supplies a base signal to the transistor Q1
  • the duty ratio control circuit 52b includes the transistor Q2. To supply the base signal.
  • the first LED 41 is controlled by the constant current control circuit 52a. More specifically, when the transistor Q1 is turned ON, a constant driving current is always supplied to the first LED 41, and the first LED 41 is supplied to the first LED 41.
  • the actual driving current that flows (that is, the amount of power supplied to the second LED 42) is constant.
  • the second LED 42 is controlled by the duty ratio control circuit 52b. More specifically, although the magnitude of the base signal supplied to the transistor Q2 does not change, the ratio between the supply time and non-supply time of the base signal is controlled. ing. That is, by intermittently driving the transistor Q2 on and off at a predetermined cycle, the ratio of the supply time and non-supply time of the drive current supplied to the second LED 42 is controlled, and the actual drive current flowing through the second LED 42 (i.e., The amount of power supplied to the second LED 42) is controlled by the duty ratio control circuit 52b. In other words, the drive current supplied to the second LED 42 is controlled by the variable current according to the drive signal described above by the duty ratio control circuit 52b.
  • the current control unit 52 may include a storage unit (for example, a memory) that stores control content corresponding to the electrical signal supplied from the operation unit 53. In such a case, the current control unit 52 reads the control content corresponding to the electrical signal supplied from the operation unit 53 from the storage unit, and controls the operation of the transistor Q1 and the transistor Q2 according to the read control content. become.
  • a storage unit for example, a memory
  • FIG. 12 shows a case where synthetic white light that is relatively dark and reddish is emitted from the lighting apparatus 1 ′.
  • a driving current having a current value A0 flows through the first LED 41, and 1900K white light is emitted from the first LED 41.
  • the transistor Q2 is turned on only during the on period t1 (for example, 3 ms) during the period t0 (for example, 20 ms), and the driving current of the current value A0 flows through the first LED 41 during the on period t1, and the second LED 42 2700K white light is emitted.
  • the current value of the drive current that flows instantaneously (that is, the period of t1) through the second LED 42 when the transistor Q2 is ON is A0.
  • the current value of the drive current actually supplied to the second LED 42 is A0 in the state where the luminaire 1 ′ is actually used (ie, the period of t0 is repeated a plurality of times). Less than half. Accordingly, in the state shown in FIG. 12, the 1900K light emitted from the first LED 41 is brighter than the 2700K light emitted from the second LED 42, and the color temperature of the synthetic white light emitted from the lighting fixture 1 ′ is 1900K. As a result, the composite white light having a reddish color as a whole is emitted.
  • the on period of the transistor Q2 is longer than the on period t1 (for example, 18 ms), and the drive time of the transistor Q2 is lengthened.
  • the second LED 42 is actually used in the state where the lighting fixture 1 ′ is actually used (that is, the cycle of t0 is repeated a plurality of times).
  • the current value of the supplied drive current approaches the current value (A0) of the drive current that flows instantaneously (that is, during the period t2) in the second LED 42, as compared with the state of FIG. Therefore, in the state shown in FIG.
  • the brightness of the 2700K light emitted from the second LED 42 and the light of 1900K emitted from the first LED 41 are substantially the same, and the combined white light emitted from the lighting fixture 1 ′
  • the color temperature approaches 2700K, and light of a color closer to daylight is emitted.
  • the color temperature of the synthetic white light can be brought close to 1900K, and the luminaire 1 ′
  • the intensity of the emitted synthetic white light is small (that is, the synthetic white light is relatively dark)
  • the color temperature of the synthetic white light can be brought close to 2700K.
  • the timing at which the transistor Q2 is turned on and the drive current is supplied to the second LED 42 may be a case where the drive current supplied to the transistor Q1 becomes a predetermined value (for example, 200 mA) or more.
  • a predetermined value for example, 200 mA
  • the 2LED 42 can also emit white light of 2700 K, and the color temperature of the synthetic white light can be adjusted according to the intensity of the synthetic white light (that is, the value of the drive current).
  • the first LED 41 is controlled by the constant current control circuit 52a, and the second LED 42 has a structure controlled by the duty ratio control circuit 52b. However, the first LED 41 also has a structure controlled by the duty ratio control circuit, When the drive current supplied to the first LED 41 is stopped, the drive current supplied to the first LED 41 may be controlled with a variable current according to the drive signal. Thereby, the behavior until the lighting fixture 1 ′ is extinguished can be made closer to the halogen bulb. Note that the drive current supplied to the first LED 41 being stopped means that the supply of the drive current is completely stopped, not a period in which the drive current periodically becomes zero.
  • the first LED 41 is controlled by the constant current control circuit 52a, and the second LED 42 has a structure controlled by the duty ratio control circuit 52b. However, when the driving current supplied to the second LED 42 is stopped, the first LED 41 is controlled. The drive current supplied to one LED 41 may be stopped. Thereby, when the drive current supplied to 1st LED41 is stopped, lighting fixture 1 'can be light-extinguished and the behavior of lighting fixture 1' can be brought closer to a halogen bulb more.
  • emitted from 1st LED41 and 2nd LED42 is not limited to the numerical value mentioned above, It can change suitably according to the use environment, use application, etc. of lighting fixture 1 '.
  • one first LED 41 and two second LEDs 42 are fixed to the fixed substrate 12.
  • the first LEDs 41 and the second LEDs 42 are arranged in a matrix and fixed to the fixed substrate 12. May be.
  • a plurality of LED package devices are fixed to the fixed substrate 12, it is not necessary that the color temperatures of all the LED package devices be different, and at least one set selected from the plurality of LED package devices has light of different color temperatures. May be emitted.
  • the parameters of the first LED 41 and the second LED 42 are adjusted by adjusting parameters such as the wavelength, the distance from the black body radiation locus, the spectral distribution, and the normalized spectral distribution.
  • White light having a natural color from at least one and having excellent saturation in green, yellow, and red may be emitted.
  • the transistors Q1 and Q2 which are bipolar transistors are used as switching elements.
  • a MOS field effect transistor Metal-Oxide-Semiconductor-Field-Effect-Transistor
  • a bipolar transistor may be used instead.
  • the optical member 13 constituting the light source unit 3 has a structure in which a light distribution unit 32 having a cavity and having a substantially spherical shape is connected to the end of the light guide unit 31 having a truncated cone shape.
  • the structure of the optical member 13 is not limited to this.
  • the optical member 13 having another structure will be described as a second modification with reference to FIGS. 14 to 16.
  • 14 is a perspective view of an optical member according to Modification 2
  • FIG. 15 is a top view of the optical member according to Modification 2
  • FIG. 16 is a cross-sectional view of the optical member along line XVI-XVI in FIG. It is.
  • the optical member 113 is connected to the light guide part 131 having substantially the same configuration and function as the light guide part 31 of the above-described embodiment, and to the end of the light guide part 131.
  • the light distribution part 132 and a substantially annular (ring-shaped) connection part 133 for connecting the light guide part 131 to the fixing member 14 of the above-described embodiment are configured. That is, similarly to the optical member 13 of the above-described embodiment, the optical member 113 guides light emitted from the light emitting module 11 from one end of the light guide unit 131 to the other end, and radiates from the light guide unit 131. The emitted light is radiated substantially uniformly in all directions through the light distribution unit 132.
  • the omnidirectional means that the light distribution angle is not limited to 360 °, as in the above-described embodiments, but substantially means the omnidirectional (wider light distribution angle). That is, the omnidirectional in the present invention means that the light distribution angle is usually 180 ° or more, preferably 240 ° or more, more preferably 300 ° or more.
  • the light guide 131 is made of a transparent material having translucency such as resin (for example, polycarbonate, poly (methyl methacrylate): PMMA). As can be seen from FIGS. 14 and 16, the light guide 131 has a truncated cone shape.
  • the light guide part 131 of the optical member 113 according to the modified example 2 is different from the light guide part 31 in the above-described embodiment, and is in contact with the light distribution part 132 (a second surface of the light guide part 31 in the above embodiment).
  • the surface corresponding to the surface 31c) is not subjected to rough surface treatment or coating treatment.
  • the light guide part 131 is not formed with the concave part 31b like the light guide part 31 of the above-described embodiment.
  • the other structure and function of the light guide part 131 are the same as the light guide part 31 of the Example mentioned above, the specific description is abbreviate
  • the light distribution unit 132 is made of a transparent material having translucency such as a resin (for example, polycarbonate, polymethyl methacrylate resin (PMMA)), and its The light diffusing element 132a is mixed inside.
  • the light distribution part 132 is comprised from transparent materials, such as resin containing the light-diffusion element 132a.
  • the light distribution unit 132 may be formed of a transparent material different from that of the light guide unit 131, but it is preferable to form the light guide unit 131 and the light distribution unit 132 by two-color formation using the same transparent material. . This is because it is not necessary to bond the light guide part 131 and the light distribution part 132 with an adhesive or the like, so that the cost can be reduced, and further problems such as a decrease in adhesive strength are less likely to occur. is there.
  • Light diffusion element In this modification, it is preferable to use an inorganic light diffusing material, an organic light diffusing material, or air bubbles as the light diffusing element 132a.
  • inorganic light diffusing material for example, inorganic light diffusing materials such as silicon, aluminum, titanium, zirconium, calcium, and barium can be used, and the group consisting of silicon, aluminum, titanium, and zirconium can be used. It is preferable to use an inorganic light diffusing material containing at least one element.
  • organic light diffusing material it is possible to use an acrylic light diffusing material, or an organic light diffusing material containing silicon as an element, or an organic material containing silicon as an element. It is preferable to use a system light diffusing material.
  • inorganic light diffusing materials include silicon dioxide (silica), white carbon, talc, magnesium oxide, zinc oxide, titanium oxide, aluminum oxide, zirconium oxide, boron oxide, calcium carbonate, barium carbonate, magnesium carbonate, water
  • examples thereof include aluminum oxide, calcium hydroxide, magnesium hydroxide, barium sulfate, calcium silicate, magnesium silicate, aluminum silicate, sodium aluminosilicate, zinc silicate, glass, mica and the like.
  • organic light diffusing material examples include styrene (co) polymers, acrylic (co) polymers, siloxane (co) polymers, polyamide (co) polymers, and the like. Some or all of these molecules of the organic diffusing material may or may not be cross-linked.
  • (co) polymer means both “polymer” and “copolymer”.
  • a light diffusion element having a large difference between the refractive index of the transparent material such as the resin and the refractive index of the selected light diffusion element is selected. Is preferred. Further, in order not to greatly reduce the luminous efficiency, it is preferable to select a light diffusing element having high transparency.
  • the resin is a polycarbonate resin
  • a crosslinked acrylic (co) polymer particle a crosslinked particle of a copolymer of an acrylic compound and a styrene compound, a siloxane (co) polymer particle
  • hybrid crosslinked particles of an acrylic compound and a compound containing a silicon atom it is more preferable to use crosslinked acrylic (co) polymer particles and siloxane (co) polymer particles.
  • crosslinked acrylic (co) polymer particles polymer particles composed of a non-crosslinkable acrylic monomer and a crosslinkable monomer are more preferable, and polymer particles obtained by crosslinking methyl methacrylate and trimethylolpropane tri (meth) acrylate are more preferable.
  • siloxane-based (co) polymer polyorganosilsesquioxane particles are more preferable, and polymethylsilsesquioxane particles are more preferable.
  • the dispersion shape of the light diffusing element 132a in the resin may be any of a substantially spherical shape, a plate shape, a needle shape, and an indefinite shape, but is preferably a substantially spherical shape from the viewpoint that there is no anisotropy in the light scattering effect.
  • the average dimension of the light diffusing element 132a is usually 100 ⁇ m or less, preferably 30 ⁇ m or less, more preferably 10 ⁇ m or less, and usually 0.01 ⁇ m or more, preferably 0.1 ⁇ m or more. More preferably, it is 0.5 ⁇ m or more.
  • the average dimension of the light diffusing element 132a is a 50% average dimension based on the volume, and is a value of the median diameter (D50) of the volume standard particle size distribution measured by a laser or diffraction scattering method.
  • the particle size distribution of the light diffusing element 132a may be a monodispersed system or a polydispersed system having several peak tops, and is a single peak top having a narrow particle size distribution. However, it is preferable that the particle size distribution is narrow and the particle size is almost a single particle size (monodispersion or near monodispersion particle size distribution).
  • Dv / Dn is a ratio between the volume-based average particle diameter Dv and the number-based average particle diameter Dn of the light diffusing element 132a.
  • Dv / Dn is preferably 1.0 or more.
  • Dv / Dn is preferably 5 or less. If Dv / Dn is too large, there will be light diffusing elements 132a with significantly different weights, and the dispersion of the light diffusing elements 132a in the light distribution section 132 tends to be non-uniform.
  • the inorganic light diffusing material, the organic light diffusing material, and the bubbles used as the light diffusing element 132a described above may be used alone or in combination of two or more kinds having different materials and dimensions. Good. When two or more types are used in combination, the refractive index of the light diffusing element 132a is calculated by the volume average of a plurality of light diffusing elements.
  • the refractive index of the light diffusing element 132a is usually 1.0 or more and usually 1.9 or less.
  • the light diffusing element 132a is preferably highly transparent and excellent in light transmittance.
  • the extinction coefficient may be 10 ⁇ 2 or less, preferably 10 ⁇ 3 or less, more preferably 10 ⁇ 4 or less, particularly preferably 10 ⁇ 6 or less.
  • the refractive index of the light diffusing element 132a can be measured by a liquid immersion method (Aerosol Research Vol. 9, No. 1 Spring pp. 44-50 (1994)) by YOSHIYAMA et al. The measurement temperature is 20 ° C., and the measurement wavelength is 450 nm.
  • the content of the light diffusing element 132a in the light distribution part 132 depends on the type of the resin.
  • the resin is a polycarbonate resin and the light diffusing element 132a is polymethylsilsesquioxane particles, polycarbonate is used.
  • the amount is usually 0.1 parts by weight or more, preferably 0.3 parts by weight or more, more preferably 0.5 parts by weight or more, and usually 10.0 parts by weight or less, preferably 7 parts by weight with respect to 100 parts by weight of the resin. 0.0 parts by weight or less, more preferably 3.0 parts by weight or less. If the content of the light diffusing element 132a is too small, the diffusion effect is insufficient, and if it is too large, the mechanical identification may be lowered, which is not preferable.
  • the shape of the light distribution section 132 is different from the light distribution section 32 of the above-described embodiment, and the outer shape is substantially spherical, but no cavity is formed inside. That is, the light distribution unit 132 according to this modification is not formed with a two-layer structure like the light distribution unit 32 of the above-described embodiment. Even if the two-layer structure is not formed, the light diffusing element 132a described above is contained in the transparent material such as a resin constituting the light distribution unit 132. When radiating, it can diffuse well.
  • the shape of the light distribution part 132 is not limited to a substantially spherical shape, and may be another three-dimensional shape such as a polygonal body.
  • the outer surface 132b of the light distribution part 32 is roughened, and minute irregularities are formed.
  • the reason for making the outer surface 132b rough is to improve the light extraction efficiency and not to cause unevenness on the irradiation surface irradiated with the light emitted from the light distribution section 132.
  • the light guided from the light guide unit 131 to the light distribution unit 132 is radiated well (substantially equal) with respect to all directions of the light distribution unit 132. . That is, the light distribution part 132 can be visually recognized as a light source, and can be visually recognized as being emitted outward from the center of the cavity 4a of the light source cover 4 in FIG.
  • connection portion 133 is provided at one end portion of the light guide portion 131 (the end portion on the opposite side to the end portion in contact with the light distribution portion 132).
  • the connection portion 133 has an annular shape and is connected so as to surround the side surface of the light guide portion 131. Further, the connection portion 133 is provided with two notches 133a. Then, a joining member such as a screw is fitted into the notch 133a, and the connecting portion 133 is joined to the surface 14a of the fixing member 14 in FIG. Thereby, the optical member 113 can be arranged away from the light emitting module 11.
  • connection portion 133 is made of a transparent material having translucency such as a resin (for example, polycarbonate, poly (methyl methacrylate): PMMA) like the light guide portion 131.
  • a resin for example, polycarbonate, poly (methyl methacrylate): PMMA
  • the connection portion 133 is simultaneously formed as a part of the light guide portion 131.
  • the connection portion 133 is not an essential structure. For example, if the light guide portion 131 is formed with the recess 31b like the light guide portion 31 of the above-described embodiment, the connection portion 133 is not necessary.
  • the structure of the light guide part 31 and the light guide part 131 demonstrated in the said Example is an example. Instead of the light guide unit 31 and the light guide unit 131, the following light guide unit can be applied.
  • the light guide unit 31, the light guide unit 131, and a modification of the light guide unit described below function as a light travel direction control unit (light travel direction control unit) that changes the travel direction of light from the light emitting module 11. .
  • FIG. 17 is a diagram schematically illustrating a first modification of the light guide unit 31.
  • a reflection cylinder is applied as the light guide unit 231.
  • the light guide part (reflective cylinder) 231 shown in FIG. 17 is formed in a hollow (hollow) cylindrical shape having one end part 231a on the light emitting module 11 side and the other end part 231b connected to the light distribution part 132. ing. In this respect, the inside is different from the solid light guide 31.
  • the light distribution unit 132 has the same configuration as that described in the second modification. Instead of the light distribution unit 132, the light distribution unit 32 (FIG. 8 and the like) may be applied.
  • the inner diameter of the light guide portion 231 is formed in a tapered shape that decreases from the one end portion 231a toward the other end portion 231b.
  • the inner surface 231c of the light guide portion 231 is formed by the peripheral surface of the truncated cone, and is mirror-finished. By the mirror finishing, the light impinging on the inner surface 231c is almost totally reflected.
  • Mirror surface processing can be performed by producing the light guide part 231 with a reflecting material, or attaching or coating the reflecting material on the inner surface of the cylindrical member.
  • the light emitting module 11 is arranged at a substantially central portion below the one end portion 231a so that light emitted from the light emitting module 11 enters the cavity of the light guide portion 231. In addition, you may make it the light emitting module 11 arrange
  • the light emitted from the light emitting module 11 for example, a part of the light from the light emitting module 11, such as light traveling in the axial direction of the light guide unit 231 from the light emitting module 11 toward the light distribution unit 132, The light directly enters the light distribution unit 132.
  • the light that travels in the direction not directly incident on the light distribution unit 132 out of the light from the light emitting module 11 is reflected by the inner surface 231c of the light guide unit 231 and changes the traveling direction to the direction that enters the light distribution unit 132. (See arrow in FIG. 17). Accordingly, the light guide unit 231 can cause almost all of the light from the light emitting module 11 to enter the light distribution unit 132.
  • FIG. 18 is a diagram schematically illustrating a second modification of the light guide unit.
  • a reflecting mirror is applied as the light guide unit 331.
  • the light guide unit 331 shown in FIG. 18 includes a plurality of reflecting mirrors 332 arranged so as to surround the light emitting module 11.
  • Each reflecting mirror 332 has one end 332a disposed on the light emitting module 11 side and the other end 332b connected to the light distribution unit 132A.
  • each reflecting mirror 332 is formed as a continuous curved surface having a curvature that increases from the other end 332b toward the one end 332a, and is a mirror surface.
  • the mirror surface can be formed by mirror processing as described in the first modification. Thereby, the light colliding with the inner surface 332c is formed to be totally reflected.
  • the light distribution unit 132A is formed in a perfect spherical shape. Except for this point, the light distribution unit 132 ⁇ / b> A is the same as the light distribution unit 132. However, the light distribution part 132A may be cut along the virtual line V shown in FIG. Further, instead of the light distribution unit 132A, the light distribution unit 32 (FIG. 8 or the like) can be applied.
  • a plurality (a predetermined number) of the reflecting mirrors 332 are arranged in a cylindrical state (so as to form an intermittent cylindrical shape) so that the light from the light emitting module 11 does not escape sideways.
  • the reflecting mirror 332 may be formed in one cylindrical shape.
  • the light guide unit 331 and the light distribution unit 132A may be fixed by a support member (not shown) so as not to change their relative positions.
  • the light emitted from the light emitting module 11 for example, a part of the light from the light emitting module 11 such as light traveling upward from the light emitting module 11 toward the light distributing unit 132 ⁇ / b> A is directly incident on the light distributing unit 132 ⁇ / b> A. To do.
  • the light traveling in the direction not directly incident on the light distribution unit 132A is reflected by the inner surface 332c of the light guide unit 331 (reflecting mirror 332) and enters the light distribution unit 132A.
  • the direction of travel is changed (see arrow in FIG. 18). Accordingly, the light guide unit 331 can cause almost all of the light from the light emitting module 11 to enter the light distribution unit 132A.
  • FIG. 19 is a diagram schematically illustrating a third modification of the light guide unit.
  • a condensing lens is applied as the light guide unit 431.
  • the light guide part (condensing lens) 431 has one end part 431a on the light emitting module 11 side and the other end part 431b on the light distribution part 132A side.
  • the light guide 431 as a whole has a truncated cone-shaped outer shape whose diameter decreases from the other end 431b toward the one end 431a.
  • the one end 431a is formed with a cylindrical recess 431c, and the other end 431b is formed with a recess 431d recessed in a spherical shape in accordance with the shape of the light distribution portion 132A.
  • Part 132A preferably a spherical light distribution part made of a resin containing a light diffusing element
  • the light guide unit 431 and the light distribution unit 132A may be fixed by a support member (not shown) so as not to change their relative positions.
  • the light emitted from the light emitting module 11 enters the light guide 431 from the recess 431 c of the light guide 431.
  • the incident light is refracted and reflected in the light guide unit 431 and enters the light distribution unit 132A. Accordingly, the light traveling from the light emitting module 11 in the direction not directly incident on the light distribution unit 132A is changed in the traveling direction to the direction incident on the light distribution unit 132A by the light guide unit (condensing lens) 431. (See arrow in FIG. 19). Accordingly, the light guide unit 431 can cause almost all of the light from the light emitting module 11 to enter the light distribution unit 132A.
  • the light distribution unit 132A is applied.
  • the light distribution unit 132 may be applied instead of the light distribution unit 132A, or the light distribution unit 32 may be applied.
  • the recess 431d is not provided.
  • the light guide unit of the third modification it is possible to further improve the light extraction efficiency and to further increase the height of the cylindrical light guide unit, so that the light distribution unit in the covering body The effect of improving the freedom of placement is expected.
  • FIG. 20 is a diagram schematically illustrating a fourth modification of the light guide unit.
  • a side exit lens is applied as the light guide unit 531.
  • the light guide portion 531 has a cylindrical shaft portion 531a having one end portion disposed on the light emitting module 11 side, and a cylindrical large-diameter portion 531b provided coaxially with the shaft portion 531a on the other end side of the shaft portion 531a. have.
  • a conical recess 531c is formed on the upper surface of the large-diameter portion 531b.
  • a part of the large diameter portion 531b and the shaft portion 531a are covered with the light distribution portion 32.
  • the large diameter portion 531 b is disposed at the center in the light distribution portion 32.
  • the light guide 531 is formed of a material such as a resin such as an acrylic resin, glass, or other material.
  • the outgoing light from the light emitting module 11 enters the light guide part 531 from one end face of the shaft part 531a.
  • the light traveling in the axial direction of the shaft portion 531 a passes through the recess 531 c and is emitted from above, diffused by the light distribution portion 32, and emitted from the light distribution portion 32.
  • the light traveling to the side of the shaft portion 531a is reflected by the inner surface of the shaft portion 531a and reaches the large diameter portion 531b, is reflected by the concave portion 531c, and is emitted from the side surface of the large diameter portion 531b.
  • the emitted light is diffused by the light distribution unit 32 and emitted from the light distribution unit 32.
  • the light traveling from the light emitting module 11 in the direction not directly incident on the light distribution unit 32 is changed in the traveling direction to the direction incident on the light distribution unit 32 by the light guide unit 531 (FIG. 20). See arrow). Accordingly, the light guide unit 531 can cause almost all of the light from the light emitting module 11 to enter the light distribution unit 32. Then, the light from the light emitting module 11 emitted from the light guide unit 531 is diffused by the light distribution unit 32 and is emitted in all directions.
  • the light distribution part 132 may be applied, and the large diameter part 531b and a part of shaft part 531a may be embedded in the light distribution part 132.
  • FIG. the light emitted from the light guide unit 531 is diffused by the light diffusion element 132a of the light distribution unit 132 and is emitted in all directions.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)

Abstract

This lighting device comprises: a substrate; at least one semiconductor light emitting device which is affixed on the substrate; a light-transmitting light guide part which is arranged so that one end thereof is on the light emitting surface side of the semiconductor light emitting device, and which guides the light of the semiconductor light emitting device entered from the one end to the other end and emits therefrom; a light distribution part which is arranged so as to surround the periphery of the other end of the light guide part, and which diffuses and emits the light emitted from the light guide part in all directions; and a cover body which covers the semiconductor light emitting device, the light guide part and the light distribution part such that the semiconductor light emitting device, the light guide part and the light distribution part are separated from each other.

Description

照明器具及び光学部材Lighting apparatus and optical member
 本発明は、LED(Light Emitting Diode)等の半導体発光装置を備える照明器具、及びこれに用いられる光学部材に関する。 The present invention relates to a lighting fixture including a semiconductor light emitting device such as an LED (Light Emitting Diode), and an optical member used therefor.
 従来から一般照明器具として、フィラメントを備えるハロゲン電球や当該ハロゲン電球を利用した照明機器が普及していたが、近年における省電力、小型化、及び長寿命化のニーズにともない、LED等の発光素子を光源として利用するLED電球若しくはLEDランプ、又はLEDを用いた照明機器の開発及び製造が行われ、当該LED電球の普及が進んできている。例えば、特許文献1及び特許文献2には、複数の発光素子であるLEDを備えるLEDランプが開示されている。 Conventionally, halogen light bulbs with filaments and lighting equipment using the halogen light bulbs have been widely used as general lighting fixtures. However, in light of the recent needs for power saving, downsizing, and long life, light emitting elements such as LEDs. Development and manufacture of LED bulbs or LED lamps using LED as a light source, or lighting equipment using LEDs, and the spread of the LED bulbs are progressing. For example, Patent Literature 1 and Patent Literature 2 disclose LED lamps including LEDs that are a plurality of light emitting elements.
 特許文献1に開示されているLEDランプは、複数のLED、先端部分に当該LEDが搭載された支柱、当該支柱を支持するための基部、及びLEDから放射された光を反射する反射体を備えている。特許文献2に開示されているLEDランプは、複数のLED、先端部分に当該LEDが配設された角柱部、当該角柱部を支持する外装部、LEDから放射された光を反射する反射面、当該角柱部を離間して覆うカバーを備えている。いずれのLEDランプにおいても、反射面からLEDランプの光軸方向に偏移した位置にLEDを配置することで、LEDランプの中心部分から光が放射されるような構造が取られている。 The LED lamp disclosed in Patent Document 1 includes a plurality of LEDs, a support on which the LED is mounted at a tip portion, a base for supporting the support, and a reflector that reflects light emitted from the LED. ing. The LED lamp disclosed in Patent Document 2 includes a plurality of LEDs, a prism portion in which the LED is disposed at a tip portion, an exterior portion that supports the prism portion, a reflective surface that reflects light emitted from the LED, A cover is provided that covers the rectangular column part in a spaced manner. In any of the LED lamps, a structure is adopted in which light is emitted from the central portion of the LED lamp by disposing the LED at a position shifted in the optical axis direction of the LED lamp from the reflection surface.
 また、特許文献3に開示されているLED電球では、導光体が他端側の端面に設けられ、軸部の中心と略同一の軸心で且つ一端側につれて縮径する略円錐形状からなる凹部、及び他端側の端面と側面とが略連続するよう設けられた第1の湾曲面を有している。特許文献4に開示されている光源ガイドは、導光部,屈折部,及び頂部を有し、導光部及び屈折部に微細構造が形成されており、発光ダイオードユニットからの光が導光部及び頂部から出射される構造となっている。 Further, in the LED bulb disclosed in Patent Document 3, the light guide is provided on the end surface on the other end side, and has a substantially conical shape with a diameter substantially the same as the center of the shaft portion and reduced in diameter toward the one end side. It has a 1st curved surface provided so that a recessed part and the end surface and side surface of the other end side may become substantially continuous. The light source guide disclosed in Patent Document 4 has a light guide part, a refracting part, and a top part, and a fine structure is formed in the light guiding part and the refracting part, and light from the light emitting diode unit is guided to the light guide part. And it is the structure radiate | emitted from the top part.
 また、特許文献5に開示されている発光装置は、レーザ光を出射する半導体レーザダイオードと、半導体レーザダイオードと離間して設けられ、レーザ光を吸収し可視光を発する発光体とを備え、発光体が、レーザ光を発光体の中心部に入射するための光路を有している。特許文献6に開示されている発光ダイオード照明装置は、発光ダイオードから発光される面発光の第1の光源の光を光ファイバーのような導光手段により球状の蛍光体へ導き、発光ダイオードで発光された光で以て励起され波長の長い光を発生する第2の光源の光により点光源とする構造が採られている。 The light emitting device disclosed in Patent Document 5 includes a semiconductor laser diode that emits laser light, and a light emitting body that is provided apart from the semiconductor laser diode and absorbs the laser light and emits visible light. The body has an optical path for allowing laser light to enter the center of the light emitter. The light-emitting diode illuminating device disclosed in Patent Document 6 guides light from a surface-emitting first light source emitted from a light-emitting diode to a spherical phosphor by a light guide means such as an optical fiber, and the light-emitting diode emits light. A structure is adopted in which a point light source is formed by light from a second light source that is excited by light and generates light having a long wavelength.
特開2004-111355号公報JP 2004-111355 A 特開2011-54577号公報JP 2011-54577 A 特開2012-155895号公報JP 2012-155895 A 実用新案登録第3172957号公報Utility Model Registration No. 3172957 特開2011-187291号公報JP 2011-187291 A 特開2012-4090号公報JP 2012-4090 A
 しかしながら、特許文献1及び特許文献2に開示しているような構造を有するLEDランプにおいては、LEDが放熱性に優れた筐体又は放熱体から離間した位置に支柱又は角柱部等の支持体を用いて配置されているため、LEDの発光にともなって発生する熱を効率よく放熱することができない。また、特許文献1及び特許文献2に開示しているような構造を有するLEDランプにおいては、LED用の配線を支持体にも形成する必要があり、配線が複雑となり、当該配線形成のコストが増加する。 However, in an LED lamp having a structure as disclosed in Patent Document 1 and Patent Document 2, a support such as a column or a prism is provided at a position where the LED is separated from a housing or a heat radiator excellent in heat dissipation. Therefore, the heat generated with the light emission of the LED cannot be efficiently radiated. Moreover, in the LED lamp having the structure as disclosed in Patent Document 1 and Patent Document 2, it is necessary to form the wiring for the LED also on the support, and the wiring becomes complicated, and the cost of forming the wiring is increased. To increase.
 また、特許文献3に開示されたLED電球における導光体の構造では、膨径部の上斜め方向の光量が上方及び側方に比べて少なくなり、全方位に均一な光を放射することができなかった。また、特許文献4に開示された光源ガイドは、導光部から側方又は上斜め方向の光を発し且つ頂部から上方向の光を発する構造であるため、やはり全方位に均一な光を放射することができなかった。 Moreover, in the structure of the light guide in the LED bulb disclosed in Patent Document 3, the amount of light in the upper oblique direction of the expanded diameter portion is smaller than that in the upper and side directions, and uniform light may be emitted in all directions. could not. In addition, the light source guide disclosed in Patent Document 4 has a structure that emits light in the lateral or upward oblique direction from the light guide and emits light in the upward direction from the top, and therefore also emits uniform light in all directions. I couldn't.
 また、特許文献5及び6に開示されたような、半導体レーザダイオード、或いは、発光ダイオードから離間した位置で、蛍光体(発光体)を照明装置(電球)の発光中心に設置するという方法では、以下の問題があった。すなわち、半導体レーザダイオード、或いは、発光ダイオードの光のうちの一部は、蛍光体(発光体)において波長変換されない非変換光として蛍光体(発光体)から放射される。このような非変換光と蛍光体(発光体)で波長変換された波長変換光との混色は難しい。このため、照明装置(電球)の照明光を全体として奇麗な、ムラのない白色照明とすることが非常に困難であった。 Moreover, in the method of installing fluorescent substance (light-emitting body) in the light emission center of an illuminating device (light bulb) in the position spaced apart from the semiconductor laser diode or the light-emitting diode as disclosed in Patent Documents 5 and 6, There were the following problems. That is, a part of the light of the semiconductor laser diode or the light emitting diode is emitted from the phosphor (light emitter) as non-converted light that is not wavelength-converted in the phosphor (light emitter). Color mixing of such non-converted light and wavelength-converted light that has been wavelength-converted by a phosphor (light-emitting body) is difficult. For this reason, it has been very difficult to make the illumination light of the illuminating device (bulb) beautiful and uniform white illumination as a whole.
 また、特許文献5及び6に開示された技術では、蛍光体、或いは発光体は、半導体レーザダイオード、或いは発光ダイオードからの光の入射によって発熱する。しかしながら、蛍光体及び発光体は、いずれも導光体乃至導光手段と接するのみで空中に浮いており、ヒートシンクのような放熱部と離間している。このように、蛍光体乃至発光体からの放熱が困難な構成であるため、照明装置(電球)の連続使用(発光)に伴う温度上昇で照明光が不安定となる(明度(輝度)が低下する、或いは色度が変化する)おそれがあった。 Further, in the technologies disclosed in Patent Documents 5 and 6, the phosphor or the light emitter generates heat by the incidence of light from the semiconductor laser diode or the light emitting diode. However, both the phosphor and the light emitter are in contact with the light guide or the light guide means and float in the air, and are separated from the heat radiating part such as a heat sink. As described above, since it is difficult to dissipate heat from the phosphor or the light emitter, the illumination light becomes unstable due to a temperature rise due to continuous use (light emission) of the lighting device (light bulb) (lightness (brightness) decreases). Or the chromaticity may change).
 本発明はこのような課題に鑑みてなされたものであり、その目的とするところは、簡易な構成であり、且つ優れた放熱性を備え、配光性に優れる照明器具、及び当該照明器具に用いられる光学部材を提供することにある。 This invention is made | formed in view of such a subject, The place made into the objective is a simple structure, is equipped with the outstanding heat dissipation, and is excellent in light distribution, and the said lighting fixture. It is to provide an optical member to be used.
 上記の目的を達成するべく、本発明の第1の態様は、基板と、前記基板上に固定された少なくとも1つの半導体発光装置と、前記半導体発光装置の発光面側に一端が配設され、前記一端から入射する前記半導体発光装置の光を他端に導光して放射する透光性を備える導光部と、前記導光部の前記他端の周辺を囲むように配設され、前記導光部から放射される光を拡散して全方位に放射する配光部と、前記半導体発光装置、前記導光部、及び前記配光部を離間して覆う被覆体と、を有する照明器具である。 To achieve the above object, according to a first aspect of the present invention, there is provided a substrate, at least one semiconductor light emitting device fixed on the substrate, and one end disposed on a light emitting surface side of the semiconductor light emitting device. A light guide portion having translucency to guide and emit the light of the semiconductor light emitting device incident from the one end to the other end, and disposed so as to surround the periphery of the other end of the light guide portion, A lighting apparatus comprising: a light distribution unit that diffuses light emitted from the light guide unit and emits the light in all directions; and a covering that covers the semiconductor light emitting device, the light guide unit, and the light distribution unit in a spaced manner. It is.
 上述したような構造の導光部及び配光部を備えることにより、基板上から放射された光を導光部及び配光部を経由させ、配光部から拡散して全方位に放射することができる。また、光を全方位に放射させる位置である配光部の中央部ではなく、基板上に半導体発光装置を固定するため、当該基板上に容易に配線形成を行うことができ、照明器具のコスト低減を図ることができる。更に、基板上に半導体発光装置を固定するため、半導体発光装置から生じる熱を当該基板を介して良好に放熱することができる。 By providing the light guide part and the light distribution part having the structure as described above, the light emitted from the substrate is diffused from the light distribution part and emitted in all directions through the light guide part and the light distribution part. Can do. In addition, since the semiconductor light emitting device is fixed on the substrate, not on the central portion of the light distribution portion, which is a position where light is emitted in all directions, wiring can be easily formed on the substrate, and the cost of the lighting fixture can be reduced. Reduction can be achieved. Furthermore, since the semiconductor light emitting device is fixed on the substrate, heat generated from the semiconductor light emitting device can be radiated well through the substrate.
 本発明の第2の態様は、上述した第1の態様において、前記配光部が前記導光部の前記他端に接続されていることである。このように配光部を接続することで、基板上から放射された光を導光部及び配光部を経由させ、配光部から拡散して全方位に対して良好に放射することができる。 A second aspect of the present invention is that, in the first aspect described above, the light distribution section is connected to the other end of the light guide section. By connecting the light distribution units in this way, the light emitted from the substrate can be diffused from the light distribution unit through the light guide unit and the light distribution unit, and can be emitted well in all directions. .
 本発明の第3の態様は、上述した第1の態様又は第2の態様において、前記配光部が光拡散要素を含有する樹脂からなることである。このような配光部の構造により、配光部から全方位に対して良好に光を拡散することができる。 A third aspect of the present invention is that, in the first aspect or the second aspect described above, the light distribution section is made of a resin containing a light diffusing element. With such a structure of the light distribution part, light can be diffused satisfactorily from the light distribution part in all directions.
 本発明の第4の態様は、上述した第1の態様又は第2の態様において、前記配光部が内層と前記内層よりも屈折率が大きい外層とからなる2層構造を備えることである。このような配光部の構造により、配光部に入射した光を外部に放射する際に、良好に屈折させつつ拡散することができる。本態様において、配光部の中央部分を空気よりも熱伝導性が高い流体層とすることで、配光部の放熱性を改善することができる。熱伝導性が高い流体層としては、例えば、ヘリウムを好適に使用することができる。 A fourth aspect of the present invention is that, in the first aspect or the second aspect described above, the light distribution section has a two-layer structure including an inner layer and an outer layer having a refractive index larger than that of the inner layer. With such a structure of the light distribution part, when the light incident on the light distribution part is radiated to the outside, it can be diffused while being refracted well. In this aspect, by making the central part of the light distribution part a fluid layer having higher thermal conductivity than air, the heat dissipation of the light distribution part can be improved. For example, helium can be suitably used as the fluid layer having high thermal conductivity.
 本発明の第5の態様は、上述した第4の態様において、前記配光部の前記内層が空気層であることである。このような配光部の構造より、配光部のコスト低減を図ることができる。 A fifth aspect of the present invention is that, in the fourth aspect described above, the inner layer of the light distribution section is an air layer. With such a structure of the light distribution unit, the cost of the light distribution unit can be reduced.
 本発明の第6の態様は、上述した第4の態様又は第5の態様において、前記導光部の前記他端の表面に粗面処理又はコーティング処理が施されていることである。このような導光部の構成により、導光部における光の取り出し効率を向上するができる。また、導光部の当該他端の表面において、光を拡散することができ、配光部から放射される光の照射面にムラが生じにくくなる。 A sixth aspect of the present invention is that, in the above-described fourth aspect or fifth aspect, the surface of the other end of the light guide is subjected to a rough surface treatment or a coating treatment. With such a configuration of the light guide unit, the light extraction efficiency in the light guide unit can be improved. Further, light can be diffused on the surface of the other end of the light guide unit, and unevenness is less likely to occur on the irradiation surface of the light emitted from the light distribution unit.
 本発明の第7の態様は、上述した第1乃至第6の態様のいずれかにおいて、前記配光部の表面に粗面処理又はコーティング処理が施されていることである。このような配光部の構成により、配光部から放射する光を良好に拡散し、光の照射面にムラが生じにくくなる。また、配光部における光の取り出し効率も向上することになる。 A seventh aspect of the present invention is that in any one of the first to sixth aspects described above, the surface of the light distribution section is subjected to a rough surface treatment or a coating treatment. With such a configuration of the light distribution unit, the light emitted from the light distribution unit is diffused well, and unevenness is less likely to occur on the light irradiation surface. Moreover, the light extraction efficiency in the light distribution section is also improved.
 本発明の第8の態様は、上述した第1乃至第7の態様のいずれかにおいて、前記配光部が前記被覆体の内側領域の中央部に位置するように、前記導光部が延在していることである。このように導光部を延在させることにより、照明器具の中心から光を全方位に放射させることができ、優れた光学特性を備える照明器具を提供することができる。 According to an eighth aspect of the present invention, in any one of the first to seventh aspects described above, the light guide portion extends so that the light distribution portion is located at a central portion of the inner region of the covering body. Is. By extending the light guide portion in this way, light can be emitted from all directions in the luminaire, and a luminaire having excellent optical characteristics can be provided.
 本発明の第9の態様は、上述した第1乃至第8の態様のいずれかにおいて、前記配光部の形状が球体状であることである。このような配光部の形状により、導光部から入射した光が照明器具の中心から全方位に放射されることになり、照明器具を一般的なハロゲン電球のように見せることができる。 9th aspect of this invention is that the shape of the said light distribution part is a spherical form in any one of the 1st thru | or 8th aspect mentioned above. With such a shape of the light distribution unit, light incident from the light guide unit is radiated in all directions from the center of the luminaire, and the luminaire can be seen as a general halogen light bulb.
 本発明の第10の態様は、上述した第1乃至第9の態様のいずれかにおいて、前記導光部及び前記配光部が二色成形により一体的に形成されていることである。これにより、導光部と配光部とを正確に位置決めして固着するような工程が不要となり、容易且つ低コストで導光部及び配光部を形成することができる。 A tenth aspect of the present invention is that, in any one of the first to ninth aspects described above, the light guide section and the light distribution section are integrally formed by two-color molding. As a result, a process for accurately positioning and fixing the light guide unit and the light distribution unit becomes unnecessary, and the light guide unit and the light distribution unit can be formed easily and at low cost.
 本発明の第11の態様は、上述した第1乃至第10の態様のいずれかにおいて、前記基板の前記半導体発光装置の固定面とは反対側の面にヒートシンクが配設されていることである。これにより、半導体発光装置から生じる熱をより良好に放熱することができる。 An eleventh aspect of the present invention is that in any one of the first to tenth aspects described above, a heat sink is disposed on the surface of the substrate opposite to the fixed surface of the semiconductor light emitting device. . Thereby, the heat generated from the semiconductor light emitting device can be radiated better.
 本発明の第12の態様は、上述した第1乃至第11の態様のいずれかにおいて、前記半導体発光装置から出射する光と、前記導光部及び前記配光部を経由して全方位に放射する光とは同一の色度であることである。これにより、半導体発光装置から出射する光を照明器具から出射する光とすることができ、半導体発光装置の光を効率よく利用することができる。 According to a twelfth aspect of the present invention, in any one of the first to eleventh aspects described above, the light emitted from the semiconductor light emitting device is emitted in all directions via the light guide unit and the light distribution unit. The light to be used is the same chromaticity. Thereby, the light radiate | emitted from a semiconductor light-emitting device can be used as the light radiate | emitted from a lighting fixture, and the light of a semiconductor light-emitting device can be utilized efficiently.
 本発明の第13の態様は、上述した第1乃至第12の態様のいずれかにおいて、前記半導体発光装置から出射する光が白色光であることである。これにより、本態様に係る照明装置を、白色光を放射する一般的なハロゲン電球として用いることができる。 A thirteenth aspect of the present invention is that in any one of the first to twelfth aspects described above, the light emitted from the semiconductor light emitting device is white light. Thereby, the illuminating device which concerns on this aspect can be used as a general halogen light bulb which radiates | emits white light.
 本発明の第14の態様は、上述した第1乃至第13の態様のいずれかにおいて、前記基板に複数の前記半導体発光装置が固定され、複数の前記半導体発光装置から選ばれる少なくとも1組は、互いに異なる色温度の光を放射することである。このような構成により、照明器具から照射される合成光の色温度を適宜変更することができ、照明器具の使用者の要求に応じて最適な光を提供することができる。例えば、照明器具の挙動を一般的なハロゲン電球の挙動に近づけることができる。 According to a fourteenth aspect of the present invention, in any one of the first to thirteenth aspects described above, a plurality of the semiconductor light emitting devices are fixed to the substrate, and at least one set selected from the plurality of semiconductor light emitting devices is It emits light of different color temperatures. With such a configuration, the color temperature of the synthesized light emitted from the lighting fixture can be changed as appropriate, and optimal light can be provided according to the demand of the user of the lighting fixture. For example, the behavior of the lighting fixture can be approximated to that of a general halogen bulb.
 本発明の第15の態様は、半導体発光装置に取り付けられる光学部材であって、前記半導体発光装置の発光面側に一端が配設され、前記一端から入射する前記半導体発光装置の光を他端に導光して放射する透光性を備える導光部と、前記導光部の前記他端の周辺を囲むように配設され、前記導光部から放射される光を拡散して全方位に放射する配光部と、を有する光学部材である。 A fifteenth aspect of the present invention is an optical member attached to a semiconductor light emitting device, wherein one end is disposed on the light emitting surface side of the semiconductor light emitting device, and the light of the semiconductor light emitting device incident from the one end is connected to the other end. A light guide part having translucency to guide and radiate the light, and to surround the other end of the light guide part, diffusing light emitted from the light guide part in all directions And an optical member having a light distribution part that radiates to the light source.
 上述したような構造の導光部及び配光部を備えることにより、基板上から放射された光を導光部及び配光部を経由させ、配光部から拡散して全方位に放射することができる。また、光を全方位に放射させる位置である配光部の中央部ではなく、基板上に半導体発光装置を固定するため、当該基板上に容易に配線形成を行うことができ、照明器具のコスト低減を図ることができる。更に、基板上に半導体発光装置を固定するため、半導体発光装置から生じる熱を当該基板を介して良好に放熱することができる。 By providing the light guide part and the light distribution part having the structure as described above, the light emitted from the substrate is diffused from the light distribution part and emitted in all directions through the light guide part and the light distribution part. Can do. In addition, since the semiconductor light emitting device is fixed on the substrate, not on the central portion of the light distribution portion, which is a position where light is emitted in all directions, wiring can be easily formed on the substrate, and the cost of the lighting fixture can be reduced. Reduction can be achieved. Furthermore, since the semiconductor light emitting device is fixed on the substrate, heat generated from the semiconductor light emitting device can be radiated well through the substrate.
 本発明の第16の態様は、上述した第15の態様において、前記配光部が前記導光部の前記他端に接続されていることである。このように配光部を接続することで、基板上から放射された光を導光部及び配光部を経由させ、配光部から拡散して全方位に対して良好に放射することができる。 A sixteenth aspect of the present invention is that, in the fifteenth aspect described above, the light distribution section is connected to the other end of the light guide section. By connecting the light distribution units in this way, the light emitted from the substrate can be diffused from the light distribution unit through the light guide unit and the light distribution unit, and can be emitted well in all directions. .
 本発明の第17の態様は、上述した第15の態様又は第16の態様において、前記配光部が光拡散要素を含有する樹脂からなることである。このような配光部の構造により、配光部から全方位に対して良好に光を拡散することができる。 A seventeenth aspect of the present invention is that, in the fifteenth aspect or the sixteenth aspect described above, the light distribution section is made of a resin containing a light diffusing element. With such a structure of the light distribution part, light can be diffused satisfactorily from the light distribution part in all directions.
 本発明の第18の態様は、上述した第15の態様において、前記導光部の前記他端の表面に粗面処理又はコーティング処理が施されていることである。このような導光部の構成により、導光部における光の取り出し効率を向上するができる。また、導光部の当該他端の表面において、光を拡散することができ、配光部から放射される光の照射面にムラが生じにくくなる。 An eighteenth aspect of the present invention is that, in the fifteenth aspect described above, the surface of the other end of the light guide is subjected to a rough surface treatment or a coating treatment. With such a configuration of the light guide unit, the light extraction efficiency in the light guide unit can be improved. Further, light can be diffused on the surface of the other end of the light guide unit, and unevenness is less likely to occur on the irradiation surface of the light emitted from the light distribution unit.
 本発明の第19の態様は、上述した第15乃至第18の態様のいずれかにおいて、前記配光部の表面に粗面処理又はコーティング処理が施されていることである。このような配光部の構成により、配光部から放射する光を良好に拡散し、光の照射面にムラが生じにくくなる。また、配光部における光の取り出し効率も向上することになる。 A nineteenth aspect of the present invention is that in any one of the fifteenth to eighteenth aspects described above, the surface of the light distribution section is subjected to a rough surface treatment or a coating treatment. With such a configuration of the light distribution unit, the light emitted from the light distribution unit is diffused well, and unevenness is less likely to occur on the light irradiation surface. Moreover, the light extraction efficiency in the light distribution section is also improved.
 或いは、本発明は、以下の態様を含み得る。
 (1)基板と、
 前記基板上に固定された少なくとも1つの半導体発光装置と、
 入射した前記半導体発光装置からの光を拡散して全方位に放射する配光部と、
 前記半導体発光装置と前記配光部との間に設けられ、前記半導体発光装置から出射した光のうち前記配光部に直接入射しない方向に進行する光の進行方向を前記配光部に入射するように変更する導光部と、
 前記半導体発光装置、前記配光部、及び前記導光部を離間して覆う被覆体と、
を含むことを特徴とする照明器具。
Alternatively, the present invention may include the following aspects.
(1) a substrate;
At least one semiconductor light emitting device fixed on the substrate;
A light distribution unit that diffuses and emits light from the incident semiconductor light emitting device in all directions;
Provided between the semiconductor light emitting device and the light distribution unit, the light traveling from the semiconductor light emitting device that travels in a direction not directly incident on the light distribution unit is incident on the light distribution unit. A light guide portion to be changed,
A covering that covers the semiconductor light emitting device, the light distribution unit, and the light guide unit separately;
The lighting fixture characterized by including.
 (2)基板と、
 前記基板上に固定された少なくとも1つの半導体発光装置と、
 前記半導体発光装置の発光面側に一端が配設され、前記一端から入射する前記半導体発光装置の光を他端に導光して放射する透光性を備える導光部と、
 前記導光部の前記他端に配設され、前記導光部から放射される光を拡散して全方位に放射する配光部と、
 前記半導体発光装置、前記配光部、及び前記導光部を離間して覆う被覆体と、
を含むことを特徴とする照明器具。
(2) a substrate;
At least one semiconductor light emitting device fixed on the substrate;
One end is disposed on the light emitting surface side of the semiconductor light emitting device, and a light guide unit having translucency for guiding and emitting the light of the semiconductor light emitting device incident from the one end to the other end;
A light distribution unit that is disposed at the other end of the light guide unit and diffuses light emitted from the light guide unit and emits the light in all directions;
A covering that covers the semiconductor light emitting device, the light distribution unit, and the light guide unit separately;
The lighting fixture characterized by including.
 本発明の各態様において、半導体発光装置は、波長変換部材により波長変換された光を出射するように構成されていても良い。当該構成により、半導体発光装置から出射される波長変換された光が導光部で配光部に導かれ、配光部で拡散して全方位に放射される。これによって、全体として綺麗なムラのない照明光とすることを容易に実現可能である。照明光は、白色光を含む。或いは、半導体発光装置は、拡散光(面発光の光)を出射するように構成されていても良い。 In each aspect of the present invention, the semiconductor light emitting device may be configured to emit light that has been wavelength-converted by the wavelength conversion member. With this configuration, the wavelength-converted light emitted from the semiconductor light emitting device is guided to the light distribution unit by the light guide unit, diffused by the light distribution unit, and radiated in all directions. As a result, it is possible to easily achieve illumination light that is clean and uniform as a whole. The illumination light includes white light. Alternatively, the semiconductor light emitting device may be configured to emit diffused light (surface emitting light).
 以上のことから、本発明によれば、簡易な構成であり、優れた放熱性を備え、且つ広い配光性を有する照明器具、及び当該照明器具に用いられる光学部材を提供することができる。本発明により、半導体発光装置を用いて、一般的な電球に近い機能を有した照明器具を提供することができる。 From the above, according to the present invention, it is possible to provide a lighting apparatus having a simple configuration, excellent heat dissipation, and wide light distribution, and an optical member used in the lighting apparatus. According to the present invention, it is possible to provide a lighting fixture having a function similar to a general light bulb using a semiconductor light emitting device.
実施例に係る照明器具の全体を一部縦断面で示す一部切欠正面図である。It is a partially notched front view which shows the whole lighting fixture which concerns on an Example in a partial longitudinal cross section. 実施例に係る照明器具を構成する発光モジュールの斜視図である。It is a perspective view of the light emitting module which comprises the lighting fixture which concerns on an Example. 実施例に係る照明器具を構成する発光モジュールの上面図である。It is a top view of the light emitting module which comprises the lighting fixture which concerns on an Example. 図3の線IV-IVに沿った発光モジュールの断面図である。FIG. 4 is a cross-sectional view of the light emitting module taken along line IV-IV in FIG. 3. 図4に示された断面図の要部拡大図である。It is a principal part enlarged view of sectional drawing shown by FIG. 実施例に係る照明器具を構成する光学部材の斜視図である。It is a perspective view of the optical member which comprises the lighting fixture which concerns on an Example. 実施例に係る照明器具を構成する光学部材の上面図である。It is a top view of the optical member which comprises the lighting fixture which concerns on an Example. 図7の線VIII-VIIIに沿った光学部材の断面図である。It is sectional drawing of the optical member along line VIII-VIII of FIG. 変形例1に係る照明器具の全体を一部縦断面で示す一部切欠正面図である。It is a partially notched front view which shows the whole lighting fixture which concerns on the modification 1 in a part longitudinal cross section. 変形例1に係る照明器具を構成するLEDパッケージ装置の断面図である。It is sectional drawing of the LED package apparatus which comprises the lighting fixture which concerns on the modification 1. FIG. 変形例1に係る照明器具の電気回路構成の概略を示す電気回路図である。It is an electric circuit diagram which shows the outline of the electric circuit structure of the lighting fixture which concerns on the modification 1. FIG. 図11の回路構成における各トランジスタの作動状態、及び各LEDの駆動電流の電流値の一例を示すタイムチャートである。12 is a time chart showing an example of an operating state of each transistor and a current value of a driving current of each LED in the circuit configuration of FIG. 11. 図11の回路構成における各トランジスタの作動状態、及び各LEDの駆動電流の電流値の一例を示すタイムチャートである。12 is a time chart showing an example of an operating state of each transistor and a current value of a driving current of each LED in the circuit configuration of FIG. 11. 変形例2に係る光学部材の斜視図である。10 is a perspective view of an optical member according to Modification 2. FIG. 変形例2に係る光学部材の上面図である。10 is a top view of an optical member according to Modification 2. FIG. 図15の線XVI-XVIに沿った光学部材の断面図である。FIG. 16 is a cross-sectional view of the optical member taken along line XVI-XVI in FIG. 15. 導光部の変形例を示す模式図である。It is a schematic diagram which shows the modification of a light guide part. 導光部の変形例を示す模式図である。It is a schematic diagram which shows the modification of a light guide part. 導光部の変形例を示す模式図である。It is a schematic diagram which shows the modification of a light guide part. 導光部の変形例を示す模式図である。It is a schematic diagram which shows the modification of a light guide part.
 以下、図面を参照し、本発明の実施の形態について、実施例及び各変形例に基づき詳細に説明する。なお、本発明は以下に説明する内容に限定されるものではなく、その要旨を変更しない範囲において任意に変更して実施することが可能である。また、実施例及び各変形例の説明に用いる図面は、いずれも本発明による照明器具及びその構造部材である光学部材等を模式的に示すものであって、理解を深めるべく部分的な強調、拡大、縮小、又は省略などを行っており、照明器具及びその構造部材である光学部材等の縮尺や形状等を正確に表すものとはなっていない場合がある。更に、実施例及び各変形例で用いる様々な数値及び数量は、いずれも一例を示すものであり、必要に応じて様々に変更することが可能である。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings based on examples and modifications. In addition, this invention is not limited to the content demonstrated below, In the range which does not change the summary, it can change arbitrarily and can implement. In addition, the drawings used for explaining the embodiments and the respective modifications schematically show the lighting apparatus according to the present invention and the optical members that are structural members thereof, and are partially emphasized to deepen understanding. Enlargement, reduction, omission, and the like are performed, and the scale, shape, and the like of the lighting fixture and the optical member that is a structural member thereof may not be accurately represented. Furthermore, the various numerical values and quantities used in the embodiments and the modifications are only examples, and can be variously changed as necessary.
≪実施例≫
 以下において、図1乃至図8を参照しつつ、本発明の本実施例に係る照明器具及びその構成部材の構成を説明する。図1は、本実施例に係る照明器具の全体を一部縦断面で示す一部切欠正面図である。図2は、本実施例に係る照明器具を構成する発光モジュールの斜視図である。図3は、本実施例に係る照明器具を構成する発光モジュールの上面図である。図4は、図3の線IV-IVに沿った発光モジュールの断面図であり、図5は図4に示された断面図の要部拡大図である。図6は本実施例に係る照明器具を構成する光学部材の斜視図であり、図7は本実施例に係る照明器具を構成する光学部材の上面図であり、図8は図7の線VIII-VIIIに沿った光学部材の断面図である。
<< Example >>
Hereinafter, with reference to FIGS. 1 to 8, a configuration of a lighting fixture and its constituent members according to this embodiment of the present invention will be described. FIG. 1 is a partially cutaway front view showing the whole lighting apparatus according to the present embodiment in a partially longitudinal section. FIG. 2 is a perspective view of a light emitting module constituting the lighting fixture according to the present embodiment. FIG. 3 is a top view of the light emitting module constituting the lighting fixture according to the present embodiment. 4 is a cross-sectional view of the light emitting module taken along line IV-IV in FIG. 3, and FIG. 5 is an enlarged view of a main part of the cross-sectional view shown in FIG. 6 is a perspective view of an optical member constituting the lighting fixture according to the present embodiment, FIG. 7 is a top view of the optical member constituting the lighting fixture according to the present embodiment, and FIG. 8 is a line VIII in FIG. It is sectional drawing of the optical member in alignment with -VIII.
<照明器具の構成>
 図1に示すように、照明器具1は、筐体2、筐体2に設けられた光源部3、光源部3を離間して被覆する被覆体として機能する光源カバー4、筐体2の内部に設けられたヒートシンク5、及び光源部3とは反対側に配設された口金部6から構成されている。本実施例に係る照明器具1においては、外部から供給される電力が口金部6を介して光源部3に供給され、光源部3が駆動することによって放射される光が光源カバー4を透過して外部に出射される。すなわち、本実施例に係る照明器具1は、一般的な電球と同様の外形を備えている。
<Configuration of lighting fixture>
As shown in FIG. 1, the luminaire 1 includes a housing 2, a light source unit 3 provided in the housing 2, a light source cover 4 that functions as a cover that separates and covers the light source unit 3, and the interior of the housing 2. The heat sink 5 is provided on the opposite side of the light source 3 and the base 6 is disposed on the opposite side of the light source 3. In the luminaire 1 according to the present embodiment, electric power supplied from the outside is supplied to the light source unit 3 via the base unit 6, and light emitted by driving the light source unit 3 passes through the light source cover 4. Is emitted to the outside. That is, the lighting fixture 1 according to the present embodiment has the same outer shape as a general light bulb.
(筐体)
 照明器具1の筐体2は略円錐台状に形成され、その内部には種々の部品を内蔵するための空洞2aが形成されている。また、筐体2の一端には、ヒートシンク5を嵌装するための開口2bが形成されており、当該開口2bから筐体2の内部(すなわち空洞2a)に向かってヒートシンク5が配設されている。更に、筐体2は、光源部3における光の放射にともなって発生する熱を効率よく外部に放熱するために、アルミニウム等の優れた放熱性を有する金属材料から構成されている。
(Casing)
The housing 2 of the luminaire 1 is formed in a substantially truncated cone shape, and a cavity 2a for incorporating various components is formed therein. Further, an opening 2b for fitting the heat sink 5 is formed at one end of the housing 2, and the heat sink 5 is disposed from the opening 2b toward the inside of the housing 2 (that is, the cavity 2a). Yes. Furthermore, the housing 2 is made of a metal material having excellent heat dissipation properties such as aluminum in order to efficiently dissipate heat generated with light emission from the light source unit 3 to the outside.
(光源カバー)
 図1に示すように、光源カバー4は、両端部分が屈曲しており、当該屈曲した部分が筐体2の空洞2a内に入り込んでいる。そして、当該両端部分は、接着剤7を介して筐体2に固着されている。光源カバー4は、光源部3から出射する光を外部に放射するため、透光性を備える材料、例えば、ガラス、ポリカーボネート系樹脂、アクリル系樹脂等の材料を用いて形成されている。また、本実施例において、光源カバー4の形状は略球体状であり、その内部には光源部3を収納するための空洞4aが形成されている。更に、光源カバー4において、カバー表面から空洞4aの中心までの距離(すなわち、半径)は約30mmである。なお、光源カバー4の形状及び寸法等は、照明器具1の使用される環境及び用途等に応じて変更することができる。例えば、光源カバー4の形状は、半球状であってもよい。
(Light source cover)
As shown in FIG. 1, both ends of the light source cover 4 are bent, and the bent portions enter the cavity 2 a of the housing 2. The both end portions are fixed to the housing 2 via an adhesive 7. The light source cover 4 is formed using a material having translucency, for example, a material such as glass, polycarbonate resin, or acrylic resin, in order to radiate light emitted from the light source unit 3 to the outside. In this embodiment, the light source cover 4 has a substantially spherical shape, and a cavity 4a for accommodating the light source unit 3 is formed in the inside thereof. Furthermore, in the light source cover 4, the distance (that is, radius) from the cover surface to the center of the cavity 4a is about 30 mm. In addition, the shape, dimension, etc. of the light source cover 4 can be changed according to the environment where the lighting fixture 1 is used, the application, and the like. For example, the shape of the light source cover 4 may be hemispherical.
(光源部)
 図1に示すように、光源部3は、筐体2の開口2bが形成されている側に配設されている。すなわち、光源部3は、筐体2の開口2bの上方に位置するように配設されている。そして、光源部3は、半導体発光装置である発光モジュール11、発光モジュール11を支持するための固定基板12、発光モジュール11から出射する光を所望の方向に放射させる光学部材13、並びに光学部材13を固定基板12及び筐体2に固定させるための固定部材14を備えている。
(Light source)
As shown in FIG. 1, the light source unit 3 is disposed on the side of the housing 2 where the opening 2b is formed. That is, the light source unit 3 is disposed so as to be located above the opening 2 b of the housing 2. The light source unit 3 includes a light emitting module 11 that is a semiconductor light emitting device, a fixed substrate 12 that supports the light emitting module 11, an optical member 13 that emits light emitted from the light emitting module 11 in a desired direction, and an optical member 13. The fixing member 14 for fixing the to the fixed substrate 12 and the housing 2 is provided.
 また、光源部3においては、発光モジュール11から放射される光を光学部材13で拡散し、実質的にそのままの色度で(実質的な波長変換をすることなく)全方位に放射している。すなわち、本実施例に係る照明器具1においては、発光モジュール11から放射する白色光を実質的に変化させず、当該白色光のままで全方位に当該光を放射している。これにより、発光ムラがなく、全方位に均一に白色光を放射することができる。なお、上記の実質的にそのままの色度とは、発光モジュール11から放射する光と、光学部材13及び照明器具1から放射する光とが完全に同一の色度であることに限定されず、照明器具1の光を視認する使用者が気付くことが無い程度の変化(若干の色度及び波長変化)を含むことを意味している。 Moreover, in the light source part 3, the light radiated | emitted from the light emitting module 11 is diffused by the optical member 13, and is radiated | emitted in all directions with the chromaticity as it is (substantially without wavelength conversion). . That is, in the lighting fixture 1 which concerns on a present Example, the white light radiated | emitted from the light emitting module 11 is not changed substantially, but the said light is radiated | emitted in all directions with the said white light. Thereby, there is no light emission unevenness and white light can be radiated uniformly in all directions. The substantially unchanged chromaticity is not limited to the fact that the light emitted from the light emitting module 11 and the light emitted from the optical member 13 and the lighting fixture 1 are completely the same chromaticity, This means that it includes a change (a slight change in chromaticity and wavelength) that is not noticed by the user who visually recognizes the light of the lighting fixture 1.
〔発光モジュール〕
 本実施例に係る照明器具1に用いられる発光モジュール11は、モジュール本体11aと、モジュール本体11a内に格納された波長変換部材11bとから構成されている。モジュール本体11aは、外部から加えられる衝撃等から波長変換部材11bを保護するために設けられており、モジュール本体11aの材質は比較的硬い金属等の材料(例えば、鉄、アルミニウム、銅、セラミック)が用いられる。また、モジュール本体11aには、発光モジュール11の固定に用いられるネジ15が螺合するためのネジ穴16が設けられており、モジュール本体11aが固定基板12及びヒートシンク5にネジ15を介して固定されることになる。更に、モジュール本体11aには、光が出射するための円形の開口が設けられており、例えば当該開口から内部で白色化を完了した光を取り出すことが可能である。一方、別の場合には、当該開口にガラス板等が設置され、当該ガラス面のモジュール内部側に蛍光体を塗布し、この部分で白色化を行って光を取り出すようにすることもできる。なお、当該開口は、円形に限られることなく、長方形等の多角形又はその他の形であってもよい。すなわち、当該開口の形状は、要求される発光モジュール11の光出射面の形状に合わせて、適宜変更することができる。
[Light emitting module]
The light emitting module 11 used for the lighting fixture 1 according to the present embodiment includes a module main body 11a and a wavelength conversion member 11b stored in the module main body 11a. The module main body 11a is provided to protect the wavelength conversion member 11b from an impact applied from the outside. The material of the module main body 11a is a material such as a relatively hard metal (for example, iron, aluminum, copper, ceramic). Is used. The module main body 11a is provided with a screw hole 16 for screwing a screw 15 used for fixing the light emitting module 11, and the module main body 11a is fixed to the fixed substrate 12 and the heat sink 5 via the screw 15. Will be. Further, the module main body 11a is provided with a circular opening for emitting light, and for example, light that has been whitened inside can be taken out from the opening. On the other hand, in another case, a glass plate or the like may be installed in the opening, and a phosphor may be applied to the inside of the module on the glass surface, and light may be extracted by whitening at this portion. In addition, the said opening is not restricted to circular, Polygons, such as a rectangle, or other shapes may be sufficient. That is, the shape of the opening can be appropriately changed according to the required shape of the light emitting surface of the light emitting module 11.
 図2乃至図4から分かるように、モジュール本体11aは、外形が四角状であって配線基板として機能する平板部21と、平板部21のチップ実装面21a上に位置し、外形が円筒状の側壁部22と、から構成されている。また、図2及び図3から分かるように、平板部21のチップ実装面21a上であって側壁部22の内側には、12個の半導体発光素子であるLEDチップ23が規則的に配列されている。具体的には、平板部21の中央部に4個のLEDチップ23が等間隔で配置され、当該4個のLEDチップ23の四方を囲むように8個のLEDチップ23が配置されている。そして、中央部に配置された4個のLEDチップ23のそれぞれは、平板部21の中心から等しい距離だけ離間した位置に配置され、同様に、四方を囲むように配置された8個のLEDチップ23のそれぞれは、平板部21の中心から等しい距離だけ離間した位置に配置されている。すなわち、当該4個のLEDチップ23及び当該8個のLEDチップのそれぞれが同心円状に配置され、12個のLEDチップ23全体として、略円形のLEDチップ実装領域(図示せず)を形成している。なお、図5には示していないが、平板部21には、これらのLEDチップ23のそれぞれに電力を供給するための配線パターンが形成されている。 As can be seen from FIGS. 2 to 4, the module main body 11 a has a rectangular outer shape and functions as a wiring board, and is located on the chip mounting surface 21 a of the flat plate portion 21, and the outer shape is cylindrical. And a side wall portion 22. As can be seen from FIGS. 2 and 3, twelve LED chips 23 as semiconductor light emitting elements are regularly arranged on the chip mounting surface 21 a of the flat plate portion 21 and inside the side wall portion 22. Yes. Specifically, four LED chips 23 are arranged at equal intervals in the central portion of the flat plate portion 21, and eight LED chips 23 are arranged so as to surround four sides of the four LED chips 23. Each of the four LED chips 23 arranged in the central portion is arranged at a position separated by an equal distance from the center of the flat plate portion 21, and similarly, eight LED chips arranged so as to surround the four sides. Each of 23 is arrange | positioned in the position spaced apart from the center of the flat plate part 21 by equal distance. That is, each of the four LED chips 23 and the eight LED chips are concentrically arranged to form a substantially circular LED chip mounting region (not shown) as the entire twelve LED chips 23. Yes. Although not shown in FIG. 5, a wiring pattern for supplying power to each of these LED chips 23 is formed on the flat plate portion 21.
 本実施例において、LEDチップ23には、450nmのピーク波長を有した青色光を発するLEDチップを用いる。具体的には、このようなLEDチップとして、例えばInGaN半導体が発光層に用いられるGaN系LEDチップがある。なお、LEDチップ23の種類や発光波長特性はこれに限定されるものではなく、本発明の要旨から逸脱しない限りにおいて、様々なLEDチップなどの半導体発光素子を用いることができる。本実施例においてLEDチップ23が発する光のピーク波長は、360nm~480nmの波長範囲内にあることが好ましく、440nm~470nmの波長範囲内にあることがより好ましい。 In this embodiment, the LED chip 23 is an LED chip that emits blue light having a peak wavelength of 450 nm. Specifically, as such an LED chip, for example, there is a GaN-based LED chip in which an InGaN semiconductor is used for a light emitting layer. Note that the type and emission wavelength characteristics of the LED chip 23 are not limited thereto, and various semiconductor light emitting elements such as LED chips can be used without departing from the gist of the present invention. In this embodiment, the peak wavelength of light emitted from the LED chip 23 is preferably in the wavelength range of 360 nm to 480 nm, and more preferably in the wavelength range of 440 nm to 470 nm.
 なお、モジュール本体11aの材質は、上述したものに限定されるものではなく、例えば、電気絶縁性に優れた材料として、樹脂、ガラスエポキシ、樹脂中にフィラーを含有した複合樹脂などから選択された材料を用いてもよい。或いは、平板部21のチップ実装面21aにおける光の反射性を良くして波長変換部材11bの発光効率を向上させる上では、アルミナ粉末、シリカ粉末、酸化マグネシウム、酸化チタンなどの白色顔料を含むシリコーン樹脂を用いることが好ましい。より優れた放熱性を得るため、モジュール本体11aをアルミニウム等の金属から構成してもよく、当該アルミニウム等の金属の上に樹脂等の層間絶縁膜を形成し、平板部21の配線パターンなどを金属製の本体から電気的に絶縁してもよい。 In addition, the material of the module main body 11a is not limited to the above-described material, and is selected from, for example, a resin, glass epoxy, a composite resin containing a filler in the resin, and the like as a material having excellent electrical insulation. Materials may be used. Alternatively, in order to improve the light reflectivity on the chip mounting surface 21a of the flat plate portion 21 and improve the light emission efficiency of the wavelength conversion member 11b, silicone containing white pigment such as alumina powder, silica powder, magnesium oxide, titanium oxide or the like is used. It is preferable to use a resin. In order to obtain better heat dissipation, the module body 11a may be made of a metal such as aluminum, an interlayer insulating film such as a resin is formed on the metal such as aluminum, and the wiring pattern of the flat plate portion 21 is formed. It may be electrically insulated from the metal body.
 図5に示すように、LEDチップ23の平板部21側に向く面には、p電極26とn電極27とが設けられている。LEDチップ23においては、平板部21のチップ実装面21aに形成されている配線パターン28にp電極26が接合されると共に、同じくチップ実装面21aに形成された配線パターン29にn電極27が接合されている。これらp電極26及びn電極27の配線パターン28及び配線パターン29への接続は、図示しない金属バンプを介し、または、ハンダ付けによって行っている。図示されていない他のLEDチップ23も、それぞれのLEDチップ23に対応して平板部21のチップ実装面21aに形成された配線パターン28及び配線パターン29に、p電極26及びn電極27が同様にして接合されている。 As shown in FIG. 5, a p-electrode 26 and an n-electrode 27 are provided on the surface of the LED chip 23 facing the flat plate portion 21 side. In the LED chip 23, the p electrode 26 is bonded to the wiring pattern 28 formed on the chip mounting surface 21a of the flat plate portion 21, and the n electrode 27 is bonded to the wiring pattern 29 also formed on the chip mounting surface 21a. Has been. The p electrode 26 and the n electrode 27 are connected to the wiring pattern 28 and the wiring pattern 29 through a metal bump (not shown) or by soldering. Other LED chips 23 (not shown) have the same p electrodes 26 and n electrodes 27 as the wiring patterns 28 and 29 formed on the chip mounting surface 21a of the flat plate portion 21 corresponding to the respective LED chips 23. Are joined together.
 なお、LEDチップ23の平板部21への実装方法は、これに限定されるものではなく、LEDチップ23の種類や構造などに応じて適切な方法を選択可能である。例えば、LEDチップ23を平板部21の所定位置に接着固定した後、各LEDチップ23の2つの電極をワイヤボンディングで対応する配線パターンに接続してもよいし、一方の電極を上述のように対応する配線パターンに接合すると共に、他方の電極をワイヤボンディングで対応する配線パターンに接続するようにしてもよい。 Note that the method of mounting the LED chip 23 on the flat plate portion 21 is not limited to this, and an appropriate method can be selected according to the type and structure of the LED chip 23. For example, after the LED chip 23 is bonded and fixed to a predetermined position of the flat plate portion 21, two electrodes of each LED chip 23 may be connected to a corresponding wiring pattern by wire bonding, or one electrode may be connected as described above. While joining to a corresponding wiring pattern, you may make it connect the other electrode to a corresponding wiring pattern by wire bonding.
 図2乃至図4から分かるように、側壁部22によって囲まれた内部領域には、LEDチップ23から出射した青色光を波長変換する波長変換部材11bが設けられている。本実施例に係る発光モジュール11においては、LEDチップ23から放射された青色光と、当該青色光が波長変換部材11bによって波長変換されて出射される光とを合成し、当該合成光をモジュール本体11aの開口から出射している。もしくは、波長変換部材11bは、モジュールの格納ケースの開口にガラス板等が設置され、当該ガラス面のモジュール内部側に塗布され、この部分で白色化を行って光を取り出すようにすることもできる。 As can be seen from FIGS. 2 to 4, a wavelength conversion member 11 b that converts the wavelength of the blue light emitted from the LED chip 23 is provided in the inner region surrounded by the side wall portion 22. In the light emitting module 11 according to the present embodiment, the blue light emitted from the LED chip 23 and the light emitted by wavelength conversion of the blue light by the wavelength conversion member 11b are combined, and the combined light is combined with the module main body. The light is emitted from the opening 11a. Alternatively, the wavelength conversion member 11b can be configured such that a glass plate or the like is installed in the opening of the module storage case and applied to the inside of the module on the glass surface, and whitening is performed at this portion to extract light. .
 また、図5に示すように、波長変換部材11bは、LEDチップ23から入射する青色光の少なくとも一部を吸収し、当該青色光とは異なる波長の出射光を放出する蛍光体24と、蛍光体24を保持する母材25とから構成されている。本実施例に係る波長変換部材11bにおいては、青色光を放射するLEDチップ23を半導体発光素子として使用しているため、当該青色光の一部を黄色光に波長変換して白色光を合成可能である。従って、本実施例における蛍光体24は、青色光を吸収して励起し、基底状態に戻る際に青色光とは異なる波長の光を発する黄色蛍光体が用いられる。 Further, as shown in FIG. 5, the wavelength conversion member 11b absorbs at least a part of the blue light incident from the LED chip 23 and emits emission light having a wavelength different from that of the blue light, and the fluorescent light. It is comprised from the base material 25 which hold | maintains the body 24. FIG. In the wavelength conversion member 11b according to the present embodiment, since the LED chip 23 that emits blue light is used as a semiconductor light emitting element, it is possible to synthesize white light by converting a part of the blue light into yellow light. It is. Accordingly, the phosphor 24 in this embodiment is a yellow phosphor that absorbs blue light and is excited to emit light having a wavelength different from that of the blue light when returning to the ground state.
 具体的な黄色蛍光体の発光ピーク波長は、通常は530nm以上、好ましくは540nm以上、より好ましくは550nm以上で、通常は620nm以下、好ましくは600nm以下、より好ましくは580nm以下の波長範囲にあるものが好適である。中でも、黄色蛍光体として例えば、Y3Al512:Ce[YAG蛍光体]、(Y,Gd)3Al512:Ce、(Sr,Ca,Ba,Mg)2SiO4:Eu、(Ca,Sr)Si222:Eu、α-サイアロン、La3Si611:Ce(但し、その一部がCaやOで置換されていてもよい)が好ましい。 The emission peak wavelength of a specific yellow phosphor is usually 530 nm or more, preferably 540 nm or more, more preferably 550 nm or more, and usually 620 nm or less, preferably 600 nm or less, more preferably 580 nm or less. Is preferred. Among them, as the yellow phosphor, for example, Y 3 Al 5 O 12 : Ce [YAG phosphor], (Y, Gd) 3 Al 5 O 12 : Ce, (Sr, Ca, Ba, Mg) 2 SiO 4 : Eu, (Ca, Sr) Si 2 N 2 O 2 : Eu, α-sialon, La 3 Si 6 N 11 : Ce (however, a part thereof may be substituted with Ca or O) is preferable.
 母材25には、樹脂又はガラス等の透光性を備える材料を用いることができ、本実施例においては、樹脂を使用した。本実施例において、波長変換部材11bは、樹脂である母材25に蛍光体24を練り込むことにより形成されている。 As the base material 25, a material having translucency such as resin or glass can be used. In this embodiment, resin is used. In the present embodiment, the wavelength conversion member 11b is formed by kneading the phosphor 24 into a base material 25 that is a resin.
 具体的な樹脂としては、ポリカーボネート樹脂、ポリエステル系樹脂(例えば、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂)、アクリル系樹脂(例えば、ポリメタクリル酸メチル樹脂)、ポリウレタン樹脂、エポキシ樹脂、及びシリコーン系樹脂を用いることが好ましい。また、樹脂は、LEDチップから放出される光(例えば、紫外光、近紫外光、又は青色光等)、または、波長変換部材から放出される可視光を吸収しないことが好ましい。更には、LEDチップ23から発せられる青色光に対して十分な透明性と耐久性とを有していることが好ましい。 Specific resins include polycarbonate resin, polyester resin (for example, polyethylene terephthalate resin, polybutylene terephthalate resin), acrylic resin (for example, polymethyl methacrylate resin), polyurethane resin, epoxy resin, and silicone resin. It is preferable to use it. The resin preferably does not absorb light emitted from the LED chip (for example, ultraviolet light, near ultraviolet light, or blue light) or visible light emitted from the wavelength conversion member. Furthermore, it is preferable to have sufficient transparency and durability against blue light emitted from the LED chip 23.
 これらの樹脂は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。また、これらの樹脂の共重合体であってもよく、2種類以上を積層して使用してもよい。 These resins may be used alone or in combination of two or more. Moreover, the copolymer of these resin may be sufficient and it may use it, laminating | stacking 2 or more types.
 なお、樹脂としては、ポリカーボネート樹脂が、透明性、耐熱性、機械的特性、難燃性に優れる点で、最も好ましく使用できる。 As the resin, polycarbonate resin is most preferably used because it is excellent in transparency, heat resistance, mechanical properties, and flame retardancy.
 また、発光モジュール11から出射される光も白色光に限られることなく、青色光、赤色光、黄色光等の有色光を出射するようにしてもよい。 Further, the light emitted from the light emitting module 11 is not limited to white light, and may emit colored light such as blue light, red light, and yellow light.
〔固定基板〕
 図1に示すように、固定基板12は、筐体2の開口2bが形成されている面上に配設されている。固定基板12は、円盤状の形状を有し、接着剤又はネジ等の接合部材によって筐体2に固着されている。固定基板12においては、第1の面12a上に発光モジュール11が固定(実装)され、第1の面12aとは反対側に位置する第2の面12b上にヒートシンク5が固定(実装)される。また、固定基板12には、固定基板12を厚み方向に貫通するようにネジ穴が形成されており、当該ネジ穴にネジ15を螺合することで、発光モジュール11を固定基板12に固定している。更に、図1に示されていないが、固定基板12の第1の面12a上には、抵抗及びコンデンサ等が実装されており、発光モジュール11の駆動を制御するための回路パターンが形成されている。
[Fixed substrate]
As shown in FIG. 1, the fixed substrate 12 is disposed on the surface of the housing 2 where the opening 2b is formed. The fixed substrate 12 has a disk shape and is fixed to the housing 2 by a bonding member such as an adhesive or a screw. In the fixed substrate 12, the light emitting module 11 is fixed (mounted) on the first surface 12a, and the heat sink 5 is fixed (mounted) on the second surface 12b located on the opposite side of the first surface 12a. The The fixed substrate 12 is formed with screw holes so as to penetrate the fixed substrate 12 in the thickness direction, and the light emitting module 11 is fixed to the fixed substrate 12 by screwing screws 15 into the screw holes. ing. Further, although not shown in FIG. 1, a resistor, a capacitor, and the like are mounted on the first surface 12 a of the fixed substrate 12, and a circuit pattern for controlling the driving of the light emitting module 11 is formed. Yes.
 固定基板12の材料は、電気絶縁性に優れて良好な放熱性を有したアルミナ系セラミックを用いることができる。なお、固定基板12は、上述したモジュール本体11aと同様に、樹脂、ガラスエポキシ、樹脂中にフィラーを含有した複合樹脂などから選択された材料、又はその他の一般的な基板の材料を用いてもよい。 The material of the fixed substrate 12 can be an alumina-based ceramic having excellent electrical insulation and good heat dissipation. The fixed substrate 12 may be made of a material selected from a resin, glass epoxy, a composite resin containing a filler in the resin, or other general substrate materials, as in the module body 11a described above. Good.
〔光学部材〕
 また、図1、及び図6乃至図8から分かるように、光源部3を構成する光学部材13は、発光モジュール11の発光面を覆うように配置された導光部31と、導光部31の端部の周辺を囲むように導光部31の端部に固着(接続)された配光部32とから構成されている。すなわち、光学部材13は、発光モジュール11から放射される光を導光部31の一端から他端に向けて導光し、導光部31から放射される光を配光部32を介して全方位に略均等に放射する。本実施例において、導光部31と配光部32とは、樹脂などから接着剤によって固着されている。ここで、全方位とは、配光角が360°に限定されるものではなく、実質的に全方位(より広い配光角)という意味である。すなわち、本発明における全方位とは、配光角が通常180°以上、好ましくは240°以上、より好ましくは300°以上のことを意味する。
(Optical member)
As can be seen from FIG. 1 and FIGS. 6 to 8, the optical member 13 constituting the light source unit 3 includes a light guide unit 31 disposed so as to cover the light emitting surface of the light emitting module 11, and the light guide unit 31. The light distribution section 32 is fixed (connected) to the end portion of the light guide section 31 so as to surround the periphery of the end section. That is, the optical member 13 guides the light emitted from the light emitting module 11 from one end of the light guide unit 31 toward the other end, and all the light emitted from the light guide unit 31 through the light distribution unit 32. Radiates almost evenly in the direction. In the present embodiment, the light guide unit 31 and the light distribution unit 32 are fixed by an adhesive from resin or the like. Here, the omnidirectional means that the light distribution angle is not limited to 360 °, but substantially means the omnidirectional (wider light distribution angle). That is, the omnidirectional in the present invention means that the light distribution angle is usually 180 ° or more, preferably 240 ° or more, more preferably 300 ° or more.
 導光部31は、ガラス、ポリカーボネート、又は樹脂(例えば、ポリメタクリル酸メチル樹脂(Poly(methyl methacrylate):PMMA))等の透光性を備える透明材料から構成されている。また、図1、図6及び図8から分かるように、導光部31の形状は略円錐台状である。より具体的には、図8に示すように、発光モジュール11が配設される第1の面31a側には凹部31bが形成され、第1の面31aとは反対側に位置する第2の面31cは全体的に平坦であり、側面31dは第1の面31a側から第2の面31c側に向けて導光部31の直径が小さくなるように傾斜している。本実施例において、導光部31の第1の面31a側における直径は約16mmであり、第2の面31c側における直径は約12mmである。 The light guide unit 31 is made of a transparent material having translucency such as glass, polycarbonate, or resin (for example, poly (methyl methacrylate) (PMMA)). Further, as can be seen from FIGS. 1, 6 and 8, the shape of the light guide 31 is substantially a truncated cone. More specifically, as shown in FIG. 8, a concave portion 31b is formed on the first surface 31a side on which the light emitting module 11 is disposed, and the second surface located on the opposite side to the first surface 31a. The surface 31c is generally flat, and the side surface 31d is inclined so that the diameter of the light guide portion 31 decreases from the first surface 31a side to the second surface 31c side. In the present embodiment, the diameter of the light guide 31 on the first surface 31a side is about 16 mm, and the diameter on the second surface 31c side is about 12 mm.
 ここで、発光モジュール11から出射する光を導光部31により多く導く観点から、導光部31は発光モジュール11の全体を覆うことが好ましいため、導光部31の太さ(特に、第1の面31a側における直径)は、発光モジュール11の寸法に応じて適宜変更することになる。なお、導光部31の形状は円錐台に限られることなく、円柱、角柱等の他の立体形状であってもよい。 Here, from the viewpoint of guiding more light emitted from the light emitting module 11 to the light guide unit 31, the light guide unit 31 preferably covers the entire light emitting module 11. The diameter on the surface 31 a side of the light emitting module 11 is appropriately changed according to the dimensions of the light emitting module 11. The shape of the light guide unit 31 is not limited to a truncated cone, and may be another three-dimensional shape such as a cylinder or a prism.
 また、導光部31は、配光部32を光源カバー4の内側領域である空洞4aの中央部に配置するため、発光モジュール11から当該空洞4aの中央部に向かって延在している。本実施例において、導光部31の高さは約20mmである。 The light guide 31 extends from the light emitting module 11 toward the center of the cavity 4a in order to arrange the light distribution unit 32 in the center of the cavity 4a, which is the inner region of the light source cover 4. In the present embodiment, the height of the light guide portion 31 is about 20 mm.
 導光部31の第2の面31cには粗面処理が施されており、微少の凹凸が形成されている。第2の面31cを粗面とする理由は、光の取り出し効率を向上させ、第2の面31cにおいて光を拡散するためである。なお、第2の面31cを粗面とすることなく、光の取り出し効率を向上することができるコーティング処理を施してもよい。 The second surface 31c of the light guide unit 31 is subjected to a rough surface treatment to form minute irregularities. The reason why the second surface 31c is a rough surface is to improve the light extraction efficiency and diffuse the light on the second surface 31c. In addition, you may perform the coating process which can improve the extraction efficiency of light, without making the 2nd surface 31c rough.
 導光部31の側面31dは、第1の面31aから入射した光を反射し、導光部31の側面31dから漏れ出すことがないように機能する。ここで、導光部31の高さを大きくすると、側面31dにおいて良好に光を反射できない場合が生じ、光が側面31dから漏れ出す可能性がある。このため、導光部31の高さは、配光部32を光源カバー4の内側領域である空洞4aの中央部に配置しつつ、且つ第1の面31aから入射した光が漏れ出すことがない範囲内で調整する必要がある。すなわち、導光部31の高さは、照明器具1、光源カバー4、配光部32の寸法に応じて、適宜調整されることになる。 The side surface 31d of the light guide 31 functions so as to reflect the light incident from the first surface 31a and not leak from the side 31d of the light guide 31. Here, when the height of the light guide portion 31 is increased, there is a case where light cannot be favorably reflected on the side surface 31d, and light may leak from the side surface 31d. For this reason, the height of the light guide unit 31 is such that light incident from the first surface 31a leaks while the light distribution unit 32 is disposed at the center of the cavity 4a, which is the inner region of the light source cover 4. There is no need to adjust within the range. That is, the height of the light guide unit 31 is appropriately adjusted according to the dimensions of the lighting fixture 1, the light source cover 4, and the light distribution unit 32.
 配光部32は、導光部31と同様にガラス又は樹脂(例えば、ポリカーボネート、ポリメタクリル酸メチル樹脂(Poly(methyl methacrylate):PMMA))等の透光性を備える透明材料から構成されている。なお、配光部32は、導光部31と同一の透明材料から構成されてもよく、異なる透明材料から構成されていてもよい。 The light distribution part 32 is made of a transparent material having translucency such as glass or resin (for example, polycarbonate, poly (methyl methacrylate): PMMA), like the light guide part 31. . In addition, the light distribution part 32 may be comprised from the transparent material same as the light guide part 31, and may be comprised from a different transparent material.
 図1、及び図6乃至図8から分かるように、配光部32の形状は略球体状であって、配光部32の内部には略球状の空洞32aが形成されている。換言すれば、配光部32は、当該透明材料からなる外層、当該外層の内側に位置する内層(すなわち、空洞32a内の空気層)から構成される2層構造を備えている。そして、本実施例においては、透明材料のほうが空気よりも屈折率が大きくなっている。ここで、配光部32の形状を鑑みると、上述した材料の中で特にガラスが球体を形成しやすい材料である。このような配光部32の構造により、配光部32に入射した光を外部に放射する際に、良好に屈折させつつ拡散することができる。また、配光部32の中央部分を空洞(すなわち、空気層)とすることで、配光部32のコスト低減を図ることができる。 As can be seen from FIG. 1 and FIGS. 6 to 8, the light distribution portion 32 has a substantially spherical shape, and a substantially spherical cavity 32 a is formed inside the light distribution portion 32. In other words, the light distribution unit 32 has a two-layer structure including an outer layer made of the transparent material and an inner layer located inside the outer layer (that is, an air layer in the cavity 32a). In this embodiment, the transparent material has a higher refractive index than air. Here, in view of the shape of the light distribution part 32, among the materials described above, glass is a material that can easily form a sphere. With such a structure of the light distribution unit 32, when the light incident on the light distribution unit 32 is radiated to the outside, it can be diffused while being refracted well. Moreover, the cost of the light distribution part 32 can be reduced by making the center part of the light distribution part 32 into a cavity (that is, an air layer).
 なお、配光部32の空洞32a内に透明材料よりも屈折率が小さい他の部材を充填してもよい。例えば、空洞32a内にヘリウムを充填し、配光部の中央部分を空気よりも熱伝導性が高い流体層とすることができる。これにより、配光部32の放熱性を改善することができる。また、配光部32の形状は略球状に限定されず、多角形体等の他の立体形状であってもよい。 In addition, you may fill the cavity 32a of the light distribution part 32 with the other member whose refractive index is smaller than a transparent material. For example, the cavity 32a can be filled with helium, and the central portion of the light distribution part can be a fluid layer having higher thermal conductivity than air. Thereby, the heat dissipation of the light distribution part 32 can be improved. Moreover, the shape of the light distribution part 32 is not limited to a substantially spherical shape, and may be another three-dimensional shape such as a polygonal body.
 配光部32において、配光部32の外側表面32bから空洞32aの中心までの距離(すなわち、半径)は、約7.5mmである。なお、当該寸法は照明器具1、光源カバー4、発光モジュール11等の寸法に応じて適宜変更し、配光部32から出射する光が全方位に対して良好(略均等)に出射し、配光部32から出射する光が照射される照射面にムラを発生させないようにすることが好ましい。 In the light distribution part 32, the distance (namely, radius) from the outer surface 32b of the light distribution part 32 to the center of the cavity 32a is about 7.5 mm. In addition, the said dimension is suitably changed according to the dimension of the lighting fixture 1, the light source cover 4, the light emitting module 11, etc., and the light radiate | emitted from the light distribution part 32 radiate | emits favorable (substantially equal) with respect to all directions, and is distributed. It is preferable not to cause unevenness on the irradiation surface irradiated with the light emitted from the light unit 32.
 配光部32の外側表面32bには粗面処理が施されており、微少の凹凸が形成されている。外側表面32bを粗面とする理由は、光の取り出し効率を向上させるため、及び配光部32から出射する光が照射される照射面にムラを発生させないためである。なお、外側表面32bを粗面とすることなく、光の取り出し効率を向上することができるコーティング処理を施してもよい。また、当該粗面処理及びコーティング処理は、外側表面32bのみへの実施に限られず、配光部32の内側表面のみへの実施、又は配光部32の外側表面32b及び内側表面(すなわち、配光部32の表面全体)に実施してもよい。 The outer surface 32b of the light distribution part 32 is roughened, and minute irregularities are formed. The reason why the outer surface 32b is rough is to improve the light extraction efficiency and not to cause unevenness on the irradiation surface irradiated with the light emitted from the light distribution section 32. In addition, you may perform the coating process which can improve the extraction efficiency of light, without making the outer surface 32b rough. Further, the rough surface treatment and the coating treatment are not limited to being performed only on the outer surface 32b, but are performed only on the inner surface of the light distribution unit 32, or the outer surface 32b and the inner surface of the light distribution unit 32 (that is, the distribution surface). You may implement on the whole surface of the optical part 32).
 導光部31と配光部32との位置関係として、配光部32の空洞32aに対する導光部31の食い込みは、出来る限り浅く設定することが好ましい。すなわち、導光部31の第2の面31cは、配光部32の空洞32aの中心から出来る限り離間して配置されることが好ましい。従って、配光部32は、導光部31の第2の面31cにより近接する側面31dの所定位置、又は第2の面31cに固着されていることが好ましい。これにより、導光部31から配光部32へ放射される光の配光をより一層広げることができる。 As the positional relationship between the light guide unit 31 and the light distribution unit 32, it is preferable that the light guide unit 31 bites into the cavity 32a of the light distribution unit 32 as shallowly as possible. That is, it is preferable that the second surface 31 c of the light guide unit 31 is arranged as far as possible from the center of the cavity 32 a of the light distribution unit 32. Therefore, it is preferable that the light distribution unit 32 is fixed to a predetermined position of the side surface 31d closer to the second surface 31c of the light guide unit 31 or the second surface 31c. Thereby, the light distribution of the light radiated from the light guide unit 31 to the light distribution unit 32 can be further expanded.
 上述したような配光部32の構造から、導光部31から配光部32の空洞32a内に導かれた光は、配光部32の全方位に対して良好に放射されることになる。すなわち、配光部32が光源のように視認でき、一般的なハロゲン電球のように、光源カバー4の空洞4aの中心から外側に向かって光が放射されているように視認できる。 Due to the structure of the light distribution section 32 as described above, the light guided from the light guide section 31 into the cavity 32a of the light distribution section 32 is radiated well in all directions of the light distribution section 32. . That is, the light distribution part 32 can be visually recognized as a light source, and can be visually recognized as light is emitted from the center of the cavity 4a of the light source cover 4 to the outside like a general halogen light bulb.
 なお、本実施例においては、導光部31と配光部32と別々に成形し、当該2つの部材を接着剤で固着して光学部材13を形成していたが、導光部31と配光部32とを二色成形によって一体的に形成してもよい。これにより、導光部31と配光部32とを正確に位置決めして固着するような工程が不要となり、容易且つ低コストで導光部31及び配光部32を形成することができる。また、光学部材13は、固定部材14によって筐体2及び固定基板12に固定されているが、導光部31の第1の面31a側に接着剤を更に塗布して、光学部材13を固定基板12により強固に固着してもよい。 In this embodiment, the light guide unit 31 and the light distribution unit 32 are separately formed and the optical member 13 is formed by fixing the two members with an adhesive. The light part 32 may be integrally formed by two-color molding. Thereby, a process for accurately positioning and fixing the light guide unit 31 and the light distribution unit 32 becomes unnecessary, and the light guide unit 31 and the light distribution unit 32 can be formed easily and at low cost. In addition, the optical member 13 is fixed to the housing 2 and the fixed substrate 12 by the fixing member 14, but an adhesive is further applied to the first surface 31 a side of the light guide unit 31 to fix the optical member 13. The substrate 12 may be firmly fixed.
〔固定部材〕
 固定部材14は、光学部材13を固定基板12及び筐体2に固定するために設けられている。固定部材14は、固定基板12、導光部31の第1面31a側、及び発光モジュールの発光面側を被覆するとともに、導光部31の側面31dを支持している。図1に示すように、固定部材14は、円盤状の固定基板12を嵌装するための開口を一端側に有し、且つ光学部材13が貫通するための貫通孔を他端側に有している。また、固定部材14の固定基板12及び筐体2と接触する部分は、接着剤又はネジ等の接合部材を介して固定基板12及び筐体2に接合されている。固定部材14としては、例えば、プラスチック、樹脂、又は金属等の材料から構成されるフランジを用いてもよい。このような固定部材14を用いることにより、導光部31及び配光部32を強固に固定することができ、優れた信頼性を備える照明器具1を提供することができる。
[Fixing member]
The fixing member 14 is provided to fix the optical member 13 to the fixed substrate 12 and the housing 2. The fixing member 14 covers the fixed substrate 12, the first surface 31 a side of the light guide unit 31, and the light emitting surface side of the light emitting module, and supports the side surface 31 d of the light guide unit 31. As shown in FIG. 1, the fixing member 14 has an opening for fitting a disk-shaped fixing substrate 12 on one end side, and has a through-hole for penetrating the optical member 13 on the other end side. ing. Further, the portion of the fixing member 14 that comes into contact with the fixed substrate 12 and the housing 2 is joined to the fixed substrate 12 and the housing 2 via a joining member such as an adhesive or a screw. For example, a flange made of a material such as plastic, resin, or metal may be used as the fixing member 14. By using such a fixing member 14, the light guide part 31 and the light distribution part 32 can be fixed firmly, and the lighting fixture 1 provided with the outstanding reliability can be provided.
 固定部材14の表面14aには、粗面処理が施されている。これにより、固定基板12の第1の面12a上に実装された抵抗及びコンデンサ等の回路部品が、外部から視認することができなくなり、照明器具1の美観を損なわせることがなくなる。 The surface 14a of the fixing member 14 is roughened. Thereby, circuit components such as resistors and capacitors mounted on the first surface 12a of the fixed substrate 12 cannot be visually recognized from the outside, and the aesthetic appearance of the lighting fixture 1 is not impaired.
(ヒートシンク)
 図1に示すように、ヒートシンク5は、筐体2の空洞2a内に配設されるとともに、光源部3に接触している。具体的に、ヒートシンク5は、光源部3を構成する固定基板12の発光モジュール11の固定面(実装面)とは反対側に配設されている。ヒートシンク5は、ネジ15によって固定基板12に固定され、更には接着剤等によって筐体2の開口2bに固着されている。
(heatsink)
As shown in FIG. 1, the heat sink 5 is disposed in the cavity 2 a of the housing 2 and is in contact with the light source unit 3. Specifically, the heat sink 5 is disposed on the opposite side of the fixed surface (mounting surface) of the light emitting module 11 of the fixed substrate 12 constituting the light source unit 3. The heat sink 5 is fixed to the fixed substrate 12 with screws 15 and further fixed to the opening 2b of the housing 2 with an adhesive or the like.
 なお、ヒートシンク5に代えて、ファンを配設してもよい。この場合には、筐体2の空洞2a内の暖まった空気を排気し且つ比較的温度の低い空気を吸気できるように、空気の排出口を筐体2の側面等を設けてもよい。 Note that a fan may be provided in place of the heat sink 5. In this case, the air discharge port may be provided on the side surface of the housing 2 or the like so that warm air in the cavity 2a of the housing 2 can be exhausted and air having a relatively low temperature can be sucked.
(口金部)
 口金部6は、照明器具1の電力供給源に設けられた給電ソケットに着脱される部分である口金本体6aと、口金本体6aと筐体2とを連結する連結部6bとから構成されている。口金本体6aを当該給電ソケットに対して着脱自在とするため、口金本体6aの表面はねじ切られており、口金本体6aを当該給電ソケットに螺合することによって着脱することができる。また、連結部6bは、口金本体6aと筐体2とを電気的に絶縁するために、絶縁材料から構成されている。
(Base part)
The base part 6 includes a base body 6 a that is a part that is attached to and detached from a power supply socket provided in a power supply source of the lighting fixture 1, and a connection part 6 b that connects the base body 6 a and the housing 2. . In order to make the base body 6a detachable from the power supply socket, the surface of the base body 6a is threaded and can be attached and detached by screwing the base body 6a into the power supply socket. The connecting portion 6b is made of an insulating material in order to electrically insulate the base body 6a and the housing 2 from each other.
<照明器具の動作>
 次に、本実施例に係る照明器具1の動作について説明する。
<Operation of lighting equipment>
Next, operation | movement of the lighting fixture 1 which concerns on a present Example is demonstrated.
 先ず、口金部6を屋内又は屋外に設けられている照明システムの給電ソケット(図示せず)に螺合し、照明器具1を当該照明システムに取り付ける。このような状態において、照明システムの給電スイッチをオン状態に移行させ、照明器具1に電力を供給する。当該電力は口金部6、及び固定基板12上に形成された駆動回路等を介して発光モジュール11に供給され、発光モジュール11のLEDチップ23が発光して、発光モジュール11から所望の光が放射される。 First, the base part 6 is screwed into a power supply socket (not shown) of an illumination system provided indoors or outdoors, and the luminaire 1 is attached to the illumination system. In such a state, the power supply switch of the lighting system is shifted to the on state, and power is supplied to the lighting fixture 1. The electric power is supplied to the light emitting module 11 via the base 6 and a driving circuit formed on the fixed substrate 12, and the LED chip 23 of the light emitting module 11 emits light, and desired light is emitted from the light emitting module 11. Is done.
 発光モジュール11から放射した光は、導光部31の第1の面31aから導光部31内に向かって入射する。この際、導光部31は、発光モジュール11の光出射面を取り囲むように配置されているため、発光モジュール11から放射される光は、全て導光部31内に入射することになる。 The light emitted from the light emitting module 11 enters the light guide 31 from the first surface 31 a of the light guide 31. At this time, since the light guide unit 31 is disposed so as to surround the light emitting surface of the light emitting module 11, all the light emitted from the light emitting module 11 enters the light guide unit 31.
 導光部31内に入射した光は、直接又は導光部31の側面31dにおいて反射して導光部31の第2の面31cに到達する。本実施例において、導光部31の高さは、配光部32を光源カバー4の内側領域である空洞4aの中央部に配置しつつ、且つ第1の面31aから入射した光が漏れ出すことがない範囲内で調整されているため、導光部31内に入射した光のほとんどが、導光部31の第2の面31cに到達することになる。 The light incident on the light guide 31 is reflected directly or on the side surface 31d of the light guide 31 and reaches the second surface 31c of the light guide 31. In the present embodiment, the height of the light guide unit 31 is such that the light distribution unit 32 is disposed at the center of the cavity 4a, which is the inner region of the light source cover 4, and light incident from the first surface 31a leaks out. Since the adjustment is made within a range that does not occur, most of the light entering the light guide portion 31 reaches the second surface 31 c of the light guide portion 31.
 導光部31の第2の面31cに到達した光は、配光部32の空洞32a内に向かって放射する。本実施例においては、導光部31の第2の面31cには粗面処理が施されているため、導光部31の第2の面31cにおいて光が拡散され、導光部31の第2の面31cに到達した光は広範囲に放射されることになる。 The light that has reached the second surface 31 c of the light guide part 31 is emitted toward the cavity 32 a of the light distribution part 32. In the present embodiment, since the rough surface treatment is performed on the second surface 31 c of the light guide unit 31, light is diffused on the second surface 31 c of the light guide unit 31, and the second surface 31 c of the light guide unit 31 is processed. The light reaching the second surface 31c is emitted in a wide range.
 配光部32の空洞32a内に導かれた光は、配光部32の外側表面32bから光源カバー4に向かって放射され、更には当該光源カバー4を透過して外部に放射される。本実施例においては、外側表面32bには粗面処理が施されているため、外側表面32bにおいて光が拡散され、外側表面32bに到達した光は広範囲に放射されることになる。更に、配光部32の形状が略球体状であることから、配光部32の中心から全方位に向かって略均等に光が放射されることになり、照明器具1の広配光が実現されている。また、外側表面32bには粗面処理を施すことによって外側表面32bにおいて光が拡散されるため、照明器具1の照射面にムラが形成されにくくなる。 The light guided into the cavity 32 a of the light distribution unit 32 is emitted from the outer surface 32 b of the light distribution unit 32 toward the light source cover 4, and is further transmitted through the light source cover 4 and emitted to the outside. In the present embodiment, since the outer surface 32b is roughened, light is diffused on the outer surface 32b, and the light reaching the outer surface 32b is emitted in a wide range. Furthermore, since the shape of the light distribution part 32 is substantially spherical, light is radiated substantially uniformly from the center of the light distribution part 32 in all directions, thereby realizing a wide light distribution of the lighting fixture 1. Has been. Moreover, since light is diffused in the outer surface 32b by roughening the outer surface 32b, unevenness is hardly formed on the irradiation surface of the lighting fixture 1.
 また、本実施例に係る照明器具1においては、発光モジュール11を光源カバー4の空洞4a内に中心に配置することなく、固定基板12に固定しつつヒートシンク5に近接しているため、発光モジュール11の発光の際に生じる熱は、固定基板12及びヒートシンクを介して良好に放熱される。これにより、照明器具1の発熱による問題が生じにくくなり、照明器具1自体の電気的特性及び信頼性の向上に繋がることになる。 Moreover, in the lighting fixture 1 according to the present embodiment, the light emitting module 11 is not disposed in the center in the cavity 4a of the light source cover 4, but is fixed to the fixed substrate 12 and close to the heat sink 5, and thus the light emitting module 11 The heat generated during the light emission of 11 is radiated well through the fixed substrate 12 and the heat sink. Thereby, it becomes difficult to produce the problem by the heat_generation | fever of the lighting fixture 1, and it leads to the improvement of the electrical property and reliability of the lighting fixture 1 itself.
<本実施例の効果>
 本実施例に係る導光部31及び配光部32を備えることにより、固定基板12上の発光モジュール11から放射された光を導光部31及び配光部32を経由させ、配光部32から拡散して全方位に放射することができる。また、光を全方位に放射させる位置である配光部32の中央部ではなく、固定基板12上に発光モジュール11を固定するため、固定基板12上に容易に配線形成を行うことができ、照明器具1のコスト低減を図ることができる。更に、固定基板12上に発光モジュール11を固定するため、発光モジュール11から生じる熱を固定基板12を介して良好に放熱することができる。
<Effect of this embodiment>
By providing the light guide unit 31 and the light distribution unit 32 according to the present embodiment, the light emitted from the light emitting module 11 on the fixed substrate 12 is caused to pass through the light guide unit 31 and the light distribution unit 32, thereby distributing the light distribution unit 32. Can diffuse and radiate in all directions. In addition, since the light emitting module 11 is fixed on the fixed substrate 12 instead of the central portion of the light distribution unit 32 that is a position for emitting light in all directions, wiring can be easily formed on the fixed substrate 12. Cost reduction of the lighting fixture 1 can be aimed at. Furthermore, since the light emitting module 11 is fixed on the fixed substrate 12, heat generated from the light emitting module 11 can be radiated well through the fixed substrate 12.
 以上のように、本実施例に係る照明器具1は、簡易な構成であり、且つ優れた放熱性及び配光性を備えることになる。また、本実施例に係る光学部材13は、照明器具1に用いられるとともに、照明器具1の簡易な構成及び優れた放熱性を実現するために重要な部材となる。 As described above, the lighting fixture 1 according to the present embodiment has a simple configuration and has excellent heat dissipation and light distribution. The optical member 13 according to the present embodiment is used for the lighting fixture 1 and is an important member for realizing a simple configuration and excellent heat dissipation of the lighting fixture 1.
 また、本実施例に係る導光部31は、配光部32が光源カバー4の空洞4aの中央部に位置するように延在しているため、照明器具1の中心から光を全方位に放射させることができ、優れた光学特性を備える照明器具1を提供することができる。 Moreover, since the light guide part 31 which concerns on a present Example is extended so that the light distribution part 32 may be located in the center part of the cavity 4a of the light source cover 4, light is omnidirectional from the center of the lighting fixture 1 The luminaire 1 that can be radiated and has excellent optical characteristics can be provided.
 更に、本実施例に係る配光部32の形状は球体状であるため、導光部31から入射した光が照明器具1の中心から全方位に放射されることになり、照明器具1を一般的なハロゲン電球のように見せることができる。 Furthermore, since the shape of the light distribution unit 32 according to the present embodiment is a sphere, light incident from the light guide unit 31 is radiated in all directions from the center of the lighting device 1. It can look like a typical halogen bulb.
≪変形例1≫
 上述した実施例においては、複数のLEDチップ23を備えるチップ・オン・ボード(COB:Chip On Board)タイプの発光モジュール11を半導体発光装置として固定基板12に固定していたが、半導体発光装置は上述したようなCOBに限定されることはない。例えば、LEDチップを波長変換部材内に埋設したようなパッケージタイプのLEDパッケージ装置を半導体発光装置として用いてもよい。以下において、図9及び図10を参照しつつ、このようなLEDパッケージ装置を用いた光源部3'を備える照明器具1'を変形例1として説明する。図9は、変形例1に係る照明器具1'の全体を一部縦断面で示す一部切欠正面図である。図10は、変形例1に係る照明器具を構成するLEDパッケージ装置の断面図である。なお、上述した実施例と同様の構成については、同一の符号を付し、その説明を省略する。
<< Modification 1 >>
In the above-described embodiment, the chip-on-board (COB) type light emitting module 11 including the plurality of LED chips 23 is fixed to the fixed substrate 12 as a semiconductor light emitting device. It is not limited to COB as described above. For example, a package type LED package device in which an LED chip is embedded in a wavelength conversion member may be used as the semiconductor light emitting device. Hereinafter, with reference to FIGS. 9 and 10, a lighting apparatus 1 ′ including the light source unit 3 ′ using such an LED package device will be described as a first modification. FIG. 9 is a partially cutaway front view showing the entire lighting fixture 1 ′ according to the modified example 1 in a partly longitudinal section. FIG. 10 is a cross-sectional view of the LED package device constituting the lighting fixture according to the first modification. In addition, about the structure similar to the Example mentioned above, the same code | symbol is attached | subjected and the description is abbreviate | omitted.
<照明器具の構成>
 本変形例に係る照明器具1'の構成と、上述した実施例に係る照明器具1の構成との相違点は、発光モジュール11に代えて第1LEDパッケージ装置41(以下、第1LED41とも称する)、及び第2LEDパッケージ装置42(以下、第2LED42とも称する)を固定基板12に固定している点のみである。従って、本変形例に係る照明器具1'においては、第1LED41及び第2LED42から放射する光を導光部31を介して配光部32に導き、当該光を拡散させつつ配光部32から全方位に向けて略均等に放射することになる。
<Configuration of lighting fixture>
The difference between the configuration of the lighting fixture 1 ′ according to this modification and the configuration of the lighting fixture 1 according to the above-described embodiment is that the first LED package device 41 (hereinafter also referred to as the first LED 41) instead of the light emitting module 11. The second LED package device 42 (hereinafter also referred to as a second LED 42) is fixed to the fixed substrate 12 only. Therefore, in the lighting fixture 1 ′ according to the present modification, the light emitted from the first LED 41 and the second LED 42 is guided to the light distribution unit 32 through the light guide unit 31, and all of the light distribution unit 32 diffuses the light. It will radiate substantially uniformly toward the direction.
(LEDパッケージ装置)
 次に、図10を参照しつつ本発明の変形例1に係る第1LED41の構成を説明する。本変形例において、第1LED41は、白色光を放射する光源である。図10に示すように、本変形例に係る第1LED41は、パッケージ43、パッケージ43内に実装された半導体発光素子であるLEDチップ44、及びLEDチップ44から放射される光の少なくとも一部を波長変換する機能を有する波長変換部材45から構成されている。
(LED package device)
Next, the configuration of the first LED 41 according to the first modification of the present invention will be described with reference to FIG. In the present modification, the first LED 41 is a light source that emits white light. As shown in FIG. 10, the first LED 41 according to this modification includes a package 43, an LED chip 44 that is a semiconductor light emitting element mounted in the package 43, and at least a part of light emitted from the LED chip 44. It is comprised from the wavelength conversion member 45 which has the function to convert.
 従って、本変形例に係る第1LED41においては、LEDチップ44から放射される光と、波長変換部材45の機能によって波長変換された互いに波長の異なる光との合成光である白色光、又は波長変換部材45の機能によって波長変換された互いに波長の異なる光のみの合成光である白色光が、波長変換部材45のから外部に向かって出射することになる。以下において、第1LED41を構成する各部材を詳細に説明する。 Therefore, in the first LED 41 according to this modification, white light that is a combined light of light emitted from the LED chip 44 and light having different wavelengths that have been wavelength-converted by the function of the wavelength conversion member 45, or wavelength conversion. The white light, which is the combined light of only the light having different wavelengths that has been wavelength-converted by the function of the member 45, is emitted from the wavelength conversion member 45 to the outside. Below, each member which comprises 1st LED41 is demonstrated in detail.
〔パッケージ〕
 パッケージ43は、電気絶縁性に優れて良好な放熱性を有し、かつ、反射率の高い(好ましくは反射率が80%以上の)アルミナ系セラミックから構成されている。また、パッケージ43には、LEDチップ44を収納するための開口部43aが形成されており、当該開口部43aの底面にLEDチップ44が実装されている。更に、パッケージ43の実装面(すなわち、開口部43aの底面には、LEDチップ44を実装し且つLEDチップ44に対して電流を供給するための配線パターン(図示せず)が形成されている。
〔package〕
The package 43 is made of an alumina-based ceramic having excellent electrical insulation, good heat dissipation, and high reflectivity (preferably a reflectivity of 80% or more). The package 43 has an opening 43a for accommodating the LED chip 44, and the LED chip 44 is mounted on the bottom surface of the opening 43a. Furthermore, a wiring pattern (not shown) for mounting the LED chip 44 and supplying current to the LED chip 44 is formed on the mounting surface of the package 43 (that is, on the bottom surface of the opening 43a).
 なお、パッケージ43の材質はアルミナ系セラミックに限定されるものではなく、例えば、電気絶縁性に優れた材料として、樹脂、ガラスエポキシ樹脂、樹脂中にフィラーを含有した複合樹脂などから選択された材料を用いてパッケージ43の本体を形成してもよい。或いは、パッケージ43のチップ実装面における光の反射性を良くして第1LED41の発光効率を向上させる上では、アルミナ粉末、シリカ粉末、酸化マグネシウム、酸化チタンなどの白色顔料を含むシリコーン樹脂を用いることが好ましい。一方、より優れた放熱性及び反射性を得るため、パッケージ43の本体を絶縁体で被覆したアルミニウム等の金属製としてもよい。このような場合には、パッケージ43の配線パターンなどを金属製の本体から電気的に絶縁する必要がある。 The material of the package 43 is not limited to alumina-based ceramics. For example, a material selected from resin, glass epoxy resin, composite resin containing a filler in the resin, etc. as a material having excellent electrical insulation. The body of the package 43 may be formed using Alternatively, in order to improve the light emission efficiency of the first LED 41 by improving the light reflectivity on the chip mounting surface of the package 43, a silicone resin containing a white pigment such as alumina powder, silica powder, magnesium oxide, or titanium oxide is used. Is preferred. On the other hand, in order to obtain better heat dissipation and reflectivity, the package 43 may be made of a metal such as aluminum whose body is covered with an insulator. In such a case, it is necessary to electrically insulate the wiring pattern of the package 43 from the metal main body.
〔LEDチップ〕
 本変形例においては、1個のLEDチップ44が第1LED41の発光源である半導体光源として機能している。本変形例においてLEDチップ44には、430nm~480nmの範囲内にピーク波長を有した青色光を発する青色発光ダイオード、又は360nm~430nmの範囲内にピーク波長を有した紫外~紫色光を発する紫色発光ダイオードを用いることができる。青色発光ダイオードの場合において、ピーク波長は430nm~480nmの波長範囲内にあることが好ましく、特に450nmであることが好ましい。紫色発光ダイオードの場合においては、ピーク波長は360nm~430nmの波長範囲内にあることが好ましく、特に400~415nmであることが好ましい。
[LED chip]
In the present modification, one LED chip 44 functions as a semiconductor light source that is a light source of the first LED 41. In this modification, the LED chip 44 has a blue light emitting diode that emits blue light having a peak wavelength in the range of 430 nm to 480 nm, or a purple that emits ultraviolet to purple light having a peak wavelength in the range of 360 nm to 430 nm. Light emitting diodes can be used. In the case of a blue light emitting diode, the peak wavelength is preferably in the wavelength range of 430 nm to 480 nm, and particularly preferably 450 nm. In the case of a violet light emitting diode, the peak wavelength is preferably in the wavelength range of 360 nm to 430 nm, particularly preferably 400 to 415 nm.
 なお、LEDチップ44の数量は1個に限定されることなく、同一のピーク波長を有する光を出射する複数のLEDチップ44を半導体発光源として用いてもよい。また、LEDチップ44の種類や発光波長特性はこれに限定されるものではなく、本発明の要旨から逸脱しない限りにおいて、様々なLEDチップなどの半導体発光素子を用いることができる。 The number of LED chips 44 is not limited to one, and a plurality of LED chips 44 that emit light having the same peak wavelength may be used as the semiconductor light emitting source. Further, the type and emission wavelength characteristics of the LED chip 44 are not limited thereto, and various semiconductor light emitting elements such as LED chips can be used without departing from the gist of the present invention.
 LEDチップ44は、パッケージ43の開口部43aの底面(すなわち、チップ実装面)に対向する面側に、電極(図示せず)を有している。そして、上述したパッケージ43上の配線パターンには、当該電極が電気的に接続されている。当該電極と配線パターンとの電気的な接続は、例えば金属バンプを介し、ハンダ付けによって行われている。なお、LEDチップ44のパッケージ43への実装方法は、これに限定されるものではなく、LEDチップ44の種類や構造などに応じて適切な方法を選択可能である。例えば、LEDチップ44をパッケージ43の所定位置に接着固定した後、LEDチップ44の電極を対応する配線パターンにワイヤボンディングによって接続してもよい。 The LED chip 44 has an electrode (not shown) on the surface side facing the bottom surface (that is, the chip mounting surface) of the opening 43a of the package 43. The electrodes are electrically connected to the wiring pattern on the package 43 described above. The electrical connection between the electrode and the wiring pattern is performed by soldering, for example, via a metal bump. The method for mounting the LED chip 44 on the package 43 is not limited to this, and an appropriate method can be selected according to the type and structure of the LED chip 44. For example, after the LED chip 44 is bonded and fixed to a predetermined position of the package 43, the electrodes of the LED chip 44 may be connected to a corresponding wiring pattern by wire bonding.
〔波長変換部材〕
 波長変換部材45は、LEDチップ44から入射する入射光の少なくとも一部を吸収し、当該入射光とは異なる波長の出射光を放出する複数の蛍光体と、複数の蛍光体を保持する母材とから構成されている。すなわち、波長変換部材45は、複数の蛍光体を含有する部材である。
(Wavelength conversion member)
The wavelength conversion member 45 absorbs at least a part of incident light incident from the LED chip 44 and emits emitted light having a wavelength different from the incident light, and a base material that holds the plurality of phosphors. It consists of and. That is, the wavelength conversion member 45 is a member containing a plurality of phosphors.
 本変形例の第1LED41において、青色光を放射する青色発光ダイオードをLEDチップ44として使用した場合、第1LED41から白色光を得るためには、当該青色光の少なくとも一部を緑色光及び赤色光に波長変換し、当該緑色光及び赤色光のいずれにも波長変換されなかった(すなわち、波長変換部材45を透過する)青色光を当該緑色光及び赤色光と混合して白色光を合成する必要がある。このような場合、本変形例における蛍光体には、青色光を吸収して励起し、基底状態に戻る際に青色光とは異なる波長を有する緑色光を放射することができる緑色蛍光体、及び青色光を吸収して励起し、基底状態に戻る際に青色光とは異なる波長を有する赤色光を放射することができる赤色蛍光体が用いられる。 In the first LED 41 of this modification, when a blue light emitting diode that emits blue light is used as the LED chip 44, in order to obtain white light from the first LED 41, at least a part of the blue light is converted into green light and red light. It is necessary to synthesize white light by wavelength conversion and mixing blue light that has not been wavelength-converted by either the green light or red light (that is, transmitted through the wavelength conversion member 45) with the green light and red light. is there. In such a case, the phosphor in the present modification includes a green phosphor that can absorb and excite blue light and emit green light having a wavelength different from that of the blue light when returning to the ground state, and A red phosphor is used that is excited by absorbing blue light and can emit red light having a wavelength different from that of the blue light when returning to the ground state.
 一方、紫外~紫色光を放射する紫色発光ダイオードをLEDチップ44として使用した場合、第1LED41から白色光を得るためには、当該紫外~紫色光の少なくとも一部を青色光、緑色光及び赤色光に波長変換し、当該青色光、緑色光及び赤色光の混合により白色光を合成する必要がある。このような場合、本変形例における蛍光体には、紫外~紫色光を吸収して励起し、基底状態に戻る際に紫外~紫色光とは異なる波長を有する青色光を放射することができる青色蛍光体、紫外~紫色光を吸収して励起し、基底状態に戻る際に紫外~紫色光とは異なる波長を有する緑色光を放射することができる緑色蛍光体、及び紫外~紫色光を吸収して励起し、基底状態に戻る際に紫外~紫色光とは異なる波長を有する赤色光を放射することができる赤色蛍光体が用いられる。 On the other hand, when a violet light emitting diode that emits ultraviolet to violet light is used as the LED chip 44, in order to obtain white light from the first LED 41, at least part of the ultraviolet to violet light is blue light, green light, and red light. It is necessary to synthesize the white light by mixing the blue light, the green light and the red light. In such a case, the phosphor in this modification is excited by absorbing ultraviolet to violet light, and can emit blue light having a wavelength different from that of ultraviolet to violet light when returning to the ground state. Phosphor, absorbs ultraviolet to violet light, excites and emits green light having a wavelength different from ultraviolet to violet light when returning to the ground state, and absorbs ultraviolet to violet light In this case, a red phosphor that can emit red light having a wavelength different from ultraviolet to violet light when excited and returned to the ground state is used.
 以下において、各蛍光体の具体例を示す。 In the following, specific examples of each phosphor will be shown.
 本変形例に係る第1LED41における緑色蛍光体は、発光ピーク波長が、通常は510nm以上、好ましくは530nm以上、より好ましくは535nm以上で、通常は570nm未満、好ましくは550nm以下、さらに好ましくは545nm以下の波長範囲にあるものが好適である。具体的な緑色蛍光体として、例えば、(Y,Lu)3Al,Ga)512:Ce、CaSc24:Ce、Ca3(Sc,Mg)2Si312:Ce、(Sr,Ba)2SiO4:Eu(BSS)、(Si,Al)6(O,N)8:Eu(β-サイアロン)、(Ba,Sr)3Si6122:Eu(BSON)、SrGa24:Eu、BaMgAl1017:Eu,Mn、(Ba,Sr,Ca,Mg)Si222:Euが用いられることが好ましい。中でも、BSS、β-サイアロン、BSON、SrGa24:Eu、BaMgAl1017:Eu,Mnが用いられることがより好ましく、BSS、β-サイアロン、BSONが用いられることがさらに好ましく、β-サイアロン、BSONが用いられることが特に好ましく、β-サイアロンが用いられることが最も好ましい。本変形例では、緑色蛍光体としてβ-サイアロンが用いられている。 The green phosphor in the first LED 41 according to this modification has an emission peak wavelength of usually 510 nm or more, preferably 530 nm or more, more preferably 535 nm or more, usually less than 570 nm, preferably 550 nm or less, more preferably 545 nm or less. Those in the wavelength range are preferred. As specific green phosphors, for example, (Y, Lu) 3 Al, Ga) 5 O 12 : Ce, CaSc 2 O 4 : Ce, Ca 3 (Sc, Mg) 2 Si 3 O 12 : Ce, (Sr , Ba) 2 SiO 4 : Eu (BSS), (Si, Al) 6 (O, N) 8 : Eu (β-sialon), (Ba, Sr) 3 Si 6 O 12 N 2 : Eu (BSON), SrGa 2 S 4 : Eu, BaMgAl 10 O 17 : Eu, Mn, (Ba, Sr, Ca, Mg) Si 2 O 2 N 2 : Eu are preferably used. Among these, BSS, β-sialon, BSON, SrGa 2 S 4 : Eu, BaMgAl 10 O 17 : Eu, Mn are more preferably used, BSS, β-sialon, and BSON are more preferably used, and β- Sialon and BSON are particularly preferably used, and β-sialon is most preferably used. In this modification, β-sialon is used as the green phosphor.
 本変形例に係る第1LED41における赤色蛍光体は、発光ピーク波長が、通常は570nm以上、好ましくは580nm以上、より好ましくは600nm以上、さらに好ましくは630nm以上、特に好ましくは645nm以上で、通常は780nm以下、好ましくは700nm以下、より好ましくは680nm以下の波長範囲にあるものが好適である。具体的な赤色蛍光体として、例えば、CaAlSi(N,O)3:Eu、(Ca,Sr,Ba)2Si5(N,O)8:Eu、(Ca,Sr,Ba)Si(N,O)2:Eu、(Ca,Sr,Ba)AlSi(N,O)3:Eu、(Sr,Ba)3SiO5:Eu、(Ca,Sr)S:Eu、SrAlSi47:Euが好ましく、(Ca,Sr,Ba)2Si5(N,O)8:Eu、(Sr,Ca)AlSi(N,O)3:Eu、SrAlSi47:Euが好ましい。中でも、(Sr,Ca)AlSi(N,O)3:Eu、SrAlSi47:Euがより好ましく、(Sr,Ca)AlSi(N,O)3:Euがさらに好ましい。本変形例では、赤色蛍光体としてCaAlSi(N,O)3:Eu(以下、CASNとも称する)が用いられている。 The red phosphor in the first LED 41 according to this modification has an emission peak wavelength of usually 570 nm or more, preferably 580 nm or more, more preferably 600 nm or more, further preferably 630 nm or more, particularly preferably 645 nm or more, and usually 780 nm. Hereinafter, those having a wavelength range of preferably 700 nm or less, more preferably 680 nm or less are suitable. As a specific red phosphor, for example, CaAlSi (N, O) 3 : Eu, (Ca, Sr, Ba) 2 Si 5 (N, O) 8 : Eu, (Ca, Sr, Ba) Si (N, O) 2 : Eu, (Ca, Sr, Ba) AlSi (N, O) 3 : Eu, (Sr, Ba) 3 SiO 5 : Eu, (Ca, Sr) S: Eu, SrAlSi 4 N 7 : Eu (Ca, Sr, Ba) 2 Si 5 (N, O) 8 : Eu, (Sr, Ca) AlSi (N, O) 3 : Eu, and SrAlSi 4 N 7 : Eu are preferable. Among these, (Sr, Ca) AlSi (N, O) 3 : Eu and SrAlSi 4 N 7 : Eu are more preferable, and (Sr, Ca) AlSi (N, O) 3 : Eu is more preferable. In this modification, CaAlSi (N, O) 3 : Eu (hereinafter also referred to as CASN) is used as the red phosphor.
 赤色蛍光体として、例えば、CaAlSi(N,O)3:Eu、(Ca,Sr,Ba)2Si5(N,O)8:Eu、(Ca,Sr,Ba)Si(N,O)2:Eu、(Ca,Sr,Ba)AlSi(N,O)3:Eu、(Sr,Ba)3SiO5:Eu、(Ca,Sr)S:Eu、SrAlSi47:Eu、Eu(ジベンゾイルメタン)3・1,10-フェナントロリン錯体などのβ-ジケトン系Eu錯体、カルボン酸系Eu錯体が好ましく、(Ca,Sr,Ba)2Si5(N,O)8:Eu、(Sr,Ca)AlSi(N,O)3:Eu、SrAlSi47:Euが用いられることが好ましい。中でも、(Sr,Ca)AlSi(N,O)3:Eu、SrAlSi47:Euがより好ましく、(Sr,Ca)AlSi(N,O)3:Euがさらに好ましい。 As the red phosphor, for example, CaAlSi (N, O) 3 : Eu, (Ca, Sr, Ba) 2 Si 5 (N, O) 8 : Eu, (Ca, Sr, Ba) Si (N, O) 2 : Eu, (Ca, Sr, Ba) AlSi (N, O) 3 : Eu, (Sr, Ba) 3 SiO 5 : Eu, (Ca, Sr) S: Eu, SrAlSi 4 N 7 : Eu, Eu (di) Β-diketone Eu complexes such as benzoylmethane) 3 · 1,10-phenanthroline complex and carboxylic acid Eu complexes are preferred, and (Ca, Sr, Ba) 2 Si 5 (N, O) 8 : Eu, (Sr, Ca) AlSi (N, O) 3 : Eu and SrAlSi 4 N 7 : Eu are preferably used. Among these, (Sr, Ca) AlSi (N, O) 3 : Eu and SrAlSi 4 N 7 : Eu are more preferable, and (Sr, Ca) AlSi (N, O) 3 : Eu is more preferable.
 本変形例に係る第1LED41における青色蛍光体の発光ピーク波長は、通常は420nm以上、好ましくは430nm以上、より好ましくは440nm以上で、通常は500nm未満、好ましくは490nm以下、より好ましくは480nm以下、更に好ましくは470nm以下、特に好ましくは460nm以下の波長範囲にあるものが好適である。具体的な青色蛍光体として、(Ca,Sr,Ba)MgAl1017:Eu、(Sr,Ca,Ba,Mg)10(PO46(Cl,F)2:Eu、(Ba,Ca,Mg,Sr)2SiO4:Eu、(Ba,Ca,Sr)3MgSi28:Euが好ましく、(Ba,Sr)MgAl1017:Eu、(Ca,Sr,Ba)10(PO46(Cl,F)2:Eu、Ba3MgSi28:Euがより好ましく、Sr10(PO4612:Eu、BaMgAl1017:Euがさらに好ましく、(Sr,Ba,Ca)5(PO43Cl:Eu(より具体的には、Sr5(PO43Cl:Eu(以下、SCAとも称する。)や、(Sr1-xBax5(PO43Cl:Eu(x>0、好ましくは0.4>x>0.12)(以下、SBCAとも称する。))が特に好ましい。本変形例では、青色蛍光体としてSBCAが用いられている。 The emission peak wavelength of the blue phosphor in the first LED 41 according to this modification is usually 420 nm or more, preferably 430 nm or more, more preferably 440 nm or more, usually less than 500 nm, preferably 490 nm or less, more preferably 480 nm or less, More preferred are those in the wavelength range of 470 nm or less, particularly preferably 460 nm or less. As specific blue phosphors, (Ca, Sr, Ba) MgAl 10 O 17 : Eu, (Sr, Ca, Ba, Mg) 10 (PO 4 ) 6 (Cl, F) 2 : Eu, (Ba, Ca , Mg, Sr) 2 SiO 4 : Eu, (Ba, Ca, Sr) 3 MgSi 2 O 8 : Eu are preferred, and (Ba, Sr) MgAl 10 O 17 : Eu, (Ca, Sr, Ba) 10 (PO 4 ) 6 (Cl, F) 2 : Eu, Ba 3 MgSi 2 O 8 : Eu is more preferable, Sr 10 (PO 4 ) 6 C 12 : Eu, BaMgAl 10 O 17 : Eu is more preferable, and (Sr, Ba , Ca) 5 (PO 4 ) 3 Cl: Eu (more specifically, Sr 5 (PO 4 ) 3 Cl: Eu (hereinafter also referred to as SCA)) or (Sr 1-x Ba x ) 5 (PO 4) 3 Cl: Eu (x > 0, preferably 0.4>x> 0.12) (hereinafter, SBCA both To.)) Is particularly preferred. In this modification, SBCA is used as the blue phosphor.
 本変形例の波長変換部材45に用いられる母材は、上述した実施例に係る波長変換部材11bの母材25と同様の材料を用いることができる。ここでは、当該母材の説明は省略するものとする。 The base material used for the wavelength conversion member 45 of the present modification can be the same material as the base material 25 of the wavelength conversion member 11b according to the above-described embodiment. Here, the description of the base material is omitted.
 本変形例に係る第1LED41は、上述した蛍光体の混合比率を変えることにより、出射する白色光の色温度が約1900Kに調整されている。 In the first LED 41 according to this modification, the color temperature of the emitted white light is adjusted to about 1900K by changing the mixing ratio of the phosphors described above.
 本変形例に係る第2LED42は、上述した第1LED41とほぼ同一の構造であるが、第1LED41における蛍光体の混合比率とは異なる混合比率によって複数の蛍光体が混合され、出射する白色光の色温度が約2700Kに調整されている。 The second LED 42 according to this modification has substantially the same structure as the first LED 41 described above, but a plurality of phosphors are mixed at a mixing ratio different from the mixing ratio of the phosphors in the first LED 41, and the color of the emitted white light The temperature is adjusted to about 2700K.
<照明器具の電気回路構成>
 次に、本変形例に係る照明器具1'の電気回路構成及び照明器具1'の発光制御を説明する。図11は、本変形例に係る照明器具1'の電気回路構成の概略を示す電気回路図である。また、図12及び図13は、図11の回路構成における各トランジスタの作動状態、及び各LEDの駆動電流の電流値の一例を示すタイムチャートである。
<Electric circuit configuration of lighting equipment>
Next, the electrical circuit configuration of the lighting fixture 1 ′ and the light emission control of the lighting fixture 1 ′ according to this modification will be described. FIG. 11 is an electric circuit diagram showing an outline of an electric circuit configuration of the lighting fixture 1 ′ according to the present modification. 12 and 13 are time charts showing an example of the operating state of each transistor and the current value of the drive current of each LED in the circuit configuration of FIG.
 図11から分かるように、照明器具1'の発光モジュール11には、1個の第1LED41、2個の第2LED42に加え、電流制限用の抵抗R1及び抵抗R2、並びにLEDを駆動用の駆動電流を供給するためのトランジスタQ1及びトランジスタQ2が設けられている。ここで、抵抗R1は対応する第1LED41に流れる電流を適正な大きさに調整するために設けられ、抵抗R2は対応する2個の第2LED42に流れる電流を適正な大きさに調整するために設けられている。 As can be seen from FIG. 11, the light emitting module 11 of the luminaire 1 ′ includes one first LED 41, two second LEDs 42, a current limiting resistor R 1 and a resistor R 2, and a driving current for driving the LED. Transistor Q1 and transistor Q2 are provided. Here, the resistor R1 is provided to adjust the current flowing through the corresponding first LED 41 to an appropriate magnitude, and the resistor R2 is provided to adjust the current flowing through the corresponding two second LEDs 42 to an appropriate magnitude. It has been.
 具体的には、第1LED41は抵抗R1に対して直列に接続されており、第1LED41のアノードが抵抗R1を介して電源51aの正極に接続されている。また、第1LED41のカソードは、トランジスタQ1のコレクタに接続され、トランジスタQ1のエミッタが電源51aの負極に接続されている。一方、2個の第2LED42は極性を同じくして互いに並列に接続されており、第1LED41と同様に、アノードが抵抗R2を介して電源51bの正極に接続されると共に、カソードがトランジスタQ2を介して電源51bの負極に接続されている。 Specifically, the first LED 41 is connected in series with the resistor R1, and the anode of the first LED 41 is connected to the positive electrode of the power source 51a via the resistor R1. The cathode of the first LED 41 is connected to the collector of the transistor Q1, and the emitter of the transistor Q1 is connected to the negative electrode of the power source 51a. On the other hand, the two second LEDs 42 have the same polarity and are connected in parallel to each other. Like the first LED 41, the anode is connected to the positive electrode of the power source 51b via the resistor R2, and the cathode is connected via the transistor Q2. And connected to the negative electrode of the power source 51b.
 ここで、電源51aは、照明器具1'の外部から口金部6を介して供給される交流電圧を直流電圧に変換する変換回路からなる直流電源であり、照明器具1'の内部(例えば、筐体2の空洞2a又は固定基板12)に設けられている。同様に、電源51bは、照明器具1'の外部から口金部6を介して供給される交流電圧を直流電圧に変換する変換回路からなる直流電源であり、照明器具1'の内部(例えば、筐体2の空洞2a又は固定基板12)に設けられている。また、図11には図示しないもの、電源51a、51bは照明器具1'の外部電源に接続されている。 Here, the power source 51a is a DC power source composed of a conversion circuit that converts an AC voltage supplied from the outside of the lighting fixture 1 'through the base 6 into a DC voltage, and the inside of the lighting fixture 1' (for example, a housing) It is provided in the cavity 2a of the body 2 or the fixed substrate 12). Similarly, the power source 51b is a DC power source including a conversion circuit that converts an AC voltage supplied from the outside of the lighting fixture 1 'through the base unit 6 into a DC voltage. It is provided in the cavity 2a of the body 2 or the fixed substrate 12). Moreover, although not shown in FIG. 11, the power supplies 51a and 51b are connected to the external power supply of the lighting fixture 1 ′.
 また、トランジスタQ1、Q2は、いずれもそれぞれのベース信号に応じてオン・オフ状態を切り換え可能であり、電流制御部52からそれぞれのベースに対して個別にベース信号が送出されるようになっている。より具体的な接続関係としては、トランジスタQ1のベースには、電流制御部52を構成する定電流制御回路52aが接続され、トランジスタQ2のベースには、電流制御部52を構成するデューティ比制御回路52bが接続されている。 In addition, the transistors Q1 and Q2 can both be switched on / off according to the respective base signals, and the base signals are individually sent from the current control unit 52 to the respective bases. Yes. More specifically, the constant current control circuit 52a constituting the current control unit 52 is connected to the base of the transistor Q1, and the duty ratio control circuit constituting the current control unit 52 is connected to the base of the transistor Q2. 52b is connected.
 更に、照明器具1'は、照明器具1'から出射する光の輝度等の発光特性の調整を外部から行うための操作部53に接続している。具体的に、操作部53は、電流制御部52に接続され、照明器具1'から出射する光の輝度等の発光特性を設定するための操作に応じ、設定された輝度に対応した駆動信号を電流制御部52に伝達する。そして、電流制御部52は、当該駆動信号に応じて、トランジスタQ1及びトランジスタQ2の動作を制御し、第1LED41に供給される駆動電流と、第2LED42に供給される駆動電流とを制御する。 Furthermore, the luminaire 1 'is connected to an operation unit 53 for adjusting the light emission characteristics such as the luminance of light emitted from the luminaire 1' from the outside. Specifically, the operation unit 53 is connected to the current control unit 52 and outputs a drive signal corresponding to the set luminance in accordance with an operation for setting a light emission characteristic such as the luminance of light emitted from the lighting fixture 1 ′. This is transmitted to the current control unit 52. Then, the current control unit 52 controls the operation of the transistor Q1 and the transistor Q2 according to the drive signal, and controls the drive current supplied to the first LED 41 and the drive current supplied to the second LED 42.
 次に、電流制御部52における具体的な制御について説明する。上述したように、電流制御部52は、定電流制御回路52a及びデューティ比制御回路52bを備えており、定電流制御回路52aがトランジスタQ1にベース信号を供給し、デューティ比制御回路52bがトランジスタQ2にベース信号を供給する。 Next, specific control in the current control unit 52 will be described. As described above, the current control unit 52 includes the constant current control circuit 52a and the duty ratio control circuit 52b. The constant current control circuit 52a supplies a base signal to the transistor Q1, and the duty ratio control circuit 52b includes the transistor Q2. To supply the base signal.
 すなわち、第1LED41は定電流制御回路52aによって制御され、より具体的には、トランジスタQ1がON駆動することにより、第1LED41には一定値の駆動電流が常に供給されることになり、第1LED41に流れる実際の駆動電流(すなわち、第2LED42に供給される電力量)は一定となる。 That is, the first LED 41 is controlled by the constant current control circuit 52a. More specifically, when the transistor Q1 is turned ON, a constant driving current is always supplied to the first LED 41, and the first LED 41 is supplied to the first LED 41. The actual driving current that flows (that is, the amount of power supplied to the second LED 42) is constant.
 一方、第2LED42はデューティ比制御回路52bによって制御され、より具体的には、トランジスタQ2に供給されるベース信号の大きさは変化しないものの、ベース信号の供給時間と非供給時間の比率が制御されている。すなわち、トランジスタQ2を所定の周期で断続的にオンオフ駆動させることにより、第2LED42に供給される駆動電流の供給時間及び非供給時間の比率が制御され、第2LED42に流れる実際の駆動電流(すなわち、第2LED42に供給される電力量)がデューティ比制御回路52bによって制御されることになる。換言すれば、第2LED42に供給される駆動電流は、デューティ比制御回路52bによって上述した駆動信号に応じて可変電流で制御されることになる。 On the other hand, the second LED 42 is controlled by the duty ratio control circuit 52b. More specifically, although the magnitude of the base signal supplied to the transistor Q2 does not change, the ratio between the supply time and non-supply time of the base signal is controlled. ing. That is, by intermittently driving the transistor Q2 on and off at a predetermined cycle, the ratio of the supply time and non-supply time of the drive current supplied to the second LED 42 is controlled, and the actual drive current flowing through the second LED 42 (i.e., The amount of power supplied to the second LED 42) is controlled by the duty ratio control circuit 52b. In other words, the drive current supplied to the second LED 42 is controlled by the variable current according to the drive signal described above by the duty ratio control circuit 52b.
 なお、電流制御部52は、操作部53から供給される電気信号に対応した制御内容を記憶する記憶部(例えば、メモリ)を有していてもよい。このような場合、電流制御部52は、操作部53から供給される電気信号に対応する制御内容を当該記憶部から読み出し、読み出した制御内容に応じてトランジスタQ1及びトランジスタQ2の動作を制御することになる。 Note that the current control unit 52 may include a storage unit (for example, a memory) that stores control content corresponding to the electrical signal supplied from the operation unit 53. In such a case, the current control unit 52 reads the control content corresponding to the electrical signal supplied from the operation unit 53 from the storage unit, and controls the operation of the transistor Q1 and the transistor Q2 according to the read control content. become.
 次に、図12及び図13を参照しつつ、定電流制御回路52a及びデューティ比制御回路52bによる駆動電流の制御を具体的に説明する。 Next, the control of the drive current by the constant current control circuit 52a and the duty ratio control circuit 52b will be specifically described with reference to FIGS.
 先ず、比較的に暗く且つ赤味をおびている合成白色光を照明器具1'から出射する場合を、図12に示す。図12に示す状態において、トランジスタQ1がオン状態になると第1LED41に電流値A0の駆動電流が流れ、第1LED41から1900Kの白色光が出射する。一方、トランジスタQ2は、周期t0(例えば20ms)の間において、オン期間t1のみ(例えば3ms)オン状態となり、当該オン期間t1の間に第1LED41に電流値A0の駆動電流が流れ、第2LED42から2700Kの白色光が出射する。 First, FIG. 12 shows a case where synthetic white light that is relatively dark and reddish is emitted from the lighting apparatus 1 ′. In the state shown in FIG. 12, when the transistor Q1 is turned on, a driving current having a current value A0 flows through the first LED 41, and 1900K white light is emitted from the first LED 41. On the other hand, the transistor Q2 is turned on only during the on period t1 (for example, 3 ms) during the period t0 (for example, 20 ms), and the driving current of the current value A0 flows through the first LED 41 during the on period t1, and the second LED 42 2700K white light is emitted.
 このように、トランジスタQ2のオン期間t1を周期t0に対して比較短くすると、トランジスタQ2がオン状態の際に、第2LED42に瞬間的(すなわち、t1の期間)に流れる駆動電流の電流値はA0で同一であるものの、実際に照明器具1'を使用している状態(すなわち、t0の周期が複数回繰り返されている状態)において、第2LED42に実際に供給される駆動電流の電流値はA0よりも半分以下になる。従って、図12に示されている状態においては、第1LED41から出射する1900Kの光が第2LED42から出射する2700Kの光よりも明るくなり、照明器具1'から出射する合成白色光の色温度は1900Kに近づき、全体として均一に赤みがかった色の合成白色光が出射することになる。 As described above, when the ON period t1 of the transistor Q2 is shorter than the period t0, the current value of the drive current that flows instantaneously (that is, the period of t1) through the second LED 42 when the transistor Q2 is ON is A0. However, the current value of the drive current actually supplied to the second LED 42 is A0 in the state where the luminaire 1 ′ is actually used (ie, the period of t0 is repeated a plurality of times). Less than half. Accordingly, in the state shown in FIG. 12, the 1900K light emitted from the first LED 41 is brighter than the 2700K light emitted from the second LED 42, and the color temperature of the synthetic white light emitted from the lighting fixture 1 ′ is 1900K. As a result, the composite white light having a reddish color as a whole is emitted.
 上述した状態から照明器具1'の出射光を明るくする(すなわち、調光する)ために、例えば図13に示すように、トランジスタQ2のオン期間をオン期間t1よりも長いオン期間t2(例えば、18ms)とし、トランジスタQ2の駆動時間を長くする。 In order to brighten the light emitted from the luminaire 1 ′ from the above-described state (that is, dimming), for example, as shown in FIG. 13, the on period of the transistor Q2 is longer than the on period t1 (for example, 18 ms), and the drive time of the transistor Q2 is lengthened.
 このように、トランジスタQ2のオン期間を周期t0に近づけると、実際に照明器具1'を使用している状態(すなわち、t0の周期が複数回繰り返されている状態)において、第2LED42に実際に供給される駆動電流の電流値は、図12の状態と比して、第2LED42に瞬間的(すなわち、t2の期間)に流れる駆動電流の電流値(A0)に近づくことになる。従って、図13に示されている状態においては、第2LED42から出射する2700Kの光と第1LED41から出射する1900Kの光の明るさはほぼ同一になり、照明器具1'から出射する合成白色光の色温度は2700Kにより近づき、より昼白色に近い色の光を出射することになる。 Thus, when the ON period of the transistor Q2 is brought close to the cycle t0, the second LED 42 is actually used in the state where the lighting fixture 1 ′ is actually used (that is, the cycle of t0 is repeated a plurality of times). The current value of the supplied drive current approaches the current value (A0) of the drive current that flows instantaneously (that is, during the period t2) in the second LED 42, as compared with the state of FIG. Therefore, in the state shown in FIG. 13, the brightness of the 2700K light emitted from the second LED 42 and the light of 1900K emitted from the first LED 41 are substantially the same, and the combined white light emitted from the lighting fixture 1 ′ The color temperature approaches 2700K, and light of a color closer to daylight is emitted.
 このように、定電流制御回路52aによって第1LED41に流れる実際の駆動電流を一定にしつつ、デューティ比制御回路52bによって第2LED42に供給される駆動電流の供給時間及び非供給時間を調整することにより、1900Kの光を一定の強度で出射しつつ2700Kの光の強度を自在に調整することが可能となり、照明器具1'から出射する合成白色光の強度の変化に応じて色温度を変化させることが可能になる。すなわち、照明器具1'から出射する合成白色光の強度が小さい(すなわち、合成白色光が比較的暗い)場合には、合成白色光の色温度を1900Kに近づけることができ、照明器具1'から出射する合成白色光の強度が大きき(すなわち、合成白色光が比較的明るい)場合には、合成白色光の色温度を2700Kに近づけることができる。 In this way, by adjusting the supply time and non-supply time of the drive current supplied to the second LED 42 by the duty ratio control circuit 52b while making the actual drive current flowing to the first LED 41 constant by the constant current control circuit 52a, It is possible to freely adjust the intensity of 2700K light while emitting 1900K light at a constant intensity, and to change the color temperature according to the change in the intensity of the synthetic white light emitted from the lighting fixture 1 ′. It becomes possible. That is, when the intensity of the synthetic white light emitted from the luminaire 1 ′ is small (that is, the synthetic white light is relatively dark), the color temperature of the synthetic white light can be brought close to 1900K, and the luminaire 1 ′ When the intensity of the emitted synthetic white light is large (that is, the synthetic white light is relatively bright), the color temperature of the synthetic white light can be brought close to 2700K.
 上述した変形例1において、トランジスタQ2をオン状態にし、第2LED42に駆動電流を供給するタイミングとしては、トランジスタQ1に供給する駆動電流が所定値(例えば、200mA)以上になった場合としてもよい。このように調整することで、駆動電流の値が小さい状態においては、第1LED41のみから光を出射させて、1900Kの白色光を放射することができ、駆動電流の値が大きい状態になると、第2LED42からも2700Kの白色光を放射させ、合成白色光の強度(すなわち、駆動電流の値)に応じて合成白色光の色温度を調整することができる。 In the first modification described above, the timing at which the transistor Q2 is turned on and the drive current is supplied to the second LED 42 may be a case where the drive current supplied to the transistor Q1 becomes a predetermined value (for example, 200 mA) or more. By adjusting in this way, in a state where the value of the drive current is small, light can be emitted only from the first LED 41 and white light of 1900K can be emitted, and when the value of the drive current becomes large, The 2LED 42 can also emit white light of 2700 K, and the color temperature of the synthetic white light can be adjusted according to the intensity of the synthetic white light (that is, the value of the drive current).
 なお、第1LED41は定電流制御回路52aによって制御され、第2LED42はデューティ比制御回路52bによって制御される構造を有していたが、第1LED41もデューティ比制御回路によって制御される構造を有し、第1LED41に供給される駆動電流が停止されたときに、第1LED41に供給される駆動電流が前記駆動信号に応じて可変電流で制御されるようにしてもよい。これにより、照明器具1'が消灯するまでの挙動を一段とハロゲン電球に近づけることができる。なお、第1LED41に供給される駆動電流が停止されるとは、周期的に駆動電流が0になる期間ではなく、駆動電流の供給が完全に停止することをいう。 The first LED 41 is controlled by the constant current control circuit 52a, and the second LED 42 has a structure controlled by the duty ratio control circuit 52b. However, the first LED 41 also has a structure controlled by the duty ratio control circuit, When the drive current supplied to the first LED 41 is stopped, the drive current supplied to the first LED 41 may be controlled with a variable current according to the drive signal. Thereby, the behavior until the lighting fixture 1 ′ is extinguished can be made closer to the halogen bulb. Note that the drive current supplied to the first LED 41 being stopped means that the supply of the drive current is completely stopped, not a period in which the drive current periodically becomes zero.
 また、第1LED41は定電流制御回路52aによって制御され、第2LED42はデューティ比制御回路52bによって制御される構造を有していたが、第2LED42に供給される駆動電流が停止されたときに、第1LED41に供給される駆動電流が停止されるようにしてもよい。これにより、第1LED41に供給される駆動電流が停止されたときに、照明器具1'を消灯することができ、照明器具1'の挙動を一段とハロゲン電球に近づけることができる。 The first LED 41 is controlled by the constant current control circuit 52a, and the second LED 42 has a structure controlled by the duty ratio control circuit 52b. However, when the driving current supplied to the second LED 42 is stopped, the first LED 41 is controlled. The drive current supplied to one LED 41 may be stopped. Thereby, when the drive current supplied to 1st LED41 is stopped, lighting fixture 1 'can be light-extinguished and the behavior of lighting fixture 1' can be brought closer to a halogen bulb more.
 なお、第1LED41及び第2LED42から放射する白色光の色温度は、上述した数値に限定されることなく、照明器具1'の使用環境及び使用用途等に応じて、適宜変更することができる。また、上述した変形例においては、1個の第1LED41、及び2個の第2LED42を固定基板12に固定していたが、第1LED41及び第2LED42をマトリックス状に配列して固定基板12に固定してもよい。更に、複数のLEDパッケージ装置を固定基板12に固定する場合、全てのLEDパッケージ装置の色温度が異なる必要はなく、当該複数のLEDパッケージ装置から選ばれる少なくとも1組が、互いに異なる色温度の光を放射してもよい。 In addition, the color temperature of the white light radiated | emitted from 1st LED41 and 2nd LED42 is not limited to the numerical value mentioned above, It can change suitably according to the use environment, use application, etc. of lighting fixture 1 '. In the above-described modification, one first LED 41 and two second LEDs 42 are fixed to the fixed substrate 12. However, the first LEDs 41 and the second LEDs 42 are arranged in a matrix and fixed to the fixed substrate 12. May be. Furthermore, when a plurality of LED package devices are fixed to the fixed substrate 12, it is not necessary that the color temperatures of all the LED package devices be different, and at least one set selected from the plurality of LED package devices has light of different color temperatures. May be emitted.
 そして、第1LED41及び第2LED42の少なくとも一方から放射される光について、波長、黒体放射軌跡からの距離、分光分布、及び規格化分光分布等のパラメータを調整することにより、第1LED41及び第2LED42の少なくとも一方から自然な色の白色光であって、緑色、黄色、及び赤色における彩度が優れた白色光を放射させてもよい。このように調整された半導体発光装置を用いることにより、照射対象である被照射物の色が異なる場合であっても、種々の色の被照射物に対しても最適な白色光を照射することができ、被照射物をより鮮やか且つ鮮明に照らし出すことができる。 For the light emitted from at least one of the first LED 41 and the second LED 42, the parameters of the first LED 41 and the second LED 42 are adjusted by adjusting parameters such as the wavelength, the distance from the black body radiation locus, the spectral distribution, and the normalized spectral distribution. White light having a natural color from at least one and having excellent saturation in green, yellow, and red may be emitted. By using the semiconductor light emitting device adjusted in this way, even when the color of the irradiated object to be irradiated is different, it is possible to irradiate the irradiated object with various colors with the optimum white light. It is possible to illuminate the irradiated object more vividly and clearly.
 なお、上述した実施例に係る照明器具1'においては、バイポーラトランジスタであるトランジスタQ1、Q2がスイッチング素子として用いられていたが、MOS電界効果型トランジスタ(Metal-Oxide-Semiconductor Field-Effect Transistor)をバイポーラトランジスタに代えて用いてもよい。 In the lighting fixture 1 'according to the above-described embodiment, the transistors Q1 and Q2 which are bipolar transistors are used as switching elements. However, a MOS field effect transistor (Metal-Oxide-Semiconductor-Field-Effect-Transistor) is used. A bipolar transistor may be used instead.
≪変形例2≫
 上述した実施例において、光源部3を構成する光学部材13は、円錐台状の導光部31の端部に、空洞を備え且つ外形が略球体状の配光部32が接続された構造を有していたが、光学部材13の構造はこれに限定されることはない。以下において、図14乃至図16を参照しつつ、他の構造を有する光学部材13を変形例2として説明する。図14は変形例2に係る光学部材の斜視図であり、図15は変形例2に係る光学部材の上面図であり、図16は図15の線XVI-XVIに沿った光学部材の断面図である。
<< Modification 2 >>
In the embodiment described above, the optical member 13 constituting the light source unit 3 has a structure in which a light distribution unit 32 having a cavity and having a substantially spherical shape is connected to the end of the light guide unit 31 having a truncated cone shape. However, the structure of the optical member 13 is not limited to this. Hereinafter, the optical member 13 having another structure will be described as a second modification with reference to FIGS. 14 to 16. 14 is a perspective view of an optical member according to Modification 2, FIG. 15 is a top view of the optical member according to Modification 2, and FIG. 16 is a cross-sectional view of the optical member along line XVI-XVI in FIG. It is.
(光学部材)
 図14乃至図16から分かるように、光学部材113は、上述した実施例の導光部31とほぼ同等の構成及び機能を備える導光部131と、導光部131の端部に接続された配光部132と、導光部131を上述した実施例の固定部材14に接続するための略円環状(リング状)の接続部133と、から構成されている。すなわち、上述した実施例の光学部材13と同様に、光学部材113は、発光モジュール11から放射される光を導光部131の一端から他端に向けて導光し、導光部131から放射される光を配光部132を介して全方位に略均等に放射する。なお、全方位とは、上述した実施例と同様に、配光角が360°に限定されるものではなく、実質的に全方位(より広い配光角)という意味である。すなわち、本発明における全方位とは、配光角が通常180°以上、好ましくは240°以上、より好ましくは300°以上のことを意味する。
(Optical member)
As can be seen from FIGS. 14 to 16, the optical member 113 is connected to the light guide part 131 having substantially the same configuration and function as the light guide part 31 of the above-described embodiment, and to the end of the light guide part 131. The light distribution part 132 and a substantially annular (ring-shaped) connection part 133 for connecting the light guide part 131 to the fixing member 14 of the above-described embodiment are configured. That is, similarly to the optical member 13 of the above-described embodiment, the optical member 113 guides light emitted from the light emitting module 11 from one end of the light guide unit 131 to the other end, and radiates from the light guide unit 131. The emitted light is radiated substantially uniformly in all directions through the light distribution unit 132. Note that the omnidirectional means that the light distribution angle is not limited to 360 °, as in the above-described embodiments, but substantially means the omnidirectional (wider light distribution angle). That is, the omnidirectional in the present invention means that the light distribution angle is usually 180 ° or more, preferably 240 ° or more, more preferably 300 ° or more.
 導光部131は、樹脂(例えば、ポリカーボネート、ポリメタクリル酸メチル樹脂(Poly(methyl methacrylate):PMMA))等の透光性を備える透明材料から構成されている。そして、図14及び図16から分かるように、導光部131の形状は円錐台状である。変形例2に係る光学部材113の導光部131は、上述した実施例の導光部31とは異なり、配光部132との接触面131a(上記実施例の導光部31の第2の面31cに対応する面)には、粗面処理又はコーティング処理が施されていない。また、導光部131は、上述した実施例の導光部31のような凹部31bが形成されていない。なお、導光部131のその他の構成及び機能は、上述した実施例の導光部31と同一であるため、その具体的な説明は省略する。 The light guide 131 is made of a transparent material having translucency such as resin (for example, polycarbonate, poly (methyl methacrylate): PMMA). As can be seen from FIGS. 14 and 16, the light guide 131 has a truncated cone shape. The light guide part 131 of the optical member 113 according to the modified example 2 is different from the light guide part 31 in the above-described embodiment, and is in contact with the light distribution part 132 (a second surface of the light guide part 31 in the above embodiment). The surface corresponding to the surface 31c) is not subjected to rough surface treatment or coating treatment. Moreover, the light guide part 131 is not formed with the concave part 31b like the light guide part 31 of the above-described embodiment. In addition, since the other structure and function of the light guide part 131 are the same as the light guide part 31 of the Example mentioned above, the specific description is abbreviate | omitted.
 図16に示すように、配光部132は、樹脂(例えば、ポリカーボネート、ポリメタクリル酸メチル樹脂(Poly(methyl methacrylate):PMMA))等の透光性を備える透明材料から構成されるとともに、その内部には光拡散要素132aが混在している。換言すれば、配光部132は、光拡散要素132aを含有する樹脂等の透明材料から構成されている。ここで、配光部132は、導光部131と異なる透明材料から構成されてもよいが、同一の透明材料を使用した二色形成によって導光部131と配光部132を形成するほうが好ましい。これは、導光部131と配光部132とを接着剤等で接着する必要がなくなることでコストの低減を図ることができ、更には接着強度の低下等の問題が発生しにくくなるためである。 As shown in FIG. 16, the light distribution unit 132 is made of a transparent material having translucency such as a resin (for example, polycarbonate, polymethyl methacrylate resin (PMMA)), and its The light diffusing element 132a is mixed inside. In other words, the light distribution part 132 is comprised from transparent materials, such as resin containing the light-diffusion element 132a. Here, the light distribution unit 132 may be formed of a transparent material different from that of the light guide unit 131, but it is preferable to form the light guide unit 131 and the light distribution unit 132 by two-color formation using the same transparent material. . This is because it is not necessary to bond the light guide part 131 and the light distribution part 132 with an adhesive or the like, so that the cost can be reduced, and further problems such as a decrease in adhesive strength are less likely to occur. is there.
〔光拡散要素〕
 本変形例においては、光拡散要素132aとして、無機系光拡散材、有機系光拡散材又は気泡を用いることが好ましい。
(Light diffusion element)
In this modification, it is preferable to use an inorganic light diffusing material, an organic light diffusing material, or air bubbles as the light diffusing element 132a.
 無機系光拡散材としては、例えば、珪素、アルミニウム、チタン、ジルコニウム、カルシウム及びバリウム等の無機系光拡散材を用いることが可能であり、また、珪素、アルミニウム、チタン、及びジルコニウムからなる群の少なくとも1つの元素を含む無機系光拡散材を用いることが好ましい。有機系光拡散材としては、アクリル系、スチレン系、ポリアミド系若しくは元素として珪素を含む有機系光拡散材を用いることが可能であり、中でも、アクリル系光拡散材、又は元素として珪素を含む有機系光拡散材を用いることが好ましい。 As the inorganic light diffusing material, for example, inorganic light diffusing materials such as silicon, aluminum, titanium, zirconium, calcium, and barium can be used, and the group consisting of silicon, aluminum, titanium, and zirconium can be used. It is preferable to use an inorganic light diffusing material containing at least one element. As the organic light diffusing material, it is possible to use an acrylic light diffusing material, or an organic light diffusing material containing silicon as an element, or an organic material containing silicon as an element. It is preferable to use a system light diffusing material.
 無機系光拡散材の具体例としては、二酸化ケイ素(シリカ)、ホワイトカーボン、タルク、酸化マグネシウム、酸化亜鉛、酸化チタン、酸化アルミニウム、酸化ジルコニウム、酸化ホウ素、炭酸カルシウム、炭酸バリウム、炭酸マグネシウム、水酸化アルミニウム、水酸化カルシウム、水酸化マグネシウム、硫酸バリウム、珪酸カルシウム、珪酸マグネシウム、珪酸アルミニウム、珪酸アルミ化ナトリウム、珪酸亜鉛、ガラス、マイカ等が挙げられる。 Specific examples of inorganic light diffusing materials include silicon dioxide (silica), white carbon, talc, magnesium oxide, zinc oxide, titanium oxide, aluminum oxide, zirconium oxide, boron oxide, calcium carbonate, barium carbonate, magnesium carbonate, water Examples thereof include aluminum oxide, calcium hydroxide, magnesium hydroxide, barium sulfate, calcium silicate, magnesium silicate, aluminum silicate, sodium aluminosilicate, zinc silicate, glass, mica and the like.
 有機系光拡散材としては、スチレン系(共)重合体、アクリル系(共)重合体、シロキサン系(共)重合体、ポリアミド系(共)重合体等が挙げられる。これら、有機系拡散材の分子の一部又は全部は、架橋していても架橋していなくてもよい。ここで、「(共)重合体」とは「重合体」及び「共重合体」の双方を意味する。 Examples of the organic light diffusing material include styrene (co) polymers, acrylic (co) polymers, siloxane (co) polymers, polyamide (co) polymers, and the like. Some or all of these molecules of the organic diffusing material may or may not be cross-linked. Here, “(co) polymer” means both “polymer” and “copolymer”.
 上述した光拡散要素のうち、少量で光拡散効果を大きくするためには、上述した樹脂等の透明材料の屈折率と選択した光拡散要素の屈折率との差が大きい光拡散要素を選ぶことが好ましい。また、発光効率を大きく低下させないためには、高い透明性を有している光拡散要素を選ぶことが好ましい。 Among the light diffusion elements described above, in order to increase the light diffusion effect with a small amount, a light diffusion element having a large difference between the refractive index of the transparent material such as the resin and the refractive index of the selected light diffusion element is selected. Is preferred. Further, in order not to greatly reduce the luminous efficiency, it is preferable to select a light diffusing element having high transparency.
 例えば、当該樹脂がポリカーボネート樹脂の場合、光拡散要素132aとしては架橋アクリル系(共)重合体粒子、アクリル系化合物とスチレン系化合物の共重合体の架橋粒子、シロキサン系(共)重合体粒子、アクリル系化合物とケイ素原子を含む化合物のハイブリッド型架橋粒子を用いることが好ましく、架橋アクリル系(共)重合体粒子、シロキサン系(共)重合体粒子を用いることがより好ましい。 For example, when the resin is a polycarbonate resin, as the light diffusing element 132a, a crosslinked acrylic (co) polymer particle, a crosslinked particle of a copolymer of an acrylic compound and a styrene compound, a siloxane (co) polymer particle, It is preferable to use hybrid crosslinked particles of an acrylic compound and a compound containing a silicon atom, and it is more preferable to use crosslinked acrylic (co) polymer particles and siloxane (co) polymer particles.
 架橋アクリル系(共)重合体粒子としては、非架橋性アクリルモノマーと架橋性モノマーからなる重合体粒子がより好ましく、メチルメタクリレートとトリメチロールプロパントリ(メタ)アクリレートが架橋した重合体粒子がさらに好ましい。シロキサン系(共)重合体としては、ポリオルガノシルセスキオキサン粒子がより好ましく、ポリメチルシルセキスキオキサン粒子がさらに好ましい。 As the crosslinked acrylic (co) polymer particles, polymer particles composed of a non-crosslinkable acrylic monomer and a crosslinkable monomer are more preferable, and polymer particles obtained by crosslinking methyl methacrylate and trimethylolpropane tri (meth) acrylate are more preferable. . As the siloxane-based (co) polymer, polyorganosilsesquioxane particles are more preferable, and polymethylsilsesquioxane particles are more preferable.
 当該樹脂中での光拡散要素132aの分散形状は、略球状、板状、針状、不定形の何れでもよいが、光散乱効果に異方性がない点で、略球状であることが好ましい。光拡散要素132aの平均的な寸法は、通常100μm以下であり、好ましくは30μm以下であり、より好ましくは10μm以下であり、また、通常0.01μm以上であり、好ましくは0.1μm以上であり、さらに好ましくは0.5μm以上である。光拡散要素132aの平均的な寸法が上記範囲から外れる場合は、光拡散要素132aの微妙な含有量の差異や粒子径の差異によって光拡散性が大きく変動しやすくなり、光拡散性を安定的にコントロールすることが難しくなり、本発明で必要とされる十分な光拡散性を発揮することが困難となる場合がある。また、これにより、結果的に波長変換効率を好ましい範囲で安定制御することが難しくなる可能性が生じる。ここで、光拡散要素132aの平均的な寸法とは、体積基準による50%平均寸法であり、レーザー又は回折散乱法によって測定される体積基準粒度分布のメジアン径(D50)の値である。 The dispersion shape of the light diffusing element 132a in the resin may be any of a substantially spherical shape, a plate shape, a needle shape, and an indefinite shape, but is preferably a substantially spherical shape from the viewpoint that there is no anisotropy in the light scattering effect. . The average dimension of the light diffusing element 132a is usually 100 μm or less, preferably 30 μm or less, more preferably 10 μm or less, and usually 0.01 μm or more, preferably 0.1 μm or more. More preferably, it is 0.5 μm or more. When the average dimension of the light diffusing element 132a is out of the above range, the light diffusibility is likely to fluctuate greatly due to a subtle difference in the content of the light diffusing element 132a or a difference in the particle diameter, thereby stabilizing the light diffusibility. It may be difficult to control the light diffusibility required in the present invention. As a result, it may become difficult to stably control the wavelength conversion efficiency within a preferable range. Here, the average dimension of the light diffusing element 132a is a 50% average dimension based on the volume, and is a value of the median diameter (D50) of the volume standard particle size distribution measured by a laser or diffraction scattering method.
 また、光拡散要素132aの粒径分布は、単分散系でも、幾つかのピークトップを有する多分散系であってもよく、また、1つのピークトップであって、その粒径分布が狭くても広くてもよいが、好ましくは粒径分布が狭くほぼ単一の粒径であること(単分散又は単分散に近い粒径分布)が好ましい。 Further, the particle size distribution of the light diffusing element 132a may be a monodispersed system or a polydispersed system having several peak tops, and is a single peak top having a narrow particle size distribution. However, it is preferable that the particle size distribution is narrow and the particle size is almost a single particle size (monodispersion or near monodispersion particle size distribution).
 光拡散要素132aの粒子径の分布の度合いを示す指標としては、光拡散要素132aの体積基準の平均粒子径Dvと個数基準の平均粒子径Dnの比(Dv/Dn)がある。本願発明においては、Dv/Dnが1.0以上であることが好ましい。一方で、Dv/Dnが5以下であることが好ましい。Dv/Dnが大きすぎる場合には重量が大きく異なる光拡散要素132aが存在することになり、配光部132中において光拡散要素132aの分散が不均一となる傾向がある。 As an index indicating the degree of particle size distribution of the light diffusing element 132a, there is a ratio (Dv / Dn) between the volume-based average particle diameter Dv and the number-based average particle diameter Dn of the light diffusing element 132a. In the present invention, Dv / Dn is preferably 1.0 or more. On the other hand, Dv / Dn is preferably 5 or less. If Dv / Dn is too large, there will be light diffusing elements 132a with significantly different weights, and the dispersion of the light diffusing elements 132a in the light distribution section 132 tends to be non-uniform.
 上述した光拡散要素132aとして用いられる無機系光拡散材、有機系光拡散材、及び気泡は、1種類を単独で用いてもよく、材質や寸法の異なるものを2種類以上組み合わせて用いてもよい。2種類以上を組み合わせて用いる場合に、光拡散要素132aの屈折率は、複数の光拡散要素の体積平均によって算出される。 The inorganic light diffusing material, the organic light diffusing material, and the bubbles used as the light diffusing element 132a described above may be used alone or in combination of two or more kinds having different materials and dimensions. Good. When two or more types are used in combination, the refractive index of the light diffusing element 132a is calculated by the volume average of a plurality of light diffusing elements.
 光拡散要素132aの屈折率は、通常1.0以上であり、また、通常1.9以下である。また、光拡散要素132aは、透明性が高く、光透過性に優れることが好ましく、例えば、消衰係数が10-2以下であってもよく、好ましくは10-3以下であり、更に好ましくは10-4以下であり、特に好ましくは10-6以下である。なお、光拡散要素132aの屈折率は、YOSHIYAMAらの液浸法(エアロゾル研究 Vol.9, No.1 Spring pp.44-50 (1994))によって測定することができる。測定温度は20℃、測定波長は450nmである。 The refractive index of the light diffusing element 132a is usually 1.0 or more and usually 1.9 or less. The light diffusing element 132a is preferably highly transparent and excellent in light transmittance. For example, the extinction coefficient may be 10 −2 or less, preferably 10 −3 or less, more preferably 10 −4 or less, particularly preferably 10 −6 or less. The refractive index of the light diffusing element 132a can be measured by a liquid immersion method (Aerosol Research Vol. 9, No. 1 Spring pp. 44-50 (1994)) by YOSHIYAMA et al. The measurement temperature is 20 ° C., and the measurement wavelength is 450 nm.
 配光部132中の光拡散要素132aの含有量は、当該樹脂の種類にもよるが、例えば、当該樹脂がポリカーボネート樹脂で、光拡散要素132aがポリメチルシルセスキオキサン粒子である場合、ポリカーボネート樹脂100重量部に対して、通常0.1重量部以上、好ましくは0.3重量部以上、より好ましくは0.5重量部以上であり、また、通常10.0重量部以下、好ましくは7.0重量部以下、より好ましくは3.0重量部以下である。光拡散要素132aの含有量が少なすぎると拡散効果が不十分となり、多すぎると機械的特定が低下する場合があり好ましくない。 The content of the light diffusing element 132a in the light distribution part 132 depends on the type of the resin. For example, when the resin is a polycarbonate resin and the light diffusing element 132a is polymethylsilsesquioxane particles, polycarbonate is used. The amount is usually 0.1 parts by weight or more, preferably 0.3 parts by weight or more, more preferably 0.5 parts by weight or more, and usually 10.0 parts by weight or less, preferably 7 parts by weight with respect to 100 parts by weight of the resin. 0.0 parts by weight or less, more preferably 3.0 parts by weight or less. If the content of the light diffusing element 132a is too small, the diffusion effect is insufficient, and if it is too large, the mechanical identification may be lowered, which is not preferable.
 また、図16から分かるように、配光部132の形状は上述した実施例の配光部32とは異なり、外形は略球体状であるものの、その内部には空洞が形成されていない。すなわち、本変形例に係る配光部132は、上述した実施例の配光部32のような2層構造は形成されていない。当該2層構造が形成されていなくても、配光部132を構成する樹脂等の透明材料には上述した光拡散要素132aが含有されているため、配光部132に入射した光を外部に放射する際に、良好に拡散することができる。なお、配光部132の形状は略球状に限定されず、多角形体等の他の立体形状であってもよい。 Also, as can be seen from FIG. 16, the shape of the light distribution section 132 is different from the light distribution section 32 of the above-described embodiment, and the outer shape is substantially spherical, but no cavity is formed inside. That is, the light distribution unit 132 according to this modification is not formed with a two-layer structure like the light distribution unit 32 of the above-described embodiment. Even if the two-layer structure is not formed, the light diffusing element 132a described above is contained in the transparent material such as a resin constituting the light distribution unit 132. When radiating, it can diffuse well. In addition, the shape of the light distribution part 132 is not limited to a substantially spherical shape, and may be another three-dimensional shape such as a polygonal body.
 配光部32の外側表面132bには粗面処理が施されており、微少の凹凸が形成されている。外側表面132bを粗面とする理由は、光の取り出し効率を向上させるため、及び配光部132から出射する光が照射される照射面にムラを発生させないためである。なお、外側表面132bを粗面とすることなく、光の取り出し効率を向上することができるコーティング処理を施してもよい。 The outer surface 132b of the light distribution part 32 is roughened, and minute irregularities are formed. The reason for making the outer surface 132b rough is to improve the light extraction efficiency and not to cause unevenness on the irradiation surface irradiated with the light emitted from the light distribution section 132. In addition, you may perform the coating process which can improve the extraction efficiency of light, without making the outer surface 132b rough.
 上述したような配光部132の構造から、導光部131から配光部132に導かれた光は、配光部132の全方位に対して良好(略均等)に放射されることになる。すなわち、配光部132が光源のように視認でき、一般的なハロゲン電球のように、図1における光源カバー4の空洞4aの中心から外側に向かって光が放射されているように視認できる。 Due to the structure of the light distribution unit 132 as described above, the light guided from the light guide unit 131 to the light distribution unit 132 is radiated well (substantially equal) with respect to all directions of the light distribution unit 132. . That is, the light distribution part 132 can be visually recognized as a light source, and can be visually recognized as being emitted outward from the center of the cavity 4a of the light source cover 4 in FIG.
 図14乃至図16から分かるように、接続部133は、導光部131の一端部(配光部132と接触する端部とは逆側の端部)に設けられている。また、接続部133の形状は円環状であり、導光部131の側面を囲むように接続されている。更に、接続部133には、2つの切欠き133aが設けられている。そして、当該切欠き133aにネジ等の接合部材を嵌挿し、図1における固定部材14の表面14aに接続部133を接合することになる。これにより、光学部材113を発光モジュール11から離間して配置することができる。 As can be seen from FIGS. 14 to 16, the connection portion 133 is provided at one end portion of the light guide portion 131 (the end portion on the opposite side to the end portion in contact with the light distribution portion 132). The connection portion 133 has an annular shape and is connected so as to surround the side surface of the light guide portion 131. Further, the connection portion 133 is provided with two notches 133a. Then, a joining member such as a screw is fitted into the notch 133a, and the connecting portion 133 is joined to the surface 14a of the fixing member 14 in FIG. Thereby, the optical member 113 can be arranged away from the light emitting module 11.
 本変形例において、接続部133は、導光部131と同様に、樹脂(例えば、ポリカーボネート、ポリメタクリル酸メチル樹脂(Poly(methyl methacrylate):PMMA))等の透光性を備える透明材料から構成されている。従って、光学部材113を形成する際に、接続部133は、導光部131の一部として同時に形成されることになる。なお、接続部133は必須の構造ではなく、例えば、導光部131にも上述した実施例の導光部31のような凹部31bを形成すれば、接続部133は不要となる。 In this modification, the connection portion 133 is made of a transparent material having translucency such as a resin (for example, polycarbonate, poly (methyl methacrylate): PMMA) like the light guide portion 131. Has been. Accordingly, when the optical member 113 is formed, the connection portion 133 is simultaneously formed as a part of the light guide portion 131. Note that the connection portion 133 is not an essential structure. For example, if the light guide portion 131 is formed with the recess 31b like the light guide portion 31 of the above-described embodiment, the connection portion 133 is not necessary.
 <導光部の変形例>
 上記実施例にて説明した導光部31及び導光部131の構成は一例である。導光部31や導光部131に代えて、以下のような導光部を適用することが可能である。導光部31,導光部131,及び以下に説明する導光部の変形例は、発光モジュール11からの光の進行方向を変更する光進行方向制御部(光進行方向制御手段)として機能する。
<Modification of light guide>
The structure of the light guide part 31 and the light guide part 131 demonstrated in the said Example is an example. Instead of the light guide unit 31 and the light guide unit 131, the following light guide unit can be applied. The light guide unit 31, the light guide unit 131, and a modification of the light guide unit described below function as a light travel direction control unit (light travel direction control unit) that changes the travel direction of light from the light emitting module 11. .
 <<導光部の第1変形例>>
 図17は、導光部31の第1変形例を模式的に示す図である。第1変形例では、導光部231として反射筒を適用する。図17に示す導光部(反射筒)231は、発光モジュール11側の一端部231aと、配光部132と接続された他端部231bを有する内部が空洞(中空)の円筒状に形成されている。この点で、内部が中実の導光部31と異なっている。配光部132は、変形例2で説明したものと同じ構成を有する。配光部132に代えて、配光部32(図8等)が適用されても良い。
<< First Modification of Light Guide Section >>
FIG. 17 is a diagram schematically illustrating a first modification of the light guide unit 31. In the first modification, a reflection cylinder is applied as the light guide unit 231. The light guide part (reflective cylinder) 231 shown in FIG. 17 is formed in a hollow (hollow) cylindrical shape having one end part 231a on the light emitting module 11 side and the other end part 231b connected to the light distribution part 132. ing. In this respect, the inside is different from the solid light guide 31. The light distribution unit 132 has the same configuration as that described in the second modification. Instead of the light distribution unit 132, the light distribution unit 32 (FIG. 8 and the like) may be applied.
 導光部231の内径は、一端部231aから他端部231bへ向かって小さくなるテーパ状に形成されている。このように、導光部231の内面231cは、円錐台の周面で形成されており、鏡面加工されている。鏡面加工により、内面231cに衝突する光はほぼ全反射される。鏡面加工は、導光部231を反射材で作製したり、筒状部材の内面に反射材を取り付けたりコーティングしたりすることでなし得る。 The inner diameter of the light guide portion 231 is formed in a tapered shape that decreases from the one end portion 231a toward the other end portion 231b. As described above, the inner surface 231c of the light guide portion 231 is formed by the peripheral surface of the truncated cone, and is mirror-finished. By the mirror finishing, the light impinging on the inner surface 231c is almost totally reflected. Mirror surface processing can be performed by producing the light guide part 231 with a reflecting material, or attaching or coating the reflecting material on the inner surface of the cylindrical member.
 発光モジュール11は、一端部231aの下方において、そのほぼ中央部に配置され、発光モジュール11から出射される光が導光部231の空洞内に入るようになっている。なお、発光モジュール11は、一端部231a内に配置されるようにしても良い。       The light emitting module 11 is arranged at a substantially central portion below the one end portion 231a so that light emitted from the light emitting module 11 enters the cavity of the light guide portion 231. In addition, you may make it the light emitting module 11 arrange | position in the one end part 231a.
 発光モジュール11から出射する光のうち、例えば、発光モジュール11から配光部132へ向かって導光部231の軸心方向に進行する光のような、発光モジュール11からの光の一部は、配光部132へ直接入射する。一方、発光モジュール11からの光のうち配光部132へ直接入射しない方向へ進行する光は、導光部231の内面231cで反射され、配光部132へ入射する方向に進行方向を変更する(図17矢印参照)。これによって、導光部231は、発光モジュール11からの光のほぼ全てを配光部132へ入射させることができる。 Among the light emitted from the light emitting module 11, for example, a part of the light from the light emitting module 11, such as light traveling in the axial direction of the light guide unit 231 from the light emitting module 11 toward the light distribution unit 132, The light directly enters the light distribution unit 132. On the other hand, the light that travels in the direction not directly incident on the light distribution unit 132 out of the light from the light emitting module 11 is reflected by the inner surface 231c of the light guide unit 231 and changes the traveling direction to the direction that enters the light distribution unit 132. (See arrow in FIG. 17). Accordingly, the light guide unit 231 can cause almost all of the light from the light emitting module 11 to enter the light distribution unit 132.
 <<導光部の第2変形例>>
 図18は、導光部の第2変形例を模式的に示す図である。第2変形例では、導光部331として反射鏡を適用する。図18に示す導光部331は、発光モジュール11の上方を取り囲むように配置された複数の反射鏡332を含んでいる。各反射鏡332は、発光モジュール11側に配置される一端部332aと、配光部132Aと接続される他端部332bとを有している。
<< Second Modification of Light Guide Section >>
FIG. 18 is a diagram schematically illustrating a second modification of the light guide unit. In the second modification, a reflecting mirror is applied as the light guide unit 331. The light guide unit 331 shown in FIG. 18 includes a plurality of reflecting mirrors 332 arranged so as to surround the light emitting module 11. Each reflecting mirror 332 has one end 332a disposed on the light emitting module 11 side and the other end 332b connected to the light distribution unit 132A.
 各反射鏡332の内面332cは、他端部332bから一端部332aに向かって曲率が大きくなる連続した曲面に形成され、鏡面となっている。鏡面は、第1変形例で説明したような鏡面加工によって形成し得る。これにより、内面332cに衝突する光はほぼ全反射するように形成されている。 The inner surface 332c of each reflecting mirror 332 is formed as a continuous curved surface having a curvature that increases from the other end 332b toward the one end 332a, and is a mirror surface. The mirror surface can be formed by mirror processing as described in the first modification. Thereby, the light colliding with the inner surface 332c is formed to be totally reflected.
 配光部132Aは、変形例2で説明した配光部132と異なり、完全な球状に形成されている。この点を除き、配光部132Aは、配光部132と同じである。但し、図18に示す仮想線Vで配光部132Aをカットし、下部が平面で形成された配光部132を適用しても良い。また、配光部132Aの代わりに、配光部32(図8等)を適用することもできる。 Unlike the light distribution unit 132 described in the second modification, the light distribution unit 132A is formed in a perfect spherical shape. Except for this point, the light distribution unit 132 </ b> A is the same as the light distribution unit 132. However, the light distribution part 132A may be cut along the virtual line V shown in FIG. Further, instead of the light distribution unit 132A, the light distribution unit 32 (FIG. 8 or the like) can be applied.
 反射鏡332は、発光モジュール11からの光を側方に逃さないように、筒状に連続した状態(間欠的な筒状を形成するように)で複数(所定数)並べられる。但し、反射鏡332は、一つの筒状に形成されていても良い。なお、導光部331と配光部132Aとは、これらの相対位置を変えないように図示しない支持部材で固定されていても良い。 A plurality (a predetermined number) of the reflecting mirrors 332 are arranged in a cylindrical state (so as to form an intermittent cylindrical shape) so that the light from the light emitting module 11 does not escape sideways. However, the reflecting mirror 332 may be formed in one cylindrical shape. The light guide unit 331 and the light distribution unit 132A may be fixed by a support member (not shown) so as not to change their relative positions.
 発光モジュール11から出射する光のうち、例えば、発光モジュール11から配光部132Aへ向かって上方に進行する光のような、発光モジュール11からの光の一部は、配光部132Aへ直接入射する。一方、発光モジュール11からの光のうち配光部132Aへ直接入射しない方向へ進行する光は、導光部331(反射鏡332)の内面332cで反射され、配光部132Aへ入射する方向に進行方向を変更する(図18矢印参照)。これによって、導光部331は、発光モジュール11からの光のほぼ全てを配光部132Aへ入射させることができる。 Among the light emitted from the light emitting module 11, for example, a part of the light from the light emitting module 11 such as light traveling upward from the light emitting module 11 toward the light distributing unit 132 </ b> A is directly incident on the light distributing unit 132 </ b> A. To do. On the other hand, of the light from the light emitting module 11, the light traveling in the direction not directly incident on the light distribution unit 132A is reflected by the inner surface 332c of the light guide unit 331 (reflecting mirror 332) and enters the light distribution unit 132A. The direction of travel is changed (see arrow in FIG. 18). Accordingly, the light guide unit 331 can cause almost all of the light from the light emitting module 11 to enter the light distribution unit 132A.
 <<導光部の第3変形例>>
 図19は、導光部の第3変形例を模式的に示す図である。第3変形例では、導光部431として集光レンズが適用される。導光部(集光レンズ)431は、発光モジュール11側の一端部431aと配光部132A側の他端部431bとを有している。導光部431は、全体として、他端部431bから一端部431aに向かって縮径する円錐台状の外形を有している。一端部431aには、円柱状の凹部431cが形成され、他端部431bには、配光部132Aの形状にあわせて球面に凹んだ凹部431dが形成されており、他端部431bと配光部132A(好ましくは光拡散要素を含有する樹脂からなる球体状の配光部)とが接続されている。なお、導光部431と配光部132Aとは、これらの相対位置を変えないように図示しない支持部材で固定されていても良い。
<< Third Modification of Light Guide Section >>
FIG. 19 is a diagram schematically illustrating a third modification of the light guide unit. In the third modification, a condensing lens is applied as the light guide unit 431. The light guide part (condensing lens) 431 has one end part 431a on the light emitting module 11 side and the other end part 431b on the light distribution part 132A side. The light guide 431 as a whole has a truncated cone-shaped outer shape whose diameter decreases from the other end 431b toward the one end 431a. The one end 431a is formed with a cylindrical recess 431c, and the other end 431b is formed with a recess 431d recessed in a spherical shape in accordance with the shape of the light distribution portion 132A. Part 132A (preferably a spherical light distribution part made of a resin containing a light diffusing element) is connected. The light guide unit 431 and the light distribution unit 132A may be fixed by a support member (not shown) so as not to change their relative positions.
 発光モジュール11から出射する光は、導光部431の凹部431cから導光部431内へ入射する。入射した光は、導光部431内で屈折、反射して配光部132Aに入射する。これによって、発光モジュール11からの光のうち配光部132Aへ直接入射しない方向へ進行する光は、導光部(集光レンズ)431によって配光部132Aへ入射する方向に進行方向を変更する(図19矢印参照)。これによって、導光部431は、発光モジュール11からの光のほぼ全てを配光部132Aへ入射させることができる。 The light emitted from the light emitting module 11 enters the light guide 431 from the recess 431 c of the light guide 431. The incident light is refracted and reflected in the light guide unit 431 and enters the light distribution unit 132A. Accordingly, the light traveling from the light emitting module 11 in the direction not directly incident on the light distribution unit 132A is changed in the traveling direction to the direction incident on the light distribution unit 132A by the light guide unit (condensing lens) 431. (See arrow in FIG. 19). Accordingly, the light guide unit 431 can cause almost all of the light from the light emitting module 11 to enter the light distribution unit 132A.
 なお、図19に示す例では、配光部132Aが適用されているが、配光部132Aの代わりに、配光部132が適用されても良く、配光部32が適用されても良い。この場合、凹部431dは設けられない。 In the example shown in FIG. 19, the light distribution unit 132A is applied. However, the light distribution unit 132 may be applied instead of the light distribution unit 132A, or the light distribution unit 32 may be applied. In this case, the recess 431d is not provided.
 第3変形例の導光部を使用することにより、より一層の光取出し効率の向上や、筒状の導光部の高さを、さらに高くすることが可能になり、被覆体内における配光部配置の自由度向上といった効果が期待される。 By using the light guide unit of the third modification, it is possible to further improve the light extraction efficiency and to further increase the height of the cylindrical light guide unit, so that the light distribution unit in the covering body The effect of improving the freedom of placement is expected.
 <<導光部の第4変形例>>
 図20は、導光部の第4変形例を模式的に示す図である。図20において、第4変形例では、導光部531として側面出口レンズが適用される。導光部531は、一端部が発光モジュール11側に配置された円柱状の軸部531aと、軸部531aの他端側に軸部531aと同軸で設けられた円柱状の大径部531bとを有している。大径部531bの上面には、円錐状の凹部531cが形成されている。大径部531b及び軸部531aの一部は、配光部32で被覆された状態となっている。大径部531bは、配光部32内の中心に配置されている。導光部531は、アクリル樹脂のような樹脂、ガラス、その他の材質のような材質で形成される。
<< 4th modification of a light guide part >>
FIG. 20 is a diagram schematically illustrating a fourth modification of the light guide unit. In FIG. 20, in the fourth modification, a side exit lens is applied as the light guide unit 531. The light guide portion 531 has a cylindrical shaft portion 531a having one end portion disposed on the light emitting module 11 side, and a cylindrical large-diameter portion 531b provided coaxially with the shaft portion 531a on the other end side of the shaft portion 531a. have. A conical recess 531c is formed on the upper surface of the large-diameter portion 531b. A part of the large diameter portion 531b and the shaft portion 531a are covered with the light distribution portion 32. The large diameter portion 531 b is disposed at the center in the light distribution portion 32. The light guide 531 is formed of a material such as a resin such as an acrylic resin, glass, or other material.
 発光モジュール11からの出射光は、軸部531aの一端面から導光部531内に入射する。発光モジュール11からの光のうち、軸部531aの軸方向に進行する光は、凹部531cを透過して上方から出射され、配光部32で拡散されて配光部32から出射される。軸部531aの側方に進行する光は、軸部531aの内面で反射されて大径部531bに到達し、凹部531cで反射されて大径部531bの側面から出射する。出射した光は、配光部32によって拡散されて配光部32から出射される。 The outgoing light from the light emitting module 11 enters the light guide part 531 from one end face of the shaft part 531a. Of the light from the light emitting module 11, the light traveling in the axial direction of the shaft portion 531 a passes through the recess 531 c and is emitted from above, diffused by the light distribution portion 32, and emitted from the light distribution portion 32. The light traveling to the side of the shaft portion 531a is reflected by the inner surface of the shaft portion 531a and reaches the large diameter portion 531b, is reflected by the concave portion 531c, and is emitted from the side surface of the large diameter portion 531b. The emitted light is diffused by the light distribution unit 32 and emitted from the light distribution unit 32.
 このようにして、発光モジュール11からの光のうち配光部32へ直接入射しない方向へ進行する光は、導光部531によって配光部32へ入射する方向に進行方向を変更する(図20矢印参照)。これによって、導光部531は、発光モジュール11からの光のほぼ全てを配光部32へ入射させることができる。そして、導光部531から出射される発光モジュール11からの光は、配光部32によって拡散されることで、全方位に放射されることになる。 In this way, the light traveling from the light emitting module 11 in the direction not directly incident on the light distribution unit 32 is changed in the traveling direction to the direction incident on the light distribution unit 32 by the light guide unit 531 (FIG. 20). See arrow). Accordingly, the light guide unit 531 can cause almost all of the light from the light emitting module 11 to enter the light distribution unit 32. Then, the light from the light emitting module 11 emitted from the light guide unit 531 is diffused by the light distribution unit 32 and is emitted in all directions.
 なお、配光部32に代えて配光部132を適用し、大径部531b及び軸部531aの一部が配光部132内に埋設されるようにしても良い。この場合、導光部531から出射する光は、配光部132の光拡散要素132aによって拡散され、全方位に放射されることになる。 In addition, it replaces with the light distribution part 32, the light distribution part 132 may be applied, and the large diameter part 531b and a part of shaft part 531a may be embedded in the light distribution part 132. FIG. In this case, the light emitted from the light guide unit 531 is diffused by the light diffusion element 132a of the light distribution unit 132 and is emitted in all directions.
 1、1'    照明器具
 2  筐体
 2a  空洞
 2b  開口
 3、3'    光源部
 4  光源カバー
 4a  空洞
 5  ヒートシンク
 6  口金部
 11  発光モジュール(半導体発光装置)
 11a  モジュール本体
 11b  波長変換部材
 12  固定基板
 12a  第1の面
 12b  第2の面
 13  光学部材
 14  固定部材
 15  ネジ
 16  ネジ穴
 21  平板部
 22  側壁部
 23  LEDチップ
 24  蛍光体
 25  母材
 26  p電極
 27  n電極
 28、29  配線パターン
 31  導光部
 31a  第1の面
 31b  凹部
 31c  第2の面
 31d  側面
 32  配光部
 32a  空洞
 32b  外側表面
 41  第1LEDパッケージ装置(第1LED)
 42  第2LEDパッケージ装置(第2LED)
 43  パッケージ
 44  LEDチップ
 45  波長変換部材
 51a、51b  電源
 52  電流制御部
 52a  定電流制御回路
 52b  デューティ比制御回路
 53  操作部
 113  光学部材
 131  導光部
 131a  接触面
 132  配光部
 132a  光拡散要素
 133  接続部
 133a 切欠き
 R1、R2  抵抗
 Q1、Q2  トランジスタ
 231,331,431,531 導光部
DESCRIPTION OF SYMBOLS 1, 1 'Lighting fixture 2 Case 2a Cavity 2b Opening 3, 3' Light source part 4 Light source cover 4a Cavity 5 Heat sink 6 Cap part 11 Light emitting module (semiconductor light emitting device)
11a Module body 11b Wavelength conversion member 12 Fixed substrate 12a First surface 12b Second surface 13 Optical member 14 Fixed member 15 Screw 16 Screw hole 21 Flat plate portion 22 Side wall portion 23 LED chip 24 Phosphor 25 Base material 26 P electrode 27 N electrode 28, 29 Wiring pattern 31 Light guide part 31a First surface 31b Recessed part 31c Second surface 31d Side surface 32 Light distribution part 32a Cavity 32b Outer surface 41 First LED package device (first LED)
42 Second LED package device (second LED)
43 package 44 LED chip 45 wavelength conversion member 51a, 51b power supply 52 current control unit 52a constant current control circuit 52b duty ratio control circuit 53 operation unit 113 optical member 131 light guide unit 131a contact surface 132 light distribution unit 132a light diffusion element 133 connection Part 133a Notch R1, R2 Resistor Q1, Q2 Transistors 231, 331, 431, 531 Light guiding part

Claims (22)

  1.  基板と、
     前記基板上に固定された少なくとも1つの半導体発光装置と、
     前記半導体発光装置の発光面側に一端が配設され、前記一端から入射する前記半導体発光装置の光を他端に導光して放射する透光性を備える導光部と、
     前記導光部の前記他端の周辺を囲むように配設され、前記導光部から放射される光を拡散して全方位に放射する配光部と、
     前記半導体発光装置、前記導光部、及び前記配光部を離間して覆う被覆体と、
    を有することを特徴とする照明器具。
    A substrate,
    At least one semiconductor light emitting device fixed on the substrate;
    One end is disposed on the light emitting surface side of the semiconductor light emitting device, and a light guide unit having translucency for guiding and emitting the light of the semiconductor light emitting device incident from the one end to the other end;
    A light distribution unit disposed so as to surround the periphery of the other end of the light guide unit, diffusing light emitted from the light guide unit and radiating in all directions;
    A covering that covers the semiconductor light emitting device, the light guide unit, and the light distribution unit separately;
    The lighting fixture characterized by having.
  2.  基板と、
     前記基板上に固定された少なくとも1つの半導体発光装置と、
     入射した前記半導体発光装置からの光を拡散して全方位に放射する配光部と、
     前記半導体発光装置と前記配光部との間に設けられ、前記半導体発光装置から出射した光のうち前記配光部に直接入射しない方向に進行する光の進行方向を前記配光部に入射するように変更する導光部と、
     前記半導体発光装置、前記配光部、及び前記導光部を離間して覆う被覆体と、
    を含むことを特徴とする照明器具。
    A substrate,
    At least one semiconductor light emitting device fixed on the substrate;
    A light distribution unit that diffuses and emits light from the incident semiconductor light emitting device in all directions;
    Provided between the semiconductor light emitting device and the light distribution unit, the light traveling from the semiconductor light emitting device that travels in a direction not directly incident on the light distribution unit is incident on the light distribution unit. A light guide portion to be changed,
    A covering that covers the semiconductor light emitting device, the light distribution unit, and the light guide unit separately;
    The lighting fixture characterized by including.
  3.  基板と、
     前記基板上に固定され、波長変換部材により波長変換された光を出射する少なくとも1つの半導体発光装置と、
     入射した前記半導体発光装置からの光を拡散して全方位に放射する配光部と、
     前記半導体発光装置と前記配光部との間に設けられ、前記半導体発光装置から出射した光のうち前記配光部に直接入射しない方向に進行する光の進行方向を前記配光部に入射するように変更する導光部と、
     前記半導体発光装置、前記配光部、及び前記導光部を離間して覆う被覆体と、
    を含むことを特徴とする照明器具。
    A substrate,
    At least one semiconductor light emitting device that emits light fixed on the substrate and wavelength-converted by a wavelength conversion member;
    A light distribution unit that diffuses and emits light from the incident semiconductor light emitting device in all directions;
    Provided between the semiconductor light emitting device and the light distribution unit, the light traveling from the semiconductor light emitting device that travels in a direction not directly incident on the light distribution unit is incident on the light distribution unit. A light guide portion to be changed,
    A covering that covers the semiconductor light emitting device, the light distribution unit, and the light guide unit separately;
    The lighting fixture characterized by including.
  4.  前記配光部は、前記導光部の前記他端に接続されている
    ことを特徴とする請求項1に記載の照明器具。
    The lighting device according to claim 1, wherein the light distribution unit is connected to the other end of the light guide unit.
  5.  前記配光部は、光拡散要素を含有する樹脂からなる
    ことを特徴とする請求項1乃至3のいずれか1項に記載の照明器具。
    The lighting device according to any one of claims 1 to 3, wherein the light distribution part is made of a resin containing a light diffusing element.
  6.  前記配光部は、内層と前記内層よりも屈折率が大きい外層とからなる2層構造を備える
    ことを特徴とする請求項1乃至3のいずれか1項に記載の照明器具。
    The lighting device according to any one of claims 1 to 3, wherein the light distribution section includes a two-layer structure including an inner layer and an outer layer having a refractive index larger than that of the inner layer.
  7.  前記配光部の前記内層は、空気層である
    ことを特徴とする請求項6に記載の照明器具。
    The lighting apparatus according to claim 6, wherein the inner layer of the light distribution unit is an air layer.
  8.  前記導光部の前記他端の表面は、粗面処理又はコーティング処理が施されている
    ことを特徴とする請求項6又は7に記載の照明器具。
    The lighting fixture according to claim 6 or 7, wherein a surface of the other end of the light guide unit is subjected to a roughening process or a coating process.
  9.  前記配光部の表面は、粗面処理又はコーティング処理が施されていることを特徴とする請求項1乃至8のいずれか1項に記載の照明器具。 The lighting device according to any one of claims 1 to 8, wherein the surface of the light distribution section is subjected to a rough surface treatment or a coating treatment.
  10.  前記導光部は、前記配光部が前記被覆体の内側領域の中央部に位置するように延在していることを特徴とする請求項1乃至9のいずれか1項に記載の照明器具。 The lighting device according to claim 1, wherein the light guide portion extends so that the light distribution portion is located at a central portion of an inner region of the covering body. .
  11.  前記配光部が、前記被覆体の内側領域の中心部に位置するように配置されている
    ことを特徴とする請求項1乃至10のいずれか1項に記載の照明器具。
    The lighting device according to any one of claims 1 to 10, wherein the light distribution portion is disposed so as to be positioned at a center portion of an inner region of the covering body.
  12.  前記配光部の形状は、球体状である
    ことを特徴とする請求項1乃至11のいずれか1項に記載の照明器具。
    The lighting fixture according to any one of claims 1 to 11, wherein the light distribution portion has a spherical shape.
  13.  前記導光部及び前記配光部は、二色成形により一体的に形成されている
    ことを特徴とする請求項1乃至12のいずれか1項に記載の照明器具。
    The lighting apparatus according to claim 1, wherein the light guide unit and the light distribution unit are integrally formed by two-color molding.
  14.  前記基板の前記半導体発光装置の固定面とは反対側の面にヒートシンクが配設されている
    ことを特徴とする請求項1乃至13のいずれか1項に記載の照明器具。
    The lighting apparatus according to claim 1, wherein a heat sink is disposed on a surface of the substrate opposite to a fixing surface of the semiconductor light emitting device.
  15.  前記半導体発光装置から出射する光と、前記導光部及び前記配光部を経由して全方位に放射する光とは同一の色度である
    ことを特徴とする請求項1乃至14のいずれか1項に記載の照明器具。
    15. The light emitted from the semiconductor light emitting device and the light emitted in all directions through the light guide unit and the light distribution unit have the same chromaticity. The lighting fixture according to item 1.
  16.  前記半導体発光装置から出射する光が白色光である
    ことを特徴とする請求項1乃至15のいずれか1項に記載の照明器具。
    The light fixture according to claim 1, wherein the light emitted from the semiconductor light emitting device is white light.
  17.  前記基板に複数の前記半導体発光装置が固定され、
     複数の前記半導体発光装置から選ばれる少なくとも1組は、互いに異なる色温度の光を放射することを特徴とする請求項1乃至16のいずれか1項に記載の照明器具。
    A plurality of the semiconductor light emitting devices are fixed to the substrate,
    The lighting fixture according to claim 1, wherein at least one set selected from the plurality of semiconductor light emitting devices emits light having different color temperatures.
  18.  半導体発光装置に取り付けられる光学部材であって、
     前記半導体発光装置の発光面側に一端が配設され、前記一端から入射する前記半導体発光装置の光を他端に導光して放射する透光性を備える導光部と、
     前記導光部の前記他端の周辺を囲むように配設され、前記導光部から放射される光を拡散して全方位に放射する配光部と、を有することを特徴とする光学部材。
    An optical member attached to a semiconductor light emitting device,
    One end is disposed on the light emitting surface side of the semiconductor light emitting device, and a light guide unit having translucency for guiding and emitting the light of the semiconductor light emitting device incident from the one end to the other end;
    An optical member comprising: a light distribution unit disposed so as to surround the periphery of the other end of the light guide unit, and diffusing light emitted from the light guide unit and radiating the light in all directions. .
  19.  前記配光部は、前記導光部の前記他端に接続されている
    ことを特徴とする請求項18に記載の光学部材。
    The optical member according to claim 18, wherein the light distribution unit is connected to the other end of the light guide unit.
  20.  前記配光部は、光拡散要素を含有する樹脂からなる
    ことを特徴とする請求項18又は19に記載の光学部材。
    The optical member according to claim 18, wherein the light distribution part is made of a resin containing a light diffusing element.
  21.  前記導光部の前記他端の表面は、粗面処理又はコーティング処理が施されていることを特徴とする請求項18に記載の光学部材。 The optical member according to claim 18, wherein the surface of the other end of the light guide is subjected to a rough surface treatment or a coating treatment.
  22.  前記配光部の表面は、粗面処理又はコーティング処理が施されていることを特徴とする請求項18乃至21のいずれか1項に記載の光学部材。 The optical member according to any one of claims 18 to 21, wherein the surface of the light distribution section is subjected to a rough surface treatment or a coating treatment.
PCT/JP2014/064608 2013-06-04 2014-06-02 Lighting device and optical member WO2014196498A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013117944 2013-06-04
JP2013-117944 2013-06-04
JP2014060040 2014-03-24
JP2014-060040 2014-03-24

Publications (1)

Publication Number Publication Date
WO2014196498A1 true WO2014196498A1 (en) 2014-12-11

Family

ID=52008140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/064608 WO2014196498A1 (en) 2013-06-04 2014-06-02 Lighting device and optical member

Country Status (2)

Country Link
JP (1) JP2015195156A (en)
WO (1) WO2014196498A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016139454A1 (en) * 2015-03-02 2016-09-09 Buster And Punch Limited Light bulb
EP3561367A1 (en) * 2018-04-23 2019-10-30 Xiamen Eco Lighting Co., Ltd. Light apparatus with enlightened pattern
CN115135923A (en) * 2019-12-25 2022-09-30 电化株式会社 Lamp fitting
WO2022253821A1 (en) * 2021-05-31 2022-12-08 Axel & Susann Meise Beteiligungsgesellschaft Mbh Lighting device with light distributing body
USD979104S1 (en) 2020-02-28 2023-02-21 Buster And Punch Limited Light fitting
USD981631S1 (en) 2020-01-30 2023-03-21 Buster And Punch Limited Light fixture
USD987859S1 (en) 2021-02-25 2023-05-30 Buster And Punch Limited Light bulb
USD987860S1 (en) 2021-02-25 2023-05-30 Buster And Punch Limited Light bulb
DE102022130736A1 (en) 2022-11-21 2024-05-23 Paro Holding GmbH Lighting device with light distribution body

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022176229A1 (en) * 2021-02-22 2022-08-25 日立グローバルライフソリューションズ株式会社 Electric vacuum cleaner
JP7446252B2 (en) 2021-02-22 2024-03-08 日立グローバルライフソリューションズ株式会社 vacuum cleaner

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3148997U (en) * 2008-12-24 2009-03-05 佑浩股▲分▼有限公司 Light bulb structure
JP2013054828A (en) * 2011-09-01 2013-03-21 Beat Sonic:Kk Led lamp
JP2013105748A (en) * 2011-11-10 2013-05-30 Shogen Koden Kofun Yugenkoshi Illumination apparatus

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100097821A1 (en) * 2008-10-16 2010-04-22 Osram Sylvania, Inc. Light emitting diode-based lamp having a volume scattering element
JP2010129300A (en) * 2008-11-26 2010-06-10 Keiji Iimura Semiconductor light-emitting lamp and electric-bulb-shaped semiconductor light-emitting lamp
JP5266075B2 (en) * 2009-01-26 2013-08-21 パナソニック株式会社 Light bulb-type lighting device
US9228702B2 (en) * 2009-03-23 2016-01-05 Eldolab Holding B.V. LED lamp comprising light guide including first and second diffusing surfaces
JP5015301B2 (en) * 2010-08-02 2012-08-29 株式会社フジクラ lighting equipment
JP5759781B2 (en) * 2011-03-31 2015-08-05 ローム株式会社 LED bulb
JP2013105711A (en) * 2011-11-16 2013-05-30 Toshiba Lighting & Technology Corp Luminaire

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3148997U (en) * 2008-12-24 2009-03-05 佑浩股▲分▼有限公司 Light bulb structure
JP2013054828A (en) * 2011-09-01 2013-03-21 Beat Sonic:Kk Led lamp
JP2013105748A (en) * 2011-11-10 2013-05-30 Shogen Koden Kofun Yugenkoshi Illumination apparatus

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016139454A1 (en) * 2015-03-02 2016-09-09 Buster And Punch Limited Light bulb
CN105937713A (en) * 2015-03-02 2016-09-14 巴斯特与潘奇有限责任公司 Light bulb
US10365421B2 (en) 2015-03-02 2019-07-30 Buster And Punch Limited Lighting device with light pipe enclosed within a bulb and having colored lines
EP3561367A1 (en) * 2018-04-23 2019-10-30 Xiamen Eco Lighting Co., Ltd. Light apparatus with enlightened pattern
CN115135923A (en) * 2019-12-25 2022-09-30 电化株式会社 Lamp fitting
USD981631S1 (en) 2020-01-30 2023-03-21 Buster And Punch Limited Light fixture
USD979104S1 (en) 2020-02-28 2023-02-21 Buster And Punch Limited Light fitting
USD987859S1 (en) 2021-02-25 2023-05-30 Buster And Punch Limited Light bulb
USD987860S1 (en) 2021-02-25 2023-05-30 Buster And Punch Limited Light bulb
WO2022253821A1 (en) * 2021-05-31 2022-12-08 Axel & Susann Meise Beteiligungsgesellschaft Mbh Lighting device with light distributing body
DE102022130736A1 (en) 2022-11-21 2024-05-23 Paro Holding GmbH Lighting device with light distribution body

Also Published As

Publication number Publication date
JP2015195156A (en) 2015-11-05

Similar Documents

Publication Publication Date Title
WO2014196498A1 (en) Lighting device and optical member
US8749131B2 (en) Lamp using solid state source and doped semiconductor nanophosphor
US8215798B2 (en) Solid state lighting system with optic providing occluded remote phosphor
US8648546B2 (en) High efficiency lighting device including one or more saturated light emitters, and method of lighting
WO2012121304A1 (en) Light-emitting device, and lighting device equipped with light-emitting device
US20110037388A1 (en) White light emission diode and white light emission diode lamp
JP2013214735A (en) Light-emitting device, and illumination device and illumination tool using the same
KR101240328B1 (en) Led lamp having reflector
US9841161B2 (en) Lens for light emitter, light source module, lighting device, and lighting system
WO2015145855A1 (en) Spot lighting apparatus
JP2014146661A (en) Light emitting module, illumination device and luminaire
JP2016170912A (en) Luminaire
US9297500B2 (en) Light emitting module, lighting device, and lighting apparatus
KR20140085908A (en) Chip on Board Type LED Module
US10883672B1 (en) Reflector structures for lighting devices
JP2013211456A (en) Semiconductor light-emitting device and illumination device
WO2015072120A1 (en) Light emitting device, light emitting module, lighting device and lamp
KR101082924B1 (en) Traffic light using led lighting source
KR101315703B1 (en) Lighting device
JP7236659B2 (en) Lighting device and method for manufacturing lighting device
JP2019145259A (en) Lighting fixture and lighting appliance for vehicle
KR101993345B1 (en) Lighting device
JP2014127554A (en) Light-emitting device, luminaire and lighting fixture
JP2018022733A (en) Light-emitting device, illumination light source and illumination apparatus
KR101901228B1 (en) Lighting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14806859

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14806859

Country of ref document: EP

Kind code of ref document: A1