WO2021131051A1 - 立方晶窒化硼素焼結体及びその製造方法 - Google Patents

立方晶窒化硼素焼結体及びその製造方法 Download PDF

Info

Publication number
WO2021131051A1
WO2021131051A1 PCT/JP2019/051547 JP2019051547W WO2021131051A1 WO 2021131051 A1 WO2021131051 A1 WO 2021131051A1 JP 2019051547 W JP2019051547 W JP 2019051547W WO 2021131051 A1 WO2021131051 A1 WO 2021131051A1
Authority
WO
WIPO (PCT)
Prior art keywords
boron nitride
group
sintered body
cubic boron
temperature
Prior art date
Application number
PCT/JP2019/051547
Other languages
English (en)
French (fr)
Inventor
真知子 阿部
久木野 暁
倫子 松川
Original Assignee
住友電工ハードメタル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電工ハードメタル株式会社 filed Critical 住友電工ハードメタル株式会社
Priority to CN201980103060.7A priority Critical patent/CN114845973A/zh
Priority to JP2020521471A priority patent/JP6940110B1/ja
Priority to KR1020227014181A priority patent/KR20220074911A/ko
Priority to US16/967,572 priority patent/US11434550B2/en
Priority to EP19957568.9A priority patent/EP4082994A4/en
Priority to PCT/JP2019/051547 priority patent/WO2021131051A1/ja
Publication of WO2021131051A1 publication Critical patent/WO2021131051A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/16Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on nitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • C04B35/5831Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride based on cubic boron nitrides or Wurtzitic boron nitrides, including crystal structure transformation of powder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/6262Milling of calcined, sintered clinker or ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6268Thermal treatment of powders or mixtures thereof other than sintering characterised by the applied pressure or type of atmosphere, e.g. in vacuum, hydrogen or a specific oxygen pressure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62685Treating the starting powders individually or as mixtures characterised by the order of addition of constituents or additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F2005/001Cutting tools, earth boring or grinding tool other than table ware
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/20Nitride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • C22C2026/003Cubic boron nitrides only

Definitions

  • the present disclosure relates to a cubic boron nitride sintered body and a method for producing the same.
  • Cubic boron nitride (hereinafter, also referred to as "cBN") is used in cutting tools and abrasion-resistant tools because it has extremely high hardness and is also excellent in thermal stability and chemical stability. ..
  • Patent Document 1 discloses a sintered body obtained by sintering cubic boron nitride particles in a bonding phase. Patent Document 1 has succeeded in improving wear resistance and fracture resistance by adjusting the composition of the bound phase.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2005-187260 (Patent Document 2) and International Publication No. 2005/066381 (Patent Document 3) describe a cubic boron nitride sintered body obtained by sintering cBN particles in a bonding phase (hereinafter referred to as “cBN sintered”). In (also referred to as "body”), it has succeeded in improving the abrasion resistance and the fracture resistance by adjusting the amount of the catalytic element in the cBN grains.
  • JP-A-2015-202980 Patent Document 4
  • JP-A-2015-202981 Patent Document 5
  • hexagonal boron nitride (hereinafter, also referred to as "hBN”) powder and binder powder are mixed.
  • hBN hexagonal boron nitride
  • a cBN sintered body obtained by sintering this under ultra-high temperature + ultra-high pressure conditions is disclosed. Since the cBN sintered body contains a small amount of wurtzite-type boron nitride (hereinafter referred to as "wBN”) and contains high-strength cBN particles, wear resistance and fracture resistance are improved. ..
  • wBN wurtzite-type boron nitride
  • the cubic boron nitride sintered body of the present disclosure is A cubic boron nitride sintered body comprising 40% by volume or more and 96% by volume or less of cubic boron nitride particles and 4% by volume or more and 60% by volume or less of a bonded phase.
  • the dislocation density of the cubic boron nitride particles is less than 1 ⁇ 10 15 / m 2, which is a cubic boron nitride sintered body.
  • the method for producing a cubic boron nitride sintered body of the present disclosure is the above-mentioned method for producing a cubic boron nitride sintered body.
  • the process of preparing hexagonal boron nitride powder and binder powder The hexagonal boron nitride powder and the binder powder are heated and pressurized to a temperature of 1900 ° C. or higher and 2400 ° C. or lower and a pressure of 8 GPa or higher by passing through the temperature and pressure in the stable region of wurtzite-type boron nitride.
  • the stable region of the wurtzite-type boron nitride is a region that simultaneously satisfies the following formula 1 and the following formula 2 when the temperature is T ° C. and the pressure is PGPa. Equation 1: P ⁇ -0.0037T + 11.301 Equation 2: P ⁇ -0.085T + 117
  • the temperature at which the wurtzite-type boron nitride enters the stable region is 600 ° C. or higher, which is a method for producing a cubic boron nitride sintered body.
  • FIG. 1 is a pressure-temperature phase diagram of boron nitride.
  • FIG. 2 is a diagram for explaining a method (pattern A) for producing a cubic boron nitride polycrystal according to an embodiment of the present disclosure.
  • FIG. 3 is a diagram for explaining a method (pattern B) for producing a cubic boron nitride polycrystal according to another embodiment of the present disclosure.
  • FIG. 4 is a diagram for explaining a conventional example of a method for producing a cubic boron nitride polycrystal.
  • FIG. 5 is a diagram for explaining a reference example of a method for producing a cubic boron nitride polycrystal.
  • FIG. 6 is a diagram showing a flowchart of a method for manufacturing a cubic boron nitride sintered body according to an embodiment of the present disclosure.
  • flake graphite cast iron (hereinafter, also referred to as "gray cast iron”) has been generally used.
  • FC300 or the like which has a higher tensile strength than FC200, tends to be used.
  • the ratio of vermicula cast iron and spheroidal graphite cast iron, which have higher strength than flake graphite cast iron is increasing.
  • FCD600 and FCD700 which have higher tensile strength than FCD450, tend to be used.
  • the demand for high-efficiency machining is accelerating in order to improve productivity. That is, even in high-efficiency machining of high-strength cast iron materials, there is a demand for a tool that has a long tool life and can be used here.
  • an object of the present invention is to provide a cubic boron nitride sintered body that enables a long tool life even in high-efficiency machining of a high-strength cast iron material when used as a tool material.
  • the cubic boron nitride sintered body of the present disclosure is A cubic boron nitride sintered body comprising 40% by volume or more and 96% by volume or less of cubic boron nitride particles and 4% by volume or more and 60% by volume or less of a bonded phase.
  • the dislocation density of the cubic boron nitride particles is less than 1 ⁇ 10 15 / m 2, which is a cubic boron nitride sintered body.
  • cubic boron nitride sintered body of the present disclosure is used as a tool material, it is possible to extend the life of the tool even in high-efficiency machining of a high-strength cast iron material.
  • the binding phase is -At least one selected from the group consisting of elemental substances, alloys, and intermetallic compounds selected from the group consisting of Group 4 elements, Group 5 elements, Group 6 elements, aluminum, silicon, cobalt, and nickel in the periodic table. Including or -A group consisting of at least one element selected from the group consisting of Group 4 elements, Group 5 elements, Group 6 elements, aluminum, silicon, cobalt and nickel in the periodic table, and nitrogen, carbon, boron and oxygen. Containing or containing a compound consisting of at least one element selected from the above, and at least one selected from the group consisting of solid solutions derived from the compound.
  • the method for producing a cubic boron nitride sintered body of the present disclosure is the above-mentioned method for producing a cubic boron nitride sintered body.
  • the process of preparing hexagonal boron nitride powder and binder powder The hexagonal boron nitride powder and the binder powder are heated and pressurized to a temperature of 1900 ° C. or higher and 2400 ° C. or lower and a pressure of 8 GPa or higher by passing through the temperature and pressure in the stable region of wurtzite-type boron nitride.
  • the stable region of the wurtzite-type boron nitride is a region that simultaneously satisfies the following formula 1 and the following formula 2 when the temperature is T ° C. and the pressure is PGPa. Equation 1: P ⁇ -0.0037T + 11.301 Equation 2: P ⁇ -0.085T + 117
  • the temperature at which the wurtzite-type boron nitride enters the stable region is 600 ° C. or higher, which is a method for producing a cubic boron nitride sintered body.
  • the present inventors observed the damaged state of the tool when a tool using a conventional cubic boron nitride sintered body was used for high-efficiency machining of a high-strength cast iron material, and investigated the cause.
  • the thermal conductivity of the cubic boron nitride sintered body is insufficient, so the temperature near the contact point with the work material rises, especially when the tool is used for high-efficiency machining of high-strength cast iron material.
  • flank wear is likely to progress.
  • the present inventors have conducted a more detailed study on the factors that affect the thermal conductivity of the cubic boron nitride sintered body. As a result, the present inventors newly found that the dislocation density of the cubic boron nitride particles affects the thermal conductivity of the cubic boron nitride sintered body and is closely related to the tool life. I found it.
  • the present inventors have completed the cubic boron nitride sintered body of the present disclosure and a method for producing the same.
  • any conventionally known atomic ratio is used unless the atomic ratio is particularly limited. It should be included and not necessarily limited to the stoichiometric range.
  • TiC the ratio of the number of atoms constituting TiC includes any conventionally known atomic ratio.
  • Embodiment 1 Cubic boron nitride sintered body
  • the cubic boron nitride sintered body according to the embodiment of the present disclosure is a cubic crystal comprising 40% by volume or more and 96% by volume or less of cubic boron nitride particles and 4% by volume or more and 60% by volume or less of a bonded phase.
  • the rearrangement density of the cubic boron nitride particles is less than 1 ⁇ 10 15 / m 2.
  • the cubic boron nitride sintered body of the present disclosure contains 40% by volume or more and 96% by volume or less of cBN particles having high hardness, strength and toughness. Therefore, it is presumed that the cubic boron nitride sintered body has excellent wear resistance and fracture resistance, and the tool life is extended.
  • the dislocation density of the cubic boron nitride particles is less than 1 ⁇ 10 15 / m 2.
  • the cubic boron nitride particles have improved thermal conductivity. Therefore, the thermal conductivity of the cubic boron nitride sintered body containing the cubic boron nitride particles is also improved. Therefore, even when a tool using the cubic boron nitride sintered body is used for high-efficiency machining of a high-strength cast iron material, the temperature near the contact point with the work material is unlikely to rise, and crater wear is suppressed. , It is presumed that the tool life will be extended.
  • the work material is not limited to this.
  • the work material include chrome molybdenum steel (SCM415), carbon steel for machine structure (S50C), high carbon chrome bearing steel (SUJ2, SUJ4), alloy tool steel (SKD11) and the like.
  • the cubic boron nitride sintered body of the present disclosure includes 40% by volume or more and 96% by volume or less of cubic boron nitride particles, and 4% by volume or more and 60% by volume or less of a bonded phase.
  • the cBN sintered body may contain unavoidable impurities due to raw materials, manufacturing conditions, and the like.
  • the lower limit of the content ratio of cBN particles in the cBN sintered body is 40% by volume or more, more preferably 45% by volume or more.
  • the upper limit of the content ratio of cBN particles in the cBN sintered body is 96% by volume or less, more preferably 90% by volume or less.
  • the content ratio of the cBN particles in the cBN sintered body is 40% by volume or more and 96% by volume or less, and more preferably 45% by volume or more and 90% by volume or less.
  • the lower limit of the content ratio of the bonded phase in the cBN sintered body is 4% by volume or more, more preferably 10% by volume or more.
  • the upper limit of the content ratio of the bonded phase in the cBN sintered body is 60% by volume or less, more preferably 55% by volume or less.
  • the content ratio of the bonded phase in the cBN sintered body is 4% by volume or more and 60% by volume or less, preferably 10% by volume or more and 55% by volume or less.
  • the content ratio (volume%) of cBN particles and the content ratio (volume%) of the bonded phase in the cBN sintered body are attached to the scanning electron microscope (SEM) (“JSM-7800F” (trade name) manufactured by JEOL Ltd.).
  • SEM scanning electron microscope
  • EDX energy dispersive X-ray analyzer
  • microstructure observation, element analysis, etc. are performed on the cBN sintered body. It can be confirmed by doing.
  • the specific measurement method is as follows.
  • an arbitrary position of the cBN sintered body is cut to prepare a sample including a cross section of the cBN sintered body.
  • a focused ion beam device, a cross-section polisher device, or the like can be used to prepare the cross section.
  • the cross section is observed by SEM at a magnification of 5000 to obtain a reflected electron image.
  • the region where the cBN particles are present is the black region, and the region where the bound phase is present is the gray region or the white region.
  • the reflected electron image is binarized using image analysis software (“WinROOF” of Mitani Shoji Co., Ltd.). From the image after the binarization process, the area ratio of the pixels derived from the dark field (pixels derived from the cBN particles) to the area of the measurement field of view is calculated. By regarding the calculated area ratio as a volume%, the content ratio (volume%) of the cBN particles can be obtained.
  • WinROOF image analysis software
  • the content ratio (volume%) of the coupled phase by calculating the area ratio of the pixels derived from the bright visual field (pixels derived from the coupled phase) to the area of the measurement visual field from the image after the binarization process. Can be done.
  • the fact that the pixels derived from the dark field are derived from the cBN particles can be confirmed by performing elemental analysis of the cBN sintered body by SEM-EDX.
  • the cubic boron nitride sintered body of the present disclosure may contain unavoidable impurities as long as the effects of the present disclosure are exhibited.
  • unavoidable impurities include hydrogen, oxygen, and carbon.
  • the content of the unavoidable impurities is preferably 0.1% by mass or less.
  • the content of unavoidable impurities can be measured by secondary ion mass spectrometry (SIMS).
  • the dislocation density of the cubic boron nitride particles contained in the cubic boron nitride sintered body of the present disclosure is less than 1 ⁇ 10 15 / m 2.
  • the cubic boron nitride particles have improved thermal conductivity as compared with the conventional cubic boron nitride particles. Therefore, the thermal conductivity of the cubic boron nitride sintered body containing the cubic boron nitride particles is also improved.
  • the upper limit of the dislocation density of the cubic boron nitride particles is less than 1 ⁇ 10 15 / m 2 , preferably 9.0 ⁇ 10 14 / m 2 or less, and more preferably 8.0 ⁇ 10 14 / m 2 or less.
  • the lower limit of the dislocation density is not particularly limited, but is 1 ⁇ 10 14 / m 2 or more from the viewpoint of manufacturing.
  • the dislocation density of cubic boron nitride particles is measured at a large synchrotron radiation facility (for example, SPring-8 (Hyogo Prefecture)). Specifically, it is measured by the following method.
  • all the bound phases are dissolved in fluorinated nitric acid, leaving only cBN particles.
  • the cBN particles are filled in a 0.3 mm ⁇ X-ray crystal analysis capillary (TOHO “Mark Tube” (trademark)) manufactured by TOHO to prepare a sealed test piece.
  • test piece was subjected to X-ray diffraction measurement under the following conditions, and the main orientations of cubic boron nitride (111), (200), (220), (311), (400), and (531). Obtain the line profile of the diffraction peak from each azimuth plane.
  • X-ray diffraction measurement conditions X-ray source: Synchrotron radiation Device condition: Detector MYTHEN Energy: 18 keV (wavelength: 0.6888 ⁇ ) Camera length: 573 mm Measurement peaks: (111), (200), (220), (311), (400), (531) of cubic boron nitride. However, if it is difficult to obtain a profile due to texture and orientation, the peak of the surface index is excluded. Measurement conditions: Make sure that the number of measurement points is 9 or more within the full width at half maximum corresponding to each measurement peak. The peak top intensity shall be 2000 counts or more. Since the hem of the peak is also used for analysis, the measurement range is about 10 times the full width at half maximum.
  • the line profile obtained by the above-mentioned X-ray diffraction measurement has a shape that includes both true spread due to physical quantities such as non-uniform strain of the sample and spread due to the device.
  • the device-derived components are removed from the measured line profile to obtain a true line profile.
  • the true line profile is obtained by fitting the obtained line profile and the device-derived line profile by a pseudo Voigt function and subtracting the device-derived line profile.
  • LaB 6 was used as a standard sample for removing the diffraction line spread caused by the device. Further, when synchrotron radiation having high parallelism is used, the diffraction line spread caused by the device can be regarded as zero.
  • the dislocation density is calculated by analyzing the obtained true line profile using the modified Williamson-Hall method and the modified Warren-Averbach method.
  • the modified Williamson-Hall method and the modified Warren-Averbach method are known line profile analysis methods used to determine the dislocation density.
  • ⁇ K is the half width of the line profile
  • D is the crystallite size
  • M is the arrangement parameter
  • b is the Burgers vector
  • is the dislocation density
  • K is the scattering vector
  • C in the above formula (I) is represented by the following formula (II).
  • C C h00 [1-q (h 2 k 2 + h 2 l 2 + k 2 l 2 ) / (h 2 + k 2 + l 2 ) 2 ] (II)
  • the coefficient q for each of the contrast factor C h00 and contrast factor in screw dislocations and edge dislocations using the calculation code ANIZC, slip system ⁇ 110> ⁇ 111 ⁇ , the elastic stiffness C 11 8 It is calculated as .44 GPa, C 12 is 1.9 GPa, and C 44 is 4.83 GPa.
  • the contrast factor C h00 is a spiral dislocation 0.203 and a blade dislocation 0.212.
  • the coefficients q with respect to the contrast factor are spiral dislocations 1.65 and blade dislocations 0.58.
  • the spiral dislocation ratio is fixed at 0.5
  • the blade dislocation ratio is fixed at 0.5.
  • lnA (L) lnA S ( L) - in ( ⁇ L 2 ⁇ b 2/2) ln (R e / L) (K 2 C) + O (K 2 C) 2 (IV) (the formula (IV), A (L) is the Fourier series, a S (L) is the Fourier series regarding crystallite size, L is shows a Fourier length.)
  • the bonding phase is -Solid units, alloys, and metals selected from the group consisting of Group 4 elements, Group 5 elements, Group 6 elements, aluminum, silicon, cobalt, and nickel (hereinafter, also referred to as "Group A") in the periodic table.
  • Group A Containing or containing at least one selected from the group consisting of compounds -At least one element selected from the group (Group A) consisting of Group 4 elements, Group 5 elements, Group 6 elements, aluminum, silicon, cobalt and nickel in the periodic table, nitrogen, carbon, boron and Containing or containing a compound consisting of at least one element selected from the group consisting of oxygen (hereinafter, also referred to as "group B") and at least one selected from the group consisting of a solid solution derived from the compound.
  • group B Containing or containing at least one selected from the group consisting of compounds -At least one element selected from the group (Group A) consisting of Group 4 elements, Group 5 elements, Group 6 elements, aluminum, silicon, cobalt and nickel in the periodic table.
  • (E) A compound composed of at least one element of a simple substance, an alloy, and an intermetallic compound of group A, at least one element selected from group A, and at least one element selected from group B, and the above. It consists of at least one selected from the group consisting of solid solutions derived from compounds.
  • (F) A compound composed of at least one element of a simple substance, an alloy, and an intermetallic compound of group A, at least one element selected from group A, and at least one element selected from group B, and the above. It contains at least one selected from the group consisting of solid solutions derived from compounds.
  • the coupled phase Since the coupled phase has a lower reactivity with iron than cBN, it plays a role of suppressing chemical wear and thermal wear in cutting high-strength cast iron materials. That is, when the cBN sintered body contains a bonded phase, the wear resistance of the high-strength cast iron material in high-efficiency machining is improved.
  • Group 4 elements of the periodic table include, for example, titanium (Ti), zirconium (Zr) and hafnium (Hf).
  • Group 5 elements include, for example, vanadium (V), niobium (Nb) and tantalum (Ta).
  • Group 6 elements include, for example, chromium (Cr), molybdenum (Mo) and tungsten (W).
  • first metal elements Group 4 elements, Group 5 elements, Group 6 elements, aluminum, silicon, cobalt and nickel are also referred to as "first metal elements”.
  • Examples of the alloy of the first metal element include Ti-Zr, Ti-Hf, Ti-V, Ti-Nb, Ti-Ta, Ti-Cr, and Ti-Mo.
  • Examples of the intermetallic compound of the first metal element include TiCr 2 , Ti 3 Al, and Co—Al.
  • Examples of the compound (nitride) containing the first metal element and nitrogen include titanium nitride (TiN), zirconium nitride (ZrN), hafnium nitride (HfN), vanadium nitride (VN), and niobide nitride (NbN).
  • Examples of the compound (carbide) containing the first metal element and carbon include titanium carbide (TiC), zirconium carbide (ZrC), hafnium carbide (HfC), vanadium carbide (VC), niobium carbide (NbC), and the like.
  • Examples thereof include tantalum carbide (TaC), chromium carbide (Cr 3 C 2 ), molybdenum carbide (MoC), tungsten carbide (WC), silicon carbide (SiC), and tungsten carbide-cobalt (W 2 Co 3 C).
  • Examples of the compound (boronized product) containing the first metal element and boron include titanium boborated (TiB 2 ), zirconium boron (ZrB 2 ), hafnium boborated (HfB 2 ), and vanadium boborated (VB). 2 ), Niob Boron (NbB 2 ), Tantal Boron (TaB 2 ), Chromium Boron (CrB), Molybdenum Boron (MoB), Tungsten Boron (WB), Aluminum Boron (AlB 2 ), Boron Examples thereof include cobalt (Co 2 B) and nickel boron (Ni 2 B).
  • Examples of the compound (oxide) containing the first metal element and oxygen include titanium oxide (TiO 2 ), zirconium oxide (ZrO 2 ), hafnium oxide (HfO 2 ), and vanadium oxide (V 2 O 5 ). , Nioboxide (Nb 2 O 5 ), Tantal Oxide (Ta 2 O 5 ), Chromium Oxide (Cr 2 O 3 ), Molybdenum Oxide (MoO 3 ), Tungsten Oxide (WO 3 ), Aluminum Oxide (Al 2 O 3 ) , Silicon oxide (SiO 2 ), cobalt oxide (CoO), nickel oxide (NiO).
  • Examples of the compound (carbonitride) containing the first metal element, carbon and nitrogen include titanium carbonitride (TiCN), zirconium nitride (ZrCN), hafnium carbonitide (HfCN), and titanium carbonitride niobium (TiNbCN). ), Titanium Nitride Zirconium Nitride (TiZrCN), Titanium Titanium Titanium Tantal (TiTaCN), Titanium Titanium Hafnium Carbonitride (TiHfCN), Titanium Titanium Nitride Chromium (TiCrCN).
  • Examples of the compound (oxynitride) composed of the first metal element, oxygen and nitrogen include titanium oxynitride (TiON), zirconium oxynitride (ZrON), hafnium oxynitride (HfON), and vanadium oxynitride (VON). ), Niobium Nitride (NbON), Tantalum Nitride (TaON), Chromium Nitride (CrON), Molybdenum Nitride (MoON), Titanium Nitride (WON), Aluminum Nitride (AlON), Silicon Nitride (SiAlON) Can be mentioned.
  • the solid solution derived from the above compound means a state in which two or more kinds of these compounds are dissolved in each other's crystal structure, and means an invasion type solid solution or a substitution type solid solution.
  • the above compounds may be used alone or in combination of two or more.
  • the total content of the compound and the solid solution derived from the compound in the bound phase is measured by the RIR method (Reference Intensity Ratio) by XRD.
  • the bound phase may contain other components in addition to the above compounds.
  • elements constituting other components include manganese (Mn) and rhenium (Re).
  • composition of the bonded phase contained in the cBN sintered body can be specified by XRD (X-ray diffraction measurement, X-ray Diffraction).
  • the cubic boron nitride sintered body of the present disclosure is preferably used for cutting tools, abrasion resistant tools, grinding tools and the like.
  • the cutting tool, the wear-resistant tool, and the grinding tool using the cubic boron nitride sintered body of the present disclosure may be entirely composed of the cubic boron nitride sintered body, or a part thereof (for example, a cutting tool). In the case of, only the cutting edge portion) may be composed of the cubic boron nitride sintered body. Further, a coating film may be formed on the surface of each tool.
  • Cutting tools include drills, end mills, replaceable cutting tips for drills, replaceable cutting tips for end mills, replaceable cutting tips for milling, replaceable cutting tips for turning, metal saws, gear cutting tools, and reamers. , Taps, cutting tools, etc.
  • wear-resistant tools include dies, scribers, scribing wheels, and dressers.
  • the grinding tool include a grinding wheel.
  • FIG. 1 is a pressure-temperature phase diagram of boron nitride.
  • 2 and 3 are diagrams for explaining a method for producing a cubic boron nitride sintered body according to an embodiment of the present disclosure.
  • FIG. 4 is a diagram for explaining a conventional example of a method for producing a cubic boron nitride sintered body.
  • FIG. 5 is a diagram for explaining a reference example of a method for producing a cubic boron nitride sintered body.
  • FIG. 6 is a diagram showing a flowchart of a method for manufacturing a cubic boron nitride sintered body according to an embodiment of the present disclosure.
  • the method for producing a cubic boron nitride sintered body according to the present embodiment is the method for producing a cubic boron nitride sintered body according to the first embodiment, and is also referred to as hexagonal boron nitride powder (hereinafter, also referred to as “hBN powder”). ) And the binder powder (hereinafter, also referred to as “preparation step”; shown by S1 in FIG. 6), and the hexagonal boron nitride powder and the binder powder are stabilized by the wurtzite type boron nitride. A step of heating and pressurizing to a temperature of 1900 ° C. or higher and 2400 ° C.
  • the stable region of wurtzite-type boron nitride is a region that simultaneously satisfies the following formula 1 and the following formula 2 when the temperature is T ° C. and the pressure is PGPa. Equation 1: P ⁇ -0.0037T + 11.301 Equation 2: P ⁇ -0.085T + 117
  • the temperature at which the wurtzite-type boron nitride enters the stable region is 600 ° C. or higher.
  • hexagonal boron nitride powder is subjected to 0.5 GPa while maintaining a temperature range of ⁇ 50 ° C. or higher and 100 ° C. or lower.
  • a step of pressurizing to a pressure of 6 GPa or less (hereinafter, also referred to as a “pretreatment step”; represented by S2 in FIG. 6) can be provided.
  • the cubic boron nitride sintered body obtained by the heating and pressurizing step is subjected to a temperature of 1900 ° C. or higher and 2400 ° C. or lower.
  • a step of holding for 10 minutes or more under a pressure condition of 8 GPa or more (hereinafter, also referred to as a “temperature and pressure holding step”; shown in S4 in FIG. 6) can be provided.
  • the boron nitride includes hexagonal boron nitride, which is a stable phase at normal temperature and pressure, cubic boron nitride, which is a stable phase at high temperature and high pressure, and from hexagonal boron nitride to cubic boron nitride.
  • hexagonal boron nitride which is a stable phase at normal temperature and pressure
  • cubic boron nitride which is a stable phase at high temperature and high pressure
  • hexagonal boron nitride to cubic boron nitride There are three phases of wurtzite-type boron nitride, which are semi-stable phases during the transition.
  • each phase can be represented by a linear function.
  • the temperature and pressure in the stable region of each phase can be indicated by using a linear function.
  • the temperature and pressure in the stable region of wurtzite-type boron nitride (referred to as “wBN stable region” in FIG. 1) are expressed in the following formula 1 and when the temperature is T ° C. and the pressure is PGPa. It is defined as the temperature and pressure that simultaneously satisfy the following equation 2. Equation 1: P ⁇ -0.0037T + 11.301 Equation 2: P ⁇ -0.085T + 117
  • the temperature and pressure in the stable region of hexagonal boron nitride are the following formula A and the following when the temperature is T ° C. and the pressure is PGPa. It is defined as the temperature and pressure that simultaneously satisfy the formula B, or the temperature and pressure that simultaneously satisfy the following formulas C and D.
  • Formula A P ⁇ -0.0037T + 11.301 Equation B: P ⁇ -0.085T + 117
  • Formula C P ⁇ 0.0027T + 0.3333
  • Formula D P ⁇ -0.085T + 117
  • the temperature and pressure in the stable region of cubic boron nitride are the following formula D and the following when the temperature is T ° C. and the pressure is PGPa. It is defined as the temperature and pressure that simultaneously satisfy the formula E.
  • Formula D P ⁇ -0.085T + 117
  • Formula E P ⁇ 0.0027T + 0.3333
  • the hexagonal boron nitride powder and the binder powder pass through the temperature and pressure within the stable region of the wurtzite-type boron nitride, and have a temperature of 1900 ° C. or higher and 2400 ° C. or lower, and 8 GPa. Heat and pressurize to the above pressure.
  • This temperature and pressure is the temperature and pressure at which cubic boron nitride having excellent tool performance can be obtained.
  • hexagonal boron nitride has been used to reach the temperature (1900 ° C. or higher and 2400 ° C. or lower) and pressure (8 GPa or higher) within the stable region of cubic boron nitride, which can obtain cubic boron nitride having excellent tool performance.
  • the path shown in FIG. 4 (hereinafter, also referred to as “the path of FIG. 4”) has been studied.
  • the pressure is raised from the starting temperature and starting pressure (normal temperature and pressure) to the pressure within the stable region of cubic boron nitride (for example, 10 GPa or more) (arrow E1 in FIG. 4), and then the temperature. Is raised to a temperature within the stable region of cubic boron nitride (eg, 1900 ° C. or higher) (arrow E2 in FIG. 4).
  • the control of the heating and pressurizing operation is simple and has been conventionally adopted.
  • the temperature at which the wurtzite-type boron nitride enters the stable region is less than 600 ° C., atomic diffusion is unlikely to occur, and there is no phase transition from hexagonal boron nitride to wurtzite-type boron nitride. Diffuse phase transition is the main. Therefore, in the obtained cubic boron nitride sintered body, lattice defects and coarse grains are likely to be present. Therefore, this cubic boron nitride tends to cause a sudden defect during machining and shortens the tool life.
  • hexagonal boron nitride undergoes a direct phase transition to cubic boron nitride, but since the crystal structures of hexagonal boron nitride and boron nitride are significantly different, lattice defects are likely to occur during the phase transition. Therefore, this cubic boron nitride tends to shorten the tool life. Further, since the crystal structures of hexagonal boron nitride and cubic boron nitride are significantly different, the conversion rate to cubic boron nitride is less than 98.5% by volume. Therefore, the performance of the tool using the obtained cubic boron nitride sintered body deteriorates.
  • Hexagonal boron nitride powder (hereinafter, also referred to as "hBN powder") and bonded phase powder are prepared as raw materials for the cubic boron nitride sintered body.
  • the hexagonal boron nitride powder preferably has a purity (content ratio of hexagonal boron nitride) of 98.5% or more, more preferably 99% or more, and most preferably 100%.
  • the particle size of the hexagonal boron nitride powder is not particularly limited, but can be, for example, 0.1 ⁇ m or more and 10 ⁇ m or less.
  • the binder powder is a raw material powder for the bonding phase contained in the cBN sintered body.
  • the binder powder is selected from the group consisting of elemental substances, alloys, and intermetal compounds selected from the group consisting of Group 4 elements, Group 5 elements, Group 6 elements, aluminum, silicon, cobalt, and nickel in the periodic table. A powder containing at least one of these can be used. When two or more kinds of binder powders are used, each binder powder is weighed so as to have a specified compounding ratio.
  • the mixing and pulverizing method is not particularly limited, but from the viewpoint of efficient and homogeneous mixing, mixing and pulverization with a medium such as a ball, jet mill mixing, pulverization and the like are preferable.
  • Each mixing and pulverizing method may be wet or dry.
  • the hBN powder prepared above and the binder powder are mixed using a wet ball mill mixture using ethanol, acetone or the like as a solvent to prepare a mixed powder.
  • the mixing ratio of the hexagonal boron nitride powder and the binder powder is adjusted so that the ratio of the cubic boron nitride particles in the finally obtained cubic boron nitride sintered body is 40% by volume or more and 96% by volume or less.
  • the solvent is removed by air drying after mixing. After that, heat treatment is performed to volatilize impurities such as water adsorbed on the surface of the mixed powder and clean the surface of the mixed powder.
  • the mixed powder is pressurized to a pressure of 0.5 GPa or more and 6 GPa or less while maintaining a temperature range of ⁇ 50 ° C. or higher and 100 ° C. or lower using an ultra-high pressure high temperature generator (arrow A1 in FIG. 2, FIG. Arrow B1) of 3.
  • the gaps between the mixed powders can be compressed and unnecessary gas existing in the mixed powders can be discharged to the outside of the system. Therefore, it is possible to prevent quality deterioration due to a chemical reaction between the gas and the mixed powder.
  • the density of the mixed powder can be increased to the extent that the outer shape hardly changes even if further pressurization is performed. Since the heating and pressurizing step can be performed in this state, stable production can be performed.
  • the temperature in the pretreatment step is preferably maintained in a temperature range of ⁇ 50 ° C. or higher and 100 ° C. or lower, and more preferably maintained in a temperature range of 0 ° C. or higher and 50 ° C. or lower.
  • the ultimate pressure in the pretreatment step is preferably 0.5 GPa or more and 5 GPa or less, and more preferably 1 GPa or more and 3 GPa or less.
  • the pretreatment step is an optional step. Therefore, after the above preparation step, the heating and pressurizing step described later can be performed without performing the pretreatment step.
  • the mixed powder is heated and pressurized through the temperature and pressure in the stable region of the wurtzite type boron nitride to a temperature of 1900 ° C. or higher and 2400 ° C. or lower and a pressure of 8 GPa or higher (arrow A2 in FIG. 2). , A3 and A4, arrows B2, B3 and B4 in FIG. 3).
  • the entry temperature of the wurtzite-type boron nitride into the stable region is 600 ° C. or higher.
  • the temperature at which the wurtzite-type boron nitride enters the stable region means the temperature at the time when the wurtzite-type boron nitride reaches the stable region for the first time in the heating and pressurizing step.
  • the temperature at the intersection with the line of (about 600 ° C.).
  • the hexagonal boron nitride powder after the pretreatment step is placed in the stable region of the wurtzite type boron nitride based on the ultimate temperature and the ultimate pressure reached at the end of the pretreatment step. It passes through the temperature and pressure and heats and pressurizes to a temperature of 1900 ° C. or higher and 2400 ° C. or lower and a pressure of 8 GPa or higher. Also in this case, in the heating and pressurizing step, the entry temperature of the wurtzite-type boron nitride into the stable region is 600 ° C. or higher.
  • the entry temperature of wurtzite-type boron nitride into the stable region is 600 ° C or higher.
  • hexagonal boron nitride powder is converted to wurtzite-type boron nitride in an environment where atomic diffusion is likely to occur, and then converted to cubic boron nitride. Therefore, in the obtained cubic boron nitride sintered body, lattice defects are reduced, and the strength and toughness of the cubic boron nitride sintered body are improved. Therefore, a tool using the cubic boron nitride sintered body can have a long tool life even in high-efficiency machining of a high-strength cast iron material.
  • the entry temperature of the wurtzite-type boron nitride into the stable region is preferably 900 ° C. or higher, more preferably 1200 ° C. or higher.
  • the upper limit of the inrush temperature can be, for example, 1500 ° C. or lower.
  • the ultimate pressure in the heating and pressurizing process is 8 GPa or more.
  • the upper limit of the ultimate pressure is not particularly limited, but can be, for example, 15 GPa or less.
  • the holding time of wurtzite-type boron nitride at temperature and pressure in the stable region can be, for example, 5 minutes or more and 60 minutes or less.
  • heating and pressurizing step in the routes shown in FIGS. 2 and 3, pressurization is performed after heating, and further heating is performed, but the present invention is not limited to this.
  • the method of heating and pressurizing is not particularly limited as long as the temperature at which the wurtzite-type boron nitride enters the stable region can be 600 ° C. or higher, and for example, heating and pressurization may be performed at the same time. ..
  • a cubic boron nitride sintered body can be obtained by performing a heating and pressurizing step on the hexagonal boron nitride powder.
  • the cubic boron nitride sintered body obtained by the heating and pressurizing step has a temperature of 1900 ° C. or higher and 2400 ° C. or lower (hereinafter, also referred to as “sintering temperature”) and 8 GPa.
  • the step of holding for 10 minutes or more can be performed under the above pressure (hereinafter, also referred to as “sintering pressure”) conditions.
  • the obtained cubic boron nitride sintered body has a large content ratio of cubic boron nitride, and a longer tool life can be achieved.
  • the sintering temperature in the temperature / pressure holding step is preferably 1900 ° C. or higher and 2400 ° C. or lower, and more preferably 2100 ° C. or higher and 2300 ° C. or lower.
  • the sintering pressure in the temperature-pressure holding step is preferably 8 GPa or more and 15 GPa or less, and more preferably 9 GPa or more and 12 GPa or less.
  • the sintering time in the temperature / pressure holding step is preferably 10 minutes or more and 60 minutes or less, and more preferably 10 minutes or more and 30 minutes or less.
  • the entry temperature of the wurtzite-type boron nitride into the stable region is about 1200 ° C.
  • hexagonal boron nitride powder is converted to wurtzite-type boron nitride in an environment where atomic diffusion is very likely to occur. For this reason, wurtzite-type boron nitride has few lattice defects and a very low dislocation density.
  • the wurtzite-type boron nitride is further heated and converted into a cubic boron nitride sintered body. Therefore, the obtained cubic boron nitride sintered body has a very low dislocation density.
  • the inrush temperature of wurtzite-type boron nitride into the stable region is about 600 ° C.
  • hexagonal boron nitride powder is converted to wurtzite-type boron nitride in an environment where atomic diffusion occurs.
  • wurtzite-type boron nitride has few lattice defects and a low dislocation density.
  • the wurtzite-type boron nitride is further heated and converted into a cubic boron nitride sintered body. Therefore, the obtained cubic boron nitride sintered body has a low dislocation density.
  • the cubic boron nitride sintered body obtained by the route of FIG. 2 is compared.
  • the dislocation density is lower. The reason for this is considered to be that the path of FIG. 2 has a higher temperature at which the wurtzite-type boron nitride enters the stable region, and atomic diffusion is more likely to occur.
  • the ratio of the cubic boron nitride particles in the finally obtained cubic boron nitride sintered body is as shown in Tables 1 and 2, "Cublic Boron Nitride Sinter". The ratio was adjusted to be as described in the "cBN particle (volume%)" column of "body”.
  • Hexagonal boron nitride powder and binder powder were mixed for 5 hours using a ball mill. This gave a mixed powder.
  • the mixed powder was heat-treated at a temperature of 2050 ° C. under a nitrogen atmosphere to remove impurities (high temperature purification treatment).
  • the mixed powder is placed in a molybdenum capsule, and at 25 ° C. (room temperature, described in the “First temperature” column of the “Pretreatment step” in Tables 1 and 2) using an ultra-high pressure high temperature generator, the pressure is 5 GPa ( Pressurized to (described in the "first pressurization” column of "pretreatment step” in Tables 1 and 2).
  • the pressure in the ultrahigh pressure and high temperature generator was pressurized to the pressure described in the "second pressurization” column of the "heat pressurization step” in Tables 1 and 2.
  • the temperature and pressure in the ultra-high pressure and high temperature generator changed from the temperature and pressure in the stable region of hexagonal boron nitride to the temperature and pressure in the stable region of wurtz ore-type boron nitride.
  • the inrush temperature of the wurtzite-type boron nitride into the stable region is the temperature described in the "second temperature (wBN inrushing temperature)" column of the "heating and pressurizing step” in Tables 1 and 2.
  • the temperature inside the ultra-high pressure high temperature generator was heated to the temperature described in the "third temperature” column of the “temperature and pressure holding step” in Tables 1 and 2. During this period, the pressure in the ultra-high pressure and high temperature generator was maintained as described in the "second pressurization” column of the “heat pressurization step” in Tables 1 and 2.
  • the sample 27 was pressurized to the pressure (10 GPa) described in the "second pressurization” column of the “heat pressurization step” in Table 2 while maintaining the first temperature (25 ° C.) in the pretreatment step. During this period, the temperature and pressure in the ultra-high pressure and high temperature generator changed from the temperature and pressure in the stable region of hexagonal boron nitride to the temperature and pressure in the stable region of wurtz ore-type boron nitride.
  • the entry temperature of the wurtzite-type boron nitride into the stable region is the temperature (25 ° C.) described in the “second temperature (wBN entry temperature)” column of the “heating and pressurizing step” in Table 2. )Met.
  • the temperature inside the ultra-high pressure high temperature generator was heated to the temperature (2200 ° C.) described in the "third temperature” column of the “temperature and pressure holding step” in Table 2.
  • the pressure in the ultra-high pressure and high temperature generator was maintained at the pressure (10 GPa) described in the "second pressurization” column of the “heat pressurization step” in Table 2.
  • Example 28 The preparation step and the pretreatment step were carried out in the same manner as in Sample 4. After the pretreatment step, the temperature and pressure in the ultra-high pressure high temperature generator are entered in the "third temperature” and “third pressure” columns of the "temperature and pressure holding step” in Table 2 without passing through the wBN stable region. The mixture was heated and pressurized to the described temperature and pressure, and held at the temperature and pressure for 30 minutes to obtain a cubic boron nitride sintered body of sample 28.
  • composition of bound phase The composition of the bound phase in the cBN sintered body was specified by XRD. The results are shown in the column of "bonded phase composition” of "cubic boron nitride sintered body” in Tables 1 and 2.
  • a cutting tool (base material shape: CNGA120408, cutting edge treatment: T01215) was prepared using the cBN sintered body of each sample prepared. Using this, a cutting test was carried out under the following cutting conditions. The following cutting conditions are high-speed continuous machining of ductile cast iron, and correspond to high-efficiency machining of high-strength cast iron material.
  • Work material FCD700 (hardness: 250HB, external cutting of a round bar with a V-groove on the outer circumference)
  • Cutting speed: Vc 500m / min
  • Feed amount: f 0.25 mm / rev.
  • Coolant WET Cutting method: Continuous end face cutting Evaluation method: Cutting time The cutting edge was observed every 1 minute, and the cutting time when the chip size reached 0.1 mm or more was defined as the tool life. The results are shown in the "Tool life (minutes)" column of Tables 1 and 2.
  • the cBN sintered body of Sample 1 has a content ratio of cBN particles of less than 40% by volume, and corresponds to a comparative example.
  • the cBN sintered body of Sample 8 has a cBN particle content of more than 96% by volume and a dislocation density of cBN particles of 1 ⁇ 10 15 / m 2 or more, which corresponds to a comparative example.
  • the cBN sintered bodies of Samples 26 to 28 have a dislocation density of cBN particles of 1 ⁇ 10 15 / m 2 or more, and correspond to a comparative example.
  • the dislocation density of the cBN particles is small, but the content ratio of the cBN particles is as low as 35% by volume, so that the hardness is insufficient and it is presumed that defects are likely to occur. Since the content ratio of cBN particles in Sample 8 is high, it is presumed that the dislocation density of cBN particles is high and defects are likely to occur.
  • Sample 28 did not pass through the stable region of wBN in the manufacturing process, the dislocation density of cBN particles increased, and the tool life decreased.
  • hBN is directly converted to cBN in the manufacturing process, but since the crystal structures of hBN and cBN are significantly different, lattice defects are likely to occur during the phase transition, and it is considered that the dislocation density is increased.
  • Sample 4 is the same cBN sintered body as Sample 4 of Test Example 1 described above.
  • Example 29> (Preparation process) A cubic boron nitride powder having an average particle diameter of 2 ⁇ m (denoted as “cBN” in Table 3) and a binder powder having the composition shown in the “Binder powder” column of the “Preparation step” in Table 3 were prepared.
  • cBN powder one prepared by a method using a known catalyst was prepared.
  • cubic boron nitride powder is produced by treating hexagonal boron nitride and a catalyst under high temperature and high pressure, which are thermally stable conditions of cBN.
  • a catalyst an alkali metal element (lithium), an alkaline earth metal element (magnesium, calcium, strontium, berylium, barium) and the like are generally used. Therefore, the obtained cubic boron nitride powder contains a catalytic element.
  • the mixing ratio of the cubic boron nitride powder and the binder powder is as follows:
  • the ratio of the cubic boron nitride particles is as shown in the "cubic boron nitride sintered body" in Table 3.
  • the ratio was adjusted to be as described in the "cBN particle (volume%)" column.
  • the cubic boron nitride powder and the binder powder were mixed for 5 hours using a ball mill. This gave a mixed powder.
  • the mixed powder was heat-treated at a temperature of 2050 ° C. under a nitrogen atmosphere to remove impurities (high temperature purification treatment).
  • Pretreatment process The mixed powder is placed in a molybdenum capsule, and at 25 ° C. (room temperature, described in the “First temperature” column of “Pretreatment step” in Table 3) using an ultra-high pressure high temperature generator, the pressure is 5 GPa (Table 3). Pressurized to (described in the "first pressurization” column of the "pretreatment step”).
  • the temperature inside the ultra-high pressure high temperature generator was heated to 1400 ° C. (listed in the "third temperature” column of the “temperature and pressure holding step” in Table 3). During this period, the pressure in the ultra-high pressure and high temperature generator was maintained at 6 GPa (described in the "second pressurization” column of the “heat pressurization step” in Table 3).
  • Sample 30 is the same as Sample 4 except that, instead of hBN powder, reverse-transformed hexagonal boron nitride powder (hereinafter, also referred to as “reverse-transformed hBN powder”) prepared by the following procedure was used as the raw material powder.
  • a cubic boron nitride sintered body was prepared by the above method.
  • the inversely transformed hBN powder was prepared by subjecting the cubic boron nitride powder prepared in Sample 29 to heat treatment at 1600 ° C. and inversely converting cBN to hBN.
  • Catalyst element content The content of the catalytic element in the cBN particles of the produced cBN sintered body was measured by high-frequency inductive plasma emission spectrometry (ICP emission spectroscopic analysis) and equipment used: "ICPS-8100" (trademark) manufactured by Shimadzu Corporation. .. Specifically, it was measured by the following procedure.
  • the cubic boron nitride sintered body was immersed in fluorinated nitric acid for 48 hours in a closed container, and the bonded phase was dissolved in fluorinated nitric acid.
  • High-frequency inductive plasma emission spectrometry was performed on the cubic boron nitride particles remaining in the nitrate, and the content of each catalytic element was measured.
  • a cutting tool (base material shape: CNGA120408, cutting edge treatment T01215) was prepared using the cBN sintered body of each sample prepared. Using this, a cutting test was carried out under the same cutting conditions as in Test Example 1. The cutting condition is high-speed continuous machining of ductile cast iron, and corresponds to high-efficiency machining of high-strength cast iron material. The results are shown in the "Tool Life” column of Table 3.
  • the cBN sintered body of Sample 29 has a dislocation density of cBN particles of 1 ⁇ 10 15 / m 2 or more, and corresponds to a comparative example.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Products (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

40体積%以上96体積%以下の立方晶窒化硼素粒子と、4体積%以上60体積%以下の結合相と、を備える立方晶窒化硼素焼結体であって、立方晶窒化硼素粒子の転位密度は、1×1015/m未満である。

Description

立方晶窒化硼素焼結体及びその製造方法
 本開示は、立方晶窒化硼素焼結体及びその製造方法に関する。
 立方晶窒化硼素(以下、「cBN」とも記す。)は、非常に高い硬度を有するとともに、熱的安定性及び化学的安定性にも優れることから、切削工具や耐磨工具に利用されている。
 国際公開第2012/053375号(特許文献1)には、立方晶窒化硼素粒子を結合相で焼結した焼結体が開示されている。特許文献1では、結合相の組成を調整することにより、耐摩耗性及び耐欠損性を改善させることに成功している。
 特開2005-187260号公報(特許文献2)及び国際公開第2005/066381号(特許文献3)には、cBN粒子を結合相で焼結した立方晶窒化硼素焼結体(以下「cBN焼結体」とも記す。)において、cBN粒内の触媒元素量を調整することにより、耐摩耗性及び耐欠損性を改善させることに成功している。
 特開2015-202980号公報(特許文献4)及び特開2015-202981号公報(特許文献5)には、六方晶窒化硼素(以下、「hBN」とも記す。)粉末と結合材粉末を混合し、これを超々高温+超々高圧条件下で焼結して得られるcBN焼結体が開示されている。該cBN焼結体は、少量のウルツ鉱型窒化硼素(以下、「wBN」と記す。)を含有し、かつ高強度のcBN粒子を含むため、耐摩耗性及び耐欠損性が向上している。
国際公開第2012/053375号 特開2005-187260号公報 国際公開第2005/066381号 特開2015-202980号公報 特開2015-202981号公報
 本開示の立方晶窒化硼素焼結体は、
 40体積%以上96体積%以下の立方晶窒化硼素粒子と、4体積%以上60体積%以下の結合相と、を備える立方晶窒化硼素焼結体であって、
 前記立方晶窒化硼素粒子の転位密度は、1×1015/m未満である、立方晶窒化硼素焼結体である。
 本開示の立方晶窒化硼素焼結体の製造方法は、上記の立方晶窒化硼素焼結体の製造方法であって、
 六方晶窒化硼素粉末及び結合材粉末を準備する工程と、
 前記六方晶窒化硼素粉末及び前記結合材粉末を、ウルツ鉱型窒化硼素の安定領域内の温度及び圧力を通過して、1900℃以上2400℃以下の温度、及び、8GPa以上の圧力まで加熱加圧する工程と、を備え、
 前記ウルツ鉱型窒化硼素の安定領域は、温度をT℃、圧力をPGPaとした時に、下記式1及び下記式2を同時に満たす領域であり、
式1:P≧-0.0037T+11.301
式2:P≦-0.085T+117
 前記加熱加圧する工程において、前記ウルツ鉱型窒化硼素の安定領域への突入温度は600℃以上である、立方晶窒化硼素焼結体の製造方法である。
図1は、窒化硼素の圧力-温度相図である。 図2は、本開示の一実施形態に係る立方晶窒化硼素多結晶体の製造方法(パターンA)を説明するための図である。 図3は、本開示の他の一実施形態に係る立方晶窒化硼素多結晶体の製造方法(パターンB)を説明するための図である。 図4は、立方晶窒化硼素多結晶体の製造方法の従来例を説明するための図である。 図5は、立方晶窒化硼素多結晶体の製造方法の参考例を説明するための図である。 図6は、本開示の一実施形態に係る立方晶窒化硼素焼結体の製造方法のフローチャートを示す図である。
 [本開示が解決しようとする課題]
 近年自動車産業において、自動車の高性能化と軽量化の両立を狙い、薄肉でも高強度である鋳鉄材料を使用するケースが増えている。
 鋳鉄材料としては、一般的に片状黒鉛鋳鉄(以下、「ねずみ鋳鉄」とも記す。)が用いられてきた。近年、片状黒鉛鋳鉄の中でも、FC200よりも引張強度の高い、FC300等が用いられる傾向がある。また、片状黒鉛鋳鉄より高強度のバーミキュラ鋳鉄や球状黒鉛鋳鉄などの使用比率も増大している。更に、球状黒鉛鋳鉄の中でも、FCD450よりも引張強度の高い、FCD600やFCD700が用いられる傾向がある。
 これらの材料変更に加え、生産性を向上させる為に高能率加工の要望が増大する傾向も加速している。つまり、高強度鋳鉄材の高能率加工においても、長い工具寿命を有するこことのできる工具が求められている。
 そこで、本目的は、工具材料として用いた場合に、高強度鋳鉄材の高能率加工においても、工具の長寿命化を可能とする立方晶窒化硼素焼結体を提供することを目的とする。
 [本開示の効果]
 本開示の立方晶窒化硼素焼結体は、工具材料として用いた場合に、高強度鋳鉄材の高能率加工においても、工具の長寿命化を可能とすることができる。
 [実施形態の概要]
 最初に本開示の実施態様を列記して説明する。
 (1)本開示の立方晶窒化硼素焼結体は、
 40体積%以上96体積%以下の立方晶窒化硼素粒子と、4体積%以上60体積%以下の結合相と、を備える立方晶窒化硼素焼結体であって、
 前記立方晶窒化硼素粒子の転位密度は、1×1015/m未満である、立方晶窒化硼素焼結体である。
 本開示の立方晶窒化硼素焼結体は、工具材料として用いた場合に、高強度鋳鉄材の高能率加工においても、工具の長寿命化を可能とすることができる。
 (2)前記結合相は、
 ・周期律表の第4族元素、第5族元素、第6族元素、アルミニウム、珪素、コバルト及びニッケルからなる群より選ばれる単体、合金、金属間化合物からなる群より選ばれる少なくとも1種を含み、又は、
 ・周期律表の第4族元素、第5族元素、第6族元素、アルミニウム、珪素、コバルト及びニッケルからなる群より選ばれる少なくとも1種の元素と、窒素、炭素、硼素及び酸素からなる群より選ばれる少なくとも1種の元素とからなる化合物、及び、前記化合物由来の固溶体からなる群より選ばれる少なくとも1種とを含み、又は、
 ・周期律表の第4族元素、第5族元素、第6族元素、アルミニウム、珪素、コバルト及びニッケルからなる群より選ばれる単体、合金、金属間化合物からなる群より選ばれる少なくとも1種、並びに、周期律表の第4族元素、第5族元素、第6族元素、アルミニウム、珪素、コバルト及びニッケルからなる群より選ばれる少なくとも1種の元素と、窒素、炭素、硼素及び酸素からなる群より選ばれる少なくとも1種の元素とからなる化合物、及び、前記化合物由来の固溶体からなる群より選ばれる少なくとも1種を含むことが好ましい。
 これによると、工具寿命がより長くなる。
 (3)本開示の立方晶窒化硼素焼結体の製造方法は、上記の立方晶窒化硼素焼結体の製造方法であって、
 六方晶窒化硼素粉末及び結合材粉末を準備する工程と、
 前記六方晶窒化硼素粉末及び前記結合材粉末を、ウルツ鉱型窒化硼素の安定領域内の温度及び圧力を通過して、1900℃以上2400℃以下の温度、及び、8GPa以上の圧力まで加熱加圧する工程と、を備え、
 前記ウルツ鉱型窒化硼素の安定領域は、温度をT℃、圧力をPGPaとした時に、下記式1及び下記式2を同時に満たす領域であり、
式1:P≧-0.0037T+11.301
式2:P≦-0.085T+117
 前記加熱加圧する工程において、前記ウルツ鉱型窒化硼素の安定領域への突入温度は600℃以上である、立方晶窒化硼素焼結体の製造方法である。
 これによると、工具材料として用いた場合に、高強度鋳鉄材の高能率加工においても、工具の長寿命化を可能とすることができる立方晶窒化硼素焼結体を得ることができる。
 [実施形態の詳細]
 本発明者らは、まず、従来の立方晶窒化硼素焼結体を用いた工具を高強度鋳鉄材の高能率加工に用いた場合の工具の損傷状態を観察し、その原因を検討した。その結果、立方晶窒化硼素焼結体の熱伝導率が不足しているため、特に工具を高強度鋳鉄材の高能率加工に用いた場合、被削材との接触点付近の温度が上昇し、逃げ面摩耗が進行しやすいことを新たに見出した。
 本発明者らは、立方晶窒化硼素焼結体の熱伝導率に影響を与える要因について、更に詳細な検討を行った。その結果、本発明者らは、立方晶窒化硼素粒子の転位密度が、立方晶窒化硼素焼結体の熱伝導率に影響を与えており、工具寿命と密接に関係していることを新たに見出した。
 本発明者らは上記の知見を踏まえて鋭意検討の結果、本開示の立方晶窒化硼素焼結体及びその製造方法を完成させた。
 以下に、本開示の立方晶窒化硼素焼結体及びその製造方法の具体例を記載する本明細書において化合物などを化学式で表す場合、原子比を特に限定しないときは従来公知のあらゆる原子比を含むものとし、必ずしも化学量論的範囲のもののみに限定されるべきではない。たとえば「TiC」と記載されている場合、TiCを構成する原子数の比は、従来公知のあらゆる原子比が含まれる。
 ≪実施形態1:立方晶窒化硼素焼結体≫
 本開示の一実施形態に係る立方晶窒化硼素焼結体は、40体積%以上96体積%以下の立方晶窒化硼素粒子と、4体積%以上60体積%以下の結合相と、を備える立方晶窒化硼素焼結体であって、立方晶窒化硼素粒子の転位密度は、1×1015/m未満である。
 本開示の立方晶窒化硼素焼結体は、工具材料として用いた場合に、特に高強度鋳鉄材の高能率加工においても、工具の長寿命化を可能とすることができる。この理由は、下記の(i)及び(ii)の通りと推察される。
 (i)本開示の立方晶窒化硼素焼結体は、硬度、強度及び靱性が高いcBN粒子を40体積%以上96体積%以下含む。このため、立方晶窒化硼素焼結体は優れた耐摩耗性及び耐欠損性を有し、工具寿命が長くなると推察される。
 (ii)本開示の立方晶窒化硼素焼結体において、立方晶窒化硼素粒子の転位密度は、1×1015/m未満である。該立方晶窒化硼素粒子は、熱伝導率が向上している。このため、該立方晶窒化硼素粒子を含む立方晶窒化硼素焼結体も熱伝導率が向上している。よって、該立方晶窒化硼素焼結体を用いた工具を高強度鋳鉄材の高能率加工に用いた場合においても、被削材との接触点付近の温度が上昇しにくく、クレーター摩耗が抑制され、工具寿命が長くなると推察される。
 なお、上記では本開示の立方晶窒化硼素焼結体を用いた工具は、高強度鋳鉄材の高能率加工において長い工具寿命を有することを説明したが、被削材はこれに限定されない。被削材としては、クロムモリブデン鋼(SCM415)、機械構造用炭素鋼(S50C)、高炭素クロム軸受鋼(SUJ2、SUJ4)、合金工具鋼(SKD11)等が挙げられる。
 (立方晶窒化硼素焼結体の組成)
 本開示の立方晶窒化硼素焼結体は、40体積%以上96体積%以下の立方晶窒化硼素粒子と、4体積%以上60体積%以下の結合相と、を備える。なお、cBN焼結体は、原材料、製造条件等に起因する不可避不純物を含み得る。
 cBN焼結体中のcBN粒子の含有割合の下限は40体積%以上であり、45体積%以上がより好ましい。cBN焼結体中のcBN粒子の含有割合の上限は96体積%以下であり、90体積%以下がより好ましい。cBN焼結体中のcBN粒子の含有割合は、40体積%以上96体積%以下であり、45体積%以上90体積%以下がより好ましい。
 cBN焼結体中の結合相の含有割合の下限は4体積%以上であり、10体積%以上がより好ましい。cBN焼結体中の結合相の含有割合の上限は60体積%以下であり、55体積%以下がより好ましい。cBN焼結体中の結合相の含有割合は、4体積%以上60体積%以下であり、10体積%以上55体積%以下が好ましい。
 cBN焼結体におけるcBN粒子の含有割合(体積%)及び結合相の含有割合(体積%)は、走査電子顕微鏡(SEM)(日本電子社製の「JSM-7800F」(商品名))付帯のエネルギー分散型X線分析装置(EDX)(Octane Elect(オクタンエレクト) EDS システム)(以下「SEM-EDX」とも記す。)を用いて、cBN焼結体に対し、組織観察、元素分析等を実施することによって確認することができる。具体的な測定方法は、下記の通りである。
 まず、cBN焼結体の任意の位置を切断し、cBN焼結体の断面を含む試料を作製する。断面の作製には、集束イオンビーム装置、クロスセクションポリッシャ装置等を用いることができる。次に、上記断面をSEMにて5000倍で観察して、反射電子像を得る。反射電子像においては、cBN粒子が存在する領域が黒色領域となり、結合相が存在する領域が灰色領域又は白色領域となる。
 次に、上記反射電子像に対して画像解析ソフト(三谷商事(株)の「WinROOF」)を用いて二値化処理を行う。二値化処理後の画像から、測定視野の面積に占める暗視野に由来する画素(cBN粒子に由来する画素)の面積比率を算出する。算出された面積比率を体積%とみなすことにより、cBN粒子の含有割合(体積%)を求めることができる。
 二値化処理後の画像から、測定視野の面積に占める明視野に由来する画素(結合相に由来する画素)の面積比率を算出することにより、結合相の含有割合(体積%)を求めることができる。
 出願人が測定した限りでは、同一の試料においてcBN焼結体におけるcBN粒子の含有割合(体積%)及び結合相の含有割合(体積%)を測定する限り、測定視野の選択個所を変更して複数回算出しても、測定結果のばらつきはほとんどなく、任意に測定視野を設定しても恣意的にはならないことが確認された。
 なお、暗視野に由来する画素がcBN粒子に由来することは、cBN焼結体に対してSEM-EDXによる元素分析を行うことにより確認することができる。
 (不可避不純物)
 本開示の立方晶窒化硼素焼結体は、本開示の効果を示す範囲において不可避不純物を含んでいても構わない。不可避不純物としては、例えば、水素、酸素、炭素を挙げることができる。立方晶窒化硼素焼結体が不可避不純物を含む場合は、不可避不純物の含有量は0.1質量%以下であることが好ましい。不可避不純物の含有量は、二次イオン質量分析(SIMS)により測定することができる。
 ≪立方晶窒化硼素粒子≫
 (転位密度)
 本開示の立方晶窒化硼素焼結体に含まれる立方晶窒化硼素粒子の転位密度は、1×1015/m未満である。該立方晶窒化硼素粒子は、従来の立方晶窒化硼素粒子に比べて熱伝導率が向上している。このため、該立方晶窒化硼素粒子を含む立方晶窒化硼素焼結体も熱伝導率が向上している。よって、該立方晶窒化硼素焼結体を用いた工具は、高強度鋳鉄材の高能率加工に用いた場合においても、被削材との接触点付近の温度が上昇しにくく、逃げ面摩耗が抑制され、工具寿命が長くなると推察される。
 立方晶窒化硼素粒子の転位密度の上限は1×1015/m未満であり、9.0×1014/m以下が好ましく、8.0×1014/m以下が更に好ましい。転位密度の下限は特に限定されないが、製造上の観点から、1×1014/m以上である。
 本明細書において、立方晶窒化硼素粒子の転位密度は大型放射光施設(例えば、SPring-8(兵庫県))において測定される。具体的には下記の方法で測定される。
 立方晶窒化硼素焼結体サンプルを密閉容器内で、140℃の弗硝酸(弗酸:硝酸=5:5(体積比))に48時間浸漬する。これにより、結合相は全て弗硝酸に溶解し、cBN粒子のみが残る。該cBN粒子をTOHO製の0.3mmΦのX線結晶解析用キャピラリー(TOHO製「マークチューブ」(商標))に充填し、封じ切り試験体とする。
 該試験体について、下記の条件でX線回折測定を行い、立方晶窒化硼素の主要な方位である(111)、(200)、(220)、(311)、(400)、(531)の各方位面からの回折ピークのラインプロファイルを得る。
 (X線回折測定条件)
 X線源:放射光
 装置条件:検出器MYTHEN
 エネルギー:18keV(波長:0.6888Å)
 カメラ長:573mm
 測定ピーク:立方晶窒化硼素の(111)、(200)、(220)、(311)、(400)、(531)の6本。ただし、集合組織、配向によりプロファイルの取得が困難な場合は、その面指数のピークを除く。
 測定条件:各測定ピークに対応する半値全幅中に、測定点が9点以上となるようにする。ピークトップ強度は2000counts以上とする。ピークの裾も解析に使用するため、測定範囲は半値全幅の10倍程度とする。
 上記のX線回折測定により得られるラインプロファイルは、試料の不均一ひずみなどの物理量に起因する真の拡がりと、装置起因の拡がりの両方を含む形状となる。不均一ひずみや結晶子サイズを求めるために、測定されたラインプロファイルから、装置起因の成分を除去し、真のラインプロファイルを得る。真のラインプロファイルは、得られたラインプロファイルおよび装置起因のラインプロファイルを擬Voigt関数によりフィッティングし、装置起因のラインプロファイルを差し引くことにより得る。装置起因の回折線拡がりを除去するための標準サンプルとしては、LaBを用いた。また、平行度の高い放射光を用いる場合は、装置起因の回折線拡がりは0とみなすこともできる。
 得られた真のラインプロファイルを修正Williamson-Hall法及び修正Warren-Averbach法を用いて解析することによって転位密度を算出する。修正Williamson-Hall法及び修正Warren-Averbach法は、転位密度を求めるために用いられている公知のラインプロファイル解析法である。
 修正Williamson-Hall法の式は、下記式(I)で示される。
Figure JPOXMLDOC01-appb-M000001
(上記式(I)において、ΔKはラインプロファイルの半値幅、Dは結晶子サイズ、Mは配置パラメータ、bはバーガースベクトル、ρは転位密度、Kは散乱ベクトル、O(KC)はKCの高次項、Cはコントラストファクターの平均値を示す。)
 上記式(I)におけるCは、下記式(II)で表される。
 C=Ch00[1-q(h+h+k)/(h+k+l] (II)
 上記式(II)において、らせん転位と刃状転位におけるそれぞれのコントラストファクターCh00およびコントラストファクターに関する係数qは、計算コードANIZCを用い、すべり系が<110>{111}、弾性スティフネスC11が8.44GPa、C12が1.9GPa、C44が4.83GPaとして求める。コントラストファクターCh00は、らせん転位0.203であり、刃状転位0.212である。コントラストファクターに関する係数qは、らせん転位1.65であり、刃状転位0.58である。なお、らせん転位比率は0.5、刃状転位比率は0.5に固定する。
 また、転位と不均一ひずみの間にはコントラストファクターCを用いて下記式(III)の関係が成り立つ。
 <ε(L)>=(ρCb/4π)ln(R/L) (III)
(上記式(III)において、Rは転位の有効半径を示す。)
 上記式(III)の関係と、Warren-Averbachの式より、下記式(IV)の様に表すことができ、修正Warren-Averbach法として、転位密度ρ及び結晶子サイズを求めることができる。
 lnA(L)=lnA(L)-(πLρb/2)ln(R/L)(KC)+O(KC) (IV)(上記式(IV)において、A(L)はフーリエ級数、A(L)は結晶子サイズに関するフーリエ級数、Lはフーリエ長さを示す。)
 修正Williamson-Hall法及び修正Warren-Averbach法の詳細は、“T.Ungar and A.Borbely,“The effect of dislocation contrast on x-ray line broadening:A new approach to line profile analysis”Appl.Phys.Lett.,vol.69,no.21,p.3173,1996.”及び“T.Ungar,S.Ott,P.Sanders,A.Borbely,J.Weertman,“Dislocations,grain size and planar faults in nanostructured copper determined by high resolution X-ray diffraction and a new procedure of peak profile analysis”Acta Mater.,vol.46,no.10,pp.3693-3699,1998.”に記載されている。
 出願人が測定した限りでは、同一の試料においてcBN粒子の転位密度を測定する限り、測定範囲の選択個所を変更して複数回算出しても、測定結果のばらつきはほとんどなく、任意に測定視野を設定しても恣意的にはならないことが確認された。
 ≪結合相≫
 本開示のcBN焼結体において、結合相は、
 ・周期律表の第4族元素、第5族元素、第6族元素、アルミニウム、珪素、コバルト及びニッケルからなる群(以下、「群A」とも記す。)より選ばれる単体、合金、金属間化合物からなる群より選ばれる少なくとも1種を含み、又は、
 ・周期律表の第4族元素、第5族元素、第6族元素、アルミニウム、珪素、コバルト及びニッケルからなる群(群A)より選ばれる少なくとも1種の元素と、窒素、炭素、硼素及び酸素からなる群(以下、「群B」とも記す。)より選ばれる少なくとも1種の元素とからなる化合物、及び、前記化合物由来の固溶体からなる群より選ばれる少なくとも1種とを含み、又は、
 ・周期律表の第4族元素、第5族元素、第6族元素、アルミニウム、珪素、コバルト及びニッケルからなる群(群A)より選ばれる単体、合金、金属間化合物からなる群より選ばれる少なくとも1種、並びに、周期律表の第4族元素、第5族元素、第6族元素、アルミニウム、珪素、コバルト及びニッケルからなる群(群A)より選ばれる少なくとも1種の元素と、窒素、炭素、硼素及び酸素からなる群(群B)より選ばれる少なくとも1種の元素とからなる化合物、及び、前記化合物由来の固溶体からなる群より選ばれる少なくとも1種を含む。すなわち、結合相は、下記の(a)~(f)のいずれかの形態とすることができる。
 (a)群Aの単体、合金、金属間化合物の少なくとも1種からなる。
 (b)群Aの単体、合金、金属間化合物の少なくとも1種を含む。
 (c)群Aより選ばれる少なくとも1種の元素と、群Bより選ばれる少なくとも1種の元素とからなる化合物、及び、前記化合物由来の固溶体からなる群より選ばれる少なくとも1種からなる。
 (d)群Aより選ばれる少なくとも1種の元素と、群Bより選ばれる少なくとも1種の元素とからなる化合物、及び、前記化合物由来の固溶体からなる群より選ばれる少なくとも1種を含む。
 (e)群Aの単体、合金、金属間化合物の少なくとも1種、並びに、群Aより選ばれる少なくとも1種の元素と、群Bより選ばれる少なくとも1種の元素とからなる化合物、及び、前記化合物由来の固溶体からなる群より選ばれる少なくとも1種からなる。
 (f)群Aの単体、合金、金属間化合物の少なくとも1種、並びに、群Aより選ばれる少なくとも1種の元素と、群Bより選ばれる少なくとも1種の元素とからなる化合物、及び、前記化合物由来の固溶体からなる群より選ばれる少なくとも1種を含む。
 結合相は、鉄との反応性がcBNより低いため、高強度鋳鉄材の切削において、化学的摩耗及び熱的摩耗を抑制する働きを果たす。つまり、cBN焼結体が結合相を含有すると、高強度鋳鉄材の高能率加工における耐摩耗性が向上する。
 周期律表の第4族元素は、例えば、チタン(Ti)、ジルコニウム(Zr)及びハフニウム(Hf)を含む。第5族元素は、例えば、バナジウム(V)、ニオブ(Nb)及びタンタル(Ta)を含む。第6族元素は、例えば、クロム(Cr)、モリブデン(Mo)及びタングステン(W)を含む。以下、第4族元素、第5族元素、第6族元素、アルミニウム、珪素、コバルト及びニッケルを「第1金属元素」とも記す。
 第1金属元素の合金は、例えばTi-Zr、Ti-Hf、Ti-V、Ti-Nb、Ti-Ta、Ti-Cr、Ti-Moが挙げられる。第1金属元素の金属間化合物は、例えば、TiCr、TiAl、Co-Alが挙げられる。
 上記の第1金属元素と窒素とを含む化合物(窒化物)としては、例えば、窒化チタン(TiN)、窒化ジルコニウム(ZrN)、窒化ハフニウム(HfN)、窒化バナジウム(VN)、窒化ニオブ(NbN)、窒化タンタル(TaN)、窒化クロム(CrN)、窒化モリブデン(MoN)、窒化タングステン(WN)、窒化アルミニウム(AlN)、窒化ケイ素(Si)、窒化コバルト(CoN)、窒化ニッケル(NiN)、窒化チタンジルコニウム(TiZrN)、窒化チタンハフニウム(TiHfN)、窒化チタンバナジウム(TiVN)、窒化チタンニオブ(TiNbN)、窒化チタンタンタル(TiTaN)、窒化チタンクロム(TiCrN)、窒化チタンモリブデン(TiMoN)、窒化チタンタングステン(TiWN)、窒化チタンアルミニウム(TiAlN、TiAlN、TiAlN)、窒化ジルコニウムハフニウム(ZrHfN)、窒化ジルコニウムバナジウム(ZrVN)、窒化ジルコニウムニオブ(ZrNbN)、窒化ジルコニウムタンタル(ZrTaN)、窒化ジルコニウムクロム(ZrCrN)、窒化ジルコニウムモリブデン(ZrMoN)、窒化ジルコニウムタングステン(ZrWN)、窒化ハフニウムバナジウム(HfVN)、窒化ハフニウムニオブ(HfNbN)、窒化ハフニウムタンタル(HfTaN)、窒化ハフニウムクロム(HfCrN)、窒化ハフニウムモリブデン(HfMoN)、窒化ハフニウムタングステン(HfWN)、窒化バナジウムニオブ(VNbN)、窒化バナジウムタンタル(VTaN)、窒化バナジウムクロム(VCrN)、窒化バナジウムモリブデン(VMoN)、窒化バナジウムタングステン(VWN)、窒化ニオブタンタル(NbTaN)、窒化ニオブクロム(NbCrN)、窒化ニオブモリブデン(NbMoN)、窒化ニオブタングステン(NbWN)、窒化タンタルクロム(TaCrN)、窒化タンタルモリブデン(TaMoN)、窒化タンタルタングステン(TaWN)、窒化クロムモリブデン(CrMoN)、窒化クロムタングステン(CrWN)、窒化モリブデンクロム(MoWN)を挙げることができる。
 上記の第1金属元素と炭素とを含む化合物(炭化物)としては、例えば、炭化チタン(TiC)、炭化ジルコニウム(ZrC)、炭化ハフニウム(HfC)、炭化バナジウム(VC)、炭化ニオブ(NbC)、炭化タンタル(TaC)、炭化クロム(Cr)、炭化モリブデン(MoC)、炭化タングステン(WC)、炭化ケイ素(SiC)、炭化タングステン―コバルト(WCoC)を挙げることができる。
 上記の第1金属元素と硼素とを含む化合物(硼化物)としては、例えば、硼化チタン(TiB)、硼化ジルコニウム(ZrB)、硼化ハフニウム(HfB)、硼化バナジウム(VB)、硼化ニオブ(NbB)、硼化タンタル(TaB)、硼化クロム(CrB)、硼化モリブデン(MoB)、硼化タングステン(WB)、硼化アルミニウム(AlB)、硼化コバルト(CoB)、硼化ニッケル(NiB)を挙げることができる。
 上記の第1金属元素と酸素とを含む化合物(酸化物)としては、例えば、酸化チタン(TiO)、酸化ジルコニウム(ZrO)、酸化ハフニウム(HfO)、酸化バナジウム(V)、酸化ニオブ(Nb)、酸化タンタル(Ta)、酸化クロム(Cr)、酸化モリブデン(MoO)、酸化タングステン(WO)、酸化アルミニウム(Al)、酸化ケイ素(SiO)、酸化コバルト(CoO)、酸化ニッケル(NiO)を挙げることができる。
 上記の第1金属元素と炭素と窒素とを含む化合物(炭窒化物)としては、例えば、炭窒化チタン(TiCN)、炭窒化ジルコニウム(ZrCN)、炭窒化ハフニウム(HfCN)、炭窒化チタンニオブ(TiNbCN)、炭窒化チタンジルコニウム(TiZrCN)、炭窒化チタンタンタル(TiTaCN)、炭窒化チタンハフニウム(TiHfCN)、炭窒化チタンクロム(TiCrCN)を挙げることができる。
 上記の第1金属元素と酸素と窒素とからなる化合物(酸窒化物)としては、例えば、酸窒化チタン(TiON)、酸窒化ジルコニウム(ZrON)、酸窒化ハフニウム(HfON)、酸窒化バナジウム(VON)、酸窒化ニオブ(NbON)、酸窒化タンタル(TaON)、酸窒化クロム(CrON)、酸窒化モリブデン(MoON)、酸窒化タングステン(WON)、酸窒化アルミニウム(AlON)、酸窒化ケイ素(SiAlON)を挙げることができる。
 上記の化合物由来の固溶体とは、2種類以上のこれらの化合物が互いの結晶構造内に溶け込んでいる状態を意味し、侵入型固溶体や置換型固溶体を意味する。
 上記の化合物は、1種類を用いてもよいし、2種類以上を組み合わせて用いてもよい。
 結合相中の化合物及び化合物由来の固溶体の合計含有量は、XRDによるRIR法(Reference Intensity Ratio)により測定される。
 結合相は、上記の化合物の他に、他の成分を含んでいてもよい。他の成分を構成する元素としては、例えば、マンガン(Mn)、レニウム(Re)を挙げることができる。
 cBN焼結体に含まれる結合相の組成は、XRD(X線回折測定、X-ray Diffraction)により特定することができる。
 <用途>
 本開示の立方晶窒化硼素焼結体は、切削工具、耐摩工具、研削工具などに用いることが好適である。
 本開示の立方晶窒化硼素焼結体を用いた切削工具、耐摩工具および研削工具はそれぞれ、その全体が立方晶窒化硼素焼結体で構成されていても良いし、その一部(たとえば切削工具の場合、刃先部分)のみが立方晶窒化硼素焼結体で構成されていても良い。さらに、各工具の表面にコーティング膜が形成されていても良い。
 切削工具としては、ドリル、エンドミル、ドリル用刃先交換型切削チップ、エンドミル用刃先交換型切削チップ、フライス加工用刃先交換型切削チップ、旋削加工用刃先交換型切削チップ、メタルソー、歯切工具、リーマ、タップ、切削バイトなどを挙げることができる。
 耐摩工具としては、ダイス、スクライバー、スクライビングホイール、ドレッサーなどを挙げることができる。研削工具としては、研削砥石などを挙げることができる。
 ≪実施形態2:立方晶窒化硼素焼結体の製造方法≫
 本開示の一実施形態に係る立方晶窒化硼素焼結体の製造方法を、図1~図5を用いて説明する。図1は、窒化硼素の圧力-温度相図である。図2、図3は、本開示の一実施形態に係る立方晶窒化硼素焼結体の製造方法を説明するための図である。図4は、立方晶窒化硼素焼結体の製造方法の従来例を説明するための図である。図5は、立方晶窒化硼素焼結体の製造方法の参考例を説明するための図である。図6は、本開示の一実施形態に係る立方晶窒化硼素焼結体の製造方法のフローチャートを示す図である。
 本実施形態に係る立方晶窒化硼素焼結体の製造方法は、実施形態1の立方晶窒化硼素焼結体の製造方法であって、六方晶窒化硼素粉末(以下、「hBN粉末」とも記す。)と結合材粉末とを準備する工程(以下、「準備工程」とも記す。図6においてS1で示される。)と、六方晶窒化硼素粉末と結合材粉末とを、ウルツ鉱型窒化硼素の安定領域内の温度及び圧力を通過して、1900℃以上2400℃以下の温度、及び、8GPa以上の圧力まで加熱加圧する工程(以下、「加熱加圧工程」とも記す。図6においてS3で示される。)と、を備え、ウルツ鉱型窒化硼素の安定領域は、温度をT℃、圧力をPGPaとした時に、下記式1及び下記式2を同時に満たす領域であり、
式1:P≧-0.0037T+11.301
式2:P≦-0.085T+117
上記加熱加圧工程において、ウルツ鉱型窒化硼素の安定領域への突入温度は600℃以上である。
 本実施形態に係る立方晶窒化硼素焼結体の製造方法は、加熱加圧工程の前に、六方晶窒化硼素粉末を、-50℃以上100℃以下の温度範囲を保持しつつ、0.5GPa以上6GPa以下の圧力まで加圧する工程(以下、「前処理工程」とも記す。図6においてS2で示される。)を備えることができる。
 本実施形態に係る立方晶窒化硼素焼結体の製造方法は、加熱加圧工程の後に、加熱加圧工程により得られた立方晶窒化硼素焼結体を、1900℃以上2400℃以下の温度、及び、8GPa以上の圧力条件下で10分以上保持する工程(以下、「温度圧力保持工程」とも記す。図6においてS4で示される。)を備えることができる。
 本実施形態に係る立方晶窒化硼素焼結体の製造方法の詳細な説明を行う前に、その理解を助けるため、立方晶窒化硼素焼結体の製造方法の従来例及び参考例について説明する。
 図1に示されるように、窒化硼素には、常温常圧の安定相である六方晶窒化硼素、高温高圧の安定相である立方晶窒化硼素、及び、六方晶窒化硼素から立方晶窒化硼素への転移の間の準安定相であるウルツ鉱型窒化硼素の3つの相が存在する。
 各相の境界は一次関数で表すことができる。本明細書において、各相の安定領域内の温度及び圧力は、一次関数を用いて示すことができるものとする。
 本明細書において、ウルツ鉱型窒化硼素の安定領域内の温度及び圧力(図1において、「wBN安定領域」と記す。)は、温度をT℃、圧力をPGPaとした時に、下記式1及び下記式2を同時に満たす温度及び圧力として定義する。
式1:P≧-0.0037T+11.301
式2:P≦-0.085T+117
 本明細書において、六方晶窒化硼素の安定領域内の温度及び圧力(図1において、「hBN安定領域」と記す。)は、温度をT℃、圧力をPGPaとした時に、下記式A及び下記式Bを同時に満たす温度及び圧力、又は下記式C及び下記式Dを同時に満たす温度及び圧力として定義する。
式A:P≦-0.0037T+11.301
式B:P≦-0.085T+117
式C:P≦0.0027T+0.3333
式D:P≧-0.085T+117
 本明細書において、立方晶窒化硼素の安定領域内の温度及び圧力(図1において、「cBN安定領域」と記す。)は、温度をT℃、圧力をPGPaとした時に、下記式D及び下記式Eを同時に満たす温度及び圧力として定義する。
式D:P≧-0.085T+117
式E:P≧0.0027T+0.3333
 本実施形態に係る製造方法では、六方晶窒化硼素粉末及び結合材粉末を、ウルツ鉱型窒化硼素の安定領域内の温度及び圧力を通過して、1900℃以上2400℃以下の温度、及び、8GPa以上の圧力まで加熱加圧する。この温度及び圧力は、優れた工具性能を有する立方晶窒化硼素が得られる温度及び圧力である。
 従来、六方晶窒化硼素を、優れた工具性能を有する立方晶窒化硼素が得られる立方晶窒化硼素の安定領域内の温度(1900℃以上2400℃以下)及び圧力(8GPa以上)まで到達させるための温度及び圧力の経路として、図4に示される経路(以下、「図4の経路」とも記す。)が検討されていた。
 図4の経路では、開始温度及び開始圧力(常温常圧)から、圧力を立方晶窒化硼素の安定領域内の圧力(例えば、10GPa以上)まで上げ(図4の矢印E1)、その後に、温度を立方晶窒化硼素の安定領域内の温度(例えば、1900℃以上)まで上げる(図4の矢印E2)。図4の経路は、加熱と加圧がそれぞれ1回ずつ行われるため、加熱加圧操作の制御が単純であり、従来採用されていた。
 しかし、図4の経路は、ウルツ鉱型窒化硼素の安定領域への突入温度が600℃未満であり、原子拡散が起こりにくく、六方晶窒化硼素からウルツ鉱型窒化硼素への相転移は、無拡散型相転移が主となる。このため、得られた立方晶窒化硼素焼結体では、格子欠陥や粗大粒が存在しやすい。よって、この立方晶窒化硼素は、加工時に突発的な欠損が生じやすく、工具寿命が短くなる傾向がある。
 一方、原子拡散を起こりやすくするために、相転移の温度を上げることも考えらえる。例えば、図5の経路では、開始温度及び開始圧力(常温常圧)から、ウルツ鉱型窒化硼素の安定領域を通過しないように、立方晶型窒化硼素の安定領域内の温度(例えば、1500℃)及び圧力(例えば、9GPa)まで加熱加圧し(図5の矢印F1、F2、F3)、その後に、更に、温度を上げる(例えば、2100℃)(図5の矢印F4)。
 図5の経路では、六方晶窒化硼素は立方晶窒化硼素へ直接相転移されるが、六方晶窒化硼素と立方晶窒化硼素とは結晶構造が大きく異なるため、相転移時に格子欠陥が生じやすい。よって、この立方晶窒化硼素は工具寿命が短くなる傾向がある。更に、六方晶窒化硼素と立方晶窒化硼素とは結晶構造が大きく異なるため、立方晶窒化硼素への変換率が98.5体積%未満となる。よって、得られた立方晶窒化硼素焼結体を用いた工具は、性能が低下する。
 上記の通り、従来検討されてきた温度及び圧力の経路では、格子欠陥の発生を抑制することが困難であり、優れた工具寿命を有する立方晶窒化硼素焼結体を製造することができない。本出願人らはこの状況を鑑み、圧力及び温度の経路を鋭意検討した結果、六方晶窒化硼素及び結合材粉末を、上記の加熱加圧工程に規定される温度及び圧力条件で処理することにより、焼結体中の格子欠陥の発生が抑制され、高強度鋳鉄材の高能率加工においても、長い工具寿命を有することができる立方晶窒化硼素焼結体を得ることができることを見いだした。本実施形態に係る製造方法の各工程の詳細について、図2、図3を用いて下記に説明する。
 <準備工程>
 立方晶窒化硼素焼結体の原料として、六方晶窒化硼素粉末(以下、「hBN粉末」とも記す。)及び結合相粉末を準備する。六方晶窒化硼素粉末は、純度(六方晶窒化硼素の含有割合)が98.5%以上が好ましく、99%以上がより好ましく、100%が最も好ましい。六方晶窒化硼素粉末の粒径は特に限定されないが、例えば、0.1μm以上10μm以下とすることができる。
 結合材粉末とは、cBN焼結体に含まれる結合相の原料粉末である。結合材粉末としては、周期律表の第4族元素、第5族元素、第6族元素、アルミニウム、珪素、コバルト及びニッケルからなる群より選ばれる単体、合金、金属間化合物からなる群より選ばれる少なくとも1種を含む粉末を用いることができる。2種以上の結合材粉末を用いる場合は、各結合材粉末を規定の配合比となるように秤量する。
 次に、結合材粉末を混合及び粉砕する。混合及び粉砕方法は特に制限されないが、効率よく均質に混合する観点から、ボールなどメディアによる混合・粉砕、およびジェットミル混合、粉砕などが好ましい。各混合、粉砕方法は、湿式でもよく乾式でもよい。
 上記で準備したhBN粉末と結合材粉末とを、エタノールやアセトン等を溶媒に用いた湿式ボールミル混合を用いて混合し、混合粉末を作製する。六方晶窒化硼素粉末と結合材粉末との混合比は、最終的に得られる立方晶窒化硼素焼結体において、立方晶窒化硼素粒子の割合が40体積%以上96体積%以下となるように調整する。溶媒は、混合後に自然乾燥により除去される。その後、熱処理を行うことにより、混合粉末の表面に吸着した水分などの不純物を揮発させ、混合粉末の表面を清浄化する。
 <前処理工程>
 次に、混合粉末を、超高圧高温発生装置を用いて、-50℃以上100℃以下の温度範囲を保持しつつ、0.5GPa以上6GPa以下の圧力まで加圧する(図2の矢印A1、図3の矢印B1)。
 前処理工程を行うことにより、混合粉末間の間隙を圧縮し、混合粉末中に存在する不要なガスを系外に排出することができる。よって、当該ガスと混合粉末との化学反応に起因する品質低下を防止することができる。
 前処理工程を行うことにより、更なる加圧を行っても外形の変化がほとんど生じない程度に混合粉末の密度を高くすることができる。この状態で、加熱加圧工程を行うことができるため、安定して製造することができる。
 前処理工程における温度は、-50℃以上100℃以下の温度範囲に保持することが好ましく、0℃以上50℃以下の温度範囲に保持することがより好ましい。前処理工程における到達圧力は、0.5GPa以上5GPa以下が好ましく、1GPa以上3GPa以下が更に好ましい。
 本実施形態に係る立方晶窒化硼素焼結体の製造方法において、前処理工程は任意で行われる工程である。従って、上記の準備工程の後に、前処理工程を行わずに、後述する加熱加圧工程を行うことができる。
 <加熱加圧工程>
 次に、混合粉末を、ウルツ鉱型窒化硼素の安定領域内の温度及び圧力を通過して、1900℃以上2400℃以下の温度、及び、8GPa以上の圧力まで加熱加圧する(図2では矢印A2、A3及びA4、図3では矢印B2、B3及びB4)。加熱加圧工程において、ウルツ鉱型窒化硼素の安定領域への突入温度は600℃以上である。
 本明細書中、ウルツ鉱型窒化硼素の安定領域への突入温度とは、加熱加圧工程において、初めてウルツ鉱型窒化硼素の安定領域内へ到達した時点での温度を意味する。該突入温度は、図2では、矢印A3とP=-0.0037T+11.301の線との交点における温度(約1200℃)であり、図3では、矢印B3とP=-0.0037T+11.301の線との交点における温度(約600℃)である。
 上記の前処理工程を行った場合は、前処理工程後の六方晶窒化硼素粉末を、前処理工程の最後に到達した到達温度、及び、到達圧力から、ウルツ鉱型窒化硼素の安定領域内の温度及び圧力を通過して、1900℃以上2400℃以下の温度、及び、8GPa以上の圧力まで加熱加圧する。この場合も、加熱加圧工程において、ウルツ鉱型窒化硼素の安定領域への突入温度は600℃以上である。
 加熱加圧工程において、ウルツ鉱型窒化硼素の安定領域への突入温度は600℃以上である。これによると、六方晶窒化硼素粉末は原子拡散が起こりやすい環境で、ウルツ鉱型窒化硼素に変換され、その後、立方晶窒化硼素に変換される。このため、得られた立方晶窒化硼素焼結体では、格子欠陥が減少し、立方晶窒化硼素焼結体の強度及び靱性が向上している。よって、該立方晶窒化硼素焼結体を用いた工具は、高強度鋳鉄材の高能率加工においても、長い工具寿命を有することができる。
 ウルツ鉱型窒化硼素の安定領域への突入温度は900℃以上が好ましく、1200℃以上が更に好ましい。突入温度が高いほど原子拡散が起こりやすく、格子欠陥が減少する傾向がある。突入温度の上限値は、例えば1500℃以下とすることができる。
 加熱加圧工程における到達圧力は8GPa以上である。該到達圧力の上限値は特に限定されないが、例えば、15GPa以下とすることができる。加熱加圧工程において、ウルツ鉱型窒化硼素の安定領域内への突入後に、圧力を10GPa以上まで加圧することが好ましい。
 加熱加圧工程において、ウルツ鉱型窒化硼素の安定領域内の温度及び圧力での保持時間は、例えば5分以上60分以下とすることができる。
 加熱加圧工程において、図2、図3の経路では、加熱を行った後に加圧を行い、更に加熱を行っているが、これに限定されない。加熱加圧の方法は、ウルツ鉱型窒化硼素の安定領域への突入温度を600℃以上とすることができる方法であれば、特に限定されず、例えば、加熱と加圧を同時に行ってもよい。
 上記の通り、六方晶窒化硼素粉末に加熱加圧工程を行うことにより、立方晶窒化硼素焼結体を得ることができる。
 <温度圧力保持工程>
 上記の加熱加圧工程の後に、加熱加圧工程により得られた立方晶窒化硼素焼結体を、1900℃以上2400℃以下の温度(以下、「焼結温度」とも記す。)、及び、8GPa以上の圧力(以下、「焼結圧力」とも記す。)条件下で10分以上保持する工程を行うことができる。これにより、得られた立方晶窒化硼素焼結体は、立方晶窒化硼素の含有割合が大きくなり、更に長い工具寿命を達成することができる。
 温度圧力保持工程における焼結温度は1900℃以上2400℃以下が好ましく、2100℃以上2300℃以下がより好ましい。温度圧力保持工程における焼結圧力は8GPa以上15GPa以下が好ましく、9GPa以上12GPa以下がより好ましい。温度圧力保持工程における焼結時間は10分以上60分以下が好ましく、10分以上30分以下がより好ましい。
 <図2、図3の経路により得られる立方晶窒化硼素焼結体の特性>
 図2の経路では、ウルツ鉱型窒化硼素の安定領域への突入温度が約1200℃である。これによると、六方晶窒化硼素粉末は原子拡散が非常に起こりやすい環境で、ウルツ鉱型窒化硼素に変換される。このため、ウルツ鉱型窒化硼素は格子欠陥が少なく、転位密度が非常に低くなる。その後、ウルツ鉱型窒化硼素は、更に加熱されて立方晶窒化硼素焼結体に変換される。よって、得られた立方晶窒化硼素焼結体は、転位密度が非常に低い。
 図3の経路では、ウルツ鉱型窒化硼素の安定領域への突入温度が約600℃である。これによると、六方晶窒化硼素粉末は原子拡散の生じる環境で、ウルツ鉱型窒化硼素に変換される。このため、ウルツ鉱型窒化硼素は格子欠陥が少なく、転位密度が低くなる。その後、ウルツ鉱型窒化硼素は、更に加熱されて立方晶窒化硼素焼結体に変換される。よって、得られた立方晶窒化硼素焼結体は、転位密度が低い。
 図2の経路で得られる立方晶窒化硼素焼結体と、図3の経路で得られる立方晶窒化硼素焼結体とを比較すると、図2の経路で得られる立方晶窒化硼素焼結体の方が、転位密度が低い。この理由は、図2の経路の方がウルツ鉱型窒化硼素の安定領域への突入温度が高く、原子拡散が起こりやすいためと考えられる。
 本実施の形態を実施例によりさらに具体的に説明する。ただし、これらの実施例により本実施の形態が限定されるものではない。
 [試験例1]
 <試料1~試料27>
 (準備工程)
 平均粒子径10μmの六方晶窒化硼素粉末(表1及び表2において「hBN」と記す。)と、表1及び表2の「準備工程」の「結合材粉末」欄に示す組成を有する結合材粉末とを準備した。例えば、試料1では、結合材粉末としてTiC、Ti、Alを準備した。
 六方晶窒化硼素粉末と結合材粉末との混合比は、最終的に得られる立方晶窒化硼素焼結体において、立方晶窒化硼素粒子の割合が表1及び表2の「立方晶窒化硼素焼結体」の「cBN粒子(体積%)」欄に記載の割合となるように調整した。
 六方晶窒化硼素粉末と結合材粉末とをボールミルを使用して5時間に亘って混合した。これにより混合粉末を得た。該混合粉末を窒素雰囲気下2050℃の温度で熱処理して不純物を除去した(高温精製処理)。
 (前処理工程)
 混合粉末をモリブデン製のカプセルに入れ、超高圧高温発生装置を用いて、25℃(室温、表1及び表2の「前処理工程」の「第一温度」欄に記載)で、圧力5GPa(表1及び表2の「前処理工程」の「第一加圧」欄に記載)まで加圧した。
 (加熱加圧工程)
 試料1~試料26は、超高圧高温発生装置内の温度を、表1及び表2の「加熱加圧工程」の「第二温度(wBN突入温度)」欄に記載される温度まで加熱した。この間、超高圧高温発生装置内の圧力は、表1及び表2の「前処理工程」の「第一加圧」欄に記載される圧力を保持した。
 続いて、超高圧高温発生装置内の圧力を、表1及び表2の「加熱加圧工程」の「第二加圧」欄に記載される圧力まで加圧した。この間に、超高圧高温発生装置内は、六方晶窒化硼素の安定領域内の温度及び圧力から、ウルツ鉱型窒化硼素の安定領域内の温度及び圧力へ変化した。該加熱加圧工程において、ウルツ鉱型窒化硼素の安定領域への突入温度は、表1及び表2の「加熱加圧工程」の「第二温度(wBN突入温度)」欄に記載される温度であった。
 続いて、超高圧高温発生装置内の温度を、表1及び表2の「温度圧力保持工程」の「第三温度」欄に記載される温度まで加熱した。この間、超高圧高温発生装置内の圧力は、表1及び表2の「加熱加圧工程」の「第二加圧」欄に記載される圧力を保持した。
 試料27は、前処理工程の第1温度(25℃)を維持したまま、表2の「加熱加圧工程」の「第二加圧」欄に記載される圧力(10GPa)まで加圧した。この間に、超高圧高温発生装置内は、六方晶窒化硼素の安定領域内の温度及び圧力から、ウルツ鉱型窒化硼素の安定領域内の温度及び圧力へ変化した。該加熱加圧工程において、ウルツ鉱型窒化硼素の安定領域への突入温度は、表2の「加熱加圧工程」の「第二温度(wBN突入温度)」欄に記載される温度(25℃)であった。
 続いて、超高圧高温発生装置内の温度を、表2の「温度圧力保持工程」の「第三温度」欄に記載される温度(2200℃)まで加熱した。この間、超高圧高温発生装置内の圧力は、表2の「加熱加圧工程」の「第二加圧」欄に記載される圧力(10GPa)を保持した。
 (温度圧力保持工程)
 表1及び表2の「温度圧力保持工程」の「第三温度」及び「第三圧力」欄に記載される温度及び圧力にて「保持時間」に記載される時間保持して、試料1~試料27の立方晶窒化硼素焼結体を得た。
 <試料28>
 試料4と同様の方法で、準備工程及び前処理工程を行った。前処理工程の後に、超高圧高温発生装置内の温度及び圧力を、wBN安定領域を通過せずに、表2の「温度圧力保持工程」の「第三温度」及び「第三圧力」欄に記載される温度及び圧力まで加熱加圧し、該温度及び圧力にて30分間保持して、試料28の立方晶窒化硼素焼結体を得た。
 <評価>
 (cBN焼結体の組成)
 cBN焼結体におけるcBN粒子と結合相との体積比を測定した。具体的な測定方法は、上記の発明を実施するための形態に記載された方法と同一であるため、その説明は繰り返さない。結果を表1及び表2の「立方晶窒化硼素焼結体」の「cBN粒子(体積%)」及び「結合相(体積%)」欄に示す。
 (結合相の組成)
 cBN焼結体における結合相の組成をXRDにより特定した。結果を表1及び表2の「立方晶窒化硼素焼結体」の「結合相組成」の欄に示す。
 (転位密度)
 cBN焼結体におけるcBN粒子の転位密度を測定した。具体的な測定方法は、上記の発明を実施するための形態に記載された方法と同一であるため、その説明は繰り返さない。結果を表1及び表2の「立方晶窒化硼素焼結体」の「cBN粒子転位密度(/m)」欄に示す。
 (切削試験)
 作製された各試料のcBN焼結体を用いて切削工具(基材形状:CNGA120408、刃先処理:T01215)を作製した。これを用いて、以下の切削条件下で切削試験を実施した。下記の切削条件は、ダクタイル鋳鉄の高速連続加工であり、高強度鋳鉄材の高能率加工に該当する。
 被削材:FCD700(硬度:250HB、外周部にV溝の付いた丸棒の外形切削)
 切削速度:Vc=500m/min
 送り量:f=0.25mm/rev.
 切込み量:ap=0.25mm
 クーラント:WET
 切削方法:端面連続切削
 評価方法:切削時間1分毎に刃先を観察し、欠けの大きさが0.1mm以上に到達した時点の切削時間を工具寿命とした。結果を表1及び表2の「工具寿命(分)」欄に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 <考察>
 試料2~試料7及び試料9~試料25のcBN焼結体は実施例に該当する。
 試料1のcBN焼結体は、cBN粒子の含有割合が40体積%未満であり、比較例に該当する。試料8のcBN焼結体は、cBN粒子の含有割合が96体積%超、かつ、cBN粒子の転位密度が1×1015/m以上であり、比較例に該当する。試料26~試料28のcBN焼結体は、cBN粒子の転位密度が1×1015/m以上であり、比較例に該当する。
 実施例に該当する試料2~試料7及び試料9~試料25のcBN焼結体を用いた工具は、比較例に該当する試料1、試料8及び試料26~試料28のcBN焼結体を用いた工具よりも工具寿命が長いことが確認された。これは、実施例に該当する試料2~試料7及び試料9~試料25では、熱伝導率が向上し、工具のすくい面の耐欠損性が向上したためと考えられる。
 試料1は、cBN粒子の転位密度は小さいが、cBN粒子の含有割合が35体積%と低すぎるため、硬度が不十分であり、欠損が生じやすかったと推察される。
 試料8は、cBN粒子の含有割合が高いため、cBN粒子の転位密度が高くなり、欠損が生じやすかったと推察される。
 試料9~試料22より、cBN焼結体の結合材の種類を表1及び表2の通りとしても、cBN焼結体を用いた工具の工具寿命が長いことが確認された。
 試料4、試料24及び試料25を比較すると、加熱加圧工程においてwBNの安定領域への突入温度が高いほど、cBN粒子の転位密度が小さくなり、工具寿命が向上する傾向が確認された。
 試料26及び試料27は、加熱加圧工程においてwBNの安定領域への突入温度が低く、cBN粒子の転位密度が大きくなり、工具寿命が低下した。試料26及び試料27では、加熱加圧工程においてhBNからwBNに変換される際に原子拡散が生じ難く、このため転位密度が大きくなったと考えられる。
 試料28は、製造工程においてwBNの安定領域を通過せず、cBN粒子の転位密度が大きくなり、工具寿命が低下した。試料28では、製造工程においてhBNからcBNへ直接変換されるが、hBNとcBNとは結晶構造が大きく異なるため、相転移時に格子欠陥が生じやすく、このため転位密度が大きくなったと考えられる。
 [試験例2]
 <試料4>
 試料4は、上記の試験例1の試料4と同一のcBN焼結体である。
 <試料29>
 (準備工程)
 平均粒子径2μmの立方晶窒化硼素粉末(表3において「cBN」と記す。)と、表3の「準備工程」の「結合材粉末」欄に示す組成を有する結合材粉末とを準備した。cBN粉末は、公知である触媒を用いた工法により作製されたものを準備した。
 立方晶窒化硼素粉末は、六方晶窒化硼素と触媒を、cBNの熱的安定条件である高温高圧下で処理することにより製造されることが公知である。触媒としては、一般的にアルカリ金属元素(リチウム)、アルカリ土類金属元素(マグネシウム、カルシウム、ストロンチウム、ベリリウム、バリウム)等が用いられる。従って、得られた立方晶窒化硼素粉末には、触媒元素が含まれる。
 立方晶窒化硼素粉末と結合材粉末との混合比は、最終的に得られる立方晶窒化硼素焼結体において、立方晶窒化硼素粒子の割合が表3の「立方晶窒化硼素焼結体」の「cBN粒子(体積%)」欄に記載の割合となるように調整した。
 立方晶窒化硼素粉末と結合材粉末とをボールミルを使用して5時間に亘って混合した。これにより混合粉末を得た。該混合粉末を窒素雰囲気下2050℃の温度で熱処理して不純物を除去した(高温精製処理)。
 (前処理工程)
 混合粉末をモリブデン製のカプセルに入れ、超高圧高温発生装置を用いて、25℃(室温、表3の「前処理工程」の「第一温度」欄に記載)で、圧力5GPa(表3の「前処理工程」の「第一加圧」欄に記載)まで加圧した。
 (加熱加圧工程)
 続いて、超高圧高温発生装置内の温度を25℃に維持したまま、6GPa(表3の「加熱加圧工程」の「第二加圧」欄に記載)まで加圧した。この間に、超高圧高温発生装置内は、六方晶窒化硼素の安定領域内の温度及び圧力から、ウルツ鉱型窒化硼素の安定領域内の温度及び圧力へ変化した。該加熱加圧工程において、ウルツ鉱型窒化硼素の安定領域への突入温度は、25℃(表3の「加熱加圧工程」の「第二温度(wBN突入温度)」欄に記載)であった。
 続いて、超高圧高温発生装置内の温度を、1400℃(表3の「温度圧力保持工程」の「第三温度」欄に記載)まで加熱した。この間、超高圧高温発生装置内の圧力は、6GPa(表3の「加熱加圧工程」の「第二加圧」欄に記載)される圧力を保持した。
 (温度圧力保持工程)
 超高圧高温発生装置内の温度1400℃及び圧力6GPaにて30分間(表3の「温度圧力保持工程」の「保持時間」欄に記載)保持して、試料29の立方晶窒化硼素焼結体を得た。
 <試料30>
 (準備工程)
 試料30は、原料粉末としてhBN粉末に代えて、以下の手順で作製された逆変換六方晶窒化硼素粉末(以下、「逆変換hBN粉末」とも記す。)を用いた以外は、試料4と同様の方法で立方晶窒化硼素焼結体を作製した。逆変換hBN粉末は、試料29で準備した立方晶窒化硼素粉末に対して1600℃で熱処理を行い、cBNをhBNに逆変換させて作製された。
 <評価>
 (cBN焼結体の組成、結合相の組成、cBN粒子の転位密度)
 作製されたcBN焼結体について、cBN焼結体の組成、結合相の組成、cBN粒子の転位密度の確認を行った。具体的な測定方法は、上記の発明を実施するための形態に記載された方法と同一であるため、その説明は繰り返さない。結果を表3に示す。
 (触媒元素含有量)
 作製されたcBN焼結体について、cBN粒子中の触媒元素含有量を高周波誘導プラズマ発光分析法(ICP発光分光分析法)、使用機器:島津製作所製「ICPS-8100」(商標))により測定した。具体的には、下記の手順で測定した。
 まず、立方晶窒化硼素焼結体を密閉容器内で弗硝酸に48時間浸し、結合相を弗硝酸に溶解させた。弗硝酸中に残った立方晶窒化硼素粒子について高周波誘導プラズマ発光分析法を行い、各触媒元素の含有量を測定した。
 (切削試験)
 作製された各試料のcBN焼結体を用いて切削工具(基材形状:CNGA120408、刃先処理T01215)を作製した。これを用いて、試験例1と同一の切削条件下で切削試験を実施した。該切削条件は、ダクタイル鋳鉄の高速連続加工であり、高強度鋳鉄材の高能率加工に該当する。結果を表3の「工具寿命」欄に示す。
Figure JPOXMLDOC01-appb-T000004
 <考察>
 試料4及び試料30のcBN焼結体は実施例に該当する。
 試料29のcBN焼結体は、cBN粒子の転位密度が1×1015/m以上であり、比較例に該当する。
 実施例に該当する試料4及び試料30のcBN焼結体を用いた工具は、比較例に該当する試料29のcBN焼結体を用いた工具よりも工具寿命が長いことが確認された。これは、実施例に該当する試料4及び試料30では、熱伝導率が向上し、工具のすくい面の耐欠損性が向上したためと考えられる。
 試料30から、cBN焼結体は微量の触媒元素を含む場合も優れた工具性能を有することが確認された。
 以上のように本開示の実施の形態および実施例について説明を行なったが、上述の各実施の形態および実施例の構成を適宜組み合わせたり、様々に変形することも当初から予定している。
 今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態および実施例ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。

Claims (3)

  1.  40体積%以上96体積%以下の立方晶窒化硼素粒子と、4体積%以上60体積%以下の結合相と、を備える立方晶窒化硼素焼結体であって、
     前記立方晶窒化硼素粒子の転位密度は、1×1015/m未満である、立方晶窒化硼素焼結体。
  2.  前記結合相は、
     ・周期律表の第4族元素、第5族元素、第6族元素、アルミニウム、珪素、コバルト及びニッケルからなる群より選ばれる単体、合金、金属間化合物からなる群より選ばれる少なくとも1種を含み、又は、
     ・周期律表の第4族元素、第5族元素、第6族元素、アルミニウム、珪素、コバルト及びニッケルからなる群より選ばれる少なくとも1種の元素と、窒素、炭素、硼素及び酸素からなる群より選ばれる少なくとも1種の元素とからなる化合物、及び、前記化合物由来の固溶体からなる群より選ばれる少なくとも1種とを含み、又は、
     ・周期律表の第4族元素、第5族元素、第6族元素、アルミニウム、珪素、コバルト及びニッケルからなる群より選ばれる単体、合金、金属間化合物からなる群より選ばれる少なくとも1種、並びに、周期律表の第4族元素、第5族元素、第6族元素、アルミニウム、珪素、コバルト及びニッケルからなる群より選ばれる少なくとも1種の元素と、窒素、炭素、硼素及び酸素からなる群より選ばれる少なくとも1種の元素とからなる化合物、及び、前記化合物由来の固溶体からなる群より選ばれる少なくとも1種を含む、請求項1に記載の立方晶窒化硼素焼結体。
  3.  請求項1又は請求項2に記載の立方晶窒化硼素焼結体の製造方法であって、
     六方晶窒化硼素粉末及び結合材粉末を準備する工程と、
     前記六方晶窒化硼素粉末及び前記結合材粉末を、ウルツ鉱型窒化硼素の安定領域内の温度及び圧力を通過して、1900℃以上2400℃以下の温度、及び、8GPa以上の圧力まで加熱加圧する工程と、を備え、
     前記ウルツ鉱型窒化硼素の安定領域は、温度をT℃、圧力をPGPaとした時に、下記式1及び下記式2を同時に満たす領域であり、
    式1:P≧-0.0037T+11.301
    式2:P≦-0.085T+117
     前記加熱加圧する工程において、前記ウルツ鉱型窒化硼素の安定領域への突入温度は600℃以上である、立方晶窒化硼素焼結体の製造方法。
PCT/JP2019/051547 2019-12-27 2019-12-27 立方晶窒化硼素焼結体及びその製造方法 WO2021131051A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201980103060.7A CN114845973A (zh) 2019-12-27 2019-12-27 立方晶氮化硼烧结体及其制造方法
JP2020521471A JP6940110B1 (ja) 2019-12-27 2019-12-27 立方晶窒化硼素焼結体及びその製造方法
KR1020227014181A KR20220074911A (ko) 2019-12-27 2019-12-27 입방정 질화붕소 소결체 및 그 제조 방법
US16/967,572 US11434550B2 (en) 2019-12-27 2019-12-27 Cubic boron nitride sintered material and method for manufacturing the same
EP19957568.9A EP4082994A4 (en) 2019-12-27 2019-12-27 CUBIC BORON NITRIDE DISINTER BODY AND METHOD OF MAKING THE SAME
PCT/JP2019/051547 WO2021131051A1 (ja) 2019-12-27 2019-12-27 立方晶窒化硼素焼結体及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/051547 WO2021131051A1 (ja) 2019-12-27 2019-12-27 立方晶窒化硼素焼結体及びその製造方法

Publications (1)

Publication Number Publication Date
WO2021131051A1 true WO2021131051A1 (ja) 2021-07-01

Family

ID=76545594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/051547 WO2021131051A1 (ja) 2019-12-27 2019-12-27 立方晶窒化硼素焼結体及びその製造方法

Country Status (6)

Country Link
US (1) US11434550B2 (ja)
EP (1) EP4082994A4 (ja)
JP (1) JP6940110B1 (ja)
KR (1) KR20220074911A (ja)
CN (1) CN114845973A (ja)
WO (1) WO2021131051A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5532771A (en) * 1978-08-31 1980-03-07 Ngk Insulators Ltd Boron nitride sintered body and its manufacture
US4361543A (en) * 1982-04-27 1982-11-30 Zhdanovich Gennady M Process for producing polycrystals of cubic boron nitride
JP2005187260A (ja) 2003-12-25 2005-07-14 Sumitomo Electric Hardmetal Corp 高強度高熱伝導性立方晶窒化硼素焼結体
WO2005066381A1 (ja) 2004-01-08 2005-07-21 Sumitomo Electric Hardmetal Corp. 立方晶型窒化硼素焼結体
WO2012053375A1 (ja) 2010-10-19 2012-04-26 住友電工ハードメタル株式会社 立方晶窒化硼素焼結体工具
JP2015202980A (ja) 2014-04-14 2015-11-16 住友電気工業株式会社 立方晶窒化ホウ素複合焼結体およびその製造方法、ならびに切削工具、耐摩工具および研削工具
JP2015202981A (ja) 2014-04-14 2015-11-16 住友電気工業株式会社 立方晶窒化ホウ素複合焼結体およびその製造方法、ならびに切削工具、耐摩工具および研削工具

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2523452B2 (ja) * 1987-12-25 1996-08-07 東芝タンガロイ株式会社 高強度立方晶窒化ホウ素焼結体
JP2005066381A (ja) 2003-08-22 2005-03-17 Kobelco Eco-Solutions Co Ltd 有機性廃水の処理方法とその処理装置
JP2012053375A (ja) 2010-09-03 2012-03-15 Sanwa Denki Kogyo Co Ltd 多連結型光コネクタ
JP6291995B2 (ja) * 2014-04-18 2018-03-14 住友電気工業株式会社 立方晶窒化ホウ素多結晶体、切削工具、耐摩工具、研削工具、および立方晶窒化ホウ素多結晶体の製造方法
JP6447205B2 (ja) * 2015-02-09 2019-01-09 住友電気工業株式会社 立方晶窒化ホウ素多結晶体、切削工具、耐摩工具、研削工具、および立方晶窒化ホウ素多結晶体の製造方法
CN114845972A (zh) * 2019-12-16 2022-08-02 住友电气工业株式会社 立方晶氮化硼烧结体
WO2021124402A1 (ja) * 2019-12-16 2021-06-24 住友電工ハードメタル株式会社 立方晶窒化硼素焼結体

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5532771A (en) * 1978-08-31 1980-03-07 Ngk Insulators Ltd Boron nitride sintered body and its manufacture
US4361543A (en) * 1982-04-27 1982-11-30 Zhdanovich Gennady M Process for producing polycrystals of cubic boron nitride
JP2005187260A (ja) 2003-12-25 2005-07-14 Sumitomo Electric Hardmetal Corp 高強度高熱伝導性立方晶窒化硼素焼結体
WO2005066381A1 (ja) 2004-01-08 2005-07-21 Sumitomo Electric Hardmetal Corp. 立方晶型窒化硼素焼結体
WO2012053375A1 (ja) 2010-10-19 2012-04-26 住友電工ハードメタル株式会社 立方晶窒化硼素焼結体工具
JP2015202980A (ja) 2014-04-14 2015-11-16 住友電気工業株式会社 立方晶窒化ホウ素複合焼結体およびその製造方法、ならびに切削工具、耐摩工具および研削工具
JP2015202981A (ja) 2014-04-14 2015-11-16 住友電気工業株式会社 立方晶窒化ホウ素複合焼結体およびその製造方法、ならびに切削工具、耐摩工具および研削工具

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
T. UNGARA. BORBELY: "The effect of dislocation contrast on x-ray line broadening: A new approach to line profile analysis", APPL. PHYS. LETT., vol. 69, no. 21, 1996, pages 3173, XP012016627, DOI: 10.1063/1.117951
T. UNGARS. OTTP. SANDERSA. BORBELYJ. WEERTMAN: "Dislocations, grain size and planar faults in nanostructured copper determined by high resolution X-ray diffraction and a new procedure of peak profile analysis", ACTA MATER., vol. 46, no. 10, 1998, pages 3693 - 3699, XP027395830

Also Published As

Publication number Publication date
JPWO2021131051A1 (ja) 2021-12-23
US11434550B2 (en) 2022-09-06
US20210198772A1 (en) 2021-07-01
EP4082994A4 (en) 2023-01-04
CN114845973A (zh) 2022-08-02
JP6940110B1 (ja) 2021-09-22
KR20220074911A (ko) 2022-06-03
EP4082994A1 (en) 2022-11-02

Similar Documents

Publication Publication Date Title
JP6990338B2 (ja) 立方晶窒化硼素焼結体
JP6990320B2 (ja) 立方晶窒化硼素焼結体
JP6990319B2 (ja) 立方晶窒化硼素焼結体
JP6798648B1 (ja) 立方晶窒化硼素焼結体
WO2021124700A1 (ja) 立方晶窒化硼素焼結体及びその製造方法
JP6940110B1 (ja) 立方晶窒化硼素焼結体及びその製造方法
JP6990339B2 (ja) 立方晶窒化硼素焼結体
WO2022085161A1 (ja) ダイヤモンド焼結体、及びダイヤモンド焼結体を備える工具
WO2022085438A1 (ja) ダイヤモンド焼結体、及びダイヤモンド焼結体を備える工具
KR20240051212A (ko) 입방정 질화붕소 소결체

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020521471

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19957568

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227014181

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019957568

Country of ref document: EP

Effective date: 20220727