WO2021131378A1 - ポリエーテル-ポリシロキサンブロック共重合体組成物、整泡剤およびポリウレタン発泡体の製造方法 - Google Patents

ポリエーテル-ポリシロキサンブロック共重合体組成物、整泡剤およびポリウレタン発泡体の製造方法 Download PDF

Info

Publication number
WO2021131378A1
WO2021131378A1 PCT/JP2020/042262 JP2020042262W WO2021131378A1 WO 2021131378 A1 WO2021131378 A1 WO 2021131378A1 JP 2020042262 W JP2020042262 W JP 2020042262W WO 2021131378 A1 WO2021131378 A1 WO 2021131378A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyether
block copolymer
foam
group
reaction
Prior art date
Application number
PCT/JP2020/042262
Other languages
English (en)
French (fr)
Inventor
田村 誠基
ソン タイン ファン
裕之 稲垣
Original Assignee
ダウ・東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダウ・東レ株式会社 filed Critical ダウ・東レ株式会社
Priority to US17/788,082 priority Critical patent/US20230059761A1/en
Priority to JP2021566900A priority patent/JP7575181B2/ja
Priority to CA3163027A priority patent/CA3163027A1/en
Publication of WO2021131378A1 publication Critical patent/WO2021131378A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/46Block-or graft-polymers containing polysiloxane sequences containing polyether sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/336Polymers modified by chemical after-treatment with organic compounds containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/10Block- or graft-copolymers containing polysiloxane sequences
    • C08L83/12Block- or graft-copolymers containing polysiloxane sequences containing polyether sequences

Definitions

  • the present invention is a defoaming agent for polyurethane foam (as a bubble control agent and a bubble stabilizer) containing (A) a linear polyether-organopolysiloxane block copolymer and (B) (poly) glycol or a polyglycol derivative. (The same shall apply hereinafter) including the functions of. Furthermore, the present invention relates to the aromatic hydrocarbon solvent-free and low VOC / emission type defoaming agent, polyurethane foam-forming composition, and method for producing a polyurethane foam.
  • the linear polyether-organopolysiloxane block copolymer is known as (AB) n-type polyether-modified silicone, and (A1) a non-polysiloxane portion and a polyether portion are linked by a SiC bond. It is roughly classified into a hydrolysis type copolymer and a hydrolysis type copolymer in which a (A2) polysiloxane part and a polyether part are linked by a Si—OC bond.
  • a method for producing (AB) n-type polyether-modified silicone and its application to a foam stabilizer for polyurethane foam have been known for a long time.
  • (AB) n-type copolymer was synthesized in a toluene solvent by a hydrosilylation reaction between (S1) both-terminal SiH group-containing organopolysiloxane and (E2) both-terminal allyl group-containing polyether. , Toluene is removed by an evaporator to obtain a concentrated product, which is shown in Samples 1 to 7 of Patent Document 1. In addition, the results of testing a 50% toluene solution of these (AB) n-type copolymers as a surfactant for mechanical floss polyurethane foam are reported.
  • n-type copolymer is converted into toluene by a hydrosilylation reaction between (S1) both-terminal SiH group-containing organopolysiloxane and (E3) both-terminal metalyl group-containing polyether.
  • a toluene solution obtained by filtering the catalyst after synthesis in a solvent has been reported as a surfactant.
  • Patent Document 3 a product obtained by synthesizing a copolymer similar to these in a toluene solvent and then removing toluene with an evaporator and concentrating the copolymer is useful as a surfactant for semi-hard urethane foam and soft hot-molded urethane foam.
  • Patent Document 4 reports an example in which a long-chain alkylbenzene solution of an (AB) n-type copolymer is used as a surfactant for mechanical floss polyurethane foam.
  • Long-chain alkylbenzenes are less harmful than BTX (benzene, toluene, xylene) solvents and have long been used as diluents for the copolymers.
  • polyurethane foam obtained by using a long-chain alkylbenzene solution of (AB) n-type copolymer as a surfactant has a large amount of VOC emissions, and one of the main causes of these VOCs is long-chain alkylbenzene.
  • long-chain alkylbenzene can be regarded as a kind of aromatic hydrocarbon solvent, and has a problem of remaining in urethane foam and migrating (exuding) from the final product.
  • Patent Document 5 discloses an example in which a (AB) n-type copolymer was synthesized in toluene, PPG (polypropylene glycol) was added, and toluene was further removed by a stripping operation. It is also reported that when the PPG solution of the (AB) n-type copolymer thus obtained was used as a foam stabilizer, a mechanical floss (mechanically foamed) polyurethane foam having a low VOC was obtained. The production of such a defoaming agent requires time because it is necessary to proceed with the process while controlling the foaming generated in the process of substituting the reaction solvent with the diluent, but it is also possible with equipment on a production machine scale.
  • PPG polypropylene glycol
  • Patent Document 5 specifies isopropyl alcohol (IPA), toluene, and xylene as the organic solvent that is the reaction solvent during the production of the (AB) n-type copolymer. This can induce the thought of those skilled in the art that if the copolymer is produced using IPA, a BTX solvent-free defoaming agent can be obtained by substituting the copolymer with PPG.
  • IPA isopropyl alcohol
  • toluene toluene
  • xylene the organic solvent that is the reaction solvent during the production of the (AB) n-type copolymer.
  • Patent Document 6 discloses a process for synthesizing an (AB) n-type copolymer under reduced pressure using isopropyl palmitate (IPP) as a reaction solvent and a diluent.
  • IPP isopropyl palmitate
  • ester oils such as IPP have a boiling point, they cause VOCs / emissions from polyurethane foams obtained by using surfactants or defoaming agents obtained in such a process.
  • Patent Document 7 discloses a technique for stably producing a (AB) n-type copolymer having a particularly high molecular weight without causing thickening or gelation, and is a polyurethane foam. There is no specific mention of application to the field.
  • Example 1 after synthesizing a linear polyoxyethylene-dimethylpolysiloxane block copolymer in liquid isoparaffin, low boiling materials such as unreacted products were distilled off by stripping, and the corresponding (AB) n. A liquid isoparaffin solution of the type copolymer is obtained.
  • the liquid isoparaffin is a copolymer of isobutene and n-butene hydrogenated according to the quasi-drug component labeling name, and has a degree of polymerization of 5 to 10.
  • Liquid isoparaffin is a mixture of high boiling point components, and it is difficult to remove components having a particularly high degree of polymerization by striping. Therefore, if liquid isoparaffin is used as a diluent for the (AB) n-type copolymer for polyurethane foam, it will cause VOC / emission from the foam.
  • Patent Document 8 discloses a foam stabilizer for polyurethane foam containing a (AB) n-type copolymer and a specific monool organic compound such as dipropylene glycol monobutyl ether (BDPG). These specific monool organic compounds can also be used as a synthetic reaction solvent and diluent for the (AB) n-type copolymer, and are expected to reduce foam emissions because they are incorporated into the reaction system during polyurethane formation. However, since not all monool organic compounds are consumed depending on the foaming conditions, further improvement is required in terms of minimizing VOC / emission.
  • BDPG dipropylene glycol monobutyl ether
  • Patent Document 7 discloses a large number of reaction solvents that can be used as needed in producing the (AB) n-type copolymer, and also contains aliphatic hydrocarbons such as hexane and heptane.
  • the disclosure is limited to a non-limiting example of the solvent that can be selected.
  • many of these solvents are not practical because they cause reaction inhibition, reaction system heterogeneity, side reactions, etc. when used in the production of (AB) n-type copolymers. Listed, it is necessary for those skilled in the art to carry out a huge number of experiments to verify the reactivity and stability of these solvents in order to search for the optimum solvent. It lacks any description.
  • (C) "saturated hydrocarbon having an average number of carbon atoms in the range of 6 to 11" is used as a synthetic reaction solvent for the (AB) n-type copolymer, which is the main component of the foam stabilizer for polyurethane foam.
  • (AB) n-type copolymer which is the main component of the foam stabilizer for polyurethane foam.
  • Patent Document 7 describes a novel foam stabilizer for polyurethane foam containing (A) a linear polyether-organopolysiloxane block copolymer of the present invention and (B) (poly) glycol or a polyglycol derivative.
  • Example 8 10 to 26 of Patent Document 9, by a condensation reaction between (S2) both-terminal dimethylamino group-containing organopolysiloxane and (E1) both-terminal hydroxy group-containing polyether (polyglycol).
  • An example is shown in which the (AB) n-type copolymer is synthesized in an inert aromatic hydrocarbon solvent such as xylene, o-dichlorobenzene, and an alkylated aromatic hydrocarbon mixture (Solvesso 100, Solvesso 150). ..
  • the boiling point range of these aromatic hydrocarbon solvents is 105 to 300 ° C.
  • Examples 27 to 29 of the same document a (AB) n-type copolymer was synthesized in xylene by a condensation reaction between (S3) both-terminal ethoxy group-containing organopolysiloxane and (E1) both-terminal hydroxy group-containing polyether.
  • S3 both-terminal ethoxy group-containing organopolysiloxane
  • E1 both-terminal hydroxy group-containing polyether.
  • Solutions of these (AB) n-type copolymers with aromatic hydrocarbon solvents were tested as surfactants for mechanical floss polyurethane foams.
  • Patent Document 10 uses carbon dioxide as a condensation reaction catalyst between (S2) both-terminal dimethylamino group-containing organopolysiloxane and (E1) both-terminal hydroxy group-containing polyether, thereby producing a (AB) n-type copolymer.
  • Patent Document 11 describes 1,8-diazabicyclo [5.4.0] undec-7- as a condensation reaction catalyst between (S2) both-terminal dimethylamino group-containing organopolysiloxane and (E1) both-terminal hydroxy group-containing polyether.
  • DBU tertiary amine
  • a linear alkylbenzene having a boiling point range of 280 to 320 ° C. is used as a synthetic reaction solvent and diluent for the (AB) n-type copolymer. I'm using it.
  • Patent Document 12 uses tris (pentaphenylfluoro) borane as a catalyst in a linear alkylbenzene having a boiling point range of 280 to 320 ° C. (S1) both-terminal SiH group-containing organopolysiloxane and (E1) both-terminal hydroxy group-containing poly.
  • S1 both-terminal SiH group-containing organopolysiloxane
  • E1 both-terminal hydroxy group-containing poly.
  • Patent Document 13 uses 1,8-diazabicyclo [5.4.0] undec-7-ene (DBU) as a catalyst in a linear alkylbenzene having a boiling point range of 280 to 320 ° C. (S1) and contains SiH groups at both ends.
  • DBU 1,8-diazabicyclo [5.4.0] undec-7-ene
  • n-type polyether which solves these multiple problems, is easy to manufacture, can be supplied to the market in large quantities, and has sufficient usefulness in the use of a foam stabilizer for polyurethane foam. It has been desired to develop a new manufacturing process or a formulation of a foam stabilizer containing a modified silicone.
  • the present invention has been made to solve the above problems, and includes (A) a linear polyether-organopolysiloxane block copolymer and (B) (poly) glycol or a polyglycol derivative. It is an object of the present invention to provide a new manufacturing method of an emission type foam stabilizer for polyurethane foam.
  • the present invention can avoid the use and mixing of aromatic hydrocarbon solvents such as BTX (benzene, toluene, xylene) solvent, and can be easily produced on an industrial production scale in large quantities.
  • aromatic hydrocarbon solvents such as BTX (benzene, toluene, xylene) solvent
  • BTX benzene, toluene, xylene
  • a polyether-polysiloxane block copolymer composition capable of supplying to the market and a method for producing a foam stabilizer for polyurethane foam using the same as a raw material, such a high-quality foam stabilizer can be obtained.
  • the purpose is to fully disseminate it in the market and promote its contribution to the polyurethane industry as a high-performance raw material and its widespread utilization.
  • a polyether-polysiloxane block copolymer composition containing (A) a linear polyether-organopolysiloxane block copolymer and (B) (poly) glycol or a polyglycol derivative and a polyether-polysiloxane block copolymer composition.
  • a new method for producing a foam stabilizer for polyurethane foam, which is the application thereof, is provided.
  • the polyether-polysiloxane block copolymer composition obtained by the production method of the present invention has excellent transparency without using an aromatic hydrocarbon solvent such as BTX, and is advantageous in terms of production efficiency and production cost. is there.
  • the foam manufacturer can contribute to the manufacture and sale of Low VOC / emission type PU foam.
  • the present invention also provides a method for producing the foam stabilizer for polyurethane foam, which is easy to produce on a production machine scale and can be supplied to the market in large quantities. Therefore, the present invention makes it possible to sufficiently spread such a high-quality defoaming agent in the market and widely use it as a high-performance raw material.
  • a polyether-polysiloxane block copolymer composition containing (A) a polyether-organopolysiloxane block copolymer and (B) (poly) glycol or a polyglycol derivative according to the present invention, using the same as a raw material.
  • the method for producing the defoaming agent to be used, particularly the foaming agent for polyurethane foam, and the foaming agent containing no aromatic hydrocarbon solvent and having a low VOC / emission type will be described in detail. First, each component will be described.
  • the component (A) is also called (AB) n-type polyether-modified silicone, and is a non-hydrolyzable copolymer in which the (A1) polysiloxane portion and the polyether portion are linked by a Si—C bond. May be good. Further, it may be a hydrolyzable copolymer in which the (A2) polysiloxane portion and the polyether portion are linked by a Si—OC bond.
  • the component (A1) is composed of the following general formula (1): (In the formula, R represents a monovalent hydrocarbon group having 1 to 9 carbon atoms, each independently having no aliphatic unsaturated bond, x is a number of 2 to 4, and a is a number of 1 to 200. Yes, y is a number in which the molecular weight of the polyether moiety represented by (C x H 2x O) y is in the range of 400 to 5000, n is a number of at least 2, and Y is adjacent by a carbon-silicon bond.
  • It has a structural unit represented by (representing a divalent hydrocarbon group having 2 to 8 carbon atoms) bonded to a polyoxyalkylene block by a silicon atom and an oxygen atom in the molecule, and has a terminal group (-Z) thereof.
  • Z 1 An alkenyl group, a hydroxyl group, an alkoxy group or an acetoxy group bonded to a polyether moiety
  • Z 2 A monovalent hydrocarbon group bonded to a silicon atom and having no hetero atom, selected from a hydroxyl group or an alkoxy group 1 It is a linear polyether-organopolysiloxane block copolymer which is more than one kind of functional group.
  • Y is a divalent hydrocarbon group having 3 to 5 carbon atoms, which is bonded to the adjacent silicon atom by a carbon-silicon bond and to the polyoxyalkylene block by an oxygen atom (C x H 2 x O).
  • polyether moiety represented by y is, (C 2 H 4 O) rather than a homopolymer of y1 (C 2 H 4 O) y1 (C 3 H 6 O) y2, (C 2 H 4 O) y1 (C 3 H 6 O) y2 (C 4 H 8 O) y3 , (C 2 H 4 O) y1 (C 4 H 8 O) It consists of an oxyethylene part, an oxypropylene part and / or an oxybutylene part selected from y3. It is a copolymer. Moreover, the copolymer is preferably a random copolymer.
  • the component (A) according to the present invention preferably contains at least an oxypropylene unit or an oxybutylene unit in its polyether portion, and both of them.
  • the number average molecular weight of the polymer is preferably in the range of 30,000 to 150,000, and particularly preferably in the range of 50,000 to 100,000.
  • the component (A1) is composed of the following general formula (2):
  • R represents a monovalent hydrocarbon group having 1 to 9 carbon atoms which does not independently have an aliphatic unsaturated bond
  • x is a number of 2 to 4
  • a is (R 2 SiO) a.
  • the molecular weight of the polysiloxane part indicated by is in the range of 400 to 2500
  • y is the number in which the molecular weight of the polyether part indicated by (C x H 2x O) y is in the range of 2000 to 4500.
  • the polyether part is a random copolymer of an oxyethylene part and an oxypropylene part, and the mass ratio of oxyethylene (C 2 H 4 O) units constituting the entire polyether part is 30 to 80 on average.
  • Z 1 An alkenyl group, a hydroxyl group, an alkoxy group or an acetoxy group bonded to a polyether moiety; and Z 2 : A monovalent hydrocarbon group bonded to a silicon atom and having no hetero atom, selected from a hydroxyl group or an alkoxy group 1 It is a linear polyether-organopolysiloxane block copolymer which is more than one kind of functional group.
  • R is a monovalent hydrocarbon group having 1 to 9 carbon atoms which does not independently have an aliphatic unsaturated bond, and an alkyl group having 1 to 9 carbon atoms.
  • a phenyl group is exemplified. Preferred are a methyl group, an ethyl group and a phenyl group. Industrially, a methyl group is particularly preferred.
  • the component (A1) has the above-mentioned specific structural unit, and its terminal group (-Z) is one or more functional groups selected from the above-mentioned Z 1 and Z 2, a linear polyether-. It is an organopolysiloxane block copolymer.
  • a functional group containing a polyether moiety in which case the terminal group.
  • (-Z) is preferably an alkenyl group, a hydroxyl group, an alkoxy group or an acetoxy group bonded to the polyether moiety, and particularly preferably a metalyl group.
  • the terminal group (-Z) needs to be free of a reactive functional group having a heteroatom, and in particular, It is necessary that the epoxy group does not contain a ring-opening reactive reactive functional group or an amine group.
  • a linear polyether-organopolysiloxane block copolymer is synthesized and an organopolysiloxane containing both terminal SiH groups is used as a raw material, a part of the terminal SiH is used as a solvent for the catalyst in the reaction system. It may react with existing alcohols, and a part of the component (A) of the present invention may be a residue of alcohols as a part of the terminal group (-Z).
  • the component (A2) is composed of the following general formula (1'): (In the formula, R represents a monovalent hydrocarbon group having 1 to 9 carbon atoms which does not independently have an aliphatic unsaturated bond, x is a number of 2 to 4, and a is a number of 7 to 200. Yes, y is a number in which the molecular weight of the polyether moiety represented by (C x H 2x O) y is in the range of 400 to 5000, and n is a number of at least 2).
  • Z 1 A hydroxyl group bonded to a polyether moiety, an alkoxy group or an acetoxy group
  • Z 2 A hydroxyl group bonded to a silicon atom, an alkoxy group, a dimethylamino group, a hydrogen, a halogen, a carbamate group, or another desorbing group.
  • It is a linear polyether-organopolysiloxane block copolymer which is one or more functional groups.
  • (C x H 2x O) polyether moiety represented by y in the general formula (3) is not a homopolymer of (C 2 H 4 O) y1 (C 2 H 4 O) y1 (C 3 H 6 O) y2 , (C 2 H 4 O) y1 (C 3 H 6 O) y2 (C 4 H 8 O) y3 , (C 2 H 4 O) y1 (C 4 H 8 O) y3 It is a copolymer composed of an oxyethylene part, an oxypropylene part and / or an oxybutylene part. Moreover, the copolymer is preferably a random copolymer.
  • a is a number in which the molecular weight of the polysiloxane portion represented by (R 2 SiO) a is in the range of 600 to 2500, and y is (C x H 2 x O) y.
  • the molecular weight of the polyether portion represented by is a number in the range of 2000 to 4500, and the polyether portion is a random copolymer of an oxyethylene portion and an oxypropylene portion, and the oxy constituting the entire polyether portion.
  • the mass ratio of ethylene (C 2 H 4 O) units is in the range of 30-80% on average, and n is at least a number of 4.
  • the component (A2) has the above-mentioned specific structural unit, and its terminal group (-Z) is one or more functional groups selected from the above-mentioned Z 1 and Z 2, a linear polyether-. It is an organopolysiloxane block copolymer.
  • a functional group containing a polyether moiety from the viewpoint of usefulness as a foam stabilizer and stability of the copolymer, it is preferable that both ends of the copolymer are sealed with a functional group containing a polyether moiety, and in that case, the terminal group.
  • (-Z) is preferably a hydroxyl group, an alkoxy group or an acetoxy group bonded to the polyether moiety.
  • R is a monovalent hydrocarbon group having 1 to 9 carbon atoms which does not independently have an aliphatic unsaturated bond, and an alkyl group and a phenyl group having 1 to 9 carbon atoms are exemplified. Will be done. Preferred are a methyl group, an ethyl group and a phenyl group. Industrially, a methyl group is particularly preferred.
  • the non-hydrolyzable (AB) n-type polyether-modified silicone (A1) is a polyether raw material having a carbon-carbon double bond such as an allyl group or a metalyl group at both ends of the molecular chain, and SiH at both ends.
  • the group-containing organopolysiloxane can be synthesized by hydrosilylation reaction in the presence of the "saturated hydrocarbon having an average carbon atom number in the range of 6 to 11" solvent (C) according to the present invention.
  • both ends thereof are preferably sealed with a functional group containing a polyether moiety, and the amount of substance of the vinyl group in the polyether raw material is the silicon atom-bonded hydrogen in the organopolysiloxane containing the SiH groups at both ends. It is particularly preferable that the atom is synthesized by adding an equal amount or a small excess amount to the atom and causing a hydrosilylation reaction.
  • the non-hydrolyzable copolymer (A1) which is a linear polyether-organopolysiloxane block copolymer which is a component (A) according to the present invention is represented by the following general formula (4).
  • Organopolysiloxane (S1) containing SiH groups at both ends General formula (4): (In the formula, a is a number from 1 to 200 and R is the same as above)
  • the double-ended alkenyl group-containing polyether (E4) represented by the following general formula (5).
  • both-terminal alkenyl group-containing polyether E4
  • E4 Suitable as the both-terminal alkenyl group-containing polyether (E4) are the both-terminal allyl group-containing polyether (E2) represented by the following general formula (6) or the both-terminal metalyl group-containing poly represented by the following general formula (7).
  • Ether E3
  • General formula (6) (In the formula, x and y are the same numbers as described above)
  • General formula (7) (In the formula, x and y are the same numbers as described above)
  • These double-terminal alkenyl group-containing polyethers may contain a small amount of impurities such that one terminal group is a hydroxyl group depending on the production conditions and the like.
  • the hydrolyzable (AB) n-type polyether-modified silicone (A2) is an organopolysiloxane (SX) containing both terminal SiX groups represented by the following general formula (8).
  • General formula (8) (In the formula, a is a number of 7 to 200, R is the same as above, and X is a reaction selected from a hydroxyl group, an alkoxy group, a dimethylamino group, hydrogen, a halogen, a carbamate group, or another leaving group. (Sexual group) And the double-terminal hydroxyl group-containing polyether (E1) represented by the following general formula (9).
  • General formula (9) It can be obtained by a condensation reaction with.
  • both-terminal SiX group-containing organopolysiloxane SX
  • both-terminal dimethylamino group-containing organopolysiloxane S2 represented by the following general formula (10)
  • both-terminal carbamate groups represented by the following general formula (11).
  • the contained organopolysiloxane (S4) is an organopolysiloxane (S3) containing both terminal alkoxy groups represented by the following general formula (12).
  • the component (B) is a (poly) glycol or a polyglycol derivative.
  • Such component (B) is a solvent for the linear polyether-organopolysiloxane block copolymer (A), and is described above in the presence of "saturated hydrocarbons having an average number of carbon atoms in the range of 6 to 11". It is introduced into the system after the synthetic reaction of the component (A) or during the synthetic reaction. Then, by substituting the reaction solvent (C) "saturated hydrocarbon having an average number of carbon atoms in the range of 6 to 11" with the component (B), (A) and (B) are contained, and the polyether-poly A siloxane block copolymer composition is produced.
  • the composition By using the composition as a raw material, it is possible to produce an aromatic hydrocarbon solvent-free and low VOC / emission type foam stabilizer for polyurethane foam, a polyurethane foam-forming composition, and polyurethane foam.
  • the component (B) needs to be a liquid having an affinity with the component (A), and the pour point is preferably 0 ° C. or lower.
  • Examples of (B) include propylene glycol, butylene glycol, dipropylene glycol, tripropylene glycol, polypropylene glycol, polybutylene glycol, polypropylene glycol / polyethylene glycol copolymer, polypropylene glycol monobutyl ether, polypropylene glycol / polyethylene glycol monobutyl ether. , Polypropylene glycol monomethyl ether, polypropylene glycol / polyethylene glycol monomethyl ether and the like.
  • the component (B) can be selected according to the required properties of the polyurethane foam produced by using the polyether-polysiloxane block copolymer composition or the foam stabilizer according to the present invention.
  • a monool compound such as polypropylene glycol monobutyl ether
  • polypropylene is used as the component (B)
  • a diol compound such as glycol. If it is desired to balance the air permeability, a monool compound and a diol compound can be used in combination as the component (B).
  • the component (B) is a component that functions as a solvent for the component (A).
  • these components are the components (A) /. It is important that the mass ratio of (B) is in the range of 10/90 to 60/40 in terms of performance, convenience during use, handling workability, compatibility with polyurethane foam formulations, and the like. Yes, preferably the mass ratio of (A) / (B) is in the range of 20/80 to 50/50.
  • the polyether-polysiloxane block copolymer composition according to the present invention containing the component (A) and the component (B) has a viscosity at 25 ° C. in the range of 1000 to about 60,000 mm2 / s. It is important in terms of convenience and handling during use.
  • the viscosity of the defoaming agent is in the range of 1000 to about 30,000 mm2 / s, more preferably in the range of 1000 to about 10,000 mm2 / s.
  • the component (A) is synthesized in the presence of a saturated hydrocarbon solvent having an average carbon atom number in the range of 6 to 11, which is a component (C) described later, and after the reaction step.
  • a saturated hydrocarbon solvent having an average carbon atom number in the range of 6 to 11, which is a component (C) described later
  • the component (C) which is a reaction solvent is replaced by the component (B). Therefore, the polyether-polysiloxane block copolymer composition obtained by the production method of the present invention does not substantially contain an aromatic hydrocarbon solvent such as a BTX (benzene, toluene, xylene) solvent. is there.
  • BTX benzene, toluene, xylene
  • the amount of the aromatic hydrocarbon solvent in the finally obtained polyether-polysiloxane block copolymer composition is 1000 ppm. It is preferably (weight) or less, particularly preferably 100 ppm (weight) or less, and most preferably 10 ppm (weight) or less.
  • the production method of the present invention for low VOC / emission type polyurethane foam with industrially sufficient production efficiency without using any aromatic hydrocarbon solvent such as BTX (benzene, toluene, xylene) solvent.
  • a polyether-polysiloxane block copolymer composition suitable as a foam stabilizer can be provided.
  • the polyether-polysiloxane block copolymer composition according to the present invention is a technical feature of the present invention when used as a defoaming agent for an aromatic hydrocarbon solvent-free and low VOC / emission type polyurethane foam. It can be used in combination with or mixed with another silicone-based defoaming agent for polyurethane foam, depending on the foam type to be applied, as long as the above is not impaired.
  • the content of these second silicone-based foam stabilizers is preferably in a range not exceeding the same amount with respect to the mass of the component (A) in the entire composition. Further, it is desirable that the second silicone-based defoaming agent also contains no aromatic hydrocarbon-based solvent and has a low VOC / emission type.
  • the polyether-polysiloxane block copolymer composition according to the present invention containing the component (A) and the component (B) is gradually oxidized by oxygen in the air and deteriorated.
  • antioxidants such as phenols, hydroquinones, benzoquinones, aromatic amines, and vitamins can be added to increase the oxidative stability, which is preferable.
  • a non-volatile antioxidant for example, vitamin E.
  • the amount of the antioxidant to be used is in the range of 10 to 1000 ppm, preferably 50 to 500 ppm with respect to the component (A) in its mass, and 10 to 10000 ppm, preferably 100 to 100 to 10,000 ppm with respect to the component (B). It is in the range of 5000 ppm.
  • the polyether-polysiloxane block copolymer composition according to the present invention is used as a defoaming agent for an aromatic hydrocarbon solvent-free and low VOC / emission type polyurethane foam, the number of silicon atoms in the composition is high. It is preferable that it contains substantially no low molecular weight siloxane of 20 or less. Specifically, the content of the low molecular weight siloxane having 20 or less silicon atoms in the polyether-polysiloxane block copolymer composition obtained by the production method of the present invention is 5000 ppm (weight) or less. Is preferable, and 2000 ppm (weight) or less is particularly preferable.
  • Such low-molecular-weight siloxanes include cyclic ones and linear ones.
  • n' in the formula, n'is an integer of 3 to 10
  • siloxane oligomers there are siloxane oligomers, and some of these methyl groups are substituted with other organic groups. More specific examples of such low molecular weight siloxanes include octamethyltetrasiloxane, decamethylpentacyclosiloxane, and both-terminal trimethylsiloxy group-blocking dimethylsiloxane oligomers.
  • the content of such low molecular weight siloxane can be measured, for example, by introducing a volatile component generated by heating the defoaming agent according to the present invention into a gas chromatography analyzer and analyzing it.
  • Such reduction of low molecular weight siloxane is achieved by removing the low molecular weight siloxane by applying, for example, the method described in JP-A-2000-313730 to the defoaming agent according to the present invention.
  • There are many methods for removing this low molecular weight siloxane For example, a method of treating a silicone-based defoaming agent with an inert gas such as argon gas or nitrogen gas little by little under high temperature and high vacuum, and thinning the defoaming agent according to the present invention, for example, 0.
  • an organic solvent that dissolves low-molecular-weight siloxane and does not dissolve high-molecular-weight siloxane is added to a silicone-based defoaming agent to extract and remove low-molecular-weight siloxane.
  • an antioxidant may be added in advance.
  • the method for producing a polyether-polysiloxane block copolymer composition of the present invention is carried out by a condensation reaction or a hydrosilylation reaction in the presence of a saturated hydrocarbon solvent (C) having an average number of carbon atoms in the range of 6 to 11.
  • the step (I) for synthesizing the polyether-polysiloxane block copolymer and the reaction solvent (C) during or after the step are added.
  • (B) It is characterized by comprising a step of substituting with (poly) glycol or a polyglycol derivative.
  • reaction solvent (C) that characterizes the present invention will be described, and then the details will be described separately for the method for producing the copolymer (A1) via the hydrosilylation reaction and the copolymer (A2) via the condensation reaction. To do.
  • the average number of carbon atoms is 6 to 11 in the step (I) of synthesizing the copolymer (A) by a condensation reaction or a hydrosilylation reaction. It is characterized by using saturated hydrocarbons (C) in the range. Unlike other highly polar organic solvents, such a saturated hydrocarbon solvent does not make the appearance of the copolymer (A) or the defoaming agent using the same opaque or inhomogeneous, and follows it.
  • aromatic hydrocarbon solvent-free and low VOC / emission type polyether-polysiloxane block copolymer without causing excessive air bubble stabilization in the solvent replacement step (step (II)). It makes it possible to produce a composition and a foam stabilizer for polyurethane foams for which it is used. Further, these solvents are components that do not correspond to the above-mentioned aromatic hydrocarbon-based solvent or low-molecular-weight siloxane, and even if the amount used thereof is substantially 0, the composition of the polyether-polysiloxane block copolymer is preferably set. Can manufacture things.
  • reaction solvent (C) examples include methylcyclohexane, n-heptane, heptane mixture, heptane (commercial grade), isooctane, 2,2,4-trimethylpentane, octane mixture, ethylcyclohexane, and dimethylcyclohexane.
  • N-hexane isohexane, hexane mixture, cyclohexane, 2-methylpentane, 2-methylheptane, 3-methylheptane, Isopar E (C7-C9 saturated hydrocarbon mixture), Isopar C (C7-C8 saturated hydrocarbon mixture) , IP solvent 1016 (C6-C9 saturated hydrocarbon mixture), Isopar G (C10-C11 saturated hydrocarbon mixture) and the like.
  • methylcyclohexane or n-heptane is preferred.
  • these "saturated hydrocarbons having an average number of carbon atoms in the range of 6 to 11" may be used alone or in combination of two or more.
  • the non-hydrolyzable linear polyether-organopolysiloxane block copolymer (A1) according to the present invention is the double-terminal SiH group-containing organopolysiloxane represented by the general formula (4) and the general. It is preferable to obtain a polyether having an allyl group or a metalyl group at both ends of the molecular chain represented by the formula (6) or (7) by hydrosilylation reaction. At this time, the step of initiating or advancing the hydrosilylation reaction is carried out in the presence of (C) "saturated hydrocarbon having an average number of carbon atoms in the range of 6 to 11" as a reaction solvent.
  • the catalyst for the hydrosilylation reaction is not limited to a specific one as long as it can promote the hydrosilylation reaction.
  • Many metals and compounds have been known so far as hydrosilylation reaction catalysts, and they can be appropriately selected and used in the present invention.
  • Specific examples of the hydrosilylation reaction catalyst include fine particle platinum adsorbed on a silica fine powder or carbon powder carrier, chloroplatinic acid, alcohol-modified chloroplatinic acid, an olefin complex of chloroplatinic acid, and chloroplatinic acid. Coordinating compounds of vinylsiloxane, platinum black, palladium, and rhodium catalysts can be mentioned.
  • the amount of the catalyst for hydrosilylation reaction used is an effective amount, and is not particularly limited as long as it is an amount that promotes the formation reaction of the copolymer (A1) according to the present invention.
  • the metal atom in this catalyst is 0.1 to 1,000 ppm by mass, preferably the platinum metal atom is 0.5 to 200 ppm, based on the sum of the polyethers having the above (the total is 100% by mass). It is an amount that falls within the range of.
  • the content of the catalyst for hydrosilylation reaction is less than the lower limit of the above range, the copolymerization reaction may be insufficient, and if it exceeds the upper limit of the above range, it is uneconomical and can be obtained.
  • the transparency of the composition of the present invention may be adversely affected, such as coloring.
  • a carboxylic acid alkali metal salt such as potassium acetate or potassium propanoate is contained in the reaction system for the purpose of suppressing side reactions. After that, the main reaction, hydrosilylation, can proceed.
  • the conditions for the hydrosilylation reaction require (C) "saturated hydrocarbons having an average number of carbon atoms in the range of 6 to 11" as the reaction solvent.
  • an antioxidant such as tocopherol (vitamin E)
  • the component (A1) according to the present invention can be obtained.
  • the antioxidant may be added after the completion of hydrosilylation.
  • the reaction time can be selected according to the reaction scale, the amount of catalyst used, and the reaction temperature, and is generally in the range of several minutes to several hours. Further, the reaction may be carried out under reduced pressure, and for example, the conditions proposed in Patent Document 6 and the like can be applied without particular limitation.
  • the end point of the hydrosilylation reaction can be confirmed by the disappearance of Si—H bond absorption by infrared spectroscopy (IR) or the elimination of hydrogen gas generation by the following alkali decomposition gas generation method.
  • the amount of hydrogen gas generated can also be specified by analyzing the silicon atom-bonded hydrogen atom (Si—H) in the organopolysiloxane containing both terminal SiH groups, which is a reaction raw material, by the same method.
  • ⁇ Alkaline decomposition gas generation method A solution in which a sample is dissolved in toluene or IPA and an ethanol / water mixed solution of 28.5% by mass caustic potash are reacted at room temperature, and the generated hydrogen gas is collected in a collection tube to measure the volume. How to measure>
  • reaction solvent (C) solvent exchange from reaction solvent (C) to component (B)
  • the polyether-polysiloxane block copolymer composition according to the present invention and the foam stabilizer for aromatic hydrocarbon solvent-free and low VOC / emission type polyurethane foam using the same are used during the synthesis reaction of the component (A1).
  • the reaction solvent (C) can be produced by exchanging the solvent with the diluent component (B). Since the component (A1) is usually a high-molecular-weight and high-viscosity fluid, it is preferable that the reaction solvent (C) is 50/100 to 99/100 by stripping after the synthesis reaction of the component (A1) is completed.
  • the component (B): (poly) glycol or polyglycol derivative is added in the same amount, and the remaining reaction solvent (C) is completely removed by striping, and then the rest of (B) is added.
  • -It can be manufactured by a mixing method or the like.
  • the component (B) can be selected according to the required properties of the polyurethane foam produced by using the polyether-polysiloxane block copolymer composition or the foam stabilizer according to the present invention. Therefore, monool / diol can be used alone or in combination, and polypropylene glycol of different types and molecular weights can be used in combination. In this solvent exchange step, bubbles generated during stirring tend to be stabilized.
  • the residual reaction solvent (C) in the finally obtained polyether-polysiloxane block copolymer composition is preferably 5000 ppm (weight) or less, particularly preferably 1000 ppm (weight) or less, and 100 ppm (weight). The following are the most preferable.
  • the hydrolyzed linear polyether-organopolysiloxane block copolymer (A2) comprises both terminal SiX group-containing organopolysiloxane (SX) represented by the general formula (8). It can be obtained by a condensation reaction with a double-terminal hydroxyl group-containing polyether (E1) represented by the general formula (9). At this time, the step of initiating or advancing the condensation reaction is carried out in the presence of (C) "saturated hydrocarbon having an average number of carbon atoms in the range of 6 to 11" as a reaction solvent.
  • the reaction may optionally be under reduced pressure and / or the presence of a catalytic amount of catalyst (eg, o, oi or double section with respect to the total amount of the reactants), such as a carboxylic acid containing trifluoracetic acid, perfluolbutyric acid, monochloroacetic acid, etc. You may do it below.
  • a catalytic amount of catalyst eg, o, oi or double section with respect to the total amount of the reactants
  • the condensation reaction is optionally under reduced pressure and / or a catalytic amount (eg, 0.01-2 parts by weight of the total amount of the reactants) of the catalyst, such as a carboxylic acid containing trifluoroacetic acid, perfluorobutyric acid, monochloroacetic acid, or a mixture thereof. May be done in the presence of.
  • a catalytic amount eg, 0.01-2 parts by weight of the total amount of the reactants
  • the catalyst such as a carboxylic acid containing trifluoroacetic acid, perfluorobutyric acid, monochloroacetic acid, or a mixture thereof. May be done in the presence of.
  • a buffer component such as a methanol solution of sodium acetate can be added to proceed with the reaction.
  • the component (A2) according to the present invention is a linear poly having both ends sealed with a functional group containing a polyether moiety. It is preferably an ether-organopolysiloxane block copolymer, and the amount of the substance of the OH group in the polyether raw material is higher than that of the polyether raw material having hydroxyl groups at both ends and the SiX group-containing organopolysiloxane at both ends. It is preferable to add an equal amount or a small excess amount to the silicon atom-bonded X groups in the organopolysiloxane containing both terminal SiX groups to cause a condensation reaction.
  • the ratio (molar ratio) of the amount of substance of the silicon atom-bonded X group (Si—X) in the organopolysiloxane containing the OH group and the SiX group at both ends in the raw material of the polyether is [OH] / [Si].
  • the conditions for the condensation reaction require (C) "saturated hydrocarbons having an average number of carbon atoms in the range of 6 to 11" as the reaction solvent.
  • an antioxidant such as tocopherol (vitamin E)
  • heating and stirring at 50 to 140 ° C (below the boiling point of the reaction solvent), preferably 70 to 120 ° C, in an atmosphere of an inert gas such as nitrogen.
  • the component (A1) according to the present invention can be obtained.
  • the antioxidant may be added after the completion of hydrosilylation.
  • the reaction time can be selected according to the reaction scale, the amount of the catalyst used, and the reaction temperature, and is generally in the range of several hours to half a day. Further, the reaction may be carried out under reduced pressure depending on the type of leaving group, and refer to Patent Documents 9 to 13 for details of the reaction conditions.
  • the end point of the condensation reaction should be confirmed by a spectroscopic analysis method such as 29 SiNMR or IR, depending on the type of leaving group X of the organopolysiloxane containing SiX groups at both ends of the raw material (SX) to be used. Alternatively, it may be determined whether or not the target value has been reached by measuring the viscosity of the reaction solution, GPC, or the like.
  • the reaction solvent (C) is used as a diluent component at the time of the synthesis reaction of the component (A2) or after the reaction is completed. It can be produced by exchanging the solvent with (B). Since the component (A2) is usually a high-molecular-weight and high-viscosity fluid, it is preferable that the reaction solvent (C) is 50/100 to 99/100 by stripping after the synthesis reaction of the component (A2) is completed.
  • the component (B): (poly) glycol or polyglycol derivative is added in the same amount, and the remaining reaction solvent (C) is completely removed by striping, and then the rest of (B) is added.
  • -It can be manufactured by a mixing method or the like.
  • the component (B) can be selected according to the required properties of the polyurethane foam produced by using the polyether-polysiloxane block copolymer composition or the foam stabilizer according to the present invention. Therefore, monool / diol can be used alone or in combination, and polypropylene glycol of different types and molecular weights can be used in combination. In this solvent exchange step, bubbles generated during stirring tend to be stabilized.
  • the residual reaction solvent (C) in the finally obtained polyether-polysiloxane block copolymer composition is preferably 5000 ppm (weight) or less, particularly preferably 1000 ppm (weight) or less, and 100 ppm (weight). The following are the most preferable.
  • Aromatic hydrocarbon solvent-free and low containing (A) linear polyether-organopolysiloxane block copolymer and (B) (poly) glycol or polyglycol derivative obtained by the production method of the present invention.
  • the VOC / emission type polyurethane foam defoaming agent is a solution of so-called (AB) n-type polyether-modified silicone (poly) glycol or polyglycol derivative, and is obtained by a conventionally known production method for polyurethane foam (AB).
  • the n-type polyether-modified silicone foam stabilizer can be used without particular limitation.
  • the "aromatic hydrocarbon solvent-free and low VOC / emission type polyurethane foam foam stabilizer" obtained by the production method of the present invention is easy to produce on a production machine scale and is put on the market in large quantities. In addition to being able to supply, it can meet the needs of the current polyurethane industry, which requires strict VOC / emission management and non-inclusion of BTX. Then, the foam manufacturer can contribute to the manufacture and sale of Low VOC / emission type PU foam. Therefore, the present invention makes it possible to sufficiently spread such a high-quality defoaming agent in the market and widely use it as a high-performance raw material.
  • the foam stabilizer is used in the production of polyurethane foam. Specifically, the foam stabilizer is added to the composition as a raw material for a polyurethane foam-forming composition to form a good foam, or another raw material (catalyst) constituting the composition. Can be used as a premix by mixing with a part of). The premix is storable and is mixed with the remaining reactive material shortly before foaming to form a polyurethane foam.
  • the foam stabilizer is not particularly limited by the type and properties of the polyurethane foam and the type of formulation applied, but as described above, it is preferably used in the production of Low VOC / emission type PU foam. ..
  • polyurethane foams are classified into hard ones and soft ones, and are roughly classified into soft urethane foams, highly elastic urethane foams, hard urethane foams, special foams, etc. according to the hardness, physical characteristics, density, etc. of the foams.
  • the foam stabilizer for polyurethane foam containing (AB) n-type polyether-modified silicone obtained by the production method of the present invention does not use a high boiling point solvent which is a main cause of VOC / emission, and is an aromatic hydrocarbon solvent. Is not used, so it is easy to make it free of BTX solvent. Therefore, it facilitates the production of BTX-free foams, premix systems, etc. by foam manufacturers and foam prescription (system) designers. In addition, it can contribute to providing urethane foam with low VOC / emission.
  • various polyurethane foam formulations can exert excellent effects as a defoaming agent.
  • Soft urethane foam is widely used as a cushioning material for sofas and beds, and as a seat for automobiles. Since the viscosity of the raw material of the soft slab foam is relatively low and the foaming ratio is high, stabilization of the cell membrane during cell growth is a major key.
  • a foam stabilizer polyether-modified silicone
  • a foam stabilizer having a relatively high molecular weight is well suited for this system. Further, in order to ensure compatibility with No. 3000 polyol, a type in which a polyether having a relatively high propylene oxide ratio is graft-modified is widely applied.
  • the type in which the end of the modified polyether is uncapped (hydroxyl group) has the effect of strengthening the self-foaming property of the cell, so the type in which the end of the polyether is capped (mostly methoxycap) is widely applied to promote communication of the cell membrane. Helping to make it easier.
  • the (AB) n-type polyether-modified silicone defoaming agent according to the present invention is a defoaming agent containing (A) a high molecular weight main surfactant and (B) a diluent (poly) glycol or a polyglycol derivative. Yes, it can be suitably used for this system.
  • the recipe for the soft slab foam is shown, for example, in Examples of Patent Document 12, and instead of the bubble stabilizer used therein, the "aromatic hydrocarbon solvent-free (AB) n-type polyether" according to the present invention is used.
  • a modified silicone foam stabilizer can be formulated.
  • the soft hot mold formulation consists of a urethane stock solution system that is quite similar to the soft slab formulation, has high reactivity, and is packed in the mold, so high air permeability should be ensured.
  • the (AB) n-type polyether-modified silicone defoaming agent according to the present invention can realize high air permeability and can be used in the formulation.
  • a recipe for a soft hot mold foam is shown in, for example, Patent Document 3, and instead of the surfactant used therein, the "aromatic hydrocarbon solvent-free (AB) n-type polyether-modified silicone” according to the present invention is used.
  • a "foaming agent" can be prescribed. However, since the hydroxyl value of the defoaming agent changes depending on the type and amount of the diluent, it is necessary to finely adjust the amount of isocyanate added so that the crosslink density of the urethane resin system becomes a desired design.
  • the flame retardant foam compatible defoaming agent is defined as a type that can reduce the number of copies of the flame retardant added in the formulation and a type that reduces the adverse effect on the foam physical characteristics caused by the addition of the flame retardant.
  • silicone defoamers are generally positioned as combustion improvers. This is because when the foam is melted into a liquid by heat, the silicone defoaming agent collects on the liquid surface due to the surface activating effect and prevents carbonization. Therefore, in the flame-retardant foam, a defoaming agent having a relatively low silicone content and a low defoaming activity is suitable.
  • the (AB) n-type polyether-modified silicone defoaming agent according to the present invention may be used as a flame-retardant foam-compatible defoaming agent.
  • HR Foam Highly elastic foam
  • HR foam has a high viscosity and high reactivity, it is relatively easy to stabilize the cell membrane, but since communication does not proceed, cracking due to gas accumulated inside the foam, shrinkage after demolding, etc. It is necessary to prevent defects. For this reason, a cell-opening defoaming agent having a very weak defoaming force is generally widely applied.
  • This type is designed with a very small molecular weight of the defoaming agent, and has the feature that the initial emulsification of the raw material component is achieved, but the holding power of the cell membrane is very weak.
  • dimethylpolysiloxane having a relatively low molecular weight without modifying a polyether is said to impart regularity (homogeneity) to the foam cell size, and is used as a defoaming agent or a surfactant.
  • these function as a foam-regulating aid that imparts stable foam-regulating activity (moldability), while adjusting the strength of cell openness and foam-regulating force by optimizing the molecular weight distribution. be able to.
  • TDI-based formulations that require high activity have stronger foam-regulating power and fine cell formation
  • MDI-based formulations, which have relatively strong foaming properties have weaker foam-regulating power and good crushing properties.
  • the type that gives high breathability is suitable.
  • adjusting the cell size and air permeability by using both a strong type and a weak type with a foam-regulating force is widely applied to production, and it is a method peculiar to this system.
  • Such an "aromatic hydrocarbon solvent-free (AB) n-type polyether-modified silicone defoaming agent” can be formulated. However, since the hydroxyl value of the defoaming agent changes depending on the type and amount of the diluent, it is necessary to finely adjust the amount of isocyanate, polyol, and water added so that the crosslink density of the urethane resin system becomes the desired design. ..
  • Rigid urethane foam is widely used as a heat insulating material for building materials, refrigerators, etc. because it is lightweight, has excellent heat insulating properties, and has high productivity.
  • the number of cells of the foam finally obtained and the number of entrained gases dispersed during the initial stirring of the urethane foam liquid are substantially the same. Therefore, a defoaming agent that strengthens the emulsifying power in the initial stirring is optimal.
  • the finer the cell the easier it is for the foam to shrink.
  • Polyisocyanurate foam which has excellent flame retardancy, is also classified as one of the rigid urethane foams.
  • HCFC141b which has been used as a foaming agent in the past, is regulated from the aspect of the global environment, and HFC compounds, which are alternatives to this, are also being regulated in the near future.
  • the foaming agent has a great influence on the urethane foam formulation, and it is necessary to select the optimum foaming agent according to the type.
  • the initial emulsifying power is lower than that of the HCFC-141b formulation, which has good compatibility with the urethane stock solution system. Therefore, it can be expected that a good cell can be obtained by prescribing a defoaming agent having a high defoaming activity. Further, in a formulation using a hydrocarbon foaming agent such as cyclopentane, there are cases where premix compatibility is required from the viewpoint of storage stability.
  • the compatibility of the defoaming agent with the base polyol is important, and the type with a high EO (ethylene oxide) ratio of the modified polyether moiety and a hydroxyl group (-OH) at the end has relatively good compatibility. Is shown.
  • n-type polyether-modified silicones have long been known to be useful in the formation of open-cell rigid urethane foams, which means that the modified silicones require closed cells and fine cells. This means that it is not suitable for the production of typical rigid foams for insulation applications.
  • the recipe for open-cell rigid foam is shown in Examples of Patent Document 15, but since it is a formulation using chlorofluorocarbon (CFCl 3 ), which is currently prohibited as a foaming agent, it is harmful to carbon dioxide or water. It is necessary to adjust the number of copies to be added so that the foam recipe can be replaced with a low foaming agent.
  • Special foams include, for example, semi-rigid foams that are intermediate materials between soft foams and hard foams and are used as shock absorbers and ceiling materials for automobiles (see Patent Document 3 for an example of a recipe) and soft foams.
  • Low-resilience foam also called shape memory foam or viscoelastic foam
  • high-density foam called integral skin used for soles, etc.
  • microcellular foam manufactured by a mechanical foaming method. Microcellular foam can be thought of as a type of soft foam, but it is generally denser and has a similar appearance and feel to elastomers.
  • Patent Document 1 and Patent Document 5 exemplify the recipe of the microcellular foam.
  • the "(AB) n-type defoaming agent used in these documents the "(AB) n-type polyether-modified silicone defoaming agent containing no aromatic hydrocarbon solvent" according to the present invention is prescribed. Is preferable.
  • the hydroxyl value of the defoaming agent changes depending on the type and amount of the diluent, it is necessary to finely adjust the amount of isocyanate added so that the crosslink density of the urethane resin system becomes a desired design.
  • ester foams foams produced using polyester-type polyols instead of general polyether-type polyols as raw material polyols for urethane foams are called ester foams, which are also classified according to the foam characteristics as described above. is there.
  • low repulsion (viscoelastic) foam is similar to the formulation of general soft foam, but it is devised to incorporate a structural element having viscoelasticity into the raw material polyol. For this reason, the difficulty of cell communication is increasing, and the importance of surfactants having a high open cell effect is increasing. Furthermore, in the field of HR foam and microcellular foam by the mechanical foaming method, various uses have been created by managing the open cell ratio.
  • the defoaming agent suitable for the low-repulsion urethane foam is properly used depending on the type of isocyanate compound used.
  • a recipe for a viscoelastic foam is exemplified in Patent Document 16, and instead of the "organosilicone surfactant” used here, the "aromatic hydrocarbon solvent-free (AB) n type” according to the present invention is used. It is preferable to prescribe a "polyether-modified silicone foam stabilizer". However, since the hydroxyl value of the defoaming agent changes depending on the type and amount of the diluent, it is necessary to finely adjust the amount of isocyanate added so that the crosslink density of the urethane resin system becomes a desired design.
  • the "aromatic hydrocarbon solvent-free (AB) n-type polyether-modified silicone defoaming agent" can be used for various foam type polyurethane foam formulations, and has a strict VOC (Volatile Organic compound). It is possible to meet the needs of the current polyurethane industry, which requires compound) management or emission management.
  • VOC Volatile Organic compound
  • the "aromatic hydrocarbon solvent-free (AB) n-type polyether-modified silicone defoaming agent" is used as a raw material in the following polyurethane foam-forming composition. it can.
  • At least one additive component selected from the group consisting of agents, enhancers, pigments, dyes, colorants, flame retardants, antioxidants, anti-ozone agents, UV stabilizers, antistatic agents, bactericides and antibacterial agents. Can be contained. Each component is outlined below.
  • polystyrene resin examples include a polyether polyol and a polyester polyol.
  • the polyether polyol is obtained by adding an alkylene oxide to a polyhydric alcohol, a saccharide, a phenol, a phenol derivative, an aromatic amine, or the like.
  • glycerin, propylene glycol, dipropylene glycol, ethylene glycol, diethylene glycol, etc. Trimethylol propane, pentaerythritol, shoe cloth, sorbitol, novolak, nonylphenol, bisphenol A, bisphenol F, tolylene diamine, diphenylmethanediamine, etc., which are obtained by adding alkylene oxide to one or more. ..
  • polystyrene or acrylonitrile examples include polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene or acrylonitrile. It is a dispersion of. It also includes polyols derived from natural materials such as castor oil, chemically modified soybean oil, chemically modified fatty acid oils, and polyols produced by alkoxylation of such natural materials such as castor oil and soybean oil.
  • polyester polyol polycondensation of a polyfunctional carboxylic acid such as adipic acid, phthalic acid, and succinic acid with a polyfunctional hydroxyl compound such as glycerin, propylene glycol, dipropylene glycol, ethylene glycol, diethylene glycol, trimethylolpropane, and pentaerythritol.
  • a polyfunctional carboxylic acid such as adipic acid, phthalic acid, and succinic acid
  • a polyfunctional hydroxyl compound such as glycerin, propylene glycol, dipropylene glycol, ethylene glycol, diethylene glycol, trimethylolpropane, and pentaerythritol.
  • a polyol having a hydroxyl group at the terminal produced by The polyol may be used alone or in combination of two or more.
  • a non-volatile antioxidant it is preferable to add a non-volatile antioxidant to the polyols.
  • Suitable polyols for preparing polyurethane foams of the present invention have 2 to 8 hydroxyl groups per molecule and have a number average molecular weight of 200 to 10,000, preferably 500 to 7,500. ..
  • useful polyether polyols include the products of Voranol 220-028, Voranol 220-094, Voranol 225, Voranol 270, Voranol 490 and Voranol 800 (Dow Chemical Company) and Arcol 11-34 (Bayer Material Science).
  • Polyols such as polyether polyols and polyester polyols, usually have a hydroxyl number (hydroxyl value) in the range of about 15 to about 700.
  • the number of hydroxyl groups is preferably about 20 to 60 for soft foams, about 100 to 300 for semi-soft (or semi-hard) foams, and about 250 to 700 for hard foams.
  • the preferred functional value i.e., the average number of hydroxyl groups per polyol molecule of the polyol, is about 2-4, most preferably about 2.3-about 3.5.
  • the preferred functional value is about 2 to about 8, most preferably about 3 to about 5.
  • the "aromatic hydrocarbon solvent-free (AB) n-type polyether-modified silicone defoaming agent" obtained by the production method of the present invention can be used.
  • the blending amount is 0.1 to 10 mass by mass of the (A) linear polyether-organopolysiloxane block copolymer in the (AB) n-type polyether-modified silicone foam stabilizer with respect to 100 parts by mass of the polyol. It is a range of parts, preferably 0.5 to 5 parts by mass, and more preferably 1.0 to 3.0 parts by mass.
  • TDI tolylene diisocyanate
  • MDI diphenylmethane diisocyanate
  • Crude TDI containing functional tar can also be used.
  • a polypeptide MDI containing a polynuclear body having three or more nuclei can be used.
  • naphthalene diisocyanate (NDI) is suitable for applications that require particular strength.
  • MDI is usually used for the production of rigid polyurethane foam
  • TDI is often used for the production of flexible polyurethane foam.
  • MDI isocyanato prepolymers are made from a reaction of MDI with a polyol, such as those modified with uretonimine, and any proportion combination with the MDI derivatives described above.
  • prepolymers made from toluene diisocyanate (TDI) TDI isocyanate prepolymers made by the reaction of 2,4 and 2,6 isomers of TDI with polyols, and others.
  • TDI toluene diisocyanate
  • 2,4 and 2,6 isomers of TDI with polyols and others.
  • the amount of polyisocyanate blended with respect to the amount of isocyanate-reactive material in the formulation is represented by the "isocyanate index".
  • the "isocyanate index” is a value obtained by dividing the actual amount of polyisocyanate used by the stoichiometric amount of polyisocyanate required for the reaction with total active hydrogen in the reaction mixture and multiplying by 100. ..
  • the isocyanate index in the polyurethane foam-forming composition is generally 60-140.
  • the isocyanate index is generally 85-120 for soft TDI foams, usually 90-105 for molded TDI foams that are highly elastic (HR) foams, usually 70-90 for molded MDI foams, and generally 70-90 for hard MDI foams. It is 90 to 130.
  • Some examples of polyisocyanurate hard foams are manufactured with a high index of 250-400.
  • tertiary amine urethane catalysts such as triethylenediamine, bis (dimethylaminoethyl) ether, imidazole derivatives,
  • a reactive amine catalyst of a type in which a catalyst is incorporated into a resin skeleton during a urethane forming reaction it is preferable to use a reactive amine catalyst of a type in which a catalyst is incorporated into a resin skeleton during a urethane forming reaction.
  • an amine-based catalyst is preferable for producing a rigid polyurethane foam
  • a combined use of an amine-based catalyst and a tin-based catalyst is preferable for producing a flexible polyurethane foam.
  • the structure of the polyether group of the polyether-modified silicone also greatly affects the size of the foam, so if you want to reduce the cell size and reduce the air permeability, you can select a polyether structure with a high EO content.
  • select a polyether with a large molecular weight widen the process range, and select multiple polyethers with different molecular weights and structures in order to have compatibility with a wide range of applications and formulations.
  • polyol which is one of the main raw materials of polyurethane, has a PPG structure
  • PO propylene oxy
  • the polyether portion in the polyether-modified silicone from the viewpoint of compatibility in foam formulation or premix.
  • the requirements for the defoaming agent differ depending on the type of polyurethane foam containing the "aromatic hydrocarbon solvent-free (AB) n-type polyether-modified silicone defoaming agent" according to the present invention.
  • the optional components (e) in the polyurethane foam forming composition are water and a non-aqueous foaming agent.
  • Water acts as a chemical foaming agent by reacting with polyisocyanates to produce carbon dioxide gas.
  • one or more physical and / or chemical forms of non-aqueous foaming agent can be included in the reaction mixture.
  • water may not be used.
  • foaming agents include chlorofluorocarbons such as HFC-245fa and HFC-134a, hydrofluoroolefins such as HFO and HCFO, and low boiling point hydrocarbons such as iso-, cyclo- and n-pentane. It may contain supercritical carbon dioxide, formic acid, etc.
  • Water is often used as a reactive foaming agent in both soft and hard foams.
  • water can generally be used at a concentration of, for example, 2 to 6.5 parts per 100 parts of polyol, typically 3.5 to 5.5 parts.
  • HR highly elastic
  • the water content of the TDI molded foam is usually, for example, 3 to 4.5 parts.
  • the water content of the hard foam is usually, for example, 0.5 to 5 parts, and usually 0.5 to 1 part.
  • Physical foaming agents such as volatile or halogenated hydrocarbons and other non-reactive gas based foaming agents can also be used.
  • the hard insulating foams produced are foamed with volatile or halogenated hydrocarbons in a significant proportion, with preferred foaming agents being hyrodfluorocarbons (HFCs) and the volatile hydrocarbons pentane and cyclopentane. Hydrofluoroolefins (HFO, HCFO) can also be used.
  • HFCs hyrodfluorocarbons
  • HFO, HCFO Hydrofluoroolefins
  • water is the main foaming agent, but other foaming agents can also be used as auxiliary foaming agents.
  • the preferred auxiliary foaming agents are carbon dioxide and dichloromethane.
  • Highly elastic (HR) foams generally do not use an inert auxiliary foaming agent and in any case contain less auxiliary foaming agent than slab foam.
  • the amount of foaming agent depends on the desired foam density and foam hardness.
  • the amount is, for example, a trace amount to 50 parts per 100 parts of the polyol, and CO2 is, for example, about 1 to about 10%.
  • microcellular foam is manufactured by the method.
  • the polyol a), the polyisocyanate b), the catalyst c) that can be contained in the polyurethane foam-forming composition, and the "(AB) n-type polyether modification without aromatic hydrocarbon solvent” according to the present invention can be varied over a wide range, for example, as shown below.
  • the compounding ratios and ranges described in the cited patent documents taken up for each form type are suitable. The reason for allowing a wide range is that the formulation of the polyurethane foam-forming composition must be adjusted according to the required foam properties, applications, foaming forms, equipment and the like.
  • polysiloxane block copolymer composition d 6 to 85 parts by mass of polyol a), 10 to 80 parts by mass of polyisocyanate b), 0.01 to 5.0 parts by mass of catalyst c), 0.1 to 20 parts by mass of the polyether of the present invention.
  • Polysiloxane block copolymer composition d) 0 to 6 parts by mass of water and 0 to 45 parts by mass of a non-aqueous foaming agent as optional components.
  • the mass of water that can be contained in the polyurethane foam forming composition is preferably in the range of 0 to 10% with respect to the mass of the polyol.
  • Other optional components e) include other polymers and / or copolymers, diluents, chain extenders, crosslinkers, fillers, strengtheners, pigments, dyes, colorants, flame retardants, antioxidants, anti-ozone agents. , UV stabilizers, antistatics, bactericides and antibacterial agents known in the art and may be included within their normal content.
  • the optional component e) may contain 2 to 8 hydroxyl groups per molecule acting as a cross-linking agent or chain extender and a polyhydroxyl terminal compound having a molecular weight of 62 to 500.
  • Crosslinking agents having 3 to 8 hydroxyl groups include glycerin, trimethylolpropane, pentaerythritol, mannitol, sorbitol and the like.
  • Examples of useful chain extenders with two hydroxyl groups are dipropylene glycol, tripropylene glycol, propylene glycol, diethylene glycol, triethylene glycol, 1,4-butanediol, 1,3-butanediol, ethylene glycol, It contains 2,3-butanediol, 2-methyl-1,3-propanediol, 1,2-propanediol, 1,3-propanediol, neopentyl glycol and the like.
  • Diethanolamine, monoethanolamine and the like can also be used.
  • the optional component e) may also include, for example, an inorganic filler or a combination of fillers.
  • Fillers are for improving other benefits, including density modification, mechanical performance or physical performance such as sound absorption, flame retardancy or improved economics such as calcium carbonate. Or other fillers that reduce the cost of foam production, aluminum hydroxide or other flame-retardant fillers, barium sulphate or other high-density fillers used for sound absorption, glass that further reduces foam density or Includes microspheres of substances such as polymers.
  • High aspect ratio fillers or reinforcements used to modify mechanical performance such as foam rigidity or flexibility modules are artificial fibers such as crushed fiberglass or graphite fibers; such as siliceous stone.
  • Natural mineral fibers Natural mineral fibers; natural animal fibers such as wool or plant fibers such as cotton; artificial plate fibers such as crushed glass; natural mineral plate fillers such as mica. Includes any pigments, dyes, colorants that may be added.
  • organic flame retardants, anti-ozone agents, antioxidants; heat or heat-heat of foam generated when added to heat-oxygen decomposition inhibitors, UV stabilizers, UV absorbers or foam-forming compositions It may contain any other additives that avoid or inhibit photo and / or chemical degradation. It may include any known and conventional antistatic agent, bactericidal agent, antibacterial agent and gas fading inhibitor.
  • the polyurethane foam obtained from the polyurethane foam-forming composition using the "aromatic hydrocarbon solvent-free (AB) n-type polyether-modified silicone foam stabilizer" according to the present invention is an aromatic hydrocarbon-based. It is preferably solvent-free and low VOC / emission type hard foam, semi-hard foam, soft foam, HR foam, or microcellular foam.
  • a low VOC / emission type polyurethane foam is produced from a polyurethane foam-forming composition using the "aromatic hydrocarbon solvent-free (AB) n-type polyether-modified silicone foam stabilizer" according to the present invention.
  • AB aromatic hydrocarbon solvent-free
  • a polyurethane foam can be produced by using a one-shot foaming method, a quasi-prepolymer method and a prepolymer method.
  • Common soft foams are usually industrially produced as slab foams. While some slab foams are made by injecting the reactant mixture into a large box (discontinuous method called box foam), regular slabstock foam is continuous by discharging the reaction mixture onto a conveyor with a paper liner. Manufactured in. The foam foams and hardens as the conveyor advances, and the foam is cut into large blocks as it exits the foamer.
  • spray foam is a method in which a polyurethane foam-forming composition is spray-foamed and hardened at a site such as a construction site.
  • lamination board is mainly used as a heat insulating material for prefabricated buildings, but it is also called “insulation board” or “continuous lamination board stock”.
  • insulation board or “continuous lamination board stock”.
  • a foamed foam-forming composition continuously supplied through a roller is cured while flowing between face materials facing up and down, and finally plate-like foam having a thickness of about 10 cm. The body is obtained.
  • an "appliance” is a foam exclusively for refrigerator insulation, which is produced by a fully automated process in the factory by the injection molding method. However, in this case, the foam forming composition is injected into the mold, foamed and cured, and the process is completed, and the foam is not taken out from the mold.
  • the prescription feature of the refrigerator foam is that it does not use water as a foaming agent because it emphasizes heat insulation (because carbon dioxide gas has the property of easily transmitting heat).
  • the term "in-situ injection” has a literal meaning, but it is a method in which the foam-forming composition is injected into a mold at the site, foamed and cured, and then finished, and refers to applications other than refrigerator applications.
  • microcellular which is one of the special foams
  • a homogeneous and fine high-density foam is manufactured by a mechanical foaming method called a mechanical floss system.
  • a so-called foaming agent is not used, and air or nitrogen gas entrained by mechanical stirring mainly constitutes the nucleus of bubbles.
  • the low-resilience foam which is one of the special foams or the soft foams, is manufactured in the same slab or mold form as the general soft foams or HR foams.
  • the mixed stock solution is flowed on a continuous conveyor, and usually, the width is 1 to 2 m and the height is 0.2 to 0.6 m, and the cross section is continuously foamed in a square or semi-cylindrical shape, and then a predetermined length (mostly 1 to 2 m). Cut into the shape of bread. It is shipped in this form to processing establishments, and products of various shapes can be cut out and processed from slab products. Molded products are made by injecting a stock solution into a plastic or metal mold, foaming it, and then removing it from the mold. Even products with complicated shapes can be molded in large quantities with high dimensional accuracy.
  • a method for producing an individual polyurethane foam can be appropriately selected, and in particular, the "(AB) n-type polyether-modified silicone foam stabilizer containing no aromatic hydrocarbon-based solvent" according to the present invention is described below.
  • the silicone-based foam stabilizer or the silicone surfactant and the silicone copolymer surfactant are preferably replaced. It can be applied and contributes to low VOC / emission of foam.
  • a general-purpose polyether modification containing a structure in which a polyether side chain is grafted on an organopolysiloxane main chain as a main component.
  • Aromatic hydrocarbons are synthesized by synthesizing silicone using saturated hydrocarbons having an average number of carbon atoms in the range of 6 to 11 as a reaction solvent, and substituting the solvent with (poly) glycol or (poly) glycol derivative. It is optional to obtain it as a solvent-free low VOC / emission type polyurethane foam foam stabilizer.
  • the Me 3 SiO group (or Me 3 Si group) is referred to as “M”, the Me 2 SiO group is referred to as “D”, and the MeHSiO group is referred to as “MH ”, and methyl in M and D is indicated. denoted the units modified by any substituent group and M R and D R
  • Example 1-2 The experiment was carried out in the same manner as in Example 1-1 except that MCH was replaced with n-heptane (boiling point 98 ° C.).
  • the reactivity in the synthesis reaction of the linear linear polyether-organopolysiloxane block copolymer, the behavior such as foaming in the substitution step with the diluent, the appearance of the product, etc. are the same as in Example 1-1. there were.
  • This antifoaming agent can be particularly preferably used for the same purposes as in Example 1-1.
  • Isopar E C7-C9 saturated hydrocarbon, boiling range 115-140 ° C
  • M H D 17 M H 14.52 parts
  • methylhydrogenpolysiloxane 58.08g 14.52 parts represented by the average composition formula M H D 18 M H, isopropyl alcohol (IPA, boiling point 82 ° C.) to 200 g (50 parts) were charged as a reaction solvent, While stirring under nitrogen flow, 0.05 g of a tetramethyldisiloxane solution (Pt concentration 4.2 wt%) of 1,3-divinyl-1,1,3,3-tetramethyldisiloxane platinum complex was added. After confirming that the reaction solution became transparent at 75 ° C., aging was carried out at around 80 ° C. for 3 hours, and the reaction was completed.
  • Pt concentration 4.2 wt% 1,3-divinyl-1,1,3,3-tetramethyldisiloxane platinum complex
  • reaction was carried out for 2 hours.
  • 1 g of the reaction solution was collected and confirmed by the alkaline decomposition gas generation method.
  • the reaction system was further heated to 125 ° C. while gradually reducing the pressure, and toluene was distilled off little by little while paying attention to foaming.
  • the pressure was restored, 25 parts of polypropylene glycol monobutyl ether ⁇ BPPG-13 ⁇ was added to the reaction system, and then the pressure was reduced again to carefully distill off the remaining toluene. After recompression, 25 parts of BPPG-13 were added and mixed and homogenized.
  • the copolymer terminal contains a SiO—iPr structure.
  • the polyether moiety is a random adduct of ethylene oxide and propylene oxide.
  • Isopar E C7-C9 saturated hydrocarbon, boiling range 115-140 ° C
  • both ends of the copolymer are polyether. It is in a closed form.
  • the polyether moiety is a random adduct of ethylene oxide and propylene oxide. *) Containing 500ppm of natural vitamin E This defoaming agent is free of aromatic hydrocarbon solvents and has less concern about environment, health and safety. Production of low density microcellular foam or cell size of microcellular foam. It is particularly suitable for miniaturization of.
  • Example 2-2 The experiment was carried out in the same manner as in Example 2-1 except that Isopar E was replaced with methylcyclohexane (MCH, boiling point 101 ° C.).
  • MCH methylcyclohexane
  • the reactivity and appearance of the product in the synthetic reaction of the linear linear polyether-organopolysiloxane block copolymer are the same as in Example 2-1 and the foaming in the substitution step with the diluent is the example. It was less than 2-1 and better.
  • This antifoaming agent can be particularly preferably used for the same purposes as in Example 2-1.
  • Example 2-1 except that Isopar E (C7-C9 saturated hydrocarbon, boiling point range 115-140 ° C.) was replaced with IP solvent 1620 (mixture containing at least C12-C13 saturated hydrocarbon, boiling point 166-202 ° C.). The experiment was conducted in the same manner as above. The reactivity and appearance of the linear linear polyether-organopolysiloxane block copolymer in the synthesis reaction were the same as in Example 1-3, but the diluent was polypropylene glycol monobutyl ether ⁇ BPPG-13 ⁇ .
  • methylhydrogenpolysiloxane 31.64 g (15.82 parts) represented by the average composition formula M H D 18 M H, isopropyl alcohol (IPA, boiling point 82 ° C.) to 200 g (50 parts) were charged as a reaction solvent, While stirring under nitrogen flow, 0.05 g of a tetramethyldisiloxane solution (Pt concentration 4.2 wt%) of 1,3-divinyl-1,1,3,3-tetramethyldisiloxane platinum complex was added. After that, when aging was carried out at around 80 ° C. for 3 hours, the reaction was completed.
  • defoaming agents contain the following linear polyether-organopolysiloxane block copolymer as the component (A).
  • All of the above defoaming agents contain the following polypropylene glycol monobutyl ether ⁇ BPPG-13 ⁇ as the component (B). n-BuO (PO) 13- H
  • Reactivity excellent: When the reaction solvent is essentially inactive to the hydrosilylation reaction and the reaction completion is confirmed by aging within 2 to 3 hours in the reaction step "Good”: The reaction solvent has a hydroxyl group. A side reaction can occur due to reasons such as having, but if the side reaction can be suppressed by improving the formulation using a buffer component and the hydrosilylation reaction is completed within 2 to 3 hours of aging, "OK”: Hydrosilylation reaction However, it was not completed by aging for 2 to 3 hours, but when the reaction was completed as a result of adding a catalyst of the same amount or less as the initial amount and aging for another 3 hours, “poor”: the hydrosilylation reaction was slow and When the reaction is not completed even after aging for more than 6 hours despite the above measures
  • saturated hydrocarbons having an average number of carbon atoms in the range of 6 to 11 are selected and used as a synthetic reaction solvent for the (AB) n-type copolymer, and the solvent is used as (poly) glycol or (poly) glycol or (poly).
  • Efficient "(AB) n-type polyether-modified silicone foam stabilizer without aromatic hydrocarbon solvent” by a method for producing a polyether-polysiloxane block copolymer composition having a step of substituting with a glycol derivative. It can be seen that it is possible to manufacture the product safely and accurately.
  • Saturated hydrocarbons with an average number of carbon atoms in the range of 6 to 11 are excellent as synthetic reaction solvents for (AB) n-type copolymers, and have a transparent product appearance with a smaller number of copies than the conventionally used toluene. It was found that it could be achieved.
  • the foam stabilizer thus obtained can be used as a raw material for a low VOC / emission type polyurethane foam containing no aromatic hydrocarbon solvent or a premix for that purpose, and can be used in the field of electronic materials and the environment. Contributes to expanding the range of utilization as automobile parts or consumer goods (bed mats, sofas, pillows, etc.) in consideration of.
  • MCH methylcyclohexane
  • both ends of the copolymer are polyether. It is in the form of being closed with.
  • the polyether moiety is a random adduct of ethylene oxide and propylene oxide.
  • This defoaming agent is particularly suitable for producing low-breathability microcellular foam or low-density microcellular foam, which is free of aromatic hydrocarbon solvents and has few concerns about environment, hygiene, and safety. *) Contains 500ppm of natural vitamin E
  • MCH methylcyclohexane
  • both ends of the copolymer are polyether. It is in the form of being closed with.
  • the polyether moiety is a random adduct of ethylene oxide and propylene oxide.
  • This defoaming agent is particularly suitable for producing low-breathability microcellular foam or low-density microcellular foam, which is free of aromatic hydrocarbon solvents and has few concerns about environment, hygiene, and safety. *) Contains 500ppm of natural vitamin E
  • Example 3-3 1,3-Divinyl-1,1,3,3-Tetramethyldisiloxane platinum complex tetramethyldisiloxane solution (Pt concentration 4.2 wt%) 0.05 g, 10% IPA solution of chloroplatinic acid (Pt concentration 3)
  • Pt concentration 3 1,3-Divinyl-1,1,3,3-Tetramethyldisiloxane platinum complex tetramethyldisiloxane solution
  • Pt concentration 3-3 1,3-Divinyl-1,1,3,3-Tetramethyldisiloxane platinum complex tetramethyldisiloxane solution (Pt concentration 4.2 wt%) 0.05 g, 10% IPA solution of chloroplatinic acid (Pt concentration 3)
  • the experiment is carried out in the same manner as in Example 1-1 except that it is replaced with 0.06 g (0.8 wt%).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Silicon Polymers (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)

Abstract

[課題]芳香族炭化水素系溶媒の使用および混入を避けることができ、かつ、工業的な生産スケールでの製造が容易なポリエーテル-ポリシロキサンブロック共重合体組成物の製造法を提供し、当該組成物を原料とするポリウレタンフォーム用整泡剤の製造方法を提供することにより、高品質な整泡剤を市場に十分に普及させることを目的とする。 [解決手段]平均炭素原子数が6~11の範囲にある飽和炭化水素溶媒(C)の存在下で、特定の反応によりポリエーテル-ポリシロキサンブロック共重合体(A)を得る工程、および、当該工程中または当該工程後、前記反応に用いた溶媒(C)を、(B)(ポリ)グリコール又はポリグリコール誘導体により置換する工程を備えることを特徴とする、ポリエーテル-ポリシロキサンブロック共重合体組成物の製造方法、および、同製造方法により得られた組成物を用いることを特徴とする整泡剤等の製造方法。

Description

ポリエーテル-ポリシロキサンブロック共重合体組成物、整泡剤およびポリウレタン発泡体の製造方法
本発明は、(A)直鎖状ポリエーテル-オルガノポリシロキサンブロック共重合体と(B)(ポリ)グリコール又はポリグリコール誘導体とを含むポリウレタンフォーム用整泡剤(気泡制御剤および気泡安定剤としての機能を含む、以下同じ)の製造方法に関する。更には、本発明は、芳香族炭化水素系溶媒不含かつ低VOC/エミッション型の当該整泡剤、ポリウレタン発泡形成性組成物およびポリウレタン発泡体の製造方法に関する。
直鎖状ポリエーテル-オルガノポリシロキサンブロック共重合体は、(AB)n型ポリエーテル変性シリコーンとして知られており、(A1)ポリシロキサン部とポリエーテル部がSi-C結合により連結された非加水分解型の共重合体と、(A2)ポリシロキサン部とポリエーテル部がSi-O-C結合により連結された加水分解型の共重合体とに大別される。(AB)n型ポリエーテル変性シリコーンの製造法とそのポリウレタンフォーム用整泡剤への応用については古くから知られている。
(A1)に関しては、(S1)両末端SiH基含有オルガノポリシロキサンと(E2)両末端アリル基含有ポリエーテルとのヒドロシリル化反応により(AB)n型共重合体をトルエン溶媒中で合成したのち、トルエンをエバポレーターにより除いて濃縮した生成物を得た例が、特許文献1のExample 1~7に示されている。また、これら(AB)n型共重合体の50%トルエン溶液をメカニカルフロスポリウレタンフォーム用界面活性剤として試験した結果を報告している。特許文献2のExample 2,11~24では、(S1)両末端SiH基含有オルガノポリシロキサンと(E3)両末端メタリル基含有ポリエーテルとのヒドロシリル化反応により(AB)n型共重合体をトルエン溶媒中で合成したのち、触媒を濾別して得たトルエン溶液を界面活性剤として報告している。特許文献3では、これらと同様の共重合体をトルエン溶媒中で合成したのちトルエンをエバポレーターにより除いて濃縮した生成物が、半硬質ウレタンフォーム及び軟質ホットモールドウレタンフォーム用の界面活性剤として有用であることを報告した。このようにして得られる界面活性剤は、その製造において芳香族炭化水素溶媒を使用するため、当該溶媒を不含とすることが特に生産機スケールにおいては困難であり、厳しいVOC(Volatile Organic Compound)管理を要求される現在のポリウレタン産業界のニーズに応えることはできない。
特許文献4は、(AB)n型共重合体の長鎖アルキルベンゼン溶液をメカニカルフロスポリウレタンフォーム用界面活性剤として使用した例を報告している。長鎖アルキルベンゼンはBTX(ベンゼン、トルエン、キシレン)溶媒に比べて有害性が少ないため、当該共重合体の希釈剤として長く使用されている。しかし、(AB)n型共重合体の長鎖アルキルベンゼン溶液を界面活性剤として使用して得たポリウレタンフォームはVOC放出量が多く、これらVOCの主原因の一つが長鎖アルキルベンゼンであることから、厳しいVOC/エミッション管理を要求される現在のポリウレタン産業界のニーズに応えることはできない。また、長鎖アルキルベンゼンは芳香族炭化水素系溶媒の一種と見なされ得ると共に、ウレタンフォーム中に残存して最終製品からマイグレーション(滲み出し)する問題がある。
特許文献5は、トルエン中で(AB)n型共重合体の合成を行なった後、PPG(ポリプロピレングリコール)を添加し、更にトルエンをストリピング操作によって除去した実施例を開示した。また、こうして得た(AB)n型共重合体のPPG溶液を整泡剤として使用すると、VOCの少ないメカニカルフロス(機械発泡)ポリウレタンフォームが得られたことを報告している。このような整泡剤の製造は、反応溶媒を希釈剤により置換する工程で生じる発泡を管理しつつ工程を進める必要があるため時間を要するが、生産機スケールの設備でも可能である。より大きな問題は、芳香族炭化水素溶媒を使用するため、当該BTX溶媒を不含とすることが困難である点である。ここで、特許文献5では(AB)n型共重合体製造時の反応溶媒である有機溶剤として、イソプロピルアルコール(IPA)、トルエン、キシレンを指定している。これは、仮にIPAを使用して当該共重合体を製造すれば、これをPPGと置換することによりBTX溶媒不含の整泡剤を得ることができると当業者の思考を誘導し得る。しかしながら、本発明者らの検討によると、IPAを反応溶媒として(AB)n型共重合体を製造した場合、その後の希釈剤との溶媒置換工程においてトルエンの場合よりもはるかに激しくしつこい泡立ちが生じ、減圧時の突沸現象を伴いやすく、ラボスケールでさえ当該整泡剤を所定のプロセスに沿って製造するのは極めて困難であることが判明した(トルエンの場合に比して、製造時間として2~3倍を要した。発泡が激しいため、トルエンの場合の半分の仕込み体積とせざるを得なかった。)生産機スケールでは通常、ラボスケールよりも製造時間は2倍以上に長くなること、生産装置の占有時間や生産性の悪化、コストへの圧迫、安全面などを考慮すると、IPAを使用してポリウレタンフォーム用(AB)n型整泡剤を生産するのは全く現実的ではない事が明らかとなった。本発明者らの調査した範囲では、当該整泡剤を生産するに際し反応溶媒としてIPAが不可であることは過去に報告されておらず、従って、芳香族炭化水素系溶媒不含の低VOC/エミッション型ポリウレタンフォーム用(AB)n整泡剤を生産するための実用的な方法が無いという課題自体が、業界において認識されていなかったと考えられる。
特許文献6は、イソプロピルパルミテート(IPP)を反応溶媒兼希釈剤として(AB)n型共重合体を減圧下に合成するプロセスを開示した。しかし、IPPなどのエステル油は沸点を有するため、このようなプロセスで得られた界面活性剤或いは整泡剤を使用して得たポリウレタンフォームからのVOC/エミッションの原因となる。
特許文献7は、(AB)n型共重合体のうち特に高分子量の共重合体を、増粘やゲル化などを起こさずに安定的に製造するための技術を開示しており、ポリウレタンフォーム分野への応用に関する具体的な言及はない。この実施例1において、直鎖状ポリオキシエチレン-ジメチルポリシロキサンブロック共重合体を流動イソパラフィン中で合成した後、ストリピングにより未反応物等の低沸物を留去し、該当する(AB)n型共重合体の流動イソパラフィン溶液を得ている。流動イソパラフィンとは、医薬部外品成分表示名称によるとイソブテンとn-ブテンの共重合体に水素添加したものであり、重合度は5~10とされる。流動イソパラフィンは高沸点成分の混合物であり、特に重合度の大きい成分をストリピングにより除去することは困難である。従って、仮に流動イソパラフィンをポリウレタンフォーム用の(AB)n型共重合体の希釈剤として利用する場合、フォームからのVOC/エミッションの原因となるであろう。
特許文献8は、(AB)n型共重合体とジプロピレングリコールモノブチルエーテル(BDPG)など特定のモノオール有機化合物とを含むポリウレタンフォーム用整泡剤を開示している。これら特定のモノオール有機化合物は、(AB)n型共重合体の合成反応溶媒兼希釈剤としても利用でき、ポリウレタン形成時には反応系に取り込まれることからフォームのエミッションを低減できると期待された。しかし、発泡条件により全てのモノオール有機化合物が消費されるわけではないため、VOC/エミッションを最小化する点で更なる改善が求められていた。
なお、特許文献7には(AB)n型共重合体を製造するにあたり必要に応じて使用可能な多数の反応溶媒が開示されており、ヘキサン、ヘプタン等の脂肪族炭化水素も含まれているが、選択可能な溶媒の非限定的な一例としての開示に留まっている。加えて、これらの多数の溶媒には、(AB)n型共重合体の製造に用いると、反応の阻害や反応系の不均一化、副反応等を引き起こすために実用性がない溶媒が多数列記されており、最適な溶媒を探索するには当業者が膨大な実験を行って、これらの溶媒の反応性および安定性を検証する必要があり、好適な溶媒を選定する上での具体的な記述を全く欠いているものである。特に、(C)「平均炭素原子数が6~11の範囲にある飽和炭化水素」をポリウレタンフォーム用整泡剤の主成分である(AB)n型共重合体の合成反応溶媒として用いるとともに、当該溶媒を(ポリ)グリコール又はポリグリコール誘導体で置換することにより、芳香族炭化水素系溶媒不含の低VOC/エミッション型ポリウレタンフォーム用整泡剤を得ることの利益については、何ら記載も示唆もされていない。従って、特許文献7には、本発明の(A)直鎖状ポリエーテル-オルガノポリシロキサンブロック共重合体と(B)(ポリ)グリコール又はポリグリコール誘導体とを含むポリウレタンフォーム用整泡剤の新規な製造方法およびその技術的利益について当業者が理解できるような明確な教示はなされていない。
(A2)に関しては、特許文献9のExample 8,10~26に、(S2)両末端ジメチルアミノ基含有オルガノポリシロキサンと(E1)両末端ヒドロキシ基含有ポリエーテル(ポリグリコール)との縮合反応により(AB)n型共重合体をキシレン、o-ジクロロベンゼン、アルキル化芳香族炭化水素混合物(Solvesso 100,  Solvesso 150)などの不活性芳香族炭化水素系溶媒中で合成した例が示されている。これらの芳香族炭化水素系溶媒の沸点範囲は105~300℃とされる。同じ文献のExample 27~29には(S3)両末端エトキシ基含有オルガノポリシロキサンと(E1)両末端ヒドロキシ基含有ポリエーテルとの縮合反応により(AB)n型共重合体をキシレン中で合成した例が示されている。これら(AB)n型共重合体の芳香族炭化水素系溶媒による溶液は、メカニカルフロスポリウレタンフォーム用界面活性剤として試験された。特許文献10は、二酸化炭素を(S2)両末端ジメチルアミノ基含有オルガノポリシロキサンと(E1)両末端ヒドロキシ基含有ポリエーテルとの縮合反応触媒として利用することにより、(AB)n型共重合体の製造時間短縮が達成されたとの知見に基づくものであり、実施例の反応溶媒としてキシレンが用いられている。特許文献11は、(S2)両末端ジメチルアミノ基含有オルガノポリシロキサンと(E1)両末端ヒドロキシ基含有ポリエーテルとの縮合反応触媒として1,8-ジアザビシクロ[5.4.0]ウンデカ―7-エン(DBU)などの3級アミンを使用する技術を報告しており、実施例では(AB)n型共重合体の合成反応溶媒兼希釈剤として沸点範囲が280~320℃の直鎖アルキルベンゼンを使用している。しかし、前述の通り高沸点のアルキルベンゼンはフォームからのVOC/エミッション或いはマイグレーションの主因であるという問題があり、より沸点の低い芳香族炭化水素系溶媒ではBTX等不含の整泡剤への要求に応えられないという問題がある。
特許文献12は、沸点範囲280~320℃の直鎖アルキルベンゼン中で、トリス(ペンタフェニルフロロ)ボランを触媒として用い(S1)両末端SiH基含有オルガノポリシロキサンと(E1)両末端ヒドロキシ基含有ポリエーテルとの縮合反応により(AB)n型共重合体を合成した例を報告している。特許文献13は、沸点範囲280~320℃の直鎖アルキルベンゼン中で、1,8-ジアザビシクロ[5.4.0]ウンデカ―7-エン(DBU)を触媒として用い(S1)両末端SiH基含有オルガノポリシロキサンと(E1)両末端ヒドロキシ基含有ポリエーテルとの縮合反応により(AB)n型共重合体を合成した例を報告している。高沸点アルキルベンゼンをストリピングにより除去するのは困難である。このようにして得られた(AB)n型共重合体の溶液は、典型的な軟質ポリウレタンフォーム用の整泡剤(気泡安定剤)として試験された。しかし、高沸点のアルキルベンゼンには既述の問題があり、これらの技術によっては厳しいVOC/エミッション管理を要求される現在のポリウレタン産業界のニーズに応えることはできない。これらの文献には適切な反応溶媒としてアルカン、シクロアルカン、アルキル化芳香族炭化水素が挙げられており、具体的には沸点120℃を超える高沸点溶媒とされる。従って、特に(C)「平均炭素原子数が6~11の範囲にある飽和炭化水素」を選択して(AB)n型共重合体の合成反応溶媒として用いるとともに、当該溶媒を(ポリ)グリコール又はポリグリコール誘導体で置換することにより、芳香族炭化水素系溶媒不含の低VOC/エミッション型ポリウレタンフォーム用整泡剤を得ることへの当業者の想到を妨げるものである。また、本発明の新しいポリウレタンフォーム用整泡剤の製造方法のもたらす利益についても、何ら記載も示唆もされていない。
すなわち、特許文献1~13に開示された(AB)n型ポリエーテル変性シリコーンまたはそれを含むポリウレタンフォーム用整泡剤の製造方法は、厳しいVOC/エミッション管理を要求される現在のポリウレタン産業界のニーズに応えることができないか、BTX等不含の整泡剤への要求に応えられないという課題を有しており、改善の余地が残されていた。従って、これら旧来の(AB)n型ポリエーテル変性シリコーン整泡剤は、ポリウレタンフォーム用整泡剤としての有用性において十分に満足できるものではなく、性能や品質面の問題や業界規制への対応力の欠如という点から、その広範な普及が妨げられてしまう問題を抱えていた。従って、これら複数の課題を解決し、製造が容易であって大量に市場に供給することが可能であり、ポリウレタンフォーム用整泡剤の用途において十分な有用性を有する(AB)n型ポリエーテル変性シリコーンを含有する整泡剤の新たな製造プロセス開発或いは処方の開発が望まれていた。
米国特許第3957842号明細書(特公昭57-014797号公報) 米国特許第4150048号明細書 特開平07-090102号公報(特許第3319833号公報) 米国特許第4275172号明細書(特公昭62-039605号公報) 特開平08-156143号公報 米国特許第5869727号明細書(特許第4319711号公報) 特開2006-282820号公報(特許第4875314号公報) 国際公開第2016/166979号公報 米国特許第3836560号明細書(特公昭56-045440号公報) 米国特許第3792073号明細書(特公昭53-012960号公報) 米国特許第7645848号明細書 米国特許第7825205号明細書(特許第5422115号公報) 米国特許第7825209号明細書(特許第5231796号公報) 特開2014-210832号公報 米国特許第3920587号明細書 米国特許第8791168号明細書(特許第5371760号公報)
本発明は上記課題を解決すべくなされたものであり、(A)直鎖状ポリエーテル-オルガノポリシロキサンブロック共重合体と(B)(ポリ)グリコール又はポリグリコール誘導体とを含む、Low VOC/エミッション型のポリウレタンフォーム用整泡剤の新たな製造方法を提供する事を目的とする。
また、本発明は、BTX(ベンゼン、トルエン、キシレン)溶媒等の、芳香族炭化水素系溶媒の使用および混入を避けることができ、かつ、工業的な生産スケールでの製造が容易であって大量に市場に供給することを可能とするポリエーテル-ポリシロキサンブロック共重合体組成物、それを原料とするポリウレタンフォーム用整泡剤の製造方法を提供することにより、こうした高品質の整泡剤を市場に十分に普及させ、高性能な原料としてポリウレタン産業への貢献とその幅広い活用を促すことを目的とする。
鋭意検討の結果、本発明者らは、平均炭素原子数が6~11の範囲にある飽和炭化水素溶媒(C)の存在下で、特定の反応によりポリエーテル-ポリシロキサンブロック共重合体(A)を得る工程、および、当該行程中あるいは当該工程後、前記反応に用いた溶媒(C)を、(B)(ポリ)グリコール又はポリグリコール誘導体により置換する工程を備えることを特徴とする、ポリエーテル-ポリシロキサンブロック共重合体組成物の製造方法により、上記課題を解決できる事を見出し、本発明に到達した。また、同製造方法により得られた組成物を用いることを特徴とする整泡剤等の製造方法により、上記課題を解決できる事を見出し、本発明に到達した。
本発明によれば、(A)直鎖状ポリエーテル-オルガノポリシロキサンブロック共重合体と(B)(ポリ)グリコール又はポリグリコール誘導体とを含む、ポリエーテル-ポリシロキサンブロック共重合体組成物およびその用途であるポリウレタンフォーム用整泡剤の新たな製造方法が提供される。本発明の製造方法により得られるポリエーテル-ポリシロキサンブロック共重合体組成物は、BTX等の芳香族炭化水素系溶媒を使用しなくても透明性に優れ、生産効率および製造コスト面でも有利である。
本発明によれば、厳しいVOC/エミッション管理やBTX等不含を必要とする現在のポリウレタン産業界のニーズに応えることのできる、高品質なポリウレタンフォーム用整泡剤を製造することができる。そして、フォーム製造業者がLow VOC/エミッション型PUフォームを製造・販売することに貢献できる。
また、本発明により、生産機スケールでの製造が容易であって大量に市場に供給することを可能とする前記ポリウレタンフォーム用整泡剤の製造方法が提供される。従って本発明は、こうした高品質の整泡剤を市場に十分に普及させ、高性能な原料として幅広く活用することを可能とするものである。
以下、本発明にかかる(A)ポリエーテル-オルガノポリシロキサンブロック共重合体と(B)(ポリ)グリコール又はポリグリコール誘導体とを含むポリエーテル-ポリシロキサンブロック共重合体組成物、それを原料として用いる整泡剤、特に、ポリウレタンフォーム用整泡剤、および芳香族炭化水素系溶媒不含かつ低VOC/エミッション型の当該整泡剤の製造方法について詳細に説明する。まず、各成分について説明する。
[(A)成分]
(A)成分は(AB)n型ポリエーテル変性シリコーンとも呼ばれており、(A1)ポリシロキサン部とポリエーテル部がSi-C結合により連結された非加水分解型の共重合体であってもよい。また、(A2)ポリシロキサン部とポリエーテル部がSi-O-C結合により連結された加水分解型の共重合体であってもよい。
(A1)成分は、下記一般式(1):
Figure JPOXMLDOC01-appb-C000009
(式中、Rは各々独立に脂肪族不飽和結合を有しない炭素数1~9の1価の炭化水素基を表し、xは2ないし4の数であり、aは1~200の数であり、yは(C2xO)で示されるポリエーテル部分の分子量が400~5000の範囲となる数であり、nは少なくとも2の数であり、Yは炭素-珪素結合によって隣る珪素原子に且つ酸素原子によってポリオキシアルキレンブロックに結合している炭素数2~8の2価の炭化水素基を表す)で表される構成単位を分子内に有し、その末端基(-Z)が、
:ポリエーテル部分に結合したアルケニル基、水酸基、アルコキシ基またはアセトキシ基;および
:ケイ素原子に結合し、ヘテロ原子を有しない一価の炭化水素基、水酸基またはアルコキシ基
から選ばれる1種類以上の官能基である、直鎖状ポリエーテル-オルガノポリシロキサンブロック共重合体である。
好ましくは、Yは炭素-珪素結合によって隣る珪素原子に且つ酸素原子によってポリオキシアルキレンブロックに結合している炭素数3~5の2価の炭化水素基であり、(C2xO)で示されるポリエーテル部分は、(CO)y1の単独重合体ではなく(CO)y1(CO)y2、(CO)y1(CO)y2(CO)y3、(CO)y1(CO)y3から選ばれる、オキシエチレン部とオキシプロピレン部及び/又はオキシブチレン部からなる共重合体である。また、当該共重合体は好ましくはランダム共重合体である。
本発明に係る(A)成分は、特に、ポリウレタンフォーム用整泡剤としての使用の見地から、そのポリエーテル部分に、オキシプロピレン単位又はオキシブチレン単位を少なくとも含有することが好ましく、かつ、当該共重合体の数平均分子量が3万~15万の範囲にあることが好ましく、5万~10万の範囲にあることが特に好ましい。
より好ましくは、(A1)成分は、下記一般式(2):
Figure JPOXMLDOC01-appb-C000010
(式中、Rは各々独立に脂肪族不飽和結合を有しない炭素数1~9の1価の炭化水素基を表し、xは2ないし4の数であり、aは(RSiO)で示されるポリシロキサン部の分子量が400~2500の範囲となる数であり、yは(C2xO)で示されるポリエーテル部分の分子量が2000~4500の範囲となる数であり、当該ポリエーテル部はオキシエチレン部とオキシプロピレン部のランダム共重合体であってかつ当該ポリエーテル部分全体を構成するオキシエチレン(CO)単位の質量比が、平均して30~80%の範囲内にあり、nは少なくとも4の数である。)で表される構成単位を分子内に有し、その末端基(-Z)が、
:ポリエーテル部分に結合したアルケニル基、水酸基、アルコキシ基またはアセトキシ基;および
:ケイ素原子に結合し、ヘテロ原子を有しない一価の炭化水素基、水酸基またはアルコキシ基
から選ばれる1種類以上の官能基である、直鎖状ポリエーテル-オルガノポリシロキサンブロック共重合体である。
上記の一般式(1)と(2)において、Rは各々独立に脂肪族不飽和結合を有しない炭素数1~9の1価の炭化水素基であり、炭素数1~9のアルキル基、フェニル基が例示される。好適には、メチル基、エチル基、フェニル基である。工業的には、メチル基が特に好ましい。
(A1)成分は、上記の特定の構成単位を有し、その末端基(-Z)が、前記のZおよびZから選ばれる1種類以上の官能基である、直鎖状ポリエーテル-オルガノポリシロキサンブロック共重合体である。ここで、整泡剤としての有用性および共重合体の安定性の見地から、当該共重合体の両末端がポリエーテル部分を含む官能基で封鎖されていることが好ましく、その場合、末端基(-Z)は、ポリエーテル部分に結合したアルケニル基、水酸基、アルコキシ基またはアセトキシ基であることが好ましく、特に、メタリル基であることが好ましい。
一方、整泡剤としての有用性および共重合体の安定性、安全性の見地から、上記末端基(-Z)はヘテロ原子を有する反応性官能基を含まないことが必要であり、特に、エポキシ基である開環反応性の反応性官能基やアミン基などを含まないことが必要である。なお、直鎖状ポリエーテル-オルガノポリシロキサンブロック共重合体を合成する際に、両末端SiH基含有オルガノポリシロキサンを原料に用いた場合、末端SiHの一部は、触媒の溶媒として反応系に存在するアルコール類と反応する場合があり、本発明の(A)成分の一部は、末端基(-Z)の一部はアルコール類の残基であってもよい。
(A2)成分は、下記一般式(1´):
Figure JPOXMLDOC01-appb-C000011
(式中、Rは各々独立に脂肪族不飽和結合を有しない炭素数1~9の1価の炭化水素基を表し、xは2ないし4の数であり、aは7~200の数であり、yは(C2xO)で示されるポリエーテル部分の分子量が400~5000の範囲となる数であり、nは少なくとも2の数である)で表される構成単位を分子内に有し、その末端基(-Z)が、
:ポリエーテル部分に結合した水酸基、アルコキシ基またはアセトキシ基;および
:ケイ素原子に結合した水酸基、アルコキシ基、ジメチルアミノ基、水素、ハロゲン、カルバメート基、もしくは他の脱離基
から選ばれる1種類以上の官能基である、直鎖状ポリエーテル-オルガノポリシロキサンブロック共重合体である。
好ましくは、前記一般式(3)において(C2xO)で示されるポリエーテル部分は、(CO)y1の単独重合体ではなく(CO)y1(CO)y2、(CO)y1(CO)y2(CO)y3、(CO)y1(CO)y3から選ばれる、オキシエチレン部とオキシプロピレン部及び/又はオキシブチレン部からなる共重合体である。また、当該共重合体は好ましくはランダム共重合体である。
より好ましくは、前記一般式(3)において、aは(RSiO)で示されるポリシロキサン部の分子量が600~2500の範囲となる数であり、yは(C2xO)で示されるポリエーテル部分の分子量が2000~4500の範囲となる数であり、当該ポリエーテル部はオキシエチレン部とオキシプロピレン部のランダム共重合体であってかつ当該ポリエーテル部分全体を構成するオキシエチレン(CO)単位の質量比が平均して30~80%の範囲内にあり、nは少なくとも4の数である。
(A2)成分は、上記の特定の構成単位を有し、その末端基(-Z)が、前記のZおよびZから選ばれる1種類以上の官能基である、直鎖状ポリエーテル-オルガノポリシロキサンブロック共重合体である。ここで、整泡剤としての有用性および共重合体の安定性の見地から、当該共重合体の両末端がポリエーテル部分を含む官能基で封鎖されていることが好ましく、その場合、末端基(-Z)は、ポリエーテル部分に結合した水酸基、アルコキシ基またはアセトキシ基であることが好ましい。
上記の一般式(3)において、Rは各々独立に脂肪族不飽和結合を有しない炭素数1~9の1価の炭化水素基であり、炭素数1~9のアルキル基、フェニル基が例示される。好適には、メチル基、エチル基、フェニル基である。工業的には、メチル基が特に好ましい。
ここで、非加水分解型の(AB)n型ポリエーテル変性シリコーン(A1)は、分子鎖の両末端にアリル基、メタリル基等の炭素-炭素二重結合を有するポリエーテル原料と両末端SiH基含有オルガノポリシロキサンを、本発明にかかる「平均炭素原子数が6~11の範囲にある飽和炭化水素」溶媒(C)の存在下にヒドロシリル化反応させることにより合成することができる。前記の通り、その両末端はポリエーテル部分を含む官能基で封鎖されていることが好ましく、ポリエーテル原料中のビニル基の物質量が、両末端SiH基含有オルガノポリシロキサン中のケイ素原子結合水素原子に対し、等量あるいは小過剰となる量を添加してヒドロシリル化反応させることで合成されていることが特に好ましい。
本発明にかかる(A)成分である直鎖状ポリエーテル-オルガノポリシロキサンブロック共重合体であって非加水分解型の当該共重合体(A1)は、下記一般式(4)で表される両末端SiH基含有オルガノポリシロキサン(S1)
一般式(4):
Figure JPOXMLDOC01-appb-C000012
(式中、aは1~200の数でありRは前記と同様である)
および、下記一般式(5)に示す両末端アルケニル基含有ポリエーテル(E4)
一般式(5):
Figure JPOXMLDOC01-appb-C000013
(式中、x,yは前記同様の数であり、kは0~6の数であり、R´は各々独立に水素または炭素数1~6の一価のアルキル基である)水素または一価の炭化水素
とのヒドロシリル化反応により得ることができる。
ポリエーテル-オルガノポリシロキサンブロック共重合体(A)をポリウレタンフォーム用整泡剤の主成分として使用する場合、前記ヒドロシリル化反応は適切な反応溶媒の存在下に行う必要があり、本発明においては(C)「平均炭素原子数が6~11の範囲にある飽和炭化水素」を前記成分(A)の製造のための反応溶媒として用いる。
前記両末端アルケニル基含有ポリエーテル(E4)として好適なものは、下記一般式(6)に示す両末端アリル基含有ポリエーテル(E2)又は下記一般式(7)に示す両末端メタリル基含有ポリエーテル(E3)である。
一般式(6):
Figure JPOXMLDOC01-appb-C000014
(式中、x,yは前記同様の数である)
一般式(7):
Figure JPOXMLDOC01-appb-C000015
(式中、x,yは前記同様の数である)
これらの両末端アルケニル基含有ポリエーテルは、その製造条件等により片方の末端基が水酸基であるような不純物を少量含有する場合がある。
ここで、加水分解型の(AB)n型ポリエーテル変性シリコーン(A2)は、下記一般式(8)で表される両末端SiX基含有オルガノポリシロキサン(SX)
一般式(8):
Figure JPOXMLDOC01-appb-C000016
(式中、aは7~200の数であり、Rは前記と同様であり、Xは水酸基、アルコキシ基、ジメチルアミノ基、水素、ハロゲン、カルバメート基、もしくは他の脱離基から選ばれる反応性基である)
および、下記一般式(9)に示す両末端水酸基含有ポリエーテル(E1)
一般式(9):
Figure JPOXMLDOC01-appb-C000017
との縮合反応により得ることができる。
直鎖状ポリエーテル-オルガノポリシロキサンブロック共重合体(A)をポリウレタンフォーム用整泡剤の主成分として使用する場合、前記縮合反応は適切な反応溶媒の存在下に行う必要があり、本発明においては(C)「平均炭素原子数が6~11の範囲にある飽和炭化水素」を前記整泡剤製造のための反応溶媒として用いる。
両末端SiX基含有オルガノポリシロキサン(SX)として好適なものは、下記一般式(10)に示す両末端ジメチルアミノ基含有オルガノポリシロキサン(S2)、下記一般式(11)に示す両末端カルバメート基含有オルガノポリシロキサン(S4)、下記一般式(12)に示す両末端アルコキシ基含有オルガノポリシロキサン(S3)である。
一般式(10):
Figure JPOXMLDOC01-appb-C000018
(式中、aは7~200の数であり、Rは前記と同様である)
一般式(11):
Figure JPOXMLDOC01-appb-C000019
(式中、aは7~200の数であり、Rは前記と同様である)
一般式(12):
Figure JPOXMLDOC01-appb-C000020
(式中、aは7~200の数であり、Rは前記と同様であり、R″は炭素原子数8以下、好ましくは炭素原子数4以下の炭化水素基である)
[成分(B)]
成分(B)は、(ポリ)グリコール又はポリグリコール誘導体である。かかる成分(B)は、直鎖状ポリエーテル-オルガノポリシロキサンブロック共重合体(A)の溶媒であり、「平均炭素原子数が6~11の範囲にある飽和炭化水素」の存在下において前記(A)成分の合成反応を行った後或いは合成反応の途中に、系中に導入される。そして反応溶媒である(C)「平均炭素原子数が6~11の範囲にある飽和炭化水素」を成分(B)と置換することにより、(A)および(B)を含み、ポリエーテル-ポリシロキサンブロック共重合体組成物が製造される。当該組成物を原料とすることで、芳香族炭化水素系溶媒不含かつ低VOC/エミッション型のポリウレタンフォーム用整泡剤、ポリウレタンフォーム形成性組成物およびポリウレタンフォームを製造することができる。
成分(B)は、成分(A)との親和性を有する液体である必要があり、流動点が0℃以下であることが好ましい。(B)の例としては、プロピレングリコール、ブチレングリコール、ジプロピレングリコール、トリプロピレングリコール、ポリプロピレングリコール、ポリブチレングリコール、ポリプロピレングリコール・ポリエチレングリコール共重合体、ポリプロピレングリコールモノブチルエーテル、ポリプロピレングリコール・ポリエチレングリコールモノブチルエーテル、ポリプロピレングリコールモノメチルエーテル、ポリプロピレングリコール・ポリエチレングリコールモノメチルエーテルなどが挙げられる。成分(B)は、本発明に係るポリエーテル-ポリシロキサンブロック共重合体組成物或いは整泡剤を利用して製造されるポリウレタンフォームの要求特性に応じて選択することができる。例えば、高通気性のフォームが必要な場合には(B)成分としてポリプロピレングリコールモノブチルエーテルなどモノオール化合物を用いると有利であり、低通気性のフォームが求められる場合には(B)成分としてポリプロピレングリコールなどのジオール化合物を用いると有利である。通気性のバランスを取りたい場合には、(B)成分としてモノオール化合物とジオール化合物を併用することもできる。
成分(B)は、成分(A)の溶媒として機能する成分であるが、本発明にかかるポリエーテル-ポリシロキサンブロック共重合体組成物の製造方法において、これらの成分は、前記(A)/(B)の質量比が10/90~60/40の範囲内にあることが、性能、使用時の利便性、取扱作業性(ハンドリング)、ポリウレタンフォーム処方への適合性等の点から重要であり、好ましくは前記(A)/(B)の質量比は、20/80~50/50の範囲内である。
前記成分(A)および成分(B)を含む本発明にかかるポリエーテル-ポリシロキサンブロック共重合体組成物は、25℃での粘度が1000~約6万mm2/s の範囲にあることが、使用時の利便性、ハンドリング等の点から重要である。好ましくは、当該整泡剤の粘度は1000~約3万mm2/s の範囲にあり、より好ましくは1000~約1万mm2/sの範囲とされる。
[芳香族炭化水素系溶媒不含の組成物の製造]
本発明の製造方法において、前記成分(A)は、後述する成分(C)である平均炭素原子数が6~11の範囲にある飽和炭化水素溶媒の存在下で合成され、当該反応工程の後或いは当該反応工程の途中に、反応溶媒である成分(C)は、成分(B)により置換される。このため、本発明の製造方法により得られたポリエーテル-ポリシロキサンブロック共重合体組成物はBTX(ベンゼン、トルエン、キシレン)溶媒等の、芳香族炭化水素系溶媒を実質的に含まないものである。特に、本発明の製造方法において、芳香族炭化水素系溶媒を全く使用しないことが好ましく、最終的に得られるポリエーテル-ポリシロキサンブロック共重合体組成物中の芳香族炭化水素系溶媒は、1000ppm(重量)以下であることが好ましく、100ppm(重量)以下が特に好ましく、10ppm(重量)以下が最も好ましい。本発明の製造方法により、BTX(ベンゼン、トルエン、キシレン)溶媒等の、芳香族炭化水素系溶媒を全く使用しなくても、工業的に十分な生産効率をもって、低VOC/エミッション型ポリウレタンフォーム用整泡剤として好適なポリエーテル-ポリシロキサンブロック共重合体組成物を提供することができる。
なお、本発明にかかるポリエーテル-ポリシロキサンブロック共重合体組成物は、芳香族炭化水素系溶媒不含かつ低VOC/エミッション型ポリウレタンフォーム用整泡剤として使用する場合、本発明の技術的特徴を損なわない範囲で、適用するフォームタイプに応じて、ポリウレタンフォーム用の別のシリコーン系整泡剤と組み合わせて、或いは混合して使用できる。その場合、これら第2のシリコーン系整泡剤の含有量は、本組成物全体において、前記の成分(A)の質量に対して同量を超えない範囲であることが好ましい。また、第2のシリコーン系整泡剤も芳香族炭化水素系溶媒不含かつ低VOC/エミッション型であることが望ましい。
前記成分(A)および成分(B)を含む本発明にかかるポリエーテル-ポリシロキサンブロック共重合体組成物は、空気中の酸素により徐々に酸化され、変質する。これを防止するためフェノール類、ヒドロキノン類、ベンゾキノン類、芳香族アミン類、又はビタミン類等の酸化防止剤を入れ、酸化安定性を増加させることができ、かつ好ましい。低VOC/エミッションの観点からは、不揮発性の酸化防止剤、例えば、ビタミンEなどを用いることが好ましい。このとき、使用する酸化防止剤の添加量は、その質量において(A)成分に対し10~1000ppm、好ましくは50~500ppmとなる範囲、(B)成分に対して10~10000ppm、好ましくは100~5000ppmとなる範囲である。
[低分子シロキサンの低減]
本発明にかかるポリエーテル-ポリシロキサンブロック共重合体組成物は、芳香族炭化水素系溶媒不含かつ低VOC/エミッション型ポリウレタンフォーム用整泡剤として使用する場合、組成物中にケイ素原子数が20以下の低分子シロキサンを実質的に含まないことが好ましい。具体的には、本発明の製造方法により得られたポリエーテル-ポリシロキサンブロック共重合体組成物中の、ケイ素原子数が20以下の低分子シロキサンの含有量が5000ppm(重量)以下であることが好ましく、2000ppm(重量)以下が特に好ましい。この値が5000ppmを超えると、当該組成物を整泡剤を用いて製造したポリウレタンフォームの設置された場所の周辺の部材を汚染したり、電気・電子装置の接点障害を引き起こす場合がある。かかる低分子シロキサンとしては、環状のものと直鎖状のものがあり、例えば、式、[(CH3)2SiO]n’(式中、n’ は3~10の整数である。)で表される環状ジメチルシロキサン、および式、CH3[(CH3)2SiO]mSi(CH3)3(式中、mは1~10の整数である。)で表される直鎖状ジメチルシロキサンオリゴマーがあり、また、これらのメチル基の一部が他の有機基で置換されたものがある。かかる低分子シロキサンのより具体的な例としては、オクタメチルテトラシロキサン、デカメチルペンタシクロシロキサン、両末端トリメチルシロキシ基封鎖ジメチルシロキサンオリゴマーが例示される。かかる低分子シロキサンの含有量は、例えば、本発明にかかる整泡剤を加熱することにより発生した揮発性成分をガスクロマトグラフィ分析装置に導入し、分析することにより測定できる。
かかる低分子シロキサンの低減は、例えば、特開2000-313730号公報等に記載の方法を本発明にかかる整泡剤に適用することにより、低分子シロキサンを除去して達成される。この低分子シロキサンを除去する方法としては数多くの方法がある。例えば、シリコーン系整泡剤中にアルゴンガスや窒素ガス等の不活性ガスを少量ずつ吹き込みながら高温、高真空下で処理する方法、本発明にかかる整泡剤を薄膜化して、例えば、0.5mm以下の減圧下において50~130℃の加熱条件下でストリッピングする方法、シリコーン系整泡剤に、低分子シロキサンを溶解し高分子シロキサンを溶解しない有機溶剤を加えて低分子シロキサンを抽出除去する方法がある。ここで、高温度での処理で熱分解が懸念される場合は抗酸化剤を予め添加することもできる。
[本発明にかかる製造方法]
本発明のポリエーテル-ポリシロキサンブロック共重合体組成物の製造方法は、平均炭素原子数が6~11の範囲にある飽和炭化水素溶媒(C)の存在下において、縮合反応またはヒドロシリル化反応によりポリエーテル-ポリシロキサンブロック共重合体を合成する工程(I)および、当該行程中あるいは当該工程の後、反応溶媒(C)を、
(B)(ポリ)グリコール又はポリグリコール誘導体により置換する工程
を備えることを特徴とする。以下、本発明を特徴づける反応溶媒(C)について説明した後、ヒドロシリル化反応を経由する共重合体(A1)、縮合反応を経由する共重合体(A2)の製造方法に分けて詳細を説明する。
[炭化水素溶媒(C)]
本発明に係るポリエーテル-ポリシロキサンブロック共重合体組成物の製造方法において、縮合反応またはヒドロシリル化反応により共重合体(A)を合成する工程(I)において平均炭素原子数が6~11の範囲にある飽和炭化水素(C)を使用することを特徴とする。このような飽和炭化水素溶媒は、他の極性の大きい有機溶媒とは異なり、前記共重合体(A)或いはそれを用いる整泡剤の外観を不透明・不均質にすることもなく、またそれに続く溶媒置換工程(工程(II))において過剰な気泡の安定化を起こすこともなく、効率的に、芳香族炭化水素系溶媒不含かつ低VOC/エミッション型のポリエーテル-ポリシロキサンブロック共重合体組成物、およびその用途であるポリウレタンフォーム用整泡剤を製造することを可能にする。また、これらの溶媒は、前記の芳香族炭化水素系溶媒や低分子シロキサンに該当しない成分であり、これらの使用量を実質的に0としても、好適にポリエーテル-ポリシロキサンブロック共重合体組成物の製造を行うことができる。
このような反応溶媒(C)の具体例としては、メチルシクロヘキサン、n-ヘプタン、ヘプタン混合物、ヘプタン(商業用グレード)、イソオクタン、2,2,4-トリメチルペンタン、オクタン混合物、エチルシクロヘキサン、ジメチルシクロヘキサン、n-ヘキサン、イソヘキサン、ヘキサン混合物、シクロヘキサン、2-メチルペンタン、2-メチルヘプタン、3-メチルヘプタン、Isopar E(C7-C9飽和炭化水素混合物)、Isopar C(C7-C8飽和炭化水素混合物)、IP solvent 1016(C6-C9飽和炭化水素混合物),Isopar G(C10-C11飽和炭化水素混合物)などが挙げられる。これらの中で、メチルシクロヘキサン又はn-ヘプタンが好ましい。また、これら「平均炭素原子数が6~11の範囲にある飽和炭化水素」溶媒は単独で用いてもよく、二種以上を混合して使用してもよい。特に、平均炭素原子数が6~9の範囲にある飽和炭化水素のみを用いることが好ましく、平均炭素原子数が12を超える飽和炭化水素を実質的に含まない飽和炭化水素溶媒の使用が、工業的生産上、特に好ましい。
[(A1)の製造方法]
本発明にかかる、非加水分解型の直鎖状ポリエーテル-オルガノポリシロキサンブロック共重合体(A1)は、前記一般式(4)で表される両末端SiH基含有オルガノポリシロキサンと、前記一般式(6)または(7)で表される、分子鎖の両末端にアリル基またはメタリル基を有するポリエーテルとを、ヒドロシリル化反応させることにより得ることが好ましい。このとき、ヒドロシリル化反応を開始、あるいは進行させる工程は、反応溶媒としての(C)「平均炭素原子数が6~11の範囲にある飽和炭化水素」の存在下に行なう。
ヒドロシリル化反応用触媒は、ヒドロシリル化反応を促進することができる限り特定のものに限定されない。ヒドロシリル化反応触媒として、これまでに多くの金属及び化合物が知られており、それらの中から適宜選択して本発明に用いることができる。ヒドロシリル化反応触媒の例として、具体的には、シリカ微粉末又は炭素粉末担体上に吸着させた微粒子状白金、塩化白金酸、アルコール変性塩化白金酸、塩化白金酸のオレフィン錯体、塩化白金酸とビニルシロキサンの配位化合物、白金黒、パラジウム、及びロジウム触媒を挙げることができる。本発明の製造方法においては、塩化白金酸の溶液、アルコール変性塩化白金酸、白金-2,4,6,8-テトラメチル-2,4,6,8-テトラビニルテトラシロキサン錯体の溶液、1、3-ジビニルー1,1,3,3-テトラメチルジシロキサン白金錯体のテトラメチルジシロキサンの溶液を用いるのが好ましい。
ヒドロシリル化反応用触媒の使用量は、有効量であり、本発明にかかる前記共重合体(A1)の形成反応を促進する量であれば特に限定されない。具体的には、前記一般式(4)で表される両末端SiH基含有オルガノポリシロキサンと前記一般式(6)または(7)で表される、分子鎖の両末端にアリル基またはメタリル基を有するポリエーテルの和(全体を100質量%とする)に対して、この触媒中の金属原子が質量単位で0.1~1,000ppm、好適には白金金属原子が、0.5~200ppmの範囲内となる量である。これは、ヒドロシリル化反応用触媒の含有量が上記範囲の下限未満であると、共重合反応が不十分となる場合があり、上記範囲の上限を超えると、不経済であり、かつ、得られる本発明組成物の着色等、透明性に悪影響を及ぼす場合がある。
また、本発明にかかる成分(A1)の技術的効果を損なわない限り、副反応の抑制等の目的で、酢酸カリウム、プロピオン酸カリウム等のカルボン酸アルカリ金属塩等を反応系に含有させておいたのち、主反応であるヒドロシリル化を進めることができる。
前記のとおり、整泡剤としての有用性および共重合体の安定性の見地から、本発明にかかる成分(A1)は、両末端がポリエーテル部分を含む官能基で封鎖された直鎖状ポリエーテル-オルガノポリシロキサンブロック共重合体であることが好ましく、両末端にメタリル基等を有するポリエーテル原料を、両末端SiH基含有オルガノポリシロキサンに対して、ポリエーテル原料中のC=C基の物質量が、両末端SiH基含有オルガノポリシロキサン中のケイ素原子結合水素原子に対し、等量あるいは小過剰となる量を添加してヒドロシリル化反応させることが好ましい。具体的には、ポリエーテル原料中のC=C基(RVi)と両末端SiH基含有オルガノポリシロキサン中のケイ素原子結合水素原子(Si-H)の物質量の比(モル比)が、[RVi]/[Si-H]=1.0~1.50、好ましくは1.0~1.20となる量で反応させることが好ましい。
ヒドロシリル化反応の条件は、反応溶媒として(C)「平均炭素原子数が6~11の範囲にある飽和炭化水素」を必要とする。トコフェロール(ビタミンE)等の抗酸化剤を少量添加し、窒素等の不活性ガス雰囲気下で室温~140℃(前記反応溶媒の沸点以下)、好適には70~120℃で加熱攪拌することで、本発明にかかる成分(A1)を得ることができる。なお、抗酸化剤はヒドロシリル化の終了後に添加しても良い。反応時間は、反応スケール、触媒の使用量および反応温度に応じて選択可能であり、数分~数時間の範囲であることが一般的である。また、反応は減圧下で行ってもよく、例えば、特許文献6で提案された条件等が特に制限なく適用可能である。
なお、ヒドロシリル化反応の終点は、赤外線分光法(IR)によるSi-H結合吸収の消失あるいは以下のアルカリ分解ガス発生法により、水素ガス発生がなくなったことで確認することができる。反応原料である両末端SiH基含有オルガノポリシロキサン中のケイ素原子結合水素原子(Si-H)を、同方法により分析することで、水素ガス発生量を特定することもできる。
<アルカリ分解ガス発生法:試料をトルエン又はIPAに溶解した溶液と、28.5質量%苛性カリのエタノール/水混合溶液を室温で反応させ、発生する水素ガスを捕集管に集めてその体積を測定する方法>
[反応溶媒(C)→成分(B)への溶媒交換]
本発明にかかるポリエーテル-ポリシロキサンブロック共重合体組成物、およびそれを用いる芳香族炭化水素系溶媒不含かつ低VOC/エミッション型ポリウレタンフォーム用整泡剤は、成分(A1)の合成反応時あるいは反応が終了したのち、反応溶媒(C)を希釈剤成分(B)と溶媒交換することにより、製造することができる。成分(A1)は通常は高分子量かつ高粘度の流体であるため、好適には、成分(A1)の合成反応を終了した後、ストリッピングにより反応溶媒(C)を50/100~99/100量程度除去し、次いで成分(B):(ポリ)グリコール又はポリグリコール誘導体を同量添加し、更に残存している反応溶媒(C)をストリピングにより完全に除去したのち(B)の残部を添加・混合する方法等により、製造することができる。成分(B)は、本発明に係るポリエーテル-ポリシロキサンブロック共重合体組成物或いは整泡剤を利用して製造されるポリウレタンフォームの要求特性に応じて選択できる。従って、モノオール/ジオールの単独・併用も可能であるし、異なる種類・分子量のポリプロピレングリコール等を複数併用することも任意である。なお、この溶媒交換工程では、攪拌中に発生する泡が安定化される傾向にあるので、工業的生産過程においては、ストリッピング時の減圧度、加熱温度および攪拌速度は適切に制御することが好ましい。ストリピング工程中の泡発生による製造時間増大を抑制するため、予めある程度減圧した状態から反応を開始することもできる。最終的に得られるポリエーテル-ポリシロキサンブロック共重合体組成物中の残存反応溶媒(C)は、5000ppm(重量)以下であることが好ましく、1000ppm(重量)以下が特に好ましく、100ppm(重量)以下が最も好ましい。
[任意の精製/低臭化処理]
さらに、本発明にかかるポリエーテル-ポリシロキサンブロック共重合体組成物、およびそれを使用する整泡剤の用途に応じ、粗製品の精製や低臭化が求められる場合には、水素添加、酸性物質との接触および生成するアルデヒド類を除去する等の公知の精製方法を追加してもよい。これらの方法は、例えば、特開2007-186557号公報の段落0031等で提案された精製方法1および精製方法2や、特開2000-327785号公報等で提案された匂いの低減方法、本件出願人が特開2011-116902号公報で提案した酸性無機塩を用いた処理方法等から特に制限なく選択することができる。特に、これらの精製方法を行うことで、ポリウレタン発泡体に配合された場合であっても経時で発生する有害なアルデヒド類の量が極めて少なくなり、建築用材料、自動車工業(例えば、自動車内装材料)、ベッド、ソファー等の家具類、寝具、衣類等に適用されるポリウレタン発泡体の整泡剤として有用性が高まる。
[(A2)の製造方法]
本発明にかかる、加水分解型の直鎖状ポリエーテル-オルガノポリシロキサンブロック共重合体(A2)は、前記一般式(8)で表される両末端SiX基含有オルガノポリシロキサン(SX)と、前記一般式(9)で表される両末端水酸基含有ポリエーテル(E1)との縮合反応により得ることができる。このとき、縮合反応を開始、あるいは進行させる工程は、反応溶媒としての(C)「平均炭素原子数が6~11の範囲にある飽和炭化水素」の存在下に行なう。
本反応は所望により減圧下に及び/又は触媒量(例えば反応物全量に関してo、oiないし2重置部)の触媒、例えばトリフルオル酢酸、パーフルオル酪酸、モノクロル酢酸などを含むカルボン酸又はその混合物の存在下に行なってもよい。酸触媒を縮合反応に用いる場合には、これを除去又は中和することが安定なブロック共重合体(AB)nを得るために必要である。しかしながら、この反応はそのような触媒を添加しなくてもかなり迅速に進行する。縮合反応は、所望により減圧下で及び/又は触媒量(例えば反応物全量に関して0.01~2重量部)の触媒、例えばトリフルオロ酢酸、パーフルオロ酪酸、モノクロル酢酸などを含むカルボン酸又はその混合物の存在下に行なってもよい。これらの酸触媒を縮合反応に用いる場合には、これを除去又は中和することが安定なブロック共重合体(A2)を得るために必要である。従って、上記の酸に加えて酢酸ナトリウムのメタノール溶液などの緩衝剤成分を添加して反応を進めることもできる。(脱離基X=OR″の場合など)しかしながら、脱離基Xの種類によっては、縮合反応はそのような触媒を添加しなくてもかなり迅速に進行する(例えば、X=NMe,OCONMe)。X=Clの場合には、縮合により遊離した塩酸をトラップするため三級アミンなどの酸受容体を添加する或いは触媒として利用することが好ましい。X=Hの場合には、縮合により水素ガスが発生するわけであるが、このための触媒としてはスズや白金を含む有機金属化合物、DBUなどの3級アミン化合物などが利用できる。縮合反応ごとの好適な触媒やその添加量などについての詳細は、特許文献9~13を参照されたい。
前記のとおり、整泡剤としての有用性および共重合体の安定性の見地から、本発明にかかる成分(A2)は、両末端がポリエーテル部分を含む官能基で封鎖された直鎖状ポリエーテル-オルガノポリシロキサンブロック共重合体であることが好ましく、両末端に水酸基を有するポリエーテル原料を、両末端SiX基含有オルガノポリシロキサンに対して、ポリエーテル原料中のOH基の物質量が、両末端SiX基含有オルガノポリシロキサン中のケイ素原子結合X基に対し、等量あるいは小過剰となる量を添加して縮合反応させることが好ましい。具体的には、ポリエーテル原料中のOH基と両末端SiX基含有オルガノポリシロキサン中のケイ素原子結合X基(Si-X)の物質量の比(モル比)が、[OH]/[Si-X]=1.0~1.50、好ましくは1.0~1.20となる量で反応させることが好ましい。
縮合反応の条件は、反応溶媒として(C)「平均炭素原子数が6~11の範囲にある飽和炭化水素」を必要とする。トコフェロール(ビタミンE)等の抗酸化剤を少量添加し、窒素等の不活性ガス雰囲気下で50~140℃(前記反応溶媒の沸点以下)、好適には70~120℃で加熱攪拌することで、本発明にかかる成分(A1)を得ることができる。なお、抗酸化剤はヒドロシリル化の終了後に添加しても良い。反応時間は、反応スケール、触媒の使用量および反応温度に応じて選択可能であり、数時間~半日程度の範囲であることが一般的である。また、反応は脱離基の種類に応じて減圧下で行ってもよく、反応条件の詳細は特許文献9~13を参照されたい。
なお、縮合反応の終点は、利用する原料(SX)両末端SiX基含有オルガノポリシロキサンの脱離基Xの種類に応じて、29SiNMRやIRなど分光学的な分析手法による確認を行うか、あるいは反応液の粘度・GPC測定などにより目標値に到達したか否かで判断してもよい。
[反応溶媒(C)→成分(B)への溶媒交換]
本発明にかかる芳香族炭化水素系溶媒不含かつ低VOC/エミッション型ポリウレタンフォーム用整泡剤は、成分(A2)の合成反応時あるいは反応が終了したのち、反応溶媒(C)を希釈剤成分(B)と溶媒交換することにより、製造することができる。成分(A2)は通常は高分子量かつ高粘度の流体であるため、好適には、成分(A2)の合成反応を終了した後、ストリッピングにより反応溶媒(C)を50/100~99/100量程度除去し、次いで成分(B):(ポリ)グリコール又はポリグリコール誘導体を同量添加し、更に残存している反応溶媒(C)をストリピングにより完全に除去したのち(B)の残部を添加・混合する方法等により、製造することができる。成分(B)は、本発明に係るポリエーテル-ポリシロキサンブロック共重合体組成物或いは整泡剤を利用して製造されるポリウレタンフォームの要求特性に応じて選択できる。従って、モノオール/ジオールの単独・併用も可能であるし、異なる種類・分子量のポリプロピレングリコール等を複数併用することも任意である。なお、この溶媒交換工程では、攪拌中に発生する泡が安定化される傾向にあるので、工業的生産過程においては、ストリッピング時の減圧度、加熱温度および攪拌速度は適切に制御することが好ましい。ストリピング工程中の泡発生による製造時間増大を抑制するため、予めある程度減圧した状態から反応を開始することもできる。最終的に得られるポリエーテル-ポリシロキサンブロック共重合体組成物中の残存反応溶媒(C)は、5000ppm(重量)以下であることが好ましく、1000ppm(重量)以下が特に好ましく、100ppm(重量)以下が最も好ましい。
[本発明の製造法により得られる整泡剤の使用]
本発明の製造方法により得られる(A)直鎖状ポリエーテル-オルガノポリシロキサンブロック共重合体と(B)(ポリ)グリコール又はポリグリコール誘導体とを含む、芳香族炭化水素系溶媒不含かつ低VOC/エミッション型ポリウレタンフォーム用整泡剤は、所謂(AB)n型ポリエーテル変性シリコーンの(ポリ)グリコール又はポリグリコール誘導体による溶液であり、従来公知の製造法により得られたポリウレタンフォーム用(AB)n型ポリエーテル変性シリコーン整泡剤の用途に特に制限なく使用することができる。
加えて、本発明の製造方法により得られる「芳香族炭化水素系溶媒不含かつ低VOC/エミッション型ポリウレタンフォーム用整泡剤」は、生産機スケールでの製造が容易であって大量に市場に供給することが可能であると共に、厳しいVOC/エミッション管理やBTX等不含を要求される現在のポリウレタン産業界のニーズに応えることができる。そして、フォーム製造業者がLow VOC/エミッション型PUフォームを製造・販売することに貢献できる。従って本発明は、こうした高品質の整泡剤を市場に十分に普及させ、高性能な原料として幅広く活用することを可能とするものである。
[ポリウレタン発泡体形成性組成物]
上記整泡剤は、ポリウレタンフォームの製造に使用される。具体的には、上記整泡剤はポリウレタン発泡体形成性組成物の原料として当該組成物に添加して良好なフォームを形成するために利用されるか、当該組成物を構成する他原料(触媒を含む)の一部と混合してプレミクスとして利用されることがあり得る。プレミクスは保管が可能なものであって、発泡の直前に残りの反応性原料と混合され、ポリウレタン発泡体が形成される。上記整泡剤は、特にポリウレタン発泡体の種類、特性、適用される処方の種類において制限されるものではないが、前述の通りLow VOC/エミッション型PUフォームの製造に利用するのが好適である。
[フォームの種類]
一般的に、ポリウレタンフォームには硬質のものと軟質のものがあり、フォームの硬さや物性、密度等により、軟質ウレタンフォーム、高弾性ウレタンフォーム、硬質ウレタンフォーム、特殊フォームなどに大別される。本発明の製造方法により得られる(AB)n型ポリエーテル変性シリコーンを含むポリウレタンフォーム用整泡剤は、VOC/エミッションの主原因である高沸点溶媒を使用せず、また芳香族炭化水素系溶媒も使用しないため、BTX溶媒を不含とすることが容易である。従って、フォーム製造業者やフォームの処方(システム)設計業者がBTX不含のフォーム或いはプレミクスシステム等を製造することを容易にする。また、VOC/エミッションの少ないウレタンフォームを提供することに貢献できる。加えて、様々なポリウレタンフォーム処方で、整泡剤として優れた効果を発揮できるものである。
軟質ウレタンフォームはソファーやベッドのクッション材料、自動車等のシートとして広く使用されている。軟質スラブフォームの原料系の粘度は比較的低く、かつ発泡倍率が高いため、セル成長時のセル膜の安定化が大きな鍵となる。この系には分子量の比較的高い整泡剤(ポリエーテル変性シリコーン)が良く適している。また3000 番ポリオールとの相溶性を確保するため、プロピレンオキサイド比率の比較的高いポリエーテルをグラフト変性したタイプが広く応用されている。変性ポリエーテルの末端が未キャップ(水酸基)のタイプは、セルの独泡性を強める効果があるためポリエーテル末端をキャップ(多くはメトキシキャップ)したタイプが広く応用され、セル膜の連通化を容易にする手助けをしている。本発明にかかる(AB)n型ポリエーテル変性シリコーン整泡剤は(A)高分子量の主界面活性剤と(B)希釈剤である(ポリ)グリコール又はポリグリコール誘導体とを含む整泡剤であり、この系にも好適に使用可能である。軟質スラブフォームのレシピは例えば特許文献12の実施例に示されており、そこで使用された気泡安定剤に代えて本発明にかかる「芳香族炭化水素系溶媒不含の(AB)n型ポリエーテル変性シリコーン整泡剤」を処方することができる。但し、希釈剤の種類と量によって整泡剤の水酸基価が変わるため、ウレタン樹脂系の架橋密度が所望の設計となるようにイソシアネートの添加量等を微調整することは必要である。一方、軟質ホットモールド処方は、軟質スラブ処方にかなり近いウレタン原液系から成るものであり、反応性が速く、またモールド内でパックのかけられた条件であることから、高い通気性を確保することが重要となる。本発明にかかる(AB)n型ポリエーテル変性シリコーン整泡剤は、高い通気性を実現することができ、当該処方に用いることができる。軟質ホットモールドフォームのレシピは例えば特許文献3に示されており、そこで使用された界面活性剤に代えて本発明にかかる「芳香族炭化水素系溶媒不含の(AB)n型ポリエーテル変性シリコーン整泡剤」を処方することができる。但し、希釈剤の種類と量によって整泡剤の水酸基価が変わるため、ウレタン樹脂系の架橋密度が所望の設計となるようにイソシアネートの添加量等を微調整することは必要である。
難燃フォーム対応型整泡剤とは、処方中の難燃剤添加部数を削減できるタイプ、難燃剤の添加により生じるフォーム物性への悪影響を低減するタイプとして定義される。しかし一般的にシリコーン整泡剤は、助燃剤として位置づけられる。これはフォームが熱により液状に溶融した時、表面活性効果によりシリコーン整泡剤が液表面に集まり、炭化を妨げることによる。そのため難燃フォームにおいては、比較的シリコーン含有率の低く、整泡活性の低い整泡剤が適する。本発明にかかる(AB)n型ポリエーテル変性シリコーン整泡剤を、難燃フォーム対応型整泡剤として使用してもよい。
高弾性フォーム(HR Foam)は自動車シートなどのモールド発泡が主であるため、成形性、通気性の向上が求められる。HRフォームは系の粘度が高いこと、反応性が高いことからセル膜の安定化は比較的容易であるが、連通化が進まないためフォーム内部に溜まったガスによる割れ、脱型後の収縮等不具合を防止する必要がある。このため、非常に整泡力の弱い、セルオープン性のある整泡剤が一般的に広く応用されている。このタイプは整泡剤の分子量を非常に小さくした設計になっており、初期の原料成分乳化は達成するがセル膜の保持力が非常に弱いという特長がある。
さらにこの系では、ポリエーテルを変性していない比較的低分子量のジメチルポリシロキサンがフォームセルサイズに規則性(均質性)を付与するとされ、整泡剤あるいは界面活性剤として利用されている。これらはポリエーテル変性シリコーンとの組み合わせにおいて、安定した整泡活性(成形性)を付与する整泡助剤として機能しつつ、分子量分布の最適化によりセルオープン性・整泡力の強弱を調整することができる。
高い活性を必要とするTDIベース処方にはより整泡力、ファインセル化の強いタイプ、一方、比較的独泡性が強いMDIベースの処方にはより整泡力の弱い、良好なクラッシング性、高い通気性を与えるタイプが適している。また整泡力の強いタイプと弱いタイプを併用することでセルサイズ・通気性を調整することが広く生産に応用されており、このシステム特有の手法となっている。
しかし、高弾性フォームの用途で汎用される、非常に低分子量のポリエーテル変性シリコーンや低分子量ジメチルポリシロキサンにはプロセスレンジが狭いという課題(フォーム処方の自由度や許容範囲の狭さ)があり、これを解消するために、本発明にかかる(AB)n型ポリエーテル変性シリコーン整泡剤を適量併用する事も可能である。(AB)n型ポリエーテル変性シリコーン整泡剤を使用する高弾性フォームのレシピは、例えば特許文献14に示されており、そこで使用された(AB)n型整泡剤に代えて本発明にかかる「芳香族炭化水素系溶媒不含の(AB)n型ポリエーテル変性シリコーン整泡剤」を処方することができる。但し、希釈剤の種類と量によって整泡剤の水酸基価が変わるため、ウレタン樹脂系の架橋密度が所望の設計となるようにイソシアネートやポリオール、水の添加量を微調整することは必要である。
硬質ウレタンフォームは、軽量で断熱性に優れ生産性も高いことから、建材や冷蔵庫等の断熱材として広く使用されている。硬質ウレタンフォームの断熱性を向上させるためには、セルサイズをできるだけ細かくすることが重要となる。最終的に得られるフォームのセル数と、初期ウレタン発泡液攪拌時に分散される巻き込みガスの数はほぼ一致する。そのため、初期の攪拌において乳化力を強める整泡剤が最適である。一方、セルが細かくなる程フォームは収縮しやすくなる。この場合は比較的整泡活性の低いタイプを処方し、セルサイズを大きくすることで収縮を防止する効果が高まる。なお、難燃性に優れるポリイソシアヌレートフォームも、硬質ウレタンフォームの一つとして分類される。
硬質ウレタンフォームでは、過去発泡剤として使用されてきたHCFC141b が、地球環境の面から規制され、さらにこの代替品であるHFC 化合物についても近い将来規制される動きになっている。発泡剤がウレタンフォーム処方に与える影響は大きく、その種類によって最適な整泡剤を選定する必要がある。
水処方及び水部数の多いHFC 処方においては、ウレタン原液系と相溶性の良好であったHCFC-141b 処方と比較して、初期乳化力が低下している。そのため整泡活性の高い整泡剤を処方することで、良好なセルを得ることが期待できる。また、シクロペンタンなどハイドロカーボン発泡剤を利用する処方においては貯蔵安定性の観点から、プレミックス相溶性が求められるケースがある。この場合、整泡剤のベースポリオールとの相溶性が重要であり、変性ポリエーテル部分のEO(エチレンオキサイド)比率が高く、かつ末端が水酸基(-OH)のタイプが、比較的良好な相溶性を示す。
(AB)n型ポリエーテル変性シリコーンは、オープンセル型の硬質ウレタンフォームの形成に有用であることが古くから知られており、これは即ち、当該変性シリコーンは独立気泡かつファインセルを必要とする断熱材用途の典型的な硬質フォーム製造には向いていないということを意味する。オープンセル硬質フォームのレシピは特許文献15の実施例に示されているが、発泡剤として現在は使用禁止されているフロンガス(CFCl)を用いた処方であるため、二酸化炭素或いは水など有害性の低い発泡剤で代替可能なフォームレシピとなるよう、添加部数なども含めた調整が必要である。一方、最近では(AB)n型ポリエーテル変性シリコーンとジプロピレングリコールモノブチルエーテルなど特定のモノオール有機化合物とを含むポリウレタンフォーム用整泡剤が、独立気泡のファインセル硬質ウレタンフォーム形成に有用であることが報告されている(特許文献8)。
特殊フォームには、例えば、軟質フォームと硬質フォームの中間的な素材であり自動車の衝撃吸収材や天井材などとして利用される半硬質フォーム(レシピの一例は特許文献3を参照)、軟質フォームからの派生であるが独特の粘弾性挙動により特有の用途と地位を築いた低反撥フォーム(形状記憶フォームまたは粘弾性フォームとも呼ばれる)、靴底などに利用されるインテグラルスキンと呼ばれる高密度フォーム、機械発泡(メカニカルフロス)法で製造されるマイクロセルラーフォーム等が挙げられる。マイクロセルラーフォームは軟質フォームの一種と考えることができるが、一般に密度が高く外観や触感はエラストマーに近いものである。これは電子部品、シール材、吸音材、振動吸収材などの他、カーペット裏打ちクッション材としての用途がある。マイクロセルラーフォームのレシピに関しては、特許文献1と特許文献5に例示がある。これらの文献で使用された(AB)n型整泡剤に代えて、本発明にかかる「芳香族炭化水素系溶媒不含の(AB)n型ポリエーテル変性シリコーン整泡剤」を処方することが好適である。但し、希釈剤の種類と量によって整泡剤の水酸基価が変わるため、ウレタン樹脂系の架橋密度が所望の設計となるようにイソシアネートの添加量等を微調整することは必要である。
この他、ウレタンフォームの原料ポリオールとして一般的なポリエーテル型ポリオールではなく、ポリエステル型ポリオールを用いて製造されたフォームはエステルフォームと呼ばれ、これについても上記のようなフォーム特性に応じた分類がある。
硬質フォームは多くの用途で断熱性が重視されるため、通常は独泡率の高いクローズドセル型のフォームが必要とされるが、幾つかの用途では寸法安定性のほうを重視し、部分的にオープンセル化するように界面活性剤の選択やフォーム組成物の処方に工夫を行っている。逆に、一般的な軟質フォームでは、ポリオールとイソシアナートとの反応によるポリウレタン構造の形成と、反応熱及び発泡剤によるフォーム盛り上がりが、架橋の進行により構造体が強度を増すことによってストップする瞬間に、構造体内の全てのセル(気泡)膜が破れ(オープンして)連通化(連続通気化)するように処方設計されている。
低反撥(粘弾性)フォームの処方は一般的な軟質フォームの処方に類似しているが、原料ポリオールに粘弾性を有する構造要素を取り入れる工夫がされている。このため、セル連通化の難易度が高くなっており、オープンセル効果の高い界面活性剤の重要性が増している。更には、HRフォームや機械発泡法によるマイクロセルラーフォームの分野でも、オープンセル率をマネージメントする事により様々な用途が生まれている。低反撥ウレタンフォームに適した整泡剤は、使用されるイソシアネート化合物の種類によって使い分けられている。通常、MDIなど粘度の高いポリマー系イソシアナートを利用する処方では発泡状態が安定しやすいため、一般的な軟質フォーム向けのポリエーテル変性シリコーン整泡剤(オルガノポリシロキサン主鎖にポリエーテル側鎖がグラフトした構造体を主成分とする)を用いれば充分である。一方、TDIをイソシアナートの主成分として利用する処方では系の粘度が低いため、前記の一般的な整泡剤では安定化が難しく、泡保持能力に優れた(AB)n型ポリエーテル変性シリコーン整泡剤が必要となる。粘弾性フォームのレシピは特許文献16に例示されており、ここで使用された「オルガノシリコーン界面活性剤」に代えて、本発明にかかる「芳香族炭化水素系溶媒不含の(AB)n型ポリエーテル変性シリコーン整泡剤」を処方することが好適である。但し、希釈剤の種類と量によって整泡剤の水酸基価が変わるため、ウレタン樹脂系の架橋密度が所望の設計となるようにイソシアネートの添加量等を微調整することは必要である。
このように、本発明にかかる「芳香族炭化水素系溶媒不含の(AB)n型ポリエーテル変性シリコーン整泡剤」は、様々なフォームタイプのポリウレタンフォーム処方に利用でき、厳しいVOC(Volatile Organic Compound)管理或いはエミッション管理を要求される現在のポリウレタン産業界のニーズに応えることが可能である。
好適には、本発明にかかる「芳香族炭化水素系溶媒不含の(AB)n型ポリエーテル変性シリコーン整泡剤」は、以下のようなポリウレタン発泡体形成性組成物中の一原料として使用できる。
(a)ポリオール、
(b)ポリイソシアナート、
(c)触媒、
(d)本発明にかかる整泡剤、および
(e)任意選択で、(d)成分以外の整泡剤、発泡剤、希釈剤、鎖伸長剤、架橋剤、水、非水性発泡剤、充填剤、強化剤、顔料、染料、着色剤、難燃剤、抗酸化剤、抗オゾン剤、紫外線安定化剤、静電気防止剤、殺菌剤および抗菌剤からなる群より選択される、少なくとも一つの添加成分を含有できる。
以下、各成分を概説する。
[(a)ポリオール]
ポリオールとしては、例えば、ポリエーテルポリオール、ポリエステルポリオール等が挙げられる。ポリエーテルポリオールとしては、多価アルコール、糖類、フェノール類、フェノール誘導体、芳香族アミン等にアルキレンオキサイドを付加して得られるものであり、例えば、グリセリン、プロピレングリコール、ジプロピレングリコール、エチレングリコール、ジエチレングリコール、トリメチロールプロパン、ペンタエリスリトール、シュークロース、ソルビトール、ノボラック、ノニルフェノール、ビスフェノールA、ビスフェノールF、トリレンジアミン、ジフェニルメタンジアミン等の1種または2種以上にアルキレンオキサイドを付加して得られるものが挙げられる。他の有用なポリオールは、ポリマーポリオールまたはグラフトポリマーポリオール、グラフトポリオールもしくはコポリマーポリオールであり、それらはベースポリオール中でのビニルモノマー(通常スチレンもしくはアクリロニトリル)の重合によって産生されるビニルポリマーのベースポリオール中への分散物である。また、ヒマシ油、化学修飾した大豆油、化学修飾した脂肪酸油のような天然材料由来のポリオール、そのようなヒマシ油および大豆油のような天然材料のアルコキシル化によって生じるポリオールを含む。ポリエステルポリオールとしては、アジピン酸、フタル酸、コハク酸等の多官能カルボン酸とグリセリン、プロピレングリコール、ジプロピレングリコール、エチレングリコール、ジエチレングリコール、トリメチロールプロパン、ペンタエリスリトール等の多官能ヒドロキシル化合物との縮重合により製造される末端に水酸基を有するポリオールが挙げられる。ポリオールは、一種単独で用いても二種以上を併用してもよい。VOC/エミッション或いは臭気の少ないポリウレタンフォームを製造するためには、前記ポリオール類に不揮発性の酸化防止剤を添加しておくことが好ましい。
本発明のポリウレタン発泡体を調製する好適なポリオールは、分子当たり2から8個のヒドロキシル基を持ち、そして200から10,000の、好ましくは500から7,500の数平均分子量を持つものである。有用なポリエーテルポリオールの例は、Voranol220-028、Voranol220-094、Voranol225、Voranol270、Voranol490およびVoranol800(Dow Chemical Company)の製品ならびにArcol11-34(Bayer Material Science)などを含む。
ポリオール、例えばポリエーテルポリオール及びポリエステルポリオールは通常約15~約700の範囲内のヒドロキシル数(水酸基価)を有する。ヒドロキシル数は、好ましくは、軟質フォームでは約20~60、半軟質(又は半硬質)フォームでは約100~300、硬質フォームでは約250~700である。軟質フォームでは、好ましい官能価、即ちポリオールのポリオール分子当たりの平均ヒドロキシル基の数は、約2~4 、最も好ましくは約2.3~約3.5である。硬質フォームでは、好ましい官能価は約2~約8、最も好ましくは約3~約5 である。
殆どのポリウレタンフォーム処方に対する好適な整泡剤として、本発明の製造方法により得られる「芳香族炭化水素系溶媒不含の(AB)n型ポリエーテル変性シリコーン整泡剤」を用いることができる。その配合量は、ポリオール100質量部に対して、(AB)n型ポリエーテル変性シリコーン整泡剤中の(A)直鎖状ポリエーテル-オルガノポリシロキサンブロック共重合体が0.1~10質量部となる範囲であり、0.5~5質量部となる範囲が好ましく、1.0~3.0質量部がより好ましい。
[(b)ポリイソシアナート]
ポリイソシアナートとしては、有機ポリイソシアネートとして公知のものが全て使用できるが、最も一般的なものはトリレンジイソシアネート(以下、「TDI」と略す。)およびジフェニルメタンジイソシアネート(以下、「MDI」と略す。)である。TDIは、異性体の混合、即ち、2,4-体100%品、2,4-体/2,6-体=80/20,65/35(それぞれ質量比)等のものはもちろん、多官能性のタールを含有する粗TDIも使用できる。MDIとしては、4,4'-ジフェニルメタンジイソシアネートを主成分とする純品のほか、3核体以上の多核体を含有するポリメリックMDIが使用できる。この他、特に強度が必要な用途向けにはナフタレンジイソシアネート(NDI)が適する。
これらのイソシアネート化合物のうち、硬質ポリウレタンフォームの製造には、通常、MDIを使用し、軟質ポリウレタンフォームの製造には、TDIが使用される場合が多い。
ポリイソシアネートのうち、MDIのイソシアナートプレポリマーは、MDIとポリオールとの反応、ウレトンイミン修飾されたようなもの、および上述のMDI誘導体との任意の割合の組み合わせより作製される。同じく好適なものはトルエンジイソシアナート(TDI)を原料とするプレポリマーであり、TDIの2,4および2,6異性体とポリオールの反応より作製されるTDIのイソシアナートプレポリマー、そして他の芳香族もしくは脂肪族ポリイソシアナートおよびウレトンイミン修飾ポリイソシアナートとそれらのプレポリマーなどを含む。異なる種類のポリイソシアナートの混合物も使用できる。
処方中におけるイソシアナート反応性材料の量に対するポリイソシアネートの配合量は「イソシアネート指数」によって表される。「イソシアネート指数」とは、ポリイソシアネートの実際の使用量を、反応混合物中の全活性水素との反応に必要とされるポリイソシアネートの化学量論量で除して、100を乗じた値である。ポリウレタンフォーム形成性組成物におけるイソシアネート指数は一般に60~140である。通例、イソシアネート指数は、軟質TDIフォームでは一般に85~120であり、高弾性(HR)フォームであるモールドTDIフォームでは通常90~105、モールドMDIフォームでは大抵70~90であり、硬質MDIフォームでは一般に90~130である。ポリイソシアヌレート硬質フォームの幾つかの例では、250~400という高い指数で製造される。
[(c)触媒]
ニッケルアセトアセトナート、鉄アセトアセトナート、スズ系触媒、ビスマス系触媒、亜鉛系触媒、チタニウム系触媒、アルミニウム錯体、ジルコニウム錯体、オクチル酸カリウム、酢酸カリウム、酢酸ナトリウム、オクチル酸ナトリウム、表面に固体酸点を有する金属酸化物粒子、トリエチレンジアミン、ビス(ジメチルアミノエチル)エーテルのような第三級アミンウレタン触媒、イミダゾール誘導体、カルボン酸四級アンモニウム塩、遅効性三級アミン触媒、一般型三級アミン触媒、低エミッション三級アミン触媒、ノンエミッション三級アミン触媒、およびDABCO(登録商標)触媒を使用できる。VOC/エミッション或いは臭気の少ないポリウレタンフォームを製造するためには、ウレタン形成反応時に樹脂骨格に触媒が組み込まれるタイプの反応性アミン触媒を利用することが好ましい。
これらの触媒のうち、硬質ポリウレタンフォームの製造には、アミン系触媒が好ましく、軟質ポリウレタンフォームの製造には、アミン系触媒とスズ系触媒の併用が好ましい。
[(d)本発明の製造方法により得られる(A)直鎖状ポリエーテル-オルガノポリシロキサンブロック共重合体と(B)(ポリ)グリコール又はポリグリコール誘導体とを含むポリウレタンフォーム用整泡剤]
本発明にかかる「芳香族炭化水素系溶媒不含の(AB)n型ポリエーテル変性シリコーン整泡剤」の詳細は前述のとおりであるが、一般的に、整泡剤の主成分であるポリエーテル変性シリコーンと、ポリウレタンフォームの種類の適合性には相関があり、低分子量体が適するフォームから高分子量体が適するフォームまでを順に並べると、
高弾性フォーム<硬質フォーム<軟質フォーム<マイクロセルラーフォーム
となる。
加えて、ポリエーテル変性シリコーンのポリエーテル基の構造もフォームのサイズ等に大きく影響するので、セルサイズを小さくして通気性を下げたい場合にはEO含有量の高いポリエーテル構造を選択したり、気泡の安定化・保持をしたいケースでは分子量の大きなポリエーテルを選択したり、プロセスレンジを広げたり、幅広い用途・処方への適合性を持たせるために分子量や構造の異なる複数のポリエーテルを原料に使用する等、ポリエーテル部分の分子量分布を広げるなどの手法が存在しており、本発明にかかる(AB)n型ポリエーテル変性シリコーン整泡剤にも適用可能である。また、ポリウレタンの主原料の一つであるポリオールがPPG構造部を有することから、フォーム処方中或いはプレミクス中での相溶性の観点よりポリエーテル変性シリコーン中のポリエーテル部分にもまたPO(プロピレンオキシ)鎖を含有させておく事が望ましい場合が多い。
整泡剤に対する要求は、本発明にかかる「芳香族炭化水素系溶媒不含の(AB)n型ポリエーテル変性シリコーン整泡剤」を配合するポリウレタン発泡体の種類に応じて異なるものであるが、例えば前記の一般式(4)で表される両末端SiH基含有オルガノポリシロキサンの鎖長や前記一般式(5)で表される両末端アルケニル基含有ポリエーテルの種類、これらの反応比率等を適宜調節したり、ポリエーテル部のEO/PO%や分子量によっても、界面活性能やウレタンフォームシステムへの親和性等をコントロールする事ができるので、所望により、好適な整泡剤を自由に設計できる。
[(e)任意成分]
ポリウレタンフォーム形成組成物における任意選択の成分(e)の中で特に重要なものは、水および非水性発泡剤である。水はポリイソシアナートと反応して二酸化炭素ガスを生成することによって、化学的発泡剤として作用する。この他に、物理的および/もしくは化学的な型の一つもしくはそれ以上の非水性発泡剤を反応混合物の中に含ませることが出来る。また、処方によって水を使わない場合もある。これらの発泡剤は、HFC-245faおよびHFC-134aのようなハイロドフルオロカーボン類、HFOおよびHCFOのようなハイドロフルオロオレフィン類、ならびにiso-、cyclo-およびn-ペンタンのような低沸点炭化水素、超臨界炭酸ガス、蟻酸等を含み得る。
軟質フォームと硬質フォームのいずれにおいても、水が反応性発泡剤として多用される。軟質スラブフォームの製造では、水は、一般に例えばポリオール100部当たり2~6.5部の濃度で使用でき、通例3.5~5.5部である。高弾性(HR)フォームのうちTDIモールドフォームでの水分量は通例例えば3~4.5部である。MDIモールドフォームでは、水分量は通例例えば2.5~5部である。一方、硬質フォームの水分量は例えば0.5~5部であり、通例0.5~1部である。揮発性炭化水素又はハロゲン化炭化水素その他の非反応性ガスをベースとした発泡剤のような物理的発泡剤も使用できる。製造される硬質断熱フォームでは相当の比率で、揮発性炭化水素又はハロゲン化炭化水素で発泡され、好ましい発泡剤はハイロドフルオロカーボン(HFC)及び揮発性炭化水素であるペンタンとシクロペンタンである。ハイドロフルオロオレフィン(HFO、HCFO)も使用できる。軟質スラブフォームの製造では、水が主たる発泡剤であるが、補助発泡剤として他の発泡剤も使用できる。軟質スラブフォームでは、好ましい補助発泡剤は二酸化炭素及びジクロロメタンである。高弾性(HR)フォームは、一般には不活性な補助的発泡剤を使用せず、いずれにしてもスラブフォームよりも補助発泡剤の配合量は少ない。しかし、幾つかのモールド技術では、二酸化炭素の使用が最も重要である。発泡剤の量は、所望のフォーム密度及びフォーム硬さに応じて異なる。炭化水素型発泡剤を使用する場合の量は、例えば微量乃至ポリオール100部当たり50部であり、CO2は例えば約1~約10%である。
しかし、特にマイクロセルラーの用途では、発泡剤として水、ハイロドフルオロカーボン類、低沸点炭化水素等を使用する化学発泡によるポリウレタンフォームでは、硬度が低すぎ、最終製品に求められる寸法精度が出し難く、引張強度や耐摩耗性等の機械的強度も不十分であるため、通常、機械発泡による高密度フォームが製造されている。即ち、ここでは機械攪拌により巻き込まれる空気又は窒素ガス等が、主として気泡の核を構成する。但し、カーペット裏打ち材など低コストが求められる用途では、フォーム体積を稼ぐ目的で少量の水を発泡剤として使用し、かつ大量の無機充填剤を配合することにより強度を出す処方でもって、機械発泡方式によるマイクロセルラーフォームの製造がおこなわれる。
ここで、ポリウレタンフォーム形成性組成物中に含まれ得るポリオールa)、ポリイソシアナートb)、触媒c)、本発明にかかる「芳香族炭化水素系溶媒不含の(AB)n型ポリエーテル変性シリコーン整泡剤」d)、任意成分e)である水、非水系発泡剤、その他の成分は、例えば以下に示される広い範囲にわたって変化できる。フォームタイプごとに取り上げた引用特許文献中に記載のある配合比や範囲が好適である。広い範囲を許容する理由は、要求されるフォームの特性、用途、発泡形式、装置などに応じて、ポリウレタンフォーム形成性組成物の処方を調整しなくてはならないためである。
6~85質量部のポリオールa)、10~80質量部のポリイソシアナートb)、0.01~5.0質量部の触媒c)、0.1~20質量部の本発明のポリエーテル-ポリシロキサンブロック共重合体組成物d)、および任意成分として水0~6質量部、非水性発泡剤0~45質量部。
更に、前記ポリウレタンフォーム形成組成物中に含まれ得る水の質量は、前記ポリオールの質量に対して0~10%相当の範囲内にある事が好ましい。
その他の任意選択成分e)は、他のポリマーおよび/又はコポリマー、希釈剤、鎖伸長剤、架橋剤、充填剤、強化剤、顔料、染料、着色剤、難燃剤、抗酸化剤、抗オゾン剤、紫外線安定化剤、静電気防止剤、殺菌剤および抗菌剤などの当分野に公知であり任意のものを、それらの通常の含有量の範囲内で含んでよい。
例えば、任意選択の成分e)として、架橋剤もしくは鎖伸長剤として作用する分子当たり2から8個のヒドロキシル基と62から500の分子量を持つポリヒドロキシル末端化合物を含有し得る。3から8個のヒドロキシル基を持つ架橋剤はグリセリン、トリメチロールプロパン、ペンタエリスリトール、マンニトール、ソルビトール等を含む。二個のヒドロキシル基を持つ有用な鎖伸長剤の例は、ジプロピレングリコール、トリプロピレングリコール、プロピレングリコール、ジエチレングリコール、トリエチレングリコール、1,4-ブタンジオール、1,3-ブタンジオール、エチレングリコール、2,3-ブタンジオール、2-メチル-1,3-プロパンジオール、1,2-プロパンジオール、1,3-プロパンジオールおよびネオペンチルグリコール等を含む。ジエタノールアミンおよびモノエタノールアミンなども使用できる。
任意選択の成分e)はまた、たとえば無機充填剤または充填剤の組み合わせを含んでよい。充填剤は、密度改質、機械的性能もしくは音吸収のような物理的性能、難燃性または例えば、炭酸カルシウムのような改善された経済性を含むものを含む他の利点の改善のためのもの、あるいは発泡体製造のコストを減ずる他の充填剤、水酸化アルミニウムもしくは他の難燃性充填剤、音吸収に用いられる硫酸バリウムもしくは他の高密度充填剤、発泡体密度をさらに減ずるガラスもしくはポリマーのような物質のミクロスフェアを含む。発泡体の剛性もしくは屈曲性のモジュールのような機械的性能を改質するために用いられる高いアスペクト比の充填剤ないし強化剤は、粉砕ガラス繊維もしくはグラファイト繊維のような人工繊維;珪灰石のような天然鉱物繊維;羊毛のような天然動物もしくは綿のような植物繊維;粉砕ガラスのような人工プレート状繊維;雲母のような天然鉱物プレート状充填剤を含む。添加する可能性のある顔料、染料、着色剤の任意のものを含む。さらに、有機難燃剤、抗オゾン剤、抗酸化剤;熱もしくは熱-酸素分解阻害剤、紫外線安定剤、紫外線吸収剤もしくは、発泡体形成性組成物に添加されるとき、生じる発泡体の熱、光および/もしくは化学的な分解を避けるか阻害する任意の他の添加剤を含み得る。任意の公知で従来的な静電気防止剤、殺菌剤、抗菌剤およびガス退色阻害剤を含み得る。
本発明にかかる「芳香族炭化水素系溶媒不含の(AB)n型ポリエーテル変性シリコーン整泡剤」を使用するポリウレタン発泡体形成性組成物から得られるポリウレタン発泡体は、芳香族炭化水素系溶媒不含で低VOC/エミッションタイプの硬質フォーム、半硬質フォーム、軟質フォーム、HRフォーム、又はマイクロセルラーフォームである事が好ましい。
本発明にかかる「芳香族炭化水素系溶媒不含の(AB)n型ポリエーテル変性シリコーン整泡剤」を使用するポリウレタン発泡体形成性組成物から低VOC/エミッションタイプのポリウレタン発泡体を製造するプロセスに関しては、既存の各種製造工程を利用する事ができる。例えば、軟質フォームであればワンショット発泡法、準プレポリマー法及びプレポリマー法を用いてポリウレタン発泡体を製造することができる。一般的な軟質フォームは、通常スラブフォームとして工業生産される。ある種のスラブフォームは反応体混合物を大型ボックスに注入して製造されるが(ボックスフォームと呼ばれる不連続法)、通常のスラブストックフォームはペーパーライナー付コンベアーに反応混合物を吐出させることによって連続的に製造される。コンベアーの前進に伴ってフォームが発泡・硬化し、発泡機を出る際にフォームは大きなブロックに裁断される。
また、硬質フォームの場合には、目的や用途に応じてより細分化した製造法が採用されている。例えば、「スプレーフォーム」と呼ばれるものは、ポリウレタンフォーム形成性組成物を建築現場などの現場でスプレー発泡させて固める方式である。「ラミネーションボード」と呼ばれるものは、主としてプレハブ建築の断熱材として使用されるものであるが、「断熱ボード」、或いは「連続ラミネーションボードストック」などと呼ばれる事もある。ラミネーションボードの製造では、上下に向かい合った面材の間を、ローラーを通じて連続的に供給される発泡されたフォーム形成組成物が、流れながら硬化してゆき、最終的に厚み10cm程度の板状発泡体が得られる。「アプライアンス」と呼ばれるものは、専ら冷蔵庫用の断熱材向けのフォームであり、注入成型法により、工場内にて全自動プロセスで生産される。但し、このケースでは金型にフォーム形成組成物を注入して発泡・硬化させて終了であり、金型から発泡体を取り出すことはない。冷蔵庫用フォームの処方上の特徴は、断熱性を重視するため発泡剤として水を使うことは無い(炭酸ガスは熱を伝え易い性質を持つため)という点である。「現場注入」と呼ばれるものは、文字通りの意味であるが、現場で金型にフォーム形成組成物を注入して発泡・硬化させて終了する方式のもので、冷蔵庫用途以外を指す。
特殊フォームの一つである「マイクロセルラー」では、メカニカルフロスシステムと呼ばれる機械発泡方式により均質で微細な高密度フォームが製造されている。ここではいわゆる発泡剤は使用せず、機械攪拌により巻き込まれる空気又は窒素ガス等が、主として気泡の核を構成する。
特殊フォーム或いは軟質フォームの一つである低反撥フォームは、一般的な軟質フォーム或いはHRフォームと同様の、スラブ又はモールド形式で製造される。スラブ品は、連続コンベアー上に混合原液を流し、通常、幅1~2m、高さ0.2~0.6m の断面が角 又はカマボコ状に連続発泡させた後、所定長さ(多くは1~2m)の食パン形状に裁断する。加工事業所にはこの形で出荷され、スラブ品からは色々な形状の製品を切り出し・加工する事が出来る。モールド品はプラスチック又は金属製の型(モールド)に原液を注入して発泡させた後、型から取り出すもので、複雑な形状の製品でも寸法精度良く大量に成形する事が出来る。
その他、個別のポリウレタンフォームの製造方法は、適宜選択可能であるが、特に、本発明にかかる「芳香族炭化水素系溶媒不含の(AB)n型ポリエーテル変性シリコーン整泡剤」は、以下の特許公開公報または特許公表公報の詳細な説明、特に実施例等に記載されたポリウレタンフォームの製造法において、シリコーン系整泡剤またはシリコーン界面活性剤、シリコーンコポリマー界面活性剤を置き換えて、好適に適用することができ、フォームの低VOC/エミッション化に貢献できるものである。なお、これらの詳細な説明又は実施例の開示は、製造装置に関する開示を含むものであり、当業者の通常の設計変更により、成分の一部をさらに置き換え、粘度等の変化に応じて、その製造条件を適宜変更するものであってもよい。
・特表2005-534770号公報、特表2005-534770号公報、特表2010-535931号公報に記載されたポリウレタン発泡体の製造方法;
・特表2010-539280号公報に記載された開放セルポリウレタンの製造プロセス
・特開2012-246397号公報、特開2009-265425号公報等に記載されたウレタンフォームを含むシール材
・特開2012-082273号公報、特開2010-247532号公報、特開2010-195870号公報、特開2002-137234号公報等に記載されたウレタンフォームの製造
・特表2010-500447号公報、特表2010-504391号公報、特表2010-538126号公報、特表2011-528726号公報、特表2013-529702号公報等に記載された粘弾性ポリウレタンフォームの製造
なお、本発明にかかるポリエーテル-ポリシロキサンブロック共重合体組成物の製造方法を参考にして、オルガノポリシロキサン主鎖にポリエーテル側鎖がグラフトした構造体を主成分とする汎用的ポリエーテル変性シリコーンを、平均炭素原子数が6~11の範囲にある飽和炭化水素を反応溶媒として用いて合成し、当該溶媒を(ポリ)グリコール又は(ポリ)グリコール誘導体で置換することにより、芳香族炭化水素系溶媒不含の低VOC/エミッション型ポリウレタンフォーム用整泡剤として得ることは任意である。
以下、実施例と比較例により本発明を更に詳細に説明するが、本発明は、これらにより限定されるものではない。なお、下記組成式において、MeSiO基(又は、MeSi基)を「M 」、MeSiO基を「D 」、MeHSiO基を「M 」と表記し、MおよびD中のメチル基をいずれかの置換基によって変性した単位をMおよびDと表記する
<実施例1-1>
500mL反応器に、平均組成式 M18 で表されるメチルハイドロジェンポリシロキサン58.08g(14.52部)、平均組成式CH=C(CH)CH-O(CO)35(CO)26-CH-C(CH)=CH で表されるビスメタリルポリエーテル*)141.92g(35.48部)、反応溶媒としてメチルシクロヘキサン(MCH、沸点101℃)を200g(50部)仕込み、窒素流通下で攪拌しながら1、3-ジビニルー1,1,3,3-テトラメチルジシロキサン白金錯体のテトラメチルジシロキサン溶液(Pt濃度4.2wt%)を0.05g添加した。オイルバスを90℃にセットして反応器の加熱を始め、60-70℃付近で内液外観が透明化したのち75-85℃で3時間エージングを行なった。次いで反応液を1g採取し、アルカリ分解ガス発生法により確認したところ反応は完結していた。オイルバスを120℃にセットし、加熱しながらゆっくり270mmHg付近まで減圧し、泡立ちに注意しながらMCHの3/4程度を留去したのち、復圧して希釈剤であるn-BuO(CO)13-Hで表されるポリプロピレングリコールモノブチルエーテル{BPPG-13}200g(50部)を添加した。再度、注意しながら5mmHg以下まで減圧したのち、オイルバスを130℃として、内液温度105-120℃にて3時間ストリピングを行った。
これにより、平均組成式
Figure JPOXMLDOC01-appb-C000021
(ここで、a=18,x1=35,y1=26,n=10)
で表される構成単位を含有する(A)直鎖状ポリエーテル-オルガノポリシロキサンブロック共重合体と、(B)ポリプロピレングリコールモノブチルエーテル{BPPG-13}とを50:50の比率で含む、「芳香族炭化水素系溶媒不含の(AB)n型ポリエーテル変性シリコーン整泡剤」を、淡褐色透明な粘稠液体として得た。なお、平均組成式を簡易に表記したが、原料のC=C基とSi-H基のモル比はC=C/SiH=1.1であるため、共重合体の両末端はポリエーテルで封鎖された形となっている。なお、ここでポリエーテル部分は、エチレンオキサイドとプロピレンオキサイドのランダム付加体である。この整泡剤は、芳香族炭化水素系溶媒不含で環境・衛生・安全面での懸念の少ない、高通気性マイクロセルラーフォーム又は高通気性低反撥フォームの製造に特に適するものである。

*)500ppmの天然ビタミンEを含有
<実施例1-2>
MCHをn-ヘプタン(沸点98℃)に置き換えた他は、実施例1-1と同様にして実験を行った。直鎖状直鎖状ポリエーテル-オルガノポリシロキサンブロック共重合体の合成反応における反応性、希釈剤との置換工程での泡立ちなどの挙動、生成物の外観等は実施例1-1と同様であった。この整泡剤は、実施例1-1と同様の用途に、特に好適に使用できる。
<実施例1-3>
1L反応器に、平均組成式 M18 で表されるメチルハイドロジェンポリシロキサン58.08g(14.52部)、平均組成式CH=C(CH)CH-O(CO)35(CO)26-CH-C(CH)=CH で表されるビスメタリルポリエーテル*)141.92g(35.48部)、反応溶媒としてIsopar E(C7-C9飽和炭化水素、沸点範囲115-140℃)200g(50部)仕込み、窒素流通下で攪拌しながら1、3-ジビニルー1,1,3,3-テトラメチルジシロキサン白金錯体のテトラメチルジシロキサン溶液(Pt濃度4.2wt%)を0.05g添加した。オイルバスを75℃にセットして反応器の加熱を始め、70℃付近で内液外観が透明化したのち75-80℃で3時間エージングを行なった。次いで反応液を1g採取し、アルカリ分解ガス発生法により確認したところ反応は完結していた。希釈剤であるポリプロピレングリコールモノブチルエーテル{BPPG-13}200g(50部)を添加し、オイルバスを95℃にセットし、泡立ちに注意しながらゆっくり60mmHg付近まで減圧した。泡立ちが治まったのち、オイルバスを120℃として、内液温度100-125℃にて5時間ストリピングを行った。
これにより、実施例1-1と同様の、(A)直鎖状ポリエーテル-オルガノポリシロキサンブロック共重合体と(B)ポリプロピレングリコールモノブチルエーテル{BPPG-13}とを50:50の比率で含む、「芳香族炭化水素系溶媒不含の(AB)n型ポリエーテル変性シリコーン整泡剤」を得た。この整泡剤は、実施例1-1と同様の用途に、特に好適に使用できる。 *)500ppmの天然ビタミンEを含有
<実施例1-4>
2L反応器に、平均組成式 M17 で表されるメチルハイドロジェンポリシロキサン217.80g(14.52部)、平均組成式CH=C(CH)CH-O(CO)35(CO)26-CH-C(CH)=CH で表されるビスメタリルポリエーテル*)532.20g(35.48部)、天然ビタミンE 0.75g、反応溶媒として2,2,4-トリメチルペンタン(イソオクタン、沸点99℃)750g(50部)仕込み、窒素流通下で攪拌しながら1、3-ジビニルー1,1,3,3-テトラメチルジシロキサン白金錯体のテトラメチルジシロキサン 溶液(Pt濃度4.2wt%)を0.17g添加した。オイルバスを95℃にセットして反応器の加熱を始め、80-90℃付近で内液外観が透明化したのち2時間エージングを行なった。次いで反応液を1g採取し、アルカリ分解ガス発生法により確認したところ反応は完結していた。オイルバスを130-170℃にセットし、加熱しながらゆっくり310-40mmHg付近まで減圧し、泡立ちに注意しながらイソオクタンの3/4程度を留去したのち、復圧して希釈剤であるポリプロピレングリコールモノブチルエーテル{BPPG-13}750g(50部)を添加した。再度、注意しながら20mmHg以下まで減圧したのち、オイルバスを150℃として、内液温度130-145℃にて4時間ストリピングを行った。
これにより、実施例1-1と同様の、(A)直鎖状ポリエーテル-オルガノポリシロキサンブロック共重合体と(B)ポリプロピレングリコールモノブチルエーテル{BPPG-13}とを50:50の比率で含む、「芳香族炭化水素系溶媒不含の(AB)n型ポリエーテル変性シリコーン整泡剤」を得た。この整泡剤は、実施例1-1と同様の用途に、特に好適に使用できる。
*)500ppmの天然ビタミンEを含有
<比較例1-1>
Isopar E(C7-C9飽和炭化水素、沸点範囲115-140℃)をIP solvent 1620(少なくともC12-C13飽和炭化水素を含む混合物、沸点166-202℃)に置き換えた他は、実施例1-3と同様にして実験を行った。直鎖状直鎖状ポリエーテル-オルガノポリシロキサンブロック共重合体の合成反応における反応性と外観は実施例1-3と同様であったが、希釈剤であるポリプロピレングリコールモノブチルエーテル{BPPG-13}を添加したのちに減圧下、反応溶媒との置換を行う工程ではしつこい泡立ちが激しく、泡が治まってストリピングのキープ状態に移るまでに6時間以上を要した。
<比較例1-2>
1L反応器に、平均組成式 M18 で表されるメチルハイドロジェンポリシロキサン58.08g(14.52部)、平均組成式CH=C(CH)CH-O(CO)35(CO)26-CH-C(CH)=CH で表されるビスメタリルポリエーテル*)141.92g(35.48部)、反応溶媒としてアセトン(沸点56℃)を200g(50部)仕込み、窒素流通下で攪拌しながら1、3-ジビニルー1,1,3,3-テトラメチルジシロキサン白金錯体のテトラメチルジシロキサン溶液(Pt濃度4.2wt%)を0.05g添加した。オイルバスを60-70℃にセットして反応器の加熱を始め、60付近でアセトンの還流条件下に2時間エージングを行ったが、内液外観に濁りがあり反応率も低かったため前記白金触媒を0.05g追加した。更に3時間エージングして反応率を確認したところ、反応は完結していたが外観は濁ったままであった。このままゆっくりと40mmHg付近まで減圧し、アセトンを留去したのち、復圧して希釈剤であるポリプロピレングリコールモノブチルエーテル{BPPG-13}200g(50部)を添加した。この溶媒―希釈剤交換工程での泡立ちは少なかった。再度、注意しながら5mmHg以下まで減圧したのち、オイルバスを120-130℃として、内液温度100-120℃にて1時間ストリピングを行った結果、灰褐色不透明な粘稠液体を得た。
<比較例1-3>
1L反応器に、平均組成式 M18 で表されるメチルハイドロジェンポリシロキサン58.08g(14.52部)、平均組成式CH=C(CH)CH-O(CO)35(CO)26-CH-C(CH)=CH で表されるビスメタリルポリエーテル*)141.92g(35.48部)、反応溶媒として酢酸エチル(沸点77℃)を200g(50部)仕込み、窒素流通下で攪拌しながら1、3-ジビニルー1,1,3,3-テトラメチルジシロキサン白金錯体のテトラメチルジシロキサン溶液(Pt濃度4.2wt%)を0.05g添加した。オイルバスを70-80℃にセットして反応器の加熱を始め、80℃付近で酢酸エチル還流条件下に2時間エージングを行ったが、内液外観に濁りがあり反応率も低かったため前記白金触媒を0.05g追加した。更に3時間エージングして反応率を確認したところ、反応は完結していたが外観は濁ったままであった。希釈剤であるポリプロピレングリコールモノブチルエーテル{BPPG-13}200g(50部)を添加し、オイルバスを120℃にセットして反応系を徐々に減圧することにより酢酸エチルを取り除こうとしたが、激しくしつこい泡立ちが起こり、50mmHg以下の減圧度まで到達するのに6時間を要した。途中で突沸も起こった。また、得られた液の外観は灰褐色不透明な粘稠液体であった。
<比較例1-4>
1L反応器に、平均組成式CH=C(CH)CH-O(CO)35(CO)26-CH-C(CH)=CH で表されるビスメタリルポリエーテル*)141.92g(35.48部)と、5%酢酸ナトリウムのメタノール溶液0.08gを仕込み、80℃にて30mmHg以下までの減圧を1時間行い、メタノールを留去した。その後、平均組成式 M18 で表されるメチルハイドロジェンポリシロキサン58.08g(14.52部)、反応溶媒としてイソプロピルアルコール(IPA,沸点82℃)を200g(50部)仕込み、窒素流通下で攪拌しながら1、3-ジビニルー1,1,3,3-テトラメチルジシロキサン白金錯体のテトラメチルジシロキサン溶液(Pt濃度4.2wt%)を0.05g添加した。75℃で反応液が透明化したのを確認後、80℃付近で3時間エージングを行ったところ、反応は完結していた。希釈剤であるポリプロピレングリコールモノブチルエーテル{BPPG-13}200g(50部)を添加し、オイルバスを120℃にセットして反応系を徐々に減圧することによりIPAを取り除こうとしたが、激しくしつこい泡立ちが起こり、50mmHg以下の減圧度まで到達するのに6時間を要した。途中で突沸も起こった。生成物の外観等は実施例1-1と同様であった。
<比較例1-5>
反応器に、平均組成式 M18 で表されるメチルハイドロジェンポリシロキサン14.52部、平均組成式CH=C(CH)CH-O(CO)35(CO)26-CH-C(CH)=CH で表されるビスメタリルポリエーテル35.48部、反応溶媒としてトルエン70部仕込み、窒素流通下で攪拌しながら70~80℃まで加温した。塩化白金酸の10%IPA溶液(Pt濃度3.8wt%)をPtとして10ppm相当量添加したところ、85℃付近で外観が透明化した。その後2時間反応を行なった。次いで反応液を1g採取し、アルカリ分解ガス発生法により確認したところ反応は完結していた。反応系を徐々に減圧しながら更に125℃まで加熱して、泡立ちによるに注意しつつトルエンを少しずつ留去した。約3/4のトルエンが除かれた段階で復圧し、25部のポリプロピレングリコールモノブチルエーテル{BPPG-13}を反応系に加えたのち、再度減圧して残存するトルエンを注意深く留去した。復圧して25部のBPPG-13を添加し、混合均質化した。これにより、平均組成式
Figure JPOXMLDOC01-appb-C000022
(ここで、a=18,x1=35,y1=26,n=6)
で表される構成単位を含有する直鎖状ポリエーテル-オルガノポリシロキサンブロック共重合体と、ポリプロピレングリコールモノブチルエーテル{BPPG-13}とを50:50の比率で含むポリウレタンフォーム用整泡剤を得た。なお、平均組成式を簡易に表記したが、原料のC=C基とSi-H基のモル比はおよそ7:6であるため、共重合体の両末端はポリエーテルで封鎖された形となっている。また、反応中に一部のSi-H基はIPAの水酸基と脱水素縮合反応を起こし得るので、共重合体末端の一部はSiO-iPrの構造を含むと考えられる。なお、ここでポリエーテル部分は、エチレンオキサイドとプロピレンオキサイドのランダム付加体である。
<比較例1-6>
トルエンの使用部数を70部から50部に置き換えた他は、比較例1-5と同様にして実験を行ったところ、反応終了後の外観が不透明であった。そのため、その後予定していた溶媒―希釈剤の置換工程を行わずに実験を中断した。
<実施例2-1>
300mL反応器に、平均組成式 M18 で表されるメチルハイドロジェンポリシロキサン31.64g(15.82部)、平均組成式CH=C(CH)CH-O(CO)38(CO)19-CH-C(CH)=CH で表されるビスメタリルポリエーテル*)68.36g(34.18部)、反応溶媒としてIsopar E(C7-C9飽和炭化水素、沸点範囲115-140℃)100g(50部)仕込み、窒素流通下で攪拌しながら1、3-ジビニルー1,1,3,3-テトラメチルジシロキサン白金錯体のテトラメチルジシロキサン溶液(Pt濃度4.2wt%)を0.03g添加した。オイルバスを80℃にセットして反応器の加熱を始め、80-85℃付近で内液外観が透明化したのち3時間エージングを行なった。次いで反応液を1g採取し、アルカリ分解ガス発生法により確認したところ反応は完結していた。希釈剤であるポリプロピレングリコールモノブチルエーテル{BPPG-13}300g(150部)を添加し、オイルバスを100-115℃にセットし、泡立ちに注意しながらゆっくり30mmHg以下まで減圧した。内液温度110-120℃にて1.5時間ストリピングを行った。
これにより、平均組成式
Figure JPOXMLDOC01-appb-C000023
(ここで、a=18,x1=38,y1=19,n=20)
で表される構成単位を含有する(A)直鎖状ポリエーテル-オルガノポリシロキサンブロック共重合体と、(B)ポリプロピレングリコールモノブチルエーテル{BPPG-13}とを25:75の比率で含む、「芳香族炭化水素系溶媒不含の(AB)n型ポリエーテル変性シリコーン整泡剤」を、淡黄色透明液体として得た。なお、平均組成式を簡易に表記したが、原料のC=C基とSi-H基のモル比はC=C/SiH=1.05であるため、共重合体の両末端はポリエーテルで封鎖された形となっている。なお、ここでポリエーテル部分は、エチレンオキサイドとプロピレンオキサイドのランダム付加体である。
*)500ppmの天然ビタミンEを含有
この整泡剤は、芳香族炭化水素系溶媒不含で環境・衛生・安全面での懸念の少ない、低密度マイクロセルラーフォームの製造又はマイクロセルラーフォームのセルサイズの微細化に特に適するものである。
<実施例2-2>
Isopar Eをメチルシクロヘキサン(MCH、沸点101℃)に置き換えた他は、実施例2-1と同様にして実験を行った。直鎖状直鎖状ポリエーテル-オルガノポリシロキサンブロック共重合体の合成反応における反応性と生成物の外観は実施例2-1と同様であり、希釈剤との置換工程での泡立ちは実施例2-1よりも少なく良好であった。この整泡剤は、実施例2-1と同様の用途に、特に好適に使用できる。
<比較例2-1>
Isopar E(C7-C9飽和炭化水素、沸点範囲115-140℃)をIP solvent 1620(少なくともC12-C13飽和炭化水素を含む混合物、沸点166-202℃)に置き換えた他は、実施例2-1と同様にして実験を行った。直鎖状直鎖状ポリエーテル-オルガノポリシロキサンブロック共重合体の合成反応における反応性と外観は実施例1-3と同様であったが、希釈剤であるポリプロピレングリコールモノブチルエーテル{BPPG-13}を添加したのちに減圧下、反応溶媒との置換を行う工程では実施例2-1よりも泡立ちが激しく、注意深くゆっくりとしたより慎重な減圧操作を要求された。50mmHg以下、内液温度105-115℃にて1.5時間ストリピングを行った。
<比較例2-2>
1L反応器に、平均組成式CH=C(CH)CH-O(CO)38(CO)19-CH-C(CH)=CH で表されるビスメタリルポリエーテル*)68.36g(34.18部)と5%酢酸ナトリウムのメタノール溶液0.08gを仕込み、80℃にて30mmHg以下までの減圧を1時間行い、メタノールを留去した。その後、平均組成式 M18 で表されるメチルハイドロジェンポリシロキサン31.64g(15.82部)、反応溶媒としてイソプロピルアルコール(IPA,沸点82℃)を200g(50部)仕込み、窒素流通下で攪拌しながら1、3-ジビニルー1,1,3,3-テトラメチルジシロキサン白金錯体のテトラメチルジシロキサン溶液(Pt濃度4.2wt%)を0.05g添加した。その後80℃付近で3時間エージングを行ったところ、反応は完結していた。希釈剤であるポリプロピレングリコールモノブチルエーテル{BPPG-13}300g(75部)を添加し、オイルバスを120℃にセットして反応系を徐々に減圧することによりIPAを取り除こうとしたが、大変激しくしつこい泡立ちが起こり、50mmHg以下の減圧度まで到達するのに7時間も要した。途中で突沸も起こった。生成物の外観等は実施例2-1と同様であった。
[実施例、比較例に係る整泡剤の物性]
上記実施例1-1~1-4、実施例2-1,2-2、比較例1-1~1-5、比較例2-1,2-2について、得られた各整泡剤の設計構造、内容、外観、25℃における動粘度(mm2/s)、GPCによる主成分(A)の数平均分子量Mn等を下表1および表2に示す。
なお、上記の整泡剤は全て、以下に示す直鎖状ポリエーテル-オルガノポリシロキサンブロック共重合体を(A)成分として含有している。
Figure JPOXMLDOC01-appb-C000024
なお、上記の整泡剤は全て、以下に示すポリプロピレングリコールモノブチルエーテル{BPPG-13}を(B)成分として含有している.
n-BuO(PO)13-H
[表1]:実施例で得られた整泡剤の設計構造と内容など
Figure JPOXMLDOC01-appb-T000025

[表2]:比較例で得られた整泡剤の設計構造と内容など
Figure JPOXMLDOC01-appb-T000026

上記のGPC分析における測定条件は、以下のとおりである。
「GPC測定条件」
溶離液: クロロホルム(試薬特級)
測定温度: 40℃
検出器: 屈折率計(プラス側にピーク検出)
流速: 1.0mL/min
校正: 標準ポリスチレンにより実施
サンプル溶液の注入量: 100μL (試料濃度1重量%)
[実施例、比較例に係る反応溶媒の整泡剤製造プロセスへの適否]
上記実施例1-1~1-5、実施例2-1、2-3、2-5、比較例1-1~1-5、比較例2-1、2-4で使用した反応溶媒について、芳香族炭化水素系溶媒不含(不使用)の要求事項への適合性や整泡剤製造における生産性(工程の容易さ、泡立ち現象の程度・時間や安全性を含む)、ヒドロシリル化の反応性や製品外観(相溶性(濁りの有無)など)の観点から、溶媒ごとの適否を一覧表とした。
なお、反応性、相溶性、生産性の判定基準は以下のとおりである。
反応性
「優」:反応溶媒がヒドロシリル化反応に対して本質的に不活性であり、かつ反応工程において2~3時間以内のエージングで反応完結を確認した場合
「良」:反応溶媒が水酸基を持つなどの理由で副反応を起こしえるが、緩衝剤成分を使用する処方改良によって副反応を抑制でき、かつヒドロシリル化反応が2~3時間以内のエージングで完結した場合
「可」:ヒドロシリル化反応が2~3時間のエージングでは完結しなかったが、初期と同量以下の触媒を追加して更に3時間のエージングを行った結果、反応が完結した場合
「不良」:ヒドロシリル化反応が遅く、上記のような措置にもかかわらず6時間を超えるエージングを行っても反応が完結しなかった場合
相溶性
「優」:反応溶媒がヒドロシリル化反応に対して本質的に不活性であり、かつ反応終了段階での溶液外観が透明であった場合(使用した反応溶媒が主原料であるオルガノポリシロキサンとポリエーテルの双方に対して相溶性を発揮し、両社の接触及び反応を促したと考えることができるため)
「良」:反応溶媒がヒドロシリル化反応に対して本質的に不活性であり、かつ反応終了段階での溶液外観が半透明均一~ほぼ透明であった場合
「可」:アルコール系溶媒を使用したケースなど、Si-O-C形成の副反応を抑制するため緩衝剤成分を添加することにより、反応終了段階で透明~半透明均一な溶液外観が得られた場合
「不良」:反応終了段階での溶液外観が不透明であり濁りも強い場合
生産性
「良」:溶媒-希釈剤の置換工程における泡立ちを管理しつつ安全に工程を進めることができ、Full vacuum operation状態に到達するまでの時間が「反応溶媒=トルエン」の現行品と同レベルであると判断される場合(ラボスケールで2~3時間)
「可」:溶媒-希釈剤の置換工程における泡立ちを管理しつつ安全に工程を進めることができるが、Full vacuum operation状態に到達するまでの時間が「反応溶媒=トルエン」のケースよりもやや長い場合(ラボスケールで4~5時間)
「不良」:溶媒-希釈剤の置換工程における泡立ちを何とか管理しつつ工程を進めることができたが、Full vacuum operation状態に到達するまでの時間が「反応溶媒=トルエン」のケースよりも大変長く、生産活動として行うには非現実的と思われる場合(ラボスケールで6時間以上)
「不可」:溶媒-希釈剤の置換工程における泡立ちが激しくしつこいために工程管理が困難であり、注意深い減圧操作によっても突沸を生じた場合、または、製品外観が濁ってしまい規格外であることから生産への適用が不可の場合
[表3]:実施例で使用した反応溶媒の特性と整泡剤製造プロセスへの適合性
Figure JPOXMLDOC01-appb-T000027

[表4]:比較例で使用した反応溶媒の特性と整泡剤製造プロセスへの適合性
Figure JPOXMLDOC01-appb-T000028

*) IPAを使用した場合には、(AB)n共重合体の分子量成長を達成する上で、Si-O-C形成の副反応を制御する酢酸ナトリウムなどの緩衝剤成分の添加が必要となる。これ無しではヒドロシリル化の反応率が低下して製品外観に濁りの出る場合もあることから、反応溶媒の相溶性判定は可とした。
#) トルエンは、「平均炭素原子数が6~11の範囲にある飽和炭化水素溶媒」とは異なり、50部の使用量(比較例1-6)では透明な外観の製品を与えず、70部使用してようやく透明な外観の製品を与えたことから、相溶性は「良」とした。
以上の結果より、平均炭素原子数が6~11の範囲にある飽和炭化水素を選択して(AB)n型共重合体の合成反応溶媒として用いるとともに、当該溶媒を(ポリ)グリコール又は(ポリ)グリコール誘導体で置換する工程を有するポリエーテル-ポリシロキサンブロック共重合体組成物の製造方法により、「芳香族炭化水素系溶媒不含の(AB)n型ポリエーテル変性シリコーン整泡剤」を効率的且つ安全に製造することを可能とすることが分かる。平均炭素原子数が6~11の範囲にある飽和炭化水素は(AB)n型共重合体の合成反応溶媒として優れており、従来から使用されてきたトルエンよりも少ない部数で透明な製品外観を達成できるという事が見いだされた。このようにして得られた前記整泡剤は、芳香族炭化水素系溶媒不含の低VOC/エミッション型ポリウレタンフォーム或いはそのためのプレミクスの原料として利用でき、当該フォームの電子材料分野での活用や環境に配慮した自動車用部品或いはコンシューマーグッズ(ベッドマットやソファー、まくら等)としての活用の幅を広げることに貢献する。
<実施例3-1>
2L反応器に、平均組成式 M14 で表されるメチルハイドロジェンポリシロキサン84.30g(11.24部)、平均組成式CH=C(CH)CH-O(CO)39(CO)20-CH-C(CH)=CH で表されるビスメタリルポリエーテル*)215.70g(28.76部)、反応溶媒としてメチルシクロヘキサン(MCH、沸点101℃)を300g(40部)仕込み、オイルバスを90℃にセットし、窒素流通下で加熱と攪拌を開始した。塩化白金酸の10wt%IPA溶液(Pt濃度4.8wt%)を0.13g添加したところ、15分後に内液は79℃に達し外観が透明化したため、ここから3.5時間エージングを行なった。次いで反応液を1g採取し、アルカリ分解ガス発生法により確認したところ反応は完結していた。オイルバスを110℃にセットし、加熱しながらゆっくり270~110mmHg付近まで減圧し、泡立ちに注意しつつMCHの3/4程度を留去したのち、復圧して第一の希釈剤であるHO(CO)-Hで表されるポリプロピレングリコール225g(30部)を添加した。次いで、オイルバスを140℃にセットし、加熱しながらゆっくり190~20mmHgまで減圧し、泡立ちに注意しながらMCHの残部を留去したのち、復圧して第二の希釈剤であるHO(CO)34-Hで表されるポリプロピレングリコール225g(30部)を添加し、内液と混合して均一化した。
これにより、平均組成式
Figure JPOXMLDOC01-appb-C000029
(ここで、a=14,x1=39,y1=20,n=20)
で表される構成単位を含有する(A)直鎖状ポリエーテル-オルガノポリシロキサンブロック共重合体と、(B)ポリプロピレングリコール{ただし、7量体と34量体の2種類を同じ質量ずつ含む}とを40:60の比率で含む、「芳香族炭化水素系溶媒不含の(AB)n型ポリエーテル変性シリコーン整泡剤」を、淡褐色透明な粘稠液体として得た。この整泡剤の動粘度は 29,600mm2/s (25℃)であった。なお、平均組成式を簡易に表記したが、原料のC=C基とSi-H基のモル比はC=C/SiH=1.05付近であるため、共重合体の両末端はポリエーテルで封鎖された形となっている。なお、ここでポリエーテル部分は、エチレンオキサイドとプロピレンオキサイドのランダム付加体である。
この整泡剤は、芳香族炭化水素系溶媒不含で環境・衛生・安全面での懸念の少ない、低通気性マイクロセルラーフォーム又は低密度マイクロセルラーフォームの製造に特に適するものである。*)500ppmの天然ビタミンEを含有
<実施例3-2>
2L反応器に、平均組成式 M17 で表されるメチルハイドロジェンポリシロキサン92.48g(12.33部)、平均組成式CH=C(CH)CH-O(CO)39(CO)20-CH-C(CH)=CH で表されるビスメタリルポリエーテル*)207.53g(27.67部)、反応溶媒としてメチルシクロヘキサン(MCH、沸点101℃)を300g(40部)仕込み、オイルバスを90℃にセットし、窒素流通下で加熱と攪拌を開始した。塩化白金酸の10wt%IPA溶液(Pt濃度4.8wt%)を0.13g添加したところ、20分後に内液は77℃に達し外観が透明化したため、ここから約3時間エージングを行なった。次いで反応液を1g採取し、アルカリ分解ガス発生法により確認したところ反応は完結していた。オイルバスを120℃にセットし、加熱しながらゆっくり280~110mmHg付近まで減圧し、泡立ちに注意しつつMCHの3/4程度を留去したのち、復圧して第一の希釈剤であるHO(CO)-Hで表されるポリプロピレングリコール225g(30部)を添加した。次いで、オイルバスを135℃にセットし、加熱しながらゆっくり170~6mmHgまで減圧し、泡立ちに注意しながらMCHの残部を留去したのち、復圧して第二の希釈剤であるHO(CO)34-Hで表されるポリプロピレングリコール225g(30部)を添加し、内液と混合して均一化した。
これにより、平均組成式
Figure JPOXMLDOC01-appb-C000030
(ここで、a=17,x1=39,y1=20,n=20)
で表される構成単位を含有する(A)直鎖状ポリエーテル-オルガノポリシロキサンブロック共重合体と、(B)ポリプロピレングリコール{ただし、7量体と34量体の2種類を同じ質量ずつ含む}とを40:60の比率で含む、「芳香族炭化水素系溶媒不含の(AB)n型ポリエーテル変性シリコーン整泡剤」を、淡褐色透明な粘稠液体として得た。この整泡剤の動粘度は 33,400mm2/s (25℃)であった。なお、平均組成式を簡易に表記したが、原料のC=C基とSi-H基のモル比はC=C/SiH=1.05付近であるため、共重合体の両末端はポリエーテルで封鎖された形となっている。なお、ここでポリエーテル部分は、エチレンオキサイドとプロピレンオキサイドのランダム付加体である。
この整泡剤は、芳香族炭化水素系溶媒不含で環境・衛生・安全面での懸念の少ない、低通気性マイクロセルラーフォーム又は低密度マイクロセルラーフォームの製造に特に適するものである。*)500ppmの天然ビタミンEを含有
<実施例3-3>
1、3-ジビニルー1,1,3,3-テトラメチルジシロキサン白金錯体のテトラメチルジシロキサン溶液(Pt濃度4.2wt%)0.05gを、塩化白金酸の10%IPA溶液(Pt濃度3.8wt%)0.06g に置き換えた他は、実施例1-1と同様にして実験を行なう。直鎖状ポリエーテル-オルガノポリシロキサンブロック共重合体の合成反応における反応性や組成物の透明性は実施例1-1と同様であり、希釈剤との置換工程での泡立ちなどの挙動は本実験の方が抑制的である。この理由は、塩化白金酸のアルコール溶液を利用した場合にはSiH基の一部がアルコールの水酸基と反応する結果、直鎖状ポリエーテル-オルガノポリシロキサンブロック共重合体(A)の分子量がやや低めとなるため、反応系の粘度が若干低下することによる。この整泡剤は、実施例1-1と同様の用途に、特に好適に使用できる。

Claims (12)

  1. 工程(I):(C)平均炭素原子数が6~11の範囲にある飽和炭化水素溶媒の存在下で、
    構造式:
    Figure JPOXMLDOC01-appb-C000001
    (式中、aは1~200の数であり、Rは各々独立に脂肪族不飽和結合を有しない炭素数1~9の1価の炭化水素基であり、Xは水酸基、アルコキシ基、ジメチルアミノ基、水素原子、ハロゲン原子、カルバメート基、もしくは他の脱離基から選ばれる反応性基である)で表される、分子鎖両末端に反応性基を有するオルガノポリシロキサンと、
    分子鎖の両末端に、当該反応性基(X)と縮合反応またはヒドロシリル化反応可能な反応性基を有するポリエーテル化合物とを反応させることにより、(A)ポリエーテル-ポリシロキサンブロック共重合体を得る工程、および、
    工程(II):当該工程中あるいは当該工程後、前記反応に用いた溶媒(C)を、
    (B)(ポリ)グリコール又は(ポリ)グリコール誘導体により置換する工程
    を備えることを特徴とする、ポリエーテル-ポリシロキサンブロック共重合体組成物の製造方法。
  2. 前記のポリエーテル-ポリシロキサンブロック共重合体(A)が、以下の式(1)または式(2)で表される構成単位を分子内に有する共重合体である、請求項1に記載のポリエーテル-ポリシロキサンブロック共重合体組成物の製造方法。
    一般式(1):
    Figure JPOXMLDOC01-appb-C000002
    (式中、Rは各々独立に脂肪族不飽和結合を有しない炭素数1~9の1価の炭化水素基を表し、xは2ないし4の数であり、aは1~200の数であり、yは(CxH2xO)yで示されるポリエーテル部分の分子量が400~5000の範囲となる数であり、nは少なくとも2の数であり、Yは炭素-珪素結合によって隣る珪素原子に結合し、且つ酸素原子によってポリオキシアルキレンブロックに結合している炭素数2~8の2価の炭化水素基を表す)
    一般式(2):
    Figure JPOXMLDOC01-appb-C000003
    (式中、Rは前記同様の基、x、a、y、nは前記同様の数)
  3. ポリエーテル-ポリシロキサンブロック共重合体(A)がそのポリエーテル部分にオキシプロピレン単位又はオキシブチレン単位を少なくとも含有し、かつ、当該共重合体の数平均分子量が3万~15万の範囲である、請求項1または請求項2に記載のポリエーテル-ポリシロキサンブロック共重合体組成物の製造方法。
  4. 成分(C)が、平均炭素原子数が12を超える飽和炭化水素を実質的に含まない飽和炭化水素溶媒である、請求項1~3のいずれか1項に記載のポリエーテル-ポリシロキサンブロック共重合体組成物の製造方法。
  5. 組成物中の、ポリエーテル-ポリシロキサンブロック共重合体(A)と希釈剤である(B)(ポリ)グリコール又はポリグリコール誘導体との質量比である(A)/(B)が、10/90~60/40の範囲内にあることを特徴とする、請求項1~4のいずれか1項に記載のポリエーテル-ポリシロキサンブロック共重合体組成物の製造方法。
  6. 組成物中に、芳香族炭化水素系溶媒を実質的に含まないことを特徴とする、請求項1~5のいずれか1項に記載のポリエーテル-ポリシロキサンブロック共重合体組成物の製造方法。
  7. 組成物中に、ケイ素原子数が20以下の低分子シロキサンを実質的に含まないことを特徴とする、請求項1~6のいずれか1項に記載のポリエーテル-ポリシロキサンブロック共重合体組成物の製造方法。
  8. 前記の工程(I)が、下式(3)で表される両末端SiH基含有オルガノポリシロキサン
    Figure JPOXMLDOC01-appb-C000004
    (3)
    (式中、Rは前記同様の基、aは前記同様の数)
    、および
    分子鎖の両末端に炭素-炭素二重結合を有するポリエーテル化合物とを、平均炭素原子数が6~11の範囲にある飽和炭化水素溶媒(C)の存在下でヒドロシリル化反応させることにより、
    一般式(2):
    Figure JPOXMLDOC01-appb-C000005
    (式中、Rは前記同様の基、x、a、y、nは前記同様の数)
    で表される構成単位を分子内に有するポリエーテル-ポリシロキサンブロック共重合体(A)を得る工程である、請求項1~7のいずれか1項に記載のポリエーテル-ポリシロキサンブロック共重合体組成物の製造方法。
  9. 前記の工程(I)が、下式(8)で表される両末端に反応性基を有するオルガノポリシロキサン
    Figure JPOXMLDOC01-appb-C000006
    (8)
    (式中、aは1~200の数であり、Rは各々独立に脂肪族不飽和結合を有しない炭素数1~9の1価の炭化水素基であり、Xは水酸基、アルコキシ基、ジメチルアミノ基、水素、ハロゲン、カルバメート基、もしくは他の脱離基から選ばれる反応性基である)
    および、下式(9)で表される両末端水酸基含有ポリエーテル化合物
    Figure JPOXMLDOC01-appb-C000007
    (9)
    (式中、x、yは前記同様の数)
    とを、平均炭素原子数が6~11の範囲にある飽和炭化水素溶媒(C)の存在下で縮合反応させることにより、
    一般式(1´):
    Figure JPOXMLDOC01-appb-C000008
    (式中、Rは前記同様の基、x、a、y、nは前記同様の数)
    で表される構成単位を分子内に有するポリエーテル-ポリシロキサンブロック共重合体(A)を得る工程である、請求項1~7のいずれか1項に記載のポリエーテル-ポリシロキサンブロック共重合体組成物の製造方法。
  10. 請求項1~9のいずれか1項に記載のポリエーテル-ポリシロキサンブロック共重合体組成物の製造方法を用いて得られた組成物を原料に用いることを特徴とする、整泡剤の製造方法。
  11. 請求項1~9のいずれか1項に記載のポリエーテル-ポリシロキサンブロック共重合体組成物の製造方法を用いて得られた組成物を原料に用いることを特徴とする、ポリウレタン発泡体形成組成物の製造方法。
  12. 請求項1~9のいずれか1項に記載のポリエーテル-ポリシロキサンブロック共重合体組成物の製造方法を用いて得られた組成物を原料に用いることを特徴とする、ポリウレタン発泡体の製造方法。
PCT/JP2020/042262 2019-12-25 2020-11-12 ポリエーテル-ポリシロキサンブロック共重合体組成物、整泡剤およびポリウレタン発泡体の製造方法 WO2021131378A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/788,082 US20230059761A1 (en) 2019-12-25 2020-11-12 Polyether-polysiloxane block copolymer composition, foam stabilizer and method for producing polyurethane foam
JP2021566900A JP7575181B2 (ja) 2019-12-25 2020-11-12 ポリエーテル-ポリシロキサンブロック共重合体組成物、整泡剤およびポリウレタン発泡体の製造方法
CA3163027A CA3163027A1 (en) 2019-12-25 2020-11-12 Polyether-polysiloxane block copolymer composition, foam stabilizer and method for producing polyurethane foam

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-234289 2019-12-25
JP2019234289 2019-12-25

Publications (1)

Publication Number Publication Date
WO2021131378A1 true WO2021131378A1 (ja) 2021-07-01

Family

ID=76575313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/042262 WO2021131378A1 (ja) 2019-12-25 2020-11-12 ポリエーテル-ポリシロキサンブロック共重合体組成物、整泡剤およびポリウレタン発泡体の製造方法

Country Status (3)

Country Link
US (1) US20230059761A1 (ja)
CA (1) CA3163027A1 (ja)
WO (1) WO2021131378A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022255356A1 (ja) 2021-06-04 2022-12-08 ダウ・東レ株式会社 ポリエーテル-ポリシロキサンブロック共重合体組成物の製造方法、ポリエーテル-ポリシロキサンブロック共重合体組成物およびその用途

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024167641A1 (en) * 2023-02-07 2024-08-15 Dow Silicones Corporation Linear silicone - polyether copolymer and processes for preparation and use of the copolymer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000063523A (ja) * 1998-08-11 2000-02-29 Wacker Chemie Gmbh 線状ポリエ―テル―ポリシロキサン―コポリマ―、その製法及び使用
JP5231796B2 (ja) * 2006-12-22 2013-07-10 エヴォニク ゴールドシュミット ゲーエムベーハー SiOC−結合、直鎖状ポリジメチルシロキサン−ポリオキシアルキレン−ブロックコポリマーの製造方法およびその使用
WO2016166979A1 (ja) * 2015-04-14 2016-10-20 東レ・ダウコーニング株式会社 ポリエーテル-ポリシロキサンブロック共重合体組成物、それを含む界面活性剤、整泡剤、ポリウレタン発泡体形成組成物、化粧料およびその製造方法
WO2018074257A1 (ja) * 2016-10-18 2018-04-26 東レ・ダウコーニング株式会社 ポリエーテル変性シリコーン組成物、それを含む界面活性剤、整泡剤、ポリウレタン発泡体形成組成物、化粧料およびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000063523A (ja) * 1998-08-11 2000-02-29 Wacker Chemie Gmbh 線状ポリエ―テル―ポリシロキサン―コポリマ―、その製法及び使用
JP5231796B2 (ja) * 2006-12-22 2013-07-10 エヴォニク ゴールドシュミット ゲーエムベーハー SiOC−結合、直鎖状ポリジメチルシロキサン−ポリオキシアルキレン−ブロックコポリマーの製造方法およびその使用
WO2016166979A1 (ja) * 2015-04-14 2016-10-20 東レ・ダウコーニング株式会社 ポリエーテル-ポリシロキサンブロック共重合体組成物、それを含む界面活性剤、整泡剤、ポリウレタン発泡体形成組成物、化粧料およびその製造方法
WO2018074257A1 (ja) * 2016-10-18 2018-04-26 東レ・ダウコーニング株式会社 ポリエーテル変性シリコーン組成物、それを含む界面活性剤、整泡剤、ポリウレタン発泡体形成組成物、化粧料およびその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022255356A1 (ja) 2021-06-04 2022-12-08 ダウ・東レ株式会社 ポリエーテル-ポリシロキサンブロック共重合体組成物の製造方法、ポリエーテル-ポリシロキサンブロック共重合体組成物およびその用途

Also Published As

Publication number Publication date
JPWO2021131378A1 (ja) 2021-07-01
CA3163027A1 (en) 2021-07-01
US20230059761A1 (en) 2023-02-23

Similar Documents

Publication Publication Date Title
JP6655066B2 (ja) ポリエーテル−ポリシロキサンブロック共重合体組成物、それを含む界面活性剤、整泡剤、ポリウレタン発泡体形成組成物、化粧料およびその製造方法
JP6139475B2 (ja) ポリウレタンフォームの製造方法
JP7075347B2 (ja) ポリエーテル変性シリコーン組成物、それを含む界面活性剤、整泡剤、ポリウレタン発泡体形成組成物、化粧料およびその製造方法
EP1770117B1 (en) Silanol-Functionalized compounds for the preparation of polyurethane foams
EP1095968B1 (en) Silicone surfactants for the production of open cell polyurethane flexible foams
US8476330B2 (en) Polyurethane foam containing synergistic surfactant combinations and process for making same
US8623984B2 (en) Compositions containing polyether-polysiloxane copolymers
CA2904714A1 (en) Production of viscoelastic polyurethane systems using block polymers having bonded siloxane blocks as cell openers
JP2007113004A (ja) ポリウレタン常温硬化フォームの調製方法
MXPA06013631A (es) Procedimiento para preparar espumas de poliuretano que tienen emisiones reducidas de compuestos organicos volatiles (vocs).
KR100279492B1 (ko) 폴리우레탄가요성포옴및경질포옴용의저방출성기포개방계면활성제
JP6703945B2 (ja) Pipaポリオール系の従来の軟質発泡体
JP2020002382A (ja) 整泡剤およびそれを含むポリウレタン発泡体形成組成物
WO2021131378A1 (ja) ポリエーテル-ポリシロキサンブロック共重合体組成物、整泡剤およびポリウレタン発泡体の製造方法
JP4081235B2 (ja) ポリウレタン軟質成形フォームを製造するためのシリコーン界面活性剤
KR100796478B1 (ko) 폴리우레탄 폼의 제조를 위한 실라놀 작용성 화합물
JP7497949B2 (ja) 泡増強剤、これを含むプレミックス溶液、これらを含むポリウレタン発泡体形成用組成物、および疎水性が改善されたポリウレタン発泡体
JPH01225611A (ja) 発泡合成樹脂の製造方法
JP2011157469A (ja) 硬質発泡合成樹脂およびその製造方法
MXPA00010394A (es) Tensioactivos de silicona para la produccion de espumas flexibles de poliuretano de celda abierta

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20907580

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021566900

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3163027

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20907580

Country of ref document: EP

Kind code of ref document: A1