WO2015182128A1 - 鋼管用ねじ継手 - Google Patents

鋼管用ねじ継手 Download PDF

Info

Publication number
WO2015182128A1
WO2015182128A1 PCT/JP2015/002662 JP2015002662W WO2015182128A1 WO 2015182128 A1 WO2015182128 A1 WO 2015182128A1 JP 2015002662 W JP2015002662 W JP 2015002662W WO 2015182128 A1 WO2015182128 A1 WO 2015182128A1
Authority
WO
WIPO (PCT)
Prior art keywords
thread
screw
threaded joint
steel pipes
top surface
Prior art date
Application number
PCT/JP2015/002662
Other languages
English (en)
French (fr)
Inventor
正明 杉野
後藤 邦夫
Original Assignee
新日鐵住金株式会社
バローレック・オイル・アンド・ガス・フランス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社, バローレック・オイル・アンド・ガス・フランス filed Critical 新日鐵住金株式会社
Priority to MX2016015584A priority Critical patent/MX2016015584A/es
Priority to RU2016151363A priority patent/RU2647169C1/ru
Priority to EP15800517.3A priority patent/EP3150895A4/en
Priority to US15/308,846 priority patent/US20170122468A1/en
Priority to CA2947536A priority patent/CA2947536C/en
Priority to JP2016523149A priority patent/JP6366703B2/ja
Priority to CN201580028296.0A priority patent/CN106461125B/zh
Publication of WO2015182128A1 publication Critical patent/WO2015182128A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/02Couplings; joints
    • E21B17/04Couplings; joints between rod or the like and bit or between rod and rod or the like
    • E21B17/042Threaded
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L15/00Screw-threaded joints; Forms of screw-threads for such joints
    • F16L15/001Screw-threaded joints; Forms of screw-threads for such joints with conical threads
    • F16L15/003Screw-threaded joints; Forms of screw-threads for such joints with conical threads with sealing rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L15/00Screw-threaded joints; Forms of screw-threads for such joints
    • F16L15/001Screw-threaded joints; Forms of screw-threads for such joints with conical threads
    • F16L15/002Screw-threaded joints; Forms of screw-threads for such joints with conical threads with more then one threaded section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L15/00Screw-threaded joints; Forms of screw-threads for such joints
    • F16L15/001Screw-threaded joints; Forms of screw-threads for such joints with conical threads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L15/00Screw-threaded joints; Forms of screw-threads for such joints
    • F16L15/04Screw-threaded joints; Forms of screw-threads for such joints with additional sealings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L15/00Screw-threaded joints; Forms of screw-threads for such joints
    • F16L15/06Screw-threaded joints; Forms of screw-threads for such joints characterised by the shape of the screw-thread

Definitions

  • the present invention relates to a threaded joint used for connecting steel pipes.
  • oil wells natural gas wells
  • OCTG OilOCTublar Goods
  • the steel pipes are sequentially connected and a threaded joint is used for the connection.
  • This threaded joint for steel pipes is required to have a function of quickly performing a fastening operation for connecting the steel pipes and a dismantling operation for removing the steel pipes.
  • high reliability is required for steel pipe threaded joints in terms of strength and sealing performance.
  • Steel screw joint types are roughly classified into coupling types and integral types.
  • one of the pair of pipes to be connected is a steel pipe
  • the other pipe is a coupling.
  • male screw portions are formed on the outer periphery of both ends of the steel pipe
  • female screw portions are formed on the inner periphery of both ends of the coupling.
  • a steel pipe and a coupling are connected.
  • both of the pair of pipes to be connected are steel pipes, and no separate coupling is used.
  • a male thread part is formed in the outer periphery of the one end part of a steel pipe
  • a female thread part is formed in the inner periphery of the other end part.
  • one steel pipe and the other steel pipe are connected.
  • the joint portion of the pipe end portion where the male screw portion is formed includes an element inserted into the female screw portion, and is therefore referred to as a pin.
  • the joint portion of the pipe end portion where the female thread portion is formed includes an element that receives the male thread portion, and is therefore referred to as a box. Since these pins and boxes are the ends of the pipe material, they are both tubular.
  • a threaded joint for steel pipes As a threaded joint for steel pipes, a threaded joint having a threaded portion constituted by a buttress screw or a round screw defined by API (American Petroleum Institute) standard is widely used.
  • the flank angle of the inclined surface (hereinafter referred to as “load flank surface” or “load surface”) that is contacted in the state where the fastening is completed is 3 ° with respect to a plane perpendicular to the joint axis (tube axis).
  • the flank angle of the slope opposite to the load flank surface (hereinafter referred to as “insertion flank surface” or “insertion surface”) is 10 ° with respect to a plane perpendicular to the joint axis (tube axis).
  • the screw height of the screw thread is 1.575 mm.
  • the width of the thread is approximately 2.5 mm.
  • the insertion surfaces do not contact each other when the fastening is completed.
  • a gap of approximately 0.025 mm to 0.178 mm is formed in the pipe axis direction between the insertion surfaces.
  • the API standard buttress screw has a flank angle of 3 ° on the load surface, and the load surface is inclined at a regular angle. For this reason, when a very high tensile load is applied, there is a risk that a phenomenon that the screw is completely pulled out, that is, a so-called jump-out occurs.
  • the API-standard buttress screw is basically designed so that a screw gap is formed only between the insertion surfaces and a narrow screw gap is formed in a state where the fastening is completed. For this reason, during fastening, the applied lubricant is sealed in the screw gap and temporarily becomes very high pressure, and the torque required for screwing may become excessively high or unstable.
  • FIG. 1 is a longitudinal sectional view showing an example of a modified buttress screw in a conventional special threaded joint.
  • the direction in which the pin 10 is screwed into the box 20 is indicated by a white arrow.
  • the pin 10 is provided with a male screw part 11, and the box 20 is provided with a female screw part 21 into which the male screw part 11 of the pin 10 is screwed.
  • the male screw portion 11 includes a flat screw thread top surface 12, a flat screw valley bottom surface 13, an insertion flank surface 14, and a load flank surface 15 opposite to the insertion flank surface.
  • the female screw portion 21 includes a flat screw thread top surface 22 facing the screw thread bottom surface 13 of the male screw portion 11, a flat screw thread bottom surface 23 facing the screw thread top surface 12 of the male screw portion 11, and an insertion flank surface of the male screw portion 11. 14 and a load flank surface 25 facing the load flank surface 15 of the male screw portion 11.
  • the pin 10 and the box 20 each have a shoulder portion (torque shoulder).
  • the shoulder portions are pressed against each other as the pin 10 is screwed, and serve as a stopper that restricts the screwing of the pin 10. Further, the shoulder portion plays a role of applying a so-called screw tightening axial force to the load flank surfaces 15 and 25 in a state where the fastening is completed.
  • the screw shown in FIG. 1 has a flank angle ⁇ of the load surfaces 15 and 25 of ⁇ 3 °, and a distance of about 0.2 mm between the screw thread top surface 12 of the male screw part 11 and the screw thread bottom face 23 of the female screw part 21. This is almost the same as an API standard buttress screw except that a screw gap is formed.
  • a work place and a fence are provided directly above the well well, and a box having an internal thread portion is fixed to the platform, for example.
  • a steel pipe which is a pin having a male thread portion, is lifted directly above a box fixed to the platform, and screwed while being lowered.
  • ⁇ Grease compound which is a lubricant, is applied to the screw portion of the pin and box, and the pin and box are fastened using a special fastening machine called a power tong.
  • the screw part is designed so that the bottom face of the male thread part and the top face of the female thread part interfere with each other as the screwing progresses, and the tightening torque gradually increases as the screwing progresses. Furthermore, when the shoulder portions abut each other, the rotational resistance of screwing increases rapidly, and the tightening torque increases rapidly. The phenomenon that the shoulder portion strikes is called shouldering, and the tightening torque at the moment of shouldering is called shouldering torque.
  • the screw fastening operation at the oil well site is performed while appropriately setting the target torque of the tightening torque between the shouldering torque and the overtorque and monitoring the tightening torque.
  • Patent Document 1 discloses a threaded joint in which a thin lubricating film without stickiness is formed on a thread portion of a pin and a box.
  • This lubricating coating is obtained by dispersing solid lubricant particles in a solid matrix that exhibits rheological behavior (flow characteristics) of a plastic type or a viscoplastic type.
  • the matrix preferably has a melting point in the range of 80 to 320 ° C., and is formed into a film by spray application in a molten state (hot melt spray method), thermal spraying using a powder, or spray application of an aqueous emulsion.
  • a coating composition used in the hot melt process contains polyethylene as a thermoplastic polymer, contains wax (eg, carnauba wax) and metal soap (eg, zinc stearate) as a lubricating component, and corrodes. Contains calcium sulfonate as an inhibitor.
  • Patent Document 2 discloses a threaded joint for steel pipes in which different solid coatings are formed on the screw portions of the pin and the box.
  • the film of the pin is a solid anticorrosive film mainly composed of an ultraviolet curable resin, and is preferably transparent.
  • the coating of the box is preferably made of a composition containing a thermoplastic polymer, wax, metal soap, a corrosion inhibitor, a water-insoluble liquid resin and a solid lubricant, and is a plastic mold or viscoplastic formed by a hot melt method. It is a solid lubricating coating showing the rheological behavior of the mold.
  • Both of these solid lubricating coatings and solid anticorrosion coatings are plastic or viscoplastic semi-solid with fluidity when applied, and threaded joints using a brush, spray, etc. so that the film thickness is as uniform as possible.
  • the applied lubricant is subjected to a curing process (cooling, ultraviolet irradiation, etc.) according to the characteristics of each film to be solidified to form a solid film.
  • the above-mentioned coating is actually a non-uniform film thickness distribution from application to the threaded portion until solidification, as has become clear from the results of investigations and observations by the inventors described later. Occurs. Specifically, the film thickness is reduced at the corners of the thread and the film thickness is increased at the corners of the bottom of the thread valley. In addition, in a buttress screw having a flat thread crest surface and a flat thread trough bottom surface, the film thickness at the center of the thread crest top surface is particularly thick. Not thick. The film thickness distribution of such a film is maintained even after solidification, and the film thickness of the solid film becomes non-uniform.
  • the solid coating is too thin, the bare metal of the screw part is exposed and seized by sliding during the fastening of the screw joint. That is, a solid coating that is too thin does not serve as a lubricating coating. For this reason, the solid coating requires a certain film thickness. However, if the lubricant is applied so as to ensure a sufficient film thickness at the screw thread corner portion where the film thickness is the thinnest, the film thickness becomes excessively thick in other regions, particularly in the central portion of the thread top surface. The thick solid coating after solidification is easy to peel off, and the adhesion and durability of the coating are low.
  • the tightening torque-turn diagram is a graph showing the torque reaction force in the tightening process with the vertical axis representing the tightening torque and the horizontal axis representing the number of tightening turns. This diagram is also referred to as a torque chart.
  • Patent Documents 1 and 2 do not mention any adverse effects due to the non-uniform film thickness of the solid film, and do not pay attention to the uniformization of the solid film.
  • Patent Documents 1 and 2 there are many techniques related to solid coatings for threaded joints for steel pipes. In any of them, methods for solving the above-mentioned problems caused by uneven film thickness have been completely studied. Not.
  • An object of the present invention is to provide a threaded joint for steel pipes that can prevent seizure and occurrence of abnormal fastening torque during fastening even if a solid coating is provided on the threaded portion.
  • a threaded joint for steel pipes includes a tubular pin having a male threaded portion of a taper screw and a tubular box having a female threaded portion of a taper screw, and the male threaded portion is connected to the female threaded portion. It is a threaded joint for steel pipes that is screwed to fasten the pin and the box.
  • the threaded joint is On the surface of at least one of the male screw part and the female screw part, it is provided with a solid coating formed by applying a curing process after application, having fluidity at the time of application, With the fastening completed, it will have one of the following configurations:
  • the screw thread top surface of the male screw portion and the screw thread bottom surface of the female screw portion facing each other are flat, and a gap is formed between the flat surfaces;
  • the screw thread bottom surface of the male screw portion and the screw thread top surface of the female screw portion facing each other are flat, and a gap is formed between the flat surfaces; or
  • the screw thread top surface of the male screw part and the female screw part of the male screw part and the female screw part of the male screw part facing each other are formed such that the screw thread top surface of the male screw part and the screw thread bottom face of the female screw part are flat,
  • the top surface of the screw thread is flat, and a gap is formed between the flat surfaces.
  • One or a plurality of spiral grooves corresponding to the lead angle of the screw are provided in advance on the flat surface on which the solid coating is formed among the flat surfaces on which the gap is formed.
  • the maximum depth of the groove is 30 ⁇ m or more and 1/5 or less of the screw height.
  • the above threaded joint can be configured as follows.
  • the male screw portion and the female screw portion each include a screw thread top surface, a screw valley bottom surface, an insertion flank surface, and a load flank surface.
  • the above threaded joint can be configured as follows.
  • the solid coating is formed on the male screw part, and the gap is formed between flat surfaces of the screw thread top surface of the male screw part and the screw valley bottom surface of the female screw part,
  • the groove is provided on the top surface of the screw thread of the male screw portion.
  • the solid coating is formed on the male screw portion, and the gap is formed between flat surfaces of the thread valley bottom surface of the male screw portion and the screw thread top surface of the female screw portion,
  • the groove is provided on the bottom surface of the thread root of the male thread portion.
  • the solid coating is formed on the male screw part, and the gap is formed between flat surfaces of the screw thread top surface of the male screw part and the screw thread bottom surface of the female screw part, and the screw valley bottom surface of the male screw part. It is formed between flat surfaces of the female thread portion and the top surface of the screw thread, The groove is provided on the top surface of the screw thread and the bottom surface of the thread valley of the male screw portion.
  • the solid coating is formed on the female screw portion, and the gap is formed between flat surfaces of the screw thread top surface of the male screw portion and the screw valley bottom surface of the female screw portion,
  • the groove is provided on the bottom surface of the thread root of the female thread portion.
  • the solid coating is formed on the female screw portion, and the gap is formed between flat surfaces of the thread valley bottom surface of the male screw portion and the screw thread top surface of the female screw portion,
  • the groove is provided on the top surface of the screw thread of the female screw portion.
  • the solid coating is formed on the female screw portion, and the gap is between flat surfaces of the screw thread top surface of the male screw portion and the screw thread bottom surface of the female screw portion, and the screw valley bottom surface of the male screw portion. It is formed between flat surfaces of the female thread portion and the top surface of the screw thread, The groove is provided on the bottom surface of the screw thread and the top surface of the screw thread of the female screw portion.
  • the above threaded joint can be configured as follows.
  • the insertion flank surface of the male screw portion and the insertion flank surface of the female screw portion facing each other in a state where the fastening is completed do not contact each other.
  • the cross-sectional shape of the groove is a trapezoidal shape, a rectangular shape, a triangular shape, an arc shape, or an elliptical arc shape.
  • the above threaded joint can be configured as follows.
  • the R dimension of the round chamfered corners at both ends in the cross section of the groove is smaller than the R dimension of the round chamfered corners of the thread crest surface and the load flank surface.
  • the above threaded joint is preferably configured as follows.
  • the total width of the groove is 1/3 or more of the entire width of the flat surface.
  • the above threaded joint can be configured as follows.
  • the pin and the box each have one or two shoulder portions that come into contact with each other during the screwing process.
  • each of the pin and the box includes one or two seal portions that come into contact with each other in a state where the fastening is completed.
  • the male screw portion of the pin and the female screw portion of the box are respectively a two-stage screw or a three-stage screw formed by being divided into two or three along the tube axis direction.
  • the threaded joint for steel pipes of the present invention has the effect of preventing seizure and occurrence of abnormal fastening torque during fastening even if the threaded portion is provided with a solid coating.
  • FIG. 1 is a longitudinal sectional view showing an example of a modified buttress screw employed in a thread portion in a conventional special threaded joint.
  • FIG. 2 is a longitudinal sectional view showing a state in which a coating is formed on the modified buttress screw of the male screw portion of the pin.
  • FIG. 3 is a longitudinal sectional view showing a state in which a coating is formed on the male thread portion of the pin in the threaded joint according to the first embodiment of the present invention.
  • FIG. 4 is a longitudinal sectional view showing a state in which a coating is formed on the male thread portion of the pin in the threaded joint according to the second embodiment of the present invention.
  • FIG. 1 is a longitudinal sectional view showing an example of a modified buttress screw employed in a thread portion in a conventional special threaded joint.
  • FIG. 2 is a longitudinal sectional view showing a state in which a coating is formed on the modified buttress screw of the male screw portion of the pin.
  • FIG. 3 is a longitudinal section
  • FIG. 5 is a longitudinal cross-sectional view which shows the condition where the film was formed in the external thread part of a pin in the threaded joint which is 3rd Embodiment of this invention.
  • FIG. 6 is a longitudinal cross-sectional view which shows the condition where the film was formed in the external thread part of a pin in the threaded joint which is 4th Embodiment of this invention.
  • FIG. 7 is a longitudinal cross-sectional view which shows the condition where the film was formed in the internal thread part of the box in the threaded joint which is 5th Embodiment of this invention.
  • FIG. 8 is a longitudinal cross-sectional view which shows the condition where the film was formed in the internal thread part of the box in the threaded joint which is 6th Embodiment of this invention.
  • FIG. 9 is a longitudinal cross-sectional view which shows the condition where the film was formed in the external thread part of a pin in the threaded joint which is 7th Embodiment of this invention.
  • FIG. 10 is a longitudinal sectional view showing an example of a thread portion in a threaded joint according to an eighth embodiment of the present invention that employs a high torque screw.
  • FIG. 11 is a longitudinal sectional view showing a state in which a coating is formed on a male thread portion of a pin in a conventional threaded joint employing a high torque screw.
  • FIG. 12 is a longitudinal sectional view showing a situation in which a coating is formed on the male thread portion of the pin in the threaded joint which is the eighth embodiment of the present invention employing a high torque screw.
  • FIG. 13 is a longitudinal sectional view showing an example of the threaded joint of the present invention.
  • FIG. 14 is a longitudinal sectional view showing an example of the threaded joint of the present invention.
  • the inventors first conducted a detailed investigation and observation by paying attention to the coating before solidification applied to the screw portion in order to form a solid coating, and a mechanism in which a non-uniform film thickness distribution of the coating occurs. And the tendency of its film thickness distribution was investigated.
  • FIG. 2 is a longitudinal sectional view showing a state in which a coating is formed on the surface of a modified buttress screw employed in a conventional special screw joint.
  • the male screw portion 11 of the pin 10 shown in FIG. 2 is employed in the conventional screw joint shown in FIG. 1, and forms a pair with the female screw portion of the box.
  • a gap is formed between the surfaces of the screw thread top surface 12 of the male screw portion 11 and the screw valley bottom surface of the female screw portion, and the surface between the insertion surface 14 of the male screw portion 11 and the insertion surface of the female screw portion.
  • a gap is formed between them.
  • the thread valley bottom surface 13 of the male screw portion 11 contacts (interferences) with the screw thread top surface of the female screw portion.
  • the surfaces of the load surface 15 of the male screw portion 11 and the load surface of the female screw portion are brought into contact with each other by a tightening axial force.
  • the screw thread top surface 12 and the screw thread bottom surface 13 are flat surfaces.
  • the above-described fluid film is applied to the male thread portion 11 of the pin 10, and the solid film 30 is formed by applying a curing process to the film.
  • the portion where the thickness of the solid coating 30 is the thinnest is the corner portion of the thread, that is, the round chamfered corner portion 12 a that connects the thread top surface 12 and the load surface 15, and the screw top surface 12. It is a round chamfered corner portion 12 b that connects the insertion surface 14.
  • the portions where the thickness of the solid coating 30 is the thickest are the corners of the screw valley bottom, that is, the round chamfered corners 13 a that connect the thread valley bottom surface 13 and the load surface 15, and the circles that connect the screw valley bottom surface 13 and the insertion surface 14.
  • a chamfered corner 13b The second thinnest part of the solid coating 30 is the load surface 15 and the insertion surface 14.
  • the second thickest portion of the solid coating 30 is the central portion of the screw top surface 12.
  • the film thickness of the central portion of the thread valley bottom surface 13 is thicker than the central portion of the screw thread top surface 12.
  • Such a non-uniform film thickness distribution of the solid coating occurs for the following reasons. Since the film before solidification is in a fluid semi-solid state, it flows due to surface tension. For a semi-solid film, the surface tension acts in a direction that reduces the free energy at the interface of the film exposed to the atmosphere. In other words, the surface tension acts in the direction of reducing the surface area of the free surface of the coating as much as possible. On the other hand, the surface of the screw part to which the coating is applied is an uneven surface called a screw.
  • the surface portion having a curvature such as the corner of the thread and the corner of the thread root By the action of the surface tension, it flows so that the surface area of the coating becomes small before solidifying. Also, gravity acts to some extent on the semi-solid coating applied to the threaded portion. Due to these influences, a non-uniform film thickness distribution of the coating occurs.
  • the final film thickness distribution is determined by the balance between the above surface tension and gravity, and the fluidity (viscosity) and wettability of the semi-solid film. Further, when the coating is applied while rotating the pin, centrifugal force or the like also affects the film thickness distribution.
  • Both the screw thread top surface and the screw thread bottom surface are flat surfaces, but the film extruded from the corners at both ends of the screw thread accumulates at the center of the screw thread top surface, so that the film thickness is increased.
  • the film is sucked into the corners at both ends of the bottom face of the screw valley, so that the film thickness cannot be as thick as the central part of the top face of the screw thread. Such a situation is the same for the female screw portion of the box.
  • the film thickness distribution varies greatly depending on the properties of the applied coating in a semi-solid state. For example, when a coating having properties close to those disclosed in Patent Document 1 is employed, in order to avoid seizure or the like during fastening of the threaded joint, the corner of the thread that tends to be the thinnest is formed. In order to secure a film thickness of about 10 to 20 ⁇ m at a minimum, the film thickness at the center of the top surface of the screw thread exceeds 100 ⁇ m.
  • the inventors of the present invention tried to reduce the non-uniform film thickness distribution of the film by adjusting the properties of the film that affect the fluidity and wettability of the semi-solid film. However, only by adjusting the film properties, the non-uniform film thickness distribution cannot be effectively reduced, leading to the conclusion that there is a limit.
  • the present inventors have focused on the fact that the main factor causing the non-uniform film thickness distribution is the surface tension based on the generation mechanism of the film thickness distribution described above, and obtained the following knowledge.
  • the surface tension causes a differential pressure at the interface that is proportional to the curvature of the interface (inversely proportional to the radius of curvature).
  • This differential pressure becomes a driving force for causing the coating to flow.
  • the semi-solid film flows until the driving force and the object force such as gravity are balanced, resulting in a non-uniform film thickness distribution.
  • the driving force that causes the non-uniform film thickness distribution of the coating strongly depends on the curvature of the interface, that is, the shape of the surface on which the coating is applied. From this, it can be said that the film thickness distribution of the solid coating can be controlled by making the surface on which the coating is applied an appropriate shape.
  • a solid coating 30 is formed on the male screw portion 11 of the pin 10 and the surfaces of the screw thread top surface 12 and the screw thread bottom surface of the female screw portion are flat with each other in a state where the fastening is completed.
  • a gap is formed.
  • the semi-solid film on the top surface 12 of the screw thread spreads and becomes thinner.
  • the groove is a spiral groove that matches the lead angle of the screw of the male screw portion 11.
  • the film thickness of the solid coating tends to increase. If this film thickness is too thick, it adversely affects not only the adhesion and durability of the film but also the tightening torque during screw joint fastening. For this reason, it is extremely useful to reduce the thickness of the solid coating on the thread top surface 12.
  • a solid coating is formed on the male threaded part of the pin, but a case where a gap is formed between the flat thread valley bottom face and the thread top face of the female threaded part when fastening is completed is considered.
  • the film thickness of the solid coating on the bottom surface of the thread valley is too large, not only the adhesion and durability of the coating are adversely affected, but also the tightening torque at the time of fastening the screw joint. If the bottom surface of the screw valley is a flat surface, the film thickness of the solid coating here tends to be thicker than the top surface of the screw thread as described above.
  • the groove is also a spiral groove that matches the lead angle of the screw of the male screw portion 11.
  • the object on which the solid coating is formed is the male screw part, and the object in which the gap is formed in the state where the fastening is completed is between the surfaces of the screw thread top surface of the male screw part and the thread valley bottom surface of the female screw part.
  • the threaded joint in this case is a special threaded joint that employs a modified buttress screw.
  • the cross-sectional area of the dangerous cross section of the box is a cross-sectional area at the bottom of the thread valley of the meshing end of the screw.
  • the magnitude of the tensile load that the threaded joint can withstand is determined by the size of its cross-sectional area.
  • the present inventors conducted extensive studies. As a result, depending on the semi-solid state of the coating film to be applied, the groove depth in the case of providing a groove on the screw thread top surface of the male screw portion does not need to be larger than at least the gap on the screw thread top surface. I found. If the depth of the groove formed on the top surface of the screw thread is about several to 20 times the minimum film thickness required for the film, the film in the semi-solid state on the top surface of the screw thread is thin due to surface tension. It spreads and becomes thinner. More specifically, the depth of the groove formed on the top surface of the screw thread may be 30 ⁇ m or more. On the other hand, the upper limit of the depth of the groove may be 1/5 or less of the screw height. This is because the rigidity of the thread itself can be secured. In addition, the film thickness around the groove does not become too thin, and a decrease in seizure resistance can be suppressed. Further, it is possible to prevent waste of the coating.
  • the present inventors have made various studies on the cross-sectional shape of the groove when the groove is provided on the top surface of the screw thread of the male screw portion.
  • the cross-sectional shape of the groove is a trapezoidal shape, a rectangular shape, a triangular shape, an arc shape, an elliptical arc shape, or a combination of these, a certain effect can be obtained on the thinning of the coating on the top surface of the screw thread. It was found that it can be obtained.
  • round chamfered corners are formed at both ends in the cross section of the groove, and the R dimension of the round chamfered corners is small.
  • the surface tension acts on the semi-solid film on the top surface of the screw thread so as to reduce the film thickness at the round chamfered corners at both ends in the cross section of the groove.
  • the large surface tension draws a film around the round chamfered corner, particularly a film at the center of the thread crest surface, and acts in the direction of reducing the film thickness.
  • the thickness of the coating on the top surface of the screw thread can be uniformly reduced.
  • the R dimension of the round chamfered corners at both ends in the cross section of the groove is set to be the two corners of the thread (round chamfering between the top surface of the thread and the load surface) in order to effectively suppress the remarkable thinning of the coating at the threaded corners. It should be smaller than the R dimension of the corners, round chamfered corners of the thread crest surface and the insertion surface.
  • the R dimension of the round chamfered corner part between the screw thread top surface and the load surface is smaller in both corners of the thread, so that the R dimension of the round chamfered corner part at both ends of the groove should be smaller than this.
  • the R dimension of the round chamfered corners at both ends of the groove is substantially the same as the depth of the groove.
  • the present inventors have made various studies on the width of the groove when the groove is provided on the top surface of the screw thread of the male screw portion and the number of grooves.
  • the number of grooves is one, if the groove width is 1/3 or more of the total width of the thread top surface on the thread top surface, an effect is obtained for thinning the coating on the thread top surface.
  • the width of the groove is 2/3 or less of the total width of the top surface of the thread. This is because there is no serious rigidity reduction of the thread.
  • the total width of the plurality of grooves may be 1/3 or more of the total width of the thread top surface, and more preferably 2/3 or less.
  • the present inventors examined whether the same effect can be realized when the object on which the solid film is formed is the female screw portion.
  • a special threaded joint employing a modified buttress screw will be examined.
  • the thread bottom surface of the male screw portion and the screw thread top surface of the female screw portion are in contact (interference), and the load surfaces are brought into contact with each other by the tightening axial force.
  • a clearance gap is formed between the surfaces of the screw thread top surface of the external thread portion and the thread valley bottom surface of the internal thread portion, and between the mutual insertion surfaces.
  • the central portion of the thread top surface of the female thread portion where the film thickness becomes thicker slides in contact (interference) with the bottom surface of the male thread portion in the latter half of the fastening process. Therefore, even if there is some peeling, the solid coating on the screw thread top surface of the female screw part stays between the screw thread top surface of the female screw part and the thread valley bottom surface of the male screw part, and exhibits a lubricating effect. To do.
  • During fastening when the insertion surfaces are in contact with each other, a gap is formed between the load surfaces. Therefore, a part of the surplus solid coating peeled off from the top surface of the thread of the female screw part is between the load surfaces. It accumulates in the gap between the insertion surfaces. For this reason, the solid coating does not necessarily fill up the gap between the bottom surface of the threaded portion of the female screw portion and the top surface of the screw thread of the male screw portion.
  • the film thickness of the coating is relatively thick on the bottom surface of the thread root of the female thread portion, although not as much as the top surface of the thread.
  • a groove similar to the above groove is provided in advance on the bottom surface of the thread root of the female thread portion, the film thickness of the solid coating on the bottom surface of the thread valley can be reduced by the mechanism described above.
  • Conditions such as the shape, width, and depth of the groove are the same as those of the groove.
  • the object to be contacted is the thread valley bottom surface of the male screw part and the screw thread top surface of the female thread part, and the object in which a gap is formed is It is between the surfaces of the female thread portion and the bottom surface of the thread valley.
  • the object to be contacted is the thread top surface of the male thread part and the thread valley bottom surface of the female thread part, and the object in which the gap is formed is that of the male thread part.
  • a gap is formed.
  • the grooves are formed on the surfaces where the gaps are formed in the state where the fastening is completed, and the grooves are formed in advance.
  • solid coatings eg, solid lubricating coatings, solid anticorrosion coatings
  • solid coatings are formed on the surfaces where gaps are formed in a state where fastening is completed, and have fluidity at the time of coating and are cured after coating. If the groove is provided in advance on the surface provided with a coating or the like, excessive thickening of the solid coating can be suppressed. As a result, the solid coating is excellent in adhesion and durability, and can prevent seizure and the occurrence of humping, plateau, high shouldering and the like when fastening the threaded joint.
  • the threaded joint for steel pipes of the present invention has been completed based on the above knowledge. Below, preferable embodiment of the threaded joint for steel pipes of this invention is described.
  • FIG. 3 is a longitudinal sectional view showing a state in which a coating is formed on the male thread portion of the pin in the threaded joint according to the first embodiment of the present invention.
  • the threaded joint shown in FIG. 3 is a special threaded joint of a taper screw composed of a modified buttressed screw based on an API-standard buttressed screw, as with the special threaded joint shown in FIG. It is comprised from the pin 10 and the box which has an internal thread part which makes a pair with this.
  • the direction in which the pin 10 is screwed into the box is indicated by a white arrow.
  • the male screw portion 11 of the pin 10 includes a flat screw thread top surface 12, a flat screw valley bottom surface 13, an insertion surface 14 that precedes by screwing, and a load surface 15 opposite to the insertion surface.
  • the female screw portion includes a flat screw thread top surface facing the screw thread bottom surface 13 of the male screw portion, a flat screw thread bottom surface facing the screw thread top surface 12 of the male screw portion 11, and an insertion surface 14 of the male screw portion 11. And a load surface facing the load surface 15 of the male screw portion 11.
  • the male threaded portion 11 of the pin 10 includes a round chamfered corner portion 12 a that connects the screw thread top surface 12 and the load surface 15, and a round chamfered corner portion 12 b that connects the screw top surface 12 and the insertion surface 14.
  • the male screw portion 11 includes a round chamfered corner portion 13 a that connects the thread valley bottom surface 13 and the load surface 15, and a round chamfered corner portion 13 b that connects the screw valley bottom surface 13 and the insertion surface 14.
  • the female screw portion includes round chamfered corner portions at both ends of the screw valley bottom corresponding to the round chamfered corner portions 12a and 12b of the male screw portion 11, respectively.
  • the female screw portion includes round chamfered corner portions at both ends of the thread corresponding to the respective round chamfered corner portions 13 a and 13 b of the male screw portion 11.
  • a gap is formed between the surfaces of the screw thread top surface 12 of the male screw portion 11 and the screw valley bottom surface of the female screw portion, and the surface between the insertion surface 14 of the male screw portion 11 and the insertion surface of the female screw portion. A gap is formed between them.
  • the thread valley bottom surface 13 of the male screw portion 11 contacts (interferences) with the screw thread top surface of the female screw portion.
  • the surfaces of the load surface 15 of the male screw portion 11 and the load surface of the female screw portion are brought into contact with each other by a tightening axial force.
  • each of the pin 10 and the box includes a shoulder portion that applies a screw tightening axial force to the load surface.
  • a shoulder portion that applies a screw tightening axial force to the load surface.
  • a configuration in which shoulder portions are provided at the tips of the pair of pins 10 may be used (see FIG. 13 described later). In this case, the shoulder portions of the pins 10 abut each other, and a tightening axial force is applied.
  • a shallow groove 40 is provided in advance in the central portion of the screw thread top surface 12 of the male screw portion 11 where a gap is formed when the fastening is completed.
  • This groove 40 is a spiral and single groove corresponding to the lead angle of the screw of the male screw portion 11.
  • the cross-sectional shape of the groove 40 in the first embodiment is trapezoidal. Both ends of the groove 40 are connected to the flat surface of the thread crest surface 12 by round chamfered corner portions 41 having a small R dimension. Since the cross-sectional shape of the groove 40 is trapezoidal, the bottom surface of the groove 40 is a flat surface.
  • the solid coating 30 is formed on the male thread portion 11 of the pin 10.
  • the solid coating 30 has fluidity at the time of application, and is cured by being subjected to a curing process after application and solidified.
  • the solid coating 30 is a plastic-type or viscoplastic-type semi-solid with fluidity at the time of application, and is applied to the threaded joint using a brush, spray, or the like.
  • the applied lubricant is subjected to a curing process (cooling, ultraviolet irradiation, etc.) according to the characteristics of the coating and solidifies.
  • the solid coating includes all the ones that can flow due to surface tension, gravity, and the like from application to solidification, and the purpose (lubrication purpose, anticorrosion purpose, aesthetic purpose, etc.) is not particularly limited. Conversely, solid coatings that do not flow until solidification, such as electrodeposition coatings and pressure-bonding coatings, are not included.
  • the solid film 30 including the groove 40 is formed on the screw thread top surface 12.
  • the semi-solid coating applied to the top surface 12 of the screw thread spreads and becomes thinner in the direction of decreasing film thickness. This is because the groove 40 is present on the screw top surface 12 and the round chamfered corner portions 41 having small R dimensions are present at both ends of the groove 40. This is due to the fact that the surface tension acts so as to reduce the thickness.
  • the depth of the groove 40 is deeper than the minimum film thickness required for the solid coating 30 to exhibit its performance, and is larger than the gap between the surfaces of the screw thread top surface 12 and the screw thread bottom surface of the female screw portion facing this. Shallowness is preferred. This is because if the depth of the groove 40 is too shallow, the effect of reducing the thickness of the coating 30 on the top surface 12 of the screw thread 12 is not sufficiently exhibited. On the other hand, if the depth of the groove 40 is too deep, the rigidity of the thread itself is lowered, leading to a decrease in strength performance of the threaded joint.
  • the depth of the groove 40 is deeper than three times the minimum film thickness required for the solid coating 30 and shallower than 1 ⁇ 2 of the gap at the thread top surface 12.
  • the minimum film thickness of the solid coating 30 is 10 ⁇ m and the gap at the screw thread top surface 12 is 200 ⁇ m
  • the depth of the groove 40 is 30 ⁇ m or more and 100 ⁇ m or less.
  • the depth of the groove 40 is preferably 30 ⁇ m or more.
  • the depth of the groove 40 is preferably 1/5 or less of the screw height from the viewpoint of ensuring the rigidity of the thread itself and ensuring the film thickness around the groove.
  • the width of the groove 40 is preferably 1/3 or more of the entire width of the screw thread top surface 12. This is because if the width of the groove 40 is too narrow, the effect of reducing the thickness of the coating 30 on the top surface 12 of the screw thread 12 is not sufficiently exhibited.
  • the width of the groove 40 is preferably 2/3 or less of the entire width of the screw thread top surface 12. This is because if the width of the groove 40 is too wide, a serious reduction in rigidity of the screw thread occurs.
  • FIG. 4 is a longitudinal sectional view showing a state in which a coating is formed on the male thread portion of the pin in the threaded joint according to the second embodiment of the present invention.
  • the threaded joint shown in FIG. 4 is a modification of the threaded joint of the first embodiment shown in FIG. 3, and a description overlapping that of the first embodiment will be omitted as appropriate. The same applies to the third to eighth embodiments described later.
  • the cross-sectional shape of the groove 40 formed in the screw thread top surface 12 of the male thread portion 11 is triangular.
  • the depth of the groove 40 is the maximum depth at the deepest bottom position.
  • FIG. 5 is a longitudinal cross-sectional view which shows the condition where the film was formed in the external thread part of a pin in the threaded joint which is 3rd Embodiment of this invention.
  • the cross-sectional shape of the groove 40 formed in the screw thread top surface 12 of the male thread portion 11 is an arc shape. Since the cross-sectional shape of the groove 40 is an arc shape, the bottom surface of the groove 40 is a curved surface. In this case, the depth of the groove 40 is the maximum depth at the deepest bottom position, as in the second embodiment.
  • FIG. 6 is a longitudinal cross-sectional view which shows the condition where the film was formed in the external thread part of a pin in the threaded joint which is 4th Embodiment of this invention.
  • the cross-sectional shape of the groove 40 formed on the screw thread top surface 12 of the male screw portion 11 is trapezoidal as in the first embodiment.
  • the number of 40 items is 2.
  • the width of the groove 40 with respect to the entire width of the thread top surface 12 is the sum of the widths of the two grooves 40.
  • the number of grooves 40 can be three or more.
  • the width of the groove 40 with respect to the entire width of the screw thread top surface 12 is the sum of the widths of the grooves 40 of the number of formed stripes.
  • the number of grooves 40 is preferably at most three.
  • the cross-sectional shape of the groove 40 in the fourth embodiment can be deformed into a triangular shape or an arc shape as in the second and third embodiments.
  • FIG. 7 is a longitudinal cross-sectional view which shows the condition where the film was formed in the internal thread part of the box in the threaded joint which is 5th Embodiment of this invention.
  • a solid coating 30 is formed on the female thread portion 21 of the box 20 of the pins and the box 20.
  • a trapezoidal shallow groove 40 is provided in advance in the central portion of the thread valley bottom surface 23 of the female screw portion 21 where a gap is formed in a state where the fastening is completed, as in the first embodiment.
  • the solid coating 30 is formed including the groove 40 on the bottom surface 23 of the screw valley, but the semi-solid state coating applied to the bottom surface 23 of the screw valley before the solid formation of the solid coating 30 is Due to the effect of surface tension similar to that of the first embodiment, the film thickness spreads and becomes thinner.
  • the cross-sectional shape of the groove 40 in the fifth embodiment can be deformed into a triangular shape or an arc shape as in the second and third embodiments. Further, the number of grooves 40 in the fifth embodiment may be a plurality of lines, as in the fourth embodiment.
  • FIG. 8 is a longitudinal cross-sectional view which shows the condition where the film was formed in the internal thread part of the box in the threaded joint which is 6th Embodiment of this invention.
  • the objects to be contacted are the thread crest surface of the male thread portion and the thread valley bottom surface 23 of the female thread portion 21.
  • the object for which the gap is formed is between the surfaces of the thread bottom surface of the male screw portion and the screw thread top surface 22 of the female screw portion 21.
  • a solid coating 30 is formed on the female thread portion 21 of the box 20 of the pins and the box 20.
  • a trapezoidal shallow groove 40 is provided in advance in the central portion of the screw thread top surface 22 of the female screw portion 21 where a gap is formed in a state where the fastening is completed, as in the first embodiment.
  • the solid coating 30 is formed including the groove 40 on the thread crest surface 22. Prior to solidification of the solid coating 30, the semi-solid coating applied to the top surface 22 of the screw thread is spread and thinned in the direction of decreasing film thickness due to the surface tension similar to that of the first embodiment. .
  • FIG. 9 is a longitudinal cross-sectional view which shows the condition where the film was formed in the external thread part of a pin in the threaded joint which is 7th Embodiment of this invention.
  • the threaded joint of the seventh embodiment is obtained by modifying the threaded joint of the sixth embodiment shown in FIG. 8 from the same viewpoint as that of the fifth embodiment shown in FIG. That is, as shown in FIG. 9, in the threaded joint according to the seventh embodiment, the solid coating 30 is formed on the pin 10 and the male thread portion 11 of the pin 10 in the box.
  • a trapezoidal shallow groove 40 is provided in advance in the central portion of the thread valley bottom surface 13 of the male screw portion 11 where a gap is formed in a state where the fastening is completed, as in the fifth embodiment.
  • FIG. 10 is a longitudinal sectional view showing an example of a thread portion in a threaded joint according to an eighth embodiment of the present invention that employs a high torque screw.
  • the threaded joint shown in FIG. 10 is a threaded joint that employs a so-called high torque screw that does not have a shoulder portion, and that the threaded portion locks as the pin 10 and the box 20 are screwed together to express high torque performance.
  • the thread width of the male thread portion becomes narrower in the direction in which the right screw advances along the string winding of the screw, and the thread groove width of the opposite female thread portion also becomes smaller than that of the right screw along the string winding of the screw.
  • the taper narrows in the direction of travel.
  • the high torque screw has a flank surface that prevents the thread from being discharged radially from the thread groove when fastening is complete.
  • the most common high torque screw comprises a dovetail thread having negative flank angles on both the load surfaces 15, 25 and the insertion surfaces 14, 24. In a high torque screw, even if there is no shoulder portion, the screw thread itself fits into the thread groove (this is called rocking), and the fastening is completed.
  • Threaded joints that use high torque screws have various aspects.
  • a gap is formed between the surfaces of the screw thread top surface 12 of the flat male screw portion 11 and the screw thread bottom surface 23 of the female screw portion 21 in a state where the fastening is completed.
  • a gap is formed between the surfaces of the thread valley bottom surface 13 of the male screw portion 11 and the screw thread top surface 22 of the female screw portion 21 which are flat with each other.
  • a gap is formed on both of these surfaces.
  • a solid film is formed on one or both of the male screw portion 11 and the female screw portion 21.
  • FIG. 10 illustrates an example in which a gap is formed between the surfaces of the screw thread top surface 12 of the flat male screw portion 11 and the screw thread bottom surface 23 of the female screw portion 21 in a state where the fastening is completed.
  • FIG. 11 is a longitudinal sectional view showing a state in which a coating is formed on the male thread portion of a pin in a conventional threaded joint employing a high torque screw. As shown in FIG. 11, even in the case of a conventional threaded joint employing a high torque screw, a non-uniform film thickness distribution of the solid coating 30 occurs.
  • FIG. 12 is a longitudinal sectional view showing a state in which a coating is formed on the male thread portion of the pin in the threaded joint according to the eighth embodiment of the present invention employing a high torque screw.
  • a base is formed at the central portion of the thread top surface 12 of the male threaded portion 11 where a gap is formed when fastening is completed, as in the first embodiment.
  • a shallow groove 40 is provided in advance.
  • the solid coating 30 is formed including the groove 40 on the screw thread top surface 12. Prior to solidification of the solid coating 30, the semi-solid coating applied to the top surface 12 of the thread is spread and thinned in the direction of decreasing film thickness due to the surface tension similar to that of the first embodiment. .
  • the threaded joint of the eighth embodiment can be obtained by the threaded joint of the eighth embodiment.
  • the cross-sectional shape of the groove 40 in the eighth embodiment can be deformed into a triangular shape or an arc shape.
  • the number of grooves 40 in the eighth embodiment may be plural as in the fourth embodiment.
  • the installation location of the groove 40 in the eighth embodiment is as in the fifth to seventh embodiments, depending on the object on which the solid film is to be formed and the object on which the gap is to be formed when the fastening is completed. Can also be changed.
  • the cross-sectional shape of the groove 40 may be changed to, for example, a rectangular shape, an elliptical arc shape, or the like other than the trapezoidal shape, the triangular shape, or the arc shape as long as the round chamfered corner portions 41 having small R dimensions exist at both ends of the groove 40. Is possible. A combination of these cross-sectional shapes may be used.
  • the screw thread top surface 12 between the screw thread top surface 12 of the male screw part 11 and the screw thread bottom surface 23 of the female screw part 21, and the screw thread bottom surface 13 of the male screw part 11 and the screw thread top surface of the female screw part 21 can be applied to a threaded joint in which a gap is formed between the two surfaces.
  • the grooves 40 may be provided in advance on the surfaces where the gaps are formed in the state where the fastening is completed, and the surfaces on which the coating film is formed.
  • the application of the groove 40 is not limited to the type or type of threaded joint.
  • the groove 40 can be applied to a slim type, a flash type, a semi-flash type, and the like including a coupling type and an integral type.
  • the groove 40 can be applied to a threaded joint including a metal touch seal portion, and there is no limitation on the installation location, the number of installations, and the like of the seal portion.
  • the groove 40 can be applied even to a threaded joint employing a two-stage screw or a three-stage screw in which the thread portion is divided into two or three along the tube axis CL direction.
  • FIGS. 13 and 14 are longitudinal sectional views showing an example of the threaded joint of the present invention.
  • an example of a coupling type threaded joint is shown.
  • shoulder portions 16 are provided at the tips of the pair of pins 10.
  • the shoulder portions 16 of the pins 10 abut each other in the process of screwing the pins 10.
  • a screw tightening axial force is applied to the load surfaces 15 and 25 of the screw portions 11 and 21.
  • the pin 10 includes a shoulder portion 16, and the coupling that is the box 20 includes a shoulder portion 26 corresponding to the shoulder portion 16 of the pin 10.
  • the shoulder portion 16 of the pin 10 abuts against the shoulder portion 26 of the box 20 in the process of screwing the pin 10.
  • the screw joint shown in FIG. 14 includes a metal touch seal portion 17 adjacent to the shoulder portions 16 and 26.
  • the groove 40 is applied to a screw portion that does not have a flat screw thread top surface and a thread root bottom surface, such as an API standard round screw, even in a screw portion in which a gap is formed in a state where fastening is completed. do not do. Moreover, even if it is a flat surface, the groove
  • channel 40 does not need to be provided in the surface where a clearance gap is not formed between each surface in the state which fastening was completed. For example, when a solid film is formed on the surface that slides at the time of fastening, the solid film does not cause high shouldering, torque chart disturbance, etc., as described above, even if the film thickness is somewhat thick.
  • the groove 40 is provided on the insertion surface, line contact occurs at the corners at both ends of the groove 40, which may cause seizure. This is because the insertion surface slides in most of the fastening process. If the groove 40 is provided on the load surface, the tensile strength of the threaded joint may be reduced. This is because the load surface comes into contact with the tightening axial force after fastening and bears a tensile load. However, as long as these obstacles do not occur, the grooves 40 may be provided on the surfaces that come into contact with each other in a state where the fastening is completed.
  • Test No. 1 is a comparative example reflecting the conventional male screw portion shown in FIG. 2, and no groove was provided on the top surface of the screw thread.
  • Test No. The models 2 to 6 reflect the male thread portion of the first embodiment shown in FIG. 3, and have a single groove on the top surface of the thread.
  • Test No. The models 7 to 11 reflect the male thread portion of the fourth embodiment shown in FIG. 6 and are provided with two grooves on the top surface of the thread.
  • the width of the groove was a width including round chamfered corners at both ends of the groove.
  • the common conditions are as follows.
  • Thread pitch 5 TPI (5 threads per inch)
  • Thread width 2.54mm on the pitch line -Screw taper: 6.25% (taper angle: about 1.8 °)
  • Frank angle of load surface -3 °
  • Frank angle of insertion surface 10 °
  • Round chamfer R dimension at the corner of the screw thread 0.4mm on the load surface side and 0.76mm on the insertion surface side
  • -Round chamfer R dimension at the corner of the thread root 0.4mm on the load surface side and 0.2mm on the insertion surface side
  • Full width of flat surface of screw thread top surface approx. 1.4mm
  • the male thread portion was an elastic body, and the longitudinal elastic modulus was 205 GPa.
  • the film before solidification was a fluid viscoplastic fluid.
  • the viscosity coefficient of the film before solidification was 200 centistokes, its mass density was 1.0 ⁇ 10 ⁇ 6 kg / mm 3, and its surface tension was 7.3 ⁇ 10 ⁇ 5 N / mm.
  • Test No. In any of 1 to 11, the same amount of viscoplastic fluid was spray-coated to give an initial film thickness distribution assuming a state immediately after coating.
  • the initial film thickness of the thread top surface and the thread valley bottom surface was 1, and the initial film thickness at both corners of the screw thread was 0.7.
  • quasi-static analysis was performed until the surface tension and viscosity (flow) were balanced and reached an equilibrium state.
  • the film thickness of the coating was calculated at a portion of the top surface of the screw thread where no groove was provided (hereinafter referred to as “non-groove portion”). Furthermore, the film thickness of the coating was calculated at both corners of the screw thread (loading surface side and insertion surface side). Evaluation of the film thickness distribution was performed by dividing the film thickness at each of the two corners of the thread by the maximum film thickness at the non-groove portion on the top surface of the thread. This value represents a relative value when the maximum film thickness in the non-groove portion is 1. As this value is larger (closer to 1), the non-uniform film thickness distribution is suppressed, and it can be said that the durability, seizure resistance, and torque stability are excellent. Further, as an index of seizure resistance, the minimum film thickness at the non-groove portion and both corners of the thread was also evaluated. In all cases, the film thickness was the smallest at the thread corner on the load surface side. The results are shown in Table 1 below.
  • the threaded joint of the present invention includes oil wells, gas wells and the like for mining, producing or using underground resources such as oil and natural gas, hot springs or wells for geothermal power generation, and further, CO 2 in the underground. It can be effectively used to connect steel pipes used in wells and the like for containment of waste. In addition, it can be used to connect steel pipes used to transport methane hydrate, rare metals, etc. on the sea floor to the sea. In particular, the threaded joint of the present invention is effective in tightening work and reducing the burden on workers, such as in regions with severe environmental regulations for solid lubricant coatings, solid anticorrosion coatings, etc. This is useful for connecting steel pipes used in areas where the

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physics & Mathematics (AREA)
  • Non-Disconnectible Joints And Screw-Threaded Joints (AREA)
  • Earth Drilling (AREA)

Abstract

 ねじ継手は、雄ねじ部(11)の表面に、塗布時に流動性を有し塗布後に硬化処理を施されて形成される固体被膜(30)を備える。締結が完了した状態で、互いに対向する雄ねじ部(11)のねじ山頂面(12)と雌ねじ部のねじ谷底面が平坦であって当該平坦面同士の間に隙間が形成される。雄ねじ部(11)のねじ山頂面(12)に、予め、ねじのリード角と一致した螺旋状の溝(40)が設けられる。溝(40)の最大深さが30μm以上でねじ高さの1/5以下である。このねじ継手は、強度性能を損なうことなく、締結時に、焼付き及び異常な締結トルクの発生を防止できる。

Description

鋼管用ねじ継手
 本発明は、鋼管の連結に用いられるねじ継手に関する。
 油井、天然ガス井等(以下、総称して「油井」ともいう)においては、地下資源を採掘するために油井管(OCTG:Oil Country Tublar Goods)と呼ばれる鋼管が使用される。鋼管は順次連結され、その連結にねじ継手が用いられる。この鋼管用ねじ継手には、鋼管同士を連結する締結作業、及び鋼管を取り外す解体作業を迅速に行える機能が要求される。更に、鋼管用ねじ継手には、強度及び密封性能の点でも高い信頼性が要求される。
 鋼管用ねじ継手の形式は、カップリング型とインテグラル型に大別される。カップリング型の場合、連結対象の一対の管材のうち、一方の管材が鋼管であり、他方の管材がカップリングである。この場合、鋼管の両端部の外周に雄ねじ部が形成され、カップリングの両端部の内周に雌ねじ部が形成される。そして、鋼管とカップリングが連結される。インテグラル型の場合、連結対象の一対の管材がともに鋼管であり、別個のカップリングを用いない。この場合、鋼管の一端部の外周に雄ねじ部が形成され、他端部の内周に雌ねじ部が形成される。そして、一方の鋼管と他方の鋼管が連結される。
 一般に、雄ねじ部が形成された管端部の継手部分は、雌ねじ部に挿入される要素を含むことから、ピンと称される。一方、雌ねじ部が形成された管端部の継手部分は、雄ねじ部を受け入れる要素を含むことから、ボックスと称される。これらのピンとボックスは、管材の端部であるため、いずれも管状である。
 鋼管用ねじ継手としては、API(American Petroleum Institute(アメリカ石油協会))の規格で定められたバットレスねじ又はラウンドねじで構成されるねじ部を備えるねじ継手が汎用されている。
 API規格のバットレスねじについて、最も一般的な5TPI(1インチあたりのねじ山の数が5つ)のものを例に上げると、その主要な寸法・形状は次のとおりである。締結が完了した状態で接触する斜面(以下、「荷重フランク面」又は「荷重面」という)のフランク角は、継手軸(管軸)に垂直な平面に対して3°である。一方、荷重フランク面と反対側の斜面(以下、「挿入フランク面」又は「挿入面」という)のフランク角は、継手軸(管軸)に垂直な平面に対し10°である。ねじ山のねじ高さは1.575mmである。ねじ山の幅はおよそ2.5mmである。締結が完了した状態で挿入面同士は接触しない。油井管のサイズにもよるが、その挿入面同士の間には、管軸方向におよそ0.025mm~0.178mmの隙間が形成される。
 API規格のバットレスねじは、荷重面のフランク角が3°であり、荷重面が正角に傾いている。このため、非常に高い引張荷重が負荷されるとねじがすっぽ抜ける現象、いわゆるジャンプアウトが生じるリスクがある。また、API規格のバットレスねじは、基本的には、締結が完了した状態で、挿入面同士の間にのみねじ隙間が形成され、しかも狭いねじ隙間が形成されるように設計される。そのため、締結中に、塗布されている潤滑剤がねじ隙間に封入されて一時的に非常に高圧となり、ねじ込みに要するトルクが過剰に高くなる、又は不安定となる、おそれがある。
 近年のAPI規格ねじ継手よりも強度、密封性能等の向上が図られた特殊ねじ継手は、上記の不都合を補うための工夫を加えた修正バットレスねじを採用する傾向にある。例えば、ジャンプアウトを防止するために、荷重面のフランク角が負角にされる。また、潤滑剤の圧力上昇を防止するために、締結が完了した状態で、ねじのねじ山頂面とこれに対向するねじ谷底面との面同士の間にも隙間が形成されるようなねじ山形状とされる。
 図1は、従来の特殊ねじ継手における修正バットレスねじの一例を示す縦断面図である。図1中には、ボックス20に対するピン10のねじ込み進行方向を白抜き矢印で示す。
 ピン10は、雄ねじ部11を備え、ボックス20は、ピン10の雄ねじ部11がねじ込まれる雌ねじ部21を備える。雄ねじ部11は、平坦なねじ山頂面12、平坦なねじ谷底面13、挿入フランク面14、及びその挿入フランク面とは反対側の荷重フランク面15を備える。一方、雌ねじ部21は、雄ねじ部11のねじ谷底面13に対向する平坦なねじ山頂面22、雄ねじ部11のねじ山頂面12に対向する平坦なねじ谷底面23、雄ねじ部11の挿入フランク面14に対向する挿入フランク面24、及び雄ねじ部11の荷重フランク面15に対向する荷重フランク面25を備える。
 締結が完了した状態において、ピン10の雄ねじ部11とボックス20の雌ねじ部21は嵌め合い密着し、それぞれの荷重フランク面15、25同士が接触し、雄ねじ部11のねじ谷底面13と雌ねじ部21のねじ山頂面22が互いに接触する。ただし、締結中及び締結が完了した状態のいずれにおいても、雄ねじ部11のねじ山頂面12と雌ねじ部21のねじ谷底面23面は接触せず、隙間が形成される。また、それぞれの挿入フランク面14、24も締結が完了した状態で接触せず、ねじ隙間が形成される。
 なお、図1には示していないが、ピン10とボックス20は、それぞれショルダー部(トルクショルダ)を備える。ショルダー部は、ピン10のねじ込みに伴って互いに接触して押し付けられ、ピン10のねじ込みを制限するストッパの役割を担う。更に、ショルダー部は、締結が完了した状態では、荷重フランク面15、25に、いわゆるねじの締付け軸力を付与する役割を担う。
 図1に示すねじは、荷重面15、25のフランク角θが-3°であること、及び雄ねじ部11のねじ山頂面12と雌ねじ部21のねじ谷底面23との間に0.2mm程度のねじ隙間が形成されていること以外は、API規格のバットレスねじとほとんど同じである。
 通常、油井の現場では、井戸口の真上に作業場(プラットフォーム)と櫓が設けられ、プラットフォームには、例えば、雌ねじ部を有するボックスが固定される。このプラットフォームに固定されたボックスの真上に、雄ねじ部を有するピンである鋼管が吊り上げられ、下降させられながらねじ込まれる。
 ピン及びボックスは、そのねじ部に潤滑剤であるグリスコンパウンドが塗布され、パワートングと呼ばれる専用の締結機械を用いて締結される。
 ねじ部はねじ込みの進行に伴って雄ねじ部のねじ谷底面と雌ねじ部のねじ山頂面が互いに干渉(接触)するように設計されており、ねじ込みの進行に伴って締付けトルクが徐々に上昇する。更に、ショルダー部が互いに突き当たると、ねじ込みの回転抵抗が急激に増加し、締付けトルクが急上昇する。このショルダー部が突き当たる現象はショルダリングと呼ばれ、ショルダリングの瞬間時の締付けトルクはショルダリングトルクと呼ばれる。
 ショルダリング後もねじ込みが継続されると、ショルダー部が塑性変形し、締付けトルクがそれ以上上昇しなくなるか、又は急激に低下する。この現象が起きる瞬間時の締付けトルクはオーバートルクと呼ばれる。ショルダリングトルクとオーバートルクの間の締付けトルクで締結が完了すれば、特殊ねじ継手は最適な状態で連結される。すなわち、ねじ継手内部に適正な締め付け軸力が発生し、ねじの噛合いが強固になって容易に緩まなくなる。また、ピンとボックスがメタルタッチシール部を有する場合には、そのシール部が設計どおりに干渉し合い密封性能を発揮する。それゆえ、油井の現場でのねじ締結作業は、締付けトルクの目標トルクをショルダリングトルクとオーバートルクの間の適宜設定し、締付けトルクを監視しながら行われる。
 もし何らかの理由で、実際にはショルダリングが起こる前であるにもかかわらず、締付けトルクが異常に上昇して目標トルクに達すると、いわゆる締付け不足の状態にもかかわらず締結作業は終了する。このような現象は、ハイショルダリング(ショルダリングトルクが目標トルクよりも高くなる不具合)と呼ばれる。
 以上のような鋼管用ねじ継手の強度、密封性能等の改良技術以外に、近年の環境規制や締結作業効率化の要求に対応するため、グリスコンパウンドの代わりに、固体又は半固体の潤滑被膜や固体防食被膜を用いる技術が提案されている。
 国際公開WO2007/042231号公報(特許文献1)は、ピン及びボックスのねじ部に、べたつきのない薄い潤滑被膜が形成されたねじ継手を開示する。この潤滑被膜は、塑性型又は粘塑性型のレオロジー的挙動(流動特性)を示す固体マトリクス中に固体潤滑剤の粒子を分散させたものである。マトリクスは好ましくは融点が80~320℃の範囲内であり、溶融した状態でのスプレー塗布(ホットメルトスプレー法)、粉末を用いた溶射、又は水性エマルジョンのスプレー塗布により、被膜に形成される。例えば、ホットメルト法に使用される被膜の組成物は、熱可塑性ポリマーとしてポリエチレンを含有し、潤滑成分としてワックス(例:カルナウバワックス)及び金属石鹸(例:ステアリン酸亜鉛)を含有し、腐食抑制剤としてカルシウムスルホネートを含有する。
 国際公開WO2009/072486号公報(特許文献2)は、ピン及びボックスのねじ部に、互いに異なる固体被膜が形成された鋼管用ねじ継手を開示する。ピンの被膜は、紫外線硬化樹脂を主成分とする固体防食被膜であり、好ましくは透明である。一方、ボックスの被膜は、好ましくは熱可塑性ポリマー、ワックス、金属石鹸、腐食抑制剤、水不溶性液状樹脂及び固体潤滑剤を含有する組成物からなり、ホットメルト法により形成された塑性型又は粘塑性型のレオロジー的挙動を示す固体潤滑被膜である。
 これらの固体潤滑被膜及び固体防食被膜はいずれも、塗布時には塑性型又は粘塑性型の流動性のある半固体状であり、ブラシ、スプレー等を用いて膜厚ができるだけ均一になるようにねじ継手に塗布される。塗布された潤滑剤は、それぞれの被膜の特性に合わせた硬化処理(冷却、紫外線照射等)が施されて固化し、固体被膜となる。
国際公開WO2007/042231号公報 国際公開WO2009/072486号公報
 しかし、上記の被膜は、後述する本発明者らの調査・観察結果から明らかになったように、実際には、ねじ部に塗布してから固化するまでの間に、不均一な膜厚分布が生じる。具体的には、ねじ山の角部では膜厚が薄くなり、ねじ谷底の隅部では膜厚が厚くなる。また、平坦なねじ山頂面と平坦なねじ谷底面を有するバットレスねじでは、ねじ山頂面の中央部の膜厚が特に厚くなり、ねじ谷底面の中央部の膜厚もねじ山頂面の中央部ほどではないが厚くなる。このような被膜の膜厚分布は固化後にも維持され、固体被膜の膜厚が不均一になる。
 固体被膜が薄すぎると、ねじ継手の締結中に摺動によってねじ部の地金が露出して焼き付く。すなわち、薄すぎる固体被膜は潤滑被膜としての役目を果たさない。このため、固体被膜はある一定以上の膜厚を必要とする。しかし、被膜厚みの最も薄いねじ山角部での膜厚を十分に確保できるように潤滑剤を塗布しようとすると、その他の領域、とりわけねじ山頂面の中央部で膜厚が分厚くなり過ぎる。固化後の分厚い固体被膜は剥離し易く、被膜の密着性及び耐久性が低い。
 更に、雄ねじ部のねじ山頂面とこれに対向する雌ねじ部のねじ谷底面との面同士の間にねじ隙間が形成されている修正バットレスねじの場合、雄ねじ部のねじ山頂面に形成された過剰の固体被膜がその隙間を埋めてしまう。このような事態は、締結の際に、スムーズなねじ込みの回転を阻害し、締付けトルク-ターン線図の乱れ(ハンピング、プラトー)の原因となったり、ショルダリングトルクの異常な上昇を招いて、ハイショルダリングを引き起こしたりする。なお、締付けトルク-ターン線図は、縦軸を締付けトルクとし、横軸を締付けターン数とした、締結過程のトルク反力を示すグラフである。この線図は、トルクチャートとも称される。
 上記のとおり、固体被膜の膜厚が不均一であると多くの不具合が発生する。しかし、前記特許文献1及び2は、固体被膜の不均一な膜厚による弊害のことを一切触れておらず、固体被膜の均一化には全く着目していない。更に、前記特許文献1及び2以外にも鋼管用ねじ継手の固体被膜に関する技術が数多く存在するが、そのいずれにおいても、不均一な膜厚に起因する上記の課題を解決する手法は全く検討されていない。
 本発明の目的は、ねじ部に固体被膜を備えても締結中に焼付き及び異常な締結トルクの発生を防止することができる鋼管用ねじ継手を提供することである。
 本発明の一実施形態である鋼管用ねじ継手は、テーパねじの雄ねじ部を備えた管状のピンと、テーパねじの雌ねじ部を備えた管状のボックスとから構成され、前記雄ねじ部が前記雌ねじ部にねじ込まれて前記ピンと前記ボックスが締結される鋼管用ねじ継手である。
 そのねじ継手は、
 前記雄ねじ部及び前記雌ねじ部のうちの少なくとも一方の表面に、塗布時に流動性を有し塗布後に硬化処理を施されて形成される固体被膜を備え、
 締結が完了した状態で、下記のいずれかの構成となるものである:
 互いに対向する前記雄ねじ部のねじ山頂面と前記雌ねじ部のねじ谷底面が平坦であって当該平坦面同士の間に隙間が形成されるもの;
 互いに対向する前記雄ねじ部のねじ谷底面と前記雌ねじ部のねじ山頂面が平坦であって当該平坦面同士の間に隙間が形成されるもの;又は、
 互いに対向する前記雄ねじ部のねじ山頂面と前記雌ねじ部のねじ谷底面が平坦であって当該平坦面同士の間に隙間が形成され、且つ互いに対向する前記雄ねじ部のねじ谷底面と前記雌ねじ部のねじ山頂面が平坦であって当該平坦面同士の間に隙間が形成されるもの。
 前記隙間が形成される前記各平坦面のうちで前記固体被膜が形成される平坦面に、予め、ねじのリード角と一致した螺旋状の溝が一条又は複数条設けられている。
 前記溝の最大深さが30μm以上でねじ高さの1/5以下である。
 上記のねじ継手は、以下の構成とすることができる。
 前記雄ねじ部と前記雌ねじ部が、それぞれ、ねじ山頂面、ねじ谷底面、挿入フランク面及び荷重フランク面を備える。
 上記のねじ継手は、以下の構成とすることができる。
 前記固体被膜が前記雄ねじ部に形成され、前記隙間が前記雄ねじ部の前記ねじ山頂面と前記雌ねじ部の前記ねじ谷底面との平坦面同士の間に形成されるものであり、
 前記雄ねじ部の前記ねじ山頂面に前記溝が設けられている。
 これに代えて、上記のねじ継手は、以下の構成とすることができる。
 前記固体被膜が前記雄ねじ部に形成され、前記隙間が前記雄ねじ部の前記ねじ谷底面と前記雌ねじ部の前記ねじ山頂面との平坦面同士の間に形成されるものであり、
 前記雄ねじ部の前記ねじ谷底面に前記溝が設けられている。
 これに代えて、上記のねじ継手は、以下の構成とすることができる。
 前記固体被膜が前記雄ねじ部に形成され、前記隙間が、前記雄ねじ部の前記ねじ山頂面と前記雌ねじ部の前記ねじ谷底面との平坦面同士の間、及び前記雄ねじ部の前記ねじ谷底面と前記雌ねじ部の前記ねじ山頂面との平坦面同士の間に形成されるものであり、
 前記雄ねじ部の前記ねじ山頂面及び前記ねじ谷底面に前記溝が設けられている。
 これに代えて、上記のねじ継手は、以下の構成とすることができる。
 前記固体被膜が前記雌ねじ部に形成され、前記隙間が前記雄ねじ部の前記ねじ山頂面と前記雌ねじ部の前記ねじ谷底面との平坦面同士の間に形成されるものであり、
 前記雌ねじ部の前記ねじ谷底面に前記溝が設けられている。
 これに代えて、上記のねじ継手は、以下の構成とすることができる。
 前記固体被膜が前記雌ねじ部に形成され、前記隙間が前記雄ねじ部の前記ねじ谷底面と前記雌ねじ部の前記ねじ山頂面との平坦面同士の間に形成されるものであり、
 前記雌ねじ部の前記ねじ山頂面に前記溝が設けられている。
 これに代えて、上記のねじ継手は、以下の構成とすることができる。
 前記固体被膜が前記雌ねじ部に形成され、前記隙間が、前記雄ねじ部の前記ねじ山頂面と前記雌ねじ部の前記ねじ谷底面との平坦面同士の間、及び前記雄ねじ部の前記ねじ谷底面と前記雌ねじ部の前記ねじ山頂面との平坦面同士の間に形成されるものであり、
 前記雌ねじ部の前記ねじ谷底面及び前記ねじ山頂面に前記溝が設けられている。
 また、上記のねじ継手は、以下の構成とすることができる。
 締結が完了した状態で互いに対向する前記雄ねじ部の挿入フランク面と前記雌ねじ部の挿入フランク面は接触しない。
 また、上記のねじ継手は、以下の構成とすることができる。
 前記溝の断面形状が、台形状、矩形状、三角形状、円弧状、又は楕円弧状である。
 上記のねじ継手は、以下の構成とすることができる。
 前記溝の断面における両端の丸面取り角部のR寸法が、前記ねじ山頂面と荷重フランク面との丸面取り角部のR寸法よりも小さい。
 上記のねじ継手は、以下の構成とすることが好ましい。
 前記溝が設けられた前記平坦面において、前記溝の幅が合計で当該平坦面の全幅の1/3以上である。
 上記のねじ継手は、以下の構成とすることができる。
 前記ピンと前記ボックスが、それぞれ、ねじ込み過程で互いに接触するショルダー部を1箇所又は2箇所備える。
 また、上記のねじ継手は、以下の構成とすることができる。
 前記ピンと前記ボックスが、それぞれ、締結が完了した状態で互いに接触するシール部を1箇所又は2箇所備える。
 また、上記のねじ継手は、以下の構成とすることができる。
 前記ピンの前記雄ねじ部と前記ボックスの前記雌ねじ部が、それぞれ、管軸方向に沿って2つ又は3つに分割されて成る2段ねじ又は3段ねじである。
 本発明の鋼管用ねじ継手は、ねじ部に固体被膜を備えても締結中に焼付き及び異常な締結トルクの発生を防止できる効果を有する。
図1は、従来の特殊ねじ継手におけるねじ部に採用される修正バットレスねじの一例を示す縦断面図である。 図2は、ピンの雄ねじ部の修正バットレスねじに被膜を形成した状況を示す縦断面図である。 図3は、本発明の第1実施形態であるねじ継手において、ピンの雄ねじ部に被膜を形成した状況を示す縦断面図である。 図4は、本発明の第2実施形態であるねじ継手において、ピンの雄ねじ部に被膜を形成した状況を示す縦断面図である。 図5は、本発明の第3実施形態であるねじ継手において、ピンの雄ねじ部に被膜を形成した状況を示す縦断面図である。 図6は、本発明の第4実施形態であるねじ継手において、ピンの雄ねじ部に被膜を形成した状況を示す縦断面図である。 図7は、本発明の第5実施形態であるねじ継手において、ボックスの雌ねじ部に被膜を形成した状況を示す縦断面図である。 図8は、本発明の第6実施形態であるねじ継手において、ボックスの雌ねじ部に被膜を形成した状況を示す縦断面図である。 図9は、本発明の第7実施形態であるねじ継手において、ピンの雄ねじ部に被膜を形成した状況を示す縦断面図である。 図10は、ハイトルクねじを採用した本発明の第8実施形態であるねじ継手におけるねじ部の一例を示す縦断面図である。 図11は、ハイトルクねじを採用した従来のねじ継手において、ピンの雄ねじ部に被膜を形成した状況を示す縦断面図である。 図12は、ハイトルクねじを採用した本発明の第8実施形態であるねじ継手において、ピンの雄ねじ部に被膜を形成した状況を示す縦断面図である。 図13は、本発明のねじ継手の一例を示す縦断面図である。 図14は、本発明のねじ継手の一例を示す縦断面図である。
 本発明者らは、まず、固体被膜を形成するためにねじ部に塗布した固化前の被膜に着目して、詳細な調査・観察を実施し、被膜の不均一な膜厚分布が生じるメカニズム、及びその膜厚分布の傾向を究明した。
 図2は、従来の特殊ねじ継手に採用される修正バットレスねじ表面に被膜を形成した状況を示す縦断面図である。図2に示すピン10の雄ねじ部11は、前記図1に示す従来のねじ継手に採用されるものであり、ボックスの雌ねじ部と対を成す。締結が完了した状態において、雄ねじ部11のねじ山頂面12と雌ねじ部のねじ谷底面との面同士の間に隙間が形成され、雄ねじ部11の挿入面14と雌ねじ部の挿入面との面同士の間に隙間が形成される。一方、雄ねじ部11のねじ谷底面13は、雌ねじ部のねじ山頂面と接触(干渉)する。雄ねじ部11の荷重面15と雌ねじ部の荷重面との面同士は、締付け軸力によって接触する。ねじ山頂面12とねじ谷底面13は平坦面である。
 このようなピン10の雄ねじ部11に、上述した流動性を有する被膜が塗布され、この被膜に硬化処理が施されることにより、固体被膜30が形成される。図2に示すように、固体被膜30の膜厚が最も薄くなる部位は、ねじ山の角部、すなわちねじ山頂面12と荷重面15とをつなぐ丸面取り角部12a、及びねじ山頂面12と挿入面14とをつなぐ丸面取り角部12bである。固体被膜30の膜厚が最も厚くなる部位は、ねじ谷底の隅部、すなわちねじ谷底面13と荷重面15とをつなぐ丸面取り隅部13a、及びねじ谷底面13と挿入面14とをつなぐ丸面取り隅部13bである。固体被膜30の膜厚が2番目に薄い部位は、荷重面15及び挿入面14である。固体被膜30の膜厚が2番目に厚い部位は、ねじ山頂面12の中央部である。ねじ谷底面13の中央部の膜厚は、ねじ山頂面12の中央部ほどではないが厚い。
 このような固体被膜の不均一な膜厚分布は、以下の理由によって発生する。固化する前の被膜は、流動性のある半固体状態であるため、表面張力によって流動する。半固体状態の被膜に対し、表面張力は、大気に晒されている被膜の界面の自由エネルギーを小さくする方向に作用する。言い換えると、表面張力は、被膜の自由表面の表面積を出来るだけ小さくする方向に作用する。一方、被膜が塗布されるねじ部の表面は、ねじという凹凸面である。このため、ねじ部に塗布された半固体状態の被膜は、ブラシやスプレー等によって可能な限り均一に塗布されても、ねじ山の角部及びねじ谷底の隅部といった曲率を有する表面の部位では、表面張力の作用により、固化する前に被膜の表面積が小さくなるように流動する。また、ねじ部に塗布された半固体状態の被膜には、重力も多少は作用する。これらの影響により、被膜の不均一な膜厚分布が生じる。
 最終的な膜厚分布は、上記の表面張力及び重力と、半固体状態の被膜の流動性(粘性)及び濡れ性とのバランスで決まる。また、ピンを回転させながら被膜の塗布が行われる場合は遠心力等も膜厚分布に影響する。ねじ山頂面とねじ谷底面はともに平坦面であるが、ねじ山頂面の中央部では、ねじ山の両端の角部から押し出された被膜が集積するため、膜厚が分厚くなる。一方、ねじ谷底面の中央部では、ねじ谷底の両端の隅部に被膜が吸い取られるので、膜厚はねじ山頂面の中央部ほど厚くはならない。このような状況は、ボックスの雌ねじ部でも同様である。
 塗布される被膜の半固体状態の性状によって膜厚分布は大きく異なる。例えば前記特許文献1に開示されているものに近い性状の被膜を採用する場合、ねじ継手締結中の焼付き等を回避するために、膜厚が最も薄くなる傾向にあるねじ山の角部の膜厚を最低でも10~20μm程度確保しようとすると、ねじ山頂面の中央部の膜厚は100μmを超える。
 本発明者らは、半固体状態の被膜の流動性及び濡れ性を左右する被膜の性状を調整し、被膜の不均一な膜厚分布の低減を試みた。しかし、被膜性状の調整だけでは、不均一な膜厚分布を有効に低減できず、限界があるという結論に至った。
 そこで、本発明者らは、上記した膜厚分布の発生メカニズムに基づき、不均一な膜厚分布を引き起こす主要因が表面張力であることに着目し、以下の知見を得た。表面張力は、界面の曲率に比例(曲率半径に反比例)した差圧を界面に生じさせる。この差圧が被膜を流動させる駆動力となる。そして、半固体状態の被膜は、その駆動力と重力等の物体力とがバランスするまで流動し、その結果、不均一な膜厚分布が生じる。言い換えると、被膜の不均一な膜厚分布を生じさせる駆動力は、界面の曲率、すなわち被膜が塗布される表面の形状に強く依存する。このことから、被膜が塗布される表面を適切な形状にすれば、固体被膜の膜厚分布をコントロールできると言える。
 以上の知見から、本発明者らは、ねじ部に塗布された被膜に作用する表面張力を積極的に利用し、これにより不均一な膜厚分布の低減が可能であることを想起した。例えば、前記図2に示すように、ピン10の雄ねじ部11に固体被膜30が形成され、締結が完了した状態で互いに平坦なねじ山頂面12と雌ねじ部のねじ谷底面との面同士の間に隙間が形成される場合について検討する。この場合、平坦なねじ山頂面12の中央部に予め浅い溝を設けておけば、そのねじ山頂面12の半固体状態の被膜は、膜厚が薄くなる方向に広がり、薄くなる。その溝は、雄ねじ部11のねじのリード角と一致した螺旋状の溝である。上述のとおり、ねじ山頂面12が平坦面であると、ここでの固体被膜の膜厚は厚くなる傾向にある。この膜厚は、厚すぎると、被膜の密着性及び耐久性に対してのみならず、ねじ継手締結中の締付けトルクにも悪影響を及ぼす。このため、ねじ山頂面12での固体被膜の膜厚を薄くすることは極めて有用である。
 また、同じくピンの雄ねじ部に固体被膜が形成されるが、締結が完了した状態で互いに平坦なねじ谷底面と雌ねじ部のねじ山頂面との面同士の間に隙間が形成される場合について検討する。この場合、ねじ谷底面での固体被膜の膜厚が厚すぎると、被膜の密着性及び耐久性に悪影響するだけでなく、ねじ継手締結時の締付けトルクにも悪影響する。ねじ谷底面が平坦面であると、ここでの固体被膜の膜厚は、上述のとおり、ねじ山頂面ほどではないが厚くなる傾向にある。ただし、ねじ谷底面の中央部に予め浅い溝を設けておけば、半固体状態の被膜は、膜厚が薄くなる方向に広がり、薄くなる。その溝も、雄ねじ部11のねじのリード角と一致した螺旋状の溝である。
 これらのことは、ボックスの雌ねじ部に固体被膜が形成される場合であっても同様である。すなわち、雌ねじ部に固体被膜が形成され、締結が完了した状態で互いに平坦な雄ねじ部のねじ山頂面と雌ねじ部のねじ谷底面との面同士の間に隙間が形成される場合、雌ねじ部における平坦なねじ谷底面の中央部に予め浅い溝を設けておけばよい。また、同じく雌ねじ部に固体被膜が形成されるが、締結が完了した状態で互いに平坦な雄ねじ部のねじ谷底面と雌ねじ部のねじ山頂面との面同士の間に隙間が形成される場合は、雌ねじ部における平坦なねじ山頂面の中央部に予め浅い溝を設けておけばよい。それらの溝は、雌ねじ部のねじのリード角と一致した螺旋状の溝である。
 ここで、上記した溝の形状、幅、深さ等は様々考えられる。まず、固体被膜の形成される対象が雄ねじ部であって、締結が完了した状態で隙間が形成される対象が雄ねじ部のねじ山頂面と雌ねじ部のねじ谷底面との面同士の間であり、雄ねじ部のねじ山頂面に溝が設けられる場合について検討する。この場合のねじ継手は、修正バットレスねじを採用した特殊ねじ継手である。締結が完了した状態で、雄ねじ部のねじ谷底面と雌ねじ部のねじ山頂面とが接触(干渉)しつつ、互いの荷重面同士が締付け軸力によって接触し、互いの挿入面同士の間に隙間が形成される。
 雄ねじ部のねじ山頂面にあまりに深い溝が設けられると、ねじ山そのものの剛性が著しく低下し、ねじ継手の強度性能の低下が避けられない。また、あまりに深い溝は、ねじ切り加工の手間が多く、ねじ継手の生産性を低下させる。更に、溝があまりに深いと、溝に引き込まれる半固体状態の被膜が多くなり、溝周辺の被膜の量が不足する。この場合、所望の膜厚が得られず、焼付き等が発生し易くなる。また、溝に充満する無駄な被膜の量が多くなり、不経済である。
 なお、単純な着想として、ねじ山頂面に溝を設けることなく、ねじ山頂面での隙間を分厚い被膜の膜厚以上に拡大することが考えられる。隙間の拡大により、当該隙間が分厚い被膜によって埋まることがない。このため、上述したトルクチャートの乱れ、ハイショルダリング等の不具合に対して、その発生防止を期待できる。
 しかし、鋼管用ねじ継手においては、寸法の制約が著しく、限られた寸法の中での設計が要求される。このため、ねじ山頂面での隙間を拡大することは、その他の寸法の変更を伴う。これにより新たな問題が顕在化する。例えば、雄ねじ部のねじ高さを低く変更することを伴えば、ねじの噛み合い強度が低下する。これとは逆に、雌ねじ部のねじ高さを高く変更することを伴えば、ボックスの危険断面部の断面積が小さくなる。これにより、ねじ継手が耐えられる引張荷重が低下し、ねじ継手の強度性能が低下する。ここでボックスの危険断面部の断面積は、ねじの噛み合い端部のねじ谷底での断面積のことである。ねじ継手が耐えられる引張荷重の大きさは、その断面積の大きさで決まる。
 更に、ねじ山頂面での隙間を単に拡大するのみでは、被膜の不均一な膜厚分布そのものは何ら抑えられることなく生じる。このため、被膜が剥離しやすいという問題は全く解消しない。
 これらのことを踏まえ、本発明者らは鋭意検討を重ねた。その結果、塗布される被膜の半固体状態の性状にもよるが、雄ねじ部のねじ山頂面に溝を設ける場合の溝の深さは、少なくともねじ山頂面での隙間よりも大きい必要はないことを見出した。ねじ山頂面に形成される溝の深さが、被膜に必要とされる最小膜厚の数倍から20倍程度あれば、ねじ山頂面の半固体状態の被膜は、表面張力によって膜厚が薄くなる方向に広がり、薄くなる。より具体的には、ねじ山頂面に形成される溝の深さが30μm以上であればよい。一方、溝の深さの上限は、ねじ高さの1/5以下であればよい。ねじ山そのものの剛性を確保できるからである。しかも、溝周辺の膜厚が薄くなり過ぎず、耐焼付き性の低下を抑制できるからである。更に、被膜の浪費を防止できるからである。
 また、本発明者らは、雄ねじ部のねじ山頂面に溝を設ける場合の溝の断面形状について、種々の検討を重ねた。その結果、溝の断面形状が、台形状、矩形状、三角形状、円弧状、又は楕円弧状、及びこれらを組み合わせた形状であれば、ねじ山頂面の被膜の薄膜化に対し、一定の効果が得られることを見出した。いずれの形状でも、溝の断面における両端には丸面取り角部が形成され、この丸面取り角部のR寸法は小さい。このため、ねじ山頂面の半固体状態の被膜には、溝の断面における両端の丸面取り角部において、膜厚を薄くするように表面張力が大きく作用する。これに伴い、その大きな表面張力は、丸面取り角部の周辺の被膜、特にねじ山頂面の中央部の被膜を引き込んで、膜厚を薄くする方向に働きかける。その結果、ねじ山頂面の被膜の膜厚が均等に薄く抑えられる。これと同時に、ねじ山角部、すなわちねじ山頂面と荷重面とをつなぐ丸面取り角部、及びねじ山頂面と挿入面とをつなぐ丸面取り角部における被膜の著しい薄膜化が抑えられる。
 このような作用は、溝の断面形状が台形状である場合に顕著に生じる。溝の断面形状が台形状である場合、溝の断面における両端の丸面取り角部において、その表面形状が急峻に変化しているため、表面張力が特に大きく作用するからである。
 溝の断面における両端の丸面取り角部のR寸法は、大きすぎると上記の作用が生じにくくなるので、小さければ小さいほどよい。とりわけ、ねじ山角部における被膜の著しい薄膜化をも有効に抑えるためには、溝両端の丸面取り角部のR寸法は、そのねじ山の両角部(ねじ山頂面と荷重面との丸面取り角部、ねじ山頂面と挿入面との丸面取り角部)のR寸法よりも小さければよい。通常、ねじ山の両角部のうち、ねじ山頂面と荷重面との丸面取り角部のR寸法の方が小さいので、これよりも溝両端の丸面取り角部のR寸法が小さければよい。しかし、あまりに小さいR寸法は、かえって製造性を損ない、品質管理も困難になる。このため、現実に実施する際は、溝両端の丸面取り角部のR寸法は、溝の深さとほぼ同じ寸法にするのが好ましい。
 また、本発明者らは、雄ねじ部のねじ山頂面に溝を設ける場合の溝の幅、及びその溝の条数について、種々の検討を重ねた。その結果、溝の条数が1条の場合、ねじ山頂面において、溝の幅がねじ山頂面の全幅の1/3以上であれば、ねじ山頂面の被膜の薄膜化に対して効果が得られることを見出した。この場合、溝の幅がねじ山頂面の全幅の2/3以下であればなおよい。ねじ山の深刻な剛性低下がないからである。更に、溝の条数を2条、3条と増やしても、同様の効果が得られる。この場合は、複数条の溝の幅が合計でねじ山頂面の全幅の1/3以上であればよく、2/3以下であればなおよい。
 続いて、本発明者らは、固体被膜の形成される対象が雌ねじ部である場合について、同様の効果が実現できるかを検討した。ここでは、まず、上記と同じく、修正バットレスねじを採用した特殊ねじ継手について検討する。このねじ継手において、締結が完了した状態では、雄ねじ部のねじ谷底面と雌ねじ部のねじ山頂面とが接触(干渉)しつつ、互いの荷重面同士が締付け軸力によって接触する。そして、雄ねじ部のねじ山頂面と雌ねじ部のねじ谷底面との面同士の間、及び互いの挿入面同士の間に隙間が形成される。
 この場合、被膜の膜厚が分厚くなる雌ねじ部のねじ山頂面の中央部は、締結の過程の後半において、雄ねじ部のねじ谷底面と接触(干渉)しながら摺動する。そのため、雌ねじ部のねじ山頂面の固体被膜は、多少の剥離が多少あったとしても、締結の過程において雌ねじ部のねじ山頂面と雄ねじ部のねじ谷底面との間に留まり、潤滑効果を発揮する。締結の際、挿入面同士が接触しているときは荷重面同士の間に隙間が形成されるので、雌ねじ部のねじ山頂面から剥離した余剰の固体被膜は、その一部が荷重面同士の間や挿入面同士の間の隙間に堆積する。このため、固体被膜が雌ねじ部のねじ谷底面と雄ねじ部のねじ山頂面との間の隙間まで埋め尽くすことは、よほどのことがない限りない。
 つまり、この場合、接触(干渉)する雄ねじ部のねじ谷底面と雌ねじ部のねじ山頂面において、そのねじ山頂面の固体被膜の膜厚が仮に分厚くても、雄ねじ部のねじ山頂面に分厚い固体被膜が形成されているときほど悪影響を及ぼさない。そのため、この場合は、雌ねじ部のねじ山頂面に上記の溝を敢えて設ける必要はないと言える。
 しかし、雌ねじ部のねじ谷底面には、ねじ山頂面ほどではないが、被膜の膜厚が比較的厚い。この場合は、雌ねじ部のねじ谷底面に上記の溝と同様の溝を予め設けておけば、上述したメカニズムにより、そのねじ谷底面の固体被膜の膜厚を薄く抑えることができる。その溝の形状、幅、深さ等の条件は、上記の溝と同様である。
 上記のねじ継手は、締結が完了した状態で、接触(干渉)する対象が雄ねじ部のねじ谷底面と雌ねじ部のねじ山頂面であり、隙間が形成される対象が雄ねじ部のねじ山頂面と雌ねじ部のねじ谷底面との面同士の間である。ねじ継手によっては、それとは逆に、締結が完了した状態で、接触(干渉)する対象が雄ねじ部のねじ山頂面と雌ねじ部のねじ谷底面であり、隙間が形成される対象が雄ねじ部のねじ谷底面と雌ねじ部のねじ山頂面との面同士の間であるものもある。締結が完了した状態で、雄ねじ部のねじ山頂面と雌ねじ部のねじ谷底面との面同士の間、及び雄ねじ部のねじ谷底面と雌ねじ部のねじ山頂面との面同士の間に、両方とも隙間が形成されるものもある。これらのいずれにおいても、締結が完了した状態で互いに隙間が形成される面であって、被膜が形成される面には、上記の溝を予め設けておけばよい。
 このように、締結が完了した状態で互いに隙間が形成される面であって、塗布時に流動性を有し塗布後に硬化処理を施されて形成される固体被膜(例:固体潤滑被膜、固体防食被膜等)を備える面に、上記の溝を予め設けておけば、固体被膜の過剰な厚膜化が抑えられる。これにより、固体被膜は密着性と耐久性に優れ、ねじ継手の締結の際に、焼付きを防止するとともに、ハンピング、プラトー、ハイショルダリング等の発生を防止することができる。
 本発明の鋼管用ねじ継手は、以上の知見に基づいて完成したものである。以下に、本発明の鋼管用ねじ継手の好ましい実施形態を説明する。
 [第1実施形態]
 図3は、本発明の第1実施形態であるねじ継手において、ピンの雄ねじ部に被膜を形成した状況を示す縦断面図である。図3に示すねじ継手は、前記図2に示す特殊ねじ継手と同様に、API規格のバットレスねじをベースとした修正バットレスねじで構成されるテーパねじの特殊ねじ継手であり、雄ねじ部11を有するピン10と、これと対を成す雌ねじ部を有するボックスと、から構成される。図3中には、ボックスに対するピン10のねじ込み進行方向を白抜き矢印で示す。
 ピン10の雄ねじ部11は、平坦なねじ山頂面12、平坦なねじ谷底面13、ねじ込みで先行する挿入面14、及びその挿入面とは反対側の荷重面15を備える。一方、図示しないが、雌ねじ部は、雄ねじ部のねじ谷底面13に対向する平坦なねじ山頂面、雄ねじ部11のねじ山頂面12に対向する平坦なねじ谷底面、雄ねじ部11の挿入面14に対向する挿入面、及び雄ねじ部11の荷重面15に対向する荷重面を備える。
 また、ピン10の雄ねじ部11は、ねじ山頂面12と荷重面15とをつなぐ丸面取り角部12a、及びねじ山頂面12と挿入面14とをつなぐ丸面取り角部12bを備える。更に、その雄ねじ部11は、ねじ谷底面13と荷重面15とをつなぐ丸面取り隅部13a、及びねじ谷底面13と挿入面14とをつなぐ丸面取り隅部13bを備える。一方、図示しないが、雌ねじ部は、雄ねじ部11の各丸面取り角部12a、12bそれぞれに対応してねじ谷底の両端に丸面取り隅部を備える。更に、その雌ねじ部は、雄ねじ部11の各丸面取り隅部13a、13bそれぞれに対応してねじ山の両端部に丸面取り角部を備える。
 締結が完了した状態において、雄ねじ部11のねじ山頂面12と雌ねじ部のねじ谷底面との面同士の間に隙間が形成され、雄ねじ部11の挿入面14と雌ねじ部の挿入面との面同士の間に隙間が形成される。一方、雄ねじ部11のねじ谷底面13は、雌ねじ部のねじ山頂面と接触(干渉)する。雄ねじ部11の荷重面15と雌ねじ部の荷重面との面同士は、締付け軸力によって接触する。
 なお、図3には示していないが、ピン10とボックスは、それぞれ、荷重面にねじの締め付け軸力を付与するショルダー部を備える。例えば、カップリング型のねじ継手の場合には、一対のピン10の先端にそれぞれショルダー部を備える構成であってもよい(後述の図13参照)。この場合、ピン10のショルダー部同士が互いに突き当たり、締付け軸力が付与される。
 締結が完了した状態で隙間が形成される雄ねじ部11のねじ山頂面12の中央部には、浅い溝40が予め設けられる。この溝40は、雄ねじ部11のねじのリード角と一致した螺旋状で一条の溝である。第1実施形態での溝40の断面形状は台形状である。その溝40の両端がR寸法の小さい丸面取り角部41によってねじ山頂面12の平坦面に接続されている。溝40の断面形状が台形状であるので、溝40の底面は平坦面である。
 第1実施形態では、ピン10の雄ねじ部11に固体被膜30が形成される。固体被膜30は、塗布時には流動性を有し、塗布後に硬化処理を施されて硬化し、固化するものである。具体的には、固体被膜30は、塗布時には塑性型又は粘塑性型の流動性のある半固体状であり、ブラシ、スプレー等を用いてねじ継手に塗布される。塗布された潤滑剤は、被膜の特性に合わせた硬化処理(冷却、紫外線照射等)が施されて固化する。固体被膜としては、塗布から固化するまでの間に表面張力、重力等によって流動するものであれば全てを含み、その目的(潤滑目的、防食目的、美観目的等)は特に問わない。逆に、電着被膜、圧着被膜等のように、固化までに流動することがない固体被膜は含まない。
 ねじ山頂面12には溝40を含めて固体被膜30が形成される。固体被膜30の固化形成に先立ち、そのねじ山頂面12に塗布された半固体状態の被膜は、膜厚が薄くなる方向に広がり、薄くなる。これは、ねじ山頂面12には溝40が存在し、その溝40の両端にR寸法の小さい丸面取り角部41が存在するため、ねじ山頂面12の半固体状態の被膜には、膜厚を薄くするように表面張力が大きく作用することによる。
 溝40の深さは、固体被膜30がその性能を発揮するために求められる最小膜厚よりも深く、ねじ山頂面12とこれに対向する雌ねじ部のねじ谷底面との面同士の隙間よりも浅いことが好ましい。溝40の深さが浅すぎると、ねじ山頂面12の被膜30の薄膜化に対する効果が十分に発現しないからである。一方、溝40の深さが深すぎると、ねじ山そのものの剛性が低下し、ねじ継手の強度性能の低下につながるからである。
 例えば、溝40の深さは、固体被膜30に必要とされる最小膜厚の3倍よりも深くて、ねじ山頂面12での隙間の1/2よりも浅くする。固体被膜30の最小膜厚が10μmであり、ねじ山頂面12での隙間が200μmである場合を考えると、溝40の深さは、30μm以上100μm以下となる。
 より具体的に言えば、溝40の深さは、30μm以上であることが好ましい。一方、ねじ山そのものの剛性を確保するとともに、溝周辺の膜厚を確保する観点から、その溝40の深さはねじ高さの1/5以下であることが好ましい。
 また、溝40の両端の丸面取り角部41のR寸法は、小さければ小さいほどよい。この丸面取り角部41のR寸法が大きすぎると、ねじ山頂面12の被膜30の薄膜化に対する効果が発現しにくく、更に、ねじ山の両角部(ねじ山頂面12と荷重面15との丸面取り角部12a、及びねじ山頂面12と挿入面14との丸面取り角部12b)における被膜の著しい薄膜化を有効に抑えることができないからである。このため、溝40の両端の丸面取り角部41のR寸法は、ねじ山の両角部、特にねじ山頂面12と荷重面15との丸面取り角部12aのR寸法よりも小さいことが好ましい。
 また、溝40の幅は、ねじ山頂面12の全幅の1/3以上であることが好ましい。溝40の幅が狭すぎると、ねじ山頂面12の被膜30の薄膜化に対する効果が十分に発現しないからである。一方、溝40の幅は、ねじ山頂面12の全幅の2/3以下であることが好ましい。溝40の幅が広すぎると、ねじ山の深刻な剛性低下が起こるからである。
 [第2実施形態]
 図4は、本発明の第2実施形態であるねじ継手において、ピンの雄ねじ部に被膜を形成した状況を示す縦断面図である。図4に示すねじ継手は、前記図3に示す第1実施形態のねじ継手を変形したものであり、第1実施形態と重複する説明は適宜省略する。後述する第3~第8実施形態でも同様とする。
 図4に示すように、第2実施形態のねじ継手では、雄ねじ部11のねじ山頂面12に形成される溝40の断面形状が三角形状である。この場合、溝40の深さは、最も深い最底の位置の最大深さとする。
 第2実施形態のねじ継手によっても、上記第1実施形態ほどではないが、それと同様の傾向の効果を奏する。溝40の断面形状が三角形状であるため、溝40の断面における両端の丸面取り角部41において、その表面形状が緩やかに変化し、表面張力の作用が第1実施形態ほど大きくならないからである。
 [第3実施形態]
 図5は、本発明の第3実施形態であるねじ継手において、ピンの雄ねじ部に被膜を形成した状況を示す縦断面図である。図5に示すように、第3実施形態のねじ継手では、雄ねじ部11のねじ山頂面12に形成される溝40の断面形状が円弧状である。溝40の断面形状が円弧状であるので、溝40の底面は曲面である。この場合、溝40の深さは、上記第2実施形態と同様に、最も深い最底の位置の最大深さとする。
 第3実施形態のねじ継手によっても、上記第1実施形態ほどではないが、それと同様の傾向の効果を奏する。溝40の断面形状が円弧状であるため、上記第2実施形態と同様の理由で、表面張力の作用が第1実施形態ほど大きくならないからである。
 [第4実施形態]
 図6は、本発明の第4実施形態であるねじ継手において、ピンの雄ねじ部に被膜を形成した状況を示す縦断面図である。図6に示すように、第4実施形態のねじ継手では、雄ねじ部11のねじ山頂面12に形成される溝40の断面形状が上記第1実施形態と同様に台形状であるが、その溝40の条数が2条である。この場合、ねじ山頂面12の全幅に対する溝40の幅は、2条の各溝40の幅の合計とする。
 第4実施形態のねじ継手によっても、上記第1実施形態と同様の効果を奏する。溝40の条数は、3条以上にすることも可能である。この場合、ねじ山頂面12の全幅に対する溝40の幅は、形成された条数の各溝40の幅の合計とする。もっとも、現実的なねじ切り加工を考慮すると、溝40の条数は多くても3条までが好ましい。また、第4実施形態における溝40の断面形状は、上記第2及び第3実施形態と同様に、三角形状、又は円弧状に変形することもできる。
 [第5実施形態]
 図7は、本発明の第5実施形態であるねじ継手において、ボックスの雌ねじ部に被膜を形成した状況を示す縦断面図である。図7に示すように、第5実施形態のねじ継手では、ピン及びボックス20のうちのボックス20の雌ねじ部21に固体被膜30が形成される。この場合、締結が完了した状態で隙間が形成される雌ねじ部21のねじ谷底面23の中央部に、上記第1実施形態と同様に、台形状の浅い溝40が予め設けられる。
 第5実施形態では、ねじ谷底面23に溝40を含めて固体被膜30が形成されるが、固体被膜30の固化形成に先立ち、そのねじ谷底面23に塗布された半固体状態の被膜は、上記第1実施形態と同様の表面張力の作用により、膜厚が薄くなる方向に広がり、薄くなる。
 第5実施形態のねじ継手によっても、上記第1実施形態と同様の効果を奏する。第5実施形態における溝40の断面形状は、上記第2及び第3実施形態と同様に、三角形状、又は円弧状に変形することもできる。また、第5実施形態における溝40の条数は、上記第4実施形態と同様に、複数条にすることもできる。
 [第6実施形態]
 図8は、本発明の第6実施形態であるねじ継手において、ボックスの雌ねじ部に被膜を形成した状況を示す縦断面図である。図8に示すねじ継手は、上記第1~第5実施形態とは逆に、締結が完了した状態において、接触(干渉)する対象が雄ねじ部のねじ山頂面と雌ねじ部21のねじ谷底面23であり、隙間が形成される対象が雄ねじ部のねじ谷底面と雌ねじ部21のねじ山頂面22との面同士の間である。
 図8に示すように、第6実施形態のねじ継手では、ピン及びボックス20のうちのボックス20の雌ねじ部21に固体被膜30が形成される。この場合、締結が完了した状態で隙間が形成される雌ねじ部21のねじ山頂面22の中央部に、上記第1実施形態と同様に、台形状の浅い溝40が予め設けられる。
 第6実施形態では、ねじ山頂面22に溝40を含めて固体被膜30が形成される。固体被膜30の固化形成に先立ち、そのねじ山頂面22に塗布された半固体状態の被膜は、上記第1実施形態と同様の表面張力の作用により、膜厚が薄くなる方向に広がり、薄くなる。
 第6実施形態のねじ継手によっても、上記第1実施形態と同様の効果を奏する。
 [第7実施形態]
 図9は、本発明の第7実施形態であるねじ継手において、ピンの雄ねじ部に被膜を形成した状況を示す縦断面図である。第7実施形態のねじ継手は、前記図8に示す第6実施形態のねじ継手を、前記図7に示す第5実施形態と同様の観点から変形したものである。すなわち、図9に示すように、第7実施形態のねじ継手では、ピン10及びボックスのうちのピン10の雄ねじ部11に固体被膜30が形成される。この場合、締結が完了した状態で隙間が形成される雄ねじ部11のねじ谷底面13の中央部に、上記第5実施形態と同様に、台形状の浅い溝40が予め設けられる。
 第7実施形態のねじ継手によっても、上記第1実施形態と同様の効果を奏する。
 [第8実施形態]
 図10は、ハイトルクねじを採用した本発明の第8実施形態であるねじ継手におけるねじ部の一例を示す縦断面図である。図10に示すねじ継手は、ショルダー部を備えることなく、ピン10とボックス20のねじ込みに伴ってねじ部自身がロックして高いトルク性能を発現する、いわゆるハイトルクねじを採用したねじ継手である。ハイトルクねじでは、雄ねじ部のねじ山幅がねじの弦巻き線に沿って右ねじの進む方向に先細りに狭くなり、相対する雌ねじ部のねじ溝幅もねじの弦巻き線に沿って右ねじの進む方向に先細りに狭くなる。更に、ハイトルクねじは、締結が完了したときに、ねじ山がねじ溝から径方向に排出されないようなフランク面を有する。最も一般的なハイトルクねじは、荷重面15、25及び挿入面14、24とも負のフランク角を有する、ダブテール型のねじ山を備える。ハイトルクねじにおいては、ショルダー部が無くても、ねじ山自身がねじ溝に嵌まり込む(これをロッキングと呼ぶ)ことで締結が完了する。
 ハイトルクねじを採用したねじ継手は、様々な態様がある。一つの態様は、締結が完了した状態で、互いに平坦な雄ねじ部11のねじ山頂面12と雌ねじ部21のねじ谷底面23との面同士の間に隙間が形成されるものである。別の態様は、互いに平坦な雄ねじ部11のねじ谷底面13と雌ねじ部21のねじ山頂面22との面同士の間に隙間が形成されるものである。更に別の態様は、それらの面同士の両方ともに隙間が形成されるものである。このような雄ねじ部11及び雌ねじ部21のうちの一方、又は両方に、固体被膜が形成される。図10には、締結が完了した状態で、互いに平坦な雄ねじ部11のねじ山頂面12と雌ねじ部21のねじ谷底面23との面同士の間に隙間が形成されたものを例示する。
 図11は、ハイトルクねじを採用した従来のねじ継手において、ピンの雄ねじ部に被膜を形成した状況を示す縦断面図である。図11に示すように、ハイトルクねじを採用した従来のねじ継手の場合でも、固体被膜30の不均一な膜厚分布が生じる。
 図12は、ハイトルクねじを採用した本発明の第8実施形態であるねじ継手において、ピンの雄ねじ部に被膜を形成した状況を示す縦断面図である。図12に示すように、第8実施形態のねじ継手では、締結が完了した状態で隙間が形成される雄ねじ部11のねじ山頂面12の中央部に、上記第1実施形態と同様に、台形状の浅い溝40が予め設けられる。第8実施形態でも、ねじ山頂面12に溝40を含めて固体被膜30が形成される。固体被膜30の固化形成に先立ち、そのねじ山頂面12に塗布された半固体状態の被膜は、上記第1実施形態と同様の表面張力の作用により、膜厚が薄くなる方向に広がり、薄くなる。
 第8実施形態のねじ継手によっても、上記第1実施形態と同様の効果を奏する。第8実施形態における溝40の断面形状は、上記第2及び第3実施形態と同様に、三角形状、又は円弧状に変形することもできる。また、第8実施形態における溝40の条数は、上記第4実施形態と同様に、複数にすることもできる。また、第8実施形態における溝40の設置場所は、固体被膜が形成される対象、及び締結が完了した状態で隙間が形成される対象に応じて、上記第5~第7実施形態のように、変更することもできる。
 その他、本発明は上記の実施形態に限定されず、本発明の趣旨を逸脱しない範囲で、種々の変更が可能である。溝40の断面形状は、溝40の両端にR寸法の小さい丸面取り角部41が存在する限り、台形状、三角形状、又は円弧状以外にも、例えば矩形状、楕円弧状等に変更することが可能である。それらの断面形状の組み合わせであっても構わない。
 また、締結が完了した状態で、雄ねじ部11のねじ山頂面12と雌ねじ部21のねじ谷底面23との面同士の間、及び雄ねじ部11のねじ谷底面13と雌ねじ部21のねじ山頂面22との面同士の間に、両方とも隙間が形成されるねじ継手にも、溝40の適用は可能である。この場合、締結が完了した状態で互いに隙間が形成される面であって、被膜が形成される面の全てに、溝40を予め設けておけばよい。
 また、溝40の適用は、ねじ継手の形式や種別に制限されない。例えば、カップリング型及びインテグラル型を初めとし、スリム型、フラッシュ型、セミフラッシュ型等にも、溝40の適用は可能である。その他に、メタルタッチシール部を備えるねじ継手にも、溝40の適用は可能であり、そのシール部の設置場所、設置数等に限定はない。更に、ショルダー部の設置の有無、設置場所、設置数等に限定はない。更に、ねじ部が管軸CL方向に沿って2つ又は3つに分割されて成る2段ねじ又は3段ねじを採用したねじ継手であっても、溝40の適用は可能である。
 図13及び図14は、本発明のねじ継手の一例を示す縦断面図である。これらの図には、カップリング型のねじ継手の一例を示す。図13に示すねじ継手では、一対のピン10の先端にそれぞれショルダー部16を備える。この場合、ピン10のねじ込みの過程で、ピン10のショルダー部16同士が互いに突き当たる。これにより、ねじ部11、21の荷重面15、25にねじの締付け軸力が付与される。
 図14に示すねじ継手では、ピン10はショルダー部16を備え、ボックス20であるカップリングは、ピン10のショルダー部16に対応するショルダー部26を備える。この場合、ピン10のねじ込みの過程で、ピン10のショルダー部16がボックス20のショルダー部26に突き当たる。これにより、ねじ部11、21の荷重面15、25にねじの締付け軸力が付与される。図14に示すねじ継手は、ショルダー部16、26に隣接してメタルタッチシール部17を備える。
 なお、締結が完了した状態で互いに隙間が形成されるねじ部であっても、API規格のラウンドねじのように平坦なねじ山頂面及びねじ谷底面を備えないねじ部には、溝40は適用しない。また、平坦面であっても、締結が完了した状態で互いの面同士の間に隙間が形成されない面には、溝40が設けられる必要は無い。例えば、締結時に摺動する面に固体被膜が形成されている場合、固体被膜は、膜厚が多少厚くても、上記したとおりハイショルダリング、トルクチャートの乱れ等の原因とはならない。仮に被膜の剥離が生じたとしても、摺動によって連続的に固体被膜が補充されるため、そもそも焼付きが発生しにくい。また、挿入面に溝40が設けられると、溝40の両端の角部で線接触が生じ、かえって焼付きの原因となる。挿入面は締結過程の殆どにおいて摺動するからである。荷重面に溝40が設けられると、ねじ継手の引張強度の低下に繋がりかねない。荷重面は締結後に締め付け軸力によって接触し、かつ引張荷重を負担するからである。もっとも、これらの支障が生じない限り、締結が完了した状態で互いに接触する面に溝40が設けられても構わない。
 本発明による効果を確認するため、有限要素法による数値シミュレーション解析を実施し、雄ねじ部に塗布されて固化する前の被膜について、その膜厚分布の状況を調査した。
 <試験条件>
 FEM解析のモデルとして、特殊ねじ継手で汎用される修正バットレスねじの雄ねじ部を用いた。試験No.1のモデルは、前記図2に示す従来の雄ねじ部を反映した比較例であり、ねじ山頂面に溝を設けなかった。試験No.2~6のモデルは、前記図3に示す第1実施形態の雄ねじ部を反映し、ねじ山頂面に1条の溝を設けた。試験No.7~11のモデルは、前記図6に示す第4実施形態の雄ねじ部を反映し、ねじ山頂面に2条の溝を設けた。試験No.2~11では、溝の深さを種々変更した。ただし、試験No.2~11のいずれでも、溝の幅は合計でおよそ0.9mmとした。ここで溝の幅は、溝の両端の丸面取り角部を含めた幅とした。共通の条件は下記のとおりである。
 ・ねじ高さ:1.575mm
 ・ねじピッチ:5TPI(1インチあたりのねじ山の数が5つ)
 ・ねじ山幅:ピッチライン上で2.54mm
 ・ねじテーパ:6.25%(テーパ角:約1.8°)
 ・荷重面のフランク角:-3°
 ・挿入面のフランク角:10°
 ・ねじ山の角部の丸面取りR寸法:荷重面側が0.4mm、挿入面側が0.76mm
 ・ねじ谷底の隅部の丸面取りR寸法:荷重面側が0.4mm、挿入面側が0.2mm
 ・ねじ山頂面の平坦面の全幅:およそ1.4mm
 FEM解析では、雄ねじ部及び固化前の被膜を平面ひずみ要素でモデル化したものを使用した。雄ねじ部は弾性体とし、縦弾性係数を205GPaとした。固化前の被膜は流動性のある粘塑性流体とした。固化前の被膜の粘性係数は200センチストークスとし、その質量密度は1.0×10-6kg/mmとし、その表面張力は7.3×10-5N/mmとした。試験No.1~11のいずれでも、同量の粘塑性流体をスプレー塗布し、塗布直後の状態を想定した初期膜厚分布を与えた。ねじ山頂面とねじ谷底面の初期膜厚は1とし、ねじ山の両角部の初期膜厚は0.7とした。そして、表面張力と粘性(流動)がバランスし平衡状態になるまで準静的解析を行った。
 <評価方法>
 ねじ山頂面のうちで溝が設けられていない部分(以下、「非溝部分」という)での被膜の膜厚を算出した。更に、ねじ山の両角部(荷重面側と挿入面側)での被膜の膜厚を算出した。膜厚分布の評価は、ねじ山の両角部それぞれでの膜厚を、ねじ山頂面の非溝部分での最大膜厚で割った値で行った。この値は、非溝部分での最大膜厚を1とした場合の相対値を表す。この値が大きいほど(1に近いほど)、不均一な膜厚分布が抑えられ、耐久性、耐焼付き性及びトルク安定性に優れた状態といえる。また、耐焼付き性の指標として、非溝部分及びねじ山の両角部での最小膜厚も評価した。なお、全ての場合において、荷重面側のねじ山角部で膜厚が最小であった。結果は下記の表1のとおりである。
Figure JPOXMLDOC01-appb-T000001
 <試験結果>
 上記表1に示す結果から、溝を有し、その深さが本発明で規定する条件を満足する本発明例の試験No.3~5、及び8~10では、ねじ山角部での膜厚の相対値が少なくとも0.15以上であり、かつ最小膜厚も20μm以上であった。このことから、本実施形態によれば、不均一な膜厚分布が抑制されるとともに、焼付きの発生リスクも少ないことが分かった。
 本発明のねじ継手は、石油、天然ガス等といった地下資源を採掘し、生産し、又は利用するための油井、ガス井等をはじめとし、温泉又は地熱発電用の井戸、更には地下にCO等の廃棄物を封じ込めるための井戸等で用いられる鋼管の連結に有効に利用できる。その他にも、海底のメタンハイドレード、レアメタル等を海上まで運搬するのに用いられる鋼管の連結に利用できる。特に、本発明のねじ継手は、固体潤滑被膜、固体防食被膜等に対して環境規制の厳しい地域、更には極地、海洋、砂漠等といったように、締結作業の効率化及び作業員への負担軽減が求められる地域で用いられる鋼管の連結に有用である。
  10:ピン、  11:雄ねじ部、
  12:雄ねじ部のねじ山頂面、  13:雄ねじ部のねじ谷底面、
  14:雄ねじ部の挿入フランク面、  15:雄ねじ部の荷重フランク面、  20:ボックス、  21:雌ねじ部、
  22:雌ねじ部のねじ山頂面、  23:雌ねじ部のねじ谷底面、
  24:雌ねじ部の挿入フランク面、  25:雌ねじ部の荷重フランク面、  30:固体被膜、  40:溝、  41:溝の丸面取り角部、
  16、26:ショルダー部、  17:メタルタッチシール部、
  θ:フランク角、  CL:管軸

Claims (15)

  1.  テーパねじの雄ねじ部を備えた管状のピンと、テーパねじの雌ねじ部を備えた管状のボックスとから構成され、前記雄ねじ部が前記雌ねじ部にねじ込まれて前記ピンと前記ボックスが締結される鋼管用ねじ継手であって、
     前記鋼管用ねじ継手は、
     前記雄ねじ部及び前記雌ねじ部のうちの少なくとも一方の表面に、塗布時に流動性を有し塗布後に硬化処理を施されて形成される固体被膜を備え、
     締結が完了した状態で、互いに対向する前記雄ねじ部のねじ山頂面と前記雌ねじ部のねじ谷底面が平坦であって当該平坦面同士の間に隙間が形成されるもの、互いに対向する前記雄ねじ部のねじ谷底面と前記雌ねじ部のねじ山頂面が平坦であって当該平坦面同士の間に隙間が形成されるもの、又は、互いに対向する前記雄ねじ部のねじ山頂面と前記雌ねじ部のねじ谷底面が平坦であって当該平坦面同士の間に隙間が形成され、且つ互いに対向する前記雄ねじ部のねじ谷底面と前記雌ねじ部のねじ山頂面が平坦であって当該平坦面同士の間に隙間が形成されるものであり、
     前記隙間が形成される前記各平坦面のうちで前記固体被膜が形成される平坦面に、予め、ねじのリード角と一致した螺旋状の溝が一条又は複数条設けられ、
     前記溝の最大深さが30μm以上でねじ高さの1/5以下である、鋼管用ねじ継手。
  2.  請求項1に記載の鋼管用ねじ継手であって、
     前記雄ねじ部と前記雌ねじ部が、それぞれ、ねじ山頂面、ねじ谷底面、挿入フランク面及び荷重フランク面を備える、鋼管用ねじ継手。
  3.  請求項1又は2に記載の鋼管用ねじ継手であって、
     前記固体被膜が前記雄ねじ部に形成され、前記隙間が前記雄ねじ部の前記ねじ山頂面と前記雌ねじ部の前記ねじ谷底面との平坦面同士の間に形成されるものであり、
     前記雄ねじ部の前記ねじ山頂面に前記溝が設けられている、鋼管用ねじ継手。
  4.  請求項1又は2に記載の鋼管用ねじ継手であって、
     前記固体被膜が前記雄ねじ部に形成され、前記隙間が前記雄ねじ部の前記ねじ谷底面と前記雌ねじ部の前記ねじ山頂面との平坦面同士の間に形成されるものであり、
     前記雄ねじ部の前記ねじ谷底面に前記溝が設けられている、鋼管用ねじ継手。
  5.  請求項1又は2に記載の鋼管用ねじ継手であって、
     前記固体被膜が前記雄ねじ部に形成され、前記隙間が、前記雄ねじ部の前記ねじ山頂面と前記雌ねじ部の前記ねじ谷底面との平坦面同士の間、及び前記雄ねじ部の前記ねじ谷底面と前記雌ねじ部の前記ねじ山頂面との平坦面同士の間に形成されるものであり、
     前記雄ねじ部の前記ねじ山頂面及び前記ねじ谷底面に前記溝が設けられている、鋼管用ねじ継手。
  6.  請求項1又は2に記載の鋼管用ねじ継手であって、
     前記固体被膜が前記雌ねじ部に形成され、前記隙間が前記雄ねじ部の前記ねじ山頂面と前記雌ねじ部の前記ねじ谷底面との平坦面同士の間に形成されるものであり、
     前記雌ねじ部の前記ねじ谷底面に前記溝が設けられている、鋼管用ねじ継手。
  7.  請求項1又は2に記載の鋼管用ねじ継手であって、
     前記固体被膜が前記雌ねじ部に形成され、前記隙間が前記雄ねじ部の前記ねじ谷底面と前記雌ねじ部の前記ねじ山頂面との平坦面同士の間に形成されるものであり、
     前記雌ねじ部の前記ねじ山頂面に前記溝が設けられている、鋼管用ねじ継手。
  8.  請求項1又は2に記載の鋼管用ねじ継手であって、
     前記固体被膜が前記雌ねじ部に形成され、前記隙間が、前記雄ねじ部の前記ねじ山頂面と前記雌ねじ部の前記ねじ谷底面との平坦面同士の間、及び前記雄ねじ部の前記ねじ谷底面と前記雌ねじ部の前記ねじ山頂面との平坦面同士の間に形成されるものであり、
     前記雌ねじ部の前記ねじ谷底面及び前記ねじ山頂面に前記溝が設けられている、鋼管用ねじ継手。
  9.  請求項3~8のいずれか1項に記載の鋼管用ねじ継手であって、
     締結が完了した状態で互いに対向する前記雄ねじ部の挿入フランク面と前記雌ねじ部の挿入フランク面が非接触状態となる、鋼管用ねじ継手。
  10.  請求項1~9のいずれか1項に記載の鋼管用ねじ継手であって、
     前記溝の断面形状が、台形状、矩形状、三角形状、円弧状、又は楕円弧状である、鋼管用ねじ継手。
  11.  請求項1~10のいずれか1項に記載の鋼管用ねじ継手であって、
     前記溝の断面における両端の丸面取り角部のR寸法が、前記ねじ山頂面と荷重フランク面との丸面取り角部のR寸法よりも小さい、鋼管用ねじ継手。
  12.  請求項1~11のいずれか1項に記載の鋼管用ねじ継手であって、
     前記溝が設けられた前記平坦面において、前記溝の幅が合計で当該平坦面の全幅の1/3以上である、鋼管用ねじ継手。
  13.  請求項1~12のいずれか1項に記載の鋼管用ねじ継手であって、
     前記ピンと前記ボックスが、それぞれ、ねじ込み過程で互いに接触するショルダー部を1箇所又は2箇所備える、鋼管用ねじ継手。
  14.  請求項1~13のいずれか1項に記載の鋼管用ねじ継手であって、
     前記ピンと前記ボックスが、それぞれ、締結が完了した状態で互いに接触するシール部を1箇所又は2箇所備える、鋼管用ねじ継手。
  15.  請求項1~14のいずれか1項に記載の鋼管用ねじ継手であって、
     前記ピンの前記雄ねじ部と前記ボックスの前記雌ねじ部が、それぞれ、管軸方向に沿って2つ又は3つに分割されて成る2段ねじ又は3段ねじである、鋼管用ねじ継手。
PCT/JP2015/002662 2014-05-30 2015-05-26 鋼管用ねじ継手 WO2015182128A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
MX2016015584A MX2016015584A (es) 2014-05-30 2015-05-26 Junta roscada para tubos de acero.
RU2016151363A RU2647169C1 (ru) 2014-05-30 2015-05-26 Резьбовое соединение для стальных труб
EP15800517.3A EP3150895A4 (en) 2014-05-30 2015-05-26 Threaded steel-pipe fitting
US15/308,846 US20170122468A1 (en) 2014-05-30 2015-05-26 Threaded joint for steel pipes
CA2947536A CA2947536C (en) 2014-05-30 2015-05-26 Threaded joint for steel pipes
JP2016523149A JP6366703B2 (ja) 2014-05-30 2015-05-26 鋼管用ねじ継手
CN201580028296.0A CN106461125B (zh) 2014-05-30 2015-05-26 钢管用螺纹接头

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014113084 2014-05-30
JP2014-113084 2014-05-30

Publications (1)

Publication Number Publication Date
WO2015182128A1 true WO2015182128A1 (ja) 2015-12-03

Family

ID=54698475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/002662 WO2015182128A1 (ja) 2014-05-30 2015-05-26 鋼管用ねじ継手

Country Status (9)

Country Link
US (1) US20170122468A1 (ja)
EP (1) EP3150895A4 (ja)
JP (1) JP6366703B2 (ja)
CN (1) CN106461125B (ja)
AR (1) AR100655A1 (ja)
CA (1) CA2947536C (ja)
MX (1) MX2016015584A (ja)
RU (1) RU2647169C1 (ja)
WO (1) WO2015182128A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020039750A1 (ja) 2018-08-21 2020-02-27 日本製鉄株式会社 鋼管用ねじ継手
WO2021171826A1 (ja) * 2020-02-26 2021-09-02 Jfeスチール株式会社 継目無管およびその製造方法
WO2021171836A1 (ja) * 2020-02-27 2021-09-02 Jfeスチール株式会社 ステンレス鋼管およびその製造方法
WO2021171837A1 (ja) * 2020-02-27 2021-09-02 Jfeスチール株式会社 ステンレス鋼管およびその製造方法
JPWO2021131177A1 (ja) * 2019-12-26 2021-12-23 Jfeスチール株式会社 管用ねじ継手

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY197615A (en) * 2017-05-15 2023-06-28 Nippon Steel Corp Threaded connection for steel pipes
US11008819B2 (en) * 2017-10-30 2021-05-18 OCTG Connections, LLC Oil country tubular goods casing coupling
US11371292B2 (en) * 2017-12-21 2022-06-28 Hydril Company Threadform having crest to root thread compound relief areas
WO2019126522A1 (en) * 2017-12-21 2019-06-27 Ultra Premium Services, L.L.C. Wedge threadform having crest to root thread compound relief areas
US11920703B2 (en) * 2020-02-19 2024-03-05 Nippon Steel Corporation Threaded connection for pipes and method for producing threaded connection for pipes
US11614186B1 (en) 2020-03-25 2023-03-28 PTC Liberty Tubulars LLC Box connection for a pin with relieved thread region

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001507771A (ja) * 1997-05-20 2001-06-12 ヒドリル カンパニー 管状連結部用応力低減溝
JP2004507698A (ja) * 2000-08-31 2004-03-11 バローレック・マネスマン・オイル・アンド・ガス・フランス 耐摩損性のねじ管接ぎ手用ねじ機素
JP2007504420A (ja) * 2003-05-30 2007-03-01 ヴァルレック・マンネスマン・オイル・アンド・ガス・フランス 漸次的な軸方向のねじ山干渉を伴うねじ込み管状接続部
JP2010522855A (ja) * 2007-03-28 2010-07-08 テナリス・コネクシヨンズ・アクチエンゲゼルシヤフト 超高トルクドープフリーねじ継ぎ手
WO2011027433A1 (ja) * 2009-09-02 2011-03-10 住友金属工業株式会社 管ねじ継手用プロテクタ
JP2011106627A (ja) * 2009-11-19 2011-06-02 Sumitomo Metal Ind Ltd 油井管用のねじ継手
JP2013108556A (ja) * 2011-11-18 2013-06-06 Nippon Steel & Sumitomo Metal Corp 高トルク締結性能に優れた管状ねじ継手

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2177100A (en) * 1938-09-21 1939-10-24 Nat Supply Co Leak-resisting pipe thread
FR2820806B1 (fr) * 2001-02-09 2004-02-20 Vallourec Mannesmann Oil & Gas Joint filete tubulaire avec face de filet bombee convexe
US6971685B2 (en) * 2002-06-24 2005-12-06 Weatherford/Lamb, Inc. Multi-point high pressure seal for expandable tubular connections
US6905149B2 (en) * 2003-01-02 2005-06-14 Grant Prideco, L.P. Pressure relieved thread connection
JP4599874B2 (ja) * 2004-04-06 2010-12-15 住友金属工業株式会社 油井管用ねじ継手、及びその製造方法
US8622091B2 (en) * 2008-08-14 2014-01-07 Nippon Steel & Sumitomo Metal Corporation Protector for tubular threaded joint
CN202039782U (zh) * 2011-04-08 2011-11-16 无锡西姆莱斯石油专用管制造有限公司 一种抗弯曲的套管螺纹连接结构

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001507771A (ja) * 1997-05-20 2001-06-12 ヒドリル カンパニー 管状連結部用応力低減溝
JP2004507698A (ja) * 2000-08-31 2004-03-11 バローレック・マネスマン・オイル・アンド・ガス・フランス 耐摩損性のねじ管接ぎ手用ねじ機素
JP2007504420A (ja) * 2003-05-30 2007-03-01 ヴァルレック・マンネスマン・オイル・アンド・ガス・フランス 漸次的な軸方向のねじ山干渉を伴うねじ込み管状接続部
JP2010522855A (ja) * 2007-03-28 2010-07-08 テナリス・コネクシヨンズ・アクチエンゲゼルシヤフト 超高トルクドープフリーねじ継ぎ手
WO2011027433A1 (ja) * 2009-09-02 2011-03-10 住友金属工業株式会社 管ねじ継手用プロテクタ
JP2011106627A (ja) * 2009-11-19 2011-06-02 Sumitomo Metal Ind Ltd 油井管用のねじ継手
JP2013108556A (ja) * 2011-11-18 2013-06-06 Nippon Steel & Sumitomo Metal Corp 高トルク締結性能に優れた管状ねじ継手

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3150895A4 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7012858B2 (ja) 2018-08-21 2022-01-28 日本製鉄株式会社 鋼管用ねじ継手
JPWO2020039750A1 (ja) * 2018-08-21 2021-06-03 日本製鉄株式会社 鋼管用ねじ継手
WO2020039750A1 (ja) 2018-08-21 2020-02-27 日本製鉄株式会社 鋼管用ねじ継手
US11391399B2 (en) 2018-08-21 2022-07-19 Nippon Steel Corporation Threaded connection for steel pipes
JP7184169B2 (ja) 2019-12-26 2022-12-06 Jfeスチール株式会社 管用ねじ継手
JPWO2021131177A1 (ja) * 2019-12-26 2021-12-23 Jfeスチール株式会社 管用ねじ継手
WO2021171826A1 (ja) * 2020-02-26 2021-09-02 Jfeスチール株式会社 継目無管およびその製造方法
JPWO2021171826A1 (ja) * 2020-02-26 2021-09-02
JP7156514B2 (ja) 2020-02-26 2022-10-19 Jfeスチール株式会社 継目無管およびその製造方法
WO2021171836A1 (ja) * 2020-02-27 2021-09-02 Jfeスチール株式会社 ステンレス鋼管およびその製造方法
JP6981573B1 (ja) * 2020-02-27 2021-12-15 Jfeスチール株式会社 ステンレス鋼管およびその製造方法
CN115151670A (zh) * 2020-02-27 2022-10-04 杰富意钢铁株式会社 不锈钢管及其制造方法
JP6981574B1 (ja) * 2020-02-27 2021-12-15 Jfeスチール株式会社 ステンレス鋼管およびその製造方法
WO2021171837A1 (ja) * 2020-02-27 2021-09-02 Jfeスチール株式会社 ステンレス鋼管およびその製造方法

Also Published As

Publication number Publication date
US20170122468A1 (en) 2017-05-04
EP3150895A4 (en) 2018-02-21
AR100655A1 (es) 2016-10-19
CN106461125B (zh) 2019-03-12
CA2947536C (en) 2019-02-26
RU2647169C1 (ru) 2018-03-14
CA2947536A1 (en) 2015-12-03
JPWO2015182128A1 (ja) 2017-04-20
CN106461125A (zh) 2017-02-22
EP3150895A1 (en) 2017-04-05
MX2016015584A (es) 2017-03-23
JP6366703B2 (ja) 2018-08-01

Similar Documents

Publication Publication Date Title
JP6366703B2 (ja) 鋼管用ねじ継手
US7900975B2 (en) Threaded joint for steel pipes
JP5690021B2 (ja) 管ねじ継手
EP1554518B2 (en) Threaded pipe with surface treatment
US6827996B2 (en) Threaded joint for steel pipes and process for the surface treatment thereof
JP6226923B2 (ja) 鋼管用ねじ継手
MX2014014207A (es) Junta rocascada tubular que tiene propiedades mejoradas de enrosque de alto par de torsion.
JP2006515394A (ja) 管のためのねじ込み継手
WO2020039750A1 (ja) 鋼管用ねじ継手
AU2013210284A1 (en) Box protector for a threaded joint for pipes
US12018777B2 (en) Threaded connection for steel pipe
RU2667919C1 (ru) Способ повышения герметичности резьбовых соединений обсадных и насосно-компрессорных (лифтовых) колонн
JP2002370067A (ja) 耐焼付き性に優れた鋼管用ねじ継手とその表面処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15800517

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016523149

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015800517

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015800517

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: IDP00201607354

Country of ref document: ID

ENP Entry into the national phase

Ref document number: 2947536

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15308846

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016025513

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/015584

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016151363

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112016025513

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20161031