WO2021131340A1 - Zinc nickel plating bath and plating method using same - Google Patents

Zinc nickel plating bath and plating method using same Download PDF

Info

Publication number
WO2021131340A1
WO2021131340A1 PCT/JP2020/041350 JP2020041350W WO2021131340A1 WO 2021131340 A1 WO2021131340 A1 WO 2021131340A1 JP 2020041350 W JP2020041350 W JP 2020041350W WO 2021131340 A1 WO2021131340 A1 WO 2021131340A1
Authority
WO
WIPO (PCT)
Prior art keywords
zinc
nickel
plating bath
nickel plating
plating
Prior art date
Application number
PCT/JP2020/041350
Other languages
French (fr)
Japanese (ja)
Inventor
将義 三上
悠司 橋本
Original Assignee
ディップソール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ディップソール株式会社 filed Critical ディップソール株式会社
Priority to JP2021566885A priority Critical patent/JPWO2021131340A1/ja
Publication of WO2021131340A1 publication Critical patent/WO2021131340A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys

Definitions

  • the present invention relates to a zinc-nickel plating bath.
  • the present invention relates to an electrozinc nickel plating bath that is hard to burn and prevents nickel hydroxide from depositing on the cathode, and a plating method using the bath, which can be used as a general surface treatment for corrosion prevention.
  • This zinc-nickel alloy plating usually uses an alkaline or weakly acidic plating solution containing zinc ions and nickel ions, and uses the object to be plated as a cathode and energizes the surface of the cathode to be plated with zinc nickel. It is alloy plated.
  • an alkaline plating solution bath
  • the current efficiency is poor and the plating speed is slow.
  • a weakly acidic plating solution containing potassium chloride (conductive salt) and ammonium chloride (buffer) is used in a barrel bath (a plating solution (eclectic bath) in which the object to be plated is placed in a basket).
  • a plating solution eclectic bath
  • Burning may occur at the same time.
  • Patent Document 2 contains a conductive salt, metallic zinc, and a brightener as an acidic zinc plating bath having improved stability over time even at a high temperature of 30 to 50 ° C., as a component of the brightener.
  • An acidic zinc-plated bath containing at least one of a cumylphenol-based anionic surfactant has been proposed.
  • Patent Document 2 does not mention the acidic zinc-nickel alloy electroplating solution at all.
  • An object of the present invention is to provide an electrozinc-nickel plating bath that is hard to burn and nickel hydroxide is hard to precipitate on the cathode. It is also an object of the present invention to provide an electrozinc-nickel plating method.
  • the pH of the zinc-nickel plating bath is adjusted in the range of 3.5 to 6.9, and a cumylphenol-based anionic surfactant and an amine-based chelating agent are used in combination with zinc ions, nickel ions, and chloride ions. Then, it was made based on the finding that the above-mentioned problems can be solved efficiently. That is, the present invention has the following aspects. 1. Zinc nickel plating bath with a pH of 3.5 to 6.9, zinc ion, nickel ion, chloride ion, cumylphenol anionic surfactant and amine chelating agent. A zinc-nickel plating bath characterized by. 2.
  • the amine-based chelating agent is at least one selected from the group consisting of an alkylene amine compound having 1 to 12 carbon atoms, an ethylene oxide adduct thereof, and a propylene oxide adduct. 4.
  • the zinc-nickel plating bath according to any one of 1 to 6 above which contains an aromatic aldehyde and / or an aromatic ketone.
  • the zinc-nickel plating bath according to 7 above wherein the aromatic aldehyde and the aromatic ketone are O-chlorobenzaldehyde and benzalacetone, respectively.
  • the zinc-nickel plating bath according to any one of 1 to 8 above which contains at least one selected from the group consisting of ammonia, ammonium salts, acetic acid, acetates, boric acid and borates.
  • the zinc-nickel plating bath according to any one of 1 to 9 above which does not contain sulfate ions. 11.
  • the object to be plated is used as a cathode, zinc, nickel or both are used as anodes, and the object to be plated is plated with zinc nickel using the zinc-nickel plating bath according to any one of 1 to 10 above.
  • a plating method characterized by subjecting an anode to zinc-nickel plating using a bath.
  • the plating bath of the present invention is a weakly acidic plating solution (chloride bath)
  • the obtained zinc-nickel film is hard to burn and hydroxylation is performed during the electroplating process, while maintaining the advantage that high-speed plating can be performed. It has an excellent effect of suppressing the phenomenon of nickel depositing and adhering to the cathode.
  • the pH of the bath is set to 3.5 to 6.9 in order to make it a weakly acidic bath.
  • a chloride bath is most preferable.
  • the pH of the plating bath is preferably 4.5 to 6.0, most preferably 5.2 to 5.8.
  • the pH of the plating bath can be easily adjusted by using hydrochloric acid, sodium hydroxide aqueous solution, potassium hydroxide aqueous solution, ammonia water, sodium carbonate aqueous solution, potassium carbonate aqueous solution, acetic acid, sodium acetate aqueous solution, potassium acetate aqueous solution and the like.
  • the plating bath of the present invention contains zinc ion, nickel ion, chloride ion (Cl-), a cumylphenol anionic surfactant and an amine chelating agent as essential components.
  • Zinc ions are derived from water-soluble zinc salts, and zinc chloride is preferable as the water-soluble zinc salt.
  • the concentration is preferably 40 to 130 g / L. More preferably, it is 60 to 110 g / L.
  • Nickel ions are derived from water-soluble nickel salts, and nickel chloride is preferable as the water-soluble nickel salt.
  • the concentration is preferably 70 to 150 g / L in terms of nickel chloride hexahydrate. More preferred is 75-120 g / L.
  • Chloride ions come from the above zinc chloride and nickel chloride, but also from other water-soluble chlorides added to the plating bath.
  • the amount of chloride ions is the total amount of chloride ions resulting from the water-soluble chloride in the plating bath.
  • the concentration is preferably 100 to 300 g / L. More preferred is 120-240 g / L.
  • Examples of the cumylphenol-based anionic surfactant include sulfonates in which ethylene oxide and / and propylene oxide are added in a total amount of 3 to 65 mol, preferably 8 to 62 mol to cumylphenol.
  • Examples of the sulfonate include potassium salt, sodium salt, amine salt and the like. Specific examples thereof include sodium polyoxyethylene p-cumylphenyl ether sulfate (3 to 65 mol, preferably 8 to 62 mol) of EO addition moles.
  • the concentration of ethylene oxide and / and propylene oxide added to cumylphenol in the plating bath is preferably 0.1 to 10 g / L, more preferably 0.2 to 5 g / L.
  • amine-based chelating agent examples include alkyleneamine compounds such as ethylenediamine, diethylenetriamine, triethylenetetramine, and tetraethylenepentamine, ethylene oxide adducts and propylene oxide adducts of the alkyleneamines; N- (2-aminoethyl) ethanolamine.
  • Amino alcohols such as 2-hydroxyethylaminopropylamine; N-2 (-hydroxyethyl) -N, N', N'-triethylethylenediamine, N, N'-di (2-hydroxyethyl) -N, N' Poly (hydroxyalkyl) alkylenes such as -diethylethylenediamine, N, N, N', N'-tetrakis (2-hydroxyethyl) propylenediamine, N, N, N', N'-tetrakis (2-hydroxypropyl) ethylenediamine.
  • Diamine Poly (alkyleneimine) obtained from ethyleneimine, 1,2-propyleneimine and the like, poly (alkyleneamine) or poly (aminoalcohol) obtained from ethylenediamine, triethylenetetramine, ethanolamine, diethanolamine and the like can be mentioned. ..
  • alkyleneamine compounds having 1 to 12 carbon atoms (preferably 2 to 10 carbon atoms) and 2 to 7 nitrogen atoms (preferably 2 to 6 nitrogen atoms), ethylene oxide adducts and propylene oxide adducts thereof. Is preferable.
  • These amine-based chelating agents may be used alone or in combination of two or more.
  • the concentration of the amine-based chelating agent in the plating bath is preferably 0.5 to 50 g / L, more preferably 1 to 5 g / L.
  • the plating bath of the present invention may contain one or more conductive salts.
  • Conductive salts used in the present invention include, for example, chlorides, sulfates, carbonates and the like. Among them, it is preferable to use at least one chloride of potassium chloride, ammonium chloride, and sodium chloride. In particular, potassium chloride and ammonium chloride alone or in combination are preferable.
  • the concentration of potassium chloride is preferably 150 to 250 g / L when used alone, and the concentration of ammonium chloride is preferably 150 to 300 g / L when used alone.
  • potassium chloride is preferably 70 to 200 g / L, and ammonium chloride is preferably 15 to 150 g / L.
  • Ammonium chloride also acts as a buffer.
  • ammonium chloride it is preferable to use an acetate such as ammonia, ammonium salt, borate or borate, acetic acid, potassium acetate or sodium acetate as a buffer.
  • the total concentration of boric acid and / or borate is preferably 15-90 g / L.
  • the total concentration of acetic acid and / or acetate is preferably 5 to 140 g / L, more preferably 7 to 140 g / L, and even more preferably 8 to 120 g / L. Further, even when ammonium chloride is used, these buffers can be appropriately used.
  • the plating bath of the present invention preferably contains an aromatic aldehyde having 7 to 10 carbon atoms or an aromatic ketone having 8 to 14 carbon atoms.
  • aromatic aldehyde examples include o-carboxybenzaldehyde, benzaldehyde, o-chlorobenzaldehyde, p-tolvaldehyde, anisaldehyde, p-dimethylaminobenzaldehyde, and terephthalaldehyde.
  • the aromatic ketone include benzalacetone, benzophenone, acetophenone, terephthaloylbenzyl chloride and the like.
  • particularly preferable compounds are benzalacetone and o-chlorbenzaldehyde.
  • concentration in each bath is preferably 0.1 to 20 mg / L, more preferably 0.3 to 10 mg / L.
  • the rest of the plating bath of the present invention is water.
  • Electroplating is used as a plating method using the zinc-nickel plating bath of the present invention. Electroplating can be performed by direct current or pulse current.
  • the bath temperature is usually in the range of 25 to 50 ° C, preferably in the range of 30 to 45 ° C.
  • the current density is usually preferably carried out under electrolytic conditions in the range of 0.1 to 15 A / dm2, preferably in the range of 0.5 to 10 A / dm2. Further, when plating is performed, it is preferable to stir the liquid by air blow or jet jet. By doing so, the current density can be further increased.
  • As the anode a zinc plate, a nickel plate, a zinc ball, a nickel chip or the like is desirable.
  • a metal article to which the zinc-nickel plating film of the present invention is applied is used.
  • this metal article various metals such as iron, nickel and copper, and alloys thereof, or electrically conductive articles such as metals and alloys such as aluminum which have been subjected to zinc substitution treatment are used, and the shape thereof is pre- Any material such as a flat plate such as a metal or an article having a complicated appearance, for example, a fastening part such as a bolt or a nut, or various cast parts such as a brake caliper can be used.
  • the object to be plated is used as a cathode, zinc and nickel are used as anodes, and a part or all of the zinc anode is installed in an anode chamber separated by an ion exchange diaphragm, and the zinc-nickel plating bath is used.
  • Zinc-nickel plating can be applied to the plated body. According to this method, an increase in metal concentration (particularly zinc concentration) in the plating solution due to operation can be suppressed and controlled, so that there is an advantage that a plating film having stable quality can be obtained.
  • the nickel eutectoid rate in the zinc nickel plating film obtained by using the electrozinc nickel plating bath of the present invention is preferably 5 to 18% by weight, more preferably 10 to 18% by weight, and most preferably 12 ⁇ 15% by weight.
  • the balance is preferably zinc.
  • Example 1 Zinc chloride 73 g / L (zinc concentration 35 g / L), nickel chloride hexahydrate 89 g / L (nickel concentration 22 g / L), potassium chloride 180 g / L (total chlorine concentration 170 g / L), ammonium chloride 30 g / L L, polyoxyethylene p-cumylphenyl ether sulfate sodium salt (EO addition mol 40 mol: Neucol CMP-40-SN) 0.25 g / L, benzalacetone 6 mg / L, diethylenetriamine 2.5 g / L, 1.5 g / L of sodium benzoate and 90 g / L of potassium acetate were mixed and dissolved in water, and the pH was adjusted to 5.4 with hydrochloric acid to prepare a plating bath (1 liter).
  • EO addition mol 40 mol: Neucol CMP-40-SN polyoxyethylene p-cumylphenyl ether sulfate sodium salt
  • the iron plate was pretreated in the steps of alkaline degreasing, water washing, pickling, water washing, alkaline electrolysis washing, water washing, hydrochloric acid activation, and water washing, and this was used as a cathode.
  • a nickel plate was used as the anode, and plating was performed at a bath temperature of 35 ° C. and a DC power supply at a cathode current density of 4 A / dm 2 for 10 minutes.
  • the plating bath was stirred at a rotation speed of 1200 rpm using a regular stirrer having a diameter of 8 ⁇ 30 mm and a magnetic stirrer.
  • the iron plate is a long panel for Halcel test having a length of 65 mm, a width of 200 mm, and a thickness of 0.5 mm
  • the nickel plate is a plate having a length of 65 mm, a width of 65 mm, and a thickness of 2 mm.
  • a plating test similar to the Halcel test was performed, and the nickel elution rate (%) of the zinc nickel plating film, the film thickness distribution, the precipitation of nickel hydroxide at the cathode, and the burnt appearance and appearance of the zinc nickel plating film (Halcel). Appearance) was evaluated by the following method. The evaluation results are shown in Table 1.
  • the nickel eutectoid rate (%) and the film thickness of the plating film were measured using a fluorescent X-ray analyzer (Microelement Monitor SEA5120, manufactured by SII Nanotechnology Co., Ltd.).
  • SEA5120 fluorescent X-ray analyzer
  • the cathode surface at the end of the zinc-nickel plating treatment was visually observed, and the precipitation of nickel hydroxide on the cathode was evaluated according to the following criteria.
  • Precipitation width is less than 6 mm from the left end (high current part side) of the Hull cell test panel (allowable range)
  • C Precipitation width is 6 mm or more from the left end (high current part side) of the Hull cell test panel (cannot be used) (Zinc-nickel plating film burnt) The occurrence of burns on the zinc-nickel plating film at the end of the zinc-nickel plating treatment was evaluated according to the following criteria. If the evaluations in the Halsel test are A and B, no burning will occur on the object to be plated when actually plating with an article.
  • A Burn width is less than 6 mm (good) from the left end (high current part side) of the Hull cell test panel.
  • B Burn width is less than 9 mm from the left end (high current part side) of the Hull cell test panel (allowable range)
  • C Burn width is 9 mm or more from the left end (high current part side) of the Hull cell test panel (cannot be used) (Appearance of zinc-nickel plating film (Halcel appearance)) The appearance of Halsel in the zinc-nickel plating film at the end of the zinc-nickel plating treatment was evaluated according to the following criteria.
  • A Hull cell test panel 3mm from the left end (high current part side) to the right side, cloudy and stain-free appearance (very good)
  • B Hull cell test panel 6mm from the left end (high current part side) to the right side, cloudy and stain-free appearance (good)
  • C Hull cell test panel 9 mm from the left end (high current part side) to the right side, cloudy and stain-free appearance (allowable range)
  • D Appearance with light cloudiness and stains on the entire Halsel test panel (unusable)
  • E Appearance with dark cloudiness and stains on the entire Halsel test panel (unusable)
  • Example 2 Zinc chloride 73 g / L (zinc concentration 35 g / L), nickel chloride hexahydrate 89 g / L (nickel concentration 22 g / L), potassium chloride 180 g / L (total chlorine concentration 170 g / L), ammonium chloride 30 g / L L, polyoxyethylene p-cumylphenyl ether sulfate sodium salt (EO addition mol 60 mol: Neucol CMP-60-SN) 1 g / L, benzalacetone 6 mg / L, diethylenetriamine 2.5 g / L, benzoic acid 1.5 g / L of sodium and 90 g / L of potassium acetate were mixed and dissolved in water, and the pH was adjusted to 5.4 with hydrochloric acid to prepare a plating bath (1 liter).
  • polyoxyethylene p-cumylphenyl ether sulfate sodium salt EO addition mol 60 mol: Neucol CMP-60-SN
  • Example 3 Zinc chloride 73 g / L (zinc concentration 35 g / L), nickel chloride hexahydrate 89 g / L (nickel concentration 22 g / L), potassium chloride 180 g / L (total chlorine concentration 170 g / L), ammonium chloride 30 g / L L, polyoxyethylene p-cumylphenyl ether sulfate sodium salt (EO addition mol 11 mol: Neucol CMP-11-SN) 1 g / L, benzalacetone 6 mg / L, diethylenetriamine 2.5 g / L, benzoic acid 1.5 g / L of sodium and 90 g / L of potassium acetate were mixed and dissolved in water, and the pH was adjusted to 5.4 with hydrochloric acid to prepare a plating bath (1 liter).
  • polyoxyethylene p-cumylphenyl ether sulfate sodium salt EO addition mol 11 mol: Neucol CMP-11-SN
  • Example 4 Zinc chloride 73 g / L (zinc concentration 35 g / L), nickel chloride hexahydrate 89 g / L (nickel concentration 22 g / L), potassium chloride 180 g / L (total chlorine concentration 170 g / L), ammonium chloride 30 g / L L, polyoxyethylene p-cumylphenyl ether sulfate sodium salt (EO addition mol 20 mol: Neucol CMP-20-SN) 1 g / L, benzalacetone 6 mg / L, diethylenetriamine 2.5 g / L, benzoic acid 1.5 g / L of sodium and 90 g / L of potassium acetate were mixed and dissolved in water, and the pH was adjusted to 5.4 with hydrochloric acid to prepare a plating bath (1 liter).
  • polyoxyethylene p-cumylphenyl ether sulfate sodium salt EO addition mol 20 mol: Neucol CMP-20-SN
  • Example 5 Zinc chloride 73 g / L (zinc concentration 35 g / L), nickel chloride hexahydrate 89 g / L (nickel concentration 22 g / L), potassium chloride 220 g / L (total chlorine concentration 170 g / L), polyoxyethylene p -Cumylphenyl ether sulfate sodium salt (EO addition mol 11 mol: Neucol CMP-11-SN) 1 g / L, benzal acetone 6 mg / L, diethylenetriamine 2.5 g / L, sodium benzoate 1.5 g / L , 90 g / L of potassium acetate was mixed and dissolved in water, and the pH was adjusted to 5.4 with hydrochloric acid to prepare a plating bath (1 liter).
  • Comparative Example 3 Instead of 0.25 g / L of polyoxyethylene p-cumylphenyl ether sulfate sodium salt (EO addition mol 40 mol: Neucol CMP-40-SN) in Example 1, a cumylphenol-based nonionic surfactant ( 11 mol of EO addition: Newcol CMP-11 manufactured by Nippon Emulsifier Co., Ltd.
  • Table 1 Measurement results of Ni elution rate (%) of zinc nickel plating film, film thickness distribution, precipitation of nickel hydroxide at the cathode, and burnt and appearance (Halcel appearance) of zinc nickel plating film.
  • a zinc nickel plating film capable of preventing precipitation of nickel hydroxide at the cathode, suppressing the occurrence of burning of the zinc nickel plating film, and having an excellent appearance can be obtained. It can be seen that it can be obtained (Examples 1 to 5).
  • Comparative Examples 1 and 2 in which a conventional surfactant other than the cumylphenol anionic surfactant was used, precipitation of nickel hydroxide was prevented at the cathode, burnt generation of the zinc nickel plating film was suppressed, and burning was suppressed. It can be seen that the three requirements of a zinc-nickel plating film having an excellent appearance cannot be achieved at the same time.
  • Example 6 Zinc chloride 73 g / L (zinc concentration 35 g / L), nickel chloride hexahydrate 89 g / L (nickel concentration 22 g / L), potassium chloride 180 g / L (total chlorine concentration 170 g / L), ammonium chloride 30 g / L L, polyoxyethylene p-cumylphenyl ether sulfate sodium salt (EO addition mol 11 mol: Neucol CMP-11-SN) 1 g / L, benzalacetone 6 mg / L, diethylenetriamine 2.5 g / L, benzoic acid 1.5 g / L of sodium and 90 g / L of potassium acetate were mixed and dissolved in water, and the pH was adjusted to 5.4 with hydrochloric acid to prepare a plating bath (15 liters).
  • EO addition mol 11 mol: Neucol CMP-11-SN polyoxyethylene p-cumylphenyl ether sulfate sodium salt
  • the iron bolts were pretreated in the steps of alkaline degreasing, washing with water, pickling, washing with water, alkaline electrolytic washing, washing with water, activating hydrochloric acid, and washing with water.
  • a zinc plate and a nickel plate were used as anodes, and plating was carried out at a bath temperature of 35 ° C. and a cathode current density of 0.75 A / dm 2 for 45 minutes using a DC power supply.
  • the plating was performed using an auto guilder while rotating at 4 to 6 rpm.
  • the iron bolt is an M8 x 55 size hexagon bolt (half-screw type), and the zinc plate and nickel plate are 300 mm long, 100 mm wide, 20 mm thick, and the nickel plate is 300 mm long, 150 mm wide, and thick. It is a plate with a diameter of 15 mm.
  • the nickel elution rate (%) of the zinc-nickel plating film, the film thickness, the precipitation of nickel hydroxide on the hexagon bolt and the auto-guilder cathode (dangler), and the burnt and plated appearance of the zinc-nickel plating film are shown in the examples. It was evaluated by the method of 1.

Abstract

The purpose of the present invention is to provide a zinc nickel electroplating bath that is difficult to bring burnt deposits and is difficult to bring a deposit of nickel hydroxide onto a cathode. The present invention pertains to a zinc nickel plating bath. The zinc nickel plating bath has a pH of 3.5-6.9 and contains a zinc ion, a nickel ion, a chloride ion, a cumylphenol anionic surfactant and an amine-based chelator.

Description

亜鉛ニッケルめっき浴及び該浴を用いるめっき方法Zinc nickel plating bath and plating method using the bath
 本発明は、亜鉛ニッケルめっき浴に関するものである。腐食防止のための一般的な表面処理として利用できる、こげにくくかつ水酸化ニッケルが陰極に析出しにくい電気亜鉛ニッケルめっき浴及び該浴を用いるめっき方法に関するものである。 The present invention relates to a zinc-nickel plating bath. The present invention relates to an electrozinc nickel plating bath that is hard to burn and prevents nickel hydroxide from depositing on the cathode, and a plating method using the bath, which can be used as a general surface treatment for corrosion prevention.
 亜鉛ニッケル合金めっきが、優れた耐食性を有していることはよく知られている。この亜鉛ニッケル合金めっきは、通常、亜鉛イオン及びニッケルイオンを含むアルカリ性又は弱酸性のめっき液を用い、被めっき体を陰極として、陽極との間に通電して陰極の被めっき体表面に亜鉛ニッケル合金めっきを施すものである。
 このうち、自動車部品などへの亜鉛ニッケル合金めっきには、アルカリ性のめっき液(浴)が使用されているが、電流効率が悪く、めっき速度が遅いとの問題がある。一方、弱酸性のめっき液(浴)を用いると、電流効率が良好で、めっき速度が速いとの利点があるものの、めっき時の電流密度が変化した場合、皮膜中のニッケルの割合が大きく変化してしまうとの問題点が指摘されている(特許文献1)。この問題の解決に、(1)亜鉛イオン;(2)ニッケルイオン;(3)導電性塩;(4)pH緩衝剤;並びに(5)H2N-R1-R2の式で表されるアミン化合物を含む酸性亜鉛ニッケル合金電気めっき液が提案されている(特許文献1)。
 さらに、弱酸性のめっき液(浴)を用いると、次のような問題がある。例えば、塩化カリウムを導電性塩として含有する弱酸性のめっき液(塩化浴)を、静止浴として用いて高速めっきを行うと、こげ(めっき皮膜ががさがさになったり、粗くなったり、光沢もなくなる現象)が発生しやすくなる。また、pH緩衝剤の量が不足したり、撹拌が不均一になると、水酸化ニッケルが陰極に析出したり(通電不足になる)、被めっき体の表面に付着するとの問題が生じる。これに対して、塩化カリウム(導電性塩)と塩化アンモニウム(緩衝剤)を含有する弱酸性のめっき液(折衷浴)を、バレル浴(かごにいれた被めっき体をめっき液(折衷浴)に入れ、めっき処理中、回転させる)として用いてめっきを行うと、水酸化ニッケルが陰極に析出したり、被めっき体の表面に付着するとの問題が生じる。同時にこげが発生することがある。
 一方、特許文献2には、30~50℃の高温時においても経時安定性が改善された酸性亜鉛めっき浴として、導電塩と、金属亜鉛と、光沢剤とを含み、前記光沢剤の成分として、クミルフェノール系アニオン性界面活性剤の少なくとも1種以上を含有する酸性亜鉛めっき浴が提案されている。しかしながら、特許文献2には、酸性亜鉛ニッケル合金電気めっき液について全く言及されていない。
It is well known that zinc-nickel alloy plating has excellent corrosion resistance. This zinc-nickel alloy plating usually uses an alkaline or weakly acidic plating solution containing zinc ions and nickel ions, and uses the object to be plated as a cathode and energizes the surface of the cathode to be plated with zinc nickel. It is alloy plated.
Of these, an alkaline plating solution (bath) is used for zinc-nickel alloy plating on automobile parts and the like, but there is a problem that the current efficiency is poor and the plating speed is slow. On the other hand, using a weakly acidic plating solution (bath) has the advantages of good current efficiency and high plating speed, but when the current density during plating changes, the proportion of nickel in the film changes significantly. It has been pointed out that there is a problem of this (Patent Document 1). To solve this problem, (1) zinc ion; (2) nickel ion; (3) conductive salt; (4) pH buffer; and (5) amine represented by the formula of H 2 N-R1-R2. An acidic zinc-nickel alloy electroplating solution containing a compound has been proposed (Patent Document 1).
Further, the use of a weakly acidic plating solution (bath) has the following problems. For example, when a weakly acidic plating solution (chloride bath) containing potassium chloride as a conductive salt is used as a static bath for high-speed plating, darkening (the plating film becomes rough, rough, or loses its luster). Phenomenon) is likely to occur. Further, if the amount of the pH buffer is insufficient or the stirring becomes non-uniform, there arises a problem that nickel hydroxide precipitates on the cathode (insufficient energization) or adheres to the surface of the object to be plated. On the other hand, a weakly acidic plating solution (eclectic bath) containing potassium chloride (conductive salt) and ammonium chloride (buffer) is used in a barrel bath (a plating solution (eclectic bath) in which the object to be plated is placed in a basket). When plating is performed by using the plating as a method (rotating during the plating process), there arises a problem that nickel hydroxide precipitates on the cathode or adheres to the surface of the object to be plated. Burning may occur at the same time.
On the other hand, Patent Document 2 contains a conductive salt, metallic zinc, and a brightener as an acidic zinc plating bath having improved stability over time even at a high temperature of 30 to 50 ° C., as a component of the brightener. , An acidic zinc-plated bath containing at least one of a cumylphenol-based anionic surfactant has been proposed. However, Patent Document 2 does not mention the acidic zinc-nickel alloy electroplating solution at all.
WO2014/157105A1WO2014 / 157105A1 WO2010/055917A1WO2010 / 055917A1
 本発明は、こげにくくかつ水酸化ニッケルが陰極に析出しにくい電気亜鉛ニッケルめっき浴を提供することを目的とする。
 本発明は、また、電気亜鉛ニッケルめっき方法を提供することを目的とする。
An object of the present invention is to provide an electrozinc-nickel plating bath that is hard to burn and nickel hydroxide is hard to precipitate on the cathode.
It is also an object of the present invention to provide an electrozinc-nickel plating method.
 本発明は、亜鉛ニッケルめっき浴のpHを3.5~6.9の範囲に調整し、亜鉛イオン、ニッケルイオン、塩化物イオンに、クミルフェノール系アニオン界面活性剤及びアミン系キレート剤を併用すると上記課題を効率的に解決できるとの知見に基づいてなされたものである。
 すなわち、本発明は、以下の態様を有するものである。
1. 亜鉛ニッケルめっき浴であって、めっき浴のpHが3.5~6.9、亜鉛イオン、ニッケルイオン、塩化物イオン、クミルフェノール系アニオン界面活性剤及びアミン系キレート剤を含有することを特徴とする亜鉛ニッケルめっき浴。
2. クミルフェノール系アニオン界面活性剤が、クミルフェノールにエチレンオキサイド、プロピレンオキサイドまたはエチレンオキサイドとプロピレンオキサイドのブロック共重合体を付加したスルホン酸塩である上記1記載の亜鉛ニッケルめっき浴。
3. アミン系キレート剤が、炭素数1~12のアルキレンアミン化合物、そのエチレンオキサイド付加物及びプロピレンオキサイド付加物からなる群から選ばれる少なくとも1種である上記1又は2記載の亜鉛ニッケルめっき浴。
4. めっき浴のpHが4.5~6.0である上記1~3のいずれか1記載の亜鉛ニッケルめっき浴。
5. 芳香族カルボン酸及び/又はその塩を含有する上記1~4のいずれか1項記載の亜鉛ニッケルめっき浴。
6. 芳香族カルボン酸及び/又はその塩が、安息香酸、安息香酸塩又はこれらの組み合わせである上記5記載の亜鉛ニッケルめっき浴。
In the present invention, the pH of the zinc-nickel plating bath is adjusted in the range of 3.5 to 6.9, and a cumylphenol-based anionic surfactant and an amine-based chelating agent are used in combination with zinc ions, nickel ions, and chloride ions. Then, it was made based on the finding that the above-mentioned problems can be solved efficiently.
That is, the present invention has the following aspects.
1. Zinc nickel plating bath with a pH of 3.5 to 6.9, zinc ion, nickel ion, chloride ion, cumylphenol anionic surfactant and amine chelating agent. A zinc-nickel plating bath characterized by.
2. The zinc-nickel plating bath according to 1 above, wherein the cumylphenol-based anionic surfactant is a sulfonate obtained by adding ethylene oxide, propylene oxide or a block copolymer of ethylene oxide and propylene oxide to cumylphenol.
3. The zinc-nickel plating bath according to 1 or 2 above, wherein the amine-based chelating agent is at least one selected from the group consisting of an alkylene amine compound having 1 to 12 carbon atoms, an ethylene oxide adduct thereof, and a propylene oxide adduct.
4. The zinc-nickel plating bath according to any one of 1 to 3 above, wherein the pH of the plating bath is 4.5 to 6.0.
5. The zinc-nickel plating bath according to any one of 1 to 4 above, which contains an aromatic carboxylic acid and / or a salt thereof.
6. The zinc-nickel plating bath according to 5 above, wherein the aromatic carboxylic acid and / or a salt thereof is benzoic acid, benzoate or a combination thereof.
7. 芳香族アルデヒド及び/又は芳香族ケトンを含有する上記1~6のいずれか1項記載の亜鉛ニッケルめっき浴。
8. 芳香族アルデヒド及び芳香族ケトンが、それぞれO-クロルベンズアルデヒド、ベンザールアセトンである上記7記載の亜鉛ニッケルめっき浴。
9. アンモニア、アンモニウム塩、酢酸、酢酸塩、ホウ酸及びホウ酸塩からなる群から選ばれる少なくとも一種を含有する上記1~8のいずれか1項記載の亜鉛ニッケルめっき浴。
10. 硫酸イオンを含有しない上記1~9のいずれか1項記載の亜鉛ニッケルめっき浴。
11. 被めっき体を陰極とし、亜鉛、ニッケル又はこれらの両方を陽極とし、上記1~10のいずれか1項記載の亜鉛ニッケルめっき浴を用いて、被めっき体に亜鉛ニッケルめっきを施すことを特徴とするめっき方法。
12. 被めっき体を陰極とし、亜鉛とニッケルを陽極とし、亜鉛陽極の一部または全部をイオン交換隔膜で隔てた陽極室内に設置し、上記1~10のいずれか1項記載の亜鉛ニッケルめっき浴を用いて、被めっき体に亜鉛ニッケルめっきを施すことを特徴とするめっき方法。
7. The zinc-nickel plating bath according to any one of 1 to 6 above, which contains an aromatic aldehyde and / or an aromatic ketone.
8. The zinc-nickel plating bath according to 7 above, wherein the aromatic aldehyde and the aromatic ketone are O-chlorobenzaldehyde and benzalacetone, respectively.
9. The zinc-nickel plating bath according to any one of 1 to 8 above, which contains at least one selected from the group consisting of ammonia, ammonium salts, acetic acid, acetates, boric acid and borates.
10. The zinc-nickel plating bath according to any one of 1 to 9 above, which does not contain sulfate ions.
11. The object to be plated is used as a cathode, zinc, nickel or both are used as anodes, and the object to be plated is plated with zinc nickel using the zinc-nickel plating bath according to any one of 1 to 10 above. A characteristic plating method.
12. Zinc-nickel plating according to any one of 1 to 10 above, with the object to be plated as the cathode, zinc and nickel as the anode, and part or all of the zinc anode placed in the anode chamber separated by an ion exchange diaphragm. A plating method characterized by subjecting an anode to zinc-nickel plating using a bath.
 本発明のめっき浴は、弱酸性のめっき液(塩化浴)であるので高速めっきを行うことができるとの利点を維持しながら、得られる亜鉛ニッケル皮膜がこげにくくかつ電気めっき処理中に水酸化ニッケルが陰極に析出付着する現象を抑制できるとの優れた効果を奏する。 Since the plating bath of the present invention is a weakly acidic plating solution (chloride bath), the obtained zinc-nickel film is hard to burn and hydroxylation is performed during the electroplating process, while maintaining the advantage that high-speed plating can be performed. It has an excellent effect of suppressing the phenomenon of nickel depositing and adhering to the cathode.
 本発明の電気亜鉛ニッケルめっき浴は、弱酸性浴とする為に、浴のpHを3.5~6.9に設定する。このような弱酸性浴としては、塩化浴が最も好ましい。また、めっき浴のpHは、好ましくは4.5~6.0、最も好ましくは5.2~5.8である。尚、めっき浴のpHは、塩酸、水酸化ナトリウム水溶液、水酸化カリウム水溶液、アンモニア水、炭酸ナトリウム水溶液、炭酸カリウム水溶液、酢酸、酢酸ナトリウム水溶液、酢酸カリウム水溶液などを用いて容易に調整できる。
 本発明のめっき浴は、亜鉛イオン、ニッケルイオン、塩化物イオン(Cl-)及びクミルフェノール系アニオン界面活性剤とアミン系キレート剤を必須成分として含有する。
 亜鉛イオンは水溶性亜鉛塩からもたらされ、水溶性亜鉛塩としては塩化亜鉛が好ましい。その濃度は40~130g/Lが好ましい。さらに好ましくは、60~110g/Lである。
 ニッケルイオンは水溶性ニッケル塩からもたらされ、水溶性ニッケル塩としては塩化ニッケルが好ましい。その濃度は、塩化ニッケル6水和物換算で、70~150g/Lが好ましい。さらに好ましいのは、75~120g/Lである。
 塩化物イオンは、上記塩化亜鉛や塩化ニッケルからもたらされるが、めっき浴に添加されたこれ以外の水溶性塩化物からももたらされる。塩化物イオンの量は、めっき浴中の水溶性塩化物からもたらされる塩化物イオンの合計量である。その濃度は100~300g/Lが好ましい。さらに好ましいのは、120~240g/Lである。
In the electrozinc-nickel plating bath of the present invention, the pH of the bath is set to 3.5 to 6.9 in order to make it a weakly acidic bath. As such a weakly acidic bath, a chloride bath is most preferable. The pH of the plating bath is preferably 4.5 to 6.0, most preferably 5.2 to 5.8. The pH of the plating bath can be easily adjusted by using hydrochloric acid, sodium hydroxide aqueous solution, potassium hydroxide aqueous solution, ammonia water, sodium carbonate aqueous solution, potassium carbonate aqueous solution, acetic acid, sodium acetate aqueous solution, potassium acetate aqueous solution and the like.
The plating bath of the present invention contains zinc ion, nickel ion, chloride ion (Cl-), a cumylphenol anionic surfactant and an amine chelating agent as essential components.
Zinc ions are derived from water-soluble zinc salts, and zinc chloride is preferable as the water-soluble zinc salt. The concentration is preferably 40 to 130 g / L. More preferably, it is 60 to 110 g / L.
Nickel ions are derived from water-soluble nickel salts, and nickel chloride is preferable as the water-soluble nickel salt. The concentration is preferably 70 to 150 g / L in terms of nickel chloride hexahydrate. More preferred is 75-120 g / L.
Chloride ions come from the above zinc chloride and nickel chloride, but also from other water-soluble chlorides added to the plating bath. The amount of chloride ions is the total amount of chloride ions resulting from the water-soluble chloride in the plating bath. The concentration is preferably 100 to 300 g / L. More preferred is 120-240 g / L.
 クミルフェノール系アニオン界面活性剤としては、クミルフェノールにエチレンオキサイドまたは/およびプロピレンオキサイドを合計で3~65モル、好ましくは8~62モル付加したスルホン酸塩があげられる。スルホン酸塩としては、カリウム塩、ナトリウム塩、アミン塩等が挙げられる。具体的には、ポリオキシエチレンp-クミルフェニルエーテル硫酸エステルナトリウム塩(EO付加モル数3~65モル、好ましくは8~62モル)などがあげられる。
 クミルフェノールにエチレンオキサイドまたは/及びプロピレンオキサイドを付加したスルホン酸塩のめっき浴中の濃度は、0.1~10g/Lが好ましく、さらに好ましくは0.2~5g/Lである。
 これらのクミルフェノール系アニオン界面活性剤は、市場から、例えば、日本乳化剤株式会社のニューコールCMP-4-SN(EO付加モル4モル)、CMP-11-SN(EO付加モル11モル)、CMP-40-SN(EO付加モル40モル)、CMP-60-SN(EO付加モル60モル)などとして容易に入手することができる。
Examples of the cumylphenol-based anionic surfactant include sulfonates in which ethylene oxide and / and propylene oxide are added in a total amount of 3 to 65 mol, preferably 8 to 62 mol to cumylphenol. Examples of the sulfonate include potassium salt, sodium salt, amine salt and the like. Specific examples thereof include sodium polyoxyethylene p-cumylphenyl ether sulfate (3 to 65 mol, preferably 8 to 62 mol) of EO addition moles.
The concentration of ethylene oxide and / and propylene oxide added to cumylphenol in the plating bath is preferably 0.1 to 10 g / L, more preferably 0.2 to 5 g / L.
These cumylphenol-based anionic surfactants are available from the market, for example, Newcol CMP-4-SN (4 mol of EO addition mole), CMP-11-SN (11 mol of EO addition mole) of Nippon Embroidery Co., Ltd. It can be easily obtained as CMP-40-SN (40 mol of EO addition mol), CMP-60-SN (60 mol of EO addition mol) and the like.
 アミン系キレート剤としては、例えばエチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン等のアルキレンアミン化合物、前記アルキレンアミンのエチレンオキサイド付加物、プロピレンオキサイド付加物;N-(2-アミノエチル)エタノールアミン、2-ヒドロキシエチルアミノプロピルアミンなどのアミノアルコール;N-2(-ヒドロキシエチル)-N,N’,N’-トリエチルエチレンジアミン、N,N’-ジ(2-ヒドロキシエチル)-N,N’-ジエチルエチレンジアミン、N,N,N’,N’-テトラキス(2-ヒドロキシエチル)プロピレンジアミン、N,N,N’,N’-テトラキス(2-ヒドロキシプロピル)エチレンジアミンなどのポリ(ヒドロキシアルキル)アルキレンジアミン;エチレンイミン、1,2-プロピレンイミンなどから得られるポリ(アルキレンイミン)、エチレンジアミン、トリエチレンテトラミン、エタノールアミン、ジエタノールアミンなどから得られるポリ(アルキレンアミン)又はポリ(アミノアルコール)などが挙げられる。これらのうち、炭素数1~12(好ましくは炭素数2~10)で窒素原子数2~7(好ましくは窒素原子数2~6)のアルキレンアミン化合物、そのエチレンオキサイド付加物及びプロピレンオキサイド付加物が好ましい。これらのアミン系キレート剤は、単独で用いてもよく、又は2種以上を組み合わせて用いてもよい。アミン系キレート剤のめっき浴中の濃度は、0.5~50g/Lが好ましく、さらに好ましくは1~5g/Lである。 Examples of the amine-based chelating agent include alkyleneamine compounds such as ethylenediamine, diethylenetriamine, triethylenetetramine, and tetraethylenepentamine, ethylene oxide adducts and propylene oxide adducts of the alkyleneamines; N- (2-aminoethyl) ethanolamine. , Amino alcohols such as 2-hydroxyethylaminopropylamine; N-2 (-hydroxyethyl) -N, N', N'-triethylethylenediamine, N, N'-di (2-hydroxyethyl) -N, N' Poly (hydroxyalkyl) alkylenes such as -diethylethylenediamine, N, N, N', N'-tetrakis (2-hydroxyethyl) propylenediamine, N, N, N', N'-tetrakis (2-hydroxypropyl) ethylenediamine. Diamine: Poly (alkyleneimine) obtained from ethyleneimine, 1,2-propyleneimine and the like, poly (alkyleneamine) or poly (aminoalcohol) obtained from ethylenediamine, triethylenetetramine, ethanolamine, diethanolamine and the like can be mentioned. .. Of these, alkyleneamine compounds having 1 to 12 carbon atoms (preferably 2 to 10 carbon atoms) and 2 to 7 nitrogen atoms (preferably 2 to 6 nitrogen atoms), ethylene oxide adducts and propylene oxide adducts thereof. Is preferable. These amine-based chelating agents may be used alone or in combination of two or more. The concentration of the amine-based chelating agent in the plating bath is preferably 0.5 to 50 g / L, more preferably 1 to 5 g / L.
 本発明のめっき浴は、一種以上の導電性塩を含んでいてもよい。導電性塩を用いることにより、通電時の電圧を低下させ、電流効率を向上させることができる。本発明に使用される導電性塩は、例えば、塩化物、硫酸塩、炭酸塩などがある。その中でも、塩化カリウム、塩化アンモニウム、及び塩化ナトリウムのうち、少なくとも一種以上の塩化物を用いるのが好ましい。特に塩化カリウム、塩化アンモニウムの単独もしくは併用が好ましい。塩化カリウムの濃度は、単独の場合150~250g/Lが好ましく、塩化アンモニウムの濃度は、単独の場合150~300g/Lが好ましい。塩化カリウムと塩化アンモニウム併用の場合は、塩化カリウム70~200g/Lが好ましく、塩化アンモニウム15~150g/Lが好ましい。塩化アンモニウムは緩衝剤としての効果もある。塩化アンモ二ウムを用いない場合は、緩衝剤として、アンモニア、アンモニウム塩、ホウ酸やホウ酸塩、酢酸や酢酸カリウム、酢酸ナトリウムなどの酢酸塩を用いるのが好ましい。ホウ酸及び/又はホウ酸塩の合計濃度は15~90g/Lが好ましい。酢酸及び/又は酢酸塩の合計濃度は5~140g/Lが好ましく、より好ましくは7~140g/L、さらに好ましいのは、8~120g/Lである。また、塩化アンモニウムを用いる場合でも、これら緩衝剤を適宜用いることができる。 The plating bath of the present invention may contain one or more conductive salts. By using the conductive salt, the voltage at the time of energization can be lowered and the current efficiency can be improved. Conductive salts used in the present invention include, for example, chlorides, sulfates, carbonates and the like. Among them, it is preferable to use at least one chloride of potassium chloride, ammonium chloride, and sodium chloride. In particular, potassium chloride and ammonium chloride alone or in combination are preferable. The concentration of potassium chloride is preferably 150 to 250 g / L when used alone, and the concentration of ammonium chloride is preferably 150 to 300 g / L when used alone. When potassium chloride and ammonium chloride are used in combination, potassium chloride is preferably 70 to 200 g / L, and ammonium chloride is preferably 15 to 150 g / L. Ammonium chloride also acts as a buffer. When ammonium chloride is not used, it is preferable to use an acetate such as ammonia, ammonium salt, borate or borate, acetic acid, potassium acetate or sodium acetate as a buffer. The total concentration of boric acid and / or borate is preferably 15-90 g / L. The total concentration of acetic acid and / or acetate is preferably 5 to 140 g / L, more preferably 7 to 140 g / L, and even more preferably 8 to 120 g / L. Further, even when ammonium chloride is used, these buffers can be appropriately used.
 めっき皮膜の緻密化と光沢が必要な場合は、本発明のめっき浴は、炭素数7~10の芳香族アルデヒドや炭素数8~14の芳香族ケトンを含有するのが好ましい。芳香族アルデヒドとしては、例えば、o-カルボキシベンズアルデヒド、ベンズアルデヒド、o-クロルベンズアルデヒド、p-トルアルデヒド、アニスアルデヒド、p-ジメチルアミノベンズアルデヒド、テレフタルアルデヒドなどが挙げられる。芳香族ケトンとしては、例えば、ベンザールアセトン、ベンゾフェノン、アセトフェノン、塩化テレフタロイルベンジルなどが挙げられる。ここで、特に好ましい化合物は、ベンザールアセトンとo-クロルベンズアルデヒドである。それぞれの浴中濃度は、0.1~20mg/Lが好ましく、より好ましくは0.3~10mg/Lである。
 本発明のめっき浴の残部は、水である。
When densification and gloss of the plating film are required, the plating bath of the present invention preferably contains an aromatic aldehyde having 7 to 10 carbon atoms or an aromatic ketone having 8 to 14 carbon atoms. Examples of the aromatic aldehyde include o-carboxybenzaldehyde, benzaldehyde, o-chlorobenzaldehyde, p-tolvaldehyde, anisaldehyde, p-dimethylaminobenzaldehyde, and terephthalaldehyde. Examples of the aromatic ketone include benzalacetone, benzophenone, acetophenone, terephthaloylbenzyl chloride and the like. Here, particularly preferable compounds are benzalacetone and o-chlorbenzaldehyde. The concentration in each bath is preferably 0.1 to 20 mg / L, more preferably 0.3 to 10 mg / L.
The rest of the plating bath of the present invention is water.
 本発明の亜鉛ニッケルめっき浴を用いるめっき方法として電気めっきが用いられる。電気めっきは、直流もしくはパルス電流により行うことができる。
 浴温は、通常、25~50℃の範囲、好ましくは30~45℃の範囲である。電流密度は、通常、0.1~15A/dm2の範囲、好ましくは0.5~10A/dm2の範囲の電解条件で行うのが良い。また、めっきを実施する場合は、エアーブローやジェット噴流により液撹拌をすることが好ましい。そうすることで電流密度をさらに高くすることができる。
 陽極としては、亜鉛板、ニッケル板、亜鉛ボール、ニッケルチップ等が望ましい。
 陰極には、本発明の亜鉛ニッケルめっき皮膜を施す金属物品を用いる。この金属物品としては、鉄、ニッケル、銅などの各種金属、及びこれらの合金、あるいは亜鉛置換処理を施したアルミニウムなどの金属や合金などの電気伝導性物品を用いるが、その形状は、プレ-トなどの平板状のものや複雑な外見を有する形状物品、例えばボルト、ナット等の締結部品やブレーキキャリパー等の各種鋳物部品など任意のものを用いることができる。
 本発明では、さらに、被めっき体を陰極とし、亜鉛とニッケルを陽極とし、亜鉛陽極の一部または全部をイオン交換隔膜で隔てた陽極室内に設置し、上記亜鉛ニッケルめっき浴を用いて、被めっき体に亜鉛ニッケルめっきを施すことができる。この方法によると、稼働に伴うめっき液中の金属濃度(特に亜鉛濃度)の上昇を抑制・制御できるため、品質の安定しためっき皮膜が得られるという利点がある。
Electroplating is used as a plating method using the zinc-nickel plating bath of the present invention. Electroplating can be performed by direct current or pulse current.
The bath temperature is usually in the range of 25 to 50 ° C, preferably in the range of 30 to 45 ° C. The current density is usually preferably carried out under electrolytic conditions in the range of 0.1 to 15 A / dm2, preferably in the range of 0.5 to 10 A / dm2. Further, when plating is performed, it is preferable to stir the liquid by air blow or jet jet. By doing so, the current density can be further increased.
As the anode, a zinc plate, a nickel plate, a zinc ball, a nickel chip or the like is desirable.
As the cathode, a metal article to which the zinc-nickel plating film of the present invention is applied is used. As this metal article, various metals such as iron, nickel and copper, and alloys thereof, or electrically conductive articles such as metals and alloys such as aluminum which have been subjected to zinc substitution treatment are used, and the shape thereof is pre- Any material such as a flat plate such as a metal or an article having a complicated appearance, for example, a fastening part such as a bolt or a nut, or various cast parts such as a brake caliper can be used.
Further, in the present invention, the object to be plated is used as a cathode, zinc and nickel are used as anodes, and a part or all of the zinc anode is installed in an anode chamber separated by an ion exchange diaphragm, and the zinc-nickel plating bath is used. Zinc-nickel plating can be applied to the plated body. According to this method, an increase in metal concentration (particularly zinc concentration) in the plating solution due to operation can be suppressed and controlled, so that there is an advantage that a plating film having stable quality can be obtained.
 本発明の電気亜鉛ニッケルめっき浴を用いて得られる亜鉛ニッケルめっき皮膜中のニッケル共析率は、好ましくは5~18重量%であり、より好ましくは10~18重量%であり、最も好ましくは12~15重量%である。ニッケル共析率が高い方が耐食性は良くなり、最も好ましいニッケル共析率のとき、最も耐食性が良い。尚、残部は亜鉛であるのが好ましい。
 次に実施例により本発明を一層具体的に説明するが、本発明はこれらの実施例により何ら限定されるものではない。
The nickel eutectoid rate in the zinc nickel plating film obtained by using the electrozinc nickel plating bath of the present invention is preferably 5 to 18% by weight, more preferably 10 to 18% by weight, and most preferably 12 ~ 15% by weight. The higher the nickel eutectoid rate, the better the corrosion resistance, and when the nickel eutectoid rate is the most preferable, the corrosion resistance is the best. The balance is preferably zinc.
Next, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.
実施例1
 塩化亜鉛73g/L(亜鉛濃度として35g/L)、塩化ニッケル6水和物89g/L(ニッケル濃度として22g/L)、塩化カリウム180g/L(全塩素濃度170g/L)、塩化アンモニウム30g/L、ポリオキシエチレンp-クミルフェニルエーテル硫酸エステルナトリウム塩(EO付加モル40モル:ニューコールCMP-40-SN)0.25g/L、ベンザールアセトン6mg/L、ジエチレントリアミン2.5g/L、安息香酸ナトリウム1.5g/L、酢酸カリウム90g/Lを水に混合溶解させ、塩酸を用いてpH5.4に調整してめっき浴(1リットル)を調製した。
 次に、鉄製プレートに対し、アルカリ脱脂、水洗、酸洗、水洗、アルカリ電解洗浄、水洗、塩酸活性化、水洗の工程で前処理を行い、これを陰極として用いた。陽極としてニッケル板を用い、浴温を35℃、直流電源で陰極電流密度4A/dm2で10分間めっきを実施した。尚、めっき浴はφ8×30mmのレギュラー攪拌子およびマグネチックスターラーを用いて1200rpmの回転速度で攪拌した。
 尚、鉄製プレートは、縦65mm、横200mm、厚さ0.5mmのハルセル試験用ロングパネルであり、ニッケル板は、縦65mm、横65mm、厚さ2mmのプレートである。
 この実施例において、ハルセル試験に準ずるめっき試験を行い、亜鉛ニッケルめっき皮膜のニッケル共析率(%)、膜厚分布、水酸化ニッケルの陰極での析出、亜鉛ニッケルめっき皮膜のこげと外観(ハルセル外観)を下記の方法により評価した。評価結果を表1に示す。
Example 1
Zinc chloride 73 g / L (zinc concentration 35 g / L), nickel chloride hexahydrate 89 g / L (nickel concentration 22 g / L), potassium chloride 180 g / L (total chlorine concentration 170 g / L), ammonium chloride 30 g / L L, polyoxyethylene p-cumylphenyl ether sulfate sodium salt (EO addition mol 40 mol: Neucol CMP-40-SN) 0.25 g / L, benzalacetone 6 mg / L, diethylenetriamine 2.5 g / L, 1.5 g / L of sodium benzoate and 90 g / L of potassium acetate were mixed and dissolved in water, and the pH was adjusted to 5.4 with hydrochloric acid to prepare a plating bath (1 liter).
Next, the iron plate was pretreated in the steps of alkaline degreasing, water washing, pickling, water washing, alkaline electrolysis washing, water washing, hydrochloric acid activation, and water washing, and this was used as a cathode. A nickel plate was used as the anode, and plating was performed at a bath temperature of 35 ° C. and a DC power supply at a cathode current density of 4 A / dm 2 for 10 minutes. The plating bath was stirred at a rotation speed of 1200 rpm using a regular stirrer having a diameter of 8 × 30 mm and a magnetic stirrer.
The iron plate is a long panel for Halcel test having a length of 65 mm, a width of 200 mm, and a thickness of 0.5 mm, and the nickel plate is a plate having a length of 65 mm, a width of 65 mm, and a thickness of 2 mm.
In this example, a plating test similar to the Halcel test was performed, and the nickel elution rate (%) of the zinc nickel plating film, the film thickness distribution, the precipitation of nickel hydroxide at the cathode, and the burnt appearance and appearance of the zinc nickel plating film (Halcel). Appearance) was evaluated by the following method. The evaluation results are shown in Table 1.
(Ni共析率(%)及び厚さの測定方法)
 めっき皮膜のニッケル共析率(%)及び膜厚は、蛍光X線分析装置(エスアイアイ・ナノテクノロジー(株)製、マイクロエレメントモニターSEA5120)を用いて測定した。
(水酸化ニッケルの陰極での析出)
 亜鉛ニッケルめっき処理終了時の陰極表面を目視で観測し、下記の基準で水酸化ニッケルの陰極での析出を評価した。ハルセル試験での評価がA及びBであれば、実際に物品を用いてめっきをする場合、被めっき物やバレルめっき装置の陰極(ダングラー)に水酸化ニッケルは析出しない。
 A:析出幅が、ハルセル試験パネル左端(高電流部側)から3mm未満(良好)
 B:析出幅が、ハルセル試験パネル左端(高電流部側)から6mm未満(許容範囲)
 C:析出幅が、ハルセル試験パネル左端(高電流部側)から6mm以上(使用不可)
(亜鉛ニッケルめっき皮膜のこげ)
 亜鉛ニッケルめっき処理終了時の亜鉛ニッケルめっき皮膜上のこげの発生を下記の基準で評価した。ハルセル試験での評価がA及びBであれば、実際に物品を用いてめっきをする場合、被めっき物にこげは発生しない。
 A:こげ幅が、ハルセル試験パネル左端(高電流部側)から6mm未満(良好)
 B:こげ幅が、ハルセル試験パネル左端(高電流部側)から9mm未満(許容範囲)
 C:こげ幅が、ハルセル試験パネル左端(高電流部側)から9mm以上(使用不可)
(亜鉛ニッケルめっき皮膜の外観(ハルセル外観))
  亜鉛ニッケルめっき処理終了時の亜鉛ニッケルめっき皮膜のハルセル外観を下記の基準で評価した。
 A:ハルセル試験パネル左端(高電流部側)から3mmの位置より右側にこげやくもり、シミのない外観(とても良好)
 B:ハルセル試験パネル左端(高電流部側)から6mmの位置より右側にこげやくもり、シミのない外観(良好)
 C:ハルセル試験パネル左端(高電流部側)から9mmの位置より右側にこげやくもり、シミのない外観(許容範囲)
 D:ハルセル試験パネル全体にくもりやシミが薄く発生している外観(使用不可)
 E:ハルセル試験パネル全体にくもりやシミが濃く発生している外観(使用不可)
(Measurement method of Ni eutectoid rate (%) and thickness)
The nickel eutectoid rate (%) and the film thickness of the plating film were measured using a fluorescent X-ray analyzer (Microelement Monitor SEA5120, manufactured by SII Nanotechnology Co., Ltd.).
(Precipitation of nickel hydroxide on the cathode)
The cathode surface at the end of the zinc-nickel plating treatment was visually observed, and the precipitation of nickel hydroxide on the cathode was evaluated according to the following criteria. If the evaluations in the Halsel test are A and B, nickel hydroxide does not precipitate on the object to be plated or the cathode (dangler) of the barrel plating apparatus when actually plating with an article.
A: Precipitation width is less than 3 mm (good) from the left end (high current part side) of the Hull cell test panel.
B: Precipitation width is less than 6 mm from the left end (high current part side) of the Hull cell test panel (allowable range)
C: Precipitation width is 6 mm or more from the left end (high current part side) of the Hull cell test panel (cannot be used)
(Zinc-nickel plating film burnt)
The occurrence of burns on the zinc-nickel plating film at the end of the zinc-nickel plating treatment was evaluated according to the following criteria. If the evaluations in the Halsel test are A and B, no burning will occur on the object to be plated when actually plating with an article.
A: Burn width is less than 6 mm (good) from the left end (high current part side) of the Hull cell test panel.
B: Burn width is less than 9 mm from the left end (high current part side) of the Hull cell test panel (allowable range)
C: Burn width is 9 mm or more from the left end (high current part side) of the Hull cell test panel (cannot be used)
(Appearance of zinc-nickel plating film (Halcel appearance))
The appearance of Halsel in the zinc-nickel plating film at the end of the zinc-nickel plating treatment was evaluated according to the following criteria.
A: Hull cell test panel 3mm from the left end (high current part side) to the right side, cloudy and stain-free appearance (very good)
B: Hull cell test panel 6mm from the left end (high current part side) to the right side, cloudy and stain-free appearance (good)
C: Hull cell test panel 9 mm from the left end (high current part side) to the right side, cloudy and stain-free appearance (allowable range)
D: Appearance with light cloudiness and stains on the entire Halsel test panel (unusable)
E: Appearance with dark cloudiness and stains on the entire Halsel test panel (unusable)
実施例2
 塩化亜鉛73g/L(亜鉛濃度として35g/L)、塩化ニッケル6水和物89g/L(ニッケル濃度として22g/L)、塩化カリウム180g/L(全塩素濃度170g/L)、塩化アンモニウム30g/L、ポリオキシエチレンp-クミルフェニルエーテル硫酸エステルナトリウム塩(EO付加モル60モル:ニューコールCMP-60-SN)1g/L、ベンザールアセトン6mg/L、ジエチレントリアミン2.5g/L、安息香酸ナトリウム1.5g/L、酢酸カリウム90g/Lを水に混合溶解させ、塩酸を用いてpH5.4に調整してめっき浴(1リットル)を調製した。
 次に、実施例1と同様の陰極及び陽極を用い、実施例1と同じ条件でめっきを行い、水酸化ニッケルの陰極での析出、亜鉛ニッケルめっき皮膜のこげと外観(ハルセル外観)を実施例1と同様に評価した。その評価結果を表1に示す。
Example 2
Zinc chloride 73 g / L (zinc concentration 35 g / L), nickel chloride hexahydrate 89 g / L (nickel concentration 22 g / L), potassium chloride 180 g / L (total chlorine concentration 170 g / L), ammonium chloride 30 g / L L, polyoxyethylene p-cumylphenyl ether sulfate sodium salt (EO addition mol 60 mol: Neucol CMP-60-SN) 1 g / L, benzalacetone 6 mg / L, diethylenetriamine 2.5 g / L, benzoic acid 1.5 g / L of sodium and 90 g / L of potassium acetate were mixed and dissolved in water, and the pH was adjusted to 5.4 with hydrochloric acid to prepare a plating bath (1 liter).
Next, using the same cathode and anode as in Example 1, plating was performed under the same conditions as in Example 1, and the precipitation of nickel hydroxide on the cathode and the burnt appearance (Halcel appearance) of the zinc nickel plating film were observed. It was evaluated in the same manner as 1. The evaluation results are shown in Table 1.
実施例3
 塩化亜鉛73g/L(亜鉛濃度として35g/L)、塩化ニッケル6水和物89g/L(ニッケル濃度として22g/L)、塩化カリウム180g/L(全塩素濃度170g/L)、塩化アンモニウム30g/L、ポリオキシエチレンp-クミルフェニルエーテル硫酸エステルナトリウム塩(EO付加モル11モル:ニューコールCMP-11-SN)1g/L、ベンザールアセトン6mg/L、ジエチレントリアミン2.5g/L、安息香酸ナトリウム1.5g/L、酢酸カリウム90g/Lを水に混合溶解させ、塩酸を用いてpH5.4に調整してめっき浴(1リットル)を調製した。
 次に、実施例1と同様の陰極及び陽極を用い、実施例1と同じ条件でめっきを行い、水酸化ニッケルの陰極での析出、亜鉛ニッケルめっき皮膜のこげと外観(ハルセル外観)を実施例1と同様に評価した。その評価結果を表1に示す。
Example 3
Zinc chloride 73 g / L (zinc concentration 35 g / L), nickel chloride hexahydrate 89 g / L (nickel concentration 22 g / L), potassium chloride 180 g / L (total chlorine concentration 170 g / L), ammonium chloride 30 g / L L, polyoxyethylene p-cumylphenyl ether sulfate sodium salt (EO addition mol 11 mol: Neucol CMP-11-SN) 1 g / L, benzalacetone 6 mg / L, diethylenetriamine 2.5 g / L, benzoic acid 1.5 g / L of sodium and 90 g / L of potassium acetate were mixed and dissolved in water, and the pH was adjusted to 5.4 with hydrochloric acid to prepare a plating bath (1 liter).
Next, using the same cathode and anode as in Example 1, plating was performed under the same conditions as in Example 1, and the precipitation of nickel hydroxide on the cathode and the burnt appearance (Halcel appearance) of the zinc nickel plating film were observed. It was evaluated in the same manner as 1. The evaluation results are shown in Table 1.
実施例4
 塩化亜鉛73g/L(亜鉛濃度として35g/L)、塩化ニッケル6水和物89g/L(ニッケル濃度として22g/L)、塩化カリウム180g/L(全塩素濃度170g/L)、塩化アンモニウム30g/L、ポリオキシエチレンp-クミルフェニルエーテル硫酸エステルナトリウム塩(EO付加モル20モル:ニューコールCMP-20-SN)1g/L、ベンザールアセトン6mg/L、ジエチレントリアミン2.5g/L、安息香酸ナトリウム1.5g/L、酢酸カリウム90g/Lを水に混合溶解させ、塩酸を用いてpH5.4に調整してめっき浴(1リットル)を調製した。
 次に、実施例1と同様の陰極及び陽極を用い、実施例1と同じ条件でめっきを行い、水酸化ニッケルの陰極での析出、亜鉛ニッケルめっき皮膜のこげと外観(ハルセル外観)を実施例1と同様に評価した。その評価結果を表1に示す。
Example 4
Zinc chloride 73 g / L (zinc concentration 35 g / L), nickel chloride hexahydrate 89 g / L (nickel concentration 22 g / L), potassium chloride 180 g / L (total chlorine concentration 170 g / L), ammonium chloride 30 g / L L, polyoxyethylene p-cumylphenyl ether sulfate sodium salt (EO addition mol 20 mol: Neucol CMP-20-SN) 1 g / L, benzalacetone 6 mg / L, diethylenetriamine 2.5 g / L, benzoic acid 1.5 g / L of sodium and 90 g / L of potassium acetate were mixed and dissolved in water, and the pH was adjusted to 5.4 with hydrochloric acid to prepare a plating bath (1 liter).
Next, using the same cathode and anode as in Example 1, plating was performed under the same conditions as in Example 1, and the precipitation of nickel hydroxide on the cathode and the burnt appearance (Halcel appearance) of the zinc nickel plating film were observed. It was evaluated in the same manner as 1. The evaluation results are shown in Table 1.
実施例5
 塩化亜鉛73g/L(亜鉛濃度として35g/L)、塩化ニッケル6水和物89g/L(ニッケル濃度として22g/L)、塩化カリウム220g/L(全塩素濃度170g/L)、ポリオキシエチレンp-クミルフェニルエーテル硫酸エステルナトリウム塩(EO付加モル11モル:ニューコールCMP-11-SN)1g/L、ベンザールアセトン6mg/L、ジエチレントリアミン2.5g/L、安息香酸ナトリウム1.5g/L、酢酸カリウム90g/Lを水に混合溶解させ、塩酸を用いてpH5.4に調整してめっき浴(1リットル)を調製した。
 次に、実施例1と同様の陰極及び陽極を用い、実施例1と同じ条件でめっきを行い、水酸化ニッケルの陰極での析出、亜鉛ニッケルめっき皮膜のこげと外観(ハルセル外観)を実施例1と同様に評価した。その評価結果を表1に示す。
Example 5
Zinc chloride 73 g / L (zinc concentration 35 g / L), nickel chloride hexahydrate 89 g / L (nickel concentration 22 g / L), potassium chloride 220 g / L (total chlorine concentration 170 g / L), polyoxyethylene p -Cumylphenyl ether sulfate sodium salt (EO addition mol 11 mol: Neucol CMP-11-SN) 1 g / L, benzal acetone 6 mg / L, diethylenetriamine 2.5 g / L, sodium benzoate 1.5 g / L , 90 g / L of potassium acetate was mixed and dissolved in water, and the pH was adjusted to 5.4 with hydrochloric acid to prepare a plating bath (1 liter).
Next, using the same cathode and anode as in Example 1, plating was performed under the same conditions as in Example 1, and the precipitation of nickel hydroxide on the cathode and the burnt appearance (Halcel appearance) of the zinc nickel plating film were observed. It was evaluated in the same manner as 1. The evaluation results are shown in Table 1.
比較例1
 塩化亜鉛73g/L(亜鉛濃度として35g/L)、塩化ニッケル6水和物89g/L(ニッケル濃度として22g/L)、塩化カリウム180g/L(全塩素濃度170g/L)、塩化アンモニウム30g/L、ノニルフェノール系ノニオン界面活性剤(EO付加モル30モル付加)(ミヨシ油脂株式会社製のペレテックス1245S)4g/L、ベンザールアセトン6mg/L、ジエチレントリアミン2.5g/L、安息香酸ナトリウム1.5g/L、酢酸カリウム90g/Lを水に混合溶解させ、塩酸を用いてpH5.4に調整してめっき浴(1リットル)を調製した。
 次に、実施例1と同様の陰極及び陽極を用い、実施例1と同じ条件でめっきを行い、水酸化ニッケルの陰極での析出、亜鉛ニッケルめっき皮膜のこげと外観(ハルセル外観)を実施例1と同様に評価した。その評価結果を表1に示す。
Comparative Example 1
Zinc chloride 73 g / L (zinc concentration 35 g / L), nickel chloride hexahydrate 89 g / L (nickel concentration 22 g / L), potassium chloride 180 g / L (total chlorine concentration 170 g / L), ammonium chloride 30 g / L L, nonylphenol-based nonionic surfactant (with 30 mol of EO added) (Peletex 1245S manufactured by Miyoshi Oil & Fat Co., Ltd.) 4 g / L, benzal acetone 6 mg / L, diethylenetriamine 2.5 g / L, sodium benzoate 1.5 g / L and 90 g / L of potassium acetate were mixed and dissolved in water, and the pH was adjusted to 5.4 with hydrochloric acid to prepare a plating bath (1 liter).
Next, using the same cathode and anode as in Example 1, plating was performed under the same conditions as in Example 1, and the precipitation of nickel hydroxide on the cathode and the burnt appearance (Halcel appearance) of the zinc nickel plating film were observed. It was evaluated in the same manner as 1. The evaluation results are shown in Table 1.
比較例2
 塩化亜鉛73g/L(亜鉛濃度として35g/L)、塩化ニッケル6水和物89g/L(ニッケル濃度として22g/L)、塩化カリウム180g/L(全塩素濃度170g/L)、塩化アンモニウム30g/L、ポリオキシエチレンアルキルフェノール型ノニオン界面活性剤(EO付加モル10モル)(青木油脂工業株式会社製のブラウノンBEO-10)4g/L、ベンザールアセトン6mg/L、ジエチレントリアミン2.5g/L、安息香酸ナトリウム1.5g/L、酢酸カリウム90g/Lを水に混合溶解させ、塩酸を用いてpH5.4に調整してめっき浴(1リットル)を調製した。
 次に、実施例1と同様の陰極及び陽極を用い、実施例1と同じ条件でめっきを行い、水酸化ニッケルの陰極での析出、亜鉛ニッケルめっき皮膜のこげと外観(ハルセル外観)を実施例1と同様に評価した。その評価結果を表1に示す。
Comparative Example 2
Zinc chloride 73 g / L (zinc concentration 35 g / L), nickel chloride hexahydrate 89 g / L (nickel concentration 22 g / L), potassium chloride 180 g / L (total chlorine concentration 170 g / L), ammonium chloride 30 g / L L, Polyoxyethylene alkylphenol type nonionic surfactant (10 mol with EO added) (Brownon BEO-10 manufactured by Aoki Yushi Kogyo Co., Ltd.) 4 g / L, benzalacetone 6 mg / L, diethylenetriamine 2.5 g / L, benzo 1.5 g / L of sodium acid and 90 g / L of potassium acetate were mixed and dissolved in water, and the pH was adjusted to 5.4 with hydrochloric acid to prepare a plating bath (1 liter).
Next, using the same cathode and anode as in Example 1, plating was performed under the same conditions as in Example 1, and the precipitation of nickel hydroxide on the cathode and the burnt appearance (Halcel appearance) of the zinc nickel plating film were observed. It was evaluated in the same manner as 1. The evaluation results are shown in Table 1.
比較例3
 実施例1におけるポリオキシエチレンp-クミルフェニルエーテル硫酸エステルナトリウム塩(EO付加モル40モル:ニューコールCMP-40-SN)0.25g/Lの代わりに、クミルフェノール系ノニオン界面活性剤(EO付加モル11モル:日本乳化剤株式会社製のNewcol CMP-11)4g/L、ポリオキシエチレンアルキルフェノール型ノニオン界面活性剤(EO付加モル16モル:青木油脂工業株式会社製のブラウノンKTSP-1604P)4g/L、又はポリオキシエチレンアルキルフェノール型ノニオン界面活性剤(EO付加モル2モル:青木油脂工業株式会社製のブラウノンN-502)4g/Lを用いた以外は実施例1と同じめっき浴(1リットル)を調製した。しかしながら、これらのノニオン系界面活性剤はめっき浴に溶解しなかったので、ハルセル試験に準ずるめっき試験を行わなかった。
Comparative Example 3
Instead of 0.25 g / L of polyoxyethylene p-cumylphenyl ether sulfate sodium salt (EO addition mol 40 mol: Neucol CMP-40-SN) in Example 1, a cumylphenol-based nonionic surfactant ( 11 mol of EO addition: Newcol CMP-11 manufactured by Nippon Emulsifier Co., Ltd. 4 g / L, 4 g of polyoxyethylene alkylphenol type nonionic surfactant (16 mol of EO addition: Braunon KTSP-1604P manufactured by Aoki Yushi Kogyo Co., Ltd.) The same plating bath as in Example 1 (1 liter) except that 4 g / L or polyoxyethylene alkylphenol type nonionic surfactant (2 mol of EO addition: Braunon N-502 manufactured by Aoki Yushi Kogyo Co., Ltd.) was used. ) Was prepared. However, since these nonionic surfactants did not dissolve in the plating bath, the plating test similar to the Halsel test was not performed.
表1 亜鉛ニッケルめっき皮膜のNi共析率(%)、膜厚分布、水酸化ニッケルの陰極での析出、亜鉛ニッケルめっき皮膜のこげと外観(ハルセル外観)の測定結果
Figure JPOXMLDOC01-appb-I000001
Table 1 Measurement results of Ni elution rate (%) of zinc nickel plating film, film thickness distribution, precipitation of nickel hydroxide at the cathode, and burnt and appearance (Halcel appearance) of zinc nickel plating film.
Figure JPOXMLDOC01-appb-I000001
 表1の結果から明らかなように、本発明によれば、水酸化ニッケルの陰極での析出を防止でき、亜鉛ニッケルめっき皮膜のこげの発生を抑制し、かつ外観が優れた亜鉛ニッケルめっき皮膜を得ることができることがわかる(実施例1~5)。
 これに対して、クミルフェノール系アニオン界面活性剤ではない従来の界面活性剤を用いた比較例1及び2では、水酸化ニッケルの陰極での析出防止、亜鉛ニッケルめっき皮膜のこげ発生抑制、及び外観が優れた亜鉛ニッケルめっき皮膜の3つの要求を同時に達成することができないことがわかる。
As is clear from the results in Table 1, according to the present invention, a zinc nickel plating film capable of preventing precipitation of nickel hydroxide at the cathode, suppressing the occurrence of burning of the zinc nickel plating film, and having an excellent appearance can be obtained. It can be seen that it can be obtained (Examples 1 to 5).
On the other hand, in Comparative Examples 1 and 2 in which a conventional surfactant other than the cumylphenol anionic surfactant was used, precipitation of nickel hydroxide was prevented at the cathode, burnt generation of the zinc nickel plating film was suppressed, and burning was suppressed. It can be seen that the three requirements of a zinc-nickel plating film having an excellent appearance cannot be achieved at the same time.
実施例6
 塩化亜鉛73g/L(亜鉛濃度として35g/L)、塩化ニッケル6水和物89g/L(ニッケル濃度として22g/L)、塩化カリウム180g/L(全塩素濃度170g/L)、塩化アンモニウム30g/L、ポリオキシエチレンp-クミルフェニルエーテル硫酸エステルナトリウム塩(EO付加モル11モル:ニューコールCMP-11-SN)1g/L、ベンザールアセトン6mg/L、ジエチレントリアミン2.5g/L、安息香酸ナトリウム1.5g/L、酢酸カリウム90g/Lを水に混合溶解させ、塩酸を用いてpH5.4に調整してめっき浴(15リットル)を調製した。
 次に、鉄製ボルトに対し、アルカリ脱脂、水洗、酸洗、水洗、アルカリ電解洗浄、水洗、塩酸活性化、水洗の工程で前処理を行った。陽極として亜鉛板とニッケル板を用い、浴温を35℃、直流電源で陰極電流密度0.75A/dm2で45分間めっきを実施した。尚、めっきはオートギルダーを用いて、4~6rpmで回転させながらめっきした。
 尚、鉄製ボルトはM8×55サイズの六角ボルト(半ねじタイプ)であり、亜鉛板とニッケル板は、亜鉛板が縦300mm、横100mm、厚さ20mm、ニッケル板が縦300mm、横150mm、厚さ15mmのプレートである。
 この実施例において、亜鉛ニッケルめっき皮膜のニッケル共析率(%)、膜厚、六角ボルト及びオートギルダー陰極(ダングラー)での水酸化ニッケルの析出、亜鉛ニッケルめっき皮膜のこげとめっき外観を実施例1の方法により評価した。
 評価 六角ボルト頭部の二面幅中央での測定結果で、ニッケル共析率14%、膜厚10μm、
 六角ボルト及びオートギルダー陰極(ダングラー)での水酸化ニッケルの析出はなく、こげやくもり、シミの無い良好な亜鉛-ニッケル合金めっき皮膜外観であった。
Example 6
Zinc chloride 73 g / L (zinc concentration 35 g / L), nickel chloride hexahydrate 89 g / L (nickel concentration 22 g / L), potassium chloride 180 g / L (total chlorine concentration 170 g / L), ammonium chloride 30 g / L L, polyoxyethylene p-cumylphenyl ether sulfate sodium salt (EO addition mol 11 mol: Neucol CMP-11-SN) 1 g / L, benzalacetone 6 mg / L, diethylenetriamine 2.5 g / L, benzoic acid 1.5 g / L of sodium and 90 g / L of potassium acetate were mixed and dissolved in water, and the pH was adjusted to 5.4 with hydrochloric acid to prepare a plating bath (15 liters).
Next, the iron bolts were pretreated in the steps of alkaline degreasing, washing with water, pickling, washing with water, alkaline electrolytic washing, washing with water, activating hydrochloric acid, and washing with water. A zinc plate and a nickel plate were used as anodes, and plating was carried out at a bath temperature of 35 ° C. and a cathode current density of 0.75 A / dm 2 for 45 minutes using a DC power supply. The plating was performed using an auto guilder while rotating at 4 to 6 rpm.
The iron bolt is an M8 x 55 size hexagon bolt (half-screw type), and the zinc plate and nickel plate are 300 mm long, 100 mm wide, 20 mm thick, and the nickel plate is 300 mm long, 150 mm wide, and thick. It is a plate with a diameter of 15 mm.
In this example, the nickel elution rate (%) of the zinc-nickel plating film, the film thickness, the precipitation of nickel hydroxide on the hexagon bolt and the auto-guilder cathode (dangler), and the burnt and plated appearance of the zinc-nickel plating film are shown in the examples. It was evaluated by the method of 1.
Evaluation Hexagon bolt head measurement result at the center of the width across flats, nickel eutectoid rate 14%, film thickness 10 μm,
There was no precipitation of nickel hydroxide on the hexagon bolt and the auto-guilder cathode (dangler), and the appearance of the zinc-nickel alloy plating film was good without burning, cloudiness, or stains.

Claims (12)

  1.  亜鉛ニッケルめっき浴であって、めっき浴のpHが3.5~6.9、亜鉛イオン、ニッケルイオン、塩化物イオン、クミルフェノール系アニオン界面活性剤及びアミン系キレート剤を含有することを特徴とする亜鉛ニッケルめっき浴。 A zinc-nickel plating bath characterized in that the pH of the plating bath is 3.5 to 6.9, and zinc ion, nickel ion, chloride ion, cumylphenol-based anionic surfactant and amine-based chelating agent are contained. Zinc nickel plating bath.
  2.  クミルフェノール系アニオン界面活性剤が、クミルフェノールにエチレンオキサイド、プロピレンオキサイドまたはエチレンオキサイドとプロピレンオキサイドのブロック共重合体を付加したスルホン酸塩である請求項1記載の亜鉛ニッケルめっき浴。 The zinc-nickel plating bath according to claim 1, wherein the cumylphenol-based anionic surfactant is a sulfonate obtained by adding ethylene oxide, propylene oxide, or a block copolymer of ethylene oxide and propylene oxide to cumylphenol.
  3.  アミン系キレート剤が、炭素数1~12のアルキレンアミン化合物、そのエチレンオキサイド付加物及びプロピレンオキサイド付加物からなる群から選ばれる少なくとも1種である請求項1又は2記載の亜鉛ニッケルめっき浴。 The zinc-nickel plating bath according to claim 1 or 2, wherein the amine-based chelating agent is at least one selected from the group consisting of an alkylene amine compound having 1 to 12 carbon atoms, an ethylene oxide adduct thereof, and a propylene oxide adduct.
  4.  めっき浴のpHが4.5~6.0である請求項1~3のいずれか1記載の亜鉛ニッケルめっき浴。 The zinc-nickel plating bath according to any one of claims 1 to 3, wherein the pH of the plating bath is 4.5 to 6.0.
  5.  芳香族カルボン酸及び/又はその塩を含有する請求項1~4のいずれか1項記載の亜鉛ニッケルめっき浴。 The zinc-nickel plating bath according to any one of claims 1 to 4, which contains an aromatic carboxylic acid and / or a salt thereof.
  6.  芳香族カルボン酸及び/又はその塩が、安息香酸、安息香酸塩又はこれらの組み合わせである請求項5記載の亜鉛ニッケルめっき浴。 The zinc-nickel plating bath according to claim 5, wherein the aromatic carboxylic acid and / or a salt thereof is benzoic acid, benzoate, or a combination thereof.
  7.  芳香族アルデヒド及び/又は芳香族ケトンを含有する請求項1~6のいずれか1項記載の亜鉛ニッケルめっき浴。 The zinc-nickel plating bath according to any one of claims 1 to 6, which contains an aromatic aldehyde and / or an aromatic ketone.
  8.  芳香族アルデヒド及び芳香族ケトンが、それぞれO-クロルベンズアルデヒド、ベンザールアセトンである請求項7記載の亜鉛ニッケルめっき浴。 The zinc-nickel plating bath according to claim 7, wherein the aromatic aldehyde and the aromatic ketone are O-chlorobenzaldehyde and benzalacetone, respectively.
  9.  アンモニア、アンモニウム塩、酢酸、酢酸塩、ホウ酸及びホウ酸塩からなる群から選ばれる少なくとも一種を含有する請求項1~8のいずれか1項記載の亜鉛ニッケルめっき浴。 The zinc nickel plating bath according to any one of claims 1 to 8, which contains at least one selected from the group consisting of ammonia, ammonium salt, acetic acid, acetate, boric acid and borate.
  10.  硫酸イオンを含有しない請求項1~9のいずれか1項記載の亜鉛ニッケルめっき浴。 The zinc-nickel plating bath according to any one of claims 1 to 9, which does not contain sulfate ions.
  11.  被めっき体を陰極とし、亜鉛、ニッケル又はこれらの両方を陽極とし、請求項1~10のいずれか1項記載の亜鉛ニッケルめっき浴を用いて、被めっき体に亜鉛ニッケルめっきを施すことを特徴とするめっき方法。 The object to be plated is used as a cathode, zinc, nickel or both are used as anodes, and the object to be plated is plated with zinc-nickel using the zinc-nickel plating bath according to any one of claims 1 to 10. Plating method.
  12.  被めっき体を陰極とし、亜鉛とニッケルを陽極とし、亜鉛陽極の一部または全部をイオン交換隔膜で隔てた陽極室内に設置し、請求項1~10のいずれか1項記載の亜鉛ニッケルめっき浴を用いて、被めっき体に亜鉛ニッケルめっきを施すことを特徴とするめっき方法。 The zinc-nickel plating bath according to any one of claims 1 to 10, wherein the object to be plated is a cathode, zinc and nickel are anodes, and a part or all of the zinc anode is installed in an anode chamber separated by an ion exchange diaphragm. A plating method characterized by subjecting an anode to zinc-nickel plating using the above.
PCT/JP2020/041350 2019-12-23 2020-11-05 Zinc nickel plating bath and plating method using same WO2021131340A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021566885A JPWO2021131340A1 (en) 2019-12-23 2020-11-05

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-231533 2019-12-23
JP2019231533 2019-12-23

Publications (1)

Publication Number Publication Date
WO2021131340A1 true WO2021131340A1 (en) 2021-07-01

Family

ID=76575231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/041350 WO2021131340A1 (en) 2019-12-23 2020-11-05 Zinc nickel plating bath and plating method using same

Country Status (3)

Country Link
JP (1) JPWO2021131340A1 (en)
TW (1) TW202132628A (en)
WO (1) WO2021131340A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007002274A (en) * 2005-06-21 2007-01-11 Nippon Hyomen Kagaku Kk Zinc-nickel alloy plating method
WO2010055917A1 (en) * 2008-11-14 2010-05-20 ユケン工業株式会社 Acidic zinc plating bath
JP2016069725A (en) * 2015-03-24 2016-05-09 ユケン工業株式会社 Additive for acidic zinc alloy plating bath, acidic zinc alloy plating bath and method for producing zinc alloy plated member
JP2017538032A (en) * 2014-10-27 2017-12-21 アトテツク・ドイチユラント・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツングAtotech Deutschland GmbH Acid zinc and zinc-nickel alloy plating bath composition and electroplating method
JP6582353B1 (en) * 2019-02-15 2019-10-02 ディップソール株式会社 Zinc or zinc alloy electroplating method and system
JP2019530800A (en) * 2017-02-07 2019-10-24 デーエル.−イーエヌゲー. エムアーイクス シュロッター ゲーエムベーハー ウント コー. カーゲー Method for galvanic deposition of zinc and zinc alloy coatings from alkaline coating baths with reduced degradation of organic bath additives

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007002274A (en) * 2005-06-21 2007-01-11 Nippon Hyomen Kagaku Kk Zinc-nickel alloy plating method
WO2010055917A1 (en) * 2008-11-14 2010-05-20 ユケン工業株式会社 Acidic zinc plating bath
JP2017538032A (en) * 2014-10-27 2017-12-21 アトテツク・ドイチユラント・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツングAtotech Deutschland GmbH Acid zinc and zinc-nickel alloy plating bath composition and electroplating method
JP2016069725A (en) * 2015-03-24 2016-05-09 ユケン工業株式会社 Additive for acidic zinc alloy plating bath, acidic zinc alloy plating bath and method for producing zinc alloy plated member
JP2019530800A (en) * 2017-02-07 2019-10-24 デーエル.−イーエヌゲー. エムアーイクス シュロッター ゲーエムベーハー ウント コー. カーゲー Method for galvanic deposition of zinc and zinc alloy coatings from alkaline coating baths with reduced degradation of organic bath additives
JP6582353B1 (en) * 2019-02-15 2019-10-02 ディップソール株式会社 Zinc or zinc alloy electroplating method and system

Also Published As

Publication number Publication date
JPWO2021131340A1 (en) 2021-07-01
TW202132628A (en) 2021-09-01

Similar Documents

Publication Publication Date Title
JP3354767B2 (en) Alkaline zinc and zinc alloy electroplating baths and processes
US4877496A (en) Zinc-nickel alloy plating solution
JPH0338351B2 (en)
EP2350355B1 (en) Zinc alloy electroplating baths and processes
US11913131B2 (en) Ternary zinc-nickel-iron alloys and alkaline electrolytes or plating such alloys
JP5419021B2 (en) Zincate-type galvanizing bath
US20030085130A1 (en) Zinc-nickel electrolyte and method for depositing a zinc-nickel alloy therefrom
JP3348963B2 (en) Zinc-cobalt alloy alkaline plating bath and plating method using the plating bath
JPH01298192A (en) Zinc-nickel alloy plating solution
WO2021131340A1 (en) Zinc nickel plating bath and plating method using same
US4014761A (en) Bright acid zinc plating
US20230041195A1 (en) Zinc-nickel-silica composite plating bath and method for plating using said plating bath
US20060254923A1 (en) Low hydrogen embrittlement (LHE) zinc-nickel plating for high strength steels (HSS)
JPS6141999B2 (en)
JP3486087B2 (en) Plating bath and plating process for alkaline zinc or zinc alloy
JPS62287092A (en) Zinc-nickel alloy plating bath
JP2667323B2 (en) Antioxidant, auxiliary for plating bath and plating bath using the same
US3972788A (en) Zinc anode benefaction
JP2014088608A (en) Zincate type galvanizing bath, additive for zincate type galvanizing bath and method for producing galvanized member
US9587320B2 (en) Additive for acid zinc alloy plating bath, acid zinc alloy plating bath, and method for producing zinc alloy plated article
JP3526947B2 (en) Alkaline zinc plating
US20230015534A1 (en) Electroplating composition and method for depositing a chromium coating on a substrate
JP2014037621A (en) Zincate type galvanizing bath, additive for zincate type galvanizing bath and method for producing galvanized member
KR20020013873A (en) Alloy plating
JPH08269770A (en) Acidic tin plating bath having small amount of sludge

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20904522

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021566885

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20904522

Country of ref document: EP

Kind code of ref document: A1