WO2021131177A1 - 管用ねじ継手 - Google Patents

管用ねじ継手 Download PDF

Info

Publication number
WO2021131177A1
WO2021131177A1 PCT/JP2020/034513 JP2020034513W WO2021131177A1 WO 2021131177 A1 WO2021131177 A1 WO 2021131177A1 JP 2020034513 W JP2020034513 W JP 2020034513W WO 2021131177 A1 WO2021131177 A1 WO 2021131177A1
Authority
WO
WIPO (PCT)
Prior art keywords
thread
threaded
box
radius
curvature
Prior art date
Application number
PCT/JP2020/034513
Other languages
English (en)
French (fr)
Inventor
順 高野
孝将 川井
拓也 長濱
城吾 後藤
吉川 正樹
毅 米山
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to EP20905534.2A priority Critical patent/EP4083369A4/en
Priority to JP2021513477A priority patent/JP7184169B2/ja
Priority to MX2022008025A priority patent/MX2022008025A/es
Priority to US17/757,722 priority patent/US11905765B2/en
Priority to BR112022012399A priority patent/BR112022012399A2/pt
Publication of WO2021131177A1 publication Critical patent/WO2021131177A1/ja
Priority to SA522433124A priority patent/SA522433124B1/ar

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L15/00Screw-threaded joints; Forms of screw-threads for such joints
    • F16L15/001Screw-threaded joints; Forms of screw-threads for such joints with conical threads
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/02Couplings; joints
    • E21B17/04Couplings; joints between rod or the like and bit or between rod and rod or the like
    • E21B17/042Threaded
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L15/00Screw-threaded joints; Forms of screw-threads for such joints
    • F16L15/06Screw-threaded joints; Forms of screw-threads for such joints characterised by the shape of the screw-thread

Definitions

  • the present invention relates to threaded joints for pipes.
  • Threaded joints for pipes are widely used to connect steel pipes used in oil industry facilities such as oil country tubular goods (OCTG).
  • OCTG oil country tubular goods
  • FIG. 1 is a schematic view showing an example of the structure of a general threaded joint for pipes.
  • the pipe thread joint 100 is a pin 110 provided with a male threaded portion 111 which is a male tapered screw at one end of the first pipe, and a female tapered screw which is screwed with the male threaded portion at one end of the second pipe. It includes a box 120 provided with a female threaded portion 121.
  • a non-screw portion 112 which is a portion where no screw exists, is provided at the tip of the pin 110, that is, on the tip side of the male screw portion 111.
  • the non-threaded portion 112 includes a seal portion 113 and a shoulder portion 114 that is nearly perpendicular to the pipe axis.
  • the box 120 is provided with a non-threaded portion 122 on the central side in the pipe axis direction, that is, on the side opposite to the end portion with respect to the female threaded portion 121.
  • the non-threaded portion 122 also includes a seal portion 123 and a shoulder portion 124 that is nearly perpendicular to the pipe axis.
  • FIG. 2 is a schematic view showing the shape of the thread groove 200 of the female thread portion 121 formed in the box 120 in a general threaded joint for pipes.
  • the upper side is the screw bottom side
  • the screw groove 200 has a substantially trapezoidal shape having a screw bottom straight portion 210 parallel to the taper of the female screw.
  • the thread groove 200 is provided with a linear load flank 220 on the left side of FIG. 2, that is, on the rear side in the insertion direction of the pin 100.
  • the thread groove 200 is provided with a linear stabbing flank 230 on the right side of FIG. 2, that is, on the front side in the insertion direction of the pin 100.
  • the thread groove 200 is provided with a load flank side corner portion 240 and a stubing flank side corner portion 250 on the screw bottom side, and the road flank side corner portion 240 and the stubing flank side corner portion 250 are each one. It is composed of arcs.
  • Such threaded pipe joints are required to have various performances such as tensile resistance, compression resistance, bending resistance, and sealing property.
  • various performances such as tensile resistance, compression resistance, bending resistance, and sealing property.
  • the breakage of the threaded joint occurs starting from a crack generated in the thread groove of the box.
  • the stress when a tensile load is applied to the threaded joint is concentrated in the road flank side corner of the first threaded groove, which is defined as the threaded groove farthest from the end of the box, thus preventing the threaded joint from breaking. In order to do so, it is necessary to suppress the occurrence of cracks in the first thread groove.
  • Patent Document 1 in order to prevent breakage of the threaded joint for pipes, the joint efficiency (tensile efficiency, TE), the female thread height t of the box, and the arc forming the road flank side corner portion of the first thread groove are formed. It has been proposed to control the radius of curvature ⁇ so as to satisfy the relationship specified by a specific mathematical formula.
  • Patent Document 1 has the following problems.
  • the joint efficiency TE which is one of the parameters used in Patent Document 1, is a value defined as the ratio of the cross-sectional area at the first screw position of the box to the cross-sectional area of the raw pipe portion of the pin. is there.
  • the higher the joint efficiency the higher the limit tensile performance of the joint. Therefore, if the outer diameter of the box is increased to increase the joint efficiency, the limit tensile performance of the joint can be improved.
  • the raw pipe portion refers to a portion of the pipe where no screw is provided.
  • the joint efficiency TE can be reduced by increasing the radius of curvature ⁇ .
  • the radius of curvature ⁇ it is necessary to increase the female screw height t of the box, and for that purpose, the outer diameter of the box must be increased.
  • the female screw height t is increased, the time required for cutting the screw increases, so that the productivity of the threaded joint also decreases.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to prevent the box from breaking when a tensile load is applied without increasing the outer diameter of the box.
  • the present inventors conducted a finite element analysis (FEA) to examine the influence of the axial cross-sectional shape of the thread groove provided in the box.
  • FFA finite element analysis
  • FIG. 3 is a contour diagram showing the distribution of plastic strain in the vicinity of the first thread groove in the conventional thread groove shape obtained by FEA.
  • the member located on the upper side of the figure is a box, the member located on the lower side is a pin, and of the two thread grooves shown in the figure, the thread groove on the right side is the first thread groove.
  • Each thread groove provided in the box is a trapezoidal thread having a straight thread bottom parallel to the taper of the female thread.
  • the side surface of the thread groove is composed of a stubing flank surface (right side in the figure) and a load flank surface (left side in the figure), and when a tensile load is applied in the pipe axial direction, a load is applied to the load flank surface.
  • the thread groove is provided with a road flank side corner portion and a stubing flank side corner portion on the screw bottom side, and each of the road flank side corner portion and the stubing flank side corner portion is composed of one arc.
  • the plastic strain is concentrated in the corner portion of the first thread groove, and the plastic strain is the largest in the corner portion on the road flank side.
  • FIG. 4 is a contour diagram showing the plastic strain distribution when another arc is provided at the road flank side corner portion of the screw groove shown in FIG.
  • the radius of curvature of the added second arc was set to 11.5 times the radius of curvature of the first arc.
  • the thread groove shape shown in FIG. 4 corresponds to the thread groove shape in the first embodiment of the present invention described later.
  • the FEA first performs an analysis simulating screw tightening in a threaded joint having the above-mentioned structure, and then further combines tension / compression and internal pressure / external pressure in accordance with ISO 13679: 2002 Test Series A. This was done under the condition that a load was applied.
  • the present invention has been made based on the above findings, and its gist structure is as follows.
  • a pin provided with a male threaded portion, which is a male tapered thread, at one end of the first tube
  • a box provided with a female threaded portion which is a female tapered thread to be screwed with the male threaded portion, is provided at one end of the second pipe.
  • the female thread portion has a plurality of thread grooves and has a plurality of thread grooves. Each of the plurality of thread grooves is a threaded joint for pipes having a load flank side corner portion and a stubing flank side corner portion on the thread bottom side.
  • the first arc on the load flank side of the first thread groove which is defined as the thread groove farthest from the end of the box among the plurality of thread grooves, is directly connected to the load flank and has a first radius of curvature.
  • a portion is provided with a second arc portion that is directly or indirectly connected to the first arc portion and has a second radius of curvature.
  • the threaded joint for pipes of the present invention can be suitably used for connecting oil well pipes used for oil and gas exploration and production, line pipes used for transporting oil and gas, and the like.
  • FIG. 5 is a contour diagram showing a plastic strain distribution in the vicinity of the first thread groove in the thread groove shape according to the embodiment of the present invention, which is obtained by FEA.
  • sectional drawing which shows an example of the structure of the coupling type threaded joint. It is sectional drawing which shows an example of the structure of an integral type threaded joint.
  • the terms “road flank” and “stubing flank” are used in the usual sense in the art. That is, “road flank” refers to a linear flank on the side where a load is applied to a tensile force in the pipe axis direction, and “stubing flank” refers to a linear flank on the opposite side to the road flank.
  • the shape of the thread groove is defined to refer to the shape at the time when the thread groove is formed, that is, before the pin and the box are tightened.
  • the threaded pipe joint (hereinafter, also simply referred to as “threaded joint”) according to the embodiment of the present invention is a pin provided with a male threaded portion which is a male taper thread at one end of the first pipe and one end of the second pipe.
  • the female threaded portion of the box has a plurality of threaded grooves, and the threaded groove farthest from the end of the box among the plurality of threaded grooves is defined as a “first threaded groove”.
  • first threaded groove only the thread groove that substantially meshes with the thread on the pin side is considered as the thread groove.
  • Each of the plurality of screw grooves has a load flank side corner portion and a stubing flank side corner portion on the screw bottom side.
  • the road flank side corner portion of the first thread groove includes at least two arc portions.
  • the stress concentration on the corner portion on the road flank side can be relaxed and the stress can be dispersed over the entire screw bottom. As a result, the box can be prevented from breaking.
  • the corner on the road flank side is composed of a single arc, so it was necessary to increase the outer diameter of the box in order to prevent breakage as described above. ..
  • the structure of the thread groove other than the first thread groove is not particularly limited.
  • all the thread grooves of the box satisfy the above conditions.
  • the load flank side corners of all the threaded grooves of the box are directly connected to the load flank, and the first arc portion having the first radius of curvature is directly or indirectly connected to the first arc portion.
  • the second arc portion having the second radius of curvature is provided, and the ratio of the radius of curvature, which is the ratio of the second radius of curvature to the first radius of curvature, is 3 or more.
  • the upper limit of the radius of curvature ratio is not limited. However, when the radius-of-curvature ratio exceeds 15, the stress relaxation effect is saturated. Therefore, the radius-of-curvature ratio may be 15 or less. Further, it is preferable that the first arc portion and the second arc portion are smoothly connected so as to have a common tangent line at the connecting portion. It is more preferable that each arc portion and the straight portion constituting the road flank side corner portion are smoothly connected to the adjacent arc portion or the straight portion so as to have a common tangent line at the connecting portion.
  • the radius of curvature of each of the first arc portion and the second arc portion is not particularly limited and can be any value.
  • the radius of curvature of the first arc portion can be, for example, 0.008 to 0.025 inches.
  • the radius of curvature of the second arc portion can be, for example, 0.030 to 0.200 inches.
  • the angle ⁇ of the first arc portion is not particularly limited. However, when the angle ⁇ of the first arc portion is 50 ° or more, it is not necessary to make the second arc portion excessively large, so that the need to increase the size of the thread groove can be further reduced. Therefore, the angle ⁇ of the first arc portion is preferably 50 ° or more. On the other hand, when the angle ⁇ of the first arc portion is 75 ° or less, it is possible to prevent the first arc portion from extending to a position where stress is likely to be concentrated, so that the stress dispersion effect can be further enhanced. Therefore, the angle ⁇ of the first arc portion is preferably 75 ° or less.
  • the "angle ⁇ of the first arc portion” is defined as the angle formed by the straight line a parallel to the pipe axis and the radius r at the end opposite to the load flank of the first arc portion (Fig.). See 7-10).
  • flank angles of the plurality of screw grooves are not particularly limited and can be any angle.
  • the stubing flank angle is preferably +5 to +40 degrees with respect to a straight line perpendicular to the tube axis.
  • the load flank angle is preferably -10 to 0 degrees with respect to a straight line perpendicular to the pipe axis.
  • the flank angle is defined as positive when the flank surface is inclined to the thread side with respect to a straight line perpendicular to the pipe axis, and negative when the flank surface is inclined to the opposite side to the thread.
  • the depth of the thread groove is also not particularly limited, but is preferably 0.03 to 0.10 inch.
  • the number of threads per inch is preferably 4 to 10. Therefore, the screw pitch defined as the distance between threads is preferably 0.1 to 0.25 inches.
  • the screw width defined as the width of the thread at the center of the screw height is preferably 0.4 to 0.6 times the screw pitch.
  • the pin is provided with a portion where no screw exists (hereinafter, referred to as a non-threaded portion) at the most tip, that is, on the tip side of the male screw portion.
  • the box is provided with a non-threaded portion on the central side in the pipe axis direction, that is, on the side opposite to the end portion, with respect to the female threaded portion.
  • the threaded joint of the present invention may have any structure as long as it satisfies the above conditions.
  • the threaded joint of the present invention may be either a coupling type threaded joint or an integral type threaded joint.
  • FIG. 5 is a schematic view showing the structure of a coupling type threaded pipe joint 1 according to an embodiment of the present invention.
  • a coupling type threaded joint for pipes is a threaded joint that connects two pipes using a coupling as a box, and is also called a Thread and Coupling (T & C) type.
  • the coupling type threaded joint 1 for pipes is provided with a pin 10 and a box (coupling) 20.
  • the pin 10 has a structure in which a male threaded portion 11 which is a male tapered thread is provided at the end of the pipe, and the box 20 is a female thread which is a female tapered thread which is screwed with the male threaded portion 11 of the pin 10.
  • the portion 21 has a structure provided at both ends of the pipe.
  • the pin 10 is provided with a non-threaded portion 12 at the most tip end, that is, on the tip end side of the male threaded portion 11.
  • the box 20 is provided with a non-threaded portion 22 on the central side in the pipe axis direction, that is, on the side opposite to the end portion, with respect to the female threaded portion 21.
  • the non-threaded portion preferably includes a seal portion and a shoulder portion as shown in FIG.
  • the non-threaded portion 12 of the pin 10 may be provided with a seal portion 13 and a shoulder portion 14 located on the tip side of the seal portion 13.
  • the non-threaded portion 22 of the box 20 can include a seal portion 23 and a shoulder portion 24 located closer to the center of the seal portion 23.
  • the shoulder portion 14 of the pin 10 may be perpendicular to the tube axis, but may be inclined toward the pin side from a straight line perpendicular to the tube axis.
  • the angle formed by the shoulder portion 14 of the pin 10 and the straight line perpendicular to the tube axis is preferably 0 to 30 degrees.
  • the shape of the pin seal portion and the box seal portion is not particularly limited, but the following combinations can be used, for example.
  • -Box side Tapered
  • FIG. 6 is a schematic view showing the structure of the integral type threaded joint for pipe 1 in another embodiment of the present invention.
  • the pin 10 has a structure in which a male threaded portion 11 which is a male taper screw is provided at one end of the first pipe, and the box 20 has a male screw portion of the pin 10 at one end of the second pipe. It has a structure in which a female screw portion 21 which is a female taper screw to be screwed with 11 is provided.
  • the pin 10 preferably has a non-screw portion 12 at the most tip, that is, on the tip side of the male screw portion 11. Further, it is preferable that the pin 10 is provided with the non-threaded portion 12 on the central side in the pipe axis direction, that is, on the side opposite to the end portion as well as the male threaded portion 11. Similarly, it is preferable that the box 20 is provided with a non-threaded portion 22 on the central side in the pipe axial direction, that is, on the side opposite to the end portion, with respect to the female threaded portion 21.
  • the box 20 is provided with a non-threaded portion 22 at the most advanced end, that is, on the distal end side of the female threaded portion 21.
  • a non-threaded portion 22 at the most advanced end, that is, on the distal end side of the female threaded portion 21.
  • the non-threaded portion 12 of the pin 10 preferably includes a seal portion 13 as shown in FIG. Further, the non-threaded portion 12 of the pin 10 may include a shoulder portion 14. Further, it is preferable that the non-threaded portion 22 of the box 20 also includes the seal portion 23. Further, the non-threaded portion 22 of the box 20 may include a shoulder portion 24.
  • the structure of the seal portion and the shoulder portion can be the same as that described in the description of the coupling type.
  • FIGS. 5 and 6 are schematic views for explaining the type of joint, the shapes of the thread grooves and threads are shown in a simplified manner.
  • the material of the threaded joint of the present invention is not particularly limited, and any material can be used.
  • the stress dispersion effect in the present invention is mechanical and not chemical, which is obtained by improving the shape of the corner portion of the screw bottom, and is therefore exerted independently of the material.
  • the pin and the box are made of metal, and it is more preferable that the pin and the box are made of either steel or a Ni-based alloy.
  • the steel may be either carbon steel or alloy steel.
  • the material of the pin and the material of the box may be different, but are preferably the same.
  • At least the first thread groove may have a structure described below.
  • all the threaded grooves of the box have the structure described below.
  • FIG. 7 is a schematic view showing the shape of the thread groove 2 according to the first embodiment of the present invention.
  • the load flank side corner portion 50 on the screw bottom side of the thread groove 2 is directly connected to the first arc portion 51 directly connected to the linear load flank 60 and the first arc portion 51.
  • a second arc portion 52 is provided.
  • the radius of curvature ratio (R2 / R1) defined as the ratio of the radius of curvature R2 of the second arc portion 52 to the radius of curvature R1 of the first arc portion 51 is 3 or more.
  • the second arc portion 52 extends to the corner portion 70 on the stubing flank side, and the second arc portion 52 constitutes the screw bottom.
  • the corner portion 70 on the stubing flank side is composed of a single arc, and the arc is directly connected to the linear stubing flank 80.
  • FIG. 8 is a schematic view showing the shape of the thread groove 2 in the second embodiment of the present invention.
  • the load flank side corner portion 50 on the screw bottom side of the screw groove 2 is directly connected to the linear load flank 60, and the first arc portion 51 and the straight portion 53 are connected to the first arc portion 51. It includes a second arc portion 52 connected via a second arc portion 52.
  • the road flank 60, the first arc portion 51, the straight portion 53, and the second arc portion 52 are connected in this order. Other than that, it is the same as that of the first embodiment.
  • the straight line portion 53 is preferably a common tangent line between the first arc portion 51 and the second arc portion 52.
  • the length of the straight portion 53 is not particularly limited, but from the viewpoint of avoiding an excessively large thread groove, the length of the straight portion 53 is preferably 0.010 inch or less.
  • FIG. 9 is a schematic view showing the shape of the thread groove 2 according to the third embodiment of the present invention.
  • the thread groove 2 has a thread bottom straight portion 90 parallel to the taper of the female thread portion.
  • the screw bottom straight portion 90 may be directly connected to the stubing flank side corner portion 70 as shown in FIG.
  • the road flank side corner portion 50 includes a third arc portion 54 between the second arc portion 52 and the screw bottom straight portion 90.
  • the third arc portion 54 By providing the third arc portion 54 in this way, the second arc portion 52 and the screw bottom straight portion 90 can be smoothly connected via the third arc portion 54.
  • the same can be applied to the first and second embodiments.
  • the second arc portion 52 and the third arc portion 54 are directly connected, but the second arc portion 52 and the third arc portion 54 are connected via a straight line portion. It may have been done.
  • the radius of curvature of the third arc portion 54 is not particularly limited, but it is preferably larger than the radius of curvature of the first arc portion 51.
  • the radius of curvature of the third arc portion 54 may be, for example, 0.010 inch to 0.200 inch.
  • the screw bottom straight portion 90 can be provided even when the third arc portion 54 does not exist. In that case, the second arc portion 52 and the screw bottom straight portion 90 can be directly connected.
  • FIG. 10 is a schematic view showing the shape of the thread groove 2 according to the fourth embodiment of the present invention.
  • the thread groove 2 has a thread bottom straight portion 90 parallel to the taper of the female thread portion.
  • the road flank side corner portion 50 has a first arc portion 51 directly connected to the road flank 60, a second arc portion 52 connected to the first arc portion 51 via a straight line portion 53, and a second arc portion 52.
  • a third arc portion 54 directly connected to the portion is provided.
  • the road flank 60, the first arc portion 51, the straight portion 53, the second arc portion 52, and the third arc portion 54 are connected in this order. Other than that, the same can be applied to the first to third embodiments.
  • the present invention it is possible to prevent the box from breaking when a tensile load is applied without increasing the outer diameter of the box. Therefore, the present invention can solve the conflicting problems of fracture prevention and cost reduction.
  • Threaded joint for pipe Thread groove 10 pin 11 Male threaded part 12 Non-threaded part 13 Sealed part 14 Shoulder part 20 Box 21 Female threaded part 22 Non-threaded part 23 Sealed part 24 Shoulder part 50 Road flank side corner part 51 First arc part 52 No.

Abstract

ボックス外径を増加させることなく、引張負荷の作用時におけるボックスの破断を防止する。 第1の管の一端に雄のテーパねじである雄ねじ部が設けられたピンと、第2の管の一端に前記雄ねじ部と螺合する雌のテーパねじである雌ねじ部が設けられたボックスとを備え、前記雌ねじ部は、複数のねじ溝を有し、前記複数のねじ溝のそれぞれは、ねじ底側に、ロードフランク側コーナー部およびスタビングフランク側コーナー部を有する管用ねじ継手であって、前記複数のねじ溝のうち前記ボックスの端部から最も遠いねじ溝として定義される第1ねじ溝のロードフランク側コーナー部が、ロードフランクと直接接続され、第1の曲率半径を有する第1円弧部と、前記第1円弧部と直接または間接的に接続され、第2の曲率半径を有する第2円弧部とを備え、前記第1の曲率半径に対する前記第2の曲率半径の比である曲率半径比が3以上である、管用ねじ継手。

Description

管用ねじ継手
 本発明は、管用ねじ継手(Threaded joint for pipes)に関する。
 管用ねじ継手は、油井管(oil country tubular goods、OCTG)など産油産業施設に使用される鋼管の接続に広く使用されている。
 図1は、一般的な管用ねじ継手の構造の一例を示す模式図である。管用ねじ継手100は、第1の管の一端に雄のテーパねじである雄ねじ部111が設けられたピン110と、第2の管の一端に前記雄ねじ部と螺合する雌のテーパねじである雌ねじ部121が設けられたボックス120とを備えている。
 ピン110の先端、すなわち雄ねじ部111よりも先端側には、ねじが存在しない部分である非ねじ部112が設けられている。そして、非ねじ部112は、シール部113と、管軸に対して垂直に近いショルダー部114を備えている。一方、ボックス120には、雌ねじ部121よりも管軸方向における中心側、すなわち端部と反対側に非ねじ部122が設けられている。そして、非ねじ部122も、シール部123と、管軸に対して垂直に近いショルダー部124を備えている。ピン110とボックス120とを締付けた際には、図1に示すようにピン110の非ねじ部112とボックス120の非ねじ部122とが当接し、金属-金属接触によるシールが形成される。
 図2は、一般的な管用ねじ継手における、ボックス120に形成された雌ねじ部121の、ねじ溝200の形状を示す模式図である。図2では上側がねじ底側であり、ねじ溝200は、雌ねじのテーパと平行なねじ底直線部210を有する略台形状である。また、ねじ溝200は、図2の左側、すなわちピン100の挿入方向において後方側に、直線状のロードフランク(load flank)220を備えている。同様に、ねじ溝200は、図2の右側、すなわちピン100の挿入方向において前方側に、直線状のスタビングフランク(stabbing flank)230を備えている。そして、ねじ溝200は、ねじ底側に、ロードフランク側コーナー部240とスタビングフランク側コーナー部250を備えており、ロードフランク側コーナー部240とスタビングフランク側コーナー部250は、それぞれ1つの円弧で構成されている。
 このような管用ねじ継手には、耐引張性、耐圧縮性、耐曲げ性、シール性など、様々な性能が要求される。とくに近年では、原油や天然ガス掘削用の井戸の深井戸化が進んでいることに加えて、従来一般的であった垂直井のみならず、水平井や傾斜井も増加しており、掘削・生産環境は苛酷化している。したがって、管用ねじ継手には、そのような過酷な環境においても破断しないことが求められる。
 ここで、ねじ継手の破断は、ボックスのねじ溝に発生したき裂を起点として発生する。特に、ねじ継手に引張荷重が負荷された際の応力は、ボックスの端部から最も遠いねじ溝として定義される第1ねじ溝のロードフランク側コーナー部に集中するため、ねじ継手の破断を防止するためには、第1ねじ溝におけるき裂の発生を抑制する必要がある。
 そこで、特許文献1では、管用ねじ継手の破断を防止するために、継手効率(tensile efficiency、TE)、ボックスの雌ねじ高さt、および第1ねじ溝のロードフランク側コーナー部を構成する円弧の曲率半径ρを、特定の数式で規定される関係を満たすように制御することが提案されている。
国際公開第2015/111117号
 しかし、特許文献1で提案されているような従来技術には、以下の問題があった。
 特許文献1で使用されているパラメータの1つである継手効率TEは、ピンの素管部(raw pipe portion)の断面積に対するボックスの第1ねじ位置における断面積の比として定義される値である。継手効率が高いほど、継手の限界引張性能が高いことを意味する。したがって、ボックスの外径を大きくして継手効率を高くすれば、継手の限界引張性能を高めることができる。なお、ここで素管部とは、管の、ねじが設けられていない部分を指す。
 しかし、油井掘削のコストダウンの観点からは、井戸開発時の採掘量を低減することが求められており、そのためにはボックスの外径を小さくすることが必要である。したがって、破断防止とコストダウンの両者の要求を満たすためには、継手効率を増加させることなく破断を防止する必要がある。
 それに対して、特許文献1では、継手効率TE、ボックスの雌ねじ高さt、および第1ねじ溝のロードフランク側コーナー部を構成する円弧の曲率半径ρを、次の式の関係を満たすように制御している。
 TE(%)≧2.25×t/ρ+99.9
 上記の式から分かるように、曲率半径ρを大きくすれば継手効率TEを小さくできる。しかし、実際には曲率半径ρを大きくするためにはボックスの雌ねじ高さtを大きくする必要があり、そのためにはボックスの外径を大きくせざるを得ない。また、雌ねじ高さtを大きくすると、ねじを切削するために必要な時間が増加するため、ねじ継手の生産性も低下する。
 加えて、曲率半径ρを大きくすると、ロードフランク側コーナー部の円弧とスタビングフランク側コーナー部の円弧が干渉するため、ρをあまり大きくすることはできない。特に、小径サイズのパイプには、ねじ幅の小さいねじ形状を適用するのが一般的であるため、ρを大きくすることは難しく、したがって、破断防止のためには継手効率を大きくせざるを得ない。
 このように、従来の技術では、破断防止とコストダウンという相反する課題を両立させることができなかった。
 本発明は、上記実状に鑑みてなされたものであり、ボックス外径を増加させることなく、引張負荷の作用時におけるボックスの破断を防止することを目的とする。
 本発明者らは、上記課題を解決するために、有限要素解析(FEA)を行ってボックスに設けられるねじ溝の軸方向断面形状の影響を検討した。その結果、従来は単一の円弧で構成されていたねじ底のロードフランク側コーナー部に、さらに前記円弧よりも大きい曲率半径を有する円弧を設けることにより、コーナー部への応力集中を緩和し、応力をねじ底全体に分散できることを見出した。以下、図3、4を参照して、解析結果の一例について説明する。
 図3は、FEAで求めた、従来のねじ溝形状における第1ねじ溝近傍での塑性歪み(plastic strain)の分布を示すコンター図である。図の上側に位置する部材がボックス、下側に位置する部材がピンであり、図に示されている2つのねじ溝のうち、右側のねじ溝が第1ねじ溝である。ボックスに設けられた各ねじ溝は、雌ねじのテーパと平行なねじ底直線部を備える台形ねじである。前記ねじ溝の側面はスタビングフランク面(図中右側)とロードフランク面(図中左側)から構成されており、管軸方向に引張荷重が作用した場合にはロードフランク面に荷重がかかる。ねじ溝は、ねじ底側に、ロードフランク側コーナー部とスタビングフランク側コーナー部を備えており、ロードフランク側コーナー部とスタビングフランク側コーナー部は、それぞれ1つの円弧で構成されている。
 図3から分かるように、従来のねじ溝形状では、第1ねじ溝のコーナー部に塑性歪みが集中しており、中でもロードフランク側コーナー部において塑性歪みが最大となっている。
 一方、図4は、図3に示したねじ溝のロードフランク側コーナー部に、さらにもう一つの円弧を設けた場合の塑性歪み分布を示すコンター図である。追加された2つめの円弧の曲率半径は、1つめの円弧の曲率半径の11.5倍とした。なお、図4に示したねじ溝形状は、後述する本発明の第1の実施形態におけるねじ溝形状に相当する。
 図4に示した結果では、図3の場合と異なり、ねじ底のコーナー部への塑性歪みの集中が緩和され、塑性歪みがねじ溝の底部全体に分散していることが分かる。
 このように、従来は単一の円弧で構成されていたねじ底のロードフランク側コーナー部に、さらに前記円弧よりも大きい曲率半径を有する円弧を設けることにより、コーナー部への応力集中を緩和し、応力をねじ底全体に分散できる。そして、その結果、塑性変形によるき裂の発生と、前記き裂を起点とするボックスの破断を防止することができる。なお、図3、4においては応力分布ではなく塑性歪みの分布を示した。これは、一定以上の応力がかかる部位においては、塑性変形が起こることによって応力が緩和され、見かけ上、応力が低くなるためである。実際上のき裂発生のリスクを評価するためには、応力自体よりも塑性歪みを用いる方が適切である。
 なお、上記FEAは、上述した構造を有するねじ継手において、まず、ねじ締め付けを模擬した解析を実施し、その後、さらにISO 13679:2002のTest Series Aに準拠した引張/圧縮と内圧/外圧の複合荷重を付与する条件で行った。
 本発明は前記知見に基づいてなされたものであり、その要旨構成は以下のとおりである。
1.第1の管の一端に雄のテーパねじである雄ねじ部が設けられたピンと、
 第2の管の一端に前記雄ねじ部と螺合する雌のテーパねじである雌ねじ部が設けられたボックスとを備え、
 前記雌ねじ部は、複数のねじ溝を有し、
 前記複数のねじ溝のそれぞれは、ねじ底側に、ロードフランク側コーナー部およびスタビングフランク側コーナー部を有する管用ねじ継手であって、
 前記複数のねじ溝のうち前記ボックスの端部から最も遠いねじ溝として定義される第1ねじ溝のロードフランク側コーナー部が、ロードフランクと直接接続され、第1の曲率半径を有する第1円弧部と、前記第1円弧部と直接または間接的に接続され、第2の曲率半径を有する第2円弧部とを備え、
 前記第1の曲率半径に対する前記第2の曲率半径の比である曲率半径比が3以上である、管用ねじ継手。
2.前記第2円弧部が、前記第1円弧部に直接接続されている、上記1に記載の管用ねじ継手。
3.前記第2円弧部が、直線部を介して前記第1円弧部に接続されている、上記1に記載の管用ねじ継手。
4.前記第1ねじ溝のロードフランク側コーナー部が、さらに、前記第2円弧部と直接または間接的に接続された第3円弧部を備える、上記1~3のいずれか一項に記載の管用ねじ継手。
5.前記第1ねじ溝が、前記雌ねじ部のテーパと平行なねじ底直線部を有する、上記1~4のいずれか一項に記載の管用ねじ継手。
 本発明によれば、ボックス外径を増加させることなく、引張負荷の作用時におけるボックスの破断を防止することが出来る。本発明の管用ねじ継手は、石油やガスの探査、生産に使用される油井管、石油やガスの輸送に用いられるラインパイプなどの接続に好適に用いることができる。
一般的な管用ねじ継手の構造の一例を示す模式図である。 一般的な管用ねじ継手における、ボックスに形成された雌ねじ部の、ねじ溝の形状を示す模式図である。 FEAで求めた、従来のねじ溝形状における第1ねじ溝近傍における塑性歪み分布を示すコンター図である。 FEAで求めた、本発明の一実施形態におけるねじ溝形状における第1ねじ溝近傍における塑性歪み分布を示すコンター図である。 カップリングタイプのねじ継手の構造の一例を示す断面模式図である。 インテグラルタイプのねじ継手の構造の一例を示す断面模式図である。 第1の実施形態における第1ねじ溝の形状を示す模式図である。 第2の実施形態における第1ねじ溝の形状を示す模式図である。 第3の実施形態における第1ねじ溝の形状を示す模式図である。 第4の実施形態における第1ねじ溝の形状を示す模式図である。
 以下、本発明を実施する方法について具体的に説明する。なお、以下の説明は、本発明の好適な実施形態の例を示すものであって、本発明はこれに限定されない。以下の説明において「ロードフランク」および「スタビングフランク」との用語は、本技術分野における通常の意味で用いられる。すなわち「ロードフランク」は管軸方向の引張力に対し負荷のかかる側の直線状のフランクを指し、「スタビングフランク」は、ロードフランクと反対側の直線状のフランクを指す。また、本明細書において、ねじ溝の形状は、ねじ溝を形成した時点、すなわち前記ピンとボックスとを締付ける前の時点における形状を指すものと定義する。
 本発明の一実施形態における管用ねじ継手(以下、単に「ねじ継手」ともいう)は、第1の管の一端に雄のテーパねじである雄ねじ部が設けられたピンと、第2の管の一端に前記雄ねじ部と螺合する雌のテーパねじである雌ねじ部が設けられたボックスとを備えている。前記ボックスの雌ねじ部は、複数のねじ溝を有しており、前記複数のねじ溝のうち前記ボックスの端部から最も遠いねじ溝を「第1ねじ溝」と定義する。ただし、第1ねじ溝を決定する際には、ねじ溝のうちピン側のねじ山と実質的にかみ合うねじ溝のみをねじ溝として考慮する。
 前記複数のねじ溝のそれぞれは、ねじ底側に、ロードフランク側コーナー部およびスタビングフランク側コーナー部を有している。そして、第1ねじ溝のロードフランク側コーナー部は、少なくとも2つの円弧部を備えている。
[曲率半径比]
 第1ねじ溝のロードフランク側コーナー部に設けられた2つの円弧部の内、一方は、ロードフランクと直接接続され、第1の曲率半径を有する第1円弧部であり、他方は、前記第1円弧部と直接または間接的に接続され、第2の曲率半径を有する第2円弧部である。本発明では、前記第1の曲率半径に対する前記第2の曲率半径の比である曲率半径比を3以上とすることが重要である。
 上記条件を満たす第2円弧部を設けることにより、ロードフランク側コーナー部への応力集中を緩和し、応力をねじ底全体に分散できる。そしてその結果として、ボックスの破断を防止することができる。これに対して、従来のねじ継手ではロードフランク側コーナー部を単一の円弧で構成していたため、先に述べたように破断を防止するためにはボックスの外径を増加させる必要があった。
 なお、上述したように、応力の集中は主に第1ねじ溝のコーナー部において生じるため、第1ねじ溝が上記構造を有していれば、他のねじ溝の形状にかかわらず上記効果を得ることができる。したがって、本発明において、第1ねじ溝以外のねじ溝の構造は特に限定されない。しかし、製造の容易さの観点からは、ボックスのすべてのねじ溝が上記条件を満たすことが好ましい。言い換えると、ボックスのすべてのねじ溝のロードフランク側コーナー部が、ロードフランクと直接接続され、第1の曲率半径を有する第1円弧部と、前記第1円弧部と直接または間接的に接続され、第2の曲率半径を有する第2円弧部とを備え、前記第1の曲率半径に対する前記第2の曲率半径の比である曲率半径比が3以上であることが好ましい。
 なお、上記曲率半径比の上限は限定されない。しかし、曲率半径比が15を超えると、応力緩和効果が飽和する。そのため、曲率半径比は15以下であってよい。また、第1円弧部と第2円弧部とは、その接続部において共通の接線を有するよう滑らかに接続されていることが好ましい。ロードフランク側コーナー部を構成する各円弧部および直線部は、隣接する円弧部または直線部と、その接続部において共通の接線を有するよう滑らかに接続されていることがより好ましい。
(曲率半径)
 第1円弧部および第2円弧部それぞれの曲率半径は特に限定されず、任意の値とすることができる。第1円弧部の曲率半径は、例えば、0.008~0.025インチとすることができる。一方、第2円弧部の曲率半径は、例えば、0.030~0.200インチとすることができる。
(角度θ)
 第1円弧部の角度θは特に限定されない。しかし、第1円弧部の角度θが50°以上であれば、第2円弧部を過度に大きくする必要がないため、ねじ溝のサイズを大きくする必要性をさらに低減できる。そのため、第1円弧部の角度θは、50°以上とすることが好ましい。一方、第1円弧部の角度θが75°以下であれば、応力が集中しやすい位置にまで第1円弧部が延在することを回避できるため、応力分散効果をさらに高めることができる。そのため、第1円弧部の角度θは75°以下とすることが好ましい。なお、ここで「第1円弧部の角度θ」とは、管軸と平行な直線aと、第1円弧部のロードフランクとは反対側の終端における半径rとのなす角と定義する(図7~10参照)。
 なお、前記複数のねじ溝のフランク角度は、とくに限定されず、任意の角度とすることができる。例えば、スタビングフランク角度は、管軸に垂直な直線に対し+5~+40度とすることが好ましい。ロードフランク角度は、管軸に垂直な直線に対し-10~0度とすることが好ましい。ここで、フランク角度は、フランク面が、管軸に垂直な直線を基準として、ねじ山側に傾斜している場合を正、ねじ山と反対側へ傾斜している場合を負と定義する。
 また、ねじ溝の深さについてもとくに限定されないが、0.03~0.10インチであることが好ましい。1インチ当たりのねじ山の数は、4~10とすることが好ましい。したがって、ねじ山間の距離として定義されるねじピッチは0.1~0.25インチとすることが好ましい。ねじ高さ中央におけるねじ山の幅として定義されるねじ幅は、ねじピッチの0.4~0.6倍であることが好ましい。
(非ねじ部)
 ピンは、最も先端、すなわち雄ねじ部よりも先端側に、ねじが存在しない部分(以下、非ねじ部という)を備えることが好ましい。また、ボックスは、雌ねじ部よりも管軸方向における中心側、すなわち端部と反対側に非ねじ部を備えることが好ましい。ピンとボックスとを締付けた際には、ピンの非ねじ部とボックスの非ねじ部とが当接し、金属-金属接触によるシールが形成される。
[継手のタイプ]
 本発明のねじ継手は、前記条件を満たすものであれば、任意の構造であってよい。例えば、本願発明のねじ継手は、カップリングタイプのねじ継手およびインテグラルタイプのねじ継手のいずれかであってよい。
 図5は、本願発明の一実施形態における、カップリングタイプの管用ねじ継手1の構造を示す模式図である。カップリングタイプの管用ねじ継手は、ボックスとしてのカップリングを使用して、2本の管を接続するねじ継手であり、Thread and Coupling(T&C)タイプとも呼ばれる。
 カップリングタイプの管用ねじ継手1は、ピン10とボックス(カップリング)20を備えている。ピン10は、管の端部に雄のテーパねじである雄ねじ部11が設けられた構造を有しており、ボックス20は、ピン10の雄ねじ部11と螺合する雌のテーパねじである雌ねじ部21が管の両端に設けられた構造を有している。
 ピン10は、図5に示したように、最も先端、すなわち雄ねじ部11よりも先端側に非ねじ部12を備えることが好ましい。また、ボックス20は、雌ねじ部21よりも管軸方向における中心側、すなわち端部と反対側に非ねじ部22を備えることが好ましい。ピン10とボックス20とを締付けた際には、ピン10の非ねじ部とボックス20の非ねじ部とが当接し、金属-金属接触によるシールが形成される。
 前記非ねじ部は、図5に示したようにシール部とショルダー部を含むことが好ましい。例えば、ピン10の非ねじ部12には、シール部13と、シール部13よりも先端側に位置するショルダー部14を備えることができる。また、ボックス20の非ねじ部22は、シール部23と、シール部23よりも中心側に位置するショルダー部24を備えることができる。ピン10のショルダー部14は管軸に垂直であってもよいが、管軸に垂直な直線よりもピン側へ傾斜していてもよい。ピン10のショルダー部14と管軸に垂直な直線とのなす角は、0~30度であることが好ましい。
 ピンのシール部とボックスのシール部の形状は特に限定されないが、例えば、以下の組み合わせとすることができる。
・ボックス側:テーパ状、ピン側:テーパ状
・ボックス側:テーパ状、ピン側:凸曲線状
・ボックス側:凸曲線状、ピン側:テーパ状
・ボックス側:凹曲線状、ピン側:凸曲線状
 一方、図6は、本願発明の他の実施形態における、インテグラルタイプの管用ねじ継手1の構造を示す模式図である。インテグラルタイプの管用ねじ継手1においては、カップリングを使用することなく、2本の管が直接接続される。すなわち、ピン10は、第1の管の一端に雄のテーパねじである雄ねじ部11が設けられた構造を有しており、ボックス20は、第2の管の一端に、ピン10の雄ねじ部11と螺合する雌のテーパねじである雌ねじ部21が設けられた構造を有している。
 ピン10は、図6に示したように、最も先端、すなわち雄ねじ部11よりも先端側に非ねじ部12を備えることが好ましい。また、ピン10は、雄ねじ部11よりも管軸方向における中心側、すなわち端部と反対側にも、非ねじ部12を備えることが好ましい。同様に、ボックス20は、雌ねじ部21よりも管軸方向における中心側、すなわち端部と反対側に非ねじ部22を備えることが好ましい。また、ボックス20は、最も先端、すなわち雌ねじ部21よりも先端側にも非ねじ部22を備えることが好ましい。ピン10とボックス20とを締付けた際には、前記ピンの非ねじ部とボックスの非ねじ部とが当接し、金属-金属接触によるシールが形成される。
 ピン10の非ねじ部12は、図6に示したようにシール部13を含むことが好ましい。また、ピン10の非ねじ部12には、ショルダー部14を含んでいてもよい。また、ボックス20の非ねじ部22も、シール部23を含むことが好ましい。また、ボックス20の非ねじ部22には、ショルダー部24を含んでいてもよい。シール部とショルダー部の構造は、カップリングタイプの説明に記載したものと同様の構造とすることができる。
 なお、図5、6は継手のタイプを説明するための模式図であるため、ねじ溝およびねじ山の形状については簡略化して示している。
[材質]
 本願発明のねじ継手の材質は特に限定されず、任意の材質を用いることができる。本発明における応力の分散効果は、ねじ底のコーナー部の形状を改良したことによって得られる機械的なものであり、化学的なものではないため、材質に依存することなく発揮される。継手の強度の観点から、通常は、ピンおよびボックスの材質を金属とすることが好ましく、鋼およびNi基合金のいずれかとすることがより好ましい。前記鋼は、炭素鋼および合金鋼のいずれであってもよい。ピンの材質とボックスの材質は異なっていても良いが、同じであることが好ましい。
 次に、本願発明のねじ継手におけるねじ溝の形状について、4つの実施形態を挙げてさらに具体的に説明する。以下の各実施形態においては、少なくとも第1ねじ溝が、以下に説明する構造を備えていればよい。しかし、上述したように、製造の容易さの観点からは、以下に説明する構造をボックスのすべてのねじ溝が備えることが好ましい。
(第1の実施形態)
 図7は、本発明の第1の実施形態におけるねじ溝2の形状を示す模式図である。本実施形態においては、ねじ溝2のねじ底側のロードフランク側コーナー部50が、直線状のロードフランク60に直接接続された第1円弧部51と、第1円弧部51に直接接続された第2円弧部52を備えている。そして、第1円弧部51の曲率半径R1に対する第2円弧部52の曲率半径R2の比として定義される曲率半径比(R2/R1)は3以上である。図7に示した例では、第2円弧部52がスタビングフランク側コーナー部70まで延びており、第2円弧部52がねじ底を構成している。なお、スタビングフランク側コーナー部70は単一の円弧で構成されており、該円弧は直線状のスタビングフランク80と直接接続している。
(第2の実施形態)
 図8は、本発明の第2の実施形態におけるねじ溝2の形状を示す模式図である。本実施形態においては、ねじ溝2のねじ底側のロードフランク側コーナー部50が、直線状のロードフランク60に直接接続された第1円弧部51と、第1円弧部51に直線部53を介して接続された第2円弧部52を備えている。言い換えると、ロードフランク60、第1円弧部51、直線部53、および第2円弧部52が、この順序で接続されている。それ以外の点については第1の実施形態と同じである。直線部53を設けることにより、応力分散効果をさらに高めることができる。直線部53は、第1円弧部51と第2円弧部52の共通接線とすることが好ましい。
 直線部53の長さは特に限定されないが、ねじ溝が過度に大きくなることを避けるという観点からは、直線部53の長さを0.010インチ以下とすることが好ましい。
(第3の実施形態)
 図9は、本発明の第3の実施形態におけるねじ溝2の形状を示す模式図である。本実施形態においては、ねじ溝2が、雌ねじ部のテーパと平行なねじ底直線部90を有している。このように、ねじ溝の底部を直線で構成することにより、ねじ溝の深さ(ねじ高さ)の検査が容易となる。ねじ底直線部90は、図9に示したようにスタビングフランク側コーナー部70と直接接続されていてよい。
 さらに図9に示した実施形態では、ロードフランク側コーナー部50が、第2円弧部52とねじ底直線部90との間に、第3円弧部54を備えている。このように第3円弧部54を設けることにより、第3円弧部54を介して第2円弧部52とねじ底直線部90を滑らかに接続することができる。それ以外の点については第1、第2の実施形態と同様とすることができる。なお、図9に示した実施形態では、第2円弧部52と第3円弧部54とが直接接続されているが、第2円弧部52と第3円弧部54は、直線部を介して接続されていてもよい。
 第3円弧部54の曲率半径は特に限定されないが、第1円弧部51の曲率半径より大きくすることが好ましい。第3円弧部54の曲率半径は、例えば、0.010インチ~0.200インチであってよい。
 なお、ねじ底直線部90は、第3円弧部54が存在しない場合にも設けることができる。その場合、第2円弧部52とねじ底直線部90を直接接続することができる。
(第4の実施形態)
 図10は、本発明の第4の実施形態におけるねじ溝2の形状を示す模式図である。本実施形態においては、第3の実施形態と同様、ねじ溝2が、雌ねじ部のテーパと平行なねじ底直線部90を有している。そして、ロードフランク側コーナー部50が、ロードフランク60と直接接続された第1円弧部51と、第1円弧部51に直線部53を介して接続された第2円弧部52、および第2円弧部に直接接続された第3円弧部54を備えている。言い換えると、ロードフランク60、第1円弧部51、直線部53、第2円弧部52、および第3円弧部54が、この順序で接続されている。それ以外の点については第1~3の実施形態と同様とすることができる。
 API 5CRAのCategory:13-5-2,Grade:110に該当する鋼種からなる外径9.625インチ×肉厚0.545インチ(外径244.48mm×肉厚13.84mm)の鋼管を加工して、ピンおよび前記ピンに対応するボックスからなるねじ継手を作製した。作製したねじ継手のねじ溝の形状は表1に示すとおりとした。1インチあたりのねじ山の数は5(5TPI)、ねじ高さは0.062インチ(1.575mm)とした。スタビングフランク角は25度、ロードフランク角は-5度、ねじテーパは1/16とした。ボックス外径を抑制するために継手効率は110%以下の設計とした。なお、ここでねじ溝の形状は、作製した前記ピンとボックスとを締付ける前の時点における形状を指す。
 次いで、API 5C5:2017のConnection Application Levels (CAL) IVに準拠した条件で気密試験を実施し、前記ねじ継手の性能を評価した。試験結果を表1に示す。前記気密試験において、ボックスが破断しなかった場合を「合格」、破断した場合を「不合格」とした。
 表1に示したように、本発明の条件を満たすねじ継手では、継手効率が109%以下であるにもかかわらず、ボックスの破断が生じなかった。とくに、発明例No.3においては、継手効率が101%でも破断が生じなかった。一方、第2円弧部を設けなかった比較例では、継手効率を110%まで増加させたにもかかわらずボックスが破断した。また、第2円弧部を設けた場合であっても、曲率半径比が3未満の比較例では、継手効率を110%まで増加させてもボックスが破断した。なお、特許文献1で提案されている手法でボックスの破断を防止するためには、比較例No.6の条件では継手効率を116%、比較例No.7の条件では111%まで増加させる必要がある。
 以上の結果から分かるように、本発明によれば、ボックス外径を増加させることなく、引張負荷の作用時におけるボックスの破断を防止することができる。したがって、本発明は、破断防止とコストダウンという相反する課題を解決することができる。
Figure JPOXMLDOC01-appb-T000001
  1 管用ねじ継手
  2 ねじ溝
 10 ピン
 11 雄ねじ部
 12 非ねじ部
 13 シール部
 14 ショルダー部
 20 ボックス
 21 雌ねじ部
 22 非ねじ部
 23 シール部
 24 ショルダー部
 50 ロードフランク側コーナー部
 51 第1円弧部
 52 第2円弧部
 53 直線部
 54 第3円弧部
 60 ロードフランク
 70 スタビングフランク側コーナー部
 80 スタビングフランク
 90 ねじ底直線部
100 管用ねじ継手
110 ピン
111 雄ねじ部
112 非ねじ部
113 シール部
114 ショルダー部
120 ボックス
121 雌ねじ部
122 非ねじ部
123 シール部
124 ショルダー部
200 ねじ溝
210 ねじ底直線部
220 ロードフランク
230 スタビングフランク
240 ロードフランク側コーナー部
250 スタビングフランク側コーナー部
  a 管軸と平行な直線
  r 第1円弧部のロードフランクとは反対側の終端における半径
  θ 直線aと半径rとのなす角

Claims (5)

  1.  第1の管の一端に雄のテーパねじである雄ねじ部が設けられたピンと、
     第2の管の一端に前記雄ねじ部と螺合する雌のテーパねじである雌ねじ部が設けられたボックスとを備え、
     前記雌ねじ部は、複数のねじ溝を有し、
     前記複数のねじ溝のそれぞれは、ねじ底側に、ロードフランク側コーナー部およびスタビングフランク側コーナー部を有する管用ねじ継手であって、
     前記複数のねじ溝のうち前記ボックスの端部から最も遠いねじ溝として定義される第1ねじ溝のロードフランク側コーナー部が、ロードフランクと直接接続され、第1の曲率半径を有する第1円弧部と、前記第1円弧部と直接または間接的に接続され、第2の曲率半径を有する第2円弧部とを備え、
     前記第1の曲率半径に対する前記第2の曲率半径の比である曲率半径比が3以上である、管用ねじ継手。
  2.  前記第2円弧部が、前記第1円弧部に直接接続されている、請求項1に記載の管用ねじ継手。
  3.  前記第2円弧部が、直線部を介して前記第1円弧部に接続されている、請求項1に記載の管用ねじ継手。
  4.  前記第1ねじ溝のロードフランク側コーナー部が、さらに、前記第2円弧部と直接または間接的に接続された第3円弧部を備える、請求項1~3のいずれか一項に記載の管用ねじ継手。
  5.  前記第1ねじ溝が、前記雌ねじ部のテーパと平行なねじ底直線部を有する、請求項1~4のいずれか一項に記載の管用ねじ継手。
     
     
PCT/JP2020/034513 2019-12-26 2020-09-11 管用ねじ継手 WO2021131177A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP20905534.2A EP4083369A4 (en) 2019-12-26 2020-09-11 THREADED CONNECTOR FOR PIPES
JP2021513477A JP7184169B2 (ja) 2019-12-26 2020-09-11 管用ねじ継手
MX2022008025A MX2022008025A (es) 2019-12-26 2020-09-11 Junta roscada para tuberias.
US17/757,722 US11905765B2 (en) 2019-12-26 2020-09-11 Threaded joint for pipes
BR112022012399A BR112022012399A2 (pt) 2019-12-26 2020-09-11 Junta rosqueada para tubos
SA522433124A SA522433124B1 (ar) 2019-12-26 2022-06-23 وصلة ملولبة للأنابيب

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-236848 2019-12-26
JP2019236848 2019-12-26

Publications (1)

Publication Number Publication Date
WO2021131177A1 true WO2021131177A1 (ja) 2021-07-01

Family

ID=76507927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/034513 WO2021131177A1 (ja) 2019-12-26 2020-09-11 管用ねじ継手

Country Status (9)

Country Link
US (1) US11905765B2 (ja)
EP (1) EP4083369A4 (ja)
JP (1) JP7184169B2 (ja)
CN (2) CN215596629U (ja)
AR (1) AR120888A1 (ja)
BR (1) BR112022012399A2 (ja)
MX (1) MX2022008025A (ja)
SA (1) SA522433124B1 (ja)
WO (1) WO2021131177A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2022008025A (es) * 2019-12-26 2022-07-27 Jfe Steel Corp Junta roscada para tuberias.

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06281059A (ja) * 1993-03-24 1994-10-07 Sumitomo Metal Ind Ltd 油井管用ねじ継手
US6030004A (en) * 1997-12-08 2000-02-29 Shaw Industries High torque threaded tool joint for drill pipe and other drill stem components
CN103362459A (zh) * 2013-08-03 2013-10-23 无锡西姆莱斯石油专用管制造有限公司 一种弧形锥面密封变牙宽楔型接箍结构及油井管结构
WO2015111117A1 (ja) 2014-01-24 2015-07-30 Jfeスチール株式会社 管のねじ継手
JP2017072187A (ja) * 2015-10-07 2017-04-13 Jfeスチール株式会社 油井管ケーシング用ねじ継手
JP2017125613A (ja) * 2011-12-09 2017-07-20 テナリス・コネクシヨンズ・ベー・ブイ テーパーねじの切削方法
US20170321826A1 (en) * 2014-08-12 2017-11-09 Patented Products LLC Single lead wedgethread connection

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4113290A (en) * 1975-11-06 1978-09-12 Tsukamoto Seiki Co., Ltd. Pressure tight joint for a large diameter casing
FR2807138B1 (fr) * 2000-03-31 2002-05-17 Vallourec Mannesmann Oil & Gas Element filete tubulaire pour joint filete tubulaire resistant a la fatigue et joint filete tubulaire resultant
CA2411851A1 (en) * 2000-06-07 2002-12-05 Sumitomo Metal Industries, Ltd. Taper threaded joint
US6755447B2 (en) * 2001-08-24 2004-06-29 The Technologies Alliance, Inc. Production riser connector
CN202007937U (zh) 2011-02-23 2011-10-12 宝山钢铁股份有限公司 一种公端对顶油套管连接结构
JP5971264B2 (ja) 2014-01-10 2016-08-17 Jfeスチール株式会社 極厚肉油井管用ねじ継手
WO2015182128A1 (ja) 2014-05-30 2015-12-03 新日鐵住金株式会社 鋼管用ねじ継手
US9874058B2 (en) * 2014-07-31 2018-01-23 Baker Hughes, A Ge Company, Llc Fatigue resistant thread profile with combined curve rounding
AU2017316876B2 (en) 2016-08-24 2020-02-27 Jfe Steel Corporation Threaded joint for oil country tubular goods
US11125361B2 (en) 2018-03-01 2021-09-21 Mitchell Z. Dziekonski Thread form and threaded article
CN112601908B (zh) 2018-08-21 2022-10-21 日本制铁株式会社 钢管用螺纹接头
MX2022008025A (es) 2019-12-26 2022-07-27 Jfe Steel Corp Junta roscada para tuberias.

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06281059A (ja) * 1993-03-24 1994-10-07 Sumitomo Metal Ind Ltd 油井管用ねじ継手
US6030004A (en) * 1997-12-08 2000-02-29 Shaw Industries High torque threaded tool joint for drill pipe and other drill stem components
JP2017125613A (ja) * 2011-12-09 2017-07-20 テナリス・コネクシヨンズ・ベー・ブイ テーパーねじの切削方法
CN103362459A (zh) * 2013-08-03 2013-10-23 无锡西姆莱斯石油专用管制造有限公司 一种弧形锥面密封变牙宽楔型接箍结构及油井管结构
WO2015111117A1 (ja) 2014-01-24 2015-07-30 Jfeスチール株式会社 管のねじ継手
US20170321826A1 (en) * 2014-08-12 2017-11-09 Patented Products LLC Single lead wedgethread connection
JP2017072187A (ja) * 2015-10-07 2017-04-13 Jfeスチール株式会社 油井管ケーシング用ねじ継手

Also Published As

Publication number Publication date
BR112022012399A2 (pt) 2022-08-30
EP4083369A4 (en) 2023-01-18
MX2022008025A (es) 2022-07-27
CN215596629U (zh) 2022-01-21
US20230044251A1 (en) 2023-02-09
EP4083369A1 (en) 2022-11-02
US11905765B2 (en) 2024-02-20
SA522433124B1 (ar) 2023-02-19
AR120888A1 (es) 2022-03-30
CN113048297B (zh) 2022-11-15
JP7184169B2 (ja) 2022-12-06
JPWO2021131177A1 (ja) 2021-12-23
CN113048297A (zh) 2021-06-29

Similar Documents

Publication Publication Date Title
EP2002165B1 (en) Tubular threaded joint
JP5849749B2 (ja) 管用ねじ継手
JP6037091B1 (ja) 管ねじ継手
WO2017130234A1 (ja) 鋼管用ねじ継手
WO2017145192A1 (ja) 鋼管用ねじ継手
WO2021131177A1 (ja) 管用ねじ継手
WO2020137917A1 (ja) 鋼管用ねじ継手
JPH06281061A (ja) 油井管用ねじ継手
JPWO2019111803A1 (ja) 鋼管用ねじ継手
WO2021059807A1 (ja) ねじ継手
WO2019171899A1 (ja) 油井管用ねじ継手
JP6888687B2 (ja) ねじ継手
RU2788781C1 (ru) Резьбовое соединение для труб
KR101536472B1 (ko) 유정용 파이프라인의 연결구조체
CN108952595B (zh) 一种气密封螺纹接头
JP6900470B2 (ja) 鋼管用ねじ継手
CN108301786B (zh) 一种特殊螺纹扣接头
WO2022180225A2 (en) Coupling for connecting downhole tubulars with improved stress distribution
JPS60241596A (ja) 油井管用管継手

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021513477

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20905534

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022012399

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020905534

Country of ref document: EP

Effective date: 20220726

ENP Entry into the national phase

Ref document number: 112022012399

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220621