WO2021130862A1 - 架橋フッ素樹脂コーティングロータの製造方法 - Google Patents

架橋フッ素樹脂コーティングロータの製造方法 Download PDF

Info

Publication number
WO2021130862A1
WO2021130862A1 PCT/JP2019/050632 JP2019050632W WO2021130862A1 WO 2021130862 A1 WO2021130862 A1 WO 2021130862A1 JP 2019050632 W JP2019050632 W JP 2019050632W WO 2021130862 A1 WO2021130862 A1 WO 2021130862A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
fluororesin
coated
peripheral surface
outer rotor
Prior art date
Application number
PCT/JP2019/050632
Other languages
English (en)
French (fr)
Inventor
翔一 高田
真人 魚住
誠 中林
小林 英一
一秋 池田
Original Assignee
住友電工焼結合金株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電工焼結合金株式会社, 住友電気工業株式会社 filed Critical 住友電工焼結合金株式会社
Priority to CN201980101707.2A priority Critical patent/CN114616392B/zh
Priority to JP2021566605A priority patent/JP7290751B2/ja
Priority to DE112019007999.9T priority patent/DE112019007999T5/de
Priority to US17/774,143 priority patent/US20220388028A1/en
Priority to PCT/JP2019/050632 priority patent/WO2021130862A1/ja
Publication of WO2021130862A1 publication Critical patent/WO2021130862A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • F04C2/102Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member the two members rotating simultaneously around their respective axes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/32Processes for applying liquids or other fluent materials using means for protecting parts of a surface not to be coated, e.g. using stencils, resists
    • B05D1/322Removable films used as masks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/082Details specially related to intermeshing engagement type machines or pumps
    • F04C2/084Toothed wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • F04C2/103Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member one member having simultaneously a rotational movement about its own axis and an orbital movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2230/00Manufacture
    • F04C2230/90Improving properties of machine parts
    • F04C2230/91Coating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/20Rotors

Definitions

  • This disclosure relates to a method for manufacturing a crosslinked fluororesin-coated rotor.
  • the inscribed gear pump of Patent Document 1 includes an annular outer rotor, an inner rotor that rotates about an eccentric position from the center of the outer rotor on the inner diameter side of the outer rotor, and a housing that accommodates the outer rotor and the inner rotor. And have.
  • the outer rotor has an inner peripheral surface forming a plurality of internal teeth and a side surface orthogonal to the axial direction.
  • the inner rotor has an outer peripheral surface forming a plurality of outer teeth that mesh with the inner teeth of the outer rotor, and a side surface orthogonal to the axial direction.
  • a clearance (side clearance) is set between the side surface of the outer rotor and the housing to allow the outer rotor to rotate. If this side clearance is large, the amount of fluid leakage increases and the discharge amount of the pump decreases. Therefore, it is preferable that the side clearance is small. However, if the side clearance is made too small, there is a problem that seizure easily occurs between the side surface of the outer rotor and the housing. Therefore, this side clearance is usually set to a size of several tens of ⁇ m or more.
  • a clearance (side clearance) for allowing the inner rotor to rotate is generally set between the side surface of the inner rotor and the housing.
  • This side clearance is also usually set to a size of several tens of ⁇ m or more.
  • Patent Document 2 proposes an inscribed gear type pump.
  • the inscribed gear pump of Patent Document 2 is obtained by coating at least one of an outer rotor, an inner rotor, and a housing with a crosslinked fluororesin. Since the crosslinked fluororesin has a property of low friction coefficient and high wear resistance, when at least one of the outer rotor, the inner rotor and the housing is coated with the crosslinked fluororesin, the outer rotor and the inner rotor are coated. Even when the clearance is set extremely small, it is possible to prevent seizure of the outer rotor and the inner rotor for a long period of time.
  • An annular outer rotor having an inner peripheral surface forming a plurality of internal teeth and a side surface orthogonal to the axial direction, It has an outer peripheral surface that forms a plurality of outer teeth that mesh with the inner teeth, and has an inner rotor that rotates about an eccentric position from the center of the outer rotor on the inner diameter side of the outer rotor.
  • the fluororesin is crosslinked by irradiating the fluororesin with radiation. This is a method for manufacturing a crosslinked fluororesin-coated rotor.
  • An annular outer rotor with an inner peripheral surface that forms multiple internal teeth An inner rotor having an outer peripheral surface forming a plurality of outer teeth that mesh with the inner teeth and a side surface orthogonal to the axial direction, and rotating around a position eccentric from the center of the outer rotor on the inner diameter side of the outer rotor.
  • the fluororesin is crosslinked by irradiating the fluororesin with radiation. This is a method for manufacturing a crosslinked fluororesin-coated rotor.
  • FIG. 1 is an exploded perspective view of an inscribed gear pump using an outer rotor and an inner rotor obtained by the method for manufacturing a crosslinked fluororesin-coated rotor according to the embodiment of the present disclosure.
  • FIG. 2 is a front view of the inscribed gear pump of FIG.
  • FIG. 3 is a cross-sectional view taken along the line III-III of FIG.
  • FIG. 4 is a cross-sectional view taken along the line IV-IV of FIG.
  • FIG. 5 is an enlarged view of the vicinity of the outer rotor and the inner rotor of FIG.
  • FIG. 6 is a cross-sectional view taken along the line VI-VI of FIG.
  • FIG. 7 is a view for explaining the manufacturing method of the outer rotor shown in FIG.
  • FIG. 5 is an exploded perspective view showing the outer rotor and the outer masking jig before coating with the fluororesin.
  • FIG. 8 is a partial cross-sectional view showing a state in which the outer masking jig is attached to the outer rotor shown in FIG. 7.
  • FIG. 9 is a cross-sectional view taken along the line IX-IX of FIG.
  • FIG. 10 is a diagram illustrating a method of manufacturing the inner rotor shown in FIG. 5, which is an exploded perspective view showing an inner rotor before coating with a fluororesin, an inner masking jig, and a shaft hole masking jig. is there.
  • FIG. 5 is an exploded perspective view showing an inner rotor before coating with a fluororesin, an inner masking jig, and a shaft hole masking jig. is there.
  • FIG. 11 is a partial cross-sectional view showing a state in which the inner masking jig and the shaft hole masking jig are attached to the inner rotor shown in FIG.
  • FIG. 12 is a cross-sectional view taken along the line XII-XII of FIG.
  • Patent Document 2 the inventors of the present application have in-house developed an internal gear type pump in which at least one of an outer rotor, an inner rotor, and a housing is coated with a crosslinked fluororesin.
  • a contact gear type pump we considered mass production of outer rotors and inner rotors coated with crosslinked fluororesin.
  • the outer rotor when coating the outer rotor with a crosslinked fluororesin, it is conceivable to coat the entire surface of the outer rotor (the inner peripheral surface forming the inner teeth of the outer rotor, the side surface of the outer rotor, and the outer peripheral surface of the outer rotor). Be done.
  • the inner rotor is coated with the crosslinked fluororesin, it is conceivable to coat the entire surface of the inner rotor (the outer peripheral surface forming the outer teeth of the inner rotor, the side surface of the inner rotor, and the inner peripheral surface of the inner rotor). ..
  • the inner peripheral surface forming the inner teeth of the outer rotor is a curved surface having a tooth profile of the inner teeth
  • the thickness of the crosslinked fluororesin can be accurately adjusted. Difficult to manage.
  • the outer peripheral surface forming the outer teeth of the inner rotor is also a curved surface having a tooth profile of the outer teeth, when the outer peripheral surface of the inner rotor is coated with the crosslinked fluororesin, the thickness of the crosslinked fluororesin is accurately controlled. Difficult to do. Therefore, the size of the tip clearance between the inner teeth on the inner circumference of the outer rotor and the outer teeth on the outer circumference of the inner rotor is not stable, and the pump performance becomes unstable.
  • the outer rotor and the inner rotor are coated with a crosslinked fluororesin in order to stabilize the size of the tip clearance between the inner teeth on the inner circumference of the outer rotor and the outer teeth on the outer circumference of the inner rotor.
  • the crosslinked fluororesin on the surface of the outer rotor by attaching masking tape to the inner peripheral surface of the outer rotor, the coating is applied to the portion excluding the inner peripheral surface of the outer rotor. investigated.
  • the crosslinked fluororesin on the surface of the inner rotor it was examined to coat the portion excluding the outer peripheral surface of the inner rotor by attaching a masking tape to the outer peripheral surface of the inner rotor.
  • the inner peripheral surface of the outer rotor is a curved surface of the tooth profile of the internal teeth, it is difficult to attach the masking tape in close contact.
  • the outer peripheral surface of the inner rotor is also a curved surface having a tooth profile of external teeth, it is difficult to attach the masking tape in close contact with the inner rotor.
  • the purpose is to easily manufacture a rotor for an inscribed gear type pump that can prevent seizure of the rotor for a long period of time and has stable performance.
  • the method for manufacturing a crosslinked fluororesin-coated rotor is as follows.
  • An annular outer rotor having an inner peripheral surface forming a plurality of internal teeth and a side surface orthogonal to the axial direction, It has an outer peripheral surface that forms a plurality of outer teeth that mesh with the inner teeth, and has an inner rotor that rotates about an eccentric position from the center of the outer rotor on the inner diameter side of the outer rotor.
  • the fluororesin is crosslinked by irradiating the fluororesin with radiation.
  • This is a method for manufacturing a crosslinked fluororesin-coated rotor. In this way, since the side surface of the outer rotor is coated with the crosslinked fluororesin, it is possible to prevent seizure of the outer rotor for a long period of time even when the side clearance of the outer rotor is set to be extremely small.
  • an outer masking jig that covers the inner peripheral surface with the side surface of the outer rotor exposed is used, so that the inner peripheral surface of the outer rotor is covered with a masking jig. Fluororesin is not coated. Therefore, the size of the tip clearance between the inner teeth on the inner circumference of the outer rotor and the outer teeth on the outer circumference of the inner rotor is stable, and the pump performance is stable.
  • the outer masking jig is formed with a positioning fitting tooth portion that is fitted to the inner peripheral surface of the outer rotor to perform positioning in the circumferential direction with respect to the outer rotor, the outer masking jig can be used as an outer.
  • the work of mounting on the rotor is easy.
  • the fluororesin is crosslinked by irradiating the uncrosslinked fluororesin with radiation
  • the radiation is irradiated with the outer masking jig removed from the outer rotor, so that the radiation is emitted by the outer masking jig. It is possible to prevent the fluororesin from being shielded and to crosslink the fluororesin evenly and uniformly.
  • the outer masking jig having a tooth profile flange that overlaps the peripheral edge portion along the inner peripheral surface of the side surface of the outer rotor.
  • the tooth profile flange can surely cover the inner peripheral surface of the outer rotor while exposing most of the side surfaces of the outer rotor. It is possible to coat most of the side surfaces of the outer rotor with the crosslinked fluororesin while preventing the inner peripheral surface of the outer rotor from being coated.
  • the tooth profile flange is preferably formed so that a region overlapping the side surface of the outer rotor has a width of 0.5 mm or less.
  • the method for manufacturing a crosslinked fluororesin-coated rotor is as follows.
  • An annular outer rotor with an inner peripheral surface that forms multiple internal teeth An inner rotor having an outer peripheral surface forming a plurality of outer teeth that mesh with the inner teeth and a side surface orthogonal to the axial direction, and rotating around a position eccentric from the center of the outer rotor on the inner diameter side of the outer rotor.
  • the fluororesin is crosslinked by irradiating the fluororesin with radiation.
  • This is a method for manufacturing a crosslinked fluororesin-coated rotor. In this way, since the side surface of the inner rotor is coated with the crosslinked fluororesin, it is possible to prevent seizure of the inner rotor for a long period of time even when the side clearance of the inner rotor is set to be extremely small.
  • an inner masking jig that covers the outer peripheral surface with the side surface of the inner rotor exposed is used, so that the outer peripheral surface of the inner rotor is made of fluororesin. Is not coated. Therefore, the size of the tip clearance between the inner teeth on the inner circumference of the outer rotor and the outer teeth on the outer circumference of the inner rotor is stable, and the pump performance is stable. Further, since the inner masking jig is formed with a positioning fitting tooth portion that is fitted to the outer peripheral surface of the inner rotor to perform positioning in the circumferential direction with respect to the inner rotor, the inner masking jig can be used as the inner rotor.
  • the work of attaching to the is easy.
  • the radiation is irradiated with the inner masking jig removed from the inner rotor, so that the radiation is the inner masking jig. It is possible to prevent the fluororesin from being shielded and to crosslink the fluororesin evenly and uniformly.
  • the inner masking jig having a tooth profile flange that overlaps the peripheral edge portion along the outer peripheral surface of the side surface of the inner rotor.
  • the tooth profile flange is preferably formed so that a region overlapping the side surface of the inner rotor has a width of 0.5 mm or less. In this way, almost all the side surfaces of the inner rotor can be coated with the crosslinked fluororesin.
  • the inscribed gear pump has an annular outer rotor 1, an inner rotor 2 arranged on the inner diameter side of the outer rotor 1, and a housing 3 for accommodating the outer rotor 1 and the inner rotor 2.
  • the housing 3 is formed on a hollow tubular housing body 4 that surrounds the outer circumference of the outer rotor 1 and one end of the housing body 4 in the axial direction (the left end in the figure). It has a first side member 5a that is detachably attached and a second side member 5b that is detachably attached to the other end (the right end in the figure) of the housing body 4 in the axial direction.
  • the first side member 5a, the housing body 4, and the second side member 5b are fixed to each other by inserting a common bolt 7 into a bolt insertion hole 6 formed in each member and tightening the bolt 7 in the axial direction. ing. Further, the first side member 5a, the housing body 4, and the second side member 5b are positioned in the direction perpendicular to the axis by inserting a common knock pin 9 into the knock pin insertion holes 8 formed in each member.
  • the inner rotor 2 is formed with a shaft hole 11 into which the rotating shaft 10 is inserted.
  • the rotary shaft 10 is a shaft body that rotationally drives the inner rotor 2 and is connected to a rotary drive device (electric motor or the like) (not shown).
  • the rotating shaft 10 and the shaft hole 11 are fitted so that the rotating shaft 10 and the inner rotor 2 rotate integrally.
  • the fitting of the rotating shaft 10 and the shaft hole 11 includes a two-sided width fitting as shown in the figure, a spline fitting, a keyway fitting, and a fitting with a tightening allowance between cylindrical surfaces (hard fitting and fitting). Fitting by press fitting) may be adopted.
  • the shaft hole 11 of the inner rotor 2 is a through hole that penetrates the inner rotor 2 in the axial direction.
  • the rotary shaft 10 has a shaft hole 11 so as to have a portion protruding from the inner rotor 2 on one side in the axial direction (left side in the figure) and a portion protruding from the inner rotor 2 on the other side in the axial direction (right side in the figure). It is inserted in.
  • the portion of the rotating shaft 10 protruding from the inner rotor 2 to one side in the axial direction is rotatably supported by the first bearing 12a attached to the first side member 5a, and is rotatably supported from the inner rotor 2 of the rotating shaft 10.
  • the portion protruding to the other side in the direction is rotatably supported by a second bearing 12b attached to the second side member 5b.
  • the outer rotor 1 has an annular shape having a cylindrical outer peripheral surface 13, an inner peripheral surface 15 forming a plurality of internal teeth 14, and a side surface 16 (see FIG. 3) orthogonal to the axial direction. It is a member of.
  • the inner rotor 2 is a member having an outer peripheral surface 18 forming a plurality of outer teeth 17 that mesh with the inner teeth 14 of the outer rotor 1 and a side surface 19 (see FIG. 3) that is orthogonal to the axial direction.
  • the outer peripheral surface 13 of the outer rotor 1 is fitted to the cylindrical inner peripheral surface 20 of the housing body 4 with a gap, and the outer rotor 1 is rotatably supported by the fitting.
  • the outer rotor 1 is rotatably supported around a position eccentric from the center position of the inner rotor 2 (that is, the rotation center position of the rotation shaft 10).
  • the inner rotor 2 is rotated, the outer rotor 1 rotates together with the inner rotor 2 due to the meshing of the inner teeth 14 and the outer teeth 17.
  • the rotation direction of the inner rotor 2 is clockwise in the figure.
  • the number of internal teeth 14 of the outer rotor 1 is one more than the number of external teeth 17 of the inner rotor 2.
  • the outer peripheral surface 18 of the inner rotor 2 is surrounded by a tooth profile curve of the outer teeth 17 (for example, a curve that curves outward in the radial direction and a curve that curves concavely in the radial direction, such as a trochoid curve and a cycloid curve). It is a curved surface obtained as a locus in which tooth-shaped curves (toothed curves that are alternately arranged along the direction) are moved in parallel in the axial direction.
  • the inner peripheral surface 15 of the outer rotor 1 also has a curve and a radial direction that are convexly curved outward in the radial direction, such as the tooth profile curve of the inner tooth 14 (for example, the wrapping line of the trochoid curve, the cycloid curve, and the tooth profile curve of the inner rotor 2). It is a curved surface obtained as a locus obtained by moving an inwardly concave curved curve (a tooth profile curve alternately arranged along the circumferential direction) in parallel in the axial direction.
  • a plurality of chambers 21 (spaces for accommodating fluids) partitioned by the outer teeth 17 and the inner teeth 14 are formed between the outer circumference of the inner rotor 2 and the inner circumference of the outer rotor 1.
  • the plurality of chambers 21 are configured so that their volumes change as the inner rotor 2 and the outer rotor 1 rotate. That is, the volume of the chamber 21 is maximized at the angle position where the center of the inner rotor 2 and the center of the outer rotor 1 are farthest (upper position in the figure), and the center of the inner rotor 2 and the center of the outer rotor 1 are closest to each other. It becomes smaller as it approaches (lower position in the figure).
  • the center of the inner rotor 2 and the center of the outer rotor 1 move from the farthest angle position to the closest angle position between the center of the inner rotor 2 and the center of the outer rotor 1.
  • the volume of the chamber 21 is reduced to discharge the fluid, while the inner rotor 2 is located at the closest angle between the center of the inner rotor 2 and the center of the outer rotor 1.
  • the suction action of the fluid occurs due to the gradual expansion of the volume of the chamber 21.
  • the side surface 16 of the outer rotor 1 is a pair of planes formed on both sides of the outer rotor 1 in the axial direction and facing each other in the axial direction.
  • the side surfaces 19 of the inner rotor 2 are a pair of planes formed on both sides of the inner rotor 2 in the axial direction and facing each other in the axial direction.
  • the side surface 16 and the outer peripheral surface 13 of the outer rotor 1 are surfaces coated with the crosslinked fluororesin 22 (crosslinked fluororesin surface).
  • the inner peripheral surface 15 of the outer rotor 1 is a surface (metal surface) not coated with the crosslinked fluororesin 22.
  • the outer rotor 1 is composed of a sintered metal body 23 and a coating layer of a crosslinked fluororesin 22 provided by coating the surface of the sintered metal body 23.
  • the sintered metal body 23 is formed by heating a powder molded body obtained by compression molding an iron-based powder material with a mold at a high temperature equal to or lower than the melting point.
  • the crosslinked fluororesin 22 is obtained by cross-linking between the molecules of the chain polymer constituting the fluororesin, and has a low friction coefficient equivalent to that of a general fluororesin (non-crosslinked fluororesin), but is generally used. It has extremely high wear resistance compared to fluororesin.
  • PTFE polytetrafluoroethylene
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • PFA tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer
  • the side surface 19 of the inner rotor 2 is also a surface coated with the crosslinked fluororesin 24 (crosslinked fluororesin surface).
  • the outer peripheral surface 18 of the inner rotor 2 and the inner surface of the shaft hole 11 are surfaces (metal surfaces) not coated with the crosslinked fluororesin 24.
  • the inner rotor 2 is composed of a sintered metal body 25 and a coating layer of a crosslinked fluororesin 24 provided by coating the surface of the sintered metal body 25.
  • the width dimension of the pair of side surfaces 16 of the outer rotor 1 is the same as the width dimension of the pair of side surfaces 19 of the inner rotor 2.
  • the side surface 16 on one side (left side in the figure) of the outer rotor 1 in the axial direction is located on the same plane as the side surface 19 on one side (left side in the figure) of the inner rotor 2 in the axial direction, and is in the axial direction of the outer rotor 1.
  • the side surface 16 on the other side (right side in the figure) is located on the same plane as the side surface 19 on the other side (right side in the figure) of the inner rotor 2 in the axial direction.
  • the first side member 5a has a flat mating surface 26 fixed by pressing against one side surface of the housing body 4 in the axial direction by tightening bolts 7, and a side surface 16 on one side of the outer rotor 1 in the axial direction. It has a flat sliding guide surface 27 that slides and guides the inner rotor 2 and the side surface 19 on one side in the axial direction of the inner rotor 2.
  • the second side member 5b also has a flat mating surface 26 that is pressed and fixed to the other side surface of the housing body 4 in the axial direction by tightening the bolt 7, and the other side surface 16 in the axial direction of the outer rotor 1.
  • the sliding guide surface 27 is a finished surface having a surface roughness of Ra 1.6 ⁇ m or less (preferably Ra 0.8 ⁇ m or less).
  • Difference between the side surface 16 of the outer rotor 1 and the housing 3 (that is, the width dimension of the pair of side surfaces 16 of the outer rotor 1 and the inner width dimension of the pair of sliding guide surfaces 27 facing in the axial direction of the housing 3). ) Is set to 20 ⁇ m or less (preferably 15 ⁇ m or less, more preferably 10 ⁇ m or less).
  • the side surface 19 of the inner rotor 2 and the housing 3 (that is, the width dimension of the pair of side surfaces 19 of the inner rotor 2 and the inner width dimension of the pair of sliding guide surfaces 27 facing in the axial direction of the housing 3). (Difference from) is also set to 20 ⁇ m or less (preferably 15 ⁇ m or less, more preferably 10 ⁇ m or less).
  • a first suction port 28a and a first discharge port 29a are open in the first side member 5a. Further, the second suction port 28b and the second discharge port 29b are also opened in the second side member 5b.
  • the first suction port 28a and the second suction port 28b are opened at symmetrical positions with the inner rotor 2 and the outer rotor 1 sandwiched between them in the same shape.
  • the pressure received by the inner rotor 2 and the outer rotor 1 from the fluid in the first suction port 28a and the pressure received by the inner rotor 2 and the outer rotor 1 from the fluid in the second suction port 28b are balanced. It prevents the inner rotor 2 and the outer rotor 1 from being tilted.
  • first discharge port 29a and the second discharge port 29b are also opened at symmetrical positions with the inner rotor 2 and the outer rotor 1 sandwiched between them in the same shape.
  • the pressure received by the inner rotor 2 and the outer rotor 1 from the fluid in the first discharge port 29a and the pressure received by the inner rotor 2 and the outer rotor 1 from the fluid in the second discharge port 29b are obtained. It is balanced to prevent the inner rotor 2 and the outer rotor 1 from being tilted.
  • the first suction port 28a and the second suction port 28b communicate with each other through a communication passage 30 formed in the housing main body 4. Further, as shown in FIGS. 2 and 6, the first suction port 28a communicates with the suction port 31 that opens on the outer surface of the first side member 5a, and the first discharge port 29a is the first side. It communicates with the discharge port 32 that opens on the outer surface of the member 5a.
  • the outer masking jig 40 is a jig that covers the inner peripheral surface 15 of the outer rotor 1 with the side surface 16 of the outer rotor 1 exposed.
  • the outer masking jig 40 includes a first jig 40a that closes an opening on one side in the axial direction of the outer rotor 1 and a second jig 40b that closes an opening on the other side in the axial direction of the outer rotor 1.
  • the first jig 40a and the second jig 40b are connected by a bolt 41 inside the outer rotor 1. Both the first jig 40a and the second jig 40b have a positioning fitting tooth portion 42 and a tooth profile flange 43.
  • the positioning fitting tooth portion 42 is a portion that is fitted to the inner peripheral surface 15 of the outer rotor 1 to perform positioning in the circumferential direction with respect to the outer rotor 1.
  • the outer peripheral surface of the positioning fitting tooth portion 42 is a curved surface obtained as a locus obtained by translating the tooth profile curve of the internal tooth 14 toward the inner diameter side in parallel in the axial direction.
  • the outer peripheral surface of the positioning fitting tooth portion 42 is formed so that the distance from the inner peripheral surface 15 of the outer rotor 1 is 0.2 mm or less (preferably 0.15 mm or less).
  • the axial length of the positioning fitting tooth portion 42 is set to 2.0 mm or less (preferably 1.5 mm or less).
  • the tooth profile flange 43 is a portion formed so as to project radially outward from the axially outer end of the positioning fitting tooth portion 42.
  • the tooth profile flange 43 has a tooth profile shape corresponding to the internal teeth 14 so as to overlap the peripheral edge portion of the side surface 16 of the outer rotor 1 along the inner peripheral surface 15. That is, the outer peripheral surface of the tooth profile flange 43 is a curved surface obtained as a locus obtained by translating the tooth profile curve of the internal tooth 14 toward the outer diameter side in the axial direction.
  • the outer peripheral surface of the tooth profile flange 43 protrudes from the inner peripheral surface 15 of the outer rotor 1 to the outer diameter side (as shown in FIG. 8, the width w1 of the band-shaped region where the tooth profile flange 43 overlaps the side surface 16 of the outer rotor 1). However, it is formed so as to be 0.5 mm or less (preferably 0.3 mm or less).
  • the outer masking jig 40 is attached to the outer rotor 1 before coating, and in that state, the uncrosslinked fluororesin is coated on the outer rotor 1.
  • a dispersion liquid in which fine particles of fluororesin (for example, PTFE) are dispersed in water is applied to the surface of the outer rotor 1 in which the outer masking jig 40 is attached. This coating can be done by dipping or spraying. Then, by drying the applied dispersion liquid, a coating layer of uncrosslinked fluororesin fine particles is formed on the surface of the outer rotor 1.
  • both the side surface 16 and the outer peripheral surface 13 of the outer rotor 1 are in a state of being coated with fine particles of uncrosslinked fluororesin.
  • the outer masking jig 40 is removed from the outer rotor 1, and the outer rotor 1 is heated to a temperature equal to or higher than the melting point of the fluororesin to obtain uncrosslinked fluorine coated on the side surface 16 and the outer peripheral surface 13 of the outer rotor 1.
  • the fine particles of the resin are fired to fuse the fine particles of the fluororesin.
  • the outer masking jig 40 may be removed after the fluororesin has been fired.
  • the outer rotor 1 is irradiated with radiation to crosslink the fluororesins on the side surface 16 and the outer peripheral surface 13 of the outer rotor 1.
  • the outer rotor 1 is placed in a predetermined high-temperature oxygen-free atmosphere, and radiation (for example, an electron beam) is directed toward the surface of the outer rotor 1. ), A covalent bond is formed between the chain polymers constituting the fluororesin, and the molecules of the chain polymer are crosslinked.
  • the radiation irradiated at this time also causes a chemical bond between the molecule of the chain polymer constituting the fluororesin and the outer rotor 1, and the chemical bond causes the crosslinked fluororesin 22 to have extremely high adhesion. Become. Then, if necessary, the surface of the crosslinked fluororesin 22 is ground or polished to finish.
  • the inner masking jig 50 is a jig that covers the outer peripheral surface 18 of the inner rotor 2 with the side surface 19 of the inner rotor 2 exposed.
  • the inner masking jig 50 is fitted to the outer periphery of the end portion on one side of the inner rotor 2 in the axial direction and the first jig 50a to be fitted to the outer periphery of the end portion on the other side in the axial direction of the inner rotor 2. It consists of two jigs 50b.
  • the first jig 50a and the second jig 50b are connected by a bolt 52 on the outer diameter side of the inner rotor 2.
  • the first jig 50a and the second jig 50b have an axial mating surface 53.
  • An annular sealing member 54 (see FIGS. 11 and 12) for sealing the mating surface 53 is incorporated between the first jig 50a and the second jig 50b.
  • Both the first jig 50a and the second jig 50b have a positioning fitting tooth portion 55 and a tooth profile flange 56.
  • the positioning fitting tooth portion 55 is a portion that is fitted to the outer peripheral surface 18 of the inner rotor 2 to perform positioning in the circumferential direction with respect to the inner rotor 2.
  • the inner peripheral surface of the positioning fitting tooth portion 55 is a curved surface obtained as a locus obtained by translating the tooth profile curve of the outer tooth 17 toward the outer diameter side in the axial direction.
  • the inner peripheral surface of the positioning fitting tooth portion 55 is formed so that the distance from the outer peripheral surface 18 of the inner rotor 2 is 0.2 mm or less (preferably 0.15 mm or less).
  • the axial length of the positioning fitting tooth portion 55 is set to 2.0 mm or less (preferably 1.5 mm or less).
  • the tooth profile flange 56 is a portion formed so as to project radially inward from the axially outer end of the positioning fitting tooth portion 55.
  • the tooth profile flange 56 has a tooth profile shape corresponding to the outer teeth 17 so as to overlap the peripheral edge portion of the side surface 19 of the inner rotor 2 along the outer peripheral surface 18. That is, the inner peripheral surface of the tooth profile flange 56 is a curved surface obtained as a locus in which the tooth profile curve of the outer tooth 17 is offset toward the inner diameter side and translated in the axial direction.
  • the inner peripheral surface of the tooth profile flange 56 has a distance (width w2 of a band-shaped region where the tooth profile flange 56 overlaps the side surface 19 of the inner rotor 2) from the outer peripheral surface 18 of the inner rotor 2 to the inner diameter side (as shown in FIG. 11). , 0.5 mm or less (preferably 0.3 mm or less).
  • the shaft hole masking jig 51 includes a first jig 51a that closes the opening on one side of the shaft hole 11 in the axial direction, and a second jig 51b that closes the opening on the other side of the shaft hole 11 in the axial direction. ..
  • the first jig 51a and the second jig 51b are connected by a bolt 57 inside the shaft hole 11.
  • the inner masking jig 50 and the shaft hole masking jig 51 are attached to the inner rotor 2 before coating, and in that state, the uncrosslinked fluororesin is coated on the inner rotor 2.
  • a dispersion liquid in which fine particles of fluororesin (for example, PTFE) are dispersed in water is applied to the surface of the inner rotor 2 in which the inner masking jig 50 and the shaft hole masking jig 51 are attached. ..
  • This coating can be done by dipping or spraying.
  • a coating layer of uncrosslinked fluororesin fine particles is formed on the surface of the inner rotor 2.
  • the side surface 19 of the inner rotor 2 is in a state of being coated with fine particles of uncrosslinked fluororesin.
  • the inner masking jig 50 and the shaft hole masking jig 51 were removed from the inner rotor 2, and the inner rotor 2 was heated to a temperature equal to or higher than the melting point of the fluororesin to coat the side surface 19 of the inner rotor 2.
  • the uncrosslinked fluororesin fine particles are fired to fuse the fluororesin fine particles together.
  • the inner masking jig 50 and the shaft hole masking jig 51 may be removed after the fluororesin has been fired.
  • the inner rotor 2 is irradiated with radiation to crosslink the fluororesin on the side surface 19 of the inner rotor 2.
  • the inner rotor 2 is placed in a predetermined high-temperature oxygen-free atmosphere on the surface of the inner rotor 2.
  • the radiation for example, an electron beam
  • the radiation irradiated at this time also causes a chemical bond between the molecule of the chain polymer constituting the fluororesin and the inner rotor 2, and the chemical bond causes the crosslinked fluororesin 24 to have extremely high adhesion. Become. Then, if necessary, the surface of the crosslinked fluororesin 24 is ground or polished to finish.
  • the outer rotor 1 in which the side surface 16 and the outer peripheral surface 13 are coated with the crosslinked fluororesin 22 is manufactured as in the above embodiment, the side surface 16 of the outer rotor 1 is coated with the crosslinked fluororesin 22, so that the outer rotor is Even when the side clearance of 1 is set extremely small, it is possible to prevent seizure of the outer rotor 1 for a long period of time.
  • the outer masking jig 40 that covers the inner peripheral surface 15 with the side surface 16 of the outer rotor 1 exposed is used.
  • the inner peripheral surface 15 is not coated with fluororesin. Therefore, the size of the tip clearance between the inner teeth 14 on the inner circumference of the outer rotor 1 and the outer teeth 17 on the outer circumference of the inner rotor 2 is stable, and the pump performance is stable.
  • the outer masking jig 40 is formed with a positioning fitting tooth portion 42 that is fitted to the inner peripheral surface 15 of the outer rotor 1 to perform positioning in the circumferential direction with respect to the outer rotor 1, masking for the outer.
  • the work of attaching the jig 40 to the outer rotor 1 is easy.
  • the radiation is irradiated with the outer masking jig 40 removed from the outer rotor 1, so that the radiation is masked for the outer. It is possible to prevent the fluororesin from being shielded by the tool 40 and to crosslink the fluororesin evenly and uniformly.
  • the outer masking jig 40 has the tooth profile flange 43, when the outer rotor 1 is coated with the uncrosslinked fluororesin, the outer peripheral surface 15 of the outer rotor 1 is surely covered and the side surface of the outer rotor 1 is covered. Most of 16 can be exposed. Therefore, it is possible to coat most of the side surface 16 of the outer rotor 1 with the crosslinked fluororesin 22 while preventing the inner peripheral surface 15 of the outer rotor 1 from being coated.
  • the tooth profile flange 43 is formed so that the region overlapping the side surface 16 of the outer rotor 1 has a width w1 (see FIG. 8) of 0.5 mm or less (preferably 0.3 mm or less), the outer rotor 1 Almost all parts of the side surface 16 of the above can be coated with the crosslinked fluororesin 22.
  • the side surface 19 of the inner rotor 2 is coated with the crosslinked fluororesin 24, so that the side clearance of the inner rotor 2 It is possible to prevent seizure of the inner rotor 2 for a long period of time even when the value is set extremely small.
  • the inner masking jig 50 that covers the outer peripheral surface 18 with the side surface 19 of the inner rotor 2 exposed is used, so that the outer circumference of the inner rotor 2 is covered.
  • the surface 18 is not coated with fluororesin. Therefore, the size of the tip clearance between the inner teeth 14 on the inner circumference of the outer rotor 1 and the outer teeth 17 on the outer circumference of the inner rotor 2 is stable, and the pump performance is stable.
  • the inner masking jig 50 is formed with a positioning fitting tooth portion 55 that is fitted to the outer peripheral surface 18 of the inner rotor 2 to perform positioning in the circumferential direction with respect to the inner rotor 2, masking for the inner is performed.
  • the work of mounting the jig 50 on the inner rotor 2 is easy.
  • the radiation is irradiated with the inner masking jig 50 removed from the inner rotor 2, so that the radiation cures the inner masking. It is possible to prevent the fluororesin from being shielded by the tool 50 and to crosslink the fluororesin evenly and uniformly.
  • the inner masking jig 50 has the tooth profile flange 56, when the inner rotor 2 is coated with the uncrosslinked fluororesin, the tooth profile flange 56 ensures that the outer peripheral surface 18 of the inner rotor 2 is covered with the inner rotor 2. Most of the side surface 19 of the rotor 2 can be exposed. Therefore, it is possible to coat most of the side surface 19 of the inner rotor 2 with the crosslinked fluororesin 24 while preventing the outer peripheral surface 18 of the inner rotor 2 from being coated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Rotary Pumps (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)

Abstract

複数の内歯を形成する内周面と、軸方向に直交する側面とをもつ環状のアウターロータと、 前記内歯に噛み合う複数の外歯を形成する外周面をもち、前記アウターロータの内径側で前記アウターロータの中心から偏心した位置を中心に回転するインナーロータと、を有し、 前記アウターロータの前記側面は架橋フッ素樹脂でコーティングされ、前記アウターロータの前記内周面は架橋フッ素樹脂でコーティングされていない内接歯車式ポンプの前記アウターロータを製造する架橋フッ素樹脂コーティングロータの製造方法であって、 前記アウターロータの前記側面を露出させた状態で前記内周面を覆うアウター用マスキング治具を使用し、前記アウター用マスキング治具には、前記アウターロータの前記内周面に嵌合することで前記アウターロータに対する周方向の位置決めを行なう位置決め嵌合歯部が形成され、 前記アウター用マスキング治具を前記アウターロータに装着した状態で、未架橋のフッ素樹脂を前記アウターロータにコーティングし、 その後、前記アウター用マスキング治具を前記アウターロータから取り外した状態で、前記フッ素樹脂に放射線を照射することでフッ素樹脂を架橋させる、 架橋フッ素樹脂コーティングロータの製造方法。

Description

架橋フッ素樹脂コーティングロータの製造方法
 本開示は、架橋フッ素樹脂コーティングロータの製造方法に関する。
 内接歯車式ポンプとして、特許文献1に記載のものが知られている。特許文献1の内接歯車式ポンプは、環状のアウターロータと、そのアウターロータの内径側でアウターロータの中心から偏心した位置を中心に回転するインナーロータと、アウターロータおよびインナーロータを収容するハウジングとを有する。ここで、アウターロータは、複数の内歯を形成する内周面と、軸方向に直交する側面とを有する。また、インナーロータは、アウターロータの内歯に噛み合う複数の外歯を形成する外周面と、軸方向に直交する側面とを有する。
 アウターロータの側面とハウジングとの間には、一般に、アウターロータの回転を許容するためのクリアランス(サイドクリアランス)が設定される。このサイドクリアランスが大きいと、流体のリーク量が大きくなってポンプの吐出量が減少するため、サイドクリアランスは小さい方が好ましい。しかしながら、サイドクリアランスを小さくしすぎると、アウターロータの側面とハウジングの間の焼き付きが生じやすくなるという問題がある。そのため、このサイドクリアランスは、通常、数十μm以上の大きさに設定される。
 同様に、インナーロータの側面とハウジングとの間にも、一般に、インナーロータの回転を許容するためのクリアランス(サイドクリアランス)が設定される。このサイドクリアランスも、通常、数十μm以上の大きさに設定される。
 ここで、本願の出願人は、アウターロータやインナーロータの焼き付きを防止しながら、アウターロータやインナーロータのクリアランスをきわめて小さく設定することが可能な内接歯車式ポンプの開発を行ない、そのような内接歯車式ポンプとして、特許文献2のものを提案している。
 特許文献2の内接歯車式ポンプは、アウターロータ、インナーロータ、ハウジングのうちの少なくとも1つに、架橋フッ素樹脂をコーティングしたものである。架橋フッ素樹脂は、摩擦係数が低く、かつ、耐摩耗性が高いという特性を有するため、アウターロータ、インナーロータ、ハウジングのうちの少なくとも1つに、架橋フッ素樹脂をコーティングすると、アウターロータやインナーロータのクリアランスをきわめて小さく設定したときにも、アウターロータやインナーロータの焼き付きを長期にわたって防止することが可能となる。
特開2014-47751号公報 特開2014-173513号公報
 本開示の一態様に係る架橋フッ素樹脂コーティングロータの製造方法は、
 複数の内歯を形成する内周面と、軸方向に直交する側面とをもつ環状のアウターロータと、
 前記内歯に噛み合う複数の外歯を形成する外周面をもち、前記アウターロータの内径側で前記アウターロータの中心から偏心した位置を中心に回転するインナーロータと、を有し、
 前記アウターロータの前記側面は架橋フッ素樹脂でコーティングされ、前記アウターロータの前記内周面は架橋フッ素樹脂でコーティングされていない内接歯車式ポンプの前記アウターロータを製造する架橋フッ素樹脂コーティングロータの製造方法であって、
 前記アウターロータの前記側面を露出させた状態で前記内周面を覆うアウター用マスキング治具を使用し、前記アウター用マスキング治具には、前記アウターロータの前記内周面に嵌合することで前記アウターロータに対する周方向の位置決めを行なう位置決め嵌合歯部が形成され、
 前記アウター用マスキング治具を前記アウターロータに装着した状態で、未架橋のフッ素樹脂を前記アウターロータにコーティングし、
 その後、前記アウター用マスキング治具を前記アウターロータから取り外した状態で、前記フッ素樹脂に放射線を照射することでフッ素樹脂を架橋させる、
 架橋フッ素樹脂コーティングロータの製造方法である。
 また、本開示の一態様に係る架橋フッ素樹脂コーティングロータの製造方法は、
 複数の内歯を形成する内周面をもつ環状のアウターロータと、
 前記内歯に噛み合う複数の外歯を形成する外周面と、軸方向に直交する側面とをもち、前記アウターロータの内径側で前記アウターロータの中心から偏心した位置を中心に回転するインナーロータと、を有し、
 前記インナーロータの前記側面は架橋フッ素樹脂でコーティングされ、前記インナーロータの前記外周面は架橋フッ素樹脂でコーティングされていない内接歯車式ポンプの前記インナーロータを製造する架橋フッ素樹脂コーティングロータの製造方法であって、
 前記インナーロータの前記側面を露出させた状態で前記外周面を覆うインナー用マスキング治具を使用し、前記インナー用マスキング治具には、前記インナーロータの前記外周面に嵌合することで前記インナーロータに対する周方向の位置決めを行なう位置決め嵌合歯部が形成され、
 前記インナー用マスキング治具を前記インナーロータに装着した状態で、未架橋のフッ素樹脂を前記インナーロータにコーティングし、
 その後、前記インナー用マスキング治具を前記インナーロータから取り外した状態で、前記フッ素樹脂に放射線を照射することでフッ素樹脂を架橋させる、
 架橋フッ素樹脂コーティングロータの製造方法である。
図1は、本開示の実施形態にかかる架橋フッ素樹脂コーティングロータの製造方法で得られるアウターロータおよびインナーロータを使用した内接歯車式ポンプの分解斜視図である。 図2は、図1の内接歯車式ポンプの正面図である。 図3は、図2のIII-III線に沿った断面図である。 図4は、図3のIV-IV線に沿った断面図である。 図5は、図3のアウターロータおよびインナーロータの近傍の拡大図である。 図6は、図2のVI-VI線に沿った断面図である。 図7は、図5に示すアウターロータの製造方法を説明する図であり、フッ素樹脂をコーティングする前のアウターロータおよびアウター用マスキング治具を示す分解斜視図である。 図8は、図7に示すアウターロータにアウター用マスキング治具を装着した状態を示す一部断面図である。 図9は、図8のIX-IX線に沿った断面図である。 図10は、図5に示すインナーロータの製造方法を説明する図であり、フッ素樹脂をコーティングする前のインナーロータと、インナー用マスキング治具および軸穴用マスキング治具とを示す分解斜視図である。 図11は、図10に示すインナーロータにインナー用マスキング治具と軸穴用マスキング治具とを装着した状態を示す一部断面図である。 図12は、図11のXII-XII線に沿った断面図である。
[本開示が解決しようとする課題]
 本願の発明者らは、特許文献2のように、アウターロータ、インナーロータ、ハウジングのうちの少なくとも1つに架橋フッ素樹脂をコーティングした内接歯車式ポンプの開発を社内で進め、そのような内接歯車式ポンプとして、アウターロータおよびインナーロータに架橋フッ素樹脂をコーティングしたものを量産化することを検討した。
 ここで、アウターロータに架橋フッ素樹脂をコーティングする場合、アウターロータの表面(アウターロータの内歯を形成する内周面、アウターロータの側面、アウターロータの外周面)の全体にコーティングすることが考えられる。また、インナーロータに架橋フッ素樹脂をコーティングする場合、インナーロータの表面(インナーロータの外歯を形成する外周面、インナーロータの側面、インナーロータの内周面)の全体にコーティングすることが考えられる。
 しかしながら、アウターロータの表面の全体に架橋フッ素樹脂をコーティングする場合や、インナーロータの表面の全体に架橋フッ素樹脂をコーティングする場合、アウターロータの外歯とインナーロータの内歯との間のクリアランス(チップクリアランス)を精度よく管理することが難しく、ポンプ性能が不安定になるという問題に直面した。
 すなわち、アウターロータの内歯を形成する内周面は、内歯の歯形形状の湾曲面であるため、アウターロータの内周面に架橋フッ素樹脂をコーティングする場合、架橋フッ素樹脂の厚みを精度よく管理することが難しい。同様に、インナーロータの外歯を形成する外周面も、外歯の歯形形状の湾曲面であるため、インナーロータの外周面に架橋フッ素樹脂をコーティングする場合、架橋フッ素樹脂の厚みを精度よく管理することが難しい。そのため、アウターロータの内周の内歯とインナーロータの外周の外歯との間のチップクリアランスの大きさが安定せず、ポンプ性能が不安定になるという問題に直面した。
 そこで、発明者らは、アウターロータの内周の内歯とインナーロータの外周の外歯との間のチップクリアランスの大きさを安定させるため、アウターロータおよびインナーロータに架橋フッ素樹脂をコーティングするときに、アウターロータの内周面およびインナーロータの外周面はコーティングされないようにすることを検討した。具体的には、アウターロータの表面に架橋フッ素樹脂をコーティングするときに、アウターロータの内周面にマスキングテープを貼付することで、アウターロータの内周面を除いた部位にコーティングをすることを検討した。また、インナーロータの表面に架橋フッ素樹脂をコーティングするときに、インナーロータの外周面にマスキングテープを貼付することで、インナーロータの外周面を除いた部位にコーティングをすることを検討した。
 しかしながら、アウターロータの内周面は、内歯の歯形形状の湾曲面であるため、マスキングテープを密着して貼付するのが難しい。同様に、インナーロータの外周面も、外歯の歯形形状の湾曲面であるため、マスキングテープを密着して貼付するのが難しい。
 そこで、ロータの焼き付きを長期にわたって防止することができ、かつ、安定した性能をもつ内接歯車式ポンプのロータを容易に製造することを目的とする。
[本開示の効果]
 本開示によれば、ロータの焼き付きを長期にわたって防止することができ、かつ、安定した性能をもつ内接歯車式ポンプのロータを容易に製造することが可能となる。
[本開示の実施形態の説明]
(1)本開示の一態様に係る架橋フッ素樹脂コーティングロータの製造方法は、
 複数の内歯を形成する内周面と、軸方向に直交する側面とをもつ環状のアウターロータと、
 前記内歯に噛み合う複数の外歯を形成する外周面をもち、前記アウターロータの内径側で前記アウターロータの中心から偏心した位置を中心に回転するインナーロータと、を有し、
 前記アウターロータの前記側面は架橋フッ素樹脂でコーティングされ、前記アウターロータの前記内周面は架橋フッ素樹脂でコーティングされていない内接歯車式ポンプの前記アウターロータを製造する架橋フッ素樹脂コーティングロータの製造方法であって、
 前記アウターロータの前記側面を露出させた状態で前記内周面を覆うアウター用マスキング治具を使用し、前記アウター用マスキング治具には、前記アウターロータの前記内周面に嵌合することで前記アウターロータに対する周方向の位置決めを行なう位置決め嵌合歯部が形成され、
 前記アウター用マスキング治具を前記アウターロータに装着した状態で、未架橋のフッ素樹脂を前記アウターロータにコーティングし、
 その後、前記アウター用マスキング治具を前記アウターロータから取り外した状態で、前記フッ素樹脂に放射線を照射することでフッ素樹脂を架橋させる、
 架橋フッ素樹脂コーティングロータの製造方法である。
 このようにすると、アウターロータの側面が架橋フッ素樹脂でコーティングされるので、アウターロータのサイドクリアランスをきわめて小さく設定したときにも、アウターロータの焼き付きを長期にわたって防止することが可能である。
 また、アウターロータに未架橋のフッ素樹脂をコーティングするときに、アウターロータの側面を露出させた状態で内周面を覆うアウター用マスキング治具を使用するので、アウターロータの内周面には、フッ素樹脂がコーティングされない。そのため、アウターロータの内周の内歯とインナーロータの外周の外歯との間のチップクリアランスの大きさが安定し、ポンプ性能が安定する。
 さらに、アウター用マスキング治具には、アウターロータの内周面に嵌合することでアウターロータに対する周方向の位置決めを行なう位置決め嵌合歯部が形成されているので、アウター用マスキング治具をアウターロータに装着する作業が容易である。
 しかも、未架橋のフッ素樹脂に放射線を照射することでフッ素樹脂を架橋させるときに、アウター用マスキング治具をアウターロータから取り外した状態で放射線の照射を行なうので、放射線がアウター用マスキング治具で遮蔽されるのが防止され、フッ素樹脂をムラなく均一に架橋することが可能である。
(2)前記アウター用マスキング治具は、前記アウターロータの前記側面のうち、前記内周面に沿った周縁部に重なる歯形フランジを有するものを使用すると好ましい。
 このようにすると、アウターロータに未架橋のフッ素樹脂をコーティングするときに、歯形フランジによって、アウターロータの内周面を確実に覆いつつ、アウターロータの側面の大部分を露出させることができるので、アウターロータの内周面がコーティングされるのを防ぎながら、アウターロータの側面の大部分を架橋フッ素樹脂でコーティングすることが可能となる。
(3)前記歯形フランジは、前記アウターロータの前記側面と重なる領域が0.5mm以下の幅となるように形成すると好ましい。
 このようにすると、アウターロータの側面のほとんど全ての部分を架橋フッ素樹脂でコーティングすることが可能となる。
(4)前記アウターロータが円筒状の外周面を有する場合、
 前記アウター用マスキング治具を前記アウターロータに装着した状態で、未架橋のフッ素樹脂を前記アウターロータにコーティングするときに、前記アウターロータの前記側面と前記外周面とをいずれも未架橋のフッ素樹脂でコーティングし、
 その後、前記アウター用マスキング治具を前記アウターロータから取り外した状態で、前記フッ素樹脂に放射線を照射するときに、前記側面のフッ素樹脂と前記外周面のフッ素樹脂とをいずれも架橋させることができる。
 このようにすると、アウターロータの側面だけでなく、アウターロータの外周面も架橋フッ素樹脂でコーティングすることができるので、アウターロータを回転駆動するためのトルクを効果的に低減することが可能となる。
(5)本開示の一態様に係る架橋フッ素樹脂コーティングロータの製造方法は、
 複数の内歯を形成する内周面をもつ環状のアウターロータと、
 前記内歯に噛み合う複数の外歯を形成する外周面と、軸方向に直交する側面とをもち、前記アウターロータの内径側で前記アウターロータの中心から偏心した位置を中心に回転するインナーロータと、を有し、
 前記インナーロータの前記側面は架橋フッ素樹脂でコーティングされ、前記インナーロータの前記外周面は架橋フッ素樹脂でコーティングされていない内接歯車式ポンプの前記インナーロータを製造する架橋フッ素樹脂コーティングロータの製造方法であって、
 前記インナーロータの前記側面を露出させた状態で前記外周面を覆うインナー用マスキング治具を使用し、前記インナー用マスキング治具には、前記インナーロータの前記外周面に嵌合することで前記インナーロータに対する周方向の位置決めを行なう位置決め嵌合歯部が形成され、
 前記インナー用マスキング治具を前記インナーロータに装着した状態で、未架橋のフッ素樹脂を前記インナーロータにコーティングし、
 その後、前記インナー用マスキング治具を前記インナーロータから取り外した状態で、前記フッ素樹脂に放射線を照射することでフッ素樹脂を架橋させる、
 架橋フッ素樹脂コーティングロータの製造方法である。
 このようにすると、インナーロータの側面が架橋フッ素樹脂でコーティングされるので、インナーロータのサイドクリアランスをきわめて小さく設定したときにも、インナーロータの焼き付きを長期にわたって防止することが可能である。
 また、インナーロータに未架橋のフッ素樹脂をコーティングするときに、インナーロータの側面を露出させた状態で外周面を覆うインナー用マスキング治具を使用するので、インナーロータの外周面には、フッ素樹脂がコーティングされない。そのため、アウターロータの内周の内歯とインナーロータの外周の外歯との間のチップクリアランスの大きさが安定し、ポンプ性能が安定する。
 さらに、インナー用マスキング治具には、インナーロータの外周面に嵌合することでインナーロータに対する周方向の位置決めを行なう位置決め嵌合歯部が形成されているので、インナー用マスキング治具をインナーロータに装着する作業が容易である。
 しかも、未架橋のフッ素樹脂に放射線を照射することでフッ素樹脂を架橋させるときに、インナー用マスキング治具をインナーロータから取り外した状態で放射線の照射を行なうので、放射線がインナー用マスキング治具で遮蔽されるのが防止され、フッ素樹脂をムラなく均一に架橋することが可能である。
(6)前記インナー用マスキング治具は、前記インナーロータの前記側面のうち、前記外周面に沿った周縁部に重なる歯形フランジを有するものを使用すると好ましい。
 このようにすると、インナーロータに未架橋のフッ素樹脂をコーティングするときに、歯形フランジによって、インナーロータの外周面を確実に覆いつつ、インナーロータの側面の大部分を露出させることができるので、インナーロータの外周面がコーティングされるのを防ぎながら、インナーロータの側面の大部分を架橋フッ素樹脂でコーティングすることが可能となる。
(7)前記歯形フランジは、前記インナーロータの前記側面と重なる領域が0.5mm以下の幅となるように形成すると好ましい。
 このようにすると、インナーロータの側面のほとんど全ての部分を架橋フッ素樹脂でコーティングすることが可能となる。
[本開示の実施形態の詳細]
 本開示の実施形態にかかる架橋フッ素樹脂コーティングロータの製造方法の具体例を、以下に図面を参照しつつ説明する。なお、本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 図1から図6に、本開示の実施形態にかかる架橋フッ素樹脂コーティングロータの製造方法で得られるアウターロータ1およびインナーロータ2を使用した内接歯車式ポンプを示す。内接歯車式ポンプは、環状のアウターロータ1と、そのアウターロータ1の内径側に配置されるインナーロータ2と、アウターロータ1およびインナーロータ2を収容するハウジング3とを有する。
 図3に示すように、ハウジング3は、アウターロータ1の外周を囲む中空筒状に形成されたハウジング本体4と、ハウジング本体4の軸方向の一方の端部(図では左側の端部)に着脱可能に取り付けられる第1のサイド部材5aと、ハウジング本体4の軸方向の他方の端部(図では右側の端部)に着脱可能に取り付けられる第2のサイド部材5bとを有する。
 第1のサイド部材5a、ハウジング本体4、第2のサイド部材5bは、各部材に形成したボルト挿入穴6に共通のボルト7を挿入し、そのボルト7で軸方向に締め付けることで互いに固定されている。また、第1のサイド部材5a、ハウジング本体4、第2のサイド部材5bは、各部材に形成したノックピン挿入穴8に共通のノックピン9を挿入することで軸直角方向に位置決めされている。
 インナーロータ2には、回転軸10が挿入される軸穴11が形成されている。回転軸10は、インナーロータ2を回転駆動する軸体であり、図示しない回転駆動装置(電動モータ等)に接続されている。回転軸10と軸穴11は、回転軸10とインナーロータ2が一体回転するように嵌合している。回転軸10と軸穴11の嵌合は、図に示すような二面幅の嵌合のほか、スプライン嵌合、キー溝嵌合、円筒面同士の締め代をもった嵌合(焼嵌めや圧入による嵌合)を採用してもよい。
 インナーロータ2の軸穴11は、インナーロータ2を軸方向に貫通する貫通穴である。回転軸10は、インナーロータ2から軸方向の一方側(図では左側)に突出した部分と、インナーロータ2から軸方向の他方側(図では右側)に突出した部分を有するように軸穴11に挿入されている。回転軸10のインナーロータ2から軸方向の一方側に突出した部分は、第1のサイド部材5aに取り付けられた第1の軸受12aで回転可能に支持され、回転軸10のインナーロータ2から軸方向の他方側に突出した部分は、第2のサイド部材5bに取り付けられた第2の軸受12bで回転可能に支持されている。
 図4に示すように、アウターロータ1は、円筒状の外周面13と、複数の内歯14を形成する内周面15と、軸方向に直交する側面16(図3参照)とをもつ環状の部材である。インナーロータ2は、アウターロータ1の内歯14に噛み合う複数の外歯17を形成する外周面18と、軸方向に直交する側面19(図3参照)とをもつ部材である。
 アウターロータ1の外周面13は、ハウジング本体4の円筒状の内周面20に隙間をもって嵌合し、その嵌合によって、アウターロータ1が回転可能に支持されている。ここで、アウターロータ1は、インナーロータ2の中心位置(すなわち回転軸10の回転中心位置)から偏心した位置を中心に回転可能に支持されている。インナーロータ2を回転させると、アウターロータ1は、内歯14と外歯17の噛み合いによってインナーロータ2と共に回転する。インナーロータ2の回転方向は、図では時計回りである。
 アウターロータ1の内歯14の数は、インナーロータ2の外歯17の数よりも1つ多い。インナーロータ2の外周面18は、外歯17の歯形曲線(例えば、トロコイド曲線やサイクロイド曲線など、径方向外方に凸状に湾曲する曲線と径方向内方に凹状に湾曲する曲線とが周方向に沿って交互に並ぶ歯形曲線)を軸方向に平行移動させた軌跡として得られる曲面である。アウターロータ1の内周面15も、内歯14の歯形曲線(例えば、トロコイド曲線やサイクロイド曲線やインナーロータ2の歯形曲線の包絡線など、径方向外方に凸状に湾曲する曲線と径方向内方に凹状に湾曲する曲線とが周方向に沿って交互に並ぶ歯形曲線)を軸方向に平行移動させた軌跡として得られる曲面である。
 インナーロータ2の外周とアウターロータ1の内周の間には、各外歯17および各内歯14で区画される複数のチャンバ21(流体を収容する空間)が形成されている。ここで、複数のチャンバ21は、インナーロータ2およびアウターロータ1の回転に伴い、容積が変化するように構成されている。すなわち、チャンバ21の容積は、インナーロータ2の中心とアウターロータ1の中心が最も遠い角度位置(図では上側位置)で最大となり、インナーロータ2の中心とアウターロータ1の中心が最も近い角度位置(図では下側位置)に近づくにつれて小さくなっている。そのため、インナーロータ2およびアウターロータ1が回転するとき、インナーロータ2の中心とアウターロータ1の中心が最も遠い角度位置から、インナーロータ2の中心とアウターロータ1の中心が最も近い角度位置に向かって移動する側(図では右側)では、チャンバ21の容積が縮小することによる流体の吐出作用が生じ、一方、インナーロータ2の中心とアウターロータ1の中心が最も近い角度位置から、インナーロータ2の中心とアウターロータ1の中心が最も遠い角度位置に向かって移動する側(図では左側)では、チャンバ21の容積が次第に拡大することによる流体の吸入作用が生じる。
 図5に示すように、アウターロータ1の側面16は、アウターロータ1の軸方向の両側に形成された軸方向に互いに反対を向く一対の平面である。インナーロータ2の側面19は、インナーロータ2の軸方向の両側に形成された軸方向に互いに反対を向く一対の平面である。
 アウターロータ1の側面16および外周面13は、架橋フッ素樹脂22でコーティングされた面(架橋フッ素樹脂面)とされている。一方、アウターロータ1の内周面15は、架橋フッ素樹脂22でコーティングされていない面(金属面)とされている。ここで、アウターロータ1は、焼結金属体23と、その焼結金属体23の表面にコーティングして設けた架橋フッ素樹脂22のコーティング層とで構成されている。焼結金属体23は、鉄系の粉末材料を金型で圧縮成形した粉末成形体を、融点以下の高温で加熱して形成されている。
 架橋フッ素樹脂22は、フッ素樹脂を構成する鎖状高分子の分子間を架橋結合したものであり、一般的なフッ素樹脂(非架橋フッ素樹脂)と同等の低い摩擦係数を有しながら、一般的なフッ素樹脂よりも、きわめて高い耐摩耗性を有する。
 架橋するフッ素樹脂としては、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)等を採用することができる。架橋フッ素樹脂22として、架橋PTFEを採用すると好ましい。架橋PTFEを採用すると、架橋PTFEは上記のフッ素樹脂の中でも特に低い摩擦係数をもち、かつ耐摩耗性に優れるため、ほとんど摩耗することがなく、ポンプ効率を効果的に高めることが可能となる。
 同様に、インナーロータ2の側面19も、架橋フッ素樹脂24でコーティングされた面(架橋フッ素樹脂面)とされている。一方、インナーロータ2の外周面18および軸穴11の内面は、架橋フッ素樹脂24でコーティングされていない面(金属面)とされている。ここで、インナーロータ2は、焼結金属体25と、その焼結金属体25の表面にコーティングして設けた架橋フッ素樹脂24のコーティング層とで構成されている。
 アウターロータ1の一対の側面16の幅寸法は、インナーロータ2の一対の側面19の幅寸法と同一である。アウターロータ1の軸方向の一方側(図では左側)の側面16は、インナーロータ2の軸方向の一方側(図では左側)の側面19と同一平面上に位置し、アウターロータ1の軸方向の他方側(図では右側)の側面16は、インナーロータ2の軸方向の他方側(図では右側)の側面19と同一平面上に位置している。
 第1のサイド部材5aは、ボルト7の締め付けによりハウジング本体4の軸方向の一方側の側面に押して付けて固定される平らな合わせ面26と、アウターロータ1の軸方向の一方側の側面16とインナーロータ2の軸方向の一方側の側面19とを摺動案内する平らな摺動案内面27とを有する。第2のサイド部材5bも、ボルト7の締め付けによりハウジング本体4の軸方向の他方側の側面に押して付けて固定される平らな合わせ面26と、アウターロータ1の軸方向の他方側の側面16とインナーロータ2の軸方向の他方側の側面19とを摺動案内する平らな摺動案内面27とを有する。摺動案内面27は、Ra1.6μm以下(好ましくはRa0.8μm以下)の面粗さをもつ仕上げ面とされている。
 アウターロータ1の側面16とハウジング3との間(すなわち、アウターロータ1の一対の側面16の幅寸法と、ハウジング3の軸方向に対向する一対の摺動案内面27の内幅寸法との差)は、20μm以下(好ましくは15μm以下、より好ましくは10μm以下)に設定されている。同様に、インナーロータ2の側面19とハウジング3との間(すなわち、インナーロータ2の一対の側面19の幅寸法と、ハウジング3の軸方向に対向する一対の摺動案内面27の内幅寸法との差)も、20μm以下(好ましくは15μm以下、より好ましくは10μm以下)に設定されている。
 図6に示すように、第1のサイド部材5aには、第1の吸入ポート28aと第1の吐出ポート29aとが開口している。また、第2のサイド部材5bにも、第2の吸入ポート28bと第2の吐出ポート29bとが開口している。
 第1の吸入ポート28aと第2の吸入ポート28bは、インナーロータ2およびアウターロータ1を間に挟んで対称の位置に同じ形状で開口している。これにより、第1の吸入ポート28a内の流体からインナーロータ2およびアウターロータ1が受ける圧力と、第2の吸入ポート28b内の流体からインナーロータ2およびアウターロータ1が受ける圧力とをバランスさせ、インナーロータ2およびアウターロータ1に傾きが生じるのを防止している。
 同様に、第1の吐出ポート29aと第2の吐出ポート29bも、インナーロータ2およびアウターロータ1を間に挟んで対称の位置に同じ形状で開口している。これにより、これにより、第1の吐出ポート29a内の流体からインナーロータ2およびアウターロータ1が受ける圧力と、第2の吐出ポート29b内の流体からインナーロータ2およびアウターロータ1が受ける圧力とをバランスさせ、インナーロータ2およびアウターロータ1に傾きが生じるのを防止している。
 図4、図6に示すように、第1の吸入ポート28aと第2の吸入ポート28bは、ハウジング本体4に形成された連通路30を介して連通している。また、図2、図6に示すように、第1の吸入ポート28aは、第1のサイド部材5aの外面に開口する吸入口31に連通し、第1の吐出ポート29aは、第1のサイド部材5aの外面に開口する吐出口32に連通している。
 図7~図9に基づいて、架橋フッ素樹脂22で側面16および外周面13がコーティングされたアウターロータ1の製造方法を説明する。
 まず、コーティング前のアウターロータ1とアウター用マスキング治具40とを準備する。アウター用マスキング治具40は、アウターロータ1の側面16を露出させた状態で、アウターロータ1の内周面15を覆う治具である。アウター用マスキング治具40は、アウターロータ1の軸方向の一方側の開口を塞ぐ第1治具40aと、アウターロータ1の軸方向の他方側の開口を塞ぐ第2治具40bとからなる。第1治具40aと第2治具40bは、アウターロータ1の内側でボルト41によって連結される。第1治具40aと第2治具40bは、いずれも位置決め嵌合歯部42と歯形フランジ43とを有する。
 位置決め嵌合歯部42は、アウターロータ1の内周面15に嵌合することでアウターロータ1に対する周方向の位置決めを行なう部位である。位置決め嵌合歯部42の外周面は、内歯14の歯形曲線を内径側にオフセットした形状の曲線を軸方向に平行移動させた軌跡として得られる曲面となっている。ここで、位置決め嵌合歯部42の外周面は、アウターロータ1の内周面15との間隔が0.2mm以下(好ましくは0.15mm以下)となるように形成されている。位置決め嵌合歯部42の軸方向長さは、2.0mm以下(好ましくは1.5mm以下)に設定されている。
 歯形フランジ43は、位置決め嵌合歯部42の軸方向外端から径方向外方に張り出して形成された部位である。歯形フランジ43は、アウターロータ1の側面16のうち、内周面15に沿った周縁部に重なるように内歯14と対応した歯形形状を有する。すなわち、歯形フランジ43の外周面は、内歯14の歯形曲線を外径側にオフセットした形状の曲線を軸方向に平行移動させた軌跡として得られる曲面となっている。歯形フランジ43の外周面は、アウターロータ1の内周面15から外径側にはみ出す距離(図8に示すように、歯形フランジ43がアウターロータ1の側面16と重なる帯状の領域の幅w1)が、0.5mm以下(好ましくは0.3mm以下)となるように形成されている。
 そして、アウター用マスキング治具40を、コーティング前のアウターロータ1に装着し、その状態で未架橋のフッ素樹脂をアウターロータ1にコーティングする。具体的には、アウター用マスキング治具40を装着した状態のアウターロータ1の表面に、フッ素樹脂(例えばPTFE)の微粒子を水に分散させた分散液を塗布する。この塗布は、ディッピング(浸漬)やスプレーにより行なうことができる。その後、塗布した分散液を乾燥させることで、アウターロータ1の表面に、未架橋のフッ素樹脂の微粒子のコーティング層が形成される。このとき、アウターロータ1の側面16と外周面13は、いずれも未架橋のフッ素樹脂の微粒子でコーティングされた状態となっている。その後、アウター用マスキング治具40をアウターロータ1から取り外し、アウターロータ1をフッ素樹脂の融点以上の温度に加熱することで、アウターロータ1の側面16と外周面13にコーティングされた未架橋のフッ素樹脂の微粒子を焼成し、フッ素樹脂の微粒子同士を融着させる。アウター用マスキング治具40の取り外しは、フッ素樹脂を焼成した後に行なってもよい。
 その後、アウター用マスキング治具40をアウターロータ1から取り外した状態で、アウターロータ1に放射線を照射することで、アウターロータ1の側面16および外周面13のフッ素樹脂を架橋させる。具体的には、アウター用マスキング治具40をアウターロータ1から取り外した状態で、アウターロータ1を所定の高温の無酸素雰囲気中におき、アウターロータ1の表面に向かって放射線(例えば、電子線)を照射することで、フッ素樹脂を構成する鎖状高分子同士の間に共有結合を生じさせ、鎖状高分子の分子間を架橋する。また、このとき照射される放射線によって、フッ素樹脂を構成する鎖状高分子の分子と、アウターロータ1との間でも化学結合が生じ、その化学結合によって、架橋フッ素樹脂22の密着性がきわめて高くなる。その後、必要に応じて架橋フッ素樹脂22の表面を研削または研磨して仕上げる。
 図10~図12に基づいて、架橋フッ素樹脂24で側面19がコーティングされたインナーロータ2の製造方法を説明する。
 コーティング前のインナーロータ2とインナー用マスキング治具50と軸穴用マスキング治具51とを準備する。インナー用マスキング治具50は、インナーロータ2の側面19を露出させた状態で、インナーロータ2の外周面18を覆う治具である。インナー用マスキング治具50は、インナーロータ2の軸方向の一方側の端部外周に嵌合する第1治具50aと、インナーロータ2の軸方向の他方側の端部外周に嵌合する第2治具50bとからなる。第1治具50aと第2治具50bは、インナーロータ2の外径側でボルト52によって連結される。第1治具50aと第2治具50bは、軸方向の合わせ面53を有する。第1治具50aと第2治具50bの間には、合わせ面53をシールする環状のシール部材54(図11、図12参照)が組み込まれている。第1治具50aと第2治具50bは、いずれも位置決め嵌合歯部55と歯形フランジ56とを有する。
 位置決め嵌合歯部55は、インナーロータ2の外周面18に嵌合することでインナーロータ2に対する周方向の位置決めを行なう部位である。位置決め嵌合歯部55の内周面は、外歯17の歯形曲線を外径側にオフセットした形状の曲線を軸方向に平行移動させた軌跡として得られる曲面となっている。ここで、位置決め嵌合歯部55の内周面は、インナーロータ2の外周面18との間隔が0.2mm以下(好ましくは0.15mm以下)となるように形成されている。位置決め嵌合歯部55の軸方向長さは、2.0mm以下(好ましくは1.5mm以下)に設定されている。
 歯形フランジ56は、位置決め嵌合歯部55の軸方向外端から径方向内方に張り出して形成された部位である。歯形フランジ56は、インナーロータ2の側面19のうち、外周面18に沿った周縁部に重なるように外歯17と対応した歯形形状を有する。すなわち、歯形フランジ56の内周面は、外歯17の歯形曲線を内径側にオフセットした形状の曲線を軸方向に平行移動させた軌跡として得られる曲面となっている。歯形フランジ56の内周面は、インナーロータ2の外周面18から内径側に入り込む距離(図11に示すように、歯形フランジ56がインナーロータ2の側面19と重なる帯状の領域の幅w2)が、0.5mm以下(好ましくは0.3mm以下)となるように形成されている。
 軸穴用マスキング治具51は、軸穴11の軸方向の一方側の開口を塞ぐ第1治具51aと、軸穴11の軸方向の他方側の開口を塞ぐ第2治具51bとからなる。第1治具51aと第2治具51bは、軸穴11の内側でボルト57によって連結される。
 そして、インナー用マスキング治具50と軸穴用マスキング治具51とを、コーティング前のインナーロータ2に装着し、その状態で未架橋のフッ素樹脂をインナーロータ2にコーティングする。具体的には、インナー用マスキング治具50と軸穴用マスキング治具51を装着した状態のインナーロータ2の表面に、フッ素樹脂(例えばPTFE)の微粒子を水に分散させた分散液を塗布する。この塗布は、ディッピング(浸漬)やスプレーにより行なうことができる。その後、塗布した分散液を乾燥させることで、インナーロータ2の表面に、未架橋のフッ素樹脂の微粒子のコーティング層が形成される。このとき、インナーロータ2の側面19は、未架橋のフッ素樹脂の微粒子でコーティングされた状態となっている。その後、インナー用マスキング治具50と軸穴用マスキング治具51をインナーロータ2から取り外し、インナーロータ2をフッ素樹脂の融点以上の温度に加熱することで、インナーロータ2の側面19にコーティングされた未架橋のフッ素樹脂の微粒子を焼成し、フッ素樹脂の微粒子同士を融着させる。インナー用マスキング治具50と軸穴用マスキング治具51の取り外しは、フッ素樹脂を焼成した後に行なってもよい。
 その後、インナー用マスキング治具50と軸穴用マスキング治具51をインナーロータ2から取り外した状態で、インナーロータ2に放射線を照射することで、インナーロータ2の側面19のフッ素樹脂を架橋させる。具体的には、インナー用マスキング治具50と軸穴用マスキング治具51をインナーロータ2から取り外した状態で、インナーロータ2を所定の高温の無酸素雰囲気中におき、インナーロータ2の表面に向かって放射線(例えば、電子線)を照射することで、フッ素樹脂を構成する鎖状高分子同士の間に共有結合を生じさせ、鎖状高分子の分子間を架橋する。また、このとき照射される放射線によって、フッ素樹脂を構成する鎖状高分子の分子と、インナーロータ2との間でも化学結合が生じ、その化学結合によって、架橋フッ素樹脂24の密着性がきわめて高くなる。その後、必要に応じて架橋フッ素樹脂24の表面を研削または研磨して仕上げる。
 上記実施形態のように架橋フッ素樹脂22,24でコーティングされたアウターロータ1およびインナーロータ2を製造すると、アウターロータ1およびインナーロータ2の焼き付きを長期にわたって防止することができ、かつ、安定した性能をもつアウターロータ1およびインナーロータ2を容易に製造することが可能である。
 すなわち、上記実施形態のように、架橋フッ素樹脂22で側面16および外周面13がコーティングされたアウターロータ1を製造すると、アウターロータ1の側面16が架橋フッ素樹脂22でコーティングされるので、アウターロータ1のサイドクリアランスをきわめて小さく設定したときにも、アウターロータ1の焼き付きを長期にわたって防止することが可能である。
 また、アウターロータ1に未架橋のフッ素樹脂をコーティングするときに、アウターロータ1の側面16を露出させた状態で内周面15を覆うアウター用マスキング治具40を使用するので、アウターロータ1の内周面15には、フッ素樹脂がコーティングされない。そのため、アウターロータ1の内周の内歯14とインナーロータ2の外周の外歯17との間のチップクリアランスの大きさが安定し、ポンプ性能が安定する。
 また、アウター用マスキング治具40に、アウターロータ1の内周面15に嵌合することでアウターロータ1に対する周方向の位置決めを行なう位置決め嵌合歯部42が形成されているので、アウター用マスキング治具40をアウターロータ1に装着する作業が容易である。
 また、未架橋のフッ素樹脂に放射線を照射することでフッ素樹脂を架橋させるときに、アウター用マスキング治具40をアウターロータ1から取り外した状態で放射線の照射を行なうので、放射線がアウター用マスキング治具40で遮蔽されるのが防止され、フッ素樹脂をムラなく均一に架橋することが可能である。
 また、アウター用マスキング治具40が歯形フランジ43を有するので、アウターロータ1に未架橋のフッ素樹脂をコーティングするときに、アウターロータ1の内周面15を確実に覆いつつ、アウターロータ1の側面16の大部分を露出させることができる。そのため、アウターロータ1の内周面15がコーティングされるのを防ぎながら、アウターロータ1の側面16の大部分を架橋フッ素樹脂22でコーティングすることが可能である。
 また、歯形フランジ43は、アウターロータ1の側面16と重なる領域が0.5mm以下(好ましくは0.3mm以下)の幅w1(図8参照)となるように形成されているので、アウターロータ1の側面16のほとんど全ての部分を架橋フッ素樹脂22でコーティングすることが可能である。
 また、アウターロータ1の側面16だけでなく、アウターロータ1の外周面13も架橋フッ素樹脂22でコーティングするので、アウターロータ1を回転駆動するためのトルクを効果的に低減することが可能となっている。
 また、上記実施形態のように、架橋フッ素樹脂24で側面19がコーティングされたインナーロータ2を製造すると、インナーロータ2の側面19が架橋フッ素樹脂24でコーティングされるので、インナーロータ2のサイドクリアランスをきわめて小さく設定したときにも、インナーロータ2の焼き付きを長期にわたって防止することが可能である。
 また、インナーロータ2に未架橋のフッ素樹脂をコーティングするときに、インナーロータ2の側面19を露出させた状態で外周面18を覆うインナー用マスキング治具50を使用するので、インナーロータ2の外周面18には、フッ素樹脂がコーティングされない。そのため、アウターロータ1の内周の内歯14とインナーロータ2の外周の外歯17との間のチップクリアランスの大きさが安定し、ポンプ性能が安定する。
 また、インナー用マスキング治具50には、インナーロータ2の外周面18に嵌合することでインナーロータ2に対する周方向の位置決めを行なう位置決め嵌合歯部55が形成されているので、インナー用マスキング治具50をインナーロータ2に装着する作業が容易である。
 また、未架橋のフッ素樹脂に放射線を照射することでフッ素樹脂を架橋させるときに、インナー用マスキング治具50をインナーロータ2から取り外した状態で放射線の照射を行なうので、放射線がインナー用マスキング治具50で遮蔽されるのが防止され、フッ素樹脂をムラなく均一に架橋することが可能である。
 また、インナー用マスキング治具50が歯形フランジ56を有するので、インナーロータ2に未架橋のフッ素樹脂をコーティングするときに、歯形フランジ56によって、インナーロータ2の外周面18を確実に覆いつつ、インナーロータ2の側面19の大部分を露出させることができる。そのため、インナーロータ2の外周面18がコーティングされるのを防ぎながら、インナーロータ2の側面19の大部分を架橋フッ素樹脂24でコーティングすることが可能である。
 また、歯形フランジ56は、インナーロータ2の側面19と重なる領域が0.5mm以下(好ましくは0.3mm以下)の幅w2(図11参照)となるように形成されているので、インナーロータ2の側面19のほとんど全ての部分を架橋フッ素樹脂24でコーティングすることが可能である。
1    アウターロータ
2    インナーロータ
3    ハウジング
4    ハウジング本体
5a   第1のサイド部材
5b   第2のサイド部材
6    ボルト挿入穴
7    ボルト
8    ノックピン挿入穴
9    ノックピン
10   回転軸
11   軸穴
12a  第1の軸受
12b  第2の軸受
13   外周面
14   内歯
15   内周面
16   側面
17   外歯
18   外周面
19   側面
20   内周面
21   チャンバ
22   架橋フッ素樹脂
23   焼結金属体
24   架橋フッ素樹脂
25   焼結金属体
26   合わせ面
27   摺動案内面
28a  第1の吸入ポート
28b  第2の吸入ポート
29a  第1の吐出ポート
29b  第2の吐出ポート
30   連通路
31   吸入口
32   吐出口
40   アウター用マスキング治具
40a  第1治具
40b  第2治具
41   ボルト
42   位置決め嵌合歯部
43   歯形フランジ
50   インナー用マスキング治具
50a  第1治具
50b  第2治具
51   軸穴用マスキング治具
51a  第1治具
51b  第2治具
52   ボルト
53   合わせ面
54   シール部材
55   位置決め嵌合歯部
56   歯形フランジ
57   ボルト
w1   歯形フランジとアウターロータの側面とが重なる領域の幅
w2   歯形フランジとインナーロータの側面とが重なる領域の幅

Claims (7)

  1.  複数の内歯を形成する内周面と、軸方向に直交する側面とをもつ環状のアウターロータと、
     前記内歯に噛み合う複数の外歯を形成する外周面をもち、前記アウターロータの内径側で前記アウターロータの中心から偏心した位置を中心に回転するインナーロータと、を有し、
     前記アウターロータの前記側面は架橋フッ素樹脂でコーティングされ、前記アウターロータの前記内周面は架橋フッ素樹脂でコーティングされていない内接歯車式ポンプの前記アウターロータを製造する架橋フッ素樹脂コーティングロータの製造方法であって、
     前記アウターロータの前記側面を露出させた状態で前記内周面を覆うアウター用マスキング治具を使用し、前記アウター用マスキング治具には、前記アウターロータの前記内周面に嵌合することで前記アウターロータに対する周方向の位置決めを行なう位置決め嵌合歯部が形成され、
     前記アウター用マスキング治具を前記アウターロータに装着した状態で、未架橋のフッ素樹脂を前記アウターロータにコーティングし、
     その後、前記アウター用マスキング治具を前記アウターロータから取り外した状態で、前記フッ素樹脂に放射線を照射することでフッ素樹脂を架橋させる、
     架橋フッ素樹脂コーティングロータの製造方法。
  2.  前記アウター用マスキング治具は、前記アウターロータの前記側面のうち、前記内周面に沿った周縁部に重なる歯形フランジを有する請求項1に記載の架橋フッ素樹脂コーティングロータの製造方法。
  3.  前記歯形フランジは、前記アウターロータの前記側面と重なる領域が0.5mm以下の幅となるように形成されている請求項2に記載の架橋フッ素樹脂コーティングロータの製造方法。
  4.  前記アウターロータが円筒状の外周面を有し、
     前記アウター用マスキング治具を前記アウターロータに装着した状態で、未架橋のフッ素樹脂を前記アウターロータにコーティングするときに、前記アウターロータの前記側面と前記外周面とをいずれも未架橋のフッ素樹脂でコーティングし、
     その後、前記アウター用マスキング治具を前記アウターロータから取り外した状態で、前記フッ素樹脂に放射線を照射するときに、前記側面のフッ素樹脂と前記外周面のフッ素樹脂とをいずれも架橋させる、
     請求項1から3のいずれか1項に記載の架橋フッ素樹脂コーティングロータの製造方法。
  5.  複数の内歯を形成する内周面をもつ環状のアウターロータと、
     前記内歯に噛み合う複数の外歯を形成する外周面と、軸方向に直交する側面とをもち、前記アウターロータの内径側で前記アウターロータの中心から偏心した位置を中心に回転するインナーロータと、を有し、
     前記インナーロータの前記側面は架橋フッ素樹脂でコーティングされ、前記インナーロータの前記外周面は架橋フッ素樹脂でコーティングされていない内接歯車式ポンプの前記インナーロータを製造する架橋フッ素樹脂コーティングロータの製造方法であって、
     前記インナーロータの前記側面を露出させた状態で前記外周面を覆うインナー用マスキング治具を使用し、前記インナー用マスキング治具には、前記インナーロータの前記外周面に嵌合することで前記インナーロータに対する周方向の位置決めを行なう位置決め嵌合歯部が形成され、
     前記インナー用マスキング治具を前記インナーロータに装着した状態で、未架橋のフッ素樹脂を前記インナーロータにコーティングし、
     その後、前記インナー用マスキング治具を前記インナーロータから取り外した状態で、前記フッ素樹脂に放射線を照射することでフッ素樹脂を架橋させる、
     架橋フッ素樹脂コーティングロータの製造方法。
  6.  前記インナー用マスキング治具は、前記インナーロータの前記側面のうち、前記外周面に沿った周縁部に重なる歯形フランジを有する請求項5に記載の架橋フッ素樹脂コーティングロータの製造方法。
  7.  前記歯形フランジは、前記インナーロータの前記側面と重なる領域が0.5mm以下の幅となるように形成されている請求項6に記載の架橋フッ素樹脂コーティングロータの製造方法。
PCT/JP2019/050632 2019-12-24 2019-12-24 架橋フッ素樹脂コーティングロータの製造方法 WO2021130862A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201980101707.2A CN114616392B (zh) 2019-12-24 2019-12-24 交联氟树脂涂层转子的制造方法
JP2021566605A JP7290751B2 (ja) 2019-12-24 2019-12-24 架橋フッ素樹脂コーティングロータの製造方法
DE112019007999.9T DE112019007999T5 (de) 2019-12-24 2019-12-24 Verfahren zur Herstellung eines mit vernetztem Fluorharz beschichteten Rotors
US17/774,143 US20220388028A1 (en) 2019-12-24 2019-12-24 Crosslinked fluororesin-coated rotor manufacturing method
PCT/JP2019/050632 WO2021130862A1 (ja) 2019-12-24 2019-12-24 架橋フッ素樹脂コーティングロータの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/050632 WO2021130862A1 (ja) 2019-12-24 2019-12-24 架橋フッ素樹脂コーティングロータの製造方法

Publications (1)

Publication Number Publication Date
WO2021130862A1 true WO2021130862A1 (ja) 2021-07-01

Family

ID=76575791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/050632 WO2021130862A1 (ja) 2019-12-24 2019-12-24 架橋フッ素樹脂コーティングロータの製造方法

Country Status (5)

Country Link
US (1) US20220388028A1 (ja)
JP (1) JP7290751B2 (ja)
CN (1) CN114616392B (ja)
DE (1) DE112019007999T5 (ja)
WO (1) WO2021130862A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5659181U (ja) * 1979-10-12 1981-05-21
JP2014173513A (ja) * 2013-03-11 2014-09-22 Sumitomo Denko Shoketsu Gokin Kk 高効率オイルポンプ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3226245A (en) * 1958-02-05 1965-12-28 Polymer Corp Coating method and apparatus
JPS6238268A (ja) * 1985-08-12 1987-02-19 Toyota Motor Corp ル−ツ形ロ−タのコ−テイング用マスキング治具
JP2003211084A (ja) * 2001-10-26 2003-07-29 Seiko Instruments Inc フッ素系樹脂コーティング方法およびこの方法を用いた摺動部材、気体圧縮機
JP2004124258A (ja) * 2002-09-10 2004-04-22 Mitsubishi Materials Corp 焼結合金とその製造方法
JP4237731B2 (ja) * 2005-05-31 2009-03-11 株式会社日立製作所 モータ一体型内接歯車式ポンプ及びその製造方法並びに電子機器
DE102006022335A1 (de) * 2006-05-12 2007-11-15 Dürr Systems GmbH Beschichtungsanlage und zugehöriges Betriebsverfahren
JP6044824B2 (ja) 2012-09-03 2016-12-14 住友電工焼結合金株式会社 内接歯車ポンプ
CN103216447B (zh) * 2013-04-11 2016-03-02 上海亿霖润滑材料有限公司 螺杆式压缩机的减摩涂覆层和方法及用途
JP6115817B2 (ja) * 2013-06-11 2017-04-19 住友電工ファインポリマー株式会社 容積式ポンプ
CN110360096A (zh) * 2015-09-30 2019-10-22 Ntn株式会社 内啮合齿轮泵

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5659181U (ja) * 1979-10-12 1981-05-21
JP2014173513A (ja) * 2013-03-11 2014-09-22 Sumitomo Denko Shoketsu Gokin Kk 高効率オイルポンプ

Also Published As

Publication number Publication date
JP7290751B2 (ja) 2023-06-13
DE112019007999T5 (de) 2022-10-13
JPWO2021130862A1 (ja) 2021-07-01
US20220388028A1 (en) 2022-12-08
CN114616392A (zh) 2022-06-10
CN114616392B (zh) 2023-07-28

Similar Documents

Publication Publication Date Title
US9494239B2 (en) Sliding parts
US5875750A (en) Rotational phase adjusting apparatus resin seal
GB2123897A (en) A rotary positive - displacement fluid machine
KR101658302B1 (ko) 베인식 유체 전송장치
WO2021130862A1 (ja) 架橋フッ素樹脂コーティングロータの製造方法
WO2021130855A1 (ja) 回転ポンプ
JP6418094B2 (ja) 燃料ポンプ
US20160186751A1 (en) Variable displacement pump
WO2021130863A1 (ja) 架橋フッ素樹脂コーティングポンプロータの製造方法、架橋フッ素樹脂コーティングポンプロータ、架橋フッ素樹脂コーティングポンプカバーの製造方法、架橋フッ素樹脂コーティングポンプカバー
WO2021130858A1 (ja) 回転ポンプ
JP2014206047A (ja) 弁開閉時期制御装置及び弁開閉時期制御装置における駆動側回転体の製造方法
US7086845B2 (en) Vane pump having an abradable coating on the rotor
JP4291089B2 (ja) スクロール式流体機械
JPH1137071A (ja) ベーン式バキュームポンプ
US11111917B2 (en) Internally rotating gear pump
JP3056292B2 (ja) 液圧流体のための内接歯車ポンプ
JP2003161273A (ja) スクロール圧縮機
WO2017104420A1 (ja) 燃料ポンプ
JP4983856B2 (ja) 回転装置の組付方法及び治具
JP2020506333A (ja) ベーン式ガスポンプ
JPS59188077A (ja) 回転スリ−ブを有する回転圧縮機
WO2017047667A1 (ja) 液圧回転機及びそのバルブプレート
US20160123148A1 (en) Piston machine apparatus, and method of varying a volume of a chamber of the apparatus
JP2006161696A (ja) ベーンロータリ型真空ポンプ
JP2006037831A (ja) ベーンポンプ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19957864

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021566605

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19957864

Country of ref document: EP

Kind code of ref document: A1