US11913131B2 - Ternary zinc-nickel-iron alloys and alkaline electrolytes or plating such alloys - Google Patents

Ternary zinc-nickel-iron alloys and alkaline electrolytes or plating such alloys Download PDF

Info

Publication number
US11913131B2
US11913131B2 US16/302,454 US201716302454A US11913131B2 US 11913131 B2 US11913131 B2 US 11913131B2 US 201716302454 A US201716302454 A US 201716302454A US 11913131 B2 US11913131 B2 US 11913131B2
Authority
US
United States
Prior art keywords
iron
nickel
zinc
electroplating bath
per liter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US16/302,454
Other versions
US20200071843A1 (en
Inventor
George Bokisa
Tony Oriti
Markus Jahn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MacDermid Inc
Original Assignee
MacDermid Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MacDermid Inc filed Critical MacDermid Inc
Priority to US16/302,454 priority Critical patent/US11913131B2/en
Publication of US20200071843A1 publication Critical patent/US20200071843A1/en
Assigned to COVENTYA, INC. reassignment COVENTYA, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BOKISA, GEORGE, JAHN, MARKUS, ORITI, Tony
Assigned to MACDERMID, INCORPORATED reassignment MACDERMID, INCORPORATED MERGER (SEE DOCUMENT FOR DETAILS). Assignors: COVENTYA INC.
Application granted granted Critical
Publication of US11913131B2 publication Critical patent/US11913131B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/565Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of zinc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/017Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of aluminium or an aluminium alloy, another layer being formed of an alloy based on a non ferrous metal other than aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • C23C22/53Treatment of zinc or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/03Contact members characterised by the material, e.g. plating, or coating materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2222/00Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
    • C23C2222/10Use of solutions containing trivalent chromium but free of hexavalent chromium

Definitions

  • Corrosion resistance of metal parts has been sought since man developed metal implements. It has been well known that steel parts corrode (rust). To prevent such corrosion, metal coatings have been developed that protect the substrate both by 1) being more corrosion resistant than the iron and 2) being sacrificially corroded preferentially to the substrate.
  • Electroplated zinc yields a sacrificial coating that protects the iron substrate. Corrosion resistance of the zinc deposit has been improved through the use of chromate and other passivation films as well as organic and silicone based sealers. However, while these secondary coatings do improve corrosion resistance as a whole, they do not improve the zinc corrosion resistance. To that end, electrodeposited zinc binary alloys, such as Zn—Ni, Zn—Co, and Zn—Fe, have been developed. These alloys have a dual function in that they are inherently more corrosion resistant than Zn alone and they promote more effective conversion coatings, further enhancing corrosion resistance.
  • JP 1298192A discloses an alkaline cyanide-free zinc nickel plating solution having a pH greater than 13.
  • the plating solution contains zinc ions, nickel ions, and one or more amine chelating agents selected from N-aminoethylethanolamine, ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, and pentaethylenehexamine, and an effective amount of a brightener, such as a quaternary pyridine compound.
  • U.S. Pat. No. 5,405,523 discloses a zinc alloy electroplating bath comprising a ureylene quaternary ammonium polymer as a brightening agent.
  • the bath can also contain a supplemental brightener.
  • One suitable supplemental brightener which is listed is n-benzyl nicotinic acid (sodium salt).
  • Nickel is listed as a metal which can be alloyed with the zinc.
  • U.S. Pat. No. 4,889,602 discloses an alkaline zinc-nickel electroplating bath which comprises an aliphatic amine or polymer of an aliphatic amine in combination with an hydroxyaliphatic carboxylic acid.
  • U.S. Pat. Nos. 4,071,418 and 4,071,419 disclose the combination of amines with substituted pyridines, such as nicotinic acid or nicotinamide for a zinc bath.
  • U.S. Pat. No. 5,417,840 discloses an alkaline zinc-nickel plating bath comprising a polyamine, such as polyethyleneimine, in combination with an aromatic heterocyclic nitrogen containing compound, such as a sulfo-betaine, e.g., pyridinium-N-propane-3-sulfonic acid; or a pyridinium chloride such as N-carboxymethyl pyridinium chloride.
  • a polyamine such as polyethyleneimine
  • an aromatic heterocyclic nitrogen containing compound such as a sulfo-betaine, e.g., pyridinium-N-propane-3-sulfonic acid
  • a pyridinium chloride such as N-carboxymethyl pyridinium chloride.
  • U.S. Pat. Nos. 4,730,022 and 4,210,500 disclose the use of an aromatic carboxyl compound such as 1-benzyl-pyridinium-3-carboxylate or 3-pyridine carboxylic acid (nicotinic acid) as a supplementary brightener in an alkaline zinc bath.
  • the carboxyl compounds are used in combination with a primary brightener, such as the reaction product of a polyamine and a sulfonate.
  • U.S. Pat. No. 6,468,411 discloses an alkaline zinc-nickel electroplating bath that includes zinc ions, nickel ions, a primary brightener, which is an N-methylpyridinium compound, and a secondary brightener, which is an aliphatic amine.
  • U.S. Pat. No. 6,652,728 discloses an aqueous alkaline cyanide-free bath for the galvanic deposition of zinc or zinc alloy coatings on substrate surfaces.
  • the bath includes a source of zinc ions, hydroxide ions, optionally a source of further metal ions, a quaternary ammonium polymer, and a quaternary derivative of a pyridine-3-carboxylic acid.
  • U.S. Pat. No. 7,442,286 discloses an electroplating bath for depositing a zinc-nickel ternary or higher alloy.
  • the electroplating bath includes zinc ions, nickel ions, and one or more ionic species selected from ions of Te +4 , Bi +3 and Sb +3 , and in some embodiments one or more additional ionic species selected from ions of Bi +3 , Sb +3 , Ag +1 , Co +2 , Cr +3 , Cu +2 , Fe +2 , In +3 , Mn +2 , Mo +6 , P +3 , Sn +2 and W +6 , one or more non-ionogenic surface active polyoxyalkylene compounds, ethylenediamine, propylenediamine, diethylenetriamine, or a polymer of an aliphatic amine.
  • Embodiments described herein relate to a ternary zinc-nickel-iron alloy plating system that includes an aqueous alkaline zinc-nickel-iron electroplating bath.
  • the aqueous alkaline zinc-nickel-iron electroplating bath can be used to electroplate or electrodeposit ternary zinc-nickel-iron alloy coatings on electrically conductive substrates, which are contacted with or provided in the alkaline zinc-nickel-iron electroplating bath.
  • the zinc-nickel-iron ternary alloy can include, for example, by weight, about 7% to about 16% nickel, about 0.5% to about 8% iron, and balance zinc.
  • the ternary zinc-nickel-iron alloy coatings are aesthetically appealing, form shiny, bright surfaces, and have improved corrosion resistance and receptivity of passivation films compared to zinc or zinc-nickel electroplates.
  • the aqueous alkaline electroplating bath can include zinc ions, nickel ions, and iron ions.
  • the iron ions are provided in the aqueous alkaline electroplating bath as a complex of a water soluble iron salt and an iron complexing agent.
  • the iron complexing agent includes one or more of hydroxyl, amine, or carboxylate functionality.
  • the iron complexing agent is a hydroxycarboxylate, such as sodium gluconate, sodium tartrate, sodium citrate, sodium hydroxybutyrate, potassium gluconate, potassium tartrate, potassium citrate, and/or potassium hydroxybutyrate.
  • the bath can include an amount of a nickel complexing agent effective to keep the nickel ions soluble in the bath.
  • the nickel complexing agent can be, for example, at least one of an aliphatic amine, alkyleneimine, polyalkyleneimine, polyamine, amino alcohol, carboxylic acid, or sodium or potassium salt thereof.
  • the aqueous alkaline electroplating bath is free of a polyoxyalkylene compound and a quaternary polymer.
  • the aqueous alkaline electroplating bath includes a brightener.
  • the brightener can be, for example, at least one of N-methylpyridinium-3-carboxylate or salt thereof (trigonelline), 1-benzylnicotinate, or sulfopropylpyridinium.
  • the aqueous alkaline zinc-nickel-iron electroplating bath can include about 4 grams per liter to about 50 grams per liter of zinc; about 0.1 grams per liter to about 10 grams per liter nickel; about 0.1 gram per liter to about 10 grams per liter iron; and about 50 grams per liter to about 220 grams per liter of an alkaline compound effective to provide the bath with a pH more than about 13; and about 2 g/l to about 200 g/l of a nickel complexing agent.
  • the iron can be provided in the aqueous alkaline electroplating bath as a complex of a water soluble iron salt and an iron complexing agent.
  • Still other embodiments relates to a method for obtaining a ternary zinc-nickel-iron electroplate.
  • an aqueous alkaline zinc nickel electroplating bath comprising zinc ions, nickel ions, and a nickel complexing agent is prepared.
  • a complex of a water soluble iron salt and an iron complexing agent is also prepared.
  • the complex is added to the aqueous alkaline zinc nickel electroplating bath to form an aqueous alkaline zinc-nickel-iron electroplating bath.
  • a substrate to be electroplated is positioned in the aqueous alkaline zinc-nickel-iron electroplating bath and electroplated to provide a ternary zinc-nickel-iron electroplate on the substrate.
  • a passivate can be provided over the zinc-nickel-iron electroplated substrate to enhance the corrosion resistance of the electroplate.
  • the passivate can be clear or black and include, for example, a trivalent chromium passivate that is free of hexavalent chromium.
  • the substrate can be an aluminum substrate or steel substrate, such as an aluminum electrical connector.
  • the electrical connector includes an aluminum substrate, a zinc-nickel-iron ternary alloy electroplated on the substrate and a passivate provided on the zinc-nickel-iron ternary alloy electroplate.
  • the zinc-nickel-iron ternary alloy can include, by weight, about 7% to about 16% nickel, about 0.5% to about 8% iron, and balance zinc.
  • the passivate can include a chromium coating, such as a trivalent chromium coating that is free of hexavalent chromium.
  • FIGS. 1 (A-B) illustrate images showing panels plated with a zinc-nickel-iron alloy plating system in accordance with one embodiment and a comparative zinc-nickel-iron alloy plating system.
  • FIGS. 2 (A-D) illustrate images showing a control panel and panels plated with a zinc-nickel-iron alloy plating system in accordance at various thickness prior to accelerated corrosion testing per ASTM B117.
  • FIGS. 3 (A-D) illustrate images showing the control panel and panels plated with a zinc-nickel-iron alloy plating system of FIG. 2 after 312 hours of accelerated corrosion testing per ASTM B117.
  • FIGS. 4 illustrate images showing bolt heads plated with a zinc-nickel-iron alloy plating system in accordance with one embodiment and a comparative zinc-nickel-iron alloy plating system.
  • Embodiments described herein relate to a ternary zinc-nickel-iron alloy plating system that includes an aqueous alkaline zinc-nickel-iron electroplating bath.
  • the aqueous alkaline zinc-nickel-iron electroplating bath can be used to electroplate or electrodeposit ternary zinc-nickel-iron alloy coatings on electrically conductive substrates, which are contacted with or provided in the alkaline zinc-nickel-iron electroplating bath.
  • the ternary zinc-nickel-iron alloy coatings are aesthetically appealing, form shiny, bright surfaces, and have improved corrosion resistance and receptivity of passivation films compared to zinc or zinc-nickel electroplates.
  • the ternary zinc-nickel-iron alloy can be electroplated or electrodeposited by passing an electrical current from an anode through the alkaline zinc-nickel-iron electroplating bath or conductive medium containing zinc ions, nickel ions, and iron ions while the bath or conductive medium is in contact with the electrically conductive substrate, which functions as a cathode.
  • the electrically conductive substrate can include iron, ferrous based substrates (e.g., iron alloys and steel), aluminum, aluminum alloys, magnesium, magnesium alloys, copper, copper alloys, nickel, nickel alloys, zinc, and zinc alloys.
  • the alkaline zinc-nickel-iron electroplating bath includes a controlled amount of zinc ions, nickel ions, and iron ions in an alkaline aqueous solution.
  • the pH of the alkaline plating bath can be from about 9 to about 13 or higher, such as above about 14.
  • the bath contains an alkaline component or base that is provided in an aqueous solution at an effective amount to achieve this pH. Amounts of from about 50 grams of base per liter of electroplating bath to about 220 grams per liter, or about 110 grams per liter to about 160 grams per liter, can be used.
  • bases that can be used are alkali metal derivatives, such as sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium bicarbonate, and potassium bicarbonate.
  • the source for the zinc ions for the electroplating bath can be any zinc compound, which is soluble in an alkaline aqueous medium.
  • zinc compounds that can be used as a source of the zinc ions in the electroplating bath are zinc oxide, zinc sulfate, zinc sulfamate, zinc hydroxide, zinc carbonate, zinc acetate, and zinc tartrate, although other zinc compounds can be provided in the bath.
  • the concentration of zinc ions in the electroplating bath can be from about 1 gram per liter to about 100 grams per liter, preferably about 4 grams per liter to about 50 grams per liter (about 4,000 to about 50,000 ppm).
  • the source for the nickel ions for the electroplating bath can be any nickel compound, which can be made soluble in an aqueous alkaline solution.
  • suitable nickel compounds are an inorganic or organic acid salt of nickel, such as nickel sulfate, nickel carbonate, nickel acetate, nickel sulfamate and nickel formate.
  • the concentration of nickel ions in the electroplating bath can be from about 0.1 gram per liter to about 10 grams per liter, (about 100 to about 10,000 ppm), more preferably in the range from about 0.1 gram per liter to about 3 grams per liter (about 100 ppm to about 3,000 ppm).
  • At least one complexing agent can also be provided in the electroplating bath with the nickel compound to maintain nickel solubility and to bring deposition potentials of the deposited metals closer so as to provide common reduction of deposited metal and form metal alloyed deposits.
  • the complexing agent may be any complexing agent known in the art.
  • the complexing agent is a complexing agent suitable for nickel ion.
  • the at least one complexing agent can include an aliphatic amine, such as monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA), ethylenediamine, diethylenetriamine (DETA), imino-bis-propylamine, polyethyleneimine, triethylenetetramine, tetraethylenepentamine (TEPA), hexamethylenediamine, and combinations thereof.
  • an aliphatic amine such as monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA), ethylenediamine, diethylenetriamine (DETA), imino-bis-propylamine, polyethyleneimine, triethylenetetramine, tetraethylenepentamine (TEPA), hexamethylenediamine, and combinations thereof.
  • Alkyleneimines and poly(alkyleneimines) can also be used, along with polyamines, such as ethylenediamine, triethylenetetramine; amino alcohols, such as N-(2-aminoethyl) ethanolamine, 2-hydroxyethylaminopropylamine, N-(2-hydroxyethyl)ethylenediamine, etc.
  • the poly(alkyleneimines) may have molecular weights of from about 100 to about 100,000 or more although the higher molecular weight polymers are not generally as useful since they have a tendency to be insoluble in the electroplating baths.
  • complexing agents include N-(2-hydroxyethyl)-N,N′,N′-triethylethylenediamine; N,N′-di(2-hydroxyethyl)N,N′-diethyl ethylenediamine; N,N-di(2-hydroxyethyl)-N′,N′-diethyl ethylenediamine; N,N,N′,N′-tetrakis(2-hydroxyethyl)ethylenediamine; N,N,N′,N′-tetrakis(2-hydroxyethyl)propylenediamine; and N,N,N′,N′-tetrakis(2,3-dihydroxypropyl)ethylenediamine; N,N,N′,N′-tetrakis(2,3-dihydroxypropyl)propylenediamine; N,N,N′,N′-tetrakis(2-hydroxypropyl)ethylenediamine; N,N,N′,N′-
  • Carboxylic acids can also be used in combination with the amines.
  • citric acid, tartaric acid, gluconic acid, alpha-hydroxybutyric acid, and sodium and/or potassium salts of the carboxylic acids can be used.
  • the at least one complexing agent can include one or more polymer of an aliphatic amine
  • polymers of aliphatic amines that can be used as a complexing agent include poly(alkyleneimines) obtained from ethyleneimine, 1,2-propyleneimine, 1,2-butyleneimine, and 1,1-dimethylethyleneimine.
  • the at least one complexing agent may be contained individually or as a mixture in the bath.
  • the total amount of the at least one complexing agent provided in the electroplating bath can be about 2 g/l to about 200 g/l.
  • the source for the iron ions can be a complex of a water soluble iron salt and an iron complexing agent. It was found that the addition of iron salts, such as ferrous sulfate, to an alkaline electroplating solution comprising the zinc ions and nickel ions in the presence of a variety of complexing agents, does not yield a substantial amount of iron in the ternary zinc-nickel-iron alloy deposit upon electrodeposition.
  • iron salts such as ferrous sulfate
  • a water soluble iron salt such as ferrous sulfate
  • an iron complexing agent such as sodium gluconate
  • the complex of the iron salt and the iron complexing agent is set up or formed prior to addition to the alkaline electroplating bath containing the zinc ions, nickel ions, and the one or more complexing agents to inhibit the iron salt from forming hydroxides and other undesirable salts with other components of the alkaline electroplating bath that are either marginally soluble or do not allow for incorporation into the deposit.
  • the iron salt used in the formation of the carboxylate complex can include ferrous or ferric salts of iron, such as Fe 2 (SO 4 ) 3 ⁇ 7H 2 O, FeSO 4 ⁇ 7H 2 O, Fe(OH) 3 , FeCl 3 ⁇ 6H 2 O, and FeCl 2 ⁇ 4H 2 O.
  • the iron complexing agent used in the formation of the complex can include one or more of hydroxyl, amine, or carboxylate functionality.
  • the iron complexing agent can be a hydroxycarboxylate, such as sodium gluconate, sodium tartrate, sodium citrate, sodium hydroxybutyrate, potassium gluconate, potassium tartrate, potassium citrate, and/or potassium hydroxybutyrate.
  • a hydroxycarboxylate such as sodium gluconate, sodium tartrate, sodium citrate, sodium hydroxybutyrate, potassium gluconate, potassium tartrate, potassium citrate, and/or potassium hydroxybutyrate.
  • the iron complexing agent can be an aliphatic amine, such as monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA), ethylenediamine, diethylenetriamine (DETA), imino-bis-propylamine, polyethyleneimine, triethylenetetramine, tetraethylenepentamine (TEPA), hexamethylenediamine, and combinations thereof, alkyleneimines, poly(alkyleneimines), and/or amino alcohol.
  • MEA monoethanolamine
  • DEA diethanolamine
  • TEA triethanolamine
  • ethylenediamine ethylenediamine
  • DETA diethylenetriamine
  • TEPA tetraethylenepentamine
  • the ratio of iron salt to iron complexing agent used to form the complex is that amount effective to form the carboxylate complex and can be about 0.1:10 to about 10:1.
  • the concentration of iron ions in the electroplating bath provided by the complex can be from about 0.1 gram per liter to about 25 grams per liter, (about 100 to about 25,000 ppm), more preferably, in the range from about 0.1 gram per liter to about 10 grams per liter (about 100 ppm to about 10,000 ppm).
  • the alkaline electroplating bath can contain in addition to the zinc ions, nickel ions, iron ions, and complexing agents, one or more additives commonly used in a zinc or zinc-alloy electroplating bath that improves an aspect of the electroplating process.
  • additives commonly used in a zinc or zinc-alloy electroplating bath that improves an aspect of the electroplating process. Examples of aspects of the electroplating process that can be improved include the physical properties of the electroplate and the metal complexing properties of the bath.
  • a brightening agent or brightener can be added to the electroplating bath.
  • brighteners that can be potentially added to the electroplating bath include the condensation product of piperazine, guanidine, formalin, and epichlorohydrin, as defined in U.S. Pat. No.
  • HT thiodiglycol ethoxylate
  • sodium lauryl sulfate Dequest (1-hydroxyethylen-1,1-diphosphonic acid
  • Lugalvan BNO ethoxylated beta naphthol
  • Lugalvan NES sodium salt of a sulphonated alkylphenol ethoxylate
  • sulfurized benzene sulfonic acid butynediol dihydroxypropyl sulfonate
  • sodium saccharin MPSA (3-mercapto-1-propanesulfonic acid, sodium salt)
  • the formaldehyde condensate of 1-naphthalene sulfonic acid benzotriazole; tartaric acid; EDTA (ethylenediamine tetraacetic acid); sodium benzoate; the aqueous reaction product of 2-aminopyridine with epichlorohydrin; Mirapol A15 (ureylene quaternary ammonium polymer); the aqueous reaction product of imid
  • the amount of brightener provided in the bath can range from about 0.01 g/l to about 10 g/l (about 10 ppm to about 10,000 ppm).
  • the electroplating baths may further contain known leveling agents, such as 3-mercapto-1,2,4-triazole and/or thiourea, the latter being preferred.
  • concentration of the leveling agent is the normal concentration for use in zinc baths, and ranges, for example, from 0.01 to 0.50 g/l.
  • Further additives for the baths described herein include aromatic aldehydes or their bisulfite adducts.
  • the baths described herein may also contain a water-softener, since the sensitivity of the bath to foreign metal ions, in particular calcium and magnesium ions from tap water, is reduced by the use of such additives.
  • water-softeners are EDTA, sodium silicates, and tartaric acid.
  • the electroplating bath can be free of or does not contain a polyloxyalkylene compound and a quaternary polymer.
  • a polyloxyalkylene compound and a quaternary polymer By omitting polyloxyalkylene compounds and a quaternary polymers from the electroplating baths, the simplicity of the plating system can be enhanced as well as waste treatment can be reduced.
  • polyalkylene compounds include non-ionogenic surface active polyoxyalkylene compounds described in U.S. Pat. No. 7,442,286.
  • quaternary polymers include quaternary ammonium polymers described in U.S. Pat. Nos. 5,405,523, 5,435,898, 6,652,728, and 7,964,083.
  • the aqueous alkaline electroplating bath can prepared by dissolving the zinc compound, nickel compound, one or more nickel complexing agents and optionally other additives, such as a brightener, in a commercially available caustic solution and then adjusting the concentration of the solution to that desired by adding water to the solution. For instance, about 10 grams of zinc oxide, about 5.4 grams of nickel sulfate, 0.5 grams of trigonelline solution, about 24.4 grams of tetraethylenepentamine (TEPA), about 0.65 grams of diethylenetriamine (DETA), and about 13 grams of triethanolamine can be dissolved or mixed in 75 ml of a 50% caustic solution, which is then diluted to the desired volume percent by the addition of water. If desired, the pH of the bath can be adjusted by adding to the bath the parent base of the caustic solution, or another base, such as sodium or potassium carbonate.
  • the complex of a water soluble iron salt and an iron complexing agent can be prepared by dissolving, for example, about 125 grams the iron salt (e.g., FeSO 4 .7H 2 O) and about 100 grams of the complexing agent (e.g., sodium gluconate) in about one liter of water and allowing the iron salt and hydrocarboxylate complexing agent sufficient time to complex.
  • the solution of complex can then be added to the alkaline zinc-nickel electroplating bath at amount sufficient to provide iron ions in the bath at an iron ion concentration of about 0.1 gram per liter to about 25 grams per liter.
  • the aqueous alkaline electroplating baths can be used at conventional current densities, for example, about 1 to 100 amps per square foot, as determined by Hull Cell evaluation.
  • the bath can be operated with an average cathode current density in the range of about 3 amps per square foot to about 25 amps per square foot, typically about 20 amps per square foot.
  • the cathode current density is dependent upon the particular type of deposit desired. Bright deposits can be obtained at conventional temperatures, for instance about 20° C. to about 40° C.
  • the electrodeposition using the electroplating bath may, for example, be carried out as a drum galvanizing process when used for mass parts, and as a frame galvanizing process for deposition on larger workpieces.
  • Anodes can be used that are soluble, such as zinc anodes, and that at the same time can serve as a source of zinc ions so that the zinc deposited on the cathode is recovered by dissolution of zinc at the anode.
  • insoluble anodes such as nickel and/or iron anodes, may also be used, wherein the zinc ions removed from the electrolyte have to be replenished in another way, for example, by using a zinc dissolving tank.
  • the electroplating baths described herein may be operated on a continuous or intermittent basis and, from time to time, the components of the bath may have to be replenished.
  • the various components may be added singularly as required or may be added in combination.
  • the amounts of the various components to be added may be added on either a continuous basis or on an intermittent bases.
  • the concentrations may be determined at appropriate intervals based on experience, or may be continuously determined, for example, by automated analytical instrumentation.
  • the amounts of the various components to be added to the electroplating bath may be varied over a wide range depending on the nature and the performance of the electroplating baths to which the components are added. Such amounts can be determined readily by one of ordinary skill in the art.
  • the ternary zinc-nickel-iron alloy electrodeposited on the substrate can include or consist essentially of, for example, about 7 wt. % to about 16 wt. % nickel, about 0.5 wt. % to about 8 wt. % iron, and the balance Zn, preferably, about 70 wt. % to about 86 wt. % zinc, about 10 wt. % to about 15 wt. % nickel, and about 1 wt. % to about 8 wt. % iron, and more preferably, about 75 wt. % to about 85 wt. % zinc, about 12.5 wt. % to about 13.5 wt. % nickel, and about 1 wt.
  • the weight percent of iron provided within the deposit is uniform and predictable. Essentially, every 250 ppm of Fe 2+ added to a standard aqueous alkalkine zinc-nickel electroplating solution increases the iron contribution within the deposit by about 1% wt/wt. Surprisingly, increasing the iron wt. % within the alloy does not impact the nickel percentage, but rather, comes at the expense of zinc. In a commercial environment, this is important because controlling the alloy becomes a fairly simple paradigm where if the nickel and zinc values are held static, the alloy can be manipulated simply by changing the iron value to yield the desired alloy.
  • the surfaces of the electroplated substrates can be treated with a corrosion resistance passivate or passivation formulation.
  • a variety of corrosion resistance passivation formulations are available.
  • U.S. Pat. No. 7,314,671 describes chromium (VI)-free conversion layer and method for producing it.
  • U.S. Pat. Nos. 6,375,726 and 4,384,902 discloses trivalent chromium passivate composition and process.
  • Other corrosion resistant passivation formulation for zinc electrodeposits can include a coat of organic, inorganic or hybrid polymer. Such polymer formulations are referred as Sealers, Fixers or Topcoats in the industrial practice.
  • the zinc-nickel-iron ternary alloy described herein can be electrodeposited on an aluminum substrate, such as an aluminum electrical connector, to enhance corrosion resistance of the aluminum connector and improve electrical conductivity of the connector when mated to a similar connector.
  • aluminum connectors undergo a plating process that includes a standard aluminum pre-plate, including cleaning and electrodeposition of zincate, followed by an electroless nickel coating.
  • the connector can then be plated with cadmium, followed by a hexvalent passivate.
  • This traditional process is environmentally unfriendly.
  • the traditional process was replaced with zinc-nickel electroplate and a trivalent passivate.
  • the corrosion products from the zinc-nickel/passivate are manifest on the connector. These corrosion salts hinder the conductivity of the connector and their reduction is desired to improve both the function and the life of the connector.
  • a further improvement is achieved to the connector by the replacement of the zinc-nickel alloy with the zinc-nickel-iron ternary alloy described herein.
  • the increased corrosion resistance of the Zn—Ni—Fe alloy reduces the preponderance of corrosion locations on the connector, improving its overall electrical conductivity when mating.
  • the use of the ternary Zn—Ni—Fe alloy produces a more aesthetically desired black passivate, again with improved corrosion protection. This further improved corrosion protection yet again minimizes the proliferation of corrosion salts on the surface, continuing to improve the conductivity of the connector.
  • Zinc Oxide 10 g/L Sodium hydroxide 155 g/L Nickel Sulfate Hexahydrate 5.4 g/L Trigonelline solution 0.52 g/L TEPA 24.4 g/L DETA 0.65 g/L Triethanolamine 13.0 g/L
  • the bath was then augmented with soluble iron (ferrous sulfate) to form a ternary Zn—Ni—Fe alloy.
  • soluble iron ferrous sulfate
  • iron in the deposit substantially increased, essentially as a ratio of the iron in solution.
  • the iron was capable of depositing from either the ferrous or ferric state as long as it was complexed first with gluconate. In practice, it took about 50% more ferric ion in solution to get the same amount of iron in the deposit.
  • the complexed Fe 2+ was added to the alkaline Zn—Ni bath using the following solution.
  • the solution yields an iron content of 25,000 ppm as Fe 2+ .
  • Performance testing of the bath was done using a standard 2 A ⁇ 30 minute, 267 mL Hull Cell, so that a range of current densities ( ⁇ 1 to >100 Amps per square foot) could be interpreted. All plating performance testing described was done at room temperature (20-26° C.). As illustrated in FIG. 1 A , the basic solution, with no Fe produced a deposit with slight low current density brightness, as evidenced by the reflected stripes seen on the right side of the panel. However, as shown in FIG. 1 B when the Fe was introduced and incorporated into the deposit, the entirety of the panel appearance was improved and the striped reflection can be seen over the entire range of the of the panel.
  • the iron increase within the deposit was uniform and predictable. Essentially, every 250 ppm of Fe 2+ added to the solution increases the Fe contribution within the deposit by about 1% wt/wt.
  • increasing the Fe within the alloy does not impact the Ni percentage, but rather, comes at the expense of Zn. In a commercial environment, this is important because controlling the alloy becomes a fairly simple paradigm where if the nickel and zinc values are held static, the alloy can be manipulated simply by changing the iron value to yield the desired alloy.
  • the ternary alloy yields were as follows at a plating current density of 20 amps/ft 2 . Again, note how stable and predictable the Ni content is:
  • Plating solutions were maintain constant at 8 g/L zinc, 1100 ppm nickel, and the iron content was varied at essentially 1000, 1500 and 2000 ppm as Fe 2+ .
  • Panels were then all plated to essentially 10 micron thickness at a nominal 15 Amps/ft 2 , yielding nickel alloys of 13+/ ⁇ 2% and iron contents of 4, 6 and 8% respectively for the 1000, 1500 and 2000 ppm contents.
  • Each panel set was then exposed to the same commercial black trivalent passivate, applied under like conditions.
  • a standard zinc-nickel plated panel set, containing no iron and plated under like conditions was used as a control.
  • FIGS. 3 illustrate the panels prior to accelerated corrosion testing. What is not overly apparent from the pictures is how significantly more reflective the panels are that contain the iron and the passivate film, while perhaps not as dark as the control, the ternary alloy panels appear to have a more substantial passivate film.
  • FIGS. 4 (A-D) illustrate the panels after 312 hours salt spray exposure.
  • a vast difference in the corrosion protection was afforded by the ternary alloy. On the control, not only was red rust visible, indicating attack on the steel substrate, but the white corrosion products, which were more pronounced were indicative of attack on the zinc-nickel alloy.
  • the ternary alloy showed just a hint of white corrosion on the very high Fe alloy panel and no signs of red rust, which means the substrate was completely protected.
  • the matrix was set up as follows:
  • bolt heads were plated with a zinc-nickel-iron alloy plating system in accordance with one embodiment and a comparative zinc-nickel alloy plating system.
  • the zinc-nickel-iron alloy plating system employed an alkaline zinc-nickel-iron plating bathing having the following formulation and plating conditions:
  • Bolt heads have 6 microns thickness zinc-nickel-iron with approximately 13% nickel and 4% iron in the deposit
  • the comparative zinc-nickel alloy plating system employed an alkaline zinc-nickel plating bathing having the following formulation and plating conditions:
  • Bolt heads have 6 microns thickness zinc-nickel with approximately 13% nickel in the deposit.
  • FIGS. 4 (A-B) show the improvement of the alloy when compared to standard Zn—Ni, deposited on steel, without any passivate. Or, more simply, the alloy alone in direct comparison to Zn—Ni. The lesser preponderance of red rust location on the ternary alloy indicates superior corrosion resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Abstract

A ternary zinc-nickel-iron alloy and aqueous alkaline electrolyte for electroplating the alloy includes zinc, nickel, and a complex of an iron salt.

Description

RELATED APPLICATION
This application claims benefit from U.S. Provisional Application No. 62/340,759, filed May 24, 2016, the subject matter of which is incorporated by reference in its entirety.
BACKGROUND
Corrosion resistance of metal parts has been sought since man developed metal implements. It has been well known that steel parts corrode (rust). To prevent such corrosion, metal coatings have been developed that protect the substrate both by 1) being more corrosion resistant than the iron and 2) being sacrificially corroded preferentially to the substrate.
One such coating is zinc plating. Electroplated zinc yields a sacrificial coating that protects the iron substrate. Corrosion resistance of the zinc deposit has been improved through the use of chromate and other passivation films as well as organic and silicone based sealers. However, while these secondary coatings do improve corrosion resistance as a whole, they do not improve the zinc corrosion resistance. To that end, electrodeposited zinc binary alloys, such as Zn—Ni, Zn—Co, and Zn—Fe, have been developed. These alloys have a dual function in that they are inherently more corrosion resistant than Zn alone and they promote more effective conversion coatings, further enhancing corrosion resistance.
JP 1298192A discloses an alkaline cyanide-free zinc nickel plating solution having a pH greater than 13. The plating solution contains zinc ions, nickel ions, and one or more amine chelating agents selected from N-aminoethylethanolamine, ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, and pentaethylenehexamine, and an effective amount of a brightener, such as a quaternary pyridine compound.
U.S. Pat. No. 5,405,523 discloses a zinc alloy electroplating bath comprising a ureylene quaternary ammonium polymer as a brightening agent. The bath can also contain a supplemental brightener. One suitable supplemental brightener which is listed is n-benzyl nicotinic acid (sodium salt). Nickel is listed as a metal which can be alloyed with the zinc.
U.S. Pat. No. 4,889,602 discloses an alkaline zinc-nickel electroplating bath which comprises an aliphatic amine or polymer of an aliphatic amine in combination with an hydroxyaliphatic carboxylic acid.
U.S. Pat. Nos. 4,071,418 and 4,071,419 disclose the combination of amines with substituted pyridines, such as nicotinic acid or nicotinamide for a zinc bath.
U.S. Pat. No. 5,417,840 discloses an alkaline zinc-nickel plating bath comprising a polyamine, such as polyethyleneimine, in combination with an aromatic heterocyclic nitrogen containing compound, such as a sulfo-betaine, e.g., pyridinium-N-propane-3-sulfonic acid; or a pyridinium chloride such as N-carboxymethyl pyridinium chloride.
U.S. Pat. Nos. 4,730,022 and 4,210,500 disclose the use of an aromatic carboxyl compound such as 1-benzyl-pyridinium-3-carboxylate or 3-pyridine carboxylic acid (nicotinic acid) as a supplementary brightener in an alkaline zinc bath. The carboxyl compounds are used in combination with a primary brightener, such as the reaction product of a polyamine and a sulfonate.
U.S. Pat. No. 6,468,411 discloses an alkaline zinc-nickel electroplating bath that includes zinc ions, nickel ions, a primary brightener, which is an N-methylpyridinium compound, and a secondary brightener, which is an aliphatic amine.
U.S. Pat. No. 6,652,728 discloses an aqueous alkaline cyanide-free bath for the galvanic deposition of zinc or zinc alloy coatings on substrate surfaces. The bath includes a source of zinc ions, hydroxide ions, optionally a source of further metal ions, a quaternary ammonium polymer, and a quaternary derivative of a pyridine-3-carboxylic acid.
U.S. Pat. No. 7,442,286 discloses an electroplating bath for depositing a zinc-nickel ternary or higher alloy. The electroplating bath includes zinc ions, nickel ions, and one or more ionic species selected from ions of Te+4, Bi+3 and Sb+3, and in some embodiments one or more additional ionic species selected from ions of Bi+3, Sb+3, Ag+1, Co+2, Cr+3, Cu+2, Fe+2, In+3, Mn+2, Mo+6, P+3, Sn+2 and W+6, one or more non-ionogenic surface active polyoxyalkylene compounds, ethylenediamine, propylenediamine, diethylenetriamine, or a polymer of an aliphatic amine.
SUMMARY
Embodiments described herein relate to a ternary zinc-nickel-iron alloy plating system that includes an aqueous alkaline zinc-nickel-iron electroplating bath. The aqueous alkaline zinc-nickel-iron electroplating bath can be used to electroplate or electrodeposit ternary zinc-nickel-iron alloy coatings on electrically conductive substrates, which are contacted with or provided in the alkaline zinc-nickel-iron electroplating bath. The zinc-nickel-iron ternary alloy can include, for example, by weight, about 7% to about 16% nickel, about 0.5% to about 8% iron, and balance zinc. The ternary zinc-nickel-iron alloy coatings are aesthetically appealing, form shiny, bright surfaces, and have improved corrosion resistance and receptivity of passivation films compared to zinc or zinc-nickel electroplates.
In some embodiments, the aqueous alkaline electroplating bath can include zinc ions, nickel ions, and iron ions. The iron ions are provided in the aqueous alkaline electroplating bath as a complex of a water soluble iron salt and an iron complexing agent.
In some embodiments, the iron complexing agent includes one or more of hydroxyl, amine, or carboxylate functionality. In other embodiments, the iron complexing agent is a hydroxycarboxylate, such as sodium gluconate, sodium tartrate, sodium citrate, sodium hydroxybutyrate, potassium gluconate, potassium tartrate, potassium citrate, and/or potassium hydroxybutyrate.
In other embodiments, the bath can include an amount of a nickel complexing agent effective to keep the nickel ions soluble in the bath. The nickel complexing agent can be, for example, at least one of an aliphatic amine, alkyleneimine, polyalkyleneimine, polyamine, amino alcohol, carboxylic acid, or sodium or potassium salt thereof.
In some embodiments, the aqueous alkaline electroplating bath is free of a polyoxyalkylene compound and a quaternary polymer.
In other embodiments, the aqueous alkaline electroplating bath includes a brightener. The brightener can be, for example, at least one of N-methylpyridinium-3-carboxylate or salt thereof (trigonelline), 1-benzylnicotinate, or sulfopropylpyridinium.
In still other embodiments, the aqueous alkaline zinc-nickel-iron electroplating bath, can include about 4 grams per liter to about 50 grams per liter of zinc; about 0.1 grams per liter to about 10 grams per liter nickel; about 0.1 gram per liter to about 10 grams per liter iron; and about 50 grams per liter to about 220 grams per liter of an alkaline compound effective to provide the bath with a pH more than about 13; and about 2 g/l to about 200 g/l of a nickel complexing agent. The iron can be provided in the aqueous alkaline electroplating bath as a complex of a water soluble iron salt and an iron complexing agent.
Still other embodiments relates to a method for obtaining a ternary zinc-nickel-iron electroplate. In the method, an aqueous alkaline zinc nickel electroplating bath comprising zinc ions, nickel ions, and a nickel complexing agent is prepared. A complex of a water soluble iron salt and an iron complexing agent is also prepared. The complex is added to the aqueous alkaline zinc nickel electroplating bath to form an aqueous alkaline zinc-nickel-iron electroplating bath. A substrate to be electroplated is positioned in the aqueous alkaline zinc-nickel-iron electroplating bath and electroplated to provide a ternary zinc-nickel-iron electroplate on the substrate.
In some embodiments, a passivate can be provided over the zinc-nickel-iron electroplated substrate to enhance the corrosion resistance of the electroplate. The passivate can be clear or black and include, for example, a trivalent chromium passivate that is free of hexavalent chromium.
In other embodiments, the substrate can be an aluminum substrate or steel substrate, such as an aluminum electrical connector.
Other embodiments described herein relate to an electrical connector. The electrical connector includes an aluminum substrate, a zinc-nickel-iron ternary alloy electroplated on the substrate and a passivate provided on the zinc-nickel-iron ternary alloy electroplate. The zinc-nickel-iron ternary alloy can include, by weight, about 7% to about 16% nickel, about 0.5% to about 8% iron, and balance zinc. The passivate can include a chromium coating, such as a trivalent chromium coating that is free of hexavalent chromium.
BRIEF DESCRIPTION OF THE DRAWINGS
FIGS. 1 (A-B) illustrate images showing panels plated with a zinc-nickel-iron alloy plating system in accordance with one embodiment and a comparative zinc-nickel-iron alloy plating system.
FIGS. 2 (A-D) illustrate images showing a control panel and panels plated with a zinc-nickel-iron alloy plating system in accordance at various thickness prior to accelerated corrosion testing per ASTM B117.
FIGS. 3 (A-D) illustrate images showing the control panel and panels plated with a zinc-nickel-iron alloy plating system of FIG. 2 after 312 hours of accelerated corrosion testing per ASTM B117.
FIGS. 4 (A-B) illustrate images showing bolt heads plated with a zinc-nickel-iron alloy plating system in accordance with one embodiment and a comparative zinc-nickel-iron alloy plating system.
DETAILED DESCRIPTION
Embodiments described herein relate to a ternary zinc-nickel-iron alloy plating system that includes an aqueous alkaline zinc-nickel-iron electroplating bath. The aqueous alkaline zinc-nickel-iron electroplating bath can be used to electroplate or electrodeposit ternary zinc-nickel-iron alloy coatings on electrically conductive substrates, which are contacted with or provided in the alkaline zinc-nickel-iron electroplating bath. The ternary zinc-nickel-iron alloy coatings are aesthetically appealing, form shiny, bright surfaces, and have improved corrosion resistance and receptivity of passivation films compared to zinc or zinc-nickel electroplates.
The ternary zinc-nickel-iron alloy can be electroplated or electrodeposited by passing an electrical current from an anode through the alkaline zinc-nickel-iron electroplating bath or conductive medium containing zinc ions, nickel ions, and iron ions while the bath or conductive medium is in contact with the electrically conductive substrate, which functions as a cathode. In some embodiments, the electrically conductive substrate can include iron, ferrous based substrates (e.g., iron alloys and steel), aluminum, aluminum alloys, magnesium, magnesium alloys, copper, copper alloys, nickel, nickel alloys, zinc, and zinc alloys.
The alkaline zinc-nickel-iron electroplating bath includes a controlled amount of zinc ions, nickel ions, and iron ions in an alkaline aqueous solution. The pH of the alkaline plating bath can be from about 9 to about 13 or higher, such as above about 14. The bath contains an alkaline component or base that is provided in an aqueous solution at an effective amount to achieve this pH. Amounts of from about 50 grams of base per liter of electroplating bath to about 220 grams per liter, or about 110 grams per liter to about 160 grams per liter, can be used. Examples of bases that can be used are alkali metal derivatives, such as sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium bicarbonate, and potassium bicarbonate.
The source for the zinc ions for the electroplating bath can be any zinc compound, which is soluble in an alkaline aqueous medium. Examples of zinc compounds that can be used as a source of the zinc ions in the electroplating bath are zinc oxide, zinc sulfate, zinc sulfamate, zinc hydroxide, zinc carbonate, zinc acetate, and zinc tartrate, although other zinc compounds can be provided in the bath. The concentration of zinc ions in the electroplating bath can be from about 1 gram per liter to about 100 grams per liter, preferably about 4 grams per liter to about 50 grams per liter (about 4,000 to about 50,000 ppm).
The source for the nickel ions for the electroplating bath can be any nickel compound, which can be made soluble in an aqueous alkaline solution. Examples of suitable nickel compounds are an inorganic or organic acid salt of nickel, such as nickel sulfate, nickel carbonate, nickel acetate, nickel sulfamate and nickel formate. The concentration of nickel ions in the electroplating bath can be from about 0.1 gram per liter to about 10 grams per liter, (about 100 to about 10,000 ppm), more preferably in the range from about 0.1 gram per liter to about 3 grams per liter (about 100 ppm to about 3,000 ppm).
At least one complexing agent can also be provided in the electroplating bath with the nickel compound to maintain nickel solubility and to bring deposition potentials of the deposited metals closer so as to provide common reduction of deposited metal and form metal alloyed deposits. In some embodiments, the complexing agent may be any complexing agent known in the art. In other embodiments, the complexing agent is a complexing agent suitable for nickel ion.
In some embodiments, the at least one complexing agent can include an aliphatic amine, such as monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA), ethylenediamine, diethylenetriamine (DETA), imino-bis-propylamine, polyethyleneimine, triethylenetetramine, tetraethylenepentamine (TEPA), hexamethylenediamine, and combinations thereof. Alkyleneimines and poly(alkyleneimines) can also be used, along with polyamines, such as ethylenediamine, triethylenetetramine; amino alcohols, such as N-(2-aminoethyl) ethanolamine, 2-hydroxyethylaminopropylamine, N-(2-hydroxyethyl)ethylenediamine, etc. The poly(alkyleneimines) may have molecular weights of from about 100 to about 100,000 or more although the higher molecular weight polymers are not generally as useful since they have a tendency to be insoluble in the electroplating baths.
Other examples of complexing agents include N-(2-hydroxyethyl)-N,N′,N′-triethylethylenediamine; N,N′-di(2-hydroxyethyl)N,N′-diethyl ethylenediamine; N,N-di(2-hydroxyethyl)-N′,N′-diethyl ethylenediamine; N,N,N′,N′-tetrakis(2-hydroxyethyl)ethylenediamine; N,N,N′,N′-tetrakis(2-hydroxyethyl)propylenediamine; and N,N,N′,N′-tetrakis(2,3-dihydroxypropyl)ethylenediamine; N,N,N′,N′-tetrakis(2,3-dihydroxypropyl)propylenediamine; N,N,N′,N′-tetrakis(2-hydroxypropyl)ethylenediamine; N,N,N′,N′-tetrakis(2-hydroxyethyl)1,4-diaminobutane. An example of a commercially available metal complexing agent is Quadrol from BASF. Quadrol is N,N,N′,N′-tetrakis(2-hydroxypropyl)ethylenediamine.
Carboxylic acids can also be used in combination with the amines. For example, citric acid, tartaric acid, gluconic acid, alpha-hydroxybutyric acid, and sodium and/or potassium salts of the carboxylic acids can be used.
In some embodiments, the at least one complexing agent can include one or more polymer of an aliphatic amine Examples of polymers of aliphatic amines that can be used as a complexing agent include poly(alkyleneimines) obtained from ethyleneimine, 1,2-propyleneimine, 1,2-butyleneimine, and 1,1-dimethylethyleneimine.
The at least one complexing agent may be contained individually or as a mixture in the bath. The total amount of the at least one complexing agent provided in the electroplating bath can be about 2 g/l to about 200 g/l.
The source for the iron ions can be a complex of a water soluble iron salt and an iron complexing agent. It was found that the addition of iron salts, such as ferrous sulfate, to an alkaline electroplating solution comprising the zinc ions and nickel ions in the presence of a variety of complexing agents, does not yield a substantial amount of iron in the ternary zinc-nickel-iron alloy deposit upon electrodeposition. However, addition of a water soluble iron salt, such as ferrous sulfate, as a complex with an iron complexing agent, such as sodium gluconate, to the alkaline electroplating solution containing the zinc ions, nickel ions, and the one or more complexing agents, enhanced the amount or percent of iron in the ternary zinc-nickel-iron alloy deposit upon electrodeposition, essentially as a ratio of the iron in solution. Advantageously, the complex of the iron salt and the iron complexing agent is set up or formed prior to addition to the alkaline electroplating bath containing the zinc ions, nickel ions, and the one or more complexing agents to inhibit the iron salt from forming hydroxides and other undesirable salts with other components of the alkaline electroplating bath that are either marginally soluble or do not allow for incorporation into the deposit.
In some embodiments the iron salt used in the formation of the carboxylate complex can include ferrous or ferric salts of iron, such as Fe2(SO4)3·7H2O, FeSO4·7H2O, Fe(OH)3, FeCl3·6H2O, and FeCl2·4H2O. The iron complexing agent used in the formation of the complex can include one or more of hydroxyl, amine, or carboxylate functionality.
In some embodiments, the iron complexing agent can be a hydroxycarboxylate, such as sodium gluconate, sodium tartrate, sodium citrate, sodium hydroxybutyrate, potassium gluconate, potassium tartrate, potassium citrate, and/or potassium hydroxybutyrate.
In other embodiments, the iron complexing agent can be an aliphatic amine, such as monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA), ethylenediamine, diethylenetriamine (DETA), imino-bis-propylamine, polyethyleneimine, triethylenetetramine, tetraethylenepentamine (TEPA), hexamethylenediamine, and combinations thereof, alkyleneimines, poly(alkyleneimines), and/or amino alcohol.
The ratio of iron salt to iron complexing agent used to form the complex is that amount effective to form the carboxylate complex and can be about 0.1:10 to about 10:1.
The concentration of iron ions in the electroplating bath provided by the complex can be from about 0.1 gram per liter to about 25 grams per liter, (about 100 to about 25,000 ppm), more preferably, in the range from about 0.1 gram per liter to about 10 grams per liter (about 100 ppm to about 10,000 ppm).
The alkaline electroplating bath can contain in addition to the zinc ions, nickel ions, iron ions, and complexing agents, one or more additives commonly used in a zinc or zinc-alloy electroplating bath that improves an aspect of the electroplating process. Examples of aspects of the electroplating process that can be improved include the physical properties of the electroplate and the metal complexing properties of the bath.
In some embodiments, a brightening agent or brightener can be added to the electroplating bath. Examples of brighteners that can be potentially added to the electroplating bath include the condensation product of piperazine, guanidine, formalin, and epichlorohydrin, as defined in U.S. Pat. No. 4,188,271; pyridinium propyl sulfonate; N-benzyl-3-carboxy pyridinium chloride; trigonelline; Golpanol PS (sodium propargyl sulphonate); propargyl alcohol; ethyleneglycolpropargylalcohol ether; BEO (ethoxylated butyne diol); Aerosol AY65 (sodium diamylsulfosuccinate); N,N′-bis[3-(dimethylamino)propyl]urea, polymer with 1,3-dichloropropane—see U.S. Pat. No. 6,652,726 B1; carboxyethylisothiuronium betaine; Rewopol EHS (ethyl hexyl sulfate); benzothiazole; Lutensit A-PS (a proprietary anionic surfactant from BASF); Lugalvan BPC 34 (a 34 wt % aqueous solution of N-benzyl nicotinate); benzyl-2-methylimidiazole; Tamol NN (a formaldehyde condensate of 2-naphthalene sulfonate); methyl naphthyl ketone; benzalacetone; Lutensit CS40 (40% cumene sulfonate); Golpanol VS (sodium vinyl sulfonate); benzothiazolium-2-[4-(dimethylamino)phenyl]-3,6-dimethyl chloride; DPS(N,N-dimethyl-dithiocarbamyl propyl sulfonic acid sodium salt); MPS (3-mercapto-1-proanesulfonic acid, sodium salt); OPS(O-ethyldithiocarbonato-S-(3-sulfopropyl)-ester, potassium salt); SPS (bis-(3-sulfopropyl)-disulfide, disodium salt); UPS (3-S-iosthiouronium propyl sulfonate); ZPS (3-(benzothiazolyl-2-mercapto)-propyl-sulfonic acid, sodium salt) (DPS, MPS, OPS, SPS, UPS and ZPS are available from Raschig GmbH); N-(polyacrylamide); safranin; crystal violet and derivatives thereof; phenazonium dyes and derivatives thereof; Lugalvan. HT (thiodiglycol ethoxylate); sodium lauryl sulfate; Dequest (1-hydroxyethylen-1,1-diphosphonic acid); Lugalvan BNO (ethoxylated beta naphthol); Lugalvan NES (sodium salt of a sulphonated alkylphenol ethoxylate); sulfurized benzene sulfonic acid; butynediol dihydroxypropyl sulfonate; sodium saccharin; MPSA (3-mercapto-1-propanesulfonic acid, sodium salt); the formaldehyde condensate of 1-naphthalene sulfonic acid; benzotriazole; tartaric acid; EDTA (ethylenediamine tetraacetic acid); sodium benzoate; the aqueous reaction product of 2-aminopyridine with epichlorohydrin; Mirapol A15 (ureylene quaternary ammonium polymer); the aqueous reaction product of imidazole and epichlorohydrin; vanillin; anisaldehyde; Heliotropin (piperonal); thiourea; polyvinyl alcohol; reduced polyvinyl alcohol; o-chlorobenzaldehyde; α-napthaldehyde; condensed naphthalene sulfonate; niacin; pyridine; 3-hydroxypropane sulfonate; allyl pyridinium chloride; dibenzenesulfonamide; pyridinium butane sulfonate; sodium allyl sulfonate; sodium vinyl sulfonate; naphthalene trisulfonic acid; cumene sulfonate; CMP (carboxymethylpyridinium chloride); Golpanol 9531 (propargyl hydroxypropyl ether sulfonate); o-sulfobenzaldehyde; Lugalvan ES-9571 (aqueous reaction product of imidazole and epichlorohydrin); mercaptothio ether; PVP (polyvinylpyrrolidone); sodium adipate; chloral hydrate; sodium gluconate; sodium salicylate; manganese sulfate; cadmium sulfate; sodium tellurite; and glycine. The foregoing list is not exhaustive and is exemplary only. Any other known brightener useful in electroplating zinc, nickel, and/or iron may be useful herein.
The amount of brightener provided in the bath can range from about 0.01 g/l to about 10 g/l (about 10 ppm to about 10,000 ppm).
The electroplating baths may further contain known leveling agents, such as 3-mercapto-1,2,4-triazole and/or thiourea, the latter being preferred. The concentration of the leveling agent is the normal concentration for use in zinc baths, and ranges, for example, from 0.01 to 0.50 g/l. Further additives for the baths described herein include aromatic aldehydes or their bisulfite adducts.
The baths described herein may also contain a water-softener, since the sensitivity of the bath to foreign metal ions, in particular calcium and magnesium ions from tap water, is reduced by the use of such additives. Examples of such water-softeners are EDTA, sodium silicates, and tartaric acid.
In some embodiments, the electroplating bath can be free of or does not contain a polyloxyalkylene compound and a quaternary polymer. By omitting polyloxyalkylene compounds and a quaternary polymers from the electroplating baths, the simplicity of the plating system can be enhanced as well as waste treatment can be reduced. Examples of polyalkylene compounds include non-ionogenic surface active polyoxyalkylene compounds described in U.S. Pat. No. 7,442,286. Examples of quaternary polymers include quaternary ammonium polymers described in U.S. Pat. Nos. 5,405,523, 5,435,898, 6,652,728, and 7,964,083.
The aqueous alkaline electroplating bath can prepared by dissolving the zinc compound, nickel compound, one or more nickel complexing agents and optionally other additives, such as a brightener, in a commercially available caustic solution and then adjusting the concentration of the solution to that desired by adding water to the solution. For instance, about 10 grams of zinc oxide, about 5.4 grams of nickel sulfate, 0.5 grams of trigonelline solution, about 24.4 grams of tetraethylenepentamine (TEPA), about 0.65 grams of diethylenetriamine (DETA), and about 13 grams of triethanolamine can be dissolved or mixed in 75 ml of a 50% caustic solution, which is then diluted to the desired volume percent by the addition of water. If desired, the pH of the bath can be adjusted by adding to the bath the parent base of the caustic solution, or another base, such as sodium or potassium carbonate.
The complex of a water soluble iron salt and an iron complexing agent can be prepared by dissolving, for example, about 125 grams the iron salt (e.g., FeSO4.7H2O) and about 100 grams of the complexing agent (e.g., sodium gluconate) in about one liter of water and allowing the iron salt and hydrocarboxylate complexing agent sufficient time to complex. The solution of complex can then be added to the alkaline zinc-nickel electroplating bath at amount sufficient to provide iron ions in the bath at an iron ion concentration of about 0.1 gram per liter to about 25 grams per liter.
The aqueous alkaline electroplating baths can be used at conventional current densities, for example, about 1 to 100 amps per square foot, as determined by Hull Cell evaluation. In some embodiments, the bath can be operated with an average cathode current density in the range of about 3 amps per square foot to about 25 amps per square foot, typically about 20 amps per square foot. The cathode current density is dependent upon the particular type of deposit desired. Bright deposits can be obtained at conventional temperatures, for instance about 20° C. to about 40° C.
The electrodeposition using the electroplating bath may, for example, be carried out as a drum galvanizing process when used for mass parts, and as a frame galvanizing process for deposition on larger workpieces. Anodes can be used that are soluble, such as zinc anodes, and that at the same time can serve as a source of zinc ions so that the zinc deposited on the cathode is recovered by dissolution of zinc at the anode. Alternatively, insoluble anodes such as nickel and/or iron anodes, may also be used, wherein the zinc ions removed from the electrolyte have to be replenished in another way, for example, by using a zinc dissolving tank.
The electroplating baths described herein may be operated on a continuous or intermittent basis and, from time to time, the components of the bath may have to be replenished. The various components may be added singularly as required or may be added in combination. The amounts of the various components to be added may be added on either a continuous basis or on an intermittent bases. The concentrations may be determined at appropriate intervals based on experience, or may be continuously determined, for example, by automated analytical instrumentation. The amounts of the various components to be added to the electroplating bath may be varied over a wide range depending on the nature and the performance of the electroplating baths to which the components are added. Such amounts can be determined readily by one of ordinary skill in the art.
The ternary zinc-nickel-iron alloy electrodeposited on the substrate can include or consist essentially of, for example, about 7 wt. % to about 16 wt. % nickel, about 0.5 wt. % to about 8 wt. % iron, and the balance Zn, preferably, about 70 wt. % to about 86 wt. % zinc, about 10 wt. % to about 15 wt. % nickel, and about 1 wt. % to about 8 wt. % iron, and more preferably, about 75 wt. % to about 85 wt. % zinc, about 12.5 wt. % to about 13.5 wt. % nickel, and about 1 wt. % to about 8 wt. % iron. Advantageously, the weight percent of iron provided within the deposit is uniform and predictable. Essentially, every 250 ppm of Fe2+ added to a standard aqueous alkalkine zinc-nickel electroplating solution increases the iron contribution within the deposit by about 1% wt/wt. Surprisingly, increasing the iron wt. % within the alloy does not impact the nickel percentage, but rather, comes at the expense of zinc. In a commercial environment, this is important because controlling the alloy becomes a fairly simple paradigm where if the nickel and zinc values are held static, the alloy can be manipulated simply by changing the iron value to yield the desired alloy.
In some embodiments, to improve corrosion resistance of substrates electroplated with the ternary zinc-nickel-iron alloy, the surfaces of the electroplated substrates can be treated with a corrosion resistance passivate or passivation formulation. A variety of corrosion resistance passivation formulations are available. For example, U.S. Pat. No. 7,314,671 describes chromium (VI)-free conversion layer and method for producing it. U.S. Pat. Nos. 6,375,726 and 4,384,902 discloses trivalent chromium passivate composition and process. Other corrosion resistant passivation formulation for zinc electrodeposits can include a coat of organic, inorganic or hybrid polymer. Such polymer formulations are referred as Sealers, Fixers or Topcoats in the industrial practice.
Advantageously, the zinc-nickel-iron ternary alloy described herein can be electrodeposited on an aluminum substrate, such as an aluminum electrical connector, to enhance corrosion resistance of the aluminum connector and improve electrical conductivity of the connector when mated to a similar connector. Traditionally, aluminum connectors undergo a plating process that includes a standard aluminum pre-plate, including cleaning and electrodeposition of zincate, followed by an electroless nickel coating. The connector can then be plated with cadmium, followed by a hexvalent passivate. This traditional process is environmentally unfriendly. To facilitate the elimination of both the cadmium and hexavalent chromium, the traditional process was replaced with zinc-nickel electroplate and a trivalent passivate. Over time, the corrosion products from the zinc-nickel/passivate are manifest on the connector. These corrosion salts hinder the conductivity of the connector and their reduction is desired to improve both the function and the life of the connector. To that end, a further improvement is achieved to the connector by the replacement of the zinc-nickel alloy with the zinc-nickel-iron ternary alloy described herein. The increased corrosion resistance of the Zn—Ni—Fe alloy reduces the preponderance of corrosion locations on the connector, improving its overall electrical conductivity when mating. Further, the use of the ternary Zn—Ni—Fe alloy produces a more aesthetically desired black passivate, again with improved corrosion protection. This further improved corrosion protection yet again minimizes the proliferation of corrosion salts on the surface, continuing to improve the conductivity of the connector.
The following examples are included to demonstrate various aspects of the invention. Those of skill in the art should, in light of the present disclosure, appreciate that many changes can be made in the specific aspects which are disclosed and still obtain a like or similar result without departing from the spirit and scope of the invention.
Examples
A commercially aviable zinc-nickel solution was constructed that contained:
Zinc Oxide   10 g/L
Sodium hydroxide  155 g/L
Nickel Sulfate Hexahydrate  5.4 g/L
Trigonelline solution 0.52 g/L
TEPA 24.4 g/L
DETA 0.65 g/L
Triethanolamine 13.0 g/L
The bath was then augmented with soluble iron (ferrous sulfate) to form a ternary Zn—Ni—Fe alloy. The addition of just Ferrous sulfate to the solution, even in the presence of a variety of complexing agents, did not yield a substantial amount of Fe in the deposit. However, when the ferrous sulfate was introduced as a carboxylate complex with gluconate (or alternatively, tartrate), then iron in the deposit substantially increased, essentially as a ratio of the iron in solution. The iron was capable of depositing from either the ferrous or ferric state as long as it was complexed first with gluconate. In practice, it took about 50% more ferric ion in solution to get the same amount of iron in the deposit.
In the Examples described below, the complexed Fe2+ was added to the alkaline Zn—Ni bath using the following solution. The solution yields an iron content of 25,000 ppm as Fe2+.
125 g/L FeSO4·7H2O
100.8 g/L Sodium Gluconate
Performance testing of the bath was done using a standard 2 A×30 minute, 267 mL Hull Cell, so that a range of current densities (<1 to >100 Amps per square foot) could be interpreted. All plating performance testing described was done at room temperature (20-26° C.). As illustrated in FIG. 1A, the basic solution, with no Fe produced a deposit with slight low current density brightness, as evidenced by the reflected stripes seen on the right side of the panel. However, as shown in FIG. 1B when the Fe was introduced and incorporated into the deposit, the entirety of the panel appearance was improved and the striped reflection can be seen over the entire range of the of the panel.
One can also note that the Fe in deposit, by XRF analysis, was around 4% wt/wt, yielding a Zn—Ni—Fe ternary alloy of essentially 83-13-4%, respectively. Such a visual improvement has heretofore not been observed with no other changes to the bath parameters outside of increased iron concentration from an alkaline electrolyte.
Also of note, within these bath plating parameters, the iron increase within the deposit was uniform and predictable. Essentially, every 250 ppm of Fe2+ added to the solution increases the Fe contribution within the deposit by about 1% wt/wt. Of further interest, increasing the Fe within the alloy does not impact the Ni percentage, but rather, comes at the expense of Zn. In a commercial environment, this is important because controlling the alloy becomes a fairly simple paradigm where if the nickel and zinc values are held static, the alloy can be manipulated simply by changing the iron value to yield the desired alloy. By way of example, holding the zinc concentration constant at 8 g/L and the nickel at 1200 ppm, the ternary alloy yields were as follows at a plating current density of 20 amps/ft2. Again, note how stable and predictable the Ni content is:
Composition
Deposit of Alloy as a
Fe concentration Thickness weight percent
(ppm) (microns) Zn Ni Fe
0 10.7 87.1 12.9 0.0
250 9 85.1 13.2 1.7
500 10.4 84.2 13.4 2.4
1000 9.9 82.5 13.1 4.4
2000 10.3 79.1 13.0 7.9
While improvement in the deposit specularity with the incorporation of Fe is surprising, it is not the only unanticipated improvement with the invention. Corrosion resistance was also enhanced with the ternary alloy. Further, corrosion resistance of the zinc and zinc plated alloys is itself enhanced through the use of passivates. Passivates serve two purposes. 1) as well as the alloy itself, the passivate also enhances corrosion resistance: and 2) passivates allow for changing the color of the final product. There is a commercial desire within the industry to yield parts that are not only in some cases “metallic” looking, but also parts to be uniformly black in color. Colored with improved corrosion resistance is the ultimate goal.
To demonstrate the enhanced corrosion resistance of the alloy, a series of panels were produced using a duplicell so that more uniform thickness could be achieved on the panels. Plating solutions were maintain constant at 8 g/L zinc, 1100 ppm nickel, and the iron content was varied at essentially 1000, 1500 and 2000 ppm as Fe2+. Panels were then all plated to essentially 10 micron thickness at a nominal 15 Amps/ft2, yielding nickel alloys of 13+/−2% and iron contents of 4, 6 and 8% respectively for the 1000, 1500 and 2000 ppm contents. Each panel set was then exposed to the same commercial black trivalent passivate, applied under like conditions. A standard zinc-nickel plated panel set, containing no iron and plated under like conditions was used as a control.
FIGS. 3 (A-D) illustrate the panels prior to accelerated corrosion testing. What is not overly apparent from the pictures is how significantly more reflective the panels are that contain the iron and the passivate film, while perhaps not as dark as the control, the ternary alloy panels appear to have a more substantial passivate film.
The panels were then exposed to neutral salt spray for accelerated corrosion testing per ASTM B117. FIGS. 4 (A-D) illustrate the panels after 312 hours salt spray exposure. A vast difference in the corrosion protection was afforded by the ternary alloy. On the control, not only was red rust visible, indicating attack on the steel substrate, but the white corrosion products, which were more pronounced were indicative of attack on the zinc-nickel alloy. The ternary alloy showed just a hint of white corrosion on the very high Fe alloy panel and no signs of red rust, which means the substrate was completely protected.
To verify the profound difference, a second test was done using panels produced in essentially a like manner. The differences of this panel set were the use of a clear passivate, post plating and a lower Fe percentage, between zero and 4%.
The matrix was set up as follows:
    • Set A: 8 microns standard alkaline zinc nickel as previously presented (12.5% nickel in Deposit);
    • Set B: Standard with 250 ppm of Fe2+ complexed with gluconate (≈1% iron in deposit);
    • Set C Standard with 500 ppm of Fe2+ complexed with gluconate (≈2% iron in deposit);
    • Set D: Standard with 1000 ppm of Fe2+ complexed with gluconate (≈4% iron in deposit).
All panels were passivated with a commercial, trivalent chromium clear/blue passivate prior testing.
Panels were then exposed to neutral salt spray for accelerated corrosion testing per ASTM B117.
Results were as followed:
Iron as Appearance
Iron wt % in @ 0 hrs @ 48 hrs @ 72 hrs @ 168 hrs
Conc. In bath deposit NSST NSST NSST NSST
0 ppm Fe 2+   0% 0% 100% ≈5% red ≈20% red
Panel Set A white white corrosion corrosion
corrosion corrosion
250 ppm Fe2+ 1.50% 0% ≈90% ≈5% red ≈20% red
Panel Set B white white corrosion corrosion
corrosion corrosion
500 ppm Fe2+ 2.00% 0% ≈70% ≈90% ≈5% red
Panel Set C white white white corrosion
corrosion corrosion corrosion
1000 ppm Fe2+ 4.00% 0% ≈10% ≈10% ≈10%
Panel Set D white white white white
corrosion corrosion corrosion corrosion
This testing shows a modest improvement in the corrosion properties with 250 ppm of iron in solution (˜1.5% Fe in the alloy) and as the iron content goes up, so too the corrosion resistance. Incorporation of 4% Fe into the as deposited Zn—Ni—Fe alloy, resulted in no red corrosion being encountered during the testing, indicating complete protection of the substrate. This is more than double the corrosion resistance of just a Zn—Ni deposit.
In another example, bolt heads were plated with a zinc-nickel-iron alloy plating system in accordance with one embodiment and a comparative zinc-nickel alloy plating system. The zinc-nickel-iron alloy plating system employed an alkaline zinc-nickel-iron plating bathing having the following formulation and plating conditions:
    • 8 g/L zinc;
    • 1100 ppm nickel;
    • 131 g/L caustic.
    • 4% Iron/gluconate additive (1000 ppm ferrous iron)
Barrel plate 10 ASF for 30 minutes.
Bolt heads have 6 microns thickness zinc-nickel-iron with approximately 13% nickel and 4% iron in the deposit
The comparative zinc-nickel alloy plating system employed an alkaline zinc-nickel plating bathing having the following formulation and plating conditions:
    • 8 g/L zinc;
    • 1100 ppm nickel;
    • 131 g/L caustic.
Barrel plate 10 ASF for 30 minutes.
Bolt heads have 6 microns thickness zinc-nickel with approximately 13% nickel in the deposit.
The bolt heads were subjected to accelerated corrosion testing per ASTM B117 corrosion resistance for 72 hours. FIGS. 4 (A-B) show the improvement of the alloy when compared to standard Zn—Ni, deposited on steel, without any passivate. Or, more simply, the alloy alone in direct comparison to Zn—Ni. The lesser preponderance of red rust location on the ternary alloy indicates superior corrosion resistance.
From the above description of the invention, those skilled in the art will perceive improvements, changes and modifications Such improvements, changes and modifications are within the skill of the art and are intended to be covered by the appended claims. All publications, patents, and patent applications cited in the present application are herein incorporated by reference in their entirety.

Claims (13)

Having described the invention the following is claimed:
1. An aqueous alkaline zinc-nickel-iron electroplating bath for depositing a ternary zinc-nickel-iron alloy on a substrate, the aqueous alkaline zinc-nickel-iron electroplating bath comprising:
zinc ions,
nickel ions,
an alkaline compound selected from the group consisting of sodium hydroxide and potassium hydroxide, and
a complex consisting of an iron salt and an iron complexing agent, wherein the iron complexing agent is selected from the group consisting of sodium gluconate, sodium tartrate, sodium hydroxybutyrate, potassium gluconate, potassium tartrate, and/or potassium hydroxybutyrate, and wherein the complex is formed prior to addition to the electroplating bath,
wherein a concentration of iron ions in the electroplating bath provided by the complex is from about 0.1 gram per liter to about 25 grams per liter,
wherein the electroplating bath is maintained at a pH of more than about 13
wherein the electroplating bath is configured to deposit a ternary zinc-nickel-iron alloy containing 7 to 16 wt. % nickel, 0.5 to 8.0 wt. % iron, and the balance zinc, and
wherein the electroplating bath is at least essentially free of iron hydroxide.
2. The aqueous alkaline zinc-nickel-iron electroplating bath of claim 1, further comprising an amount of a nickel complexing agent effective to keep the nickel ions soluble in the bath.
3. The aqueous alkaline zinc-nickel-iron electroplating bath of claim 2, wherein the nickel complexing agent comprises at least one of an aliphatic amine, alkyleneimine, poly(alkyleneimine), polyamine, amino alcohol, carboxylic acids, or sodium or potassium salts thereof.
4. The aqueous alkaline zinc-nickel-iron electroplating bath of claim 1, being free of a polyoxyalkylene compound and a quaternary polymer.
5. The aqueous alkaline zinc-nickel-iron electroplating bath of claim 1, further comprising a brightener.
6. The aqueous alkaline zinc-nickel-iron electroplating bath of claim 5, wherein the brightener comprises at least one of N-methylpyridinium-3-carboxylate or salt thereof (trigonelline), 1-benzylnicotinate, or sulfopropylpyridinium.
7. The aqueous alkaline zinc-nickel-iron electroplating bath of claim 1, wherein the iron salt comprises ferrous sulfate.
8. An aqueous alkaline zinc-nickel-iron electroplating bath for depositing a ternary zinc-nickel-iron alloy on a substrate, comprising:
about 4 grams per liter to about 50 grams per liter of zinc;
about 0.1 grams per liter to about 10 grams per liter of nickel;
about 50 grams per liter to about 220 grams per liter of an alkaline compound selected from the group consisting of sodium hydroxide and potassium hydroxide; and
about 2 grams per liter to about 200 grams per liter of a nickel complexing agent; and
a complex consisting of an iron salt and an iron complexing agent, wherein the iron complexing agent is selected from the group consisting of sodium gluconate, sodium tartrate, sodium hydroxybutyrate, potassium gluconate, potassium tartrate, and/or potassium hydroxybutyrate, wherein the complex is formed prior to addition to the electroplating bath,
wherein a concentration of iron ions in the electroplating bath provided by the complex is from about 0.1 gram per liter to about 10 grams per liter,
wherein the electroplating bath is configured to deposit a ternary zinc-nickel-iron alloy containing 7 to 16 wt. % nickel, 0.5 to 8.0 wt. % iron, and the balance zinc,
wherein the electroplating bath is maintained at a pH of more than about 13, and
wherein the electroplating bath is at least essentially free of iron hydroxide.
9. The aqueous alkaline zinc-nickel-iron electroplating bath of claim 8, wherein the nickel complexing agent comprises at least one of an aliphatic amine, alkyleneimine, poly(alkyleneimine), polyamine, amino alcohol, carboxylic acids, or sodium or potassium salts thereof.
10. The aqueous alkaline zinc-nickel-iron electroplating bath of claim 8, being free of a polyoxyalkylene compound and a quaternary polymer.
11. The aqueous alkaline zinc-nickel-iron electroplating bath of claim 8, further comprising a brightener.
12. The aqueous alkaline zinc-nickel-iron electroplating bath of claim 11, wherein the brightener comprises at least one of N-methylpyridinium-3-carboxylate or salt thereof (trigonelline), 1-benzylnicotinate, or sulfopropylpyridinium.
13. The aqueous alkaline zinc-nickel-iron electroplating bath of claim 8, wherein the iron salt comprises ferrous sulfate.
US16/302,454 2016-05-24 2017-05-24 Ternary zinc-nickel-iron alloys and alkaline electrolytes or plating such alloys Active US11913131B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/302,454 US11913131B2 (en) 2016-05-24 2017-05-24 Ternary zinc-nickel-iron alloys and alkaline electrolytes or plating such alloys

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201662340759P 2016-05-24 2016-05-24
US16/302,454 US11913131B2 (en) 2016-05-24 2017-05-24 Ternary zinc-nickel-iron alloys and alkaline electrolytes or plating such alloys
PCT/US2017/034186 WO2017205473A1 (en) 2016-05-24 2017-05-24 Ternary zinc-nickel-iron alloys and alkaline electrolytes for plating such alloys

Publications (2)

Publication Number Publication Date
US20200071843A1 US20200071843A1 (en) 2020-03-05
US11913131B2 true US11913131B2 (en) 2024-02-27

Family

ID=60412949

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/302,454 Active US11913131B2 (en) 2016-05-24 2017-05-24 Ternary zinc-nickel-iron alloys and alkaline electrolytes or plating such alloys

Country Status (7)

Country Link
US (1) US11913131B2 (en)
EP (1) EP3464684A4 (en)
KR (1) KR102399444B1 (en)
CN (1) CN109642337B (en)
BR (1) BR112018074113A2 (en)
CA (1) CA3024991A1 (en)
WO (1) WO2017205473A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109950546B (en) * 2019-03-24 2021-04-13 湖北中一科技股份有限公司 Copper foil manufacturing process and negative current collector
US11661666B2 (en) 2019-10-10 2023-05-30 The Boeing Company Electrodeposited zinc and iron coatings for corrosion resistance
CN112831808B (en) * 2020-12-25 2021-11-30 北京中铁科新材料技术有限公司 Zinc-nickel alloy electroplating solution and application thereof in surface treatment of steel rail fastener
KR102656417B1 (en) * 2022-02-18 2024-04-12 (주)일성도금 High corrosion resistance surface treatment method of liftgate hinge made of aluminum alloy material

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3227755A1 (en) 1982-07-24 1984-04-12 Hoesch Werke Ag, 4600 Dortmund METHOD FOR PRODUCING ELECTROLYTICALLY GALVANIZED STEEL SHEET
US4717458A (en) * 1986-10-20 1988-01-05 Omi International Corporation Zinc and zinc alloy electrolyte and process
US4772362A (en) * 1985-12-09 1988-09-20 Omi International Corporation Zinc alloy electrolyte and process
US4861290A (en) 1987-12-09 1989-08-29 Eaton Corporation Aluminum electrical connector with threaded opening having electroplated layer of uniform thickness
US4983263A (en) * 1988-11-21 1991-01-08 Yuken Kogyo Kabushiki Kaisha Zincate type zinc alloy electroplating bath
US5435898A (en) 1994-10-25 1995-07-25 Enthone-Omi Inc. Alkaline zinc and zinc alloy electroplating baths and processes
US5683568A (en) * 1996-03-29 1997-11-04 University Of Tulsa Electroplating bath for nickel-iron alloys and method
US6468411B1 (en) 2001-07-11 2002-10-22 Taskem Inc. Brightener for zinc-nickel plating bath and method of electroplating
US20030100638A1 (en) 1999-11-10 2003-05-29 Nihon Hyomen Kagaku Kabushiki Kaisha Surface treating method and surface treating agent
US6652728B1 (en) * 1998-09-02 2003-11-25 Atotech Deutschland Gmbh Cyanide-free aqueous alkaline bath used for the galvanic application of zinc or zinc-alloy coatings
JP3486087B2 (en) 1997-12-29 2004-01-13 日本表面化学株式会社 Plating bath and plating process for alkaline zinc or zinc alloy
US20050173255A1 (en) * 2004-02-05 2005-08-11 George Bokisa Electroplated quaternary alloys
US20050256328A1 (en) * 2004-05-17 2005-11-17 Cilag Ag Method of making iron(III)gluconate complex
US20070023280A1 (en) * 2002-11-25 2007-02-01 Eckles William E Zinc and zinc-alloy electroplating
WO2007025606A1 (en) * 2005-07-14 2007-03-08 Atotech Deutschland Gmbh Nitrogen polymer additive for electrolytic deposition of zinc and zinc alloys and process for producing and use of the same
US20090107845A1 (en) * 2005-04-26 2009-04-30 Atotech Deutschland Gmbh Alkaline Electroplating Bath Having A Filtration Membrane
US8377263B2 (en) 2005-10-10 2013-02-19 Cot-Clean Oil Technology Ab Device for regeneration of oils
JP2014198882A (en) 2013-03-29 2014-10-23 Jx日鉱日石金属株式会社 Surface-treated metal material, and connector, terminal, laminate, shielding tape, shielding material, printed wire board, printed circuit board, processed metal member and electronic equipment using the same
US20160038604A1 (en) * 2011-06-08 2016-02-11 Chelation Partners Incorporated Metal chelating compositions and methods for controlling the growth or activities of a living cell or organism
US20160047056A1 (en) * 2013-03-28 2016-02-18 University Of Besancon Electroplating bath for zinc-iron alloys, method for depositing zinc-iron alloy on a device and such a device
WO2016169952A1 (en) * 2015-04-20 2016-10-27 Atotech Deutschland Gmbh Electrolytic copper plating bath compositions and a method for their use

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6052592A (en) * 1983-09-02 1985-03-25 Nisshin Steel Co Ltd Treatment of zn-ni alloy electroplated steel sheet after plating
DE3534147A1 (en) * 1985-09-25 1987-04-02 Elektro Brite Gmbh Chloride-containing bath for the electrodeposition of a zinc-nickel alloy on iron
DE3619385A1 (en) * 1986-06-09 1987-12-10 Elektro Brite Gmbh ACID, SULFATE-CONTAINING BATH FOR THE GALVANIC DEPOSITION OF ZN-FE ALLOYS
CS270099B1 (en) * 1988-11-24 1990-06-13 Karel Ing Capoun Complexing and lustre forming admixture
JP2671612B2 (en) * 1991-01-30 1997-10-29 住友金属工業株式会社 Zinc-based direct electroplating method for aluminum strip
JP2718310B2 (en) * 1991-12-18 1998-02-25 住友金属工業株式会社 Laminated plating Al plate and method for producing the same
US6129995A (en) * 1997-03-19 2000-10-10 Nkk Corporation Zinciferous coated steel sheet and method for producing the same
US7442286B2 (en) * 2004-02-26 2008-10-28 Atotech Deutschland Gmbh Articles with electroplated zinc-nickel ternary and higher alloys, electroplating baths, processes and systems for electroplating such alloys
EP1881091A1 (en) * 2006-07-21 2008-01-23 Enthone, Inc. Process and apparatus for controlling the plating result on a substrate surface
CN101545125A (en) * 2009-03-31 2009-09-30 华南理工大学 Bright corrosion resisting zinc-iron alloy plating process
CN102080242B (en) * 2009-11-27 2012-12-12 比亚迪股份有限公司 Copper-tin-iron ternary alloy plating solution, electroplating method and electroplating product
CN101775629A (en) * 2010-03-11 2010-07-14 乔瀚文 Electroplating solution for producing magnetically soft iron-nickel-molybdenum alloy foils
CN101928968B (en) * 2010-08-30 2011-08-24 赵汝山 Boron-tungsten-iron-nickel alloy electroplating liquid
JP5949291B2 (en) * 2012-08-03 2016-07-06 株式会社オートネットワーク技術研究所 Connector terminal and connector terminal material
JP2014047360A (en) * 2012-08-29 2014-03-17 Auto Network Gijutsu Kenkyusho:Kk Connector terminal and material for connector terminal
JP6092689B2 (en) * 2013-03-29 2017-03-08 Jx金属株式会社 Surface-treated metal material and connector, terminal, laminated board, shield tape, shield material, printed wiring board, printed circuit board, method of manufacturing metal-worked member, and method of manufacturing electronic device using the same
JP2014201753A (en) * 2013-04-01 2014-10-27 株式会社オートネットワーク技術研究所 Manufacturing method of connector terminal material, and manufacturing method of connector terminal
CN105586614B (en) * 2016-03-18 2017-08-08 厦门大学 A kind of electroplating solution and electro-plating method of ferric iron system alkaline solution electro-deposition invar alloy

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3227755A1 (en) 1982-07-24 1984-04-12 Hoesch Werke Ag, 4600 Dortmund METHOD FOR PRODUCING ELECTROLYTICALLY GALVANIZED STEEL SHEET
US4772362A (en) * 1985-12-09 1988-09-20 Omi International Corporation Zinc alloy electrolyte and process
US4717458A (en) * 1986-10-20 1988-01-05 Omi International Corporation Zinc and zinc alloy electrolyte and process
US4861290A (en) 1987-12-09 1989-08-29 Eaton Corporation Aluminum electrical connector with threaded opening having electroplated layer of uniform thickness
US4983263A (en) * 1988-11-21 1991-01-08 Yuken Kogyo Kabushiki Kaisha Zincate type zinc alloy electroplating bath
US5435898A (en) 1994-10-25 1995-07-25 Enthone-Omi Inc. Alkaline zinc and zinc alloy electroplating baths and processes
JPH08209379A (en) 1994-10-25 1996-08-13 Enthone Omi Inc Electroplating bath for alkali zinc and zinc alloy and process
US5683568A (en) * 1996-03-29 1997-11-04 University Of Tulsa Electroplating bath for nickel-iron alloys and method
JP3486087B2 (en) 1997-12-29 2004-01-13 日本表面化学株式会社 Plating bath and plating process for alkaline zinc or zinc alloy
US6652728B1 (en) * 1998-09-02 2003-11-25 Atotech Deutschland Gmbh Cyanide-free aqueous alkaline bath used for the galvanic application of zinc or zinc-alloy coatings
US20030100638A1 (en) 1999-11-10 2003-05-29 Nihon Hyomen Kagaku Kabushiki Kaisha Surface treating method and surface treating agent
US6468411B1 (en) 2001-07-11 2002-10-22 Taskem Inc. Brightener for zinc-nickel plating bath and method of electroplating
US20070023280A1 (en) * 2002-11-25 2007-02-01 Eckles William E Zinc and zinc-alloy electroplating
US20050173255A1 (en) * 2004-02-05 2005-08-11 George Bokisa Electroplated quaternary alloys
US20050256328A1 (en) * 2004-05-17 2005-11-17 Cilag Ag Method of making iron(III)gluconate complex
US20090107845A1 (en) * 2005-04-26 2009-04-30 Atotech Deutschland Gmbh Alkaline Electroplating Bath Having A Filtration Membrane
WO2007025606A1 (en) * 2005-07-14 2007-03-08 Atotech Deutschland Gmbh Nitrogen polymer additive for electrolytic deposition of zinc and zinc alloys and process for producing and use of the same
US8377263B2 (en) 2005-10-10 2013-02-19 Cot-Clean Oil Technology Ab Device for regeneration of oils
US20160038604A1 (en) * 2011-06-08 2016-02-11 Chelation Partners Incorporated Metal chelating compositions and methods for controlling the growth or activities of a living cell or organism
US20160047056A1 (en) * 2013-03-28 2016-02-18 University Of Besancon Electroplating bath for zinc-iron alloys, method for depositing zinc-iron alloy on a device and such a device
JP2014198882A (en) 2013-03-29 2014-10-23 Jx日鉱日石金属株式会社 Surface-treated metal material, and connector, terminal, laminate, shielding tape, shielding material, printed wire board, printed circuit board, processed metal member and electronic equipment using the same
WO2016169952A1 (en) * 2015-04-20 2016-10-27 Atotech Deutschland Gmbh Electrolytic copper plating bath compositions and a method for their use

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Abou-Krisha et al. "Electrodeposition and characterization of zinc-nickel-iron alloy from sulfate bath: influence of plating bath temperature". Journal of Solid Sate Electrochemistry. Jul. 22, 2008. pp. 879-885.
Chinese Office Action for Application No. 201780032660.X dated Jan. 12, 2021; 13 pgs.
Chinese Office Action for Application No. 201780032660.X dated Jun. 10, 2020.
Korean Office Action dated Jul. 1, 2021.

Also Published As

Publication number Publication date
BR112018074113A2 (en) 2019-03-06
WO2017205473A1 (en) 2017-11-30
KR20190009357A (en) 2019-01-28
CN109642337A (en) 2019-04-16
EP3464684A4 (en) 2020-03-11
KR102399444B1 (en) 2022-05-19
CA3024991A1 (en) 2017-11-30
CN109642337B (en) 2021-07-13
US20200071843A1 (en) 2020-03-05
EP3464684A1 (en) 2019-04-10

Similar Documents

Publication Publication Date Title
US5417840A (en) Alkaline zinc-nickel alloy plating baths
US11913131B2 (en) Ternary zinc-nickel-iron alloys and alkaline electrolytes or plating such alloys
US7442286B2 (en) Articles with electroplated zinc-nickel ternary and higher alloys, electroplating baths, processes and systems for electroplating such alloys
US6652728B1 (en) Cyanide-free aqueous alkaline bath used for the galvanic application of zinc or zinc-alloy coatings
US4889602A (en) Electroplating bath and method for forming zinc-nickel alloy coating
US20100155257A1 (en) Aqueous, alkaline, cyanide-free bath for the galvanic deposition of zinc alloy coatings
JP6582353B1 (en) Zinc or zinc alloy electroplating method and system
US9644279B2 (en) Zinc-nickel alloy plating solution and plating method
JPH0338351B2 (en)
JP2013534276A (en) Electrolyte and method for depositing a copper-tin alloy layer
US3879270A (en) Compositions and process for the electrodeposition of metals
US20030085130A1 (en) Zinc-nickel electrolyte and method for depositing a zinc-nickel alloy therefrom
US6468411B1 (en) Brightener for zinc-nickel plating bath and method of electroplating
JP5419021B2 (en) Zincate-type galvanizing bath
EP3642396B1 (en) Nickel electroplating bath for depositing a decorative nickel coating on a substrate
US9587320B2 (en) Additive for acid zinc alloy plating bath, acid zinc alloy plating bath, and method for producing zinc alloy plated article
US11661666B2 (en) Electrodeposited zinc and iron coatings for corrosion resistance
JP5747359B2 (en) Zincate-type zinc-based plating bath, additive for zincate-type zinc-based plating bath, and method for producing zinc-based plated member
WO2022224901A1 (en) Trivalent chromium plating solution and chromium plating method using same
JPH04259393A (en) Zinc-nickel alloy coating bath and method for preventing precipitation of black on material to be coated
JPS6319600B2 (en)
KR20020013873A (en) Alloy plating
JP2014009369A (en) Nickel-tungsten plating solution and nickel-tungsten plating method

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

AS Assignment

Owner name: COVENTYA, INC., OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BOKISA, GEORGE;ORITI, TONY;JAHN, MARKUS;REEL/FRAME:053701/0181

Effective date: 20181219

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

AS Assignment

Owner name: MACDERMID, INCORPORATED, CONNECTICUT

Free format text: MERGER;ASSIGNOR:COVENTYA INC.;REEL/FRAME:064808/0839

Effective date: 20230104

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE