WO2021131222A1 - ガイダンスシステム - Google Patents

ガイダンスシステム Download PDF

Info

Publication number
WO2021131222A1
WO2021131222A1 PCT/JP2020/037801 JP2020037801W WO2021131222A1 WO 2021131222 A1 WO2021131222 A1 WO 2021131222A1 JP 2020037801 W JP2020037801 W JP 2020037801W WO 2021131222 A1 WO2021131222 A1 WO 2021131222A1
Authority
WO
WIPO (PCT)
Prior art keywords
transported object
information
target
controller
coordinates
Prior art date
Application number
PCT/JP2020/037801
Other languages
English (en)
French (fr)
Inventor
展弘 福尾
山▲崎▼ 洋一郎
耕治 山下
佑介 上村
伸吾 関口
高幸 飯野
小林 浩
Original Assignee
コベルコ建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コベルコ建機株式会社 filed Critical コベルコ建機株式会社
Priority to EP20906774.3A priority Critical patent/EP4056757A4/en
Priority to CN202080085678.8A priority patent/CN114787447B/zh
Priority to US17/783,116 priority patent/US11828607B2/en
Publication of WO2021131222A1 publication Critical patent/WO2021131222A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/3407Route searching; Route guidance specially adapted for specific applications
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/46Position indicators for suspended loads or for crane elements
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/004Devices for guiding or controlling the machines along a predetermined path
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/40Dippers; Buckets ; Grab devices, e.g. manufacturing processes for buckets, form, geometry or material of buckets
    • E02F3/402Dippers; Buckets ; Grab devices, e.g. manufacturing processes for buckets, form, geometry or material of buckets with means for facilitating the loading thereof, e.g. conveyors
    • E02F3/404Dippers; Buckets ; Grab devices, e.g. manufacturing processes for buckets, form, geometry or material of buckets with means for facilitating the loading thereof, e.g. conveyors comprising two parts movable relative to each other, e.g. for gripping
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F5/00Dredgers or soil-shifting machines for special purposes
    • E02F5/02Dredgers or soil-shifting machines for special purposes for digging trenches or ditches
    • E02F5/10Dredgers or soil-shifting machines for special purposes for digging trenches or ditches with arrangements for reinforcing trenches or ditches; with arrangements for making or assembling conduits or for laying conduits or cables
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/264Sensors and their calibration for indicating the position of the work tool
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C11/00Details of pavings
    • E01C11/22Gutters; Kerbs ; Surface drainage of streets, roads or like traffic areas
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/52Apparatus for laying individual preformed surfacing elements, e.g. kerbstones
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • G06T7/62Analysis of geometric attributes of area, perimeter, diameter or volume

Definitions

  • the present invention relates to a technique for guiding the moving direction of a transported object.
  • a road-related continuous structure such as a U-shaped groove or a gutter
  • a road-related continuous structure such as a U-shaped groove or a gutter
  • a road-related continuous structure is installed with the aim of the chopping.
  • high precision and labor saving are being promoted, and it is required to install the structure with high precision without using a chopstick.
  • Patent Document 1 discloses a technique for installing a continuous structure incidental to a road without using a chopstick.
  • the mobile station is placed in the U-shaped groove, the surface position data of the U-shaped groove is actually measured by the total station, and the structure surface position data and the design data are compared by the processing device.
  • the structure construction error is the deviation direction and deviation distance from the normal position.
  • the display device displays the moving direction and the moving distance to be corrected.
  • the position data from the total station (U-shaped groove construction position) is compared with the three-dimensional coordinate data (design data) of the design drawing, and the U-shaped groove construction error (horizontal position and height position) is compared.
  • the error) is calculated, and the moving direction and the moving distance to be corrected are derived from this error and displayed on the display device.
  • the structure may be installed along a target line such as a curved line or a straight line. In the above-mentioned prior art, it is not disclosed to guide the moving direction of the structure so as to approach the target line. Therefore, it is desired to guide the moving direction of the transported object with high accuracy along the target line.
  • An object of the present invention is to provide a technique capable of guiding the moving direction of a transported object with high accuracy along a target line.
  • the guidance system includes a detection unit that detects at least one of the coordinates of the transported object and the direction of the transported object, and the coordinates of the transported object and the direction of the transported object detected by the detecting unit.
  • the memory includes a controller for acquiring at least one of the above, a display unit, and a memory, and the memory indicates the installation target of the transported object and the target line information regarding the target line indicated by at least one of a curve and a fold line. Is stored in advance, the controller calculates target information which is at least one of the information regarding the target coordinates of the transported object and the information regarding the target direction of the transported object based on the target line information, and the detection unit calculates the target information.
  • the detection information which is information that can be compared with the target information, is calculated, and the deviation of the detected information with respect to the target information is calculated.
  • the display unit displays the moving direction of the transported object so that the deviation becomes small.
  • FIG. 4 It is the figure which looked at the work machine, the transported object, and the guidance system in this embodiment from the top. It is a perspective view which shows the appearance of the transported object and the frame part in this embodiment. It is a block diagram which shows the structure of the guidance system in this embodiment. In the first embodiment of the present embodiment, it is a view from the top of the work site before the material handling object is installed outside the target line. The point on the side close to the reference structure and the side close to the target line of the transported object shown in FIG. 4 is the end on the side where the transported object of the reference structure is installed and the side close to the target line. It is the figure which looked at the work site in the state which was matched with the point from the top. FIG.
  • FIG. 5 is a top view of the work site in a state where the material handling object shown in FIG. 5 is installed along the target line.
  • it is a view from the top of the work site before the material handling object is installed inside the target line.
  • the point on the side closer to the reference structure and the side far from the target line shown in FIG. 7 is the end on the side where the transport object of the reference structure is installed and on the side far from the target line.
  • FIG. 8 is a top view of the work site in a state where the material handling object shown in FIG. 8 is installed along the target line.
  • it is a top view of the work site before the transported object is installed inside the polygonal target line. It is a figure for demonstrating the calibration process which associates a sensor coordinate system with a field coordinate system.
  • the guidance system 30 used when the work machine 1 shown in FIG. 1 transports the transported object 20 will be described with reference to FIGS. 1 to 11.
  • the following embodiments are examples that embody the present invention, and do not limit the technical scope of the present invention.
  • FIG. 1 is a top view of the work machine 1, the material handling 20, and the guidance system 30 in the present embodiment.
  • the work machine 1 is a machine that performs the work of moving the transported object 20.
  • the work machine 1 is, for example, a construction machine that performs construction work, and may be, for example, an excavator or a crane.
  • the work machine 1 includes a lower traveling body 11, an upper rotating body 13, and an attachment 15.
  • the lower traveling body 11 runs the work machine 1.
  • the lower traveling body 11 includes, for example, a crawler.
  • the upper swivel body 13 is mounted on the lower traveling body 11 so as to be swivelable.
  • the upper swivel body 13 includes a driver's cab 13a. In the driver's cab 13a, the operator (machine operator) of the work machine 1 operates the work machine 1.
  • the attachment 15 is attached to the upper swing body 13 so as to be rotatable in the vertical direction, and performs the work of moving the transported object 20.
  • the attachment 15 includes, for example, a boom 15a, an arm 15b, and a gripping device 15c.
  • the boom 15a is undulatingly attached to the upper swing body 13.
  • the arm 15b is rotatably attached to the boom 15a.
  • the gripping device 15c is a device that grips the transported object 20 (in other words, grips it so as to sandwich it).
  • the gripping device 15c is rotatably attached to the arm 15b in any direction (in other words, around three axes orthogonal to each other).
  • the work machine 1 does not have to grip the transported object 20 with the gripping device 15c, and the transported object 20 may be suspended via, for example, a rope.
  • the transported object 20 is suspended by a hook provided at the tip of the arm 15b.
  • FIG. 2 is a perspective view showing the appearance of the transported object 20 and the frame portion 41 in the present embodiment.
  • the transported object 20 is a structure transported by the work machine 1, and is an object of guidance by the guidance system 30.
  • the transported object 20 is, for example, a precast material, for example, precast concrete or the like.
  • the transported object 20 is, for example, a road ancillary structure, for example, a U-shaped groove or the like.
  • a plurality of consignments 20 are installed (in other words, arranged or installed) in succession (in other words, in a line, in a row, or connected). In the following, a case where the transported object 20 is a U-shaped groove will be mainly described.
  • the transported object 20 includes a groove portion 21, a bottom portion 23, and a side portion 25.
  • the directions related to the transported object 20 include a front-rear direction X, a lateral direction Y, and a vertical direction Z.
  • the direction corresponding to the vertical direction is the vertical direction Z
  • the vertical upper side is the upper side Z1
  • the vertical lower side is the lower side Z2.
  • the transported object 20 does not need to be placed on a horizontal surface.
  • One direction in which the transported object 20 is located, which is orthogonal to the vertical direction Z, is defined as the front-rear direction X.
  • the front-rear direction X may be, for example, the longitudinal direction of the transported object 20 or the direction in which the groove 21 extends.
  • One side in the front-rear direction X is the front side Xf.
  • the direction orthogonal to each of the front-rear direction X and the up-down direction Z is defined as the lateral direction Y.
  • the side of the transported object 20 away from the central portion of the lateral direction Y is defined as the lateral outer Yo.
  • the rotation angle of the transported object 20 includes a roll angle, a pitch angle, and a yaw angle.
  • the rotation axis extending in the front-rear direction X is the roll axis
  • the rotation axis extending in the lateral direction Y is the pitch axis
  • the rotation axis extending in the vertical direction Z is the yaw axis.
  • the roll angle is the rotation angle of the transported object 20 around the roll axis.
  • the pitch angle is the rotation angle of the transported object 20 around the pitch axis.
  • the yaw angle is the rotation angle of the transported object 20 around the yaw axis.
  • the yaw angle is the rotation angle of the transported object 20 in a plan view, in other words, the rotation angle of the transported object 20 seen from the vertical direction Z.
  • the groove portion 21 is a groove having a U-shaped inner surface when viewed from the front-rear direction X.
  • the groove portion 21 extends in the front-rear direction X.
  • the bottom portion 23 is a lower Z2 portion of the transported object 20, and constitutes the bottom surface of the groove portion 21.
  • the side portions 25 are both side portions of the lateral outer side Yo of the transported object 20, and form the side surface of the groove portion 21.
  • FIG. 3 is a block diagram showing the configuration of the guidance system 30 according to the present embodiment.
  • the guidance system 30 is a system that guides the transported object 20 to move to a target position based on a target line indicated by at least one of a curved line and a polygonal line. As shown in FIG. 3, the guidance system 30 includes a guidance device 40, a controller 50, a memory 52, an input unit 61, an operation unit 63, and a notification unit 65.
  • the guidance device 40 is attached to the transported object 20 as shown in FIG.
  • the guidance device 40 is detachably attached to the transported object 20, and is mounted on, for example, the upper Z1 portion of the transported object 20.
  • the guidance device 40 is separate from the attachment 15 shown in FIG.
  • the guidance device 40 may be integrated with the attachment 15, for example, the gripping device 15c.
  • the guidance device 40 includes a frame unit 41, a detection unit 43, and a display unit 45.
  • the frame portion 41 is a structure attached to the transported object 20. As shown in FIG. 2, the frame portion 41 has, for example, a substantially plate shape.
  • the frame portion 41 includes a substantially plate-shaped frame portion main body 41a and a positioning portion 41b.
  • the positioning unit 41b is a member for positioning the guidance device 40 with respect to the transported object 20.
  • the relative position of the positioning unit 41b is always substantially constant so that the relative position between the detection unit 43 and the transported object 20 falls within a certain range when the guidance device 40 is attached to the transported object 20. It is configured as follows.
  • the positioning portion 41b is fixed to the frame portion main body 41a.
  • the positioning portion 41b extends from the end portion of the frame portion main body 41a to the lower side Z2.
  • the positioning unit 41b includes, for example, a front positioning unit 41b1 and a side surface positioning unit 41b2.
  • the front positioning portion 41b1 is arranged parallel to the front Xf portion (for example, the front surface) of the transported object 20 when the frame portion 41 is attached to the transported object 20, and can come into contact with the front Xf portion of the transported object 20.
  • the front positioning portion 41b1 extends from the end portion of the front side Xf of the frame portion main body 41a to the lower side Z2.
  • the side surface positioning portion 41b2 is arranged parallel to the lateral outer Yo portion of the transported object 20, in other words, the side surface of the transported object 20, when the frame portion 41 is attached to the transported object 20, and is arranged in the lateral direction of the transported object 20.
  • the outer Yo portion in other words, the side surface of the transported object 20 can be contacted.
  • the side surface positioning portion 41b2 extends from the end portion of the lateral outer side Yo of the frame portion main body 41a to the lower side Z2.
  • the side surface positioning portions 41b2 may be provided on both sides (left and right) of the lateral outer side Yo of the frame portion main body 41a, or may be provided on only one side.
  • the detection unit 43 detects at least one of the coordinates of the transported object 20 and the direction of the transported object 20.
  • the detection unit 43 in the present embodiment detects the coordinates of the transported object 20 and the direction of the transported object 20.
  • the coordinates of the transported object 20 detected by the detection unit 43 are coordinates (position coordinates) indicating the three-dimensional position of the transported object 20.
  • the direction of the transported object 20 detected by the detection unit 43 is the posture or tilt angle of the transported object 20, for example, the roll angle, the pitch angle, and the yaw angle of the transported object 20.
  • the detection unit 43 is attached to the frame unit 41.
  • the detection unit 43 is attached to the material handling 20 via the frame unit 41.
  • the detection unit 43 includes, for example, a prism 43a and an angle sensor 43b.
  • the prism 43a is a member for detecting the coordinates of the transported object 20. More specifically, the surveying instrument 60 shown in FIG. 3 detects the coordinates of the prism 43a and outputs the coordinate information of the prism 43a to the controller 50.
  • the surveying instrument 60 is, for example, a total station.
  • the surveying instrument 60 is wirelessly or wiredly connected to the controller 50 so as to be able to communicate with each other. Then, the controller 50 calculates the coordinates of the transported object 20 based on the coordinate information of the prism 43a.
  • the angle sensor 43b detects the direction of the transported object 20, for example, at least one of the roll angle, pitch angle, and yaw angle of the transported object 20.
  • the angle sensor 43b may detect the yaw angle by using geomagnetism, or may calculate the yaw angle based on the rotational acceleration in the horizontal plane. Good.
  • the angle sensor 43b outputs the detected angle information to the controller 50.
  • the angle sensor 43b is wirelessly or wiredly connected to the controller 50 so as to be able to communicate with each other.
  • the detection unit 43 may be configured in any way as long as it can detect the coordinates of the transported object 20 and the direction of the transported object 20.
  • the number of prisms 43a and the number of axes of rotation angles that can be detected by the angle sensor 43b can be set in various ways.
  • the angle sensor 43b may not be provided depending on the number of prisms 43a, the position of the prisms 43a with respect to the transported object 20, and the like.
  • the detection unit 43 may detect at least one of the coordinates of the transported object 20 and the direction of the transported object 20 by using the satellite positioning system.
  • the detection unit 43 may include a camera or a lidar (LIDAR: Light Detection And Ringing).
  • the controller 50 may detect at least one of the coordinates of the carrier 20 and the direction of the carrier 20 by analyzing the image acquired by the camera or rider.
  • the display unit 45 displays the direction in which the transported object 20 should be moved. In other words, the display unit 45 gives an instruction to move the transported object 20 in the direction in which it should be moved. In other words, the display unit 45 displays guidance in the direction in which the transported object 20 should be moved. The direction in which the transported object 20 should be moved will be described later.
  • the display unit 45 displays based on the output of the controller 50.
  • the display unit 45 is wirelessly or wiredly connected to the controller 50 so as to be able to communicate with each other.
  • the display unit 45 may be a light emitting unit representing a predetermined figure, or may be a screen displaying a predetermined figure.
  • the predetermined figure is, for example, a figure representing the direction in which the transported object 20 should be moved, and may include, for example, an arrow, a triangle, or the like.
  • the display unit 45 is provided on, for example, the frame unit 41. In this case, it is possible for the operator to visually recognize the display of the display unit 45 while visually recognizing the transported object 20.
  • the worker may be an operator of the work machine 1 or a worker (hand worker) who performs work related to the transported object 20 in the vicinity of the transported object 20.
  • the display unit 45 may be provided separately from the frame unit 41.
  • the display unit 45 may be integrated with the controller 50 or may be separate from the controller 50.
  • the display unit 45 may be a display screen of a portable device including the controller 50.
  • the display unit 45 may be arranged inside the driver's cab 13a or may be arranged outside the driver's cab 13a.
  • the memory 52 is, for example, a flash memory or a magnetic disk device, which stores various programs and information and also functions as a work memory of the controller 50.
  • the memory 52 indicates the installation target of the material handling 20 and stores the target line information D1 regarding the target line indicated by at least one of a curved line and a polygonal line in advance.
  • the controller 50 performs signal input / output, information processing, calculation, and the like.
  • the detection result of the detection unit 43 is input to the controller 50.
  • target line information (target line information D1) and the like are input to the controller 50. That is, the controller 50 acquires at least one of the coordinates of the transported object 20 detected by the detection unit 43 and the direction of the transported object 20. Further, the controller 50 acquires the target line information D1 from the memory 52.
  • the controller 50 may be provided inside the work machine 1 or may be provided outside the work machine 1.
  • the controller 50 may be included in a portable device carried by the operator.
  • the portable device is, for example, a tablet computer or a smartphone.
  • the worker who carries the portable device may be an operator of the work machine 1 or a hand worker.
  • the input unit 61 inputs the transported object information D7 to the controller 50.
  • the transported object information D7 is information about the transported object 20, including the dimensions of the transported object 20. The details of the transported information D7 will be described later.
  • the input unit 61 may automatically acquire or calculate the transported information D7.
  • the input unit 61 may be a reading device that reads the transported object information D7 from the electronic tag provided on the transported object 20.
  • the electronic tag may be embedded in the transported object 20 or may be attached to the transported object 20.
  • the input unit 61 may be an image analysis device that calculates the transported object information D7 by analyzing the image of the transported object 20.
  • the input unit 61 may be, for example, an input device for receiving the input of the transported object information D7 by the operator.
  • the input device is, for example, a keyboard or a touch panel.
  • the operation unit 63 is operated by an operator to operate the controller 50.
  • the operation unit 63 receives a guidance start instruction, a guidance mode selection, and a selection of a point to be the target of the guidance of the transported object 20, which will be described later.
  • the operation unit 63 may be integrated with the controller 50 or may be separate from the controller 50.
  • the operation unit 63 may be a touch panel of a portable device including the controller 50.
  • the operation unit 63 may be arranged inside the driver's cab 13a or may be arranged outside the driver's cab 13a.
  • the operation unit 63 may be, for example, a switch provided on the operation lever for operating the work machine 1.
  • the notification unit 65 outputs a notification or warning from the controller 50.
  • the notification unit 65 may perform a display notification or a voice notification.
  • the notification unit 65 may be provided in the frame unit 41 or may be provided separately from the frame unit 41.
  • the notification unit 65 may be provided for each content of the notification or warning, or may be used for a plurality of types of notifications or warnings.
  • the notification unit 65 may be integrated with the controller 50 or may be separate from the controller 50.
  • the notification unit 65 may be arranged inside the cab 13a or outside the cab 13a.
  • the guidance system 30 shown in FIG. 3 is configured to operate as follows.
  • the outline of the operation of the guidance system 30 (mainly the controller 50) is as follows.
  • the controller 50 calculates the target information D3, which is at least one of the information regarding the target coordinates of the transported object 20 and the information regarding the target direction of the transported object 20, based on the target line information D1.
  • the controller 50 calculates the detection information D5 of the material handling 20, which is information that can be compared with the target information D3, based on at least one of the coordinates of the material handling 20 detected by the detection unit 43 and the direction of the material handling 20. ..
  • the controller 50 of the transported object 20 is based on at least one of the coordinates of the transported object 20 detected by the detection unit 43 and the direction of the transported object 20, and if necessary, further based on the transported object information D7.
  • the detection information D5 is calculated. That is, the controller 50 calculates the detection information D5 based on at least one of the coordinates of the transported object 20 detected by the detection unit 43 and the direction of the transported object 20 and the transported object information D7 input by the input unit 61. You may.
  • the controller 50 acquires the coordinate information (detection information D5) of the prism 43a attached to the frame portion 41 in the three-dimensional space from the surveying instrument 60. Further, the controller 50 acquires the angle information (detection information D5) of the roll angle, pitch angle, and yaw angle of the transported object 20 from the angle sensor 43b attached to the frame portion 41. The position where the frame portion 41 is attached to the transported object 20 is predetermined. Therefore, the controller 50 can calculate the position coordinates of the transported object 20 in the three-dimensional space based on the detection information D5 including the coordinate information and the angle information and the transported object information D7 indicating the dimensions of the transported object 20. it can.
  • the controller 50 calculates the deviation D9 of the detection information D5 with respect to the target information D3.
  • the controller 50 causes the display unit 45 to display the moving direction of the transported object 20 so that the deviation D9 becomes small.
  • the guidance system 30 guides the moving direction of the transported object 20 based on the coordinates of the transported object 20 and the moving direction of the transported object 20 based on the direction (yaw angle) of the transported object 20. Including.
  • the details of the operation of the guidance system 30 are as follows.
  • the controller 50 acquires the target line information D1.
  • the target line information D1 is stored in the memory 52 in advance even before the guidance by the guidance system 30 is performed.
  • the target line information D1 is information on the target line L indicating the installation target of the transported object 20. More specifically, the target line information D1 is information indicating the three-dimensional position of the target line L in the coordinate system (site coordinate system) indicating the position at the work site.
  • the target line L includes at least one of a curved line and a polygonal line.
  • the target line L may be only a straight line.
  • the controller 50 calculates the target information D3 based on the target line information D1.
  • the target information D3 is information regarding the target of the transported object 20.
  • the target information D3 may be information (target coordinate information) regarding the target coordinates of the transported object 20 (Example A1).
  • the target information D3 is, for example, information on the coordinates of an arbitrary point included in the target line L (coordinates of each point on the target line L).
  • the target information D3 may be information regarding the target direction of the transported object 20 (target direction information) or information regarding the target yaw angle of the transported object 20 (target yaw angle information) (Example A2).
  • the target information D3 may be information in the tangential direction of the target line L, which is a curve, or information in the direction in which the target line, which is a polygonal line, extends. The details of the target information D3 will be described later.
  • the controller 50 calculates the detection information D5 based on the detection value of the detection unit 43.
  • the controller 50 may calculate the detection information D5 based on the detection value of the detection unit 43 and the transported information D7.
  • the detection information D5 is information that can be compared with the target information D3.
  • the detection information D5 is information related to the coordinates of the transported object 20 detected by the detection unit 43 (detected coordinate information).
  • the detection information D5 is information on the coordinates of a specific point (specific point) included in the transported object 20 and necessary for performing guidance (for example, the midpoint 20e shown in FIG. 6).
  • the coordinates of the points included in the transported object 20 and not necessary for providing guidance may not be calculated and may not be included in the detection information D5.
  • the detection information D5 is information regarding the yaw angle of the transported object 20 detected by the detection unit 43 (detection). Yaw angle information) (Example B2).
  • the transported object information D7 includes the dimensions of the transported object 20. More specifically, the transported object information D7 includes the external dimensions of the transported object 20, and specifically, the dimensions of the transported object 20 in the front-rear direction X, the lateral direction Y, and the vertical direction Z shown in FIG. Including.
  • the transported object information D7 includes information on the three-dimensional shape of the transported object 20.
  • the transported object information D7 may include information on the relative position between the detection unit 43 and the transported object 20.
  • the transported object information D7 is input to the controller 50 from the input unit 61. A part of the transported information D7 may be stored in the memory 52 in advance.
  • the shape of the U-shaped groove seen from the front-rear direction X shown in FIG. 2 is stored in advance in the memory 52, and the length of the front-rear direction X is determined from the input unit 61 by the controller. It may be input to 50.
  • the controller 50 calculates the deviation D9 of the detection information D5 with respect to the target information D3. For example, when each of the target information D3 and the detection information D5 is coordinate information, the controller 50 has a deviation D9 (two points) of the detected coordinate information (see the above example B1) with respect to the target coordinate information (see the above example A1). The distance between them) is calculated (Example C1). Further, for example, when each of the target information D3 and the detection information D5 is the yaw angle information, the controller 50 determines the detected yaw angle information (see the above example B2) with respect to the target yaw angle information (see the above example A2). The deviation D9 (difference in yaw angle) is calculated (Example C2).
  • the controller 50 causes the display unit 45 to display the direction in which the transported object 20 should be moved, specifically, the moving direction of the transported object 20 (direction of parallel movement or rotational movement) such that the deviation D9 becomes small.
  • the moving direction includes a direction in which the transported object 20 is translated or a direction in which the transported object 20 is rotationally moved.
  • the operator of the work machine 1 moves the material handling 20 according to the display on the display unit 45. Then, the transported object 20 approaches the target position, the target information D3 and the detection information D5 approach each other, and the deviation D9 becomes less than a predetermined value. In other words, the deviation D9 is less than the permissible value or becomes substantially zero. That is, the target information D3 and the detection information D5 are in a matching state.
  • the controller 50 may output a notification to that effect to the notification unit 65.
  • the notification unit 65 may notify that the detection position of the transported object 20 matches the installation target position.
  • the notification unit 65 may display that the detection position of the transported object 20 matches the installation target position.
  • the controller 50 issues a warning when the coordinates of an arbitrary point of the material handling 20 crosses the target line L from one side to the other side (opposite side to one side) in a plan view (when it protrudes).
  • This warning may be output, for example, by the notification unit 65, for example, as a display, or as a voice.
  • this warning has the following effects. Normally, the width of a road is set to a predetermined width. At this time, if the transported object 20 is installed at a position that should be a road, the width of the road does not become a predetermined width. Therefore, for example, the target line L is set at the boundary between the road and the material handling 20. Then, when the material handling material 20 crosses the target line L toward the road side, the notification unit 65 outputs a warning. Therefore, when the worker moves the transported object 20 from the target line L to the road side, the worker can be warned.
  • the controller 50 stores the installation information D11, which is information about the material handling 20 when the target information D3 and the detection information D5 are in agreement, in the memory 52.
  • the installation information D11 includes, for example, the transported object information D7 which is information including the coordinates of the transported object 20 detected by the detection unit 43, the direction of the transported object 20 detected by the detecting unit 43, and the dimensions of the transported object 20. ..
  • the installation information D11 may include information such as the date and time when the transported object 20 is installed.
  • the installation information D11 may include information on the reference yaw angle described later.
  • the plurality of transported objects 20 are installed along the outside of the curved target line, and the detection information is calculated based on the coordinates of the transported objects 20.
  • FIG. 4 is a top view of the work site before the material handling 20 is installed outside the target line Li in the first embodiment of the present embodiment.
  • FIG. 5 shows the end of the transported object 20 shown in FIG. 4 on the side close to the reference structure S20 and the point 20b on the side close to the target line Li on the side where the transported object 20 of the reference structure S20 is installed. It is the figure which looked at the work site in the state which was aligned with the point S20b of the end and the side close to the target line Li from above.
  • FIG. 6 is a top view of the work site in which the material handling object 20 shown in FIG. 5 is installed along the target line Li.
  • Example 1 shown in FIG. 6 a plurality of transported objects 20 and a reference structure S20 are continuously installed so as to form a curved line (or a substantially curved line). Then, the transported object 20 is installed so that the inner portion of the curves of the plurality of transported objects 20, that is, the portion near the center of the arc when a part of the curve is regarded as an arc, is along the target line Li. The curve. In addition, in this Example 1, this installation is called installation inside the target line. That is, the plurality of transported objects 20 are installed along the outside of the curved target line Li.
  • the procedure for installing the inside of the target line in the first embodiment will be described.
  • a reference structure S20 which is a reference when installing the transported object 20, is installed in advance at the work site.
  • the transported object 20 installed so that the target information D3 and the detection information D5 are in the same state is used as a reference. It is referred to as a structure S20.
  • the reference structure S20 is a structure to which the detection unit 43 can be attached, and more specifically, a structure to which the detection unit 43 can be attached via the frame unit 41.
  • the reference structure S20 is provided with information regarding the target coordinates of the reference structure S20 when the detection unit 43 is attached and the detection unit 43 detects at least one of the coordinates of the reference structure S20 and the direction of the reference structure S20.
  • the target information D3, which is at least one of the information regarding the target direction of the reference structure S20, and the detection information D5, which is information that can be compared with the target information D3, are installed so as to be in a matching state.
  • the reference structure S20 may be guided by the guidance system 30 and transported to the target position for installation.
  • the reference structure S20 may be a transported object 20.
  • the reference structure S20 may be installed at a target position without using the guidance system 30.
  • the reference structure S20 may be installed at a predetermined reference position at the work site.
  • the guidance device 40 is attached to the transported object 20.
  • the guidance device 40 is manually attached to the transported object 20 by an operator.
  • the guidance system 30 is attached to the transported object 20 by the operator of the work machine 1 operating the attachment 15.
  • the detection unit 43 is calibrated as necessary. The calibration of the detection unit 43 will be described later.
  • the operator (operator of the work machine 1 or the operator at hand) operates the operation unit 63 to select the guidance mode. Specifically, the operator selects the installation mode inside the target line.
  • the state shown in FIG. 6 is a state in which the reference structure S20 and the transported object 20 are installed adjacent to each other, that is, a target state in which the transported object 20 is installed at the target position.
  • a target state in which the transported object 20 is installed at the target position.
  • the corner on the side far from the reference structure S20 and on the side close to the target line Li is defined as the point 20d.
  • the corner on the side closer to the reference structure S20 and closer to the target line Li is defined as the point 20b.
  • the corner on the side where the transported object 20 is installed and near the target line Li is defined as the point S20b.
  • the controller 50 calculates the coordinates of the points 20b and 20d of the transported object 20 shown in FIG. 4 based on the detection information D5 and the transported object information D7. Further, the controller 50 calculates the equation of the straight line Lbd passing through the points 20b and 20d. In addition, in FIG. 4 and the like, the straight line Lbd is described with a slight deviation from the side surface of the transported object 20 (the surface of the lateral outer side Yo in FIG. 2), but in reality, the straight line Lbd is the transported object. Consistent with 20 sides.
  • the operator of the work machine 1 moves the material handling 20 so that the point 20b of the material handling 20 approaches the target position.
  • the target position is the point S20b of the reference structure S20.
  • the operator may visually move the transported object 20 so that the point 20b of the transported object 20 approaches the point S20b of the reference structure S20.
  • the operator may move the transported object 20 so that the point 20b of the transported object 20 approaches the point S20b of the reference structure S20 while being guided by the guidance system 30.
  • the operator operates the operation unit 63 to select the point 20b of the transported object 20 as the point to be the guidance.
  • the guidance system 30 provides guidance so that the point 20b of the transported object 20 approaches the point S20b of the reference structure S20.
  • the position (coordinates) of the point S20b of the reference structure S20 may be stored in the memory 52 in advance.
  • the controller 50 may calculate the position of the point S20b of the reference structure S20 based on the detection information D5 of the reference structure S20 and the transported object information D7 of the reference structure S20.
  • the controller 50 may store the calculated position of the point S20b of the reference structure S20 in the memory 52.
  • the guidance device 40 is attached to the reference structure S20 in order to calculate the position of the point S20b of the reference structure S20.
  • the alignment of the reference structure S20 and the transported object 20 in the vertical direction Z may also be performed visually by the operator, or may be performed while the operator receives guidance from the guidance system 30.
  • the controller 50 When the operator operates the operation unit 63, the controller 50 is instructed to start the guidance function. For example, the operator presses the guidance start button of the operation unit 63. As a result, the controller 50 performs various calculations.
  • the controller 50 calculates the information regarding the target coordinates of the transported object 20 as the target information D3. Specifically, the controller 50 calculates the coordinates of a plurality of points on the target line Li as target information D3 (target coordinate information).
  • the controller 50 is based on the coordinates of the material handling 20 detected by the detection unit 43, the direction of the material handling 20 detected by the detection unit 43, and the material handling information D7 input by the input unit 61. Then, the information regarding the coordinates of the specific point included in the material handling 20 is calculated as the detection information D5. The controller 50 calculates the coordinates of the points on the straight line Lbd shown in FIG. 5 as the detection information D5 (detection coordinate information).
  • the detection information D5 may be, for example, the coordinates of a plurality of points at equal intervals on the straight line Lbd.
  • the detection information D5 may be a point on the straight line Lbd and may be the coordinates of the midpoint 20e between the points 20b and 20d when the target line Li has an arc shape.
  • the controller 50 calculates the shortest distance between the target line Li and the straight line Lbd as the deviation D9. Then, the controller 50 causes the display unit 45 to display the moving direction of the transported object 20 so that the deviation D9 becomes small.
  • the operator of the work machine 1 moves the material handling 20 according to the guidance (display of the display unit 45). At this time, if at least a part of the transported object 20 moves to the inside of the target line Li, that is, to the side closer to the center of the arc when a part of the target line Li is regarded as an arc, the controller 50 notifies. A warning is output to the unit 65. It is preferable that the operator moves the transported object 20 so that the transported object 20 approaches the target line Li in a state where the point 20b of the transported object 20 and the point S20b of the reference structure S20 are in contact with each other.
  • the target information D3 and the detection information D5 are in a matching state.
  • the straight line Lbd of the transported object 20 and the target line Li are in contact with each other (or are substantially in contact with each other).
  • the midpoint 20e between the points 20b and 20d is the contact point between the straight line Lbd and the target line Li, but the midpoint 20e is not necessarily the contact point between the straight line Lbd and the target line Li. It is not always the case.
  • the controller 50 outputs a notification indicating that the target information D3 and the detection information D5 are in the matching state to at least one of the display unit 45 and the notification unit 65.
  • the operator releases the transported object 20.
  • the gripping device 15c releases the gripping of the transported object 20, or the attachment 15 releases the suspension of the transported object 20.
  • the operator operates the operation unit 63 to instruct the controller 50 to end the guidance function. For example, the operator presses the guidance start button of the operation unit 63 again.
  • the controller 50 stores the installation information D11 in the memory 52.
  • the hand worker After the material handling 20 is installed at the target position as shown in FIG. 6, the hand worker performs, for example, the following work.
  • the hand operator adjusts the roll angle and pitch angle (gradient) of the transported object 20.
  • the hand operator adjusts the pitch angle of the transported object 20, for example, so that water can flow through the groove portion 21.
  • the hand worker removes the guidance device 40 from the material handling 20 and attaches the guidance device 40 to the material handling 20 to be installed next.
  • the hand worker performs the work of filling the gap (joint) between the plurality of transported objects 20.
  • the plurality of transported objects 20 are installed along the inside of the curved target line, and the detection information is calculated based on the coordinates of the transported objects 20.
  • FIG. 7 is a top view of the work site before the material handling 20 is installed inside the target line Li in the second embodiment of the present embodiment.
  • FIG. 8 shows the end of the transported object 20 shown in FIG. 7 on the side closer to the reference structure S20 and the point 20b on the side far from the target line Lo on the side where the transported object 20 of the reference structure S20 is installed. It is the figure which looked at the work site in the state which was aligned with the point S20b of the end and the side far from the target line Lo, from the top.
  • FIG. 9 is a top view of the work site in which the material handling object 20 shown in FIG. 8 is installed along the target line Lo.
  • Example 2 shown in FIG. 9 a plurality of transported objects 20 and a reference structure S20 are continuously installed so as to form a curved line (or a substantially curved line). Then, the transported object 20 is installed so that the outer portion of the curves of the plurality of transported objects 20, that is, the portion far from the center of the arc when a part of the curve is regarded as an arc, is along the target line Lo. The curve. In addition, in this Example 2, this installation is called installation outside the target line. That is, a plurality of transported objects 20 are installed along the inside of the curved target line Lo.
  • the procedure for installing the outside of the target line in the second embodiment will be described. In the second embodiment, the differences from the first embodiment will be mainly described.
  • the guidance device 40 is attached to the transported object 20 in the same manner as in the first embodiment. Then, the operator selects the guidance mode by operating the operation unit 63. Specifically, the operator selects the target line outside installation mode.
  • the state shown in FIG. 9 is a state in which the reference structure S20 and the transported object 20 are installed adjacent to each other, that is, a target state in which the transported object 20 is installed at the target position.
  • a target state in which the transported object 20 is installed at the target position.
  • the corner on the side far from the reference structure S20 and on the side close to the target line Lo is defined as the point 20c.
  • the end on the side closer to the reference structure S20 and the corner on the side closer to the target line Lo is defined as the point 20a.
  • the corner on the side closer to the reference structure S20 and on the side farther from the target line Lo is defined as the point 20b.
  • the corner on the side where the transported object 20 is installed and the corner far from the target line Lo is defined as the point S20b.
  • the controller 50 calculates the coordinates of the points 20a, 20b, and 20c shown in FIG. 7 based on the detection information D5 and the transported object information D7. In the first embodiment, the controller 50 calculated the equation of the straight line Lbd shown in FIG. On the other hand, in the second embodiment, since the points 20a and 20c touch (or substantially touch) the target line Lo in the target state shown in FIG. 9, the controller 50 uses the formula of the straight line Lac connecting the points 20a and 20c. The controller 50 may calculate the formula of the straight line Lac connecting the points 20a and 20c.
  • the operator of the work machine 1 moves the transported object 20 so that the point 20b of the transported object 20 approaches the target position.
  • the target position is the point S20b of the reference structure S20.
  • the controller 50 When the operator operates the operation unit 63, the controller 50 is instructed to start the guidance function. For example, the operator presses the guidance start button of the operation unit 63. As a result, the controller 50 performs various calculations. Specifically, the controller 50 calculates the coordinates of a plurality of points on the target line Lo as the target information D3 (target coordinate information). Further, the controller 50 calculates the coordinates of the point 20c as the detection information D5 (detection coordinate information). The controller 50 calculates the shortest distance between the target line Lo and the coordinates of the point 20c as the deviation D9. Then, as in the first embodiment, the controller 50 causes the display unit 45 to display the moving direction of the transported object 20 so that the deviation D9 becomes small.
  • the operator moves the transported object 20 according to the guidance.
  • the operator may move the transported object 20 so that the point 20c of the transported object 20 approaches the target line Lo in a state where the point 20b of the transported object 20 and the point S20b of the reference structure S20 are in contact with each other. preferable.
  • the detection information is calculated based on the direction of the transported object 20.
  • the guidance system 30 may provide guidance on the moving direction of the transported object 20 based on the yaw angle of the transported object 20.
  • the differences from the first embodiment will be mainly described.
  • the operator of the work machine 1 moves the material handling object 20 so that the point 20b of the material handling object 20 shown in FIG. 4 approaches the target position.
  • the target position is the point S20b of the reference structure S20.
  • the controller 50 calculates the target information D3 (target yaw angle information) based on the target line L.
  • the controller 50 calculates the information regarding the target direction of the transported object 20 in the plan view as the target information D3.
  • the controller 50 determines the direction of the straight line Lbd when the straight line Lbd and the target line Li come into contact with each other in the plan view with the target information D3 (target yaw). Angle information) (Example D1).
  • the controller 50 sets the direction of the straight line Lac passing through the points 20a and 20c in the target state as the target information D3 (target yaw angle information) (example D2).
  • FIG. 10 is a top view of the work site before the material handling is installed inside the polygonal target line L in the third embodiment of the present embodiment.
  • the controller 50 sets the direction in which the target line L extends as the target information D3 (target yaw angle information) (Example D3). ..
  • the direction in which the target line L extends is a portion of the target line L that serves as a reference for the installation of the material handling object 20, and is a portion where the points 20a and 20c come into contact with each other in the example shown in FIG.
  • the controller 50 calculates the information regarding the direction of the transported object 20 in the plan view as the detection information D5.
  • the controller 50 calculates the detection information D5 (detection yaw angle information) based on the yaw angle (detection yaw angle) of the transported object 20 detected by the detection unit 43.
  • the controller 50 calculates the deviation D9 of the detected yaw angle information with respect to the target yaw angle information.
  • the controller 50 causes the display unit 45 to display the moving direction of the transported object 20 so that the deviation D9 becomes small.
  • the operator moves the transported object 20 according to the guidance. At this time, the operator rotates and moves the transported object 20 according to the guidance.
  • guidance by coordinates is performed for the alignment of the point 20b of the transported object 20 and the point S20b of the reference structure S20 shown in FIG. Further, when adjusting the yaw angle of the detection information D5 of the transported object 20 to the yaw angle of the target information D3, guidance based on the yaw angle is performed.
  • the guidance system 30 may provide guidance based on coordinates and guidance based on yaw angles. Further, the guidance system 30 may provide guidance based on the yaw angle at the same time as providing guidance based on the coordinates.
  • a display unit 45 that displays the direction of translation of the transported object 20 in order to provide guidance by coordinates, and a display unit 45 that displays the direction of rotational movement of the transported object 20 in the yaw direction in order to provide guidance by yaw angle.
  • the display unit 45 to be used may be provided separately.
  • the coordinate system of the detected value of the detection unit 43 (sensor coordinate system) and the coordinate system of the target line L stored in the memory 52 (field coordinate system) may not match. More specifically, the direction in the plan view of the transported object 20 and which is the reference direction of the direction (detection yaw angle) detected by the detection unit 43 and the direction which is the reference in the direction of the target line L in the plan view are: May not match. Specifically, for example, when the sensor coordinate system is a coordinate system based on the orientation when the power of the detection unit 43 is turned on, and the field coordinate system is a coordinate system based on the north orientation. For example, the sensor coordinate system and the field coordinate system do not match. Therefore, the controller 50 performs a calibration process for associating the sensor coordinate system with the field coordinate system.
  • FIG. 11 is a diagram for explaining a calibration process for associating the sensor coordinate system with the field coordinate system.
  • the reference yaw angle ⁇ 1 of the reference structure S20 shown in FIG. 11 is detected.
  • the reference yaw angle ⁇ 1 is a direction (yaw angle) in a plan view of the reference structure S20, and is a direction detected by the detection unit 43. More specifically, the guidance device 40 is attached to the reference structure S20. Then, the detection unit 43 detects the yaw angle of the reference structure S20. The yaw angle detected by the detection unit 43 at this time is the reference yaw angle ⁇ 1.
  • the controller 50 stores (stores) in the memory 52 the reference yaw angle ⁇ 1 which is the direction in the plan view of the reference structure S20 and the direction detected by the detection unit 43.
  • the controller 50 calculates at least one of the target information D3 and the detection information D5 of the material handling 20 based on the reference yaw angle ⁇ 1 stored in the memory 52. More specifically, the controller 50 associates the sensor coordinate system with the field coordinate system based on the reference yaw angle ⁇ 1. Specifically, the controller 50 associates (associates, associates) the reference yaw angle ⁇ 1 in the sensor coordinate system with the yaw angle ⁇ 1 of the reference structure S20 in the field coordinate system.
  • the yaw angle ⁇ 1 of the reference structure S20 in the field coordinate system is a value stored in the memory 52 in advance.
  • the controller 50 may calculate the yaw angle ⁇ 1 in the field coordinate system of the straight line Lbd passing through the points 20b and 20d of the reference structure S20 calculated based on the coordinate information.
  • the controller 50 may store the yaw angle ⁇ 1 of the reference structure S20 in the field coordinate system in the memory 52.
  • Examples 4 to 6 show a guidance method using a calibration process for associating the sensor coordinate system with the field coordinate system.
  • Example 4 In Example 4 of the present embodiment, a first guidance method using the association between the yaw angle of the sensor coordinate system of the reference structure S20 and the yaw angle of the field coordinate system is shown.
  • Example 4 the target information is calculated based on the reference yaw angle ⁇ 1 and the detected yaw angle of the transported object 20 as follows.
  • the reference structure S20 is installed as the first transported object 20, and the second transported object 20 and the third transported object 20 are continuously installed in order from the reference structure S20.
  • the controller 50 calculates a difference value ( ⁇ 1- ⁇ 1) which is a difference between the reference yaw angle ⁇ 1 (sensor coordinate system) and the yaw angle ⁇ 1 (field coordinate system) of the reference structure S20.
  • the controller 50 calculates the target yaw angle ⁇ 2 (field coordinate system) of the second material handling 20 based on the target line L.
  • the controller 50 calculates the target yaw angle ⁇ 2 (sensor coordinate system), which is the sum of the calculated target yaw angle ⁇ 2 (field coordinate system) and the difference value ( ⁇ 1- ⁇ 1).
  • the controller 50 calculates the deviation D9 of the detection yaw angle (sensor coordinate system) which is the detection information D5 of the second transported object 20 with respect to the target yaw angle ⁇ 2 (sensor coordinate system) which is the target information D3.
  • the controller 50 causes the display unit 45 to display the moving direction of the second transported object 20 so that the calculated deviation D9 becomes small.
  • the difference value is added to the target yaw angle ⁇ 2 (field coordinate system), but the present disclosure is not particularly limited to this. Depending on how to determine the positive or negative of the rotation direction (clockwise or counterclockwise) in the coordinate system, the difference value may be subtracted from the target yaw angle ⁇ 2 (field coordinate system).
  • the target information D3 is calculated in the same manner as for the second transported object 20.
  • the controller 50 calculates the target yaw angle ⁇ 3 (field coordinate system) of the third material handling object 20 based on the target line L.
  • the controller 50 calculates the target yaw angle ⁇ 3 (sensor coordinate system), which is the sum of the calculated target yaw angle ⁇ 3 (field coordinate system) and the difference value ( ⁇ 1- ⁇ 1).
  • the controller 50 calculates the deviation D9 of the detection yaw angle (sensor coordinate system) which is the detection information D5 of the third transported object 20 with respect to the target yaw angle ⁇ 3 (sensor coordinate system) which is the target information D3.
  • the controller 50 causes the display unit 45 to display the moving direction of the third transported object 20 so that the calculated deviation D9 becomes small.
  • the target information D3 is calculated in the same manner for the fourth and subsequent transported objects 20.
  • Example 5 In Example 5 of the present embodiment, a second guidance method using the association between the yaw angle of the sensor coordinate system of the reference structure S20 and the yaw angle of the field coordinate system is shown.
  • Example 5 the calculation of the target information based on the reference yaw angle ⁇ 1 and the detected yaw angle of the material handling 20 may be performed as follows.
  • the controller 50 calculates the target yaw angle ⁇ 2 (field coordinate system) of the second material handling 20 based on the target line L.
  • the controller 50 calculates the target yaw angle ⁇ 2 (sensor coordinate system), which is the sum of this difference ⁇ 1 and the reference yaw angle ⁇ 1.
  • the controller 50 calculates the deviation D9 of the detection yaw angle (sensor coordinate system) which is the detection information D5 of the second transported object 20 with respect to the target yaw angle ⁇ 2 (sensor coordinate system) which is the target information D3.
  • the controller 50 causes the display unit 45 to display the moving direction of the second transported object 20 so that the calculated deviation D9 becomes small.
  • the target information D3 is similarly calculated for the third and subsequent transported objects 20.
  • the target yaw angle ⁇ N of the Nth transported object 20 (N is an integer of 2 or more) and the target yaw angle of the N-1th transported object 20
  • the difference ⁇ N between the two is a constant value.
  • the difference ⁇ 1 and ⁇ 2, ⁇ 3, ... Increase by a constant value.
  • the differences ⁇ 1, ⁇ 2, ⁇ 3, ... are increased by 5 ° such as 5 °, 10 °, 15 °, and so on.
  • the controller 50 may calculate the target yaw angle ⁇ N of the Nth material handling object 20 as a constant value ⁇ (N-1).
  • Example 6 In Example 6 of the present embodiment, a third guidance method is shown in which the association between the yaw angle of the sensor coordinate system of the reference structure S20 and the yaw angle of the field coordinate system is used for calculating the coordinates.
  • the controller 50 sets the coordinates of a specific point of the transported object 20 based on the coordinates of a certain position associated with the transported object 20 (for example, the coordinates of the prism 43a), the direction of the transported object 20, and the transported object information D7. It may be calculated.
  • the direction of the transported object 20 includes the yaw angle of the transported object 20.
  • the controller 50 may use the relationship between the reference yaw angle ⁇ 1 (sensor coordinate system) shown in FIG. 11 and the yaw angle ⁇ 1 (field coordinate system) of the reference structure S20.
  • the detection unit 43 detects the detection yaw angle (for example, ⁇ 2) (sensor coordinate system) of the transported object 20. Further, the controller 50 calculates the difference value ( ⁇ 1- ⁇ 1) from the reference yaw angle ⁇ 1 (sensor coordinate system) stored in the memory 52 and the yaw angle ⁇ 1 (field coordinate system) of the reference structure S20. Then, the controller 50 subtracts the difference value ( ⁇ 1- ⁇ 1) from the detected yaw angle (for example, ⁇ 2) (sensor coordinate system) of the transported object 20, so that the detected yaw angle (for example, ⁇ 2) in the field coordinate system of the transported object 20 is subtracted. ) Is calculated. The controller 50 calculates the coordinates of a specific point of the material handling 20 based on the detected yaw angle (for example, ⁇ 2) in the field coordinate system.
  • Examples 4 to 6 above can be modified in various ways.
  • counterclockwise is positive and clockwise is negative, but counterclockwise may be negative and clockwise may be positive.
  • roll angle and the pitch angle shown in FIG. 3 since it is assumed that the horizontal is the reference in both the sensor coordinate system and the field coordinate system, it is not necessary to convert the coordinates.
  • the sensor coordinate system and the field coordinate system are different in terms of roll angle and pitch angle, the sensor coordinate system and the field coordinate system may be associated with each other in the same manner as the yaw angle.
  • a chopstick is installed as a guideline for the installation position of the transported object 20. Then, the material handling 20 is installed with the target of chopping.
  • high precision and labor saving are being promoted, and it is required to install the transported object 20 with high precision without using a chopstick.
  • guidance is given to move a specific point of the transported object 20 to the target point without being based on the target line L, it is based on the target line L (for example, along the target line L). It is difficult to install the carrier 20.
  • the controller 50 automatically calculates the target information D3 based on the information of the target line L (target line information D1) stored in advance, and obtains the target information D3.
  • Guidance is given so that the difference from the detection information D5 becomes small. As a result, the material handling 20 can be easily installed based on the target line L.
  • the guidance system includes a detection unit that detects at least one of the coordinates of the transported object and the direction of the transported object, and the coordinates of the transported object and the direction of the transported object detected by the detecting unit.
  • the memory includes a controller for acquiring at least one of the above, a display unit, and a memory, and the memory indicates the installation target of the transported object and the target line information regarding the target line indicated by at least one of a curve and a fold line. Is stored in advance, the controller calculates target information which is at least one of the information regarding the target coordinates of the transported object and the information regarding the target direction of the transported object based on the target line information, and the detection unit calculates the target information.
  • the detection information which is information that can be compared with the target information, is calculated, and the deviation of the detected information with respect to the target information is calculated.
  • the display unit displays the moving direction of the transported object so that the deviation becomes small.
  • the target information of the transported object is automatically calculated by the controller based on the target line information regarding the target line. Then, the deviation of the detected information with respect to the target information is calculated, and the moving direction of the transported object so that the calculated deviation becomes small is displayed on the display unit. Therefore, it is possible to guide the moving direction of the transported object with high accuracy along the target line. Further, when the operator moves the transported object according to the moving direction displayed on the display unit, the transported object can be installed with high accuracy along the target line.
  • a frame portion to be attached to the transported object may be further provided, and the detection portion may be attached to the frame portion.
  • the detection unit is attached to the frame unit attached to the transported object, it is possible to detect at least one of the coordinates of the transported object and the direction of the transported object with higher accuracy. Further, at least one of the coordinates of the transported object and the direction of the transported object can be easily detected only by attaching the frame portion to the transported object.
  • the guidance system further includes an input unit for inputting information on the transported object, which is information including the dimensions of the transported object, to the controller, and the controller inputs information on the target coordinates of the transported object to the target.
  • the transported object calculated as information and based on the coordinates of the transported object detected by the detection unit, the direction of the transported object detected by the detecting unit, and the transported object information input by the input unit.
  • Information on the coordinates of a specific point included in may be calculated as the detection information.
  • the shape of the transported object can be specified from the dimensions of the transported object, and the moving direction of the transported object can be guided so that the coordinates of a specific point of the transported object are brought closer to the target line. ..
  • the controller calculates information about the target direction of the transported object in a plan view as the target information, and calculates information about the direction of the transported object in a plan view as the detection information. You may.
  • the controller does not need to calculate the coordinates of the transported object. Therefore, the amount of calculation of the controller can be reduced as compared with the guidance based on the coordinates.
  • the target information and the detected information are installed so as to be in a matching state.
  • the transported object is used as a reference structure, and the controller stores the reference yaw angle, which is the direction in the plan view of the reference structure and the direction detected by the detection unit, in the memory, and the memory.
  • At least one of the target information and the detection information of the transported object may be calculated based on the reference yaw angle stored in.
  • the reference yaw angle of the reference structure is stored in the memory, and at least one of the target information and the detection information of the transported object is calculated based on the reference yaw angle stored in the memory. Therefore, it is possible to reduce the time and effort required to detect the reference yaw angle for each transported object.
  • the controller may store the installation information which is the information about the transported object when the target information and the detection information are in a matching state in the memory.
  • information on the transported item may be obtained by surveying, for example, for evidence management. Therefore, the installation information regarding the transported object when the target information and the detection information are in a matching state is stored in the memory. Therefore, it is not necessary for the operator to actually survey the installed transported object, and information on the transported object can be easily obtained.
  • the installation information is information including the coordinates of the transported object detected by the detection unit, the direction of the transported object detected by the detecting unit, and the dimensions of the transported object. It may include cargo information.
  • installation information can be used in various ways. For example, it is possible to calculate the coordinates of an arbitrary point of the transported object from the installation information. Since the calculated coordinates of any point of the transported object are stored in the memory, the operator does not need to perform a separate survey for evidence management, and the man-hours can be reduced.
  • a notification unit is further provided, and the controller warns when the coordinates of an arbitrary point of the transported object cross from one side to the other side with respect to the target line in a plan view. It may be output to the notification unit.
  • the above embodiment may be variously modified.
  • the arrangement or shape of each component of the above embodiment may be changed.
  • the connection of each component shown in FIG. 3 and the like may be changed.
  • the order of each process (calculation, etc.) by the controller 50 may be the order described above, or may not be the order described above.
  • the number of components may be changed, and some of the components may not be provided.
  • what has been described as a plurality of members or parts different from each other may be regarded as one member or part.
  • what has been described as one member or part may be provided separately in a plurality of different members or parts.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Mining & Mineral Resources (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Architecture (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Road Paving Structures (AREA)
  • Sewage (AREA)
  • Automatic Assembly (AREA)

Abstract

メモリ(52)は、運搬物(20)の設置目標を示すとともに、曲線および折れ線の少なくともいずれかで示される目標線に関する目標線情報を予め記憶し、コントローラ(50)は、目標線情報に基づいて、運搬物(20)の目標座標に関する情報および運搬物(20)の目標方向に関する情報の少なくともいずれかである目標情報を算出し、検出部(43)によって検出された運搬物(20)の座標および運搬物(20)の方向の少なくともいずれかに基づいて、目標情報と対比可能な情報である検出情報を算出し、目標情報に対する検出情報の偏差を算出し、偏差が小さくなるような運搬物(20)の移動方向を表示部45に表示させる。

Description

ガイダンスシステム
 本発明は、運搬物の移動方向をガイダンスする技術に関する。
 従来、U字溝または側溝などの道路付帯連続構造物が設置される際には、まず、設置場所の目安となる丁張りが設置され、丁張りを目標にして道路付帯連続構造物が設置される。しかしながら、構造物の設置においては、高精度化および省人化が進められており、丁張りを用いることなく高精度に構造物を設置することが求められている。
 例えば、特許文献1には、丁張りを用いることなく、道路付帯連続構造物を据え付ける技術が開示されている。特許文献1に示す構造物誤差算出工程は、移動局をU字溝に載せてトータルステーションでU字溝の表面位置データを実測するとともに、処理装置で構造物表面位置データと設計データとを比較して構造物施工誤差を算出する。構造物施工誤差は、正規位置からのズレ方向およびズレ距離である。表示装置には、修正すべき移動方向と移動距離とが表示される。
 上記の従来技術では、トータルステーションからの位置データ(U字溝の施工位置)と設計図の三次元座標データ(設計データ)とが比較されて、U字溝施工誤差(水平位置および高さ位置の誤差)が算出され、この誤差から修正すべき移動方向および移動距離が導き出されて、表示装置に表示される。一方、構造物が曲線または直線のような目標線に沿って設置される場合がある。上記の従来技術では、目標線に近づけるように構造物の移動方向をガイダンスすることについては開示されていない。そのため、目標線に沿って高い精度で運搬物の移動方向をガイダンスすることが望まれている。
特開2017-25633号公報
 本発明の目的は、目標線に沿って高い精度で運搬物の移動方向をガイダンスすることができる技術を提供することにある。
 本発明の一局面に係るガイダンスシステムは、運搬物の座標および前記運搬物の方向の少なくともいずれかを検出する検出部と、前記検出部によって検出された前記運搬物の座標および前記運搬物の方向の少なくともいずれかを取得するコントローラと、表示部と、メモリと、を備え、前記メモリは、前記運搬物の設置目標を示すとともに、曲線および折れ線の少なくともいずれかで示される目標線に関する目標線情報を予め記憶し、前記コントローラは、前記目標線情報に基づいて、前記運搬物の目標座標に関する情報および前記運搬物の目標方向に関する情報の少なくともいずれかである目標情報を算出し、前記検出部によって検出された前記運搬物の座標および前記運搬物の方向の少なくともいずれかに基づいて、前記目標情報と対比可能な情報である検出情報を算出し、前記目標情報に対する前記検出情報の偏差を算出し、前記偏差が小さくなるような前記運搬物の移動方向を前記表示部に表示させる。
 本発明によれば、目標線に沿って高い精度で運搬物の移動方向をガイダンスすることができる。
本実施の形態における作業機械、運搬物、およびガイダンスシステムを上から見た図である。 本実施の形態における運搬物およびフレーム部の外観を示す斜視図である。 本実施の形態におけるガイダンスシステムの構成を示すブロック図である。 本実施の形態の実施例1において、運搬物が目標線の外側に設置される前の作業現場を上から見た図である。 図4に示す運搬物の基準構造物に近い側の端であり且つ目標線に近い側の点が、基準構造物の運搬物が設置されている側の端であり且つ目標線に近い側の点に合わされた状態の作業現場を上から見た図である。 図5に示す運搬物が、目標線に沿って設置された状態の作業現場を上から見た図である。 本実施の形態の実施例2において、運搬物が目標線の内側に設置される前の作業現場を上から見た図である。 図7に示す運搬物の基準構造物に近い側の端であり且つ目標線から遠い側の点が、基準構造物の運搬物が設置されている側の端であり且つ目標線から遠い側の点に合わされた状態の作業現場を上から見た図である。 図8に示す運搬物が、目標線に沿って設置された状態の作業現場を上から見た図である。 本実施の形態の実施例3において、折れ線状の目標線の内側に運搬物が設置される前の作業現場を上から見た図である。 センサ座標系と現場座標系とを関連付けるキャリブレーション処理について説明するための図である。
 図1~図11を参照して、図1に示す作業機械1が運搬物20を運搬させる際に用いられるガイダンスシステム30について説明する。なお、以下の実施の形態は、本発明を具体化した一例であって、本発明の技術的範囲を限定するものではない。
 図1は、本実施の形態における作業機械1、運搬物20、およびガイダンスシステム30を上から見た図である。
 作業機械1は、運搬物20を移動させる作業を行う機械である。作業機械1は、例えば建設作業を行う建設機械であり、例えばショベルでもよく、クレーンでもよい。以下では、作業機械1がショベルである場合について説明する。作業機械1は、下部走行体11と、上部旋回体13と、アタッチメント15と、を備える。
 下部走行体11は、作業機械1を走行させる。下部走行体11は、例えばクローラを備える。上部旋回体13は、下部走行体11に旋回可能に搭載される。上部旋回体13は、運転室13aを備える。運転室13aにおいて、作業機械1の操作者(機械オペレータ)が作業機械1を操作する。
 アタッチメント15は、上下方向に回動可能に上部旋回体13に取り付けられ、運搬物20を移動させる作業を行う。アタッチメント15は、例えば、ブーム15aと、アーム15bと、把持装置15cと、を備える。ブーム15aは、上部旋回体13に起伏可能に取り付けられる。アーム15bは、ブーム15aに回転可能に取り付けられる。把持装置15cは、運搬物20を把持する(言い換えると、挟むように掴む)装置である。把持装置15cは、アーム15bに、任意の方向に(言い換えると、互いに直交する3軸回りに)回転可能に取り付けられる。なお、作業機械1は、運搬物20を把持装置15cで把持しなくてもよく、例えばロープなどを介して運搬物20を吊り下げてもよい。作業機械1が運搬物20を吊り下げる場合は、例えばアーム15bの先端部に設けられたフックにより、運搬物20が吊り下げられる。
 図2は、本実施の形態における運搬物20およびフレーム部41の外観を示す斜視図である。
 運搬物20は、作業機械1により運搬される構造物であり、ガイダンスシステム30によるガイダンスの対象物である。運搬物20は、例えばプレキャスト材であり、例えばプレキャストコンクリートなどである。図2に示すように、運搬物20は、例えば道路付帯構造物であり、例えばU字溝などである。複数の運搬物20が、連続して(言い換えると、並ぶように、列をなすように、または連結されるように)設置(言い換えると、配置または据付)される。以下では、主に、運搬物20がU字溝である場合について説明する。運搬物20は、溝部21と、底部23と、側部25と、を備える。
 運搬物20に関する方向には、前後方向Xと、横方向Yと、上下方向Zと、がある。なお、運搬物20に取り付けられたガイダンスシステム30に関する方向も同様である。運搬物20が水平面に置かれたと仮定した場合に、鉛直方向と一致する方向を上下方向Zとし、鉛直上側を上側Z1とし、鉛直下側を下側Z2とする。なお、運搬物20は、水平面に置かれる必要はない。上下方向Zに直交する方向であって、運搬物20のある一方向を、前後方向Xとする。前後方向Xは、例えば運搬物20の長手方向でもよく、溝部21が延びる方向でもよい。前後方向Xにおける一方側を前側Xfとする。前後方向Xおよび上下方向Zのそれぞれに直交する方向を、横方向Yとする。横方向Yにおいて、運搬物20の横方向Yの中央部から遠ざかる側を、横方向外側Yoとする。
 運搬物20に関する回転角には、ロール角と、ピッチ角と、ヨー角と、がある。なお、運搬物20に取り付けられたガイダンスシステム30も同様である。前後方向Xに延びる回転軸をロール軸とし、横方向Yに延びる回転軸をピッチ軸とし、上下方向Zに延びる回転軸をヨー軸とする。ロール角は、ロール軸回りの運搬物20の回転角である。ピッチ角は、ピッチ軸回りの運搬物20の回転角である。ヨー角は、ヨー軸回りの運搬物20の回転角である。ヨー角は、平面視における運搬物20の回転角であり、言い換えると、上下方向Zから見た運搬物20の回転角である。
 溝部21は、前後方向Xから見てU字状の内面を有する溝である。溝部21は、前後方向Xに延びる。底部23は、運搬物20の下側Z2部分であり、溝部21の底面を構成する。側部25は、運搬物20の横方向外側Yoの両側部分であり、溝部21の側面を構成する。
 図3は、本実施の形態におけるガイダンスシステム30の構成を示すブロック図である。
 ガイダンスシステム30は、曲線および折れ線の少なくともいずれかで示される目標線に基づく目標位置に運搬物20を移動させるようにガイダンス(誘導)するシステムである。図3に示すように、ガイダンスシステム30は、ガイダンス装置40と、コントローラ50と、メモリ52と、入力部61と、操作部63と、通知部65と、を備える。
 ガイダンス装置40は、図2に示すように、運搬物20に取り付けられる。ガイダンス装置40は、運搬物20に着脱自在に取り付けられ、例えば運搬物20の上側Z1部分に載せられる。例えば、ガイダンス装置40は、図1に示すアタッチメント15とは別体である。なお、ガイダンス装置40は、アタッチメント15と一体でもよく、例えば把持装置15cと一体でもよい。ガイダンス装置40は、フレーム部41と、検出部43と、表示部45と、を備える。
 フレーム部41は、運搬物20に取り付けられる構造物である。図2に示すように、フレーム部41は、例えば略板状などである。フレーム部41は、略板状のフレーム部本体41aと、位置決め部41bと、を備える。
 位置決め部41bは、運搬物20に対するガイダンス装置40の位置決めを行うための部材である。位置決め部41bは、運搬物20にガイダンス装置40が取り付けられたときに、検出部43と運搬物20との相対位置が一定範囲内に収まるように、言い換えると、相対位置が常に略一定となるように構成される。位置決め部41bは、フレーム部本体41aに対して固定される。位置決め部41bは、フレーム部本体41aの端部から下側Z2に延びる。位置決め部41bは、例えば、前面位置決め部41b1と、側面位置決め部41b2と、を備える。
 前面位置決め部41b1は、フレーム部41が運搬物20に取り付けられたときに、運搬物20の前側Xf部分(例えば前面)と平行に配置され、運搬物20の前側Xf部分に接触可能である。前面位置決め部41b1は、フレーム部本体41aの前側Xfの端部から下側Z2に延びる。側面位置決め部41b2は、フレーム部41が運搬物20に取り付けられたときに、運搬物20の横方向外側Yo部分、言い換えれば、運搬物20の側面と平行に配置され、運搬物20の横方向外側Yo部分、言い換えれば、運搬物20の側面に接触可能である。側面位置決め部41b2は、フレーム部本体41aの横方向外側Yoの端部から下側Z2に延びる。側面位置決め部41b2は、フレーム部本体41aの横方向外側Yoの両側(左右)に設けられてもよく、一方側のみに設けられてもよい。
 検出部43は、運搬物20の座標および運搬物20の方向の少なくともいずれかを検出する。本実施の形態における検出部43は、運搬物20の座標および運搬物20の方向を検出する。検出部43が検出する運搬物20の座標は、運搬物20の三次元の位置を示す座標(位置座標)である。検出部43が検出する運搬物20の方向は、運搬物20の姿勢または傾斜角であり、例えば、運搬物20のロール角、ピッチ角、およびヨー角である。検出部43は、フレーム部41に取り付けられる。検出部43は、フレーム部41を介して、運搬物20に取り付けられる。検出部43は、例えば、プリズム43aと、角度センサ43bと、を備える。
 プリズム43aは、運搬物20の座標を検出するための部材である。さらに詳しくは、図3に示す測量器60が、プリズム43aの座標を検出し、プリズム43aの座標情報をコントローラ50に出力する。測量器60は、例えばトータルステーションである。測量器60は、無線または有線によりコントローラ50と互いに通信可能に接続されている。そして、コントローラ50は、プリズム43aの座標情報に基づいて、運搬物20の座標を算出する。
 角度センサ43bは、運搬物20の方向を検出し、例えば運搬物20のロール角、ピッチ角、およびヨー角の少なくともいずれかを検出する。角度センサ43bが運搬物20のヨー角を検出する場合、角度センサ43bは、地磁気を利用することでヨー角を検出してもよく、水平面における回転加速度などに基づいてヨー角を算出してもよい。角度センサ43bは、検出した角度情報を、コントローラ50に出力する。角度センサ43bは、無線または有線によりコントローラ50と互いに通信可能に接続されている。
 なお、検出部43は、運搬物20の座標および運搬物20の方向を検出できれば、どのように構成されてもよい。例えば、プリズム43aの数、および角度センサ43bが検出可能な回転角の軸の数は、様々に設定可能である。プリズム43aの数、および運搬物20に対するプリズム43aの位置などによっては、角度センサ43bは設けられなくてもよい。また、検出部43は、衛星測位システムを用いて運搬物20の座標および運搬物20の方向の少なくともいずれかを検出してもよい。
 また、検出部43は、カメラ又はライダ(LIDAR:Light Detection And Ranging)を含んでもよい。コントローラ50は、カメラ又はライダによって取得された画像を解析することにより、運搬物20の座標および運搬物20の方向の少なくともいずれかを検出してもよい。
 表示部45は、運搬物20を移動させるべき方向を表示する。言い換えると、表示部45は、運搬物20を移動させるべき方向への移動指示を行う。言い換えると、表示部45は、運搬物20を移動させるべき方向にガイダンス表示を行う。運搬物20を移動させるべき方向については後述する。表示部45は、コントローラ50の出力に基づいて表示を行う。表示部45は、無線または有線によりコントローラ50と互いに通信可能に接続されている。表示部45は、所定の図形を表した発光部でもよく、所定の図形を表示する画面でもよい。所定の図形は、例えば、運搬物20を移動させるべき向きを表す図形であり、例えば矢印を含んでもよく、三角形などを含んでもよい。
 表示部45は、例えばフレーム部41に設けられる。この場合、作業者に、運搬物20を視認させながら、表示部45の表示を視認させることが可能である。作業者は、作業機械1の操作者でもよく、運搬物20の近傍で運搬物20に関する作業を行う作業者(手元作業者)でもよい。なお、表示部45は、フレーム部41とは別に設けられてもよい。表示部45は、コントローラ50と一体でもよく、コントローラ50と別体でもよい。表示部45は、コントローラ50を含む携帯機器の表示画面でもよい。表示部45は、運転室13aの内部に配置されてもよく、運転室13aの外部に配置されてもよい。
 メモリ52は、例えば、フラッシュメモリまたは磁気ディスク装置であり、各種のプログラムおよび情報を記憶すると共に、コントローラ50のワークメモリとしても機能する。
 メモリ52は、運搬物20の設置目標を示すとともに、曲線および折れ線の少なくともいずれかで示される目標線に関する目標線情報D1を予め記憶する。
 コントローラ50は、信号の入出力、情報処理および演算などを行う。例えば、コントローラ50には、検出部43の検出結果などが入力される。例えば、コントローラ50には、目標線の情報(目標線情報D1)などが入力される。すなわち、コントローラ50は、検出部43によって検出された運搬物20の座標および運搬物20の方向の少なくともいずれかを取得する。また、コントローラ50は、メモリ52から目標線情報D1を取得する。
 コントローラ50は、作業機械1の内部に設けられてもよく、作業機械1の外部に設けられてもよい。コントローラ50は、作業者が携帯する携帯機器に含まれてもよい。携帯機器は、例えばタブレット型コンピュータまたはスマートフォンなどである。携帯機器を携帯する作業者は、作業機械1の操作者でもよく、手元作業者でもよい。
 入力部61は、運搬物情報D7をコントローラ50に入力する。運搬物情報D7は、運搬物20の寸法を含む、運搬物20に関する情報である。運搬物情報D7の詳細は後述する。入力部61は、運搬物情報D7を自動的に取得または算出してもよい。例えば、入力部61は、運搬物20に設けられた電子タグから、運搬物情報D7を読み取る読取装置でもよい。例えば、電子タグは、運搬物20に埋め込まれてもよく、運搬物20に貼り付けられてもよい。入力部61は、運搬物20の画像を解析することで運搬物情報D7を算出する画像解析装置でもよい。入力部61は、例えば、作業者による運搬物情報D7の入力を受け付けるための入力装置でもよい。入力装置は、例えばキーボードまたはタッチパネルなどである。
 操作部63は、作業者に操作され、コントローラ50を操作する。操作部63は、後述するガイダンス開始の指示、ガイダンスモードの選択、および、運搬物20のガイダンスの対象となる点の選択などを受け付ける。操作部63は、コントローラ50と一体でもよく、コントローラ50と別体でもよい。操作部63は、コントローラ50を含む携帯機器のタッチパネルなどでもよい。操作部63は、運転室13aの内部に配置されてもよく、運転室13aの外部に配置されてもよい。操作部63は、例えば作業機械1を操作するための操作レバーに設けられたスイッチでもよい。
 通知部65は、コントローラ50による通知または警告などを出力する。通知部65は、表示による通知を行ってもよく、音声による通知を行ってもよい。通知部65は、フレーム部41に設けられてもよく、フレーム部41とは別に設けられてもよい。通知部65は、通知または警告の内容ごとに設けられてもよく、複数種類の通知または警告に兼用されてもよい。通知部65は、コントローラ50と一体でもよく、コントローラ50と別体でもよい。通知部65は、運転室13aの内部に配置されてもよく、運転室13aの外部に配置されてもよい
 図3に示すガイダンスシステム30は、以下のように動作するように構成される。ガイダンスシステム30の(主にコントローラ50の)動作の概要は、次の通りである。コントローラ50は、目標線情報D1に基づいて、運搬物20の目標座標に関する情報および運搬物20の目標方向に関する情報の少なくともいずれかである目標情報D3を算出する。
 コントローラ50は、検出部43によって検出された運搬物20の座標および運搬物20の方向の少なくともいずれかに基づいて、目標情報D3と対比可能な情報である運搬物20の検出情報D5を算出する。なお、コントローラ50は、検出部43によって検出された運搬物20の座標および運搬物20の方向の少なくともいずれかに基づいて、必要である場合はさらに運搬物情報D7に基づいて、運搬物20の検出情報D5を算出する。すなわち、コントローラ50は、検出部43によって検出された運搬物20の座標および運搬物20の方向の少なくともいずれかと、入力部61によって入力された運搬物情報D7とに基づいて、検出情報D5を算出してもよい。
 例えば、コントローラ50は、フレーム部41に取り付けられたプリズム43aの3次元空間内における座標情報(検出情報D5)を測量器60から取得する。また、コントローラ50は、運搬物20のロール角、ピッチ角およびヨー角の角度情報(検出情報D5)を、フレーム部41に取り付けられた角度センサ43bから取得する。フレーム部41が運搬物20に対して取り付けられる位置は、予め決められている。そのため、コントローラ50は、座標情報および角度情報を含む検出情報D5と、運搬物20の寸法を示す運搬物情報D7とに基づいて、3次元空間内における運搬物20の位置座標を算出することができる。
 コントローラ50は、目標情報D3に対する検出情報D5の偏差D9を算出する。コントローラ50は、偏差D9が小さくなるような運搬物20の移動方向を表示部45に表示させる。ガイダンスシステム30は、運搬物20の座標に基づいて運搬物20の移動方向をガイダンスする場合と、運搬物20の方向(ヨー角)に基づいて運搬物20の移動方向をガイダンスする場合と、を含む。ガイダンスシステム30の動作の詳細は、以下の通りである。
 コントローラ50は、目標線情報D1を取得する。メモリ52には、ガイダンスシステム30によるガイダンスが行われる前から、目標線情報D1が予め記憶されている。目標線情報D1は、運搬物20の設置目標を示す目標線Lの情報である。さらに詳しくは、目標線情報D1は、作業現場における位置を示す座標系(現場座標系)における、目標線Lの三次元位置を示す情報である。目標線Lは、曲線および折れ線の少なくともいずれかを含む。なお、目標線Lは、直線のみでもよい。
 コントローラ50は、目標線情報D1に基づいて、目標情報D3を算出する。目標情報D3は、運搬物20の目標に関する情報である。例えば、目標情報D3は、運搬物20の目標座標に関する情報(目標座標情報)でもよい(例A1)。この場合、目標情報D3は、具体的には例えば、目標線Lに含まれる任意の点の座標(目標線L上の各点の座標)の情報などである。また、例えば、目標情報D3は、運搬物20の目標方向に関する情報(目標方向情報)でもよく、運搬物20の目標ヨー角に関する情報(目標ヨー角情報)でもよい(例A2)。この場合、目標情報D3は、曲線である目標線Lの接線方向の情報でもよく、折れ線である目標線が延びる方向の情報でもよい。目標情報D3の詳細は後述する。
 コントローラ50は、検出部43の検出値に基づいて、検出情報D5を算出する。コントローラ50は、検出部43の検出値、および運搬物情報D7に基づいて、検出情報D5を算出してもよい。検出情報D5は、目標情報D3と対比可能な情報である。例えば、目標情報D3が、運搬物20の目標座標に関する情報(目標座標情報)である場合、検出情報D5は、検出部43に検出された運搬物20の座標に関する情報(検出座標情報)である(例B1)。この場合、検出情報D5は、運搬物20に含まれる特定の点(特定点)であってガイダンスを行うのに必要な点(例えば図6に示す中点20eなど)の座標に関する情報である。なお、運搬物20に含まれる点であってガイダンスを行うのに必要でない点の座標は、算出されなくてもよく、検出情報D5に含まれなくてもよい。また、例えば、目標情報D3が、運搬物20の目標ヨー角に関する情報(目標ヨー角情報)である場合、検出情報D5は、検出部43に検出された運搬物20のヨー角に関する情報(検出ヨー角情報)である(例B2)。
 コントローラ50が検出情報D5を算出する際、検出部43の検出値だけでなく、運搬物情報D7が必要となる場合がある。運搬物情報D7は、運搬物20の寸法を含む。さらに詳しくは、運搬物情報D7は、運搬物20の外形の寸法を含み、具体的には、図2に示す前後方向X、横方向Y、および上下方向Zのそれぞれの運搬物20の寸法を含む。運搬物情報D7は、運搬物20の三次元の形状の情報を含む。運搬物情報D7は、検出部43と運搬物20との相対位置の情報を含んでもよい。運搬物情報D7は、入力部61からコントローラ50に入力される。なお、運搬物情報D7の一部が、予めメモリ52に記憶されていてもよい。例えば、運搬物20がU字溝である場合、図2に示す前後方向Xから見たU字溝の形状が、メモリ52に予め記憶され、前後方向Xの長さが、入力部61からコントローラ50に入力されてもよい。
 コントローラ50は、目標情報D3に対する検出情報D5の偏差D9を算出する。例えば、目標情報D3および検出情報D5のそれぞれが座標の情報である場合、コントローラ50は、目標座標情報(上記の例A1参照)に対する検出座標情報(上記の例B1参照)の偏差D9(2点間の距離)を算出する(例C1)。また、例えば、目標情報D3および検出情報D5のそれぞれがヨー角の情報である場合、コントローラ50は、目標ヨー角情報(上記の例A2参照)に対する検出ヨー角情報(上記の例B2参照)の偏差D9(ヨー角の差)を算出する(例C2)。
 コントローラ50は、運搬物20を移動させるべき方向、具体的には偏差D9が小さくなるような運搬物20の移動方向(平行移動または回転移動の向き)を、表示部45に表示させる。移動方向は、運搬物20を平行移動させる方向または運搬物20を回転移動させる方向を含む。作業機械1の操作者は、表示部45の表示に従って運搬物20を移動させる。すると、運搬物20が目標位置に近づき、目標情報D3と検出情報D5とが近づき、偏差D9が所定値未満になる。言い換えると、偏差D9が許容値未満または略ゼロになる。すなわち、目標情報D3と検出情報D5とが一致状態になる。コントローラ50は、目標情報D3と検出情報D5とが一致状態になったときに、その旨を示す通知を通知部65に出力させてもよい。通知部65は、運搬物20の検出位置が設置目標位置に一致したことを通知してもよい。例えば、通知部65は、運搬物20の検出位置が設置目標位置に一致したことを表示してもよい。
 コントローラ50は、運搬物20の任意の点の座標が、平面視において目標線Lに対して一方側から他方側(一方側とは反対側)に越えたとき(はみ出た場合)に、警告を通知部65に出力させる。この警告は、例えば通知部65によって出力され、例えば表示として出力されてもよく、音声として出力されてもよい。運搬物20が道路付帯構造物の場合、この警告により、次の効果が得られる。通常、道路の道幅は所定の幅に定められている。このとき、道路とすべき位置に運搬物20が設置されると、道路の道幅が所定の幅にならない。そこで、例えば道路と運搬物20との境界などに目標線Lが設定される。そして、運搬物20が目標線Lから道路側に越えると、通知部65が警告を出力する。よって、目標線Lから道路側に越えて作業者が運搬物20を移動させたときに、作業者に対して警告することができる。
 コントローラ50は、目標情報D3と検出情報D5とが一致状態となったときの、運搬物20に関する情報である設置情報D11をメモリ52に記憶する。設置情報D11は、例えば、検出部43によって検出された運搬物20の座標、検出部43によって検出された運搬物20の方向、および運搬物20の寸法を含む情報である運搬物情報D7を含む。設置情報D11は、運搬物20が設置された日付および時刻などの情報を含んでもよい。設置情報D11は、後述する基準ヨー角の情報を含んでもよい。
 以下、本実施の形態の具体的な実施例について説明する。
 (実施例1)
 本実施の形態の実施例1では、複数の運搬物20が曲線状の目標線の外側に沿うように設置されるとともに、運搬物20の座標に基づいて検出情報が算出される。
 図4は、本実施の形態の実施例1において、運搬物20が目標線Liの外側に設置される前の作業現場を上から見た図である。図5は、図4に示す運搬物20の基準構造物S20に近い側の端であり且つ目標線Liに近い側の点20bが、基準構造物S20の運搬物20が設置されている側の端であり且つ目標線Liに近い側の点S20bに合わされた状態の作業現場を上から見た図である。図6は、図5に示す運搬物20が、目標線Liに沿って設置された状態の作業現場を上から見た図である。
 図6に示す実施例1では、複数の運搬物20および基準構造物S20が、曲線(または略曲線)を形成するように連続して設置される。そして、複数の運搬物20の曲線における内側部分、すなわち、曲線の一部を円弧とみなしたときの円弧の中心に近い側の部分が、目標線Liに沿うように、運搬物20が設置される。なお、本実施例1において、この設置は目標線内側設置と呼ばれる。すなわち、複数の運搬物20が、曲線状の目標線Liの外側に沿うように設置される。以下、実施例1における目標線内側設置を行うための手順について説明する。
 図4に示すように、作業現場には、運搬物20を設置する際に基準となる基準構造物S20が予め設置されている。検出部43によって運搬物20の座標および運搬物20の方向の少なくともいずれかが検出されたときに、目標情報D3と検出情報D5とが一致状態になるように設置されている運搬物20が基準構造物S20とされる。基準構造物S20は、検出部43を取り付け可能な構造物であり、さらに詳しくは、フレーム部41を介して検出部43を取り付け可能な構造物である。基準構造物S20は、検出部43が取り付けられ、検出部43によって基準構造物S20の座標および基準構造物S20の方向の少なくともいずれかが検出されたときに、基準構造物S20の目標座標に関する情報および基準構造物S20の目標方向に関する情報の少なくともいずれかである目標情報D3と、目標情報D3と対比可能な情報である検出情報D5とが一致状態になるように設置されている。
 なお、基準構造物S20は、ガイダンスシステム30によってガイダンスされて目標位置に運搬されて設置されてもよい。基準構造物S20は、運搬物20でもよい。また、基準構造物S20は、ガイダンスシステム30が用いられることなく目標位置に設置されてもよい。例えば、基準構造物S20は、作業現場に予め定められた基準位置に設置されてもよい。
 ガイダンス装置40が、運搬物20に取り付けられる。例えば、ガイダンス装置40がアタッチメント15と別体である場合は、ガイダンス装置40が、作業者の手作業により運搬物20に取り付けられる。ガイダンス装置40がアタッチメント15と一体である場合は、作業機械1の操作者がアタッチメント15を操作することにより、ガイダンスシステム30が、運搬物20に取り付けられる。ガイダンス装置40が運搬物20に取り付けられた後、必要に応じて、検出部43のキャリブレーションが行われる。なお、検出部43のキャリブレーションについては後述する。作業者(作業機械1の操作者または手元作業者)が、操作部63を操作することで、ガイダンスモードを選択する。具体的には、作業者は、目標線内側設置モードを選択する。
 図6に示す状態は、基準構造物S20と運搬物20とが隣り合うように設置された状態、すなわち、運搬物20が目標位置に設置された目標状態である。この目標状態において、平面視における運搬物20の4つの角のうち、基準構造物S20から遠い側の端であり、且つ、目標線Liに近い側の角が、点20dとされる。また、この目標状態において、平面視における運搬物20の4つの角のうち、基準構造物S20に近い側の端であり、且つ、目標線Liに近い側の角が、点20bとされる。また、この目標状態において、平面視における基準構造物S20の4つの角のうち、運搬物20が設置される側の端であり、且つ、目標線Liに近い側の角が、点S20bとされる。
 コントローラ50は、検出情報D5および運搬物情報D7に基づいて、図4に示す運搬物20の点20bおよび点20dの座標を算出する。また、コントローラ50は、点20bおよび点20dを通る直線Lbdの式を算出する。なお、図4などでは、直線Lbdは、運搬物20の側面(図2の横方向外側Yoの面)に対してわずかにずらして記載されているが、実際には、直線Lbdは、運搬物20の側面と一致する。
 まず、運搬物20の点20bの位置合わせについて説明する。
 図4および図5において、作業機械1の操作者は、運搬物20の点20bが目標位置に近づくように、運搬物20を移動させる。具体的には、目標位置は、基準構造物S20の点S20bである。このとき、操作者は、目視により、運搬物20の点20bが基準構造物S20の点S20bに近づくように運搬物20を移動させてもよい。また、このとき、操作者は、ガイダンスシステム30によりガイダンスされながら、運搬物20の点20bが基準構造物S20の点S20bに近づくように運搬物20を移動させてもよい。ガイダンスを受ける場合は、作業者が、操作部63を操作することで、ガイダンスの対象となる点として、運搬物20の点20bを選択する。そして、ガイダンスシステム30は、運搬物20の点20bが基準構造物S20の点S20bに近づくように、ガイダンスする。
 基準構造物S20の点S20bの位置(座標)は、予めメモリ52に記憶されていてもよい。コントローラ50は、基準構造物S20の検出情報D5と、基準構造物S20の運搬物情報D7とに基づいて、基準構造物S20の点S20bの位置を算出してもよい。コントローラ50は、算出した基準構造物S20の点S20bの位置をメモリ52に記憶してもよい。この場合は、基準構造物S20の点S20bの位置を算出するために、ガイダンス装置40が、基準構造物S20に取り付けられる。
 なお、基準構造物S20と運搬物20との上下方向Zの位置合わせについても、操作者の目視により行われてもよく、ガイダンスシステム30によるガイダンスを操作者が受けながら行われてもよい。
 続いて、運搬物20の目標線Liへの位置合わせについて説明する。
 操作者が、操作部63を操作することで、ガイダンス機能の開始がコントローラ50に指示される。例えば、操作者は、操作部63のガイダンス開始ボタンを押下する。これにより、コントローラ50は、各種演算を行う。
 コントローラ50は、運搬物20の目標座標に関する情報を、目標情報D3として算出する。具体的には、コントローラ50は、目標線Li上の複数の点の座標を、目標情報D3(目標座標情報)として算出する。
 また、コントローラ50は、コントローラ50は、検出部43によって検出された運搬物20の座標、検出部43によって検出された運搬物20の方向、および入力部61によって入力された運搬物情報D7に基づいて、運搬物20に含まれる特定の点の座標に関する情報を、検出情報D5として算出する。コントローラ50は、図5に示す直線Lbd上の点の座標を、検出情報D5(検出座標情報)として算出する。この検出情報D5は、例えば、直線Lbd上の等間隔の複数の点の座標でもよい。また、この検出情報D5は、目標線Liが円弧状である場合などには、直線Lbd上の点であって点20bと点20dとの中点20eの座標でもよい。コントローラ50は、目標線Liと、直線Lbdと、の最短距離を、偏差D9として算出する。そして、コントローラ50は、偏差D9が小さくなるような運搬物20の移動方向を表示部45に表示させる。
 作業機械1の操作者は、ガイダンス(表示部45の表示)に従って、運搬物20を移動させる。このとき、目標線Liよりも内側、すなわち、目標線Liの一部を円弧とみなしたときの円弧の中心に近い側に、運搬物20の少なくとも一部が移動した場合、コントローラ50は、通知部65に警告を出力させる。なお、操作者は、運搬物20の点20bと基準構造物S20の点S20bとを接触させた状態で、運搬物20を目標線Liに近づけるように運搬物20を移動させることが好ましい。
 操作者が、ガイダンスに従って運搬物20を移動させると、偏差D9が所定値未満になる。言い換えると、目標情報D3と検出情報D5とが一致状態になる。図6に示す例では、平面視において、運搬物20の直線Lbdと、目標線Liと、が接している(または略接している)。なお、図6では、点20bと点20dとの中点20eが、直線Lbdと目標線Liとの接点になっているが、必ずしも、中点20eが、直線Lbdと目標線Liとの接点になるとは限らない。目標情報D3と検出情報D5とが一致状態になると、コントローラ50は、一致状態であることを示す通知を、表示部45と通知部65との少なくともいずれかに出力させる。
 そして、操作者は、運搬物20を解放する。具体的には、把持装置15cによる運搬物20の把持が解除される、または、アタッチメント15による運搬物20の吊り下げが解除される。作業者は、操作部63を操作することで、ガイダンス機能の終了がコントローラ50に指示される。例えば、作業者は、操作部63のガイダンス開始ボタンを再び押下する。目標情報D3と検出情報D5とが一致状態になると、コントローラ50は、設置情報D11をメモリ52に記憶する。
 図6に示すように運搬物20が目標位置に設置された後、手元作業者は、例えば次の作業を行う。手元作業者は、運搬物20のロール角およびピッチ角(勾配)を調整する。手元作業者は、例えば、溝部21を水が流れることが可能なように、運搬物20のピッチ角を調整する。手元作業者は、目標通りに運搬物20を設置できたことを確認した後、運搬物20からガイダンス装置40を取り外し、次に設置しようとしている運搬物20に、ガイダンス装置40を取り付ける。また、手元作業者は、複数の運搬物20どうしの間の隙間(目地)を埋める作業を行う。
 (実施例2)
 本実施の形態の実施例2では、複数の運搬物20が曲線状の目標線の内側に沿うように設置されるとともに、運搬物20の座標に基づいて検出情報が算出される。
 図7は、本実施の形態の実施例2において、運搬物20が目標線Liの内側に設置される前の作業現場を上から見た図である。図8は、図7に示す運搬物20の基準構造物S20に近い側の端であり且つ目標線Loから遠い側の点20bが、基準構造物S20の運搬物20が設置されている側の端であり且つ目標線Loから遠い側の点S20bに合わされた状態の作業現場を上から見た図である。図9は、図8に示す運搬物20が、目標線Loに沿って設置された状態の作業現場を上から見た図である。
 図9に示す実施例2では、複数の運搬物20および基準構造物S20が、曲線(または略曲線)を形成するように連続して設置される。そして、複数の運搬物20の曲線における外側部分、すなわち、曲線の一部を円弧とみなしたときの円弧の中心から遠い側の部分が、目標線Loに沿うように、運搬物20が設置される。なお、本実施例2において、この設置は目標線外側設置と呼ばれる。すなわち、複数の運搬物20が、曲線状の目標線Loの内側に沿うように設置される。以下、実施例2における目標線外側設置を行うための手順について説明する。なお、実施例2では、主に実施例1との相違点を説明する。
 図7に示すように、ガイダンス装置40が、実施例1と同様に、運搬物20に取り付けられる。そして、作業者が、操作部63を操作することで、ガイダンスモードを選択する。具体的には、作業者は、目標線外側設置モードを選択する。
 図9に示す状態は、基準構造物S20と運搬物20とが隣り合うように設置された状態、すなわち、運搬物20が目標位置に設置された目標状態である。この目標状態において、平面視における運搬物20の4つの角のうち、基準構造物S20から遠い側の端であり、且つ、目標線Loに近い側の角が、点20cとされる。また、この目標状態において、平面視における運搬物20の4つの角のうち、基準構造物S20に近い側の端であり、且つ、目標線Loに近い側の角が、点20aとされる。また、この目標状態において、平面視における運搬物20の4つの角のうち、基準構造物S20に近い側の端であり、且つ、目標線Loから遠い側の角が、点20bとされる。また、この目標状態において、平面視における基準構造物S20の4つの角のうち、運搬物20が設置される側の端であり、且つ、目標線Loから遠い側の角が、点S20bとされる。
 コントローラ50は、検出情報D5および運搬物情報D7に基づいて、図7に示す点20a、点20b、および点20cの座標を算出する。なお、実施例1では、コントローラ50は、図4に示す直線Lbdの式を算出した。一方、実施例2では、図9に示す目標状態のときに点20aおよび点20cが目標線Loに接する(または略接する)ので、コントローラ50は、点20aと点20cとを結ぶ直線Lacの式を算出する必要はないなお、コントローラ50は、点20aと点20cとを結ぶ直線Lacの式を算出してもよい。
 まず、運搬物20の点20bの位置合わせについて説明する。
 実施例1と同様に、図7および図8において、作業機械1の操作者は、運搬物20の点20bが目標位置に近づくように、運搬物20を移動させる。具体的には、目標位置は、基準構造物S20の点S20bである。
 続いて、運搬物20の目標線Loへの位置合わせについて説明する。
 操作者が、操作部63を操作することで、ガイダンス機能の開始がコントローラ50に指示される。例えば、操作者は、操作部63のガイダンス開始ボタンを押下する。これにより、コントローラ50は、各種演算を行う。具体的には、コントローラ50は、目標線Lo上の複数の点の座標を、目標情報D3(目標座標情報)として算出する。また、コントローラ50は、点20cの座標を、検出情報D5(検出座標情報)として算出する。コントローラ50は、目標線Loと、点20cの座標と、の最短距離を、偏差D9として算出する。そして、実施例1と同様に、コントローラ50は、偏差D9が小さくなるような運搬物20の移動方向を表示部45に表示させる。
 操作者は、ガイダンスに従って運搬物20を移動させる。なお、操作者は、運搬物20の点20bと基準構造物S20の点S20bとを接触させた状態で、運搬物20の点20cを目標線Loに近づけるように運搬物20を移動させることが好ましい。
 (実施例3)
 本実施の形態の実施例3では、運搬物20の方向に基づいて検出情報が算出される。
 ガイダンスシステム30は、運搬物20のヨー角に基づいて運搬物20の移動方向をガイダンスしてもよい。なお、実施例3では、主に実施例1との相違点を説明する。
 まず、運搬物20の点20bの位置合わせについて説明する。
 実施例1と同様に、作業機械1の操作者は、図4に示す運搬物20の点20bが目標位置に近づくように、運搬物20を移動させる。具体的には、目標位置は、基準構造物S20の点S20bである。
 続いて、運搬物20の目標線Lへの位置合わせについて説明する。
 コントローラ50は、目標線Lに基づいて、目標情報D3(目標ヨー角情報)を算出する。コントローラ50は、平面視における運搬物20の目標方向に関する情報を、目標情報D3として算出する。
 例えば、図6に示すように、目標線内側設置モードである場合、コントローラ50は、平面視において、直線Lbdと目標線Liとが接触するときの直線Lbdの方向を、目標情報D3(目標ヨー角情報)とする(例D1)。
 また、例えば、図9に示すように、目標線外側設置モードである場合、目標状態では、平面視において、運搬物20の点20aおよび点20cが、目標線Loに接触している。そこで、コントローラ50は、目標状態のときの、点20aおよび点20cを通る直線Lacの方向を、目標情報D3(目標ヨー角情報)とする(例D2)。
 図10は、本実施の形態の実施例3において、折れ線状の目標線Lの内側に運搬物が設置される前の作業現場を上から見た図である。
 例えば、図10に示すように、目標線Lが折れ線状または直線状である場合は、コントローラ50は、目標線Lが延びる方向を、目標情報D3(目標ヨー角情報)とする(例D3)。なお、上記の目標線Lが延びる方向は、目標線Lのうち運搬物20の設置の基準となる部分であり、図10に示す例では点20aおよび点20cが接触する部分である。
 また、コントローラ50は、平面視における運搬物20の方向に関する情報を、検出情報D5として算出する。コントローラ50は、検出部43によって検出された運搬物20のヨー角(検出ヨー角)に基づいて、検出情報D5(検出ヨー角情報)を算出する。そして、コントローラ50は、目標ヨー角情報に対する検出ヨー角情報の偏差D9を算出する。そして、コントローラ50は、偏差D9が小さくなるような運搬物20の移動方向を表示部45に表示させる。操作者は、ガイダンスに従って運搬物20を移動させる。このとき、操作者は、ガイダンスに従って運搬物20を回転移動させる。
 この実施例3では、図10に示す運搬物20の点20bと基準構造物S20の点S20bとの位置合わせには、座標によるガイダンスが行われる。また、運搬物20の検出情報D5のヨー角を目標情報D3のヨー角に合わせる際には、ヨー角によるガイダンスが行われる。このように、ガイダンスシステム30は、座標によるガイダンスと、ヨー角によるガイダンスとを行ってもよい。また、ガイダンスシステム30は、座標によるガイダンスを行うのと同時に、ヨー角によるガイダンスを行ってもよい。この場合、座標によるガイダンスを行うために、運搬物20の平行移動の方向を表示させる表示部45と、ヨー角によるガイダンスを行うために、運搬物20のヨー方向への回転移動の方向を表示させる表示部45と、が別々に設けられてもよい。
 続いて、ヨー角の関連付け(キャリブレーション)について説明する。
 検出部43の検出値の座標系(センサ座標系)と、メモリ52に記憶されている目標線Lの座標系(現場座標系)と、が一致しない場合がある。さらに詳しくは、運搬物20の平面視における方向であって検出部43が検出した方向(検出ヨー角)の基準となる方向と、平面視における目標線Lの方向の基準となる方向と、が一致しない場合がある。具体的には、例えば、センサ座標系が、検出部43の電源がオンとなったときの向きを基準とする座標系であり、現場座標系が、北向きを基準とする座標系である場合などには、センサ座標系と現場座標系とが一致しない。そこで、コントローラ50は、センサ座標系と現場座標系とを関連付けるキャリブレーション処理を行う。
 図11は、センサ座標系と現場座標系とを関連付けるキャリブレーション処理について説明するための図である。
 図11に示す基準構造物S20の基準ヨー角θ1が検出される。基準ヨー角θ1は、基準構造物S20の平面視における方向(ヨー角)であって、検出部43によって検出された方向である。さらに詳しくは、ガイダンス装置40が、基準構造物S20に取り付けられる。そして、検出部43が、基準構造物S20のヨー角を検出する。このとき検出部43によって検出されたヨー角が、基準ヨー角θ1である。
 コントローラ50は、基準構造物S20の平面視における方向であって検出部43によって検出された方向である基準ヨー角θ1をメモリ52に記憶(保存)する。コントローラ50は、メモリ52に記憶された基準ヨー角θ1に基づいて、運搬物20の目標情報D3および検出情報D5の少なくともいずれかを算出する。さらに詳しくは、コントローラ50は、基準ヨー角θ1に基づいて、センサ座標系と現場座標系とを関連付ける。具体的には、コントローラ50は、センサ座標系における基準ヨー角θ1と、現場座標系における基準構造物S20のヨー角φ1と、を関連付ける(対応付ける、紐付ける)。現場座標系における基準構造物S20のヨー角φ1は、予めメモリ52に記憶されている値である。例えば、コントローラ50は、座標情報に基づいて算出された基準構造物S20の点20bおよび点20dを通る直線Lbdの現場座標系におけるヨー角φ1を算出してもよい。コントローラ50は、現場座標系における基準構造物S20のヨー角φ1をメモリ52に記憶してもよい。
 以下の実施例4~6は、センサ座標系と現場座標系とを関連付けるキャリブレーション処理を利用したガイダンス方法を示す。
 (実施例4)
 本実施の形態の実施例4では、基準構造物S20のセンサ座標系のヨー角と現場座標系のヨー角との関連付けを利用した第1のガイダンス方法が示される。
 実施例4において、基準ヨー角θ1と、運搬物20の検出ヨー角とに基づく目標情報の算出は、次のように行われる。ここで、基準構造物S20が1個目の運搬物20として設置され、基準構造物S20から順に2個目の運搬物20および3個目の運搬物20などが連続して設置される。
 まず、コントローラ50は、基準ヨー角θ1(センサ座標系)と、基準構造物S20のヨー角φ1(現場座標系)との差分である差分値(θ1-φ1)を算出する。次に、コントローラ50は、目標線Lに基づいて、2個目の運搬物20の目標ヨー角φ2(現場座標系)を算出する。次に、コントローラ50は、算出した目標ヨー角φ2(現場座標系)と、差分値(θ1-φ1)との和である目標ヨー角θ2(センサ座標系)を算出する。そして、コントローラ50は、目標情報D3である目標ヨー角θ2(センサ座標系)に対する、2個目の運搬物20の検出情報D5である検出ヨー角(センサ座標系)の偏差D9を算出する。コントローラ50は、算出した偏差D9が小さくなるような2個目の運搬物20の移動方向を表示部45に表示させる。なお、上記では、目標ヨー角φ2(現場座標系)に対して差分値が加算されるが、本開示は特にこれに限定されない。座標系における回転方向(右回りまたは左回り)の正負の決め方などによっては、目標ヨー角φ2(現場座標系)に対して差分値が減算される場合もある。
 3個目の運搬物20についても、2個目の運搬物20と同様に目標情報D3が算出される。具体的には、コントローラ50は、目標線Lに基づいて、3個目の運搬物20の目標ヨー角φ3(現場座標系)を算出する。次に、コントローラ50は、算出した目標ヨー角φ3(現場座標系)と、差分値(θ1-φ1)との和である目標ヨー角θ3(センサ座標系)を算出する。そして、コントローラ50は、目標情報D3である目標ヨー角θ3(センサ座標系)に対する、3個目の運搬物20の検出情報D5である検出ヨー角(センサ座標系)の偏差D9を算出する。コントローラ50は、算出した偏差D9が小さくなるような3個目の運搬物20の移動方向を表示部45に表示させる。4個目以降の運搬物20についても、同様に目標情報D3が算出される。
 (実施例5)
 本実施の形態の実施例5では、基準構造物S20のセンサ座標系のヨー角と現場座標系のヨー角との関連付けを利用した第2のガイダンス方法が示される。
 実施例5において、基準ヨー角θ1と、運搬物20の検出ヨー角とに基づく目標情報の算出は、次のように行われてもよい。
 まず、コントローラ50は、目標線Lに基づいて、2個目の運搬物20の目標ヨー角φ2(現場座標系)を算出する。次に、コントローラ50は、算出した目標ヨー角φ2(現場座標系)と、基準構造物S20のヨー角φ1(現場座標系)との差Δφ1(=φ2-φ1)を算出する。次に、コントローラ50は、この差Δφ1と、基準ヨー角θ1との和である目標ヨー角θ2(センサ座標系)を算出する。そして、コントローラ50は、目標情報D3である目標ヨー角θ2(センサ座標系)に対する、2個目の運搬物20の検出情報D5である検出ヨー角(センサ座標系)の偏差D9を算出する。コントローラ50は、算出した偏差D9が小さくなるような2個目の運搬物20の移動方向を表示部45に表示させる。3個目以降の運搬物20についても同様に目標情報D3が算出される。
 複数の運搬物20が連続して設置される場合、N(Nは2以上の整数)個目の運搬物20の目標ヨー角φNと、N-1個目の運搬物20の目標ヨー角との差ΔφNが、一定値であることが想定される。具体的には、例えば、目標線Lが円弧状である場合、目標線Lの曲率が一定である場合、または折れ線である目標線Lの各折れ曲がり部分の角度が一定である場合、差Δφ1、Δφ2、Δφ3、・・・は一定値ずつ増加する。具体的には、例えば、差Δφ1、Δφ2、Δφ3、・・・は、5°、10°、15°・・・などのように5°ずつ増加する。この場合は、コントローラ50は、N個目の運搬物20の目標ヨー角φNを、一定値×(N-1)と算出すればよい。
 (実施例6)
 本実施の形態の実施例6では、基準構造物S20のセンサ座標系のヨー角と現場座標系のヨー角との関連付けを座標の算出に利用した第3のガイダンス方法が示される。
 コントローラ50は、運搬物20の特定の点の座標を、運搬物20と関連付けられたある位置の座標(例えばプリズム43aの座標)と、運搬物20の方向と、運搬物情報D7とに基づいて算出してもよい。運搬物20の方向は、運搬物20のヨー角を含む。このヨー角を算出する際に、コントローラ50は、図11に示す基準ヨー角θ1(センサ座標系)と、基準構造物S20のヨー角φ1(現場座標系)との関係を用いてもよい。
 具体的には、例えば、検出部43は、運搬物20の検出ヨー角(例えばθ2)(センサ座標系)を検出する。また、コントローラ50は、メモリ52に記憶されている基準ヨー角θ1(センサ座標系)および基準構造物S20のヨー角φ1(現場座標系)から、差分値(θ1-φ1)を算出する。そして、コントローラ50は、運搬物20の検出ヨー角(例えばθ2)(センサ座標系)から差分値(θ1-φ1)を減算することで、運搬物20の現場座標系における検出ヨー角(例えばφ2)を算出する。コントローラ50は、現場座標系における検出ヨー角(例えばφ2)に基づいて、運搬物20の特定の点の座標を算出する。
 なお、上記の実施例4~6の具体的な算出手順は様々に変形可能である。図11に示す例では、左回りを正とし、右回りを負としているが、左回りを負とし、右回りを正としてもよい。また、図3に示すロール角およびピッチ角については、センサ座標系および現場座標系のいずれも、水平が基準であることを前提としているため、座標の変換は不要である。ただし、ロール角およびピッチ角について、センサ座標系と現場座標系とが相違する場合は、ヨー角と同様に、センサ座標系と現場座標系とが関連付けられてもよい。
 ガイダンスシステム30を用いた運搬物20の設置と、ガイダンスシステム30を用いない運搬物20の設置との比較について説明する。
 ガイダンスシステム30が用いられることなく運搬物20が設置される場合は、運搬物20の設置位置の目安として丁張りが設置される。そして、丁張りを目標として運搬物20が設置される。しかし、構造物の施工においては、高精度化および省人化が進められており、丁張りを用いることなく高精度に運搬物20を設置することが求められている。また、目標線Lに基づくことなく、運搬物20の特定の点を、目標とする点に移動させるようにガイダンスが行われる場合は、目標線Lに基づいて(例えば目標線Lに沿って)運搬物20を設置することは困難である。
 一方、本実施の形態のガイダンスシステム30では、コントローラ50は、予め記憶されている目標線Lの情報(目標線情報D1)に基づいて、目標情報D3を自動的に算出し、目標情報D3と検出情報D5との差分が小さくなるようにガイダンスする。これにより、目標線Lに基づいた運搬物20の設置を容易に行うことができる。
 (実施の形態の纏め)
 本実施の形態の技術的特徴は下記のように纏められる。
 本発明の一局面に係るガイダンスシステムは、運搬物の座標および前記運搬物の方向の少なくともいずれかを検出する検出部と、前記検出部によって検出された前記運搬物の座標および前記運搬物の方向の少なくともいずれかを取得するコントローラと、表示部と、メモリと、を備え、前記メモリは、前記運搬物の設置目標を示すとともに、曲線および折れ線の少なくともいずれかで示される目標線に関する目標線情報を予め記憶し、前記コントローラは、前記目標線情報に基づいて、前記運搬物の目標座標に関する情報および前記運搬物の目標方向に関する情報の少なくともいずれかである目標情報を算出し、前記検出部によって検出された前記運搬物の座標および前記運搬物の方向の少なくともいずれかに基づいて、前記目標情報と対比可能な情報である検出情報を算出し、前記目標情報に対する前記検出情報の偏差を算出し、前記偏差が小さくなるような前記運搬物の移動方向を前記表示部に表示させる。
 この構成によれば、運搬物の目標情報が、目標線に関する目標線情報に基づいて、コントローラにより自動的に算出される。そして、目標情報に対する検出情報の偏差が算出され、算出された偏差が小さくなるような運搬物の移動方向が表示部に表示される。したがって、目標線に沿って高い精度で運搬物の移動方向をガイダンスすることができる。また、表示部に表示される移動方向に従って作業者が運搬物を移動させることで、目標線に沿って運搬物を高い精度で設置することができる。
 また、上記のガイダンスシステムにおいて、前記運搬物に取り付けられるフレーム部をさらに備え、前記検出部は、前記フレーム部に取り付けられてもよい。
 この構成によれば、検出部は、運搬物に取り付けられるフレーム部に取り付けられるので、運搬物の座標および運搬物の方向の少なくともいずれかを、より高い精度で検出することができる。また、フレーム部を運搬物に取り付けるだけで、運搬物の座標および運搬物の方向の少なくともいずれかを容易に検出することができる。
 また、上記のガイダンスシステムにおいて、前記運搬物の寸法を含む情報である運搬物情報を前記コントローラに入力する入力部をさらに備え、前記コントローラは、前記運搬物の前記目標座標に関する情報を、前記目標情報として算出し、前記検出部によって検出された前記運搬物の座標、前記検出部によって検出された前記運搬物の方向、および前記入力部によって入力された前記運搬物情報に基づいて、前記運搬物に含まれる特定の点の座標に関する情報を、前記検出情報として算出してもよい。
 この構成によれば、運搬物の寸法から運搬物の形状を特定することができ、運搬物の特定の点の座標を、目標線に近づけるように、運搬物の移動方向をガイダンスすることができる。
 また、上記のガイダンスシステムにおいて、前記コントローラは、平面視における前記運搬物の前記目標方向に関する情報を、前記目標情報として算出し、平面視における前記運搬物の方向に関する情報を、前記検出情報として算出してもよい。
 この構成によれば、平面視における運搬物の検出方向を、平面視における運搬物の目標方向に近づけるように、運搬物の移動方向をガイダンスすることができる。この場合、コントローラは、運搬物の座標を算出する必要はない。したがって、座標に基づくガイダンスに比べ、コントローラの計算量を削減することができる。
 また、上記のガイダンスシステムにおいて、前記検出部によって前記運搬物の座標および前記運搬物の方向の少なくともいずれかが検出されたときに、前記目標情報と前記検出情報とが一致状態になるように設置されている前記運搬物を基準構造物とし、前記コントローラは、前記基準構造物の平面視における方向であって前記検出部によって検出された方向である基準ヨー角を前記メモリに記憶し、前記メモリに記憶された前記基準ヨー角に基づいて、前記運搬物の前記目標情報および前記検出情報の少なくともいずれかを算出してもよい。
 この構成によれば、運搬物ごとに基準ヨー角を検出する手間を削減することができる。さらに詳しくは、運搬物の検出ヨー角の座標系と、目標線の座標系とが異なる場合は、座標系をいずれかに一致させる必要がある。複数の運搬物が運搬および設置される場合に、座標系を一致させるための基準値(基準ヨー角)を運搬物ごとに検出することは、非常に手間がかかる。そこで、基準構造物の基準ヨー角がメモリに記憶され、メモリに記憶された基準ヨー角に基づいて、運搬物の目標情報および検出情報の少なくともいずれかが算出される。したがって、運搬物ごとに基準ヨー角を検出する手間を削減することができる。
 また、上記のガイダンスシステムにおいて、前記コントローラは、前記目標情報と前記検出情報とが一致状態となったときの前記運搬物に関する情報である設置情報を前記メモリに記憶してもよい。
 運搬物が目標位置に設置された後、例えばエビデンス管理などのために、運搬物に関する情報が測量により取得されることがある。そこで、目標情報と検出情報とが一致状態になったときの運搬物に関する設置情報がメモリに記憶される。したがって、設置された運搬物を作業者が実際に測量する必要がなく、運搬物に関する情報を容易に取得することができる。
 また、上記のガイダンスシステムにおいて、前記設置情報は、前記検出部によって検出された前記運搬物の座標、前記検出部によって検出された前記運搬物の方向、および前記運搬物の寸法を含む情報である運搬物情報を含んでもよい。
 この構成によれば、設置情報を様々に利用することができる。例えば、設置情報から、運搬物の任意の点の座標を算出することが可能である。算出された運搬物の任意の点の座標がメモリに記憶されるので、エビデンス管理のために作業者が別途測量する必要がなく、工数を削減することができる。
 また、上記のガイダンスシステムにおいて、通知部をさらに備え、前記コントローラは、前記運搬物の任意の点の座標が、平面視において前記目標線に対して一方側から他方側に越えたときに警告を前記通知部に出力させてもよい。
 この構成によれば、目標線からはみ出た位置に運搬物が設置されることを抑制することができる。
 上記実施の形態は様々に変形されてもよい。上記実施の形態の各構成要素の配置または形状が変更されてもよい。例えば、図3などに示す各構成要素の接続は変更されてもよい。例えば、コントローラ50による各処理(算出など)の順は、上記の説明の順でもよく、上記の説明の順でなくてもよい。例えば、構成要素の数が変更されてもよく、構成要素の一部が設けられなくてもよい。例えば、互いに異なる複数の部材または部分として説明したものが、一つの部材または部分とされてもよい。例えば、一つの部材または部分として説明したものが、互いに異なる複数の部材または部分に分けて設けられてもよい。

Claims (8)

  1.  運搬物の座標および前記運搬物の方向の少なくともいずれかを検出する検出部と、
     前記検出部によって検出された前記運搬物の座標および前記運搬物の方向の少なくともいずれかを取得するコントローラと、
     表示部と、
     メモリと、
     を備え、
     前記メモリは、前記運搬物の設置目標を示すとともに、曲線および折れ線の少なくともいずれかで示される目標線に関する目標線情報を予め記憶し、
     前記コントローラは、
     前記目標線情報に基づいて、前記運搬物の目標座標に関する情報および前記運搬物の目標方向に関する情報の少なくともいずれかである目標情報を算出し、
     前記検出部によって検出された前記運搬物の座標および前記運搬物の方向の少なくともいずれかに基づいて、前記目標情報と対比可能な情報である検出情報を算出し、
     前記目標情報に対する前記検出情報の偏差を算出し、
     前記偏差が小さくなるような前記運搬物の移動方向を前記表示部に表示させる、
     ガイダンスシステム。
  2.  前記運搬物に取り付けられるフレーム部をさらに備え、
     前記検出部は、前記フレーム部に取り付けられる、
     請求項1に記載のガイダンスシステム。
  3.  前記運搬物の寸法を含む情報である運搬物情報を前記コントローラに入力する入力部をさらに備え、
     前記コントローラは、
     前記運搬物の前記目標座標に関する情報を、前記目標情報として算出し、
     前記検出部によって検出された前記運搬物の座標、前記検出部によって検出された前記運搬物の方向、および前記入力部によって入力された前記運搬物情報に基づいて、前記運搬物に含まれる特定の点の座標に関する情報を、前記検出情報として算出する、
     請求項1又は2に記載のガイダンスシステム。
  4.  前記コントローラは、
     平面視における前記運搬物の前記目標方向に関する情報を、前記目標情報として算出し、
     平面視における前記運搬物の方向に関する情報を、前記検出情報として算出する、
     請求項1~3のいずれか1項に記載のガイダンスシステム。
  5.  前記検出部によって前記運搬物の座標および前記運搬物の方向の少なくともいずれかが検出されたときに、前記目標情報と前記検出情報とが一致状態になるように設置されている前記運搬物を基準構造物とし、
     前記コントローラは、
     前記基準構造物の平面視における方向であって前記検出部によって検出された方向である基準ヨー角を前記メモリに記憶し、
     前記メモリに記憶された前記基準ヨー角に基づいて、前記運搬物の前記目標情報および前記検出情報の少なくともいずれかを算出する、
     請求項4に記載のガイダンスシステム。
  6.  前記コントローラは、前記目標情報と前記検出情報とが一致状態となったときの前記運搬物に関する情報である設置情報を前記メモリに記憶する、
     請求項1~5のいずれか1項に記載のガイダンスシステム。
  7.  前記設置情報は、前記検出部によって検出された前記運搬物の座標、前記検出部によって検出された前記運搬物の方向、および前記運搬物の寸法を含む情報である運搬物情報を含む、
     請求項6に記載のガイダンスシステム。
  8.  通知部をさらに備え、
     前記コントローラは、前記運搬物の任意の点の座標が、平面視において前記目標線に対して一方側から他方側に越えたときに警告を前記通知部に出力させる、
     請求項1~7のいずれか1項に記載のガイダンスシステム。
PCT/JP2020/037801 2019-12-23 2020-10-06 ガイダンスシステム WO2021131222A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20906774.3A EP4056757A4 (en) 2019-12-23 2020-10-06 GUIDANCE SYSTEM
CN202080085678.8A CN114787447B (zh) 2019-12-23 2020-10-06 引导系统
US17/783,116 US11828607B2 (en) 2019-12-23 2020-10-06 Guidance system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-231822 2019-12-23
JP2019231822A JP7243615B2 (ja) 2019-12-23 2019-12-23 ガイダンスシステム

Publications (1)

Publication Number Publication Date
WO2021131222A1 true WO2021131222A1 (ja) 2021-07-01

Family

ID=76540965

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/037801 WO2021131222A1 (ja) 2019-12-23 2020-10-06 ガイダンスシステム

Country Status (5)

Country Link
US (1) US11828607B2 (ja)
EP (1) EP4056757A4 (ja)
JP (1) JP7243615B2 (ja)
CN (1) CN114787447B (ja)
WO (1) WO2021131222A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06271275A (ja) * 1993-03-23 1994-09-27 Nkk Corp 吊り冶具
JPH0971387A (ja) * 1995-09-05 1997-03-18 Tadano Ltd クレーン車における吊荷位置表示装置
WO2015059740A1 (ja) * 2013-10-21 2015-04-30 株式会社日立製作所 位置ずれ補正装置および位置ずれ補正システム
JP2017025633A (ja) 2015-07-24 2017-02-02 大成ロテック株式会社 道路付帯設備の施工方法および移動方向指示用プログラム

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3937154B2 (ja) * 2002-06-28 2007-06-27 株式会社トプコン 位置検出装置
JP5081557B2 (ja) * 2007-09-28 2012-11-28 パナソニック デバイスSunx株式会社 レーザ加工装置
JP5803124B2 (ja) * 2011-02-10 2015-11-04 セイコーエプソン株式会社 ロボット、位置検出装置、位置検出プログラム、および位置検出方法
BR112013026377A2 (pt) * 2011-04-21 2016-12-27 Konecranes Plc técnicas para posicionar um veículo
JP5838698B2 (ja) * 2011-09-30 2016-01-06 ブラザー工業株式会社 計測装置及び電気的装置
JP6540467B2 (ja) * 2015-11-11 2019-07-10 Jfeスチール株式会社 屋内クレーンの自動運転装置及び自動運転方法
JP7045829B2 (ja) 2017-10-25 2022-04-01 Thk株式会社 移動ロボットの制御システム、移動ロボットの制御方法
CN110069584B (zh) * 2017-11-29 2023-04-14 星际空间(天津)科技发展有限公司 一种基于移动端的信息采集和特征匹配的方法
CN110054089B (zh) * 2019-04-29 2020-06-09 北京航天自动控制研究所 一种轮胎吊机器视觉自动纠偏系统及纠偏方法
JP7259612B2 (ja) 2019-07-18 2023-04-18 コベルコ建機株式会社 ガイダンスシステム
US11694452B1 (en) * 2019-10-07 2023-07-04 Deshazo, LLC Crane-mounted system for automated object detection and identification
US20230066200A1 (en) * 2020-01-09 2023-03-02 Fanuc Corporation Workpiece image analyzing device, workpiece image analyzing method, and program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06271275A (ja) * 1993-03-23 1994-09-27 Nkk Corp 吊り冶具
JPH0971387A (ja) * 1995-09-05 1997-03-18 Tadano Ltd クレーン車における吊荷位置表示装置
WO2015059740A1 (ja) * 2013-10-21 2015-04-30 株式会社日立製作所 位置ずれ補正装置および位置ずれ補正システム
JP2017025633A (ja) 2015-07-24 2017-02-02 大成ロテック株式会社 道路付帯設備の施工方法および移動方向指示用プログラム

Also Published As

Publication number Publication date
US20220412751A1 (en) 2022-12-29
JP7243615B2 (ja) 2023-03-22
US11828607B2 (en) 2023-11-28
EP4056757A1 (en) 2022-09-14
CN114787447B (zh) 2023-10-20
EP4056757A4 (en) 2023-01-18
JP2021098994A (ja) 2021-07-01
CN114787447A (zh) 2022-07-22

Similar Documents

Publication Publication Date Title
CN106536112B (zh) 具有用于基于重力的焊接取向测定的取向感测系统的焊接系统和方法
CN107076555B (zh) 作业机械的显示系统及作业机械
US8886416B2 (en) Hydraulic shovel operability range display device and method for controlling same
CN109072586B (zh) 施工机械、特别是起重机及其控制方法
KR101443769B1 (ko) 유압 셔블의 위치 유도 시스템 및 그 제어 방법
JP5328830B2 (ja) 油圧ショベルの較正装置及び油圧ショベルの較正方法
US8838329B2 (en) Hydraulic shovel calibration system and hydraulic shovel calibration method
US7650252B2 (en) Inclinometer measurement system and method providing correction for movement induced acceleration errors
US9020693B2 (en) Hydraulic shovel calibration device and hydraulic shovel calibration method
JP7097251B2 (ja) 施工管理システム
US20210114231A1 (en) Robot system
CN107003778B (zh) 信息处理装置及信息处理装置的控制方法
JP6402497B2 (ja) 高さ検出装置
WO2021131222A1 (ja) ガイダンスシステム
JP7016297B2 (ja) 作業機械
US10513039B2 (en) Teach pendant and robot system provided with the same
JPH11322294A (ja) 車両運転支援装置及び産業用車両
JP7259612B2 (ja) ガイダンスシステム
JP7306291B2 (ja) ガイダンスシステム
JP4829592B2 (ja) 作業車の遠隔操作装置
JP2689250B2 (ja) トンネル用掘進機の姿勢制御装置
JP6909944B1 (ja) 資材運搬取付装置
EP4289565A1 (en) Device, method and program for marker position registration and corresponding marker
JP5550383B2 (ja) 制御装置
JP4382551B2 (ja) 旋回角測定装置及びそれを備えているクレーン

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20906774

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020906774

Country of ref document: EP

Effective date: 20220610

NENP Non-entry into the national phase

Ref country code: DE