WO2021131889A1 - Non-aqueous electrolyte power storage element and method for manufacturing same - Google Patents

Non-aqueous electrolyte power storage element and method for manufacturing same Download PDF

Info

Publication number
WO2021131889A1
WO2021131889A1 PCT/JP2020/046699 JP2020046699W WO2021131889A1 WO 2021131889 A1 WO2021131889 A1 WO 2021131889A1 JP 2020046699 W JP2020046699 W JP 2020046699W WO 2021131889 A1 WO2021131889 A1 WO 2021131889A1
Authority
WO
WIPO (PCT)
Prior art keywords
aqueous electrolyte
power storage
separator
storage element
negative electrode
Prior art date
Application number
PCT/JP2020/046699
Other languages
French (fr)
Japanese (ja)
Inventor
尽哉 上田
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Priority to CN202080089715.2A priority Critical patent/CN115210904A/en
Priority to US17/787,469 priority patent/US20230033180A1/en
Priority to DE112020006384.4T priority patent/DE112020006384T5/en
Priority to JP2021567294A priority patent/JPWO2021131889A1/ja
Publication of WO2021131889A1 publication Critical patent/WO2021131889A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/60Liquid electrolytes characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0034Fluorinated solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a non-aqueous electrolyte power storage device and a method for manufacturing the same.
  • Non-aqueous electrolyte secondary batteries represented by lithium ion secondary batteries are widely used in electronic devices such as personal computers and communication terminals, automobiles, etc. due to their high energy density.
  • the non-aqueous electrolyte secondary battery generally has a pair of electrodes electrically separated by a separator and a non-aqueous electrolyte interposed between the electrodes, and transfers ions between the two electrodes. It is configured to charge and discharge.
  • capacitors such as lithium ion capacitors and electric double layer capacitors are also widely used as non-aqueous electrolyte storage elements other than non-aqueous electrolyte secondary batteries.
  • Metallic lithium is known as a negative electrode active material having a high energy density used in a non-aqueous electrolyte power storage element (see Patent Documents 1 and 2).
  • metallic lithium may be deposited in a dendritic shape on the surface of the negative electrode during charging (hereinafter, metallic lithium in a dendritic form is referred to as “dendrite”. ".).
  • this dendrite grows and penetrates the separator and comes into contact with the positive electrode, it causes a short circuit. Therefore, the non-aqueous electrolyte power storage element having metallic lithium as the negative electrode active material has an inconvenience that a short circuit is likely to occur due to repeated charging and discharging.
  • the present invention has been made based on the above circumstances, and an object of the present invention is to provide a non-aqueous electrolyte power storage element in which the occurrence of a short circuit is suppressed, and a method for manufacturing such a non-aqueous electrolyte power storage element. That is.
  • One aspect of the present invention is a non-aqueous electrolyte power storage device including a negative electrode having metallic lithium, a non-aqueous electrolyte containing a fluorinated solvent, and a separator having an air permeation resistance of 150 seconds or less.
  • Another aspect of the present invention comprises preparing a negative electrode having metallic lithium, preparing a non-aqueous electrolyte containing a fluorinated solvent, and preparing a separator having an air permeation resistance of 150 seconds or less. This is a method for manufacturing a non-aqueous electrolyte power storage element.
  • non-aqueous electrolyte power storage element in which the occurrence of a short circuit is suppressed, and a method for manufacturing such a non-aqueous electrolyte power storage element.
  • FIG. 1 is an external perspective view showing a non-aqueous electrolyte power storage element according to an embodiment of the present invention.
  • FIG. 2 is a schematic view showing a power storage device configured by assembling a plurality of non-aqueous electrolyte power storage elements according to an embodiment of the present invention.
  • the non-aqueous electrolyte storage element is a non-aqueous electrolyte storage element including a negative electrode having metallic lithium, a non-aqueous electrolyte containing a fluorinated solvent, and a separator having an air permeation resistance of 150 seconds or less. ..
  • the non-aqueous electrolyte power storage element is suppressed from causing a short circuit.
  • the reason for this is not clear, but the following reasons can be inferred.
  • the concentration distribution of lithium ions in the non-aqueous electrolyte near the surface of the negative electrode is made uniform, so that the precipitation and growth of dendrites are suppressed. Further, the deposition and growth of dendrites are suppressed by the film formed on the surface of the negative electrode by the non-aqueous electrolyte containing a fluorinated solvent.
  • the "air permeation resistance” is a value measured by the "Garley testing machine method” based on JIS-P8117 (2009).
  • the size of the test piece of the separator used for the measurement is 50 mm ⁇ 50 mm.
  • the air permeation resistance of the separator included in the non-aqueous electrolyte storage element is measured using a separator obtained from the non-aqueous electrolyte storage element disassembled by the following method. First, after discharging the non-aqueous electrolyte storage element, the non-aqueous electrolyte storage element is disassembled in a dry atmosphere.
  • the separator is taken out, washed with hydrochloric acid having a concentration of 36% by mass, further washed with deionized water, and then vacuum dried at room temperature for 10 hours or more. Then, the vacuum-dried separator is cut out and used as a test piece.
  • the negative electrode provided in the non-aqueous electrolyte power storage element may or may not have metallic lithium at least in the charged state, and may or may not have metallic lithium in the discharged state.
  • metallic lithium is deposited in at least a part of the negative electrode surface, and by discharging, substantially all of the metallic lithium on the negative electrode surface is eluted into the non-aqueous electrolyte, and in the discharged state, it is discharged.
  • It may be a non-aqueous electrolyte power storage element configured so that metallic lithium is substantially eliminated from the surface of the negative electrode.
  • the air permeation resistance is 50 seconds or more and 80 seconds or less.
  • the separator has a base resin and inorganic particles dispersed in the base resin.
  • the occurrence of a short circuit in the non-aqueous electrolyte power storage element is further suppressed.
  • the reason why such an effect occurs is not clear, but the state in which the separator has a suitable porous shape due to the presence of the inorganic particles and the strength of the separator is increased due to the presence of the inorganic particles, and the separator is pressurized. Even if it is, it is presumed that a suitable porous shape can be maintained and good high permeability is maintained.
  • the positive electrode potential at the end-of-charge voltage during normal use of the non-aqueous electrolyte power storage element is 4.30 V vs. It is preferably Li / Li + or more. By setting the positive electrode potential at the end-of-charge voltage during normal use to the above lower limit or higher, the discharge capacity can be increased and the energy density can be increased. In addition, the positive electrode potential is 4.30 V vs.
  • the amount of electricity used to decompose the components with low oxidation resistance in the non-aqueous electrolyte at the positive electrode causes the precipitation and growth of dendrites at the negative electrode. It is thought that short circuits are likely to occur due to use. Therefore, the advantages of the present invention that eliminate such inconvenience can be fully enjoyed.
  • the method for producing a non-aqueous electrolyte power storage element is to prepare a combination of a positive electrode and a negative electrode having metallic lithium or a negative electrode having a surface region where metallic lithium can be deposited during charging, and a fluorination solvent. It is a method for manufacturing a non-aqueous electrolyte power storage element, which comprises preparing a non-aqueous electrolyte containing the above-mentioned material and preparing a separator having an air permeation resistance of 150 seconds or less.
  • the manufacturing method it is possible to manufacture a non-aqueous electrolyte power storage element in which the occurrence of a short circuit is suppressed.
  • the non-aqueous electrolyte power storage device has a positive electrode, a negative electrode, and a non-aqueous electrolyte.
  • a non-aqueous electrolyte secondary battery (hereinafter, also simply referred to as “secondary battery”) will be described.
  • the positive electrode and the negative electrode usually form electrode bodies that are alternately superposed by stacking or winding through a separator.
  • the electrode body is housed in a container, and the container is filled with a non-aqueous electrolyte.
  • the non-aqueous electrolyte is interposed between the positive electrode and the negative electrode.
  • a known metal container, resin container or the like which is usually used as a container for a secondary battery can be used.
  • the positive electrode has a positive electrode base material and a positive electrode active material layer arranged directly on the positive electrode base material or via an intermediate layer.
  • the positive electrode base material has conductivity.
  • the A has a "conductive” means that the volume resistivity is measured according to JIS-H-0505 (1975 years) is not more than 10 7 ⁇ ⁇ cm, "non-conductive", means that the volume resistivity is 10 7 ⁇ ⁇ cm greater.
  • metals such as aluminum, titanium, tantalum, and stainless steel or alloys thereof are used. Among these, aluminum and aluminum alloys are preferable from the viewpoint of balance of potential resistance, high conductivity and cost.
  • a foil, a vapor-deposited film and the like can be mentioned, and the foil is preferable from the viewpoint of cost. That is, aluminum foil is preferable as the positive electrode base material. Examples of aluminum or aluminum alloy include A1085P and A3003P specified in JIS-H-4000 (2014).
  • the average thickness of the positive electrode base material is preferably 3 ⁇ m or more and 50 ⁇ m or less, more preferably 5 ⁇ m or more and 40 ⁇ m or less, further preferably 8 ⁇ m or more and 30 ⁇ m or less, and particularly preferably 10 ⁇ m or more and 25 ⁇ m or less.
  • the "average thickness” means a value obtained by dividing the punching mass when punching a base material having a predetermined area by the true density of the base material and the punching area. The same applies to the "average thickness" of the negative electrode base material and the negative electrode active material layer, which will be described later.
  • the intermediate layer is a coating layer on the surface of the positive electrode base material, and contains conductive particles such as carbon particles to reduce the contact resistance between the positive electrode base material and the positive electrode active material layer.
  • the composition of the intermediate layer is not particularly limited, and can be formed by, for example, a composition containing a resin binder and conductive particles.
  • the positive electrode active material layer is a layer formed from a so-called positive electrode mixture containing a positive electrode active material.
  • the positive electrode mixture forming the positive electrode active material layer may contain an optional component such as a conductive agent, a binder, a thickener, and a filler, if necessary.
  • the positive electrode active material can be appropriately selected from known positive electrode active materials.
  • As the positive electrode active material for a lithium ion secondary battery a material capable of occluding and releasing lithium ions is usually used.
  • Examples of the positive electrode active material include a lithium transition metal composite oxide having an ⁇ -NaFeO type 2 crystal structure, a lithium transition metal composite oxide having a spinel type crystal structure, a polyanion compound, a chalcogen compound, sulfur and the like.
  • Examples of the lithium transition metal composite oxide having an ⁇ -NaFeO type 2 crystal structure include Li [Li x Ni 1-x ] O 2 (0 ⁇ x ⁇ 0.5) and Li [Li x Ni ⁇ Co 1-x.
  • Examples of the lithium transition metal composite oxide having a spinel-type crystal structure include Li x Mn 2 O 4 and Li x Ni ⁇ Mn 2- ⁇ O 4 .
  • Examples of the polyanion compound include LiFePO 4 , LiMnPO 4 , LiNiPO 4 , LiCoPO 4 , Li 3 V 2 (PO 4 ) 3 , Li 2 MnSiO 4 , Li 2 CoPO 4 F and the like.
  • Examples of the chalcogen compound include titanium disulfide, molybdenum disulfide, molybdenum dioxide and the like.
  • the atoms or polyanions in these materials may be partially substituted with atoms or anion species consisting of other elements.
  • the surface of these materials may be coated with other materials. In the positive electrode active material layer, one of these materials may be used alone, or two or more of these materials may be mixed and used.
  • the average particle size of the positive electrode active material is preferably 0.1 ⁇ m or more and 20 ⁇ m or less, for example.
  • the average particle size of the positive electrode active material is based on JIS-Z-8825 (2013), and is based on the particle size distribution measured by a laser diffraction / scattering method with respect to a diluted solution obtained by diluting the particles with a solvent. It means a value at which the volume-based integrated distribution calculated in accordance with Z-8891-2 (2001) is 50%.
  • a crusher, a classifier, etc. are used to obtain particles of the positive electrode active material in a predetermined shape.
  • the crushing method include a method using a mortar, a ball mill, a sand mill, a vibrating ball mill, a planetary ball mill, a jet mill, a counter jet mill, a swirling airflow type jet mill, a sieve, and the like.
  • wet pulverization in which water or an organic solvent such as hexane coexists can also be used.
  • a classification method a sieve, a wind power classifier, or the like is used as needed for both dry and wet types.
  • the content of the positive electrode active material in the positive electrode active material layer is preferably 70% by mass or more and 98% by mass or less, more preferably 80% by mass or more and 97% by mass or less, and further preferably 90% by mass or more and 96% by mass or less.
  • the conductive agent is not particularly limited as long as it is a conductive material.
  • a conductive agent include carbonaceous materials; metals; conductive ceramics and the like.
  • carbonaceous materials include graphite and carbon black.
  • Examples of the type of carbon black include furnace black, acetylene black, and ketjen black. Among these, a carbonaceous material is preferable from the viewpoint of conductivity and coatability. Of these, acetylene black and ketjen black are preferable.
  • Examples of the shape of the conductive agent include powder, sheet, and fibrous.
  • the content of the conductive agent in the positive electrode active material layer is preferably 1% by mass or more and 40% by mass or less, and more preferably 2% by mass or more and 10% by mass or less.
  • binder examples include fluororesins (polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), etc.), thermoplastic resins such as polyethylene, polypropylene, and polyimide; ethylene-propylene-diene rubber (EPDM), sulfonated EPDM, and styrene butadiene. Elastomers such as rubber (SBR) and fluororubber; polysaccharide polymers and the like can be mentioned.
  • fluororesins polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), etc.
  • thermoplastic resins such as polyethylene, polypropylene, and polyimide
  • EPDM ethylene-propylene-diene rubber
  • SBR rubber
  • fluororubber polysaccharide polymers and the like can be mentioned.
  • the content of the binder in the positive electrode active material layer is preferably 0.5% by mass or more and 10% by mass or less, and more preferably 1% by mass or more and 6% by mass or less.
  • the thickener examples include polysaccharide polymers such as carboxymethyl cellulose (CMC) and methyl cellulose.
  • CMC carboxymethyl cellulose
  • methyl cellulose examples include polysaccharide polymers such as carboxymethyl cellulose (CMC) and methyl cellulose.
  • the filler is not particularly limited. Fillers include polyolefins such as polypropylene and polyethylene, silicon dioxide, aluminum oxide, titanium dioxide, calcium oxide, strontium oxide, barium oxide, magnesium oxide, inorganic oxides such as aluminosilicate, magnesium hydroxide, calcium hydroxide, and water.
  • polyolefins such as polypropylene and polyethylene
  • silicon dioxide aluminum oxide
  • titanium dioxide calcium oxide
  • strontium oxide barium oxide
  • magnesium oxide magnesium oxide
  • inorganic oxides such as aluminosilicate, magnesium hydroxide, calcium hydroxide, and water.
  • Hydroxides such as aluminum oxide, carbonates such as calcium carbonate, sparingly soluble ionic crystals such as calcium fluoride, barium fluoride, barium sulfate, nitrides such as aluminum nitride and silicon nitride, talc, montmorillonite, boehmite, zeolite , Apatite, kaolin, mulite, spinel, olivine, sericite, bentonite, mica and other mineral resource-derived substances, or man-made products thereof.
  • the filler is not contained in the positive electrode active material layer.
  • the positive electrode active material layer includes typical non-metal elements such as B, N, P, F, Cl, Br, I, Li, Na, Mg, Al, K, Ca, Zn, Ga, Ge, Sn, Sr, Ba and the like.
  • Typical metal elements of Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo, Zr, Nb, W and other transition metal elements are used as positive electrode active materials, conductive agents, binders, thickeners and fillers. It may be contained as a component other than.
  • the negative electrode has a negative electrode base material and a negative electrode active material layer arranged directly on the negative electrode base material or via an intermediate layer.
  • the intermediate layer of the negative electrode can have the same structure as the intermediate layer of the positive electrode.
  • the negative electrode base material may have the same structure as the positive electrode base material, but as the material, metals such as copper, nickel, stainless steel, nickel-plated steel or alloys thereof are used, and copper or a copper alloy is preferable. .. That is, copper foil is preferable as the negative electrode base material. Examples of the copper foil include rolled copper foil and electrolytic copper foil.
  • the average thickness of the negative electrode base material is preferably 2 ⁇ m or more and 35 ⁇ m or less, more preferably 3 ⁇ m or more and 30 ⁇ m or less, further preferably 4 ⁇ m or more and 25 ⁇ m or less, and particularly preferably 5 ⁇ m or more and 20 ⁇ m or less.
  • the negative electrode active material layer has metallic lithium.
  • Metallic lithium is a component that functions as a negative electrode active material.
  • the metallic lithium may exist as pure metallic lithium consisting substantially only of lithium, or may exist as a lithium alloy containing other metallic components. Examples of the lithium alloy include a lithium silver alloy, a lithium zinc alloy, a lithium calcium alloy, a lithium aluminum alloy, a lithium magnesium alloy, a lithium indium alloy and the like.
  • the lithium alloy may contain a plurality of metal elements other than lithium.
  • the negative electrode active material layer may be a layer substantially composed of metallic lithium only.
  • the lithium content in the negative electrode active material layer may be 90% by mass or more, 99% by mass or more, or 100% by mass.
  • the negative electrode active material layer may be a lithium foil or a lithium alloy foil.
  • the negative electrode active material layer may be a non-porous layer (solid layer). Further, the negative electrode active material layer may be a porous layer having particles containing metallic lithium.
  • the negative electrode active material layer which is a porous layer having particles containing metallic lithium, may further have, for example, resin particles, inorganic particles, and the like.
  • the average thickness of the negative electrode active material layer is preferably 5 ⁇ m or more and 1,000 ⁇ m or less, more preferably 10 ⁇ m or more and 500 ⁇ m or less, and further preferably 30 ⁇ m or more and 300 ⁇ m or less.
  • the negative electrode In the charged state, metallic lithium is deposited on at least a part of the negative electrode surface, and the non-aqueous electrolyte is configured so that substantially all of the metallic lithium on the negative electrode surface is eluted into the non-aqueous electrolyte by discharging.
  • the negative electrode does not have to have the negative electrode active material layer in the discharged state.
  • the separator is not particularly limited as long as it has an air permeation resistance of 150 seconds or less, and can be appropriately selected from known separators.
  • a separator composed of only a base material layer a separator in which a heat-resistant layer containing heat-resistant particles and a binder is formed on one surface or both surfaces of the base material layer can be used. From the viewpoint of further suppressing the occurrence of short circuits, a separator composed of only the base material layer may be preferable.
  • Examples of the form of the base material layer of the separator include a woven fabric, a non-woven fabric, a porous resin film, and the like, and a porous resin film is preferable.
  • the material of the base material layer of the separator is usually a resin.
  • the resin (base resin) used as the material of the base material layer of the separator polyolefins such as polyethylene and polypropylene are preferable from the viewpoint of shutdown function, and polyimide and aramid are preferable from the viewpoint of oxidative decomposition resistance.
  • As the base material layer of the separator a material in which these resins are composited may be used.
  • the separator preferably has a base resin and inorganic particles dispersed in the base resin.
  • a separator in which the inorganic particles are dispersed in the base resin, the occurrence of a short circuit in the non-aqueous electrolyte power storage element is further suppressed.
  • a separator having a base resin and inorganic particles dispersed in the base resin a base layer is usually formed by the base resin and the inorganic particles.
  • the separator is more preferably a separator composed only of the base material layer, that is, a separator having no other layer such as a heat-resistant layer. Since the inorganic particles are dispersed and contained in the base material layer of the separator, the separator can have good heat resistance even when there is no heat-resistant layer.
  • the base material layer may further contain components other than the base material resin and the inorganic particles.
  • Specific types of the base resin include the above-mentioned resin as the material of the base layer of the separator.
  • Specific types of materials constituting the inorganic particles include oxidation of iron oxide, silicon oxide, aluminum oxide, titanium oxide, barium titanate, zirconium oxide, calcium oxide, strontium oxide, barium oxide, magnesium oxide, aluminosilicate and the like.
  • hydroxides such as magnesium hydroxide, calcium hydroxide, aluminum hydroxide; nitrides such as aluminum nitride and silicon nitride; carbonates such as calcium carbonate; sulfates such as barium sulfate; calcium fluoride, barium fluoride Poorly soluble ion crystals such as silicon, covalent crystals such as diamond; talc, montmorillonite, boehmite, zeolite, apatite, kaolin, mulite, spinel, olivine, cericite, bentonite, mica and other mineral resource-derived substances or these Artificial products, etc.
  • the inorganic compound a simple substance or a complex of these substances may be used alone, or two or more kinds thereof may be mixed and used.
  • silicon oxide, aluminum oxide, or aluminosilicate is preferable from the viewpoint of safety of the non-aqueous electrolyte power storage element.
  • the content of the inorganic particles in the base material layer is preferably 1% by mass or more and 70% by mass or less, more preferably 5% by mass or more and 50% by mass or less, and further preferably 10% by mass or more and 20% by mass or less.
  • the content of the inorganic particles is in the above range, the occurrence of a short circuit in the non-aqueous electrolyte power storage element is further suppressed. Further, when the content of the inorganic particles is within the above range, the balance between the strength (pressure resistance in the thickness direction), the flexibility, the resistance to tearing, and the like is optimized.
  • the heat-resistant particles contained in the heat-resistant layer preferably have a mass loss of 5% or less when heated from room temperature to 500 ° C. in the atmosphere, and a mass loss of 5% when heated from room temperature to 800 ° C. in the atmosphere.
  • Inorganic compounds can be mentioned as materials whose mass loss when heated is less than or equal to a predetermined value. Examples of the inorganic compound include those described above as materials constituting the inorganic particles in the base material layer.
  • silicon oxide, aluminum oxide, or aluminosilicate is preferable from the viewpoint of safety of the non-aqueous electrolyte power storage element.
  • the air permeation resistance of the separator is preferably 30 seconds or more and 150 seconds or less, more preferably 35 seconds or more and 100 seconds or less, and further preferably 50 seconds or more and 80 seconds or less.
  • the air permeability resistance of the separator is adjusted by the porosity of the separator, the average thickness, and the like. Further, as a separator having such an air permeation resistance, a commercially available product can be used.
  • the average thickness of the separator is, for example, preferably 3 ⁇ m or more and 50 ⁇ m or less, and more preferably 10 ⁇ m or more and 25 ⁇ m or less.
  • the average thickness of the separator shall be the average value of the thickness measured at any 10 locations.
  • Non-aqueous electrolyte contains a fluorinated solvent.
  • the non-aqueous electrolyte may be a non-aqueous electrolyte solution containing a non-aqueous solvent containing a fluorination solvent and an electrolyte salt dissolved in the non-aqueous solvent.
  • the fluorinated solvent is a solvent having a fluorine atom.
  • the fluorinated solvent may be one in which some or all of the hydrogen atoms in the hydrocarbon group in the non-aqueous solvent having a hydrocarbon group are replaced with fluorine atoms. Since the non-aqueous electrolyte contains a fluorinated solvent, the occurrence of a short circuit is suppressed. Further, by using the fluorinated solvent, the oxidation resistance is enhanced, and good charge / discharge cycle performance can be maintained even in charging when the positive electrode potential during normal use reaches a high potential.
  • fluorinated solvent examples include fluorinated carbonate, fluorinated carboxylic acid ester, fluorinated phosphoric acid ester, fluorinated ether and the like.
  • fluorination solvent one kind or two or more kinds can be used.
  • fluorinated carbonate is preferable, and it is more preferable to use fluorinated cyclic carbonate and fluorinated chain carbonate in combination.
  • fluorinated cyclic carbonate By using the fluorinated cyclic carbonate, the dissociation of the electrolyte salt can be promoted and the ionic conductivity of the non-aqueous electrolyte can be improved.
  • fluorinated chain carbonate By using the fluorinated chain carbonate, the viscosity of the non-aqueous electrolyte can be kept low.
  • the volume ratio of the fluorinated cyclic carbonate and the fluorinated chain carbonate is, for example, 5:95. It is preferably in the range of 50:50.
  • the upper limit of the content ratio of fluorinated carbonate in the fluorinated solvent may be 100% by volume.
  • fluorinated cyclic carbonate examples include fluorinated ethylene carbonate such as fluoroethylene carbonate (FEC) and difluoroethylene carbonate, fluorinated propylene carbonate, and fluorinated butylene carbonate.
  • fluorinated ethylene carbonate is preferable, and FEC is more preferable.
  • FEC has high oxidation resistance and is highly effective in suppressing side reactions (oxidative decomposition of non-aqueous solvents, etc.) that may occur during charging and discharging of secondary batteries.
  • fluorinated chain carbonate examples include trifluoromethylethyl carbonate, trifluoroethylmethyl carbonate, bis (trifluoromethyl) carbonate, and bis (trifluoroethyl) carbonate.
  • fluorinated carboxylic acid ester examples include methyl 3,3,3-trifluoropropionate, acetic acid-2,2,2-trifluoroethyl and the like.
  • fluorinated phosphate ester examples include tris phosphate (2,2-difluoroethyl) and tris phosphate (2,2,2-trifluoroethyl).
  • fluorinated ether examples include 1,1,2,2-tetrafluoroethyl-2,2,2-trifluoroethyl ether, methylheptafluoropropyl ether, methyl nonafluorobutyl ether and the like.
  • the non-aqueous solvent may contain a non-aqueous solvent other than the fluorinated solvent.
  • a non-aqueous solvent include carbonates, carboxylic acid esters, phosphoric acid esters, ethers and the like other than the fluorination solvent.
  • the lower limit of the content ratio of the fluorinated solvent to the total non-aqueous solvent 50% by volume is preferable, 70% by volume is more preferable, and 90% by volume is further preferable.
  • the electrolyte salt can be appropriately selected from known electrolyte salts.
  • Examples of the electrolyte salt include lithium salt, sodium salt, potassium salt, magnesium salt, onium salt and the like. Of these, lithium salts are preferred.
  • Lithium salts include inorganic lithium salts such as LiPF 6 , LiPO 2 F 2 , LiBF 4 , LiClO 4 , LiN (SO 2 F) 2 , LiSO 3 CF 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2). C 2 F 5 ) 2 , LiN (SO 2 CF 3 ) (SO 2 C 4 F 9 ), LiC (SO 2 CF 3 ) 3 , LiC (SO 2 C 2 F 5 ) 3 and other halogenated hydrocarbon groups Examples thereof include lithium salts having. Among these, an inorganic lithium salt is preferable, and LiPF 6 is more preferable.
  • the content of the electrolyte salt in the nonaqueous electrolyte is preferable to be 0.1 mol / dm 3 or more 2.5 mol / dm 3 or less, more preferable to be 0.3 mol / dm 3 or more 2.0 mol / dm 3 or less, more preferable to be 0.5 mol / dm 3 or more 1.7 mol / dm 3 or less, and particularly preferably 0.7 mol / dm 3 or more 1.5 mol / dm 3 or less.
  • the non-aqueous electrolyte may contain additives.
  • the additive include aromatic compounds such as biphenyl, alkylbiphenyl, terphenyl, and a partially hydride of terphenyl, cyclohexylbenzene, t-butylbenzene, t-amylbenzene, diphenyl ether, and dibenzofuran; 2-fluorobiphenyl, o.
  • -Partial halides of the above aromatic compounds such as cyclohexylfluorobenzene and p-cyclohexylfluorobenzene; such as 2,4-difluoroanisole, 2,5-difluoroanisole, 2,6-difluoroanisole, 3,5-difluoroanisole and the like.
  • Anisole halide compounds succinic anhydride, glutaric anhydride, maleic anhydride, citraconic anhydride, glutaconic anhydride, itaconic anhydride, cyclohexanedicarboxylic acid anhydride; ethylene sulfite, propylene sulfite, dimethyl sulfite, dimethyl sulfite, ethylene sulfate, Sulfolane, dimethylsulfone, diethylsulfone, dimethylsulfoxide, diethylsulfoxide, tetramethylenesulfoxide, diphenylsulfide, 4,4'-bis (2,2-dioxo-1,3,2-dioxathiolane), 4-methylsulfonyloxymethyl- Examples thereof include 2,2-dioxo-1,3,2-dioxathiolane, thioanisole, diphenyldisulfide, dipyridinium disulfide, perflu
  • the content of the additive contained in the non-aqueous electrolyte is preferably 0.01% by mass or more and 10% by mass or less, more preferably 0.1% by mass or more and 7% by mass or less, and 0.2. It is more preferably mass% or more and 5 mass% or less, and particularly preferably 0.3 mass% or more and 3 mass% or less.
  • the positive electrode potential at the end-of-charge voltage during normal use is 4.30 V vs. It is preferably Li / Li + or higher, 4.35 V vs. It is more preferably Li / Li + or more, 4.40 V vs. In some cases, it is more preferably Li / Li + or higher.
  • “during normal use” refers to the case where the non-aqueous electrolyte storage element is used by adopting the charging conditions recommended or specified for the non-aqueous electrolyte storage element.
  • a charger for the non-aqueous electrolyte power storage element it means a case where the charger is applied to use the non-aqueous electrolyte power storage element.
  • the upper limit of the positive electrode potential at the end-of-charge voltage during normal use of the secondary battery is, for example, 5.0 V vs. Li / Li + , 4.8V vs. It may be Li / Li + , 4.7 V vs. It may be Li / Li +.
  • the electrode body housed in the container may be pressurized from the outside of the container, that is, through the container.
  • the electrode body is preferably pressurized in the direction in which the positive electrode, the negative electrode and the separator are overlapped (the thickness direction of each layer). That is, it is preferable that the positive electrode active material layer and the negative electrode active material layer are pressurized in the direction of being crushed in the thickness direction.
  • a part of the electrode body may not be pressurized. Further, only a part of the flat portion of the laminated electrode body and the flat wound electrode body may be pressurized.
  • the pressure applied to at least a part of the electrode body in the pressurized state or the pressure applied to the container from the outside is preferably 0.01 MPa or more and 2 MPa or less, more preferably 0.1 MPa or more and 1.5 MPa or less, and 0.2 MPa. More preferably 1 MPa or less.
  • the pressurization of the electrode body can be performed by, for example, a pressurizing member that pressurizes the container from the outside.
  • the pressurizing member may be a restraining member that restrains the shape of the container.
  • the pressurizing member (restraint member) is provided so as to pressurize the electrode body by sandwiching it from both sides in the thickness direction via, for example, a container.
  • the pressurized surface of the electrode body is in contact with the inner surface of the container, either directly or via another member. Therefore, when the container is pressurized, the electrode body is pressurized.
  • the pressurizing member include a restraint band and a metal frame.
  • the load may be adjustable by bolts or the like.
  • a plurality of non-aqueous electrolyte storage elements are arranged side by side in the thickness direction of the electrode body, and the plurality of non-aqueous electrolyte storage elements are pressed from both ends in the thickness direction and fixed by using a frame or the like. May be good.
  • the non-aqueous electrolyte power storage device can be suitably applied to applications in which charging with a high current density is performed.
  • Examples of such applications include power supplies for automobiles such as electric vehicles (EVs), hybrid electric vehicles (HEVs), and plug-in hybrid vehicles (PHEVs), power supplies for flying objects such as airplanes and drones, and power supplies for regenerative power charging. Be done.
  • the non-aqueous electrolyte power storage element is particularly suitable for an air vehicle power supply because it has an extremely high mass energy density particularly required for an air vehicle power supply and a sufficient charge / discharge cycle performance.
  • the shape of the non-aqueous electrolyte power storage element of the present embodiment is not particularly limited, and examples thereof include a cylindrical battery, a square battery, a flat battery, a coin battery, and a button battery.
  • FIG. 1 shows a non-aqueous electrolyte power storage element 1 as an example of a square battery.
  • the figure is a perspective view of the inside of the container.
  • the electrode body 2 having the positive electrode and the negative electrode wound around the separator is housed in the square container 3.
  • the positive electrode is electrically connected to the positive electrode terminal 4 via the positive electrode lead 41.
  • the negative electrode is electrically connected to the negative electrode terminal 5 via the negative electrode lead 51.
  • the non-aqueous electrolyte power storage element of the present embodiment includes a power source for automobiles such as an electric vehicle (EV), a hybrid electric vehicle (HEV), and a plug-in hybrid vehicle (PHEV), a power source for an airplane, a vehicle such as a drone, a personal computer, and communication. It can be mounted as a power storage unit (battery module) composed of a plurality of non-aqueous electrolyte power storage elements assembled on a power supply for electronic devices such as terminals, a power supply for power storage, or the like. In this case, the technique according to the embodiment of the present invention may be applied to at least one non-aqueous electrolyte power storage element included in the power storage unit.
  • a power source for automobiles such as an electric vehicle (EV), a hybrid electric vehicle (HEV), and a plug-in hybrid vehicle (PHEV)
  • a power source for an airplane a vehicle such as a drone, a personal computer, and communication. It can be mounted as a power storage unit
  • FIG. 2 shows an example of a power storage device 30 in which a power storage unit 20 in which two or more electrically connected non-aqueous electrolyte power storage elements 1 are assembled is further assembled.
  • the power storage device 30 includes a bus bar (not shown) that electrically connects two or more non-aqueous electrolyte power storage elements 1, a bus bar (not shown) that electrically connects two or more power storage units 20 and the like. May be good.
  • the power storage unit 20 or the power storage device 30 may include a condition monitoring device (not shown) for monitoring the state of one or more non-aqueous electrolyte power storage elements.
  • the method for manufacturing a non-aqueous electrolyte power storage element is to prepare a combination of a positive electrode and a negative electrode having metallic lithium or a negative electrode having a surface region where metallic lithium can be deposited during charging, and fluorination.
  • a non-aqueous electrolyte containing a solvent is prepared, and a separator having an air permeation resistance of 150 seconds or less is prepared.
  • Preparing a negative electrode having metallic lithium may be producing a negative electrode having metallic lithium.
  • the negative electrode can be manufactured by laminating a negative electrode active material layer containing metallic lithium directly on the negative electrode substrate or via an intermediate layer and pressing the negative electrode.
  • the negative electrode active material layer containing metallic lithium may be a lithium foil or a lithium alloy foil.
  • the above-mentioned form can be applied as the negative electrode provided in the non-aqueous electrolyte power storage element.
  • the negative electrode having a surface region on which metallic lithium can be deposited during charging may be, for example, a negative electrode composed of only a negative electrode base material.
  • a positive electrode having a positive electrode active material containing lithium ions is prepared in advance as the positive electrode.
  • Preparing a non-aqueous electrolyte containing a fluorinated solvent may be preparing a non-aqueous electrolyte containing a fluorinated solvent.
  • the non-aqueous electrolyte can be prepared by mixing each component constituting the non-aqueous electrolyte, such as a fluorinated solvent and other components.
  • the above-mentioned form can be applied as the non-aqueous electrolyte provided in the non-aqueous electrolyte power storage element.
  • Preparing a separator having an air permeation resistance of 150 seconds or less may be the preparation or purchase of a commercially available product of such a separator, or the production of such a separator.
  • the above-mentioned form can be applied as a separator provided in the non-aqueous electrolyte power storage element.
  • the method for manufacturing the non-aqueous electrolyte power storage element includes preparing or manufacturing a positive electrode, preparing or manufacturing a negative electrode, preparing or preparing a non-aqueous electrolyte, preparing or manufacturing a separator, a positive electrode and a negative electrode.
  • To form an electrode body that is alternately superimposed by laminating or winding through a separator to house the positive electrode and the negative electrode (electrode body) in a container, and to inject the non-aqueous electrolyte into the container.
  • the non-aqueous electrolyte power storage element can be obtained by sealing the injection port.
  • the present invention is not limited to the above embodiment, and various modifications may be made without departing from the gist of the present invention.
  • the configuration of one embodiment can be added to the configuration of another embodiment, and a part of the configuration of one embodiment can be replaced with the configuration of another embodiment or a well-known technique.
  • some of the configurations of certain embodiments can be deleted.
  • a well-known technique can be added to the configuration of a certain embodiment.
  • non-aqueous electrolyte storage element is used as a chargeable / dischargeable non-aqueous electrolyte secondary battery (for example, a lithium ion secondary battery) has been described.
  • the capacity and the like are arbitrary.
  • the non-aqueous electrolyte power storage element of the present invention can also be applied to capacitors such as various non-aqueous electrolyte secondary batteries, electric double layer capacitors and lithium ion capacitors.
  • Separator A A separator (without a heat-resistant layer) composed of a base material layer having an air permeation resistance of 35 seconds, an average thickness of 16 ⁇ m, and inorganic particles dispersed in a base material resin (polyolefin resin), in the base material layer.
  • Separator B A separator (without a heat-resistant layer) composed of a base material layer having an air permeation resistance of 45 seconds, an average thickness of 16 ⁇ m, and inorganic particles dispersed in a base material resin (polyolefin resin), in the base material layer.
  • a separator (without a heat-resistant layer) composed of a base material layer having an air permeation resistance of 70 seconds, an average thickness of 16 ⁇ m, and inorganic particles dispersed in a base material resin (polyolefin resin), in the base material layer.
  • Example 1 (Preparation of positive electrode)
  • a lithium transition metal composite oxide having an ⁇ -NaFeO type 2 crystal structure and represented by Li 1 + ⁇ Me 1- ⁇ O 2 (Me is a transition metal) was used as the positive electrode active material.
  • NMP N-methylpyrrolidone
  • AB acetylene black
  • PVDF polyvinylidene fluoride
  • a positive electrode paste contained in the above was prepared.
  • the positive electrode paste was applied to one side of an aluminum foil having an average thickness of 15 ⁇ m, which is a positive electrode base material, dried, pressed, and cut, and a positive electrode active material layer was arranged in a rectangular shape having a width of 30 mm and a length of 40 mm.
  • a positive electrode was prepared.
  • a lithium foil (100% by mass of metallic lithium) having an average thickness of 100 ⁇ m is laminated as a negative electrode active material layer on one side of a copper foil having an average thickness of 10 ⁇ m, which is a negative electrode base material.
  • a negative electrode was produced by cutting into a shape.
  • LiPF 6 was dissolved in a mixed solvent in which fluoroethylene carbonate (FEC) and 2,2,2-trifluoroethylmethyl carbonate (TFEMC) were mixed at a volume ratio of 30:70 at a concentration of 1 mol / dm 3 , and a non-aqueous electrolyte was prepared. And said.
  • FEC fluoroethylene carbonate
  • TFEMC 2,2,2-trifluoroethylmethyl carbonate
  • Example 1 Manufacturing of non-aqueous electrolyte power storage element
  • EC represents ethylene carbonate
  • EMC represents ethyl methyl carbonate.
  • Comparative Examples 1 and 5 using a non-aqueous electrolyte containing no fluorinated solvent, and Comparative Examples 2 to 5 using a separator having an air permeation resistance of more than 150 seconds are 20.
  • a short circuit occurred with a small number of cycles less than the number of cycles.
  • the non-aqueous electrolyte power storage elements of Examples 1 to 4 using the non-aqueous electrolyte containing the fluorinated solvent and the separator having an air permeation resistance of 150 seconds or less the number of cycles until a short circuit occurs is 40. The number of times was exceeded, the occurrence of short circuits was sufficiently suppressed, and the discharge capacity retention rate was also high.
  • the non-aqueous electrolyte power storage element of Example 3 the occurrence of a short circuit was particularly suppressed, probably because the air permeability resistance of the separator was particularly appropriate.
  • the present invention can be applied to electronic devices such as personal computers and communication terminals, non-aqueous electrolyte power storage elements used as power sources for automobiles, and the like.
  • Non-aqueous electrolyte power storage element 1
  • Electrode body 3
  • Container 4
  • Positive terminal 4
  • Negative terminal 51
  • Negative lead 20
  • Power storage unit 30
  • Power storage device

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

One aspect of the present invention is a non-aqueous electrolyte power storage element including a negative electrode having metallic lithium, a non-aqueous electrolyte including a fluorinated solvent, and a separator having an air permeation resistance of 150 sec or less.

Description

非水電解質蓄電素子及びその製造方法Non-aqueous electrolyte power storage element and its manufacturing method
 本発明は、非水電解質蓄電素子及びその製造方法に関する。 The present invention relates to a non-aqueous electrolyte power storage device and a method for manufacturing the same.
 リチウムイオン二次電池に代表される非水電解質二次電池は、エネルギー密度の高さから、パーソナルコンピュータ、通信端末等の電子機器、自動車等に多用されている。上記非水電解質二次電池は、一般的には、セパレータで電気的に隔離された一対の電極と、この電極間に介在する非水電解質とを有し、両電極間でイオンの受け渡しを行うことで充放電するよう構成される。また、非水電解質二次電池以外の非水電解質蓄電素子として、リチウムイオンキャパシタや電気二重層キャパシタ等のキャパシタも広く普及している。非水電解質蓄電素子に用いられる高エネルギー密度を有する負極活物質として、金属リチウムが知られている(特許文献1、2参照)。 Non-aqueous electrolyte secondary batteries represented by lithium ion secondary batteries are widely used in electronic devices such as personal computers and communication terminals, automobiles, etc. due to their high energy density. The non-aqueous electrolyte secondary battery generally has a pair of electrodes electrically separated by a separator and a non-aqueous electrolyte interposed between the electrodes, and transfers ions between the two electrodes. It is configured to charge and discharge. In addition, capacitors such as lithium ion capacitors and electric double layer capacitors are also widely used as non-aqueous electrolyte storage elements other than non-aqueous electrolyte secondary batteries. Metallic lithium is known as a negative electrode active material having a high energy density used in a non-aqueous electrolyte power storage element (see Patent Documents 1 and 2).
特開2016-100065号公報Japanese Unexamined Patent Publication No. 2016-100065 特開平07-245099号公報Japanese Unexamined Patent Publication No. 07-24599
 負極活物質に金属リチウムが用いられた非水電解質蓄電素子においては、充電の際に負極表面で金属リチウムが樹枝状に析出することがある(以下、樹枝状の形態をした金属リチウムを「デンドライト」という。)。このデンドライトが成長しセパレータを貫通して正極と接触すると、短絡を引き起こす。このため、負極活物質として金属リチウムを有する非水電解質蓄電素子は、充放電の繰り返しによって短絡が発生しやすいという不都合を有する。 In a non-aqueous electrolyte power storage element in which metallic lithium is used as the negative electrode active material, metallic lithium may be deposited in a dendritic shape on the surface of the negative electrode during charging (hereinafter, metallic lithium in a dendritic form is referred to as “dendrite”. ".). When this dendrite grows and penetrates the separator and comes into contact with the positive electrode, it causes a short circuit. Therefore, the non-aqueous electrolyte power storage element having metallic lithium as the negative electrode active material has an inconvenience that a short circuit is likely to occur due to repeated charging and discharging.
 本発明は、以上のような事情に基づいてなされたものであり、その目的は、短絡の発生が抑制された非水電解質蓄電素子、及びこのような非水電解質蓄電素子の製造方法を提供することである。 The present invention has been made based on the above circumstances, and an object of the present invention is to provide a non-aqueous electrolyte power storage element in which the occurrence of a short circuit is suppressed, and a method for manufacturing such a non-aqueous electrolyte power storage element. That is.
 本発明の一態様は、金属リチウムを有する負極、フッ素化溶媒を含む非水電解質、及び透気抵抗度が150秒以下であるセパレータを備える非水電解質蓄電素子である。 One aspect of the present invention is a non-aqueous electrolyte power storage device including a negative electrode having metallic lithium, a non-aqueous electrolyte containing a fluorinated solvent, and a separator having an air permeation resistance of 150 seconds or less.
 本発明の他の一態様は、金属リチウムを有する負極を準備すること、フッ素化溶媒を含む非水電解質を準備すること、及び透気抵抗度が150秒以下であるセパレータを準備することを備える非水電解質蓄電素子の製造方法である。 Another aspect of the present invention comprises preparing a negative electrode having metallic lithium, preparing a non-aqueous electrolyte containing a fluorinated solvent, and preparing a separator having an air permeation resistance of 150 seconds or less. This is a method for manufacturing a non-aqueous electrolyte power storage element.
 本発明の一態様によれば、短絡の発生が抑制された非水電解質蓄電素子、及びこのような非水電解質蓄電素子の製造方法を提供することができる。 According to one aspect of the present invention, it is possible to provide a non-aqueous electrolyte power storage element in which the occurrence of a short circuit is suppressed, and a method for manufacturing such a non-aqueous electrolyte power storage element.
図1は、本発明の一実施形態に係る非水電解質蓄電素子を示す外観斜視図である。FIG. 1 is an external perspective view showing a non-aqueous electrolyte power storage element according to an embodiment of the present invention. 図2は、本発明の一実施形態に係る非水電解質蓄電素子を複数個集合して構成した蓄電装置を示す概略図である。FIG. 2 is a schematic view showing a power storage device configured by assembling a plurality of non-aqueous electrolyte power storage elements according to an embodiment of the present invention.
 初めに、本明細書によって開示される非水電解質蓄電素子及び非水電解質蓄電素子の製造方法の概要について説明する。 First, the outline of the non-aqueous electrolyte power storage element and the method for manufacturing the non-water electrolyte power storage element disclosed by the present specification will be described.
 本発明の一態様に係る非水電解質蓄電素子は、金属リチウムを有する負極、フッ素化溶媒を含む非水電解質、及び透気抵抗度が150秒以下であるセパレータを備える非水電解質蓄電素子である。 The non-aqueous electrolyte storage element according to one aspect of the present invention is a non-aqueous electrolyte storage element including a negative electrode having metallic lithium, a non-aqueous electrolyte containing a fluorinated solvent, and a separator having an air permeation resistance of 150 seconds or less. ..
 当該非水電解質蓄電素子は、短絡の発生が抑制されている。この理由は定かではないが、以下の理由が推測される。透気抵抗度の低いセパレータを用いることで、負極表面付近の非水電解質におけるリチウムイオンの濃度分布が均一化されることにより、デンドライトの析出及び成長が抑制される。また、フッ素化溶媒を含む非水電解質により負極表面に形成される皮膜により、デンドライトの析出及び成長が抑制される。このため、フッ素化溶媒を含む非水電解質、及び透気抵抗度が150秒以下であるセパレータを用いることで、デンドライトの成長が抑制され、短絡の発生が抑制されると推測される。また、当該非水電解質蓄電素子によれば、短絡の発生が抑制されるため、充放電サイクルにおける容量維持率も高い。 The non-aqueous electrolyte power storage element is suppressed from causing a short circuit. The reason for this is not clear, but the following reasons can be inferred. By using a separator having a low air permeation resistance, the concentration distribution of lithium ions in the non-aqueous electrolyte near the surface of the negative electrode is made uniform, so that the precipitation and growth of dendrites are suppressed. Further, the deposition and growth of dendrites are suppressed by the film formed on the surface of the negative electrode by the non-aqueous electrolyte containing a fluorinated solvent. Therefore, it is presumed that the growth of dendrites is suppressed and the occurrence of short circuits is suppressed by using a non-aqueous electrolyte containing a fluorinated solvent and a separator having an air permeation resistance of 150 seconds or less. Further, according to the non-aqueous electrolyte power storage element, the occurrence of a short circuit is suppressed, so that the capacity retention rate in the charge / discharge cycle is also high.
 ここで、「透気抵抗度」とはJIS-P8117(2009)に準拠する「ガーレー試験機法」により測定される値である。測定に用いるセパレータの試験片の寸法は50mm×50mmとする。
 なお、非水電解質蓄電素子が備えるセパレータの透気抵抗度は、以下の方法により解体された非水電解質蓄電素子から得られたセパレータを用いて測定される。まず、非水電解質蓄電素子を放電した後、該非水電解質蓄電素子を乾燥雰囲気下で解体する。次に、セパレータを取り出して濃度36質量%の塩酸で洗浄し、さらに脱イオン水で洗浄した後、10時間以上、常温で真空乾燥する。その後、真空乾燥したセパレータを切り出して試験片とする。
Here, the "air permeation resistance" is a value measured by the "Garley testing machine method" based on JIS-P8117 (2009). The size of the test piece of the separator used for the measurement is 50 mm × 50 mm.
The air permeation resistance of the separator included in the non-aqueous electrolyte storage element is measured using a separator obtained from the non-aqueous electrolyte storage element disassembled by the following method. First, after discharging the non-aqueous electrolyte storage element, the non-aqueous electrolyte storage element is disassembled in a dry atmosphere. Next, the separator is taken out, washed with hydrochloric acid having a concentration of 36% by mass, further washed with deionized water, and then vacuum dried at room temperature for 10 hours or more. Then, the vacuum-dried separator is cut out and used as a test piece.
 なお、当該非水電解質蓄電素子に備わる負極は、少なくとも充電状態において金属リチウムを有していればよく、放電状態においては金属リチウムを有していてもいなくてもよい。例えば、充電状態においては金属リチウムが負極表面の少なくとも一部の領域に析出しており、放電することにより負極表面の金属リチウムが非水電解質中に実質的に全て溶出して、放電状態においては負極表面には金属リチウムが実質的に存在しなくなるように構成された非水電解質蓄電素子であってもよい。 The negative electrode provided in the non-aqueous electrolyte power storage element may or may not have metallic lithium at least in the charged state, and may or may not have metallic lithium in the discharged state. For example, in the charged state, metallic lithium is deposited in at least a part of the negative electrode surface, and by discharging, substantially all of the metallic lithium on the negative electrode surface is eluted into the non-aqueous electrolyte, and in the discharged state, it is discharged. It may be a non-aqueous electrolyte power storage element configured so that metallic lithium is substantially eliminated from the surface of the negative electrode.
 上記透気抵抗度が50秒以上80秒以下であることが好ましい。このような透気抵抗度のセパレータを用いることで、非水電解質蓄電素子の短絡の発生がより抑制される。 It is preferable that the air permeation resistance is 50 seconds or more and 80 seconds or less. By using such a separator having an air permeation resistance, the occurrence of a short circuit in the non-aqueous electrolyte power storage element is further suppressed.
 上記セパレータが、基材樹脂と、上記基材樹脂中に分散して存在する無機粒子とを有することが好ましい。このようなセパレータを用いることで、非水電解質蓄電素子の短絡の発生がより抑制される。このような効果が生じる理由は定かではないが、無機粒子の存在によりセパレータが好適な多孔質形状となっていることや、無機粒子の存在によりセパレータの強度が高まり、セパレータが加圧された状態であっても好適な多孔質形状を保つことができ、良好な高い透過性が維持されることなどが推測される。 It is preferable that the separator has a base resin and inorganic particles dispersed in the base resin. By using such a separator, the occurrence of a short circuit in the non-aqueous electrolyte power storage element is further suppressed. The reason why such an effect occurs is not clear, but the state in which the separator has a suitable porous shape due to the presence of the inorganic particles and the strength of the separator is increased due to the presence of the inorganic particles, and the separator is pressurized. Even if it is, it is presumed that a suitable porous shape can be maintained and good high permeability is maintained.
 当該非水電解質蓄電素子における通常使用時の充電終止電圧における正極電位が、4.30V vs.Li/Li以上であることが好ましい。通常使用時の充電終止電圧における正極電位を上記下限以上とすることで、放電容量を大きくし、エネルギー密度を高めることができる。また、正極電位が4.30V vs.Li/Li以上となるような高電位に至る充放電を繰り返した場合、正極において非水電解質中の耐酸化性が低い成分の分解に使われる電気量が、負極においてデンドライトの析出及び成長に使われることなどにより、短絡の発生が生じ易くなると考えられる。このため、このような不都合を解消する本発明の利点を十分に享受することができる。 The positive electrode potential at the end-of-charge voltage during normal use of the non-aqueous electrolyte power storage element is 4.30 V vs. It is preferably Li / Li + or more. By setting the positive electrode potential at the end-of-charge voltage during normal use to the above lower limit or higher, the discharge capacity can be increased and the energy density can be increased. In addition, the positive electrode potential is 4.30 V vs. When charging and discharging to a high potential of Li / Li + or higher are repeated, the amount of electricity used to decompose the components with low oxidation resistance in the non-aqueous electrolyte at the positive electrode causes the precipitation and growth of dendrites at the negative electrode. It is thought that short circuits are likely to occur due to use. Therefore, the advantages of the present invention that eliminate such inconvenience can be fully enjoyed.
 本発明の一態様に係る非水電解質蓄電素子の製造方法は、正極と、金属リチウムを有する負極又は充電時に金属リチウムが析出可能な表面領域を有する負極との組み合わせを準備すること、フッ素化溶媒を含む非水電解質を準備すること、及び透気抵抗度が150秒以下であるセパレータを準備することを備える非水電解質蓄電素子の製造方法である。 The method for producing a non-aqueous electrolyte power storage element according to one aspect of the present invention is to prepare a combination of a positive electrode and a negative electrode having metallic lithium or a negative electrode having a surface region where metallic lithium can be deposited during charging, and a fluorination solvent. It is a method for manufacturing a non-aqueous electrolyte power storage element, which comprises preparing a non-aqueous electrolyte containing the above-mentioned material and preparing a separator having an air permeation resistance of 150 seconds or less.
 当該製造方法によれば、短絡の発生が抑制された非水電解質蓄電素子を製造することができる。 According to the manufacturing method, it is possible to manufacture a non-aqueous electrolyte power storage element in which the occurrence of a short circuit is suppressed.
 以下、本発明の一実施形態に係非水電解質蓄電素子、及び非水電解質蓄電素子の製造方法について、順に説明する。 Hereinafter, a method for manufacturing a non-aqueous electrolyte power storage element and a non-aqueous electrolyte power storage element according to an embodiment of the present invention will be described in order.
<非水電解質蓄電素子>
 本発明の一実施形態に係る非水電解質蓄電素子は、正極、負極及び非水電解質を有する。以下、非水電解質蓄電素子の一例として、非水電解質二次電池(以下、単に「二次電池」ともいう。)について説明する。上記正極及び負極は、通常、セパレータを介して積層又は巻回により交互に重畳された電極体を形成する。この電極体は容器に収納され、この容器内に非水電解質が充填される。上記非水電解質は、正極と負極との間に介在する。また、上記容器としては、二次電池の容器として通常用いられる公知の金属容器、樹脂容器等を用いることができる。
<Non-aqueous electrolyte power storage element>
The non-aqueous electrolyte power storage device according to the embodiment of the present invention has a positive electrode, a negative electrode, and a non-aqueous electrolyte. Hereinafter, as an example of the non-aqueous electrolyte power storage element, a non-aqueous electrolyte secondary battery (hereinafter, also simply referred to as “secondary battery”) will be described. The positive electrode and the negative electrode usually form electrode bodies that are alternately superposed by stacking or winding through a separator. The electrode body is housed in a container, and the container is filled with a non-aqueous electrolyte. The non-aqueous electrolyte is interposed between the positive electrode and the negative electrode. Further, as the container, a known metal container, resin container or the like which is usually used as a container for a secondary battery can be used.
(正極)
 正極は、正極基材、及びこの正極基材に直接又は中間層を介して配される正極活物質層を有する。
(Positive electrode)
The positive electrode has a positive electrode base material and a positive electrode active material layer arranged directly on the positive electrode base material or via an intermediate layer.
 正極基材は、導電性を有する。「導電性」を有するとは、JIS-H-0505(1975年)に準拠して測定される体積抵抗率が10Ω・cm以下であることを意味し、「非導電性」とは、上記体積抵抗率が10Ω・cm超であることを意味する。正極基材の材質としては、アルミニウム、チタン、タンタル、ステンレス鋼等の金属又はそれらの合金が用いられる。これらの中でも、耐電位性、導電性の高さ及びコストのバランスからアルミニウム及びアルミニウム合金が好ましい。また、正極基材の形成形態としては、箔、蒸着膜等が挙げられ、コストの面から箔が好ましい。つまり、正極基材としてはアルミニウム箔が好ましい。なお、アルミニウム又はアルミニウム合金としては、JIS-H-4000(2014年)に規定されるA1085P、A3003P等が例示できる。 The positive electrode base material has conductivity. The A has a "conductive" means that the volume resistivity is measured according to JIS-H-0505 (1975 years) is not more than 10 7 Ω · cm, "non-conductive", means that the volume resistivity is 10 7 Ω · cm greater. As the material of the positive electrode base material, metals such as aluminum, titanium, tantalum, and stainless steel or alloys thereof are used. Among these, aluminum and aluminum alloys are preferable from the viewpoint of balance of potential resistance, high conductivity and cost. Further, as a form of forming the positive electrode base material, a foil, a vapor-deposited film and the like can be mentioned, and the foil is preferable from the viewpoint of cost. That is, aluminum foil is preferable as the positive electrode base material. Examples of aluminum or aluminum alloy include A1085P and A3003P specified in JIS-H-4000 (2014).
 正極基材の平均厚さは、3μm以上50μm以下が好ましく、5μm以上40μm以下がより好ましく、8μm以上30μm以下がさらに好ましく、10μm以上25μm以下が特に好ましい。正極基材の平均厚さを上記の範囲とすることで、正極基材の強度を高めつつ、二次電池の体積当たりのエネルギー密度を高めることができる。「平均厚さ」とは、所定の面積の基材を打ち抜いた際の打ち抜き質量を、基材の真密度及び打ち抜き面積で除した値をいう。以下、後述する負極基材及び負極活物質層の「平均厚さ」についても同様である。 The average thickness of the positive electrode base material is preferably 3 μm or more and 50 μm or less, more preferably 5 μm or more and 40 μm or less, further preferably 8 μm or more and 30 μm or less, and particularly preferably 10 μm or more and 25 μm or less. By setting the average thickness of the positive electrode base material in the above range, it is possible to increase the energy density per volume of the secondary battery while increasing the strength of the positive electrode base material. The "average thickness" means a value obtained by dividing the punching mass when punching a base material having a predetermined area by the true density of the base material and the punching area. The same applies to the "average thickness" of the negative electrode base material and the negative electrode active material layer, which will be described later.
 中間層は、正極基材の表面の被覆層であり、炭素粒子等の導電性粒子を含むことで正極基材と正極活物質層との接触抵抗を低減する。中間層の構成は特に限定されず、例えば樹脂バインダー及び導電性粒子を含有する組成物により形成できる。 The intermediate layer is a coating layer on the surface of the positive electrode base material, and contains conductive particles such as carbon particles to reduce the contact resistance between the positive electrode base material and the positive electrode active material layer. The composition of the intermediate layer is not particularly limited, and can be formed by, for example, a composition containing a resin binder and conductive particles.
 正極活物質層は、正極活物質を含むいわゆる正極合剤から形成される層である。正極活物質層を形成する正極合剤は、必要に応じて導電剤、バインダー、増粘剤、フィラー等の任意成分を含んでいてよい。 The positive electrode active material layer is a layer formed from a so-called positive electrode mixture containing a positive electrode active material. The positive electrode mixture forming the positive electrode active material layer may contain an optional component such as a conductive agent, a binder, a thickener, and a filler, if necessary.
 正極活物質としては、公知の正極活物質の中から適宜選択できる。リチウムイオン二次電池用の正極活物質としては、通常、リチウムイオンを吸蔵及び放出することができる材料が用いられる。正極活物質としては、例えば、α-NaFeO型結晶構造を有するリチウム遷移金属複合酸化物、スピネル型結晶構造を有するリチウム遷移金属複合酸化物、ポリアニオン化合物、カルコゲン化合物、硫黄等が挙げられる。α-NaFeO型結晶構造を有するリチウム遷移金属複合酸化物として、例えば、Li[LiNi1-x]O(0≦x<0.5)、Li[LiNiγCo1-x-γ]O(0≦x<0.5、0<γ<1)、Li[LiCo1-x]O(0≦x<0.5)、
Li[LiNiγMn1-x-γ]O(0≦x<0.5、0<γ<1)、Li[LiNiγMnβCo1-x-γ-β]O(0≦x<0.5、0<γ、0<β、0.5<γ+β<1)、Li[LiNiγCoβAl1-x-γ-β]O(0≦x<0.5、0<γ、0<β、0.5<γ+β<1)等が挙げられる。スピネル型結晶構造を有するリチウム遷移金属複合酸化物として、LiMn、LiNiγMn2-γ等が挙げられる。ポリアニオン化合物として、LiFePO、LiMnPO、LiNiPO、LiCoPO、Li(PO、LiMnSiO、LiCoPOF等が挙げられる。カルコゲン化合物として、二硫化チタン、二硫化モリブデン、二酸化モリブデン等が挙げられる。これらの材料中の原子又はポリアニオンは、他の元素からなる原子又はアニオン種で一部が置換されていてもよい。これらの材料は表面が他の材料で被覆されていてもよい。正極活物質層においては、これら材料の1種を単独で用いてもよく、2種以上を混合して用いてもよい。
The positive electrode active material can be appropriately selected from known positive electrode active materials. As the positive electrode active material for a lithium ion secondary battery, a material capable of occluding and releasing lithium ions is usually used. Examples of the positive electrode active material include a lithium transition metal composite oxide having an α-NaFeO type 2 crystal structure, a lithium transition metal composite oxide having a spinel type crystal structure, a polyanion compound, a chalcogen compound, sulfur and the like. Examples of the lithium transition metal composite oxide having an α-NaFeO type 2 crystal structure include Li [Li x Ni 1-x ] O 2 (0 ≦ x <0.5) and Li [Li x Ni γ Co 1-x. -Γ ] O 2 (0 ≦ x <0.5, 0 <γ <1), Li [Li x Co 1-x ] O 2 (0 ≦ x <0.5),
Li [Li x Ni γ Mn 1-x-γ ] O 2 (0 ≦ x <0.5, 0 <γ <1), Li [Li x Ni γ Mn β Co 1-x-γ-β ] O 2 (0 ≦ x <0.5, 0 <γ, 0 <β, 0.5 <γ + β <1), Li [Li x Ni γ Co β Al 1-x-γ-β ] O 2 (0 ≦ x < Examples thereof include 0.5, 0 <γ, 0 <β, 0.5 <γ + β <1). Examples of the lithium transition metal composite oxide having a spinel-type crystal structure include Li x Mn 2 O 4 and Li x Ni γ Mn 2-γ O 4 . Examples of the polyanion compound include LiFePO 4 , LiMnPO 4 , LiNiPO 4 , LiCoPO 4 , Li 3 V 2 (PO 4 ) 3 , Li 2 MnSiO 4 , Li 2 CoPO 4 F and the like. Examples of the chalcogen compound include titanium disulfide, molybdenum disulfide, molybdenum dioxide and the like. The atoms or polyanions in these materials may be partially substituted with atoms or anion species consisting of other elements. The surface of these materials may be coated with other materials. In the positive electrode active material layer, one of these materials may be used alone, or two or more of these materials may be mixed and used.
 正極活物質の平均粒径は、例えば、0.1μm以上20μm以下とすることが好ましい。正極活物質の平均粒径を上記下限以上とすることで、正極活物質の製造又は取り扱いが容易になる。正極活物質の平均粒径を上記上限以下とすることで、正極活物質層の電子伝導性が向上する。ここで、「平均粒径」とは、JIS-Z-8825(2013年)に準拠し、粒子を溶媒で希釈した希釈液に対しレーザ回折・散乱法により測定した粒径分布に基づき、JIS-Z-8819-2(2001年)に準拠し計算される体積基準積算分布が50%となる値を意味する。 The average particle size of the positive electrode active material is preferably 0.1 μm or more and 20 μm or less, for example. By setting the average particle size of the positive electrode active material to the above lower limit or more, the production or handling of the positive electrode active material becomes easy. By setting the average particle size of the positive electrode active material to the above upper limit or less, the electron conductivity of the positive electrode active material layer is improved. Here, the "average particle size" is based on JIS-Z-8825 (2013), and is based on the particle size distribution measured by a laser diffraction / scattering method with respect to a diluted solution obtained by diluting the particles with a solvent. It means a value at which the volume-based integrated distribution calculated in accordance with Z-8891-2 (2001) is 50%.
 正極活物質の粒子を所定の形状で得るためには粉砕機や分級機等が用いられる。粉砕方法として、例えば、乳鉢、ボールミル、サンドミル、振動ボールミル、遊星ボールミル、ジェットミル、カウンタージェットミル、旋回気流型ジェットミル又は篩等を用いる方法が挙げられる。粉砕時には水、あるいはヘキサン等の有機溶剤を共存させた湿式粉砕を用いることもできる。分級方法としては、篩や風力分級機等が、乾式、湿式ともに必要に応じて用いられる。 A crusher, a classifier, etc. are used to obtain particles of the positive electrode active material in a predetermined shape. Examples of the crushing method include a method using a mortar, a ball mill, a sand mill, a vibrating ball mill, a planetary ball mill, a jet mill, a counter jet mill, a swirling airflow type jet mill, a sieve, and the like. At the time of pulverization, wet pulverization in which water or an organic solvent such as hexane coexists can also be used. As a classification method, a sieve, a wind power classifier, or the like is used as needed for both dry and wet types.
 正極活物質層における正極活物質の含有量としては、70質量%以上98質量%以下が好ましく、80質量%以上97質量%以下がより好ましく、90質量%以上96質量%以下がさらに好ましい。正極活物質の含有量を上記範囲とすることで、二次電池の電気容量を大きくすることができる。 The content of the positive electrode active material in the positive electrode active material layer is preferably 70% by mass or more and 98% by mass or less, more preferably 80% by mass or more and 97% by mass or less, and further preferably 90% by mass or more and 96% by mass or less. By setting the content of the positive electrode active material in the above range, the electric capacity of the secondary battery can be increased.
 導電剤としては、導電性を有する材料であれば特に限定されない。このような導電剤としては、例えば、炭素質材料;金属;導電性セラミックス等が挙げられる。炭素質材料としては、黒鉛やカーボンブラックが挙げられる。カーボンブラックの種類としては、ファーネスブラック、アセチレンブラック、ケッチェンブラック等が挙げられる。これらの中でも、導電性及び塗工性の観点より、炭素質材料が好ましい。なかでも、アセチレンブラックやケッチェンブラックが好ましい。導電剤の形状としては、粉状、シート状、繊維状等が挙げられる。 The conductive agent is not particularly limited as long as it is a conductive material. Examples of such a conductive agent include carbonaceous materials; metals; conductive ceramics and the like. Examples of carbonaceous materials include graphite and carbon black. Examples of the type of carbon black include furnace black, acetylene black, and ketjen black. Among these, a carbonaceous material is preferable from the viewpoint of conductivity and coatability. Of these, acetylene black and ketjen black are preferable. Examples of the shape of the conductive agent include powder, sheet, and fibrous.
 正極活物質層における導電剤の含有量は、1質量%以上40質量%以下が好ましく、2質量%以上10質量%以下がより好ましい。導電剤の含有量を上記の範囲とすることで、二次電池のエネルギー密度を高めることができる。 The content of the conductive agent in the positive electrode active material layer is preferably 1% by mass or more and 40% by mass or less, and more preferably 2% by mass or more and 10% by mass or less. By setting the content of the conductive agent in the above range, the energy density of the secondary battery can be increased.
 バインダーとしては、フッ素樹脂(ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)等)、ポリエチレン、ポリプロピレン、ポリイミド等の熱可塑性樹脂;エチレン-プロピレン-ジエンゴム(EPDM)、スルホン化EPDM、スチレンブタジエンゴム(SBR)、フッ素ゴム等のエラストマー;多糖類高分子などが挙げられる。 Examples of the binder include fluororesins (polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), etc.), thermoplastic resins such as polyethylene, polypropylene, and polyimide; ethylene-propylene-diene rubber (EPDM), sulfonated EPDM, and styrene butadiene. Elastomers such as rubber (SBR) and fluororubber; polysaccharide polymers and the like can be mentioned.
 正極活物質層におけるバインダーの含有量は、0.5質量%以上10質量%以下が好ましく、1質量%以上6質量%以下がより好ましい。バインダーの含有量を上記の範囲とすることで、活物質を安定して保持することができる。 The content of the binder in the positive electrode active material layer is preferably 0.5% by mass or more and 10% by mass or less, and more preferably 1% by mass or more and 6% by mass or less. By setting the content of the binder in the above range, the active material can be stably retained.
 増粘剤としては、カルボキシメチルセルロース(CMC)、メチルセルロース等の多糖類高分子が挙げられる。また、増粘剤がリチウムと反応する官能基を有する場合、予めメチル化等によりこの官能基を失活させておくことが好ましい。本発明の一態様においては、増粘剤は正極活物質層に含有されていないことが好ましい場合もある。 Examples of the thickener include polysaccharide polymers such as carboxymethyl cellulose (CMC) and methyl cellulose. When the thickener has a functional group that reacts with lithium, it is preferable to deactivate the functional group by methylation or the like in advance. In one aspect of the present invention, it may be preferable that the thickener is not contained in the positive electrode active material layer.
 フィラーは、特に限定されない。フィラーとしては、ポリプロピレン、ポリエチレン等のポリオレフィン、二酸化ケイ素、酸化アルミニウム、二酸化チタン、酸化カルシウム、酸化ストロンチウム、酸化バリウム、酸化マグネシウム、アルミノケイ酸塩等の無機酸化物、水酸化マグネシウム、水酸化カルシウム、水酸化アルミニウム等の水酸化物、炭酸カルシウム等の炭酸塩、フッ化カルシウム、フッ化バリウム、硫酸バリウム等の難溶性のイオン結晶、窒化アルミニウム、窒化ケイ素等の窒化物、タルク、モンモリロナイト、ベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、セリサイト、ベントナイト、マイカ等の鉱物資源由来物質又はこれらの人造物等が挙げられる。本発明の一態様においては、フィラーは正極活物質層に含有されていないことが好ましい場合もある。 The filler is not particularly limited. Fillers include polyolefins such as polypropylene and polyethylene, silicon dioxide, aluminum oxide, titanium dioxide, calcium oxide, strontium oxide, barium oxide, magnesium oxide, inorganic oxides such as aluminosilicate, magnesium hydroxide, calcium hydroxide, and water. Hydroxides such as aluminum oxide, carbonates such as calcium carbonate, sparingly soluble ionic crystals such as calcium fluoride, barium fluoride, barium sulfate, nitrides such as aluminum nitride and silicon nitride, talc, montmorillonite, boehmite, zeolite , Apatite, kaolin, mulite, spinel, olivine, sericite, bentonite, mica and other mineral resource-derived substances, or man-made products thereof. In one aspect of the present invention, it may be preferable that the filler is not contained in the positive electrode active material layer.
 正極活物質層は、B、N、P、F、Cl、Br、I等の典型非金属元素、Li、Na、Mg、Al、K、Ca、Zn、Ga、Ge、Sn、Sr、Ba等の典型金属元素、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Mo、Zr、Nb、W等の遷移金属元素を正極活物質、導電剤、バインダー、増粘剤、フィラー以外の成分として含有してもよい。 The positive electrode active material layer includes typical non-metal elements such as B, N, P, F, Cl, Br, I, Li, Na, Mg, Al, K, Ca, Zn, Ga, Ge, Sn, Sr, Ba and the like. Typical metal elements of Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo, Zr, Nb, W and other transition metal elements are used as positive electrode active materials, conductive agents, binders, thickeners and fillers. It may be contained as a component other than.
(負極)
 負極は、負極基材、及びこの負極基材に直接又は中間層を介して配される負極活物質層を有する。負極の中間層は正極の中間層と同様の構成とすることができる。
(Negative electrode)
The negative electrode has a negative electrode base material and a negative electrode active material layer arranged directly on the negative electrode base material or via an intermediate layer. The intermediate layer of the negative electrode can have the same structure as the intermediate layer of the positive electrode.
 負極基材は、正極基材と同様の構成とすることができるが、材質としては、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属又はそれらの合金が用いられ、銅又は銅合金が好ましい。つまり、負極基材としては銅箔が好ましい。銅箔としては、圧延銅箔、電解銅箔等が例示される。 The negative electrode base material may have the same structure as the positive electrode base material, but as the material, metals such as copper, nickel, stainless steel, nickel-plated steel or alloys thereof are used, and copper or a copper alloy is preferable. .. That is, copper foil is preferable as the negative electrode base material. Examples of the copper foil include rolled copper foil and electrolytic copper foil.
 負極基材の平均厚さは、2μm以上35μm以下が好ましく、3μm以上30μm以下がより好ましく、4μm以上25μm以下がさらに好ましく、5μm以上20μm以下が特に好ましい。負極基材の平均厚さを上記の範囲とすることで、負極基材の強度を高めつつ、二次電池の体積当たりのエネルギー密度を高めることができる。 The average thickness of the negative electrode base material is preferably 2 μm or more and 35 μm or less, more preferably 3 μm or more and 30 μm or less, further preferably 4 μm or more and 25 μm or less, and particularly preferably 5 μm or more and 20 μm or less. By setting the average thickness of the negative electrode base material in the above range, it is possible to increase the energy density per volume of the secondary battery while increasing the strength of the negative electrode base material.
 負極活物質層は、金属リチウムを有する。金属リチウムは、負極活物質として機能する成分である。金属リチウムは、実質的にリチウムのみからなる純金属リチウムとして存在してもよいし、他の金属成分を含むリチウム合金として存在してもよい。リチウム合金としては、リチウム銀合金、リチウム亜鉛合金、リチウムカルシウム合金、リチウムアルミニウム合金、リチウムマグネシウム合金、リチウムインジウム合金等が挙げられる。リチウム合金は、リチウム以外の複数の金属元素を含有していてもよい。 The negative electrode active material layer has metallic lithium. Metallic lithium is a component that functions as a negative electrode active material. The metallic lithium may exist as pure metallic lithium consisting substantially only of lithium, or may exist as a lithium alloy containing other metallic components. Examples of the lithium alloy include a lithium silver alloy, a lithium zinc alloy, a lithium calcium alloy, a lithium aluminum alloy, a lithium magnesium alloy, a lithium indium alloy and the like. The lithium alloy may contain a plurality of metal elements other than lithium.
 負極活物質層は、実質的に金属リチウムのみからなる層であってよい。負極活物質層におけるリチウムの含有量は、90質量%以上であってよく、99質量%以上であってよく、100質量%であってよい。 The negative electrode active material layer may be a layer substantially composed of metallic lithium only. The lithium content in the negative electrode active material layer may be 90% by mass or more, 99% by mass or more, or 100% by mass.
 負極活物質層は、リチウム箔又はリチウム合金箔であってよい。負極活物質層は、無孔質の層(中実の層)であってよい。また、負極活物質層は、金属リチウムを含む粒子を有する多孔質の層であってもよい。金属リチウムを含む粒子を有する多孔質の層である負極活物質層は、例えば樹脂粒子、無機粒子等をさらに有していてもよい。負極活物質層の平均厚さは、5μm以上1,000μm以下が好ましく、10μm以上500μm以下がより好ましく、30μm以上300μm以下がさらに好ましい。 The negative electrode active material layer may be a lithium foil or a lithium alloy foil. The negative electrode active material layer may be a non-porous layer (solid layer). Further, the negative electrode active material layer may be a porous layer having particles containing metallic lithium. The negative electrode active material layer, which is a porous layer having particles containing metallic lithium, may further have, for example, resin particles, inorganic particles, and the like. The average thickness of the negative electrode active material layer is preferably 5 μm or more and 1,000 μm or less, more preferably 10 μm or more and 500 μm or less, and further preferably 30 μm or more and 300 μm or less.
 なお、充電状態においては金属リチウムが負極表面の少なくとも一部に析出しており、放電することにより負極表面の金属リチウムが非水電解質中に実質的に全て溶出するように構成された非水電解質蓄電素子の場合、負極は、放電状態においては負極活物質層を有していなくてよい。 In the charged state, metallic lithium is deposited on at least a part of the negative electrode surface, and the non-aqueous electrolyte is configured so that substantially all of the metallic lithium on the negative electrode surface is eluted into the non-aqueous electrolyte by discharging. In the case of the power storage element, the negative electrode does not have to have the negative electrode active material layer in the discharged state.
(セパレータ)
 セパレータは、透気抵抗度が150秒以下のものであれば特に限定されず、公知のセパレータの中から適宜選択できる。セパレータとして、例えば、基材層のみからなるセパレータ、基材層の一方の面又は双方の面に耐熱粒子とバインダーとを含む耐熱層が形成されたセパレータ等を使用することができる。短絡の発生をより抑制する観点からは、基材層のみからなるセパレータが好ましいことがある。
(Separator)
The separator is not particularly limited as long as it has an air permeation resistance of 150 seconds or less, and can be appropriately selected from known separators. As the separator, for example, a separator composed of only a base material layer, a separator in which a heat-resistant layer containing heat-resistant particles and a binder is formed on one surface or both surfaces of the base material layer can be used. From the viewpoint of further suppressing the occurrence of short circuits, a separator composed of only the base material layer may be preferable.
 セパレータの基材層の形態としては、例えば、織布、不織布、多孔質樹脂フィルム等が挙げられ多孔質樹脂フィルムが好ましい。セパレータの基材層の材料は、通常、樹脂である。セパレータの基材層の材料となる樹脂(基材樹脂)としては、シャットダウン機能の観点から例えばポリエチレン、ポリプロピレン等のポリオレフィンが好ましく、耐酸化分解性の観点から例えばポリイミドやアラミド等が好ましい。セパレータの基材層として、これらの樹脂を複合した材料を用いてもよい。 Examples of the form of the base material layer of the separator include a woven fabric, a non-woven fabric, a porous resin film, and the like, and a porous resin film is preferable. The material of the base material layer of the separator is usually a resin. As the resin (base resin) used as the material of the base material layer of the separator, polyolefins such as polyethylene and polypropylene are preferable from the viewpoint of shutdown function, and polyimide and aramid are preferable from the viewpoint of oxidative decomposition resistance. As the base material layer of the separator, a material in which these resins are composited may be used.
 セパレータは、基材樹脂と、上記基材樹脂中に分散して存在する無機粒子とを有することが好ましい。無機粒子が基材樹脂中に分散されたセパレータを用いることで、非水電解質蓄電素子の短絡の発生がより抑制される。基材樹脂と、上記基材樹脂中に分散して存在する無機粒子とを有するセパレータは、通常、基材樹脂と無機粒子とで基材層が形成される。このとき、セパレータは、基材層のみからなるセパレータ、すなわち耐熱層等の他の層を有さないセパレータであることがより好ましい。なお、セパレータの基材層に無機粒子が分散して含有されていることで、耐熱層が無い場合であっても、セパレータは良好な耐熱性を備えることができる。基材層中には、基材樹脂及び無機粒子以外の他の成分がさらに含有されていてもよい。 The separator preferably has a base resin and inorganic particles dispersed in the base resin. By using a separator in which the inorganic particles are dispersed in the base resin, the occurrence of a short circuit in the non-aqueous electrolyte power storage element is further suppressed. In a separator having a base resin and inorganic particles dispersed in the base resin, a base layer is usually formed by the base resin and the inorganic particles. At this time, the separator is more preferably a separator composed only of the base material layer, that is, a separator having no other layer such as a heat-resistant layer. Since the inorganic particles are dispersed and contained in the base material layer of the separator, the separator can have good heat resistance even when there is no heat-resistant layer. The base material layer may further contain components other than the base material resin and the inorganic particles.
 基材樹脂の具体的種類としては、セパレータの基材層の材料として上述した樹脂が挙げられる。 Specific types of the base resin include the above-mentioned resin as the material of the base layer of the separator.
 無機粒子を構成する材料の具体的種類としては、酸化鉄、酸化ケイ素、酸化アルミニウム、酸化チタン、チタン酸バリウム、酸化ジルコニウム、酸化カルシウム、酸化ストロンチウム、酸化バリウム、酸化マグネシウム、アルミノケイ酸塩等の酸化物;水酸化マグネシウム、水酸化カルシウム、水酸化アルミニウム等の水酸化物;窒化アルミニウム、窒化ケイ素等の窒化物;炭酸カルシウム等の炭酸塩;硫酸バリウム等の硫酸塩;フッ化カルシウム、フッ化バリウム等の難溶性のイオン結晶;シリコン、ダイヤモンド等の共有結合性結晶;タルク、モンモリロナイト、ベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、セリサイト、ベントナイト、マイカ等の鉱物資源由来物質又はこれらの人造物等が挙げられる。無機化合物として、これらの物質の単体又は複合体を単独で用いてもよく、2種以上を混合して用いてもよい。これらの無機化合物の中でも、非水電解質蓄電素子の安全性の観点から、酸化ケイ素、酸化アルミニウム、又はアルミノケイ酸塩が好ましい。 Specific types of materials constituting the inorganic particles include oxidation of iron oxide, silicon oxide, aluminum oxide, titanium oxide, barium titanate, zirconium oxide, calcium oxide, strontium oxide, barium oxide, magnesium oxide, aluminosilicate and the like. Substances; hydroxides such as magnesium hydroxide, calcium hydroxide, aluminum hydroxide; nitrides such as aluminum nitride and silicon nitride; carbonates such as calcium carbonate; sulfates such as barium sulfate; calcium fluoride, barium fluoride Poorly soluble ion crystals such as silicon, covalent crystals such as diamond; talc, montmorillonite, boehmite, zeolite, apatite, kaolin, mulite, spinel, olivine, cericite, bentonite, mica and other mineral resource-derived substances or these Artificial products, etc. As the inorganic compound, a simple substance or a complex of these substances may be used alone, or two or more kinds thereof may be mixed and used. Among these inorganic compounds, silicon oxide, aluminum oxide, or aluminosilicate is preferable from the viewpoint of safety of the non-aqueous electrolyte power storage element.
 基材層中の無機粒子の含有量としては、1質量%以上70質量%以下が好ましく、5質量%以上50質量%以下がより好ましく、10質量%以上20質量%以下がさらに好ましい。無機粒子の含有量が上記範囲であることで、非水電解質蓄電素子の短絡の発生がより抑制される。また、無機粒子の含有量が上記範囲であることで、強度(厚さ方向の耐圧性)と、柔軟性、裂けにくさ等とのバランスが好適化される。 The content of the inorganic particles in the base material layer is preferably 1% by mass or more and 70% by mass or less, more preferably 5% by mass or more and 50% by mass or less, and further preferably 10% by mass or more and 20% by mass or less. When the content of the inorganic particles is in the above range, the occurrence of a short circuit in the non-aqueous electrolyte power storage element is further suppressed. Further, when the content of the inorganic particles is within the above range, the balance between the strength (pressure resistance in the thickness direction), the flexibility, the resistance to tearing, and the like is optimized.
 耐熱層に含まれる耐熱粒子は、大気下で室温から500℃に加熱したときの質量減少が5%以下であるものが好ましく、大気下で室温から800℃に加熱したときの質量減少が5%以下であるものがさらに好ましい。加熱したときの質量減少が所定以下である材料として無機化合物が挙げられる。無機化合物としては、基材層中の無機粒子を構成する材料として上述したものが挙げられる。無機化合物の中でも、非水電解質蓄電素子の安全性の観点から、酸化ケイ素、酸化アルミニウム、又はアルミノケイ酸塩が好ましい。 The heat-resistant particles contained in the heat-resistant layer preferably have a mass loss of 5% or less when heated from room temperature to 500 ° C. in the atmosphere, and a mass loss of 5% when heated from room temperature to 800 ° C. in the atmosphere. The following are more preferable. Inorganic compounds can be mentioned as materials whose mass loss when heated is less than or equal to a predetermined value. Examples of the inorganic compound include those described above as materials constituting the inorganic particles in the base material layer. Among the inorganic compounds, silicon oxide, aluminum oxide, or aluminosilicate is preferable from the viewpoint of safety of the non-aqueous electrolyte power storage element.
 セパレータの透気抵抗度は、30秒以上150秒以下が好ましく、35秒以上100秒以下がより好ましく、50秒以上80秒以下がさらに好ましい。透気抵抗度が上記範囲のセパレータを用いることで、非水電解質蓄電素子の短絡の発生がより抑制される。セパレータの透気抵抗度は、セパレータの多孔度や平均厚さ等によって調整される。また、このような透気抵抗度を有するセパレータは、市販品を用いることができる。 The air permeation resistance of the separator is preferably 30 seconds or more and 150 seconds or less, more preferably 35 seconds or more and 100 seconds or less, and further preferably 50 seconds or more and 80 seconds or less. By using a separator having an air permeation resistance in the above range, the occurrence of a short circuit in the non-aqueous electrolyte power storage element is further suppressed. The air permeability resistance of the separator is adjusted by the porosity of the separator, the average thickness, and the like. Further, as a separator having such an air permeation resistance, a commercially available product can be used.
 セパレータの平均厚さとしては、例えば3μm以上50μm以下が好ましく、10μm以上25μm以下がより好ましい。セパレータの平均厚さが上記下限以上であることで、短絡の発生をより抑制することができる。一方、セパレータの平均厚さが上記上限以下であることで、非水電解質蓄電素子の高エネルギー密度化を図ることができる。なお、セパレータの平均厚さは、任意の10カ所で測定した厚さの平均値とする。 The average thickness of the separator is, for example, preferably 3 μm or more and 50 μm or less, and more preferably 10 μm or more and 25 μm or less. When the average thickness of the separator is at least the above lower limit, the occurrence of a short circuit can be further suppressed. On the other hand, when the average thickness of the separator is not more than the above upper limit, it is possible to increase the energy density of the non-aqueous electrolyte power storage element. The average thickness of the separator shall be the average value of the thickness measured at any 10 locations.
(非水電解質)
 非水電解質は、フッ素化溶媒を含む。非水電解質は、フッ素化溶媒を含む非水溶媒と、この非水溶媒に溶解されている電解質塩とを含む非水電解液であってよい。
(Non-aqueous electrolyte)
The non-aqueous electrolyte contains a fluorinated solvent. The non-aqueous electrolyte may be a non-aqueous electrolyte solution containing a non-aqueous solvent containing a fluorination solvent and an electrolyte salt dissolved in the non-aqueous solvent.
 フッ素化溶媒とは、フッ素原子を有する溶媒である。フッ素化溶媒は、炭化水素基を有する非水溶媒における上記炭化水素基中の水素原子の一部又は全部がフッ素原子に置換されたものであってよい。非水電解質がフッ素化溶媒を含むことにより、短絡の発生が抑制される。また、フッ素化溶媒を用いることで、耐酸化性が高まり、通常使用時の正極電位が高電位に至る充電においても良好な充放電サイクル性能を維持することができる。フッ素化溶媒としては、フッ素化カーボネート、フッ素化カルボン酸エステル、フッ素化リン酸エステル、フッ素化エーテル等が挙げられる。フッ素化溶媒は、1種又は2種以上を用いることができる。 The fluorinated solvent is a solvent having a fluorine atom. The fluorinated solvent may be one in which some or all of the hydrogen atoms in the hydrocarbon group in the non-aqueous solvent having a hydrocarbon group are replaced with fluorine atoms. Since the non-aqueous electrolyte contains a fluorinated solvent, the occurrence of a short circuit is suppressed. Further, by using the fluorinated solvent, the oxidation resistance is enhanced, and good charge / discharge cycle performance can be maintained even in charging when the positive electrode potential during normal use reaches a high potential. Examples of the fluorinated solvent include fluorinated carbonate, fluorinated carboxylic acid ester, fluorinated phosphoric acid ester, fluorinated ether and the like. As the fluorination solvent, one kind or two or more kinds can be used.
 フッ素化溶媒の中でも、フッ素化カーボネートが好ましく、フッ素化環状カーボネートとフッ素化鎖状カーボネートとを併用することがより好ましい。フッ素化環状カーボネートを用いることで、電解質塩の解離を促進して非水電解質のイオン伝導度を向上させることができる。フッ素化鎖状カーボネートを用いることで、非水電解質の粘度を低く抑えることができる。フッ素化環状カーボネートとフッ素化鎖状カーボネートとを併用する場合、フッ素化環状カーボネートとフッ素化鎖状カーボネートとの体積比率(フッ素化環状カーボネート:フッ素化鎖状カーボネート)としては、例えば、5:95から50:50の範囲とすることが好ましい。 Among the fluorinated solvents, fluorinated carbonate is preferable, and it is more preferable to use fluorinated cyclic carbonate and fluorinated chain carbonate in combination. By using the fluorinated cyclic carbonate, the dissociation of the electrolyte salt can be promoted and the ionic conductivity of the non-aqueous electrolyte can be improved. By using the fluorinated chain carbonate, the viscosity of the non-aqueous electrolyte can be kept low. When the fluorinated cyclic carbonate and the fluorinated chain carbonate are used in combination, the volume ratio of the fluorinated cyclic carbonate and the fluorinated chain carbonate (fluorinated cyclic carbonate: fluorinated chain carbonate) is, for example, 5:95. It is preferably in the range of 50:50.
 フッ素化溶媒に占めるフッ素化カーボネートの含有割合の下限としては、50体積%が好ましく、70体積%がより好ましく、90体積%がさらに好ましい。フッ素化溶媒に占めるフッ素化カーボネートの含有割合の上限は100体積%であってよい。 As the lower limit of the content ratio of fluorinated carbonate in the fluorinated solvent, 50% by volume is preferable, 70% by volume is more preferable, and 90% by volume is further preferable. The upper limit of the content ratio of fluorinated carbonate in the fluorinated solvent may be 100% by volume.
 フッ素化環状カーボネートとしては、フルオロエチレンカーボネート(FEC)、ジフルオロエチレンカーボネート等のフッ素化エチレンカーボネート、フッ素化プロピレンカーボネート、フッ素化ブチレンカーボネート等を挙げることができる。これらの中でも、フッ素化エチレンカーボネートが好ましく、FECがより好ましい。FECは耐酸化性が高く、二次電池の充放電時に生じうる副反応(非水溶媒等の酸化分解等)の抑制効果が高い。 Examples of the fluorinated cyclic carbonate include fluorinated ethylene carbonate such as fluoroethylene carbonate (FEC) and difluoroethylene carbonate, fluorinated propylene carbonate, and fluorinated butylene carbonate. Among these, fluorinated ethylene carbonate is preferable, and FEC is more preferable. FEC has high oxidation resistance and is highly effective in suppressing side reactions (oxidative decomposition of non-aqueous solvents, etc.) that may occur during charging and discharging of secondary batteries.
 フッ素化鎖状カーボネートとしては、トリフルオロメチルエチルカーボネート、トリフルオロエチルメチルカーボネート、ビス(トリフルオロメチル)カーボネート、ビス(トリフルオロエチル)カーボネート等が挙げられる。 Examples of the fluorinated chain carbonate include trifluoromethylethyl carbonate, trifluoroethylmethyl carbonate, bis (trifluoromethyl) carbonate, and bis (trifluoroethyl) carbonate.
 フッ素化カルボン酸エステルとしては、3,3,3-トリフルオロプロピオン酸メチル、酢酸-2,2,2-トリフルオロエチル等が挙げられる。 Examples of the fluorinated carboxylic acid ester include methyl 3,3,3-trifluoropropionate, acetic acid-2,2,2-trifluoroethyl and the like.
 フッ素化リン酸エステルとしては、リン酸トリス(2,2-ジフルオロエチル)、リン酸トリス(2,2,2-トリフルオロエチル)等が挙げられる。 Examples of the fluorinated phosphate ester include tris phosphate (2,2-difluoroethyl) and tris phosphate (2,2,2-trifluoroethyl).
 フッ素化エーテルとしては、1,1,2,2-テトラフルオロエチル-2,2,2-トリフルオロエチルエーテル、メチルヘプタフルオロプロピルエーテル、メチルノナフルオロブチルエーテル等が挙げられる。 Examples of the fluorinated ether include 1,1,2,2-tetrafluoroethyl-2,2,2-trifluoroethyl ether, methylheptafluoropropyl ether, methyl nonafluorobutyl ether and the like.
 非水溶媒には、フッ素化溶媒以外の非水溶媒が含有されていてもよい。このような非水溶媒としては、フッ素化溶媒以外のカーボネート、カルボン酸エステル、リン酸エステル、エーテル等が挙げられる。 The non-aqueous solvent may contain a non-aqueous solvent other than the fluorinated solvent. Examples of such a non-aqueous solvent include carbonates, carboxylic acid esters, phosphoric acid esters, ethers and the like other than the fluorination solvent.
 全非水溶媒に対するフッ素化溶媒の含有割合の下限としては、50体積%が好ましく、70体積%がより好ましく、90体積%がさらに好ましい。非水溶媒におけるフッ素化溶媒の含有割合を高めることで、短絡の抑制性、耐酸化性等をより高めることなどができる。 As the lower limit of the content ratio of the fluorinated solvent to the total non-aqueous solvent, 50% by volume is preferable, 70% by volume is more preferable, and 90% by volume is further preferable. By increasing the content ratio of the fluorinated solvent in the non-aqueous solvent, it is possible to further improve the short-circuit inhibitory property, oxidation resistance, and the like.
 電解質塩としては、公知の電解質塩から適宜選択できる。電解質塩としては、リチウム塩、ナトリウム塩、カリウム塩、マグネシウム塩、オニウム塩等が挙げられる。これらの中でもリチウム塩が好ましい。 The electrolyte salt can be appropriately selected from known electrolyte salts. Examples of the electrolyte salt include lithium salt, sodium salt, potassium salt, magnesium salt, onium salt and the like. Of these, lithium salts are preferred.
 リチウム塩としては、LiPF、LiPO、LiBF、LiClO、LiN(SOF)等の無機リチウム塩、LiSOCF、LiN(SOCF、LiN(SO、LiN(SOCF)(SO)、LiC(SOCF、LiC(SO等のハロゲン化炭化水素基を有するリチウム塩等が挙げられる。これらの中でも、無機リチウム塩が好ましく、LiPFがより好ましい。 Lithium salts include inorganic lithium salts such as LiPF 6 , LiPO 2 F 2 , LiBF 4 , LiClO 4 , LiN (SO 2 F) 2 , LiSO 3 CF 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2). C 2 F 5 ) 2 , LiN (SO 2 CF 3 ) (SO 2 C 4 F 9 ), LiC (SO 2 CF 3 ) 3 , LiC (SO 2 C 2 F 5 ) 3 and other halogenated hydrocarbon groups Examples thereof include lithium salts having. Among these, an inorganic lithium salt is preferable, and LiPF 6 is more preferable.
 非水電解質における電解質塩の含有量は、0.1mol/dm以上2.5mol/dm以下であると好ましく、0.3mol/dm以上2.0mol/dm以下であるとより好ましく、0.5mol/dm以上1.7mol/dm以下であるとさらに好ましく、0.7mol/dm以上1.5mol/dm以下であると特に好ましい。電解質塩の含有量を上記の範囲とすることで、非水電解質のイオン伝導度を高めることができる。 The content of the electrolyte salt in the nonaqueous electrolyte is preferable to be 0.1 mol / dm 3 or more 2.5 mol / dm 3 or less, more preferable to be 0.3 mol / dm 3 or more 2.0 mol / dm 3 or less, more preferable to be 0.5 mol / dm 3 or more 1.7 mol / dm 3 or less, and particularly preferably 0.7 mol / dm 3 or more 1.5 mol / dm 3 or less. By setting the content of the electrolyte salt in the above range, the ionic conductivity of the non-aqueous electrolyte can be increased.
 非水電解質は、添加剤を含んでもよい。添加剤としては、例えばビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t-ブチルベンゼン、t-アミルベンゼン、ジフェニルエーテル、ジベンゾフラン等の芳香族化合物;2-フルオロビフェニル、o-シクロヘキシルフルオロベンゼン、p-シクロヘキシルフルオロベンゼン等の上記芳香族化合物の部分ハロゲン化物;2,4-ジフルオロアニソール、2,5-ジフルオロアニソール、2,6-ジフルオロアニソール、3,5-ジフルオロアニソール等のハロゲン化アニソール化合物;無水コハク酸、無水グルタル酸、無水マレイン酸、無水シトラコン酸、無水グルタコン酸、無水イタコン酸、シクロヘキサンジカルボン酸無水物;亜硫酸エチレン、亜硫酸プロピレン、亜硫酸ジメチル、硫酸ジメチル、硫酸エチレン、スルホラン、ジメチルスルホン、ジエチルスルホン、ジメチルスルホキシド、ジエチルスルホキシド、テトラメチレンスルホキシド、ジフェニルスルフィド、4,4’-ビス(2,2-ジオキソ-1,3,2-ジオキサチオラン)、4-メチルスルホニルオキシメチル-2,2-ジオキソ-1,3,2-ジオキサチオラン、チオアニソール、ジフェニルジスルフィド、ジピリジニウムジスルフィド、パーフルオロオクタン、ホウ酸トリストリメチルシリル、リン酸トリストリメチルシリル、チタン酸テトラキストリメチルシリル等が挙げられる。これら添加剤は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。 The non-aqueous electrolyte may contain additives. Examples of the additive include aromatic compounds such as biphenyl, alkylbiphenyl, terphenyl, and a partially hydride of terphenyl, cyclohexylbenzene, t-butylbenzene, t-amylbenzene, diphenyl ether, and dibenzofuran; 2-fluorobiphenyl, o. -Partial halides of the above aromatic compounds such as cyclohexylfluorobenzene and p-cyclohexylfluorobenzene; such as 2,4-difluoroanisole, 2,5-difluoroanisole, 2,6-difluoroanisole, 3,5-difluoroanisole and the like. Anisole halide compounds; succinic anhydride, glutaric anhydride, maleic anhydride, citraconic anhydride, glutaconic anhydride, itaconic anhydride, cyclohexanedicarboxylic acid anhydride; ethylene sulfite, propylene sulfite, dimethyl sulfite, dimethyl sulfite, ethylene sulfate, Sulfolane, dimethylsulfone, diethylsulfone, dimethylsulfoxide, diethylsulfoxide, tetramethylenesulfoxide, diphenylsulfide, 4,4'-bis (2,2-dioxo-1,3,2-dioxathiolane), 4-methylsulfonyloxymethyl- Examples thereof include 2,2-dioxo-1,3,2-dioxathiolane, thioanisole, diphenyldisulfide, dipyridinium disulfide, perfluorooctane, tristrimethylsilyl borate, tristrimethylsilyl phosphate, tetraxtrimethylsilyl titanate and the like. These additives may be used alone or in combination of two or more.
 非水電解質に含まれる添加剤の含有量は、非水電解質全体に対して0.01質量%以上10質量%以下が好ましく、0.1質量%以上7質量%以下がより好ましく、0.2質量%以上5質量%以下がさらに好ましく、0.3質量%以上3質量%以下が特に好ましい。添加剤の含有量を上記の範囲とすることで、高温保存後の容量維持性能又は充放電サイクル性能を向上させたり、安全性をより向上させたりすることができる。 The content of the additive contained in the non-aqueous electrolyte is preferably 0.01% by mass or more and 10% by mass or less, more preferably 0.1% by mass or more and 7% by mass or less, and 0.2. It is more preferably mass% or more and 5 mass% or less, and particularly preferably 0.3 mass% or more and 3 mass% or less. By setting the content of the additive in the above range, it is possible to improve the capacity maintenance performance or charge / discharge cycle performance after high-temperature storage, and further improve the safety.
 当該二次電池(非水電解質蓄電素子)においては、通常使用時の充電終止電圧における正極電位が4.30V vs.Li/Li以上であることが好ましく、4.35V vs.Li/Li以上であることがより好ましく、4.40V vs.Li/Li以上であることがさらに好ましい場合もある。通常使用時の充電終止電圧における正極電位を上記下限以上とすることで、放電容量を大きくし、エネルギー密度を高めることができる。 In the secondary battery (non-aqueous electrolyte power storage element), the positive electrode potential at the end-of-charge voltage during normal use is 4.30 V vs. It is preferably Li / Li + or higher, 4.35 V vs. It is more preferably Li / Li + or more, 4.40 V vs. In some cases, it is more preferably Li / Li + or higher. By setting the positive electrode potential at the end-of-charge voltage during normal use to the above lower limit or higher, the discharge capacity can be increased and the energy density can be increased.
 なお、「通常使用時」とは、当該非水電解質蓄電素子について推奨され、又は指定される充電条件を採用して当該非水電解質蓄電素子を使用する場合をいう。例えば、当該非水電解質蓄電素子のための充電器が用意されている場合は、その充電器を適用して当該非水電解質蓄電素子を使用する場合をいう。 Note that "during normal use" refers to the case where the non-aqueous electrolyte storage element is used by adopting the charging conditions recommended or specified for the non-aqueous electrolyte storage element. For example, when a charger for the non-aqueous electrolyte power storage element is prepared, it means a case where the charger is applied to use the non-aqueous electrolyte power storage element.
 当該二次電池の通常使用時の充電終止電圧における正極電位の上限としては、例えば5.0V vs.Li/Liであり、4.8V vs.Li/Liであってよく、4.7V vs.Li/Liであってよい。 The upper limit of the positive electrode potential at the end-of-charge voltage during normal use of the secondary battery is, for example, 5.0 V vs. Li / Li + , 4.8V vs. It may be Li / Li + , 4.7 V vs. It may be Li / Li +.
 当該非水電解質蓄電素子においては、正極、負極及びセパレータから構成される電極体の少なくとも一部が加圧された状態となっていることが好ましい。このような加圧により、充放電の繰り返しにおける容量維持率が高まる傾向にある。例えば、容器に収容された電極体は、容器の外部から、すなわち容器を介して加圧されていてよい。電極体は、正極、負極及びセパレータが重ね合わされた方向(各層の厚さ方向)に加圧されていることが好ましい。すなわち、正極活物質層及び負極活物質層が厚さ方向に押しつぶされる方向に加圧されていることが好ましい。但し、電極体の一部(例えば、扁平状の巻回型の電極体における一対の曲面部等)は、加圧されていなくてもよい。また、積層型の電極体、及び扁平状の巻回型の電極体の平坦部の一部のみが加圧されていてもよい。上記加圧された状態における電極体の少なくとも一部に加わる圧力又は外部から容器に加わる圧力としては、0.01MPa以上2MPa以下が好ましく、0.1MPa以上1.5MPa以下がより好ましく、0.2MPa以上1MPa以下がさらに好ましい。上記圧力を上記下限以上とすることでより十分に容量維持率を高めることができる。一方、上記圧力を上記上限以下とすることで、充放電の繰り返しに短絡の発生がより抑制される。 In the non-aqueous electrolyte power storage element, it is preferable that at least a part of the electrode body composed of the positive electrode, the negative electrode and the separator is in a pressurized state. Due to such pressurization, the capacity retention rate in repeated charging and discharging tends to increase. For example, the electrode body housed in the container may be pressurized from the outside of the container, that is, through the container. The electrode body is preferably pressurized in the direction in which the positive electrode, the negative electrode and the separator are overlapped (the thickness direction of each layer). That is, it is preferable that the positive electrode active material layer and the negative electrode active material layer are pressurized in the direction of being crushed in the thickness direction. However, a part of the electrode body (for example, a pair of curved surfaces in a flat winding type electrode body) may not be pressurized. Further, only a part of the flat portion of the laminated electrode body and the flat wound electrode body may be pressurized. The pressure applied to at least a part of the electrode body in the pressurized state or the pressure applied to the container from the outside is preferably 0.01 MPa or more and 2 MPa or less, more preferably 0.1 MPa or more and 1.5 MPa or less, and 0.2 MPa. More preferably 1 MPa or less. By setting the pressure to be equal to or higher than the lower limit, the capacity retention rate can be increased more sufficiently. On the other hand, by setting the pressure to be equal to or lower than the upper limit, the occurrence of a short circuit due to repeated charging and discharging is further suppressed.
 上記電極体への加圧は、例えば容器を外部から加圧する加圧部材等により行うことができる。加圧部材は、容器の形状を拘束する拘束部材であってもよい。加圧部材(拘束部材)は、例えば容器を介して電極体を厚さ方向の両面から挟み込んで加圧するように設けられる。電極体において加圧される面は、直接又は他の部材を介して、容器の内面と接している。このため、容器が加圧されることにより、電極体が加圧される。加圧部材としては、例えば拘束バンド、金属製のフレームなどが挙げられる。例えば金属製のフレームにおいては、ボルト等によって荷重が調整可能に構成されていてよい。また、複数の非水電解質蓄電素子を、電極体の厚さ方向に並べて配置し、この厚さ方向の両端から複数の非水電解質蓄電素子を加圧した状態でフレーム等を用いて固定してもよい。 The pressurization of the electrode body can be performed by, for example, a pressurizing member that pressurizes the container from the outside. The pressurizing member may be a restraining member that restrains the shape of the container. The pressurizing member (restraint member) is provided so as to pressurize the electrode body by sandwiching it from both sides in the thickness direction via, for example, a container. The pressurized surface of the electrode body is in contact with the inner surface of the container, either directly or via another member. Therefore, when the container is pressurized, the electrode body is pressurized. Examples of the pressurizing member include a restraint band and a metal frame. For example, in a metal frame, the load may be adjustable by bolts or the like. Further, a plurality of non-aqueous electrolyte storage elements are arranged side by side in the thickness direction of the electrode body, and the plurality of non-aqueous electrolyte storage elements are pressed from both ends in the thickness direction and fixed by using a frame or the like. May be good.
 デンドライトは、充電の際の電流密度が高い場合に成長しやすい傾向にある。従って、本発明の一実施形態に係る非水電解質蓄電素子は、電流密度が高い充電が行われる用途に好適に適用できる。このような用途としては、電気自動車(EV)、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHEV)等の自動車用電源、飛行機、ドローン等の飛行体用電源、回生電力充電用電源などが挙げられる。中でも、当該非水電解質蓄電素子は、飛行体用電源に対して特に要求される極めて高い質量エネルギー密度と、十分な充放電サイクル性能とを兼ね備えることから、飛行体電源用として特に好適である。 Dendrite tends to grow when the current density during charging is high. Therefore, the non-aqueous electrolyte power storage device according to the embodiment of the present invention can be suitably applied to applications in which charging with a high current density is performed. Examples of such applications include power supplies for automobiles such as electric vehicles (EVs), hybrid electric vehicles (HEVs), and plug-in hybrid vehicles (PHEVs), power supplies for flying objects such as airplanes and drones, and power supplies for regenerative power charging. Be done. Above all, the non-aqueous electrolyte power storage element is particularly suitable for an air vehicle power supply because it has an extremely high mass energy density particularly required for an air vehicle power supply and a sufficient charge / discharge cycle performance.
 本実施形態の非水電解質蓄電素子の形状については特に限定されるものではなく、例えば、円筒型電池、角型電池、扁平型電池、コイン型電池、ボタン型電池等が挙げられる。 The shape of the non-aqueous electrolyte power storage element of the present embodiment is not particularly limited, and examples thereof include a cylindrical battery, a square battery, a flat battery, a coin battery, and a button battery.
 図1に角型電池の一例としての非水電解質蓄電素子1を示す。なお、同図は、容器内部を透視した図としている。セパレータを挟んで巻回された正極及び負極を有する電極体2が角型の容器3に収納される。正極は正極リード41を介して正極端子4と電気的に接続されている。負極は負極リード51を介して負極端子5と電気的に接続されている。 FIG. 1 shows a non-aqueous electrolyte power storage element 1 as an example of a square battery. The figure is a perspective view of the inside of the container. The electrode body 2 having the positive electrode and the negative electrode wound around the separator is housed in the square container 3. The positive electrode is electrically connected to the positive electrode terminal 4 via the positive electrode lead 41. The negative electrode is electrically connected to the negative electrode terminal 5 via the negative electrode lead 51.
<非水電解質蓄電装置の構成>
 本実施形態の非水電解質蓄電素子は、電気自動車(EV)、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHEV)等の自動車用電源、飛行機、ドローン等の飛行体用電源、パーソナルコンピュータ、通信端末等の電子機器用電源、又は電力貯蔵用電源等に、複数の非水電解質蓄電素子を集合して構成した蓄電ユニット(バッテリーモジュール)として搭載することができる。この場合、蓄電ユニットに含まれる少なくとも一つの非水電解質蓄電素子に対して、本発明の一実施形態に係る技術が適用されていればよい。
<Configuration of non-aqueous electrolyte power storage device>
The non-aqueous electrolyte power storage element of the present embodiment includes a power source for automobiles such as an electric vehicle (EV), a hybrid electric vehicle (HEV), and a plug-in hybrid vehicle (PHEV), a power source for an airplane, a vehicle such as a drone, a personal computer, and communication. It can be mounted as a power storage unit (battery module) composed of a plurality of non-aqueous electrolyte power storage elements assembled on a power supply for electronic devices such as terminals, a power supply for power storage, or the like. In this case, the technique according to the embodiment of the present invention may be applied to at least one non-aqueous electrolyte power storage element included in the power storage unit.
 図2に、電気的に接続された二以上の非水電解質蓄電素子1が集合した蓄電ユニット20をさらに集合した蓄電装置30の一例を示す。蓄電装置30は、二以上の非水電解質蓄電素子1を電気的に接続するバスバ(図示せず)、二以上の蓄電ユニット20を電気的に接続するバスバ(図示せず)等を備えていてもよい。蓄電ユニット20又は蓄電装置30は、一以上の非水電解質蓄電素子の状態を監視する状態監視装置(図示せず)を備えていてもよい。 FIG. 2 shows an example of a power storage device 30 in which a power storage unit 20 in which two or more electrically connected non-aqueous electrolyte power storage elements 1 are assembled is further assembled. The power storage device 30 includes a bus bar (not shown) that electrically connects two or more non-aqueous electrolyte power storage elements 1, a bus bar (not shown) that electrically connects two or more power storage units 20 and the like. May be good. The power storage unit 20 or the power storage device 30 may include a condition monitoring device (not shown) for monitoring the state of one or more non-aqueous electrolyte power storage elements.
<非水電解質蓄電素子の製造方法>
 本発明の一実施形態に係る非水電解質蓄電素子の製造方法は、正極と、金属リチウムを有する負極又は充電時に金属リチウムが析出可能な表面領域を有する負極との組み合わせを準備すること、フッ素化溶媒を含む非水電解質を準備すること、及び透気抵抗度が150秒以下であるセパレータを準備することを備える。
<Manufacturing method of non-aqueous electrolyte power storage element>
The method for manufacturing a non-aqueous electrolyte power storage element according to an embodiment of the present invention is to prepare a combination of a positive electrode and a negative electrode having metallic lithium or a negative electrode having a surface region where metallic lithium can be deposited during charging, and fluorination. A non-aqueous electrolyte containing a solvent is prepared, and a separator having an air permeation resistance of 150 seconds or less is prepared.
 金属リチウムを有する負極を準備することは、金属リチウムを有する負極を作製することであってよい。負極の作製は、負極基板に直接又は中間層を介して金属リチウムを含む負極活物質層を積層し、プレス等することなどにより行うことができる。金属リチウムを含む負極活物質層は、リチウム箔又はリチウム合金箔であってよい。準備される負極の具体的形態及び好適形態は、非水電解質蓄電素子に備わる負極として上述した形態を適用できる。 Preparing a negative electrode having metallic lithium may be producing a negative electrode having metallic lithium. The negative electrode can be manufactured by laminating a negative electrode active material layer containing metallic lithium directly on the negative electrode substrate or via an intermediate layer and pressing the negative electrode. The negative electrode active material layer containing metallic lithium may be a lithium foil or a lithium alloy foil. As a specific form and a preferable form of the prepared negative electrode, the above-mentioned form can be applied as the negative electrode provided in the non-aqueous electrolyte power storage element.
 充電時に金属リチウムが析出可能な表面領域を有する負極は、例えば負極基材のみからなる負極であってもよい。充電時に金属リチウムが析出可能な表面領域を有する負極を準備する場合、正極には予めリチウムイオンを含む正極活物質を有する正極を準備する。 The negative electrode having a surface region on which metallic lithium can be deposited during charging may be, for example, a negative electrode composed of only a negative electrode base material. When preparing a negative electrode having a surface region on which metallic lithium can be deposited during charging, a positive electrode having a positive electrode active material containing lithium ions is prepared in advance as the positive electrode.
 フッ素化溶媒を含む非水電解質を準備することは、フッ素化溶媒を含む非水電解質を調製することであってよい。非水電解質の調製は、フッ素化溶媒及びその他の成分等、非水電解質を構成する各成分を混合することなどによって行うことができる。準備される非水電解質の具体的形態及び好適形態は、非水電解質蓄電素子に備わる非水電解質として上述した形態を適用できる。 Preparing a non-aqueous electrolyte containing a fluorinated solvent may be preparing a non-aqueous electrolyte containing a fluorinated solvent. The non-aqueous electrolyte can be prepared by mixing each component constituting the non-aqueous electrolyte, such as a fluorinated solvent and other components. As a specific form and a preferred form of the non-aqueous electrolyte to be prepared, the above-mentioned form can be applied as the non-aqueous electrolyte provided in the non-aqueous electrolyte power storage element.
 透気抵抗度が150秒以下であるセパレータを準備することは、このようなセパレータの市販品を準備又は購入することであってよく、このようなセパレータを製造することであってよい。準備されるセパレータの具体的形態及び好適形態は、非水電解質蓄電素子に備わるセパレータとして上述した形態を適用できる。 Preparing a separator having an air permeation resistance of 150 seconds or less may be the preparation or purchase of a commercially available product of such a separator, or the production of such a separator. As a specific form and a preferable form of the prepared separator, the above-mentioned form can be applied as a separator provided in the non-aqueous electrolyte power storage element.
 例えば、当該非水電解質蓄電素子の製造方法は、正極を準備又は作製すること、負極を準備又は作製すること、非水電解質を準備又は調製すること、セパレータを準備又は作製すること、正極及び負極をセパレータを介して積層又は巻回することにより交互に重畳された電極体を形成すること、正極及び負極(電極体)を容器に収容すること、並びに上記容器に上記非水電解質を注入することを備える。注入後、注入口を封止することにより当該非水電解質蓄電素子を得ることができる。 For example, the method for manufacturing the non-aqueous electrolyte power storage element includes preparing or manufacturing a positive electrode, preparing or manufacturing a negative electrode, preparing or preparing a non-aqueous electrolyte, preparing or manufacturing a separator, a positive electrode and a negative electrode. To form an electrode body that is alternately superimposed by laminating or winding through a separator, to house the positive electrode and the negative electrode (electrode body) in a container, and to inject the non-aqueous electrolyte into the container. To be equipped with. After the injection, the non-aqueous electrolyte power storage element can be obtained by sealing the injection port.
<その他の実施形態>
 本発明は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加えてもよい。例えば、ある実施形態の構成に他の実施形態の構成を追加することができ、また、ある実施形態の構成の一部を他の実施形態の構成又は周知技術に置き換えることができる。さらに、ある実施形態の構成の一部を削除することができる。また、ある実施形態の構成に対して周知技術を付加することができる。
<Other Embodiments>
The present invention is not limited to the above embodiment, and various modifications may be made without departing from the gist of the present invention. For example, the configuration of one embodiment can be added to the configuration of another embodiment, and a part of the configuration of one embodiment can be replaced with the configuration of another embodiment or a well-known technique. In addition, some of the configurations of certain embodiments can be deleted. Further, a well-known technique can be added to the configuration of a certain embodiment.
 上記実施形態では、非水電解質蓄電素子が充放電可能な非水電解質二次電池(例えばリチウムイオン二次電池)として用いられる場合について説明したが、非水電解質蓄電素子の種類、形状、寸法、容量等は任意である。本発明の非水電解質蓄電素子は、種々の非水電解質二次電池、電気二重層キャパシタ又はリチウムイオンキャパシタ等のキャパシタにも適用できる。 In the above embodiment, the case where the non-aqueous electrolyte storage element is used as a chargeable / dischargeable non-aqueous electrolyte secondary battery (for example, a lithium ion secondary battery) has been described. The capacity and the like are arbitrary. The non-aqueous electrolyte power storage element of the present invention can also be applied to capacitors such as various non-aqueous electrolyte secondary batteries, electric double layer capacitors and lithium ion capacitors.
 以下、実施例によって本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples.
 実施例及び比較例で用いたセパレータを以下に示す。基材樹脂はいずれも二軸延伸により製造されたものを用いた。
・セパレータA:透気抵抗度 35秒、平均厚さ16μm、基材樹脂(ポリオレフィン系樹脂)中に分散された無機粒子を有する基材層からなるセパレータ(耐熱層無し)、基材層中の無機粒子の含有量 50質量%
・セパレータB:透気抵抗度 45秒、平均厚さ16μm、基材樹脂(ポリオレフィン系樹脂)中に分散された無機粒子を有する基材層からなるセパレータ(耐熱層無し)、基材層中の無機粒子の含有量 25質量%
・セパレータC:透気抵抗度 70秒、平均厚さ16μm、基材樹脂(ポリオレフィン系樹脂)中に分散された無機粒子を有する基材層からなるセパレータ(耐熱層無し)、基材層中の無機粒子の含有量 15質量%
・セパレータD:透気抵抗度 90秒、平均厚さ21μm、基材樹脂(ポリオレフィン系樹脂)のみからなる基材層と耐熱層とからなるセパレータ
・セパレータE:透気抵抗度 172秒、平均厚さ17μm、基材樹脂(ポリオレフィン系樹脂)のみからなる基材層と耐熱層とからなるセパレータ
・セパレータF:透気抵抗度 286秒、平均厚さ25μm、基材樹脂(ポリオレフィン系樹脂)のみからなる基材層からなるセパレータ
・セパレータG:透気抵抗度 300秒、平均厚さ24μm、基材樹脂(ポリオレフィン系樹脂)のみからなる基材層と耐熱層とからなるセパレータ
The separators used in Examples and Comparative Examples are shown below. As the base resin, those produced by biaxial stretching were used.
Separator A: A separator (without a heat-resistant layer) composed of a base material layer having an air permeation resistance of 35 seconds, an average thickness of 16 μm, and inorganic particles dispersed in a base material resin (polyolefin resin), in the base material layer. Content of inorganic particles 50% by mass
Separator B: A separator (without a heat-resistant layer) composed of a base material layer having an air permeation resistance of 45 seconds, an average thickness of 16 μm, and inorganic particles dispersed in a base material resin (polyolefin resin), in the base material layer. Content of inorganic particles 25% by mass
Separator C: A separator (without a heat-resistant layer) composed of a base material layer having an air permeation resistance of 70 seconds, an average thickness of 16 μm, and inorganic particles dispersed in a base material resin (polyolefin resin), in the base material layer. Content of inorganic particles 15% by mass
Separator D: Air permeability resistance 90 seconds, average thickness 21 μm, separator consisting of a base material layer consisting only of a base resin (polyolefin resin) and a heat-resistant layer Separator E: Air permeability resistance 172 seconds, average thickness 17 μm, separator / separator F consisting of a base material layer consisting only of a base resin (polyolefin resin) and a heat-resistant layer: air permeability resistance 286 seconds, average thickness 25 μm, from only a base resin (polyolefin resin) Separator / Separator G made of a base material layer: A separator made of a base material layer and a heat-resistant layer having an air permeability resistance of 300 seconds, an average thickness of 24 μm, and a base material resin (polyolefin resin) only.
[実施例1]
(正極の作製)
 正極活物質として、α―NaFeO型結晶構造を有し、Li1+αMe1-α(Meは遷移金属)で表されるリチウム遷移金属複合酸化物を用いた。ここで、LiとMeのモル比Li/Meは1.33であり、Meは、Ni及びMnからなり、Ni:Mn=1:2のモル比で含んでいるものであった。
[Example 1]
(Preparation of positive electrode)
As the positive electrode active material, a lithium transition metal composite oxide having an α-NaFeO type 2 crystal structure and represented by Li 1 + α Me 1-α O 2 (Me is a transition metal) was used. Here, the molar ratio of Li and Me, Li / Me, was 1.33, and Me was composed of Ni and Mn and contained in a molar ratio of Ni: Mn = 1: 2.
 N-メチルピロリドン(NMP)を分散媒とし、上記正極活物質、導電剤であるアセチレンブラック(AB)、及びバインダーであるポリフッ化ビニリデン(PVDF)を94:4.5:1.5の質量比率で含有する正極ペーストを作製した。正極基材である平均厚さ15μmのアルミニウム箔の片面に、上記正極ペーストを塗布し、乾燥し、プレス後、切断し、幅30mm、長さ40mmの矩形状に正極活物質層が配置された正極を作製した。 Using N-methylpyrrolidone (NMP) as a dispersion medium, the positive electrode active material, acetylene black (AB) as a conductive agent, and polyvinylidene fluoride (PVDF) as a binder have a mass ratio of 94: 4.5: 1.5. A positive electrode paste contained in the above was prepared. The positive electrode paste was applied to one side of an aluminum foil having an average thickness of 15 μm, which is a positive electrode base material, dried, pressed, and cut, and a positive electrode active material layer was arranged in a rectangular shape having a width of 30 mm and a length of 40 mm. A positive electrode was prepared.
(負極の作製)
 負極基材である平均厚さ10μmの銅箔の片面に、負極活物質層として平均厚さ100μmのリチウム箔(金属リチウム100質量%)を積層し、プレス後、幅32mm、長さ40mmの矩形状に切断することで、負極を作製した。
(Preparation of negative electrode)
A lithium foil (100% by mass of metallic lithium) having an average thickness of 100 μm is laminated as a negative electrode active material layer on one side of a copper foil having an average thickness of 10 μm, which is a negative electrode base material. A negative electrode was produced by cutting into a shape.
(非水電解質の調製)
 フルオロエチレンカーボネート(FEC)及び2,2,2-トリフルオロエチルメチルカーボネート(TFEMC)を30:70の体積比で混合した混合溶媒にLiPFを1mol/dmの濃度で溶解させ、非水電解質とした。
(Preparation of non-aqueous electrolyte)
LiPF 6 was dissolved in a mixed solvent in which fluoroethylene carbonate (FEC) and 2,2,2-trifluoroethylmethyl carbonate (TFEMC) were mixed at a volume ratio of 30:70 at a concentration of 1 mol / dm 3 , and a non-aqueous electrolyte was prepared. And said.
(非水電解質蓄電素子の作製)
 上記セパレータAを介して、上記正極と上記負極とを積層することにより電極体を作製した。この電極体を容器に収納し、内部に上記非水電解質を注入した後、封口し、容器を外部から0.3MPaで加圧した状態とした実施例1の非水電解質蓄電素子(二次電池)を得た。
(Manufacturing of non-aqueous electrolyte power storage element)
An electrode body was produced by laminating the positive electrode and the negative electrode via the separator A. The non-aqueous electrolyte power storage element (secondary battery) of Example 1 in which the electrode body is housed in a container, the above-mentioned non-aqueous electrolyte is injected into the container, the container is sealed, and the container is pressurized at 0.3 MPa from the outside. ) Was obtained.
[実施例2から4及び比較例1から5]
 セパレータの種類及び非水電解質の非水溶媒の組成を表1に示すとおりとしたこと以外は、実施例1と同様にして、実施例2から4及び比較例1から5の非水電解質蓄電素子を得た。表中、ECはエチレンカーボネート、EMCはエチルメチルカーボネートを表す。
[Examples 2 to 4 and Comparative Examples 1 to 5]
Non-aqueous electrolyte power storage devices of Examples 2 to 4 and Comparative Examples 1 to 5 in the same manner as in Example 1 except that the type of separator and the composition of the non-aqueous solvent of the non-aqueous electrolyte are as shown in Table 1. Got In the table, EC represents ethylene carbonate and EMC represents ethyl methyl carbonate.
(初期充放電)
 得られた各非水電解質蓄電素子について、以下の条件にて初期充放電を行った。25℃において、充電電量0.1C、充電終止電圧4.60Vとして定電流定電圧充電した。充電の終了条件は、充電電流が0.02Cとなるまでとした。その後、10分間の休止期間を設けた。その後、放電電流0.1C、放電終止電圧2.00Vとして定電流放電を行い、その後、10分間の休止期間を設けた。この充放電サイクルを2サイクル行った。
(Initial charge / discharge)
Each of the obtained non-aqueous electrolyte power storage elements was initially charged and discharged under the following conditions. At 25 ° C., constant current and constant voltage charging was performed with a charging charge of 0.1 C and a charge termination voltage of 4.60 V. The charging end condition was until the charging current reached 0.02C. Then, a 10-minute rest period was provided. Then, a constant current discharge was performed with a discharge current of 0.1 C and a discharge end voltage of 2.00 V, and then a rest period of 10 minutes was provided. This charge / discharge cycle was performed for two cycles.
(充放電サイクル試験)
 次いで、以下の充放電サイクル試験を行った。25℃において、充電電流1C、充電終止電圧4.60Vとして定電流定電圧充電した。充電の終了条件は、充電電流が0.05Cとなるまでとした。その後、10分間の休止期間を設けた。その後、放電電流1C、放電終止電圧2.00Vとして定電流放電を行い、その後、10分間の休止期間を設けた。この充放電のサイクルを繰り返し、短絡が生じるまでのサイクル数を記録した。短絡が生じるまでのサイクル数が25回を超えたものについては、放電容量維持率を求めた。放電容量維持率は、5サイクル目の放電容量に対する25サイクル目の放電容量とした。結果を表1に示す。
(Charge / discharge cycle test)
Then, the following charge / discharge cycle test was performed. At 25 ° C., constant current and constant voltage charging was performed with a charging current of 1C and a charging termination voltage of 4.60V. The charging end condition was until the charging current reached 0.05C. Then, a 10-minute rest period was provided. After that, constant current discharge was performed with a discharge current of 1C and a discharge end voltage of 2.00V, and then a rest period of 10 minutes was provided. This charge / discharge cycle was repeated, and the number of cycles until a short circuit occurred was recorded. The discharge capacity retention rate was determined for those in which the number of cycles until a short circuit occurred exceeded 25 times. The discharge capacity retention rate was set to the discharge capacity of the 25th cycle with respect to the discharge capacity of the 5th cycle. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、フッ素化溶媒を含まない非水電解質を用いた比較例1及び比較例5、並びに透気抵抗度が150秒を超えるセパレータを用いた比較例2から5は、20回未満の少ないサイクル数で短絡が発生した。これらに対し、フッ素化溶媒を含む非水電解質と、透気抵抗度が150秒以下のセパレータを用いた実施例1から4の非水電解質蓄電素子においては、短絡が生じるまでのサイクル数が40回を超え、短絡の発生が十分に抑制され、放電容量維持率も高い結果となった。中でも、実施例3の非水電解質蓄電素子は、セパレータの透気抵抗度が特に適切であるためか、短絡の発生が特に抑制された結果となった。 As shown in Table 1, Comparative Examples 1 and 5 using a non-aqueous electrolyte containing no fluorinated solvent, and Comparative Examples 2 to 5 using a separator having an air permeation resistance of more than 150 seconds are 20. A short circuit occurred with a small number of cycles less than the number of cycles. On the other hand, in the non-aqueous electrolyte power storage elements of Examples 1 to 4 using the non-aqueous electrolyte containing the fluorinated solvent and the separator having an air permeation resistance of 150 seconds or less, the number of cycles until a short circuit occurs is 40. The number of times was exceeded, the occurrence of short circuits was sufficiently suppressed, and the discharge capacity retention rate was also high. Above all, in the non-aqueous electrolyte power storage element of Example 3, the occurrence of a short circuit was particularly suppressed, probably because the air permeability resistance of the separator was particularly appropriate.
 本発明は、パーソナルコンピュータ、通信端末等の電子機器、自動車などの電源として使用される非水電解質蓄電素子などに適用できる。 The present invention can be applied to electronic devices such as personal computers and communication terminals, non-aqueous electrolyte power storage elements used as power sources for automobiles, and the like.
1  非水電解質蓄電素子
2  電極体
3  容器
4  正極端子
41 正極リード
5  負極端子
51 負極リード
20 蓄電ユニット
30 蓄電装置
1 Non-aqueous electrolyte power storage element 2 Electrode body 3 Container 4 Positive terminal 41 Positive lead 5 Negative terminal 51 Negative lead 20 Power storage unit 30 Power storage device

Claims (5)

  1.  金属リチウムを有する負極、
     フッ素化溶媒を含む非水電解質、及び
     透気抵抗度が150秒以下であるセパレータ
     を備える非水電解質蓄電素子。
    Negative electrode with metallic lithium,
    A non-aqueous electrolyte power storage device including a non-aqueous electrolyte containing a fluorinated solvent and a separator having an air permeation resistance of 150 seconds or less.
  2.  上記透気抵抗度が50秒以上80秒以下である請求項1に記載の非水電解質蓄電素子。 The non-aqueous electrolyte power storage element according to claim 1, wherein the air permeation resistance is 50 seconds or more and 80 seconds or less.
  3.  上記セパレータが、基材樹脂と、上記基材樹脂中に分散して存在する無機粒子とを有する請求項1又は請求項2に記載の非水電解質蓄電素子。 The non-aqueous electrolyte power storage element according to claim 1 or 2, wherein the separator has a base resin and inorganic particles dispersed in the base resin.
  4.  通常使用時の充電終止電圧における正極電位が4.30V(vs.Li/Li)以上である請求項1から請求項3のいずれか1項に記載の非水電解質蓄電素子。 The non-aqueous electrolyte power storage element according to any one of claims 1 to 3, wherein the positive electrode potential at the end-of-charge voltage during normal use is 4.30 V (vs. Li / Li +) or more.
  5.  正極と、金属リチウムを有する負極又は充電時に金属リチウムが析出可能な表面領域を有する負極との組み合わせを準備すること、
     フッ素化溶媒を含む非水電解質を準備すること、及び
     透気抵抗度が150秒以下であるセパレータを準備すること
     を備える非水電解質蓄電素子の製造方法。
     
     
    To prepare a combination of a positive electrode and a negative electrode having metallic lithium or a negative electrode having a surface region where metallic lithium can be deposited during charging.
    A method for producing a non-aqueous electrolyte power storage device, comprising preparing a non-aqueous electrolyte containing a fluorinated solvent and preparing a separator having an air permeation resistance of 150 seconds or less.

PCT/JP2020/046699 2019-12-23 2020-12-15 Non-aqueous electrolyte power storage element and method for manufacturing same WO2021131889A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080089715.2A CN115210904A (en) 2019-12-23 2020-12-15 Nonaqueous electrolyte storage element and method for manufacturing same
US17/787,469 US20230033180A1 (en) 2019-12-23 2020-12-15 Nonaqueous electrolyte energy storage device and method for manufacturing the same
DE112020006384.4T DE112020006384T5 (en) 2019-12-23 2020-12-15 NON-AQUEOUS ELECTROLYTE ENERGY STORAGE DEVICE AND METHOD OF MAKING THE SAME
JP2021567294A JPWO2021131889A1 (en) 2019-12-23 2020-12-15

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019231912 2019-12-23
JP2019-231912 2019-12-23

Publications (1)

Publication Number Publication Date
WO2021131889A1 true WO2021131889A1 (en) 2021-07-01

Family

ID=76573081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/046699 WO2021131889A1 (en) 2019-12-23 2020-12-15 Non-aqueous electrolyte power storage element and method for manufacturing same

Country Status (5)

Country Link
US (1) US20230033180A1 (en)
JP (1) JPWO2021131889A1 (en)
CN (1) CN115210904A (en)
DE (1) DE112020006384T5 (en)
WO (1) WO2021131889A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023090439A1 (en) * 2021-11-22 2023-05-25 株式会社Gsユアサ Non-aqueous electrolyte electric power storage element

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012064569A (en) * 2010-08-18 2012-03-29 Asahi Kasei E-Materials Corp Lithium ion secondary battery
JP2013055285A (en) * 2011-09-06 2013-03-21 Jm Energy Corp Power storage device
WO2016063868A1 (en) * 2014-10-21 2016-04-28 日本電気株式会社 Film pack battery and battery module provided with same
JP2016095965A (en) * 2014-11-13 2016-05-26 株式会社Gsユアサ Nonaqueous electrolyte and power storage device including the same, and power storage apparatus having power storage device
WO2016140342A1 (en) * 2015-03-05 2016-09-09 日本電気株式会社 Secondary battery
JP2016213133A (en) * 2015-05-13 2016-12-15 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
WO2017183633A1 (en) * 2016-04-20 2017-10-26 日本電気株式会社 Secondary battery
JP2018110085A (en) * 2017-01-05 2018-07-12 株式会社Gsユアサ Nonaqueous electrolyte, power storage element and manufacturing method of power storage element
JP2019145343A (en) * 2018-02-21 2019-08-29 株式会社Gsユアサ Nonaqueous electrolyte, nonaqueous electrolyte power storage element, and method for manufacturing nonaqueous electrolyte power storage element
JP2019175827A (en) * 2018-03-29 2019-10-10 日本バイリーン株式会社 Separator for electrochemical device
JP2019200868A (en) * 2018-05-15 2019-11-21 マクセルホールディングス株式会社 Nonaqueous secondary battery
JP2019216094A (en) * 2018-06-07 2019-12-19 パナソニックIpマネジメント株式会社 Lithium secondary battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07245099A (en) 1994-03-07 1995-09-19 Mitsubishi Cable Ind Ltd Negative electrode for nonaqueous electrolyte type lithium secondary battery
JP2016100065A (en) 2014-11-18 2016-05-30 国立大学法人三重大学 Lithium secondary battery

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012064569A (en) * 2010-08-18 2012-03-29 Asahi Kasei E-Materials Corp Lithium ion secondary battery
JP2013055285A (en) * 2011-09-06 2013-03-21 Jm Energy Corp Power storage device
WO2016063868A1 (en) * 2014-10-21 2016-04-28 日本電気株式会社 Film pack battery and battery module provided with same
JP2016095965A (en) * 2014-11-13 2016-05-26 株式会社Gsユアサ Nonaqueous electrolyte and power storage device including the same, and power storage apparatus having power storage device
WO2016140342A1 (en) * 2015-03-05 2016-09-09 日本電気株式会社 Secondary battery
JP2016213133A (en) * 2015-05-13 2016-12-15 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
WO2017183633A1 (en) * 2016-04-20 2017-10-26 日本電気株式会社 Secondary battery
JP2018110085A (en) * 2017-01-05 2018-07-12 株式会社Gsユアサ Nonaqueous electrolyte, power storage element and manufacturing method of power storage element
JP2019145343A (en) * 2018-02-21 2019-08-29 株式会社Gsユアサ Nonaqueous electrolyte, nonaqueous electrolyte power storage element, and method for manufacturing nonaqueous electrolyte power storage element
JP2019175827A (en) * 2018-03-29 2019-10-10 日本バイリーン株式会社 Separator for electrochemical device
JP2019200868A (en) * 2018-05-15 2019-11-21 マクセルホールディングス株式会社 Nonaqueous secondary battery
JP2019216094A (en) * 2018-06-07 2019-12-19 パナソニックIpマネジメント株式会社 Lithium secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023090439A1 (en) * 2021-11-22 2023-05-25 株式会社Gsユアサ Non-aqueous electrolyte electric power storage element

Also Published As

Publication number Publication date
DE112020006384T5 (en) 2022-11-17
US20230033180A1 (en) 2023-02-02
JPWO2021131889A1 (en) 2021-07-01
CN115210904A (en) 2022-10-18

Similar Documents

Publication Publication Date Title
WO2021131889A1 (en) Non-aqueous electrolyte power storage element and method for manufacturing same
WO2021124651A1 (en) Non-aqueous electrolyte power storage element and manufacturing method therefor
WO2021246186A1 (en) Positive electrode and power storage element
JP2022091637A (en) Negative electrode for nonaqueous electrolyte electricity-storage device, nonaqueous electrolyte electricity-storage device, and manufacturing method of them
JP2021077641A (en) Power storage element
JP2022052579A (en) Power storage element
JP2021190165A (en) Positive electrode and power storage element
WO2023090439A1 (en) Non-aqueous electrolyte electric power storage element
WO2022210643A1 (en) Electricity storage element
WO2022239861A1 (en) Electric power storage element
WO2022054781A1 (en) Method for producing lithium secondary battery, and lithium secondary battery
WO2022102591A1 (en) Non-aqueous electrolyte storage element, and non-aqueous electrolyte storage device
EP4250419A1 (en) Nonaqueous electrolyte power storage element, electronic device, and automobile
EP4047678A1 (en) Electricity storage element and electricity storage device
WO2022239520A1 (en) Power storage element, manufacturing method therefor, and power storage device
JP7494535B2 (en) Nonaqueous electrolyte storage element and method for producing same
WO2023048190A1 (en) Power storage element, power storage element manufacturing method and power storage device
WO2022168845A1 (en) Nonaqueous electrolyte power storage element and power storage device
EP4358220A1 (en) Non-aqueous electrolyte power storage element
WO2023281886A1 (en) Power storage element and power storage device
WO2023074559A1 (en) Power storage element
WO2022181516A1 (en) Nonaqueous electrolyte power storage element
WO2023008012A1 (en) Power storage element and power storage device
WO2022163125A1 (en) Nonaqueous electrolyte power storage element, power storage device, and method for producing nonaqueous electrolyte power storage element
WO2024014376A1 (en) Power storage element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20907765

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021567294

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20907765

Country of ref document: EP

Kind code of ref document: A1