WO2021129643A1 - 一种集流体及其制备方法和应用 - Google Patents

一种集流体及其制备方法和应用 Download PDF

Info

Publication number
WO2021129643A1
WO2021129643A1 PCT/CN2020/138534 CN2020138534W WO2021129643A1 WO 2021129643 A1 WO2021129643 A1 WO 2021129643A1 CN 2020138534 W CN2020138534 W CN 2020138534W WO 2021129643 A1 WO2021129643 A1 WO 2021129643A1
Authority
WO
WIPO (PCT)
Prior art keywords
current collector
functional film
film layer
slurry
parts
Prior art date
Application number
PCT/CN2020/138534
Other languages
English (en)
French (fr)
Inventor
赵伟
李素丽
李俊义
徐延铭
Original Assignee
珠海冠宇电池股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海冠宇电池股份有限公司 filed Critical 珠海冠宇电池股份有限公司
Priority to EP20906914.5A priority Critical patent/EP3916862A4/en
Publication of WO2021129643A1 publication Critical patent/WO2021129643A1/zh
Priority to US17/412,583 priority patent/US20210384515A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/668Composites of electroconductive material and synthetic resins
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C3/00Fire prevention, containment or extinguishing specially adapted for particular objects or places
    • A62C3/16Fire prevention, containment or extinguishing specially adapted for particular objects or places in electrical installations, e.g. cableways
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of lithium batteries, and particularly relates to a current collector and a preparation method and application thereof.
  • lithium-ion batteries have the characteristics of high energy density and high power density, their application prospects are very broad. For example, in the fields of consumer electronics, electric vehicles, and energy storage, lithium-ion batteries have been widely used.
  • the invention provides a current collector and a preparation method thereof, which are used to solve the problem of low safety performance of lithium ion batteries in the prior art.
  • the present invention provides a current collector, which includes a functional film layer and a metal layer arranged on the upper surface and the lower surface of the functional film layer;
  • the functional film layer includes a flame retardant.
  • Figure 1 is a schematic cross-sectional structure diagram of a current collector provided by the present invention.
  • the current collector includes a functional film layer 1 and a metal layer 2 disposed on the upper and lower surfaces of the functional film layer 1.
  • the functional film layer is not only used to support the conductive metal layer on the upper and lower surfaces, but also can replace the conventional part of the metal current collector.
  • the weight of the current collector is reduced, and the energy density of the lithium ion battery is further improved; in addition, the functional film layer in the current collector of the present invention includes a flame retardant. In the actual preparation process, the flame retardant can be combined with the functional film layer.
  • the other components are mixed to obtain a slurry and the slurry is stretched to obtain the functional film layer. Since the functional film layer contains a flame retardant, the ignition point of the current collector can be reduced, and the flame retardant can be released from the current collector into the electrolyte at high temperatures, achieving the effect of active fire extinguishing and significantly improving the safety performance of the battery.
  • the flame retardant is selected from the group consisting of antimony trioxide, magnesium hydroxide, aluminum hydroxide, aluminum hydroxide, zinc phosphate, zinc borate, ammonium polyphosphate, tributyl phosphate, tris(2-ethyl phosphate) Hexyl) ester, tris(2-chloroethyl) phosphate, tris(2,3-dichloropropyl) phosphate, tris(2,3-dibromopropyl) phosphate, toluene-diphenyl phosphate , Tricresyl phosphate, triphenyl phosphate, (2-ethylhexyl)-diphenyl phosphate, tris(dibromopropyl) phosphate, octabromodiphenyl oxide, pentabromoethylbenzene, tetrabromo One of bisphenol A, chlordane anhydride, cyclophos
  • the mass of the flame retardant in the functional film layer is 0.1%-10% of the mass of the functional film layer. Further, the mass of the flame retardant is 1-10% of the mass of the functional film layer.
  • the functional film layer may also include a polymer.
  • the functional film layer can be obtained by using the slurry including the flame retardant and the polymer as the raw material of the functional film layer after stretching.
  • polymer can cut off the current when a short circuit occurs inside the battery, which improves the safety performance of the battery to a certain extent.
  • the polymer is selected from one of polyolefins, polyurethanes, polyamides, polyesters, polyethers, and other heterochain polymers that include carbon in the main chain, and organic polymers that do not include carbon in the main chain. Kind or more.
  • the polymer is selected from polyethylene, polypropylene, polystyrene, polyvinyl chloride, polypropylene, acrylonitrile-butadiene-styrene copolymer, polyvinyl formal, polyvinyl butyral , Polyacrylonitrile, polyvinyl acetate, phenolic resin, polyurethane, polyamide, polyimide, polyparaphenylene terephthalamide, polyterephthalate, polyethylene terephthalate Ester, polybutylene terephthalate, polycarbonate, polyphenylene ether, polyoxymethylene, epoxy resin, polytetrafluoroethylene, polyvinylidene fluoride, polysulfone, polyethersulfone, silicone rubber Or multiple.
  • the polymer is selected from one or more of polyethylene terephthalate, polybutylene terephthalate, polyamide, polyethylene, polypropylene, polyvinylidene fluoride, and polyvinyl chloride.
  • polyethylene terephthalate polybutylene terephthalate
  • polyamide polyethylene
  • polypropylene polypropylene
  • polyvinylidene fluoride polyvinylidene fluoride
  • the thickness of the functional film layer can be controlled to be 1-20 ⁇ m; further, the thickness of the functional film layer is 3-10 ⁇ m.
  • the above-mentioned functional film is tested for its flame retardant grade according to the vertical combustion method in the UL94 standard, and its flame retardant grade is higher than V2; its oxygen index is tested according to the GBT 2406.1-2008 standard, and its oxygen index is higher than 26.
  • the metal layer is selected from aluminum, copper, nickel, titanium, silver, stainless steel, nickel-copper alloy, aluminum-zirconium alloy One or more.
  • metal layers on the upper and lower surfaces of the functional film layer can be selected from one or more of mechanical pressing, bonding, vapor deposition, chemical vapor deposition, and electroplating. kind.
  • the vapor deposition method can choose the physical vapor deposition method, the physical vapor deposition method can choose one or more of the evaporation method and the sputtering method, and the evaporation method can choose the vacuum evaporation method, the thermal evaporation method, and the electron beam evaporation method.
  • the sputtering method, magnetron sputtering method can be selected.
  • the thickness of the metal layer needs to be controlled when setting the metal layer.
  • the thickness of the metal layer is 0.1-10 ⁇ m; further, the thickness of the metal layer is 0.5-2 ⁇ m.
  • the present invention provides a current collector, comprising a functional film layer and a metal layer arranged on the upper surface and the lower surface of the functional film layer.
  • the functional film layer is used to carry the metal layer on the upper surface and the lower surface of the functional film layer.
  • the setting can reduce the weight of the current collector and further increase the energy density of the lithium ion battery; among them, the functional film layer includes a flame retardant, which can reduce the ignition point of the current collector, and the flame retardant can be released from the current collector to the electrolyte at high temperatures In this way, it achieves the effect of active fire extinguishing and significantly improves the safety performance of the battery.
  • the present invention also provides a method for preparing a current collector, which includes the following steps:
  • a metal layer is provided on the upper surface and the lower surface of the functional film layer to obtain the current collector.
  • the present invention provides a method for preparing a current collector. Firstly, a slurry containing a flame retardant is stretched to obtain the functional film layer; secondly, a metal layer is provided on the upper surface and the lower surface of the functional film layer to obtain the current collector .
  • the current collector obtained by the above preparation method since the functional film layer contains a flame retardant, the ignition point of the current collector can be reduced, and the flame retardant can be released from the current collector into the electrolyte at high temperature to achieve the effect of active fire extinguishing.
  • the safety performance of the battery is significantly improved; and the arrangement of the functional film layer replaces the conventional metal current collector, reduces the weight of the current collector, and further improves the energy density of the lithium ion battery.
  • the slurry in step 1) also includes a polymer.
  • the functional film layer is obtained through the stretching process.
  • the polymer is used as the base material of the functional film layer, which can cut off the current when a short circuit occurs inside the battery, and to a certain extent This improves the safety performance of the battery.
  • the thickness of the functional film layer is 1-20 ⁇ m.
  • the prepared functional film is tested for its flame retardant grade according to the vertical combustion method in the UL94 standard, and its flame retardant grade is higher than V2; its oxygen index is tested according to the GBT 2406.1-2008 standard, and its oxygen index is higher than 26.
  • step 1) may specifically include: after the polymer and the flame retardant are melt-mixed to obtain the slurry, the slurry is sequentially extruded, stretched, and cooled. The functional film layer is obtained.
  • the selected polymer and flame retardant are melt-mixed at a certain temperature to uniformly mix the polymer and flame retardant to obtain a slurry, and then the slurry is sequentially extruded, stretched, and cooled to obtain the function ⁇ Film layer.
  • extrusion equipment can be used for extrusion
  • biaxial stretching equipment can be used for stretching, and it can be cooled to room temperature without special requirements.
  • step 1) may specifically include: dissolving the polymer and the flame retardant in a solvent to obtain the slurry, and sequentially coating and drying the slurry to obtain the function ⁇ Film layer.
  • the selected polymer can be dissolved in a solvent to form a solution, and then a certain quality of flame retardant can be added, mixed and stirred uniformly to obtain a slurry, and the slurry is sequentially coated and dried to obtain a functional film layer .
  • the coating process it is necessary to coat the slurry on the substrate, dry the solvent, and then peel off the substrate to obtain the functional film layer.
  • a metal layer is provided on the upper surface and the lower surface of the functional film layer by at least one of mechanical pressing, bonding, vapor deposition, chemical vapor deposition, and electroplating.
  • the vapor deposition method can choose the physical vapor deposition method, the physical vapor deposition method can choose one or more of the evaporation method and the sputtering method, and the evaporation method can choose the vacuum evaporation method, the thermal evaporation method, and the electron beam evaporation method.
  • the sputtering method magnetron sputtering method can be selected.
  • the material and thickness of the metal layer are the same as the foregoing, and will not be repeated here.
  • the flame retardant-containing slurry is first stretched, and its thickness is controlled to obtain a functional film layer. Then, a certain thickness is provided on the upper surface and the lower surface of the functional film layer.
  • the metal layer can obtain the current collector.
  • the functional film layer contains a flame retardant
  • the ignition point of the current collector can be reduced, and the flame retardant can be released from the current collector into the electrolyte at high temperature to achieve the effect of active fire extinguishing.
  • the safety performance of the battery is significantly improved; secondly, a metal layer is provided on the upper and lower surfaces of the obtained functional film layer to replace the conventional metal current collector, reduce the weight of the current collector, and further increase the energy density of the lithium ion battery .
  • the present invention also provides a lithium ion battery, which includes the current collector as described in any one of the above or the current collector obtained by any of the preparation methods described in the above.
  • the lithium ion battery provided by the present invention can be prepared by those skilled in the art by combining the current collector provided in this application with the existing lithium ion battery preparation process.
  • the current collector includes a functional film layer and is arranged on the upper surface and the lower surface of the functional film layer.
  • the metal layer, and the functional film layer includes a flame retardant. Since the functional film layer contains flame retardant, the ignition point of the current collector can be reduced, and the flame retardant can be released from the current collector into the electrolyte at high temperature, achieving the effect of active fire extinguishing and significantly improving the safety performance of the battery;
  • the functional film layer can support the metal layers on the upper and lower surfaces, reducing the weight of the current collector and further increasing the energy density of the lithium ion battery.
  • the functional film contains a flame retardant, which can not only reduce the ignition point of the current collector, but also the flame retardant can be released from the current collector into the electrolyte at high temperatures to achieve an active fire extinguishing effect and significantly improve the safety performance of the battery .
  • the safety performance of the battery prepared by using the current collector is outstanding, especially in the improvement of the passing rate of the acupuncture safety test, the passing rate of the heating safety test, and the passing rate of the overcharge safety test.
  • Figure 1 is a schematic cross-sectional structure diagram of a current collector provided by the present invention.
  • Polyethylene terephthalate PET average molecular weight is 31,000; polypropylene PP, average molecular weight is 400,000; polybutylene terephthalate PBT, average molecular weight is 38,000; polyvinylidene fluoride PVDF, average molecular weight is 900,000; Polyvinyl chloride PVC, with an average molecular weight of 120,000.
  • the polyethylene (PE) porous membrane used to prepare the lithium-ion battery is a wet-process polyethylene porous membrane ND12 produced by Shanghai Enjie New Material Technology Co., Ltd., with a thickness of 12 ⁇ m; the lithium-ion battery electrolyte is Shenzhen Xinzhoubang Technology Co., Ltd.
  • the functional film layer is obtained from 90 parts of polyethylene terephthalate PET and 10 parts of antimony trioxide, and a metal aluminum layer is provided on the upper surface and the lower surface of the functional film layer.
  • a positive electrode current collector material, and a metal copper layer is provided on the upper surface and the lower surface of the functional film layer to be used as a negative electrode current collector material.
  • the current collector can be prepared as follows:
  • the flame retardant grade of the functional film layer is V1
  • the oxygen index is 28.
  • a 2 ⁇ m thick metal aluminum layer is respectively plated on the upper and lower surfaces of the functional film by vacuum evaporation method to obtain a current collector A1 with a total thickness of 5 ⁇ m, which can be used as a positive electrode current collector material;
  • the upper and lower surfaces of the functional film layer are respectively plated with a 2 ⁇ m thick metal copper layer by a vacuum evaporation method to obtain a current collector B1 with a total thickness of 5 ⁇ m, which is used as a negative electrode current collector material.
  • a 5 ⁇ m aluminum foil current collector is used to replace the current collector A1
  • a 5 ⁇ m copper foil current collector is used to replace the current collector B1
  • the same material and preparation process as in Example 1 are used to obtain the positive electrode sheet and the negative electrode sheet.
  • the upper and lower surfaces of the PET film are respectively plated with a 2 ⁇ m thick metal aluminum layer by a vacuum evaporation method to obtain a current collector C1 with a total thickness of 5 ⁇ m, which is used as a positive electrode current collector material.
  • the upper and lower surfaces of the PET film are respectively plated with a 2 ⁇ m thick metal copper layer by a vacuum evaporation method to obtain a current collector D1 with a total thickness of 5 ⁇ m, which can be used as a negative electrode current collector material.
  • the current collector C1 is used to replace the current collector A1
  • the current collector D1 is used to replace the current collector B1
  • the same materials and preparation processes as in Example 1 are used to obtain the positive electrode sheet and the negative electrode sheet.
  • the functional film layer is obtained from 99 parts of polypropylene PP and 1 part of zinc phosphate, and a metal aluminum layer is provided on the upper and lower surfaces of the functional film layer to be used as a positive electrode current collector material.
  • the upper surface and the lower surface of the film layer are provided with a metal copper layer as a negative electrode current collector material.
  • the current collector can be prepared as follows:
  • the tested functional film has a flame retardant grade of V2 and an oxygen index of 26.
  • a 2 ⁇ m thick metal aluminum layer is respectively plated on both sides of the functional film layer by a vacuum evaporation method to obtain a current collector A2-1 with a total thickness of 9 ⁇ m, which is used as a positive electrode current collector material.
  • a 2 ⁇ m thick metal copper layer is respectively plated on both sides of the functional film layer by a vacuum evaporation method to obtain a current collector B2-1 with a total thickness of 9 ⁇ m, which is used as a negative electrode current collector material.
  • the functional film layer is obtained from 95 parts of polypropylene PP and 5 parts of zinc phosphate, and a metal aluminum layer is provided on the upper and lower surfaces of the functional film layer to be used as a positive electrode current collector material.
  • the upper surface and the lower surface of the film layer are provided with a metal copper layer as a negative electrode current collector material.
  • the current collector can be prepared as follows:
  • the tested functional film has a flame retardant grade of V1 and an oxygen index of 28.
  • a 2 ⁇ m thick metal aluminum layer is respectively plated on the upper surface and the lower surface of the functional film layer by a vacuum evaporation method to obtain a current collector A2-2 with a total thickness of 9 ⁇ m, which is used as a positive electrode current collector material.
  • a 2 ⁇ m thick metallic copper layer is respectively plated on the upper surface and the lower surface of the functional film layer by a vacuum evaporation method to obtain a current collector B2-2 with a total thickness of 9 ⁇ m, which is used as a negative electrode current collector material.
  • the functional film layer is obtained from 90 parts of polypropylene PP and 10 parts of zinc phosphate, and a metal aluminum layer is provided on the upper and lower surfaces of the functional film layer to be used as a positive electrode current collector material.
  • a metal copper layer is provided on the upper surface and the lower surface of the layer to be used as a negative electrode current collector material.
  • the current collector can be prepared as follows:
  • the tested functional film F2-3 has a flame retardant grade of V0 and an oxygen index of 29.
  • a 2 ⁇ m thick metal aluminum layer is respectively plated on the upper surface and the lower surface of the functional film by vacuum evaporation method to obtain a current collector A2-3 with a total thickness of 9 ⁇ m, which can be used as a positive electrode current collector material.
  • a 2 ⁇ m thick metallic copper layer is respectively plated on the upper surface and the lower surface of the functional film layer by a vacuum evaporation method to obtain a collector B2-3 with a total thickness of 9 ⁇ m, which can be used as a negative electrode current collector material.
  • a 9 ⁇ m aluminum foil current collector is used to replace the current collector A2-1, and a 9 ⁇ m copper foil current collector is used to replace the current collector B2-1, and the same material and preparation process as in Example 2-1 are used to obtain the positive electrode sheet and the negative electrode sheet.
  • a 2 ⁇ m thick metal aluminum layer is respectively plated on the upper surface and the lower surface of the PP film by a vacuum evaporation method to obtain a current collector C2 with a total thickness of 9 ⁇ m, which is used as a positive electrode current collector material.
  • a 2 ⁇ m thick metal copper layer is respectively plated on the upper surface and the lower surface of the PP film by vacuum evaporation method to obtain a current collector D2 with a total thickness of 9 ⁇ m, which is used as a negative electrode current collector material.
  • the current collector C2 was used to replace the current collector A2-1, and the current collector D2 was used to replace the current collector B2-1, and the same materials and preparation processes as in Example 2-1 were used to obtain the positive electrode sheet and the negative electrode sheet.
  • the functional film layer is obtained from 98 parts of polyethylene terephthalate PET and 2 parts of triphenyl phosphate, and a stainless steel layer is provided on the upper surface and the lower surface of the functional film layer to serve as a positive electrode
  • the current collector material, a metal copper layer is provided on the upper surface and the lower surface of the functional film layer to be used as a negative electrode current collector material.
  • the current collector can be prepared as follows:
  • the tested functional film F3-1 has a flame retardant grade of V1 and an oxygen index of 28.
  • a stainless steel layer with a thickness of 5 ⁇ m is respectively bonded on the upper surface and the lower surface of the functional film layer by a bonding method to obtain a current collector A3-1 with a total thickness of 13 ⁇ m, which is used as a positive electrode current collector material.
  • a collector B3-1 with a total thickness of 9 ⁇ m can be obtained, which can be used as a negative electrode current collector material.
  • the functional film layer is obtained from 98 parts of polyethylene terephthalate PET and 2 parts of triphenyl phosphate, and a stainless steel layer is provided on the upper surface and the lower surface of the functional film layer to serve as a positive electrode
  • the current collector material, a metal copper layer is provided on the upper surface and the lower surface of the functional film layer to be used as a negative electrode current collector material.
  • the current collector can be prepared as follows:
  • the tested functional film has a flame retardant grade of V1 and an oxygen index of 28.
  • a 5 ⁇ m thick stainless steel layer is respectively bonded on the upper surface and the lower surface of the functional film layer by a bonding method to obtain a current collector A3-2 with a total thickness of 15 ⁇ m, which is used as a positive electrode current collector material.
  • the upper surface and the lower surface of the functional film layer are respectively plated with a 3 ⁇ m thick metal copper layer by electroplating to obtain a current collector B3-2 with a total thickness of 11 ⁇ m, which is used as a negative electrode current collector material.
  • the functional film layer is obtained from 98 parts of polyethylene terephthalate PET and 2 parts of triphenyl phosphate, and a stainless steel layer is provided on the upper surface and the lower surface of the functional film layer to serve as a positive electrode
  • the current collector material, a metal copper layer is provided on the upper surface and the lower surface of the functional film layer to be used as a negative electrode current collector material.
  • the current collector can be prepared as follows:
  • the tested functional film has a flame retardant grade of V1 and an oxygen index of 28.
  • a stainless steel layer with a thickness of 5 ⁇ m is respectively bonded on the upper surface and the lower surface of the functional film layer by a bonding method to obtain a current collector A3-3 with a total thickness of 20 ⁇ m, which is used as a positive electrode current collector material.
  • a current collector B3-3 with a total thickness of 16 ⁇ m can be obtained, which is used as a negative current collector material.
  • NCM811 high nickel ternary positive electrode
  • acetylene black conductive agent 1.5 parts of PVDF binder
  • NMP N-methylpyrrolidone
  • a 13 ⁇ m stainless steel current collector is used to replace the current collector A3-1
  • a 9 ⁇ m copper foil current collector is used to replace the current collector B3-1
  • the same material and preparation process as in Example 3-1 are used to obtain the positive electrode sheet and the negative electrode sheet.
  • a 5 ⁇ m thick stainless steel layer is respectively bonded on the upper surface and the lower surface of the PET film layer by a bonding method to obtain a current collector C3-1 with a total thickness of 13 ⁇ m, which is used as a positive electrode current collector material.
  • the upper surface and the lower surface of the PET film layer are respectively plated with a 3 ⁇ m thick metal copper layer by electroplating to obtain a current collector D3-1 with a total thickness of 9 ⁇ m, which is used as a negative electrode current collector material.
  • the current collector C3-1 was used to replace the current collector A3-1
  • the current collector D3-1 was used to replace the current collector B3-1
  • the same materials and preparation processes as in Example 3-1 were used to obtain the positive electrode sheet and the negative electrode sheet.
  • a 15 ⁇ m stainless steel current collector is used to replace the current collector A3-2, and an 11 ⁇ m copper foil current collector is used to replace the current collector B3-2, and the same materials and preparation processes as in Example 3-2 are used to obtain the positive electrode sheet and the negative electrode sheet.
  • a 5 ⁇ m thick stainless steel layer is respectively adhered on the upper surface and the lower surface of the PET film layer by a bonding method to obtain a current collector C3-2 with a total thickness of 15 ⁇ m, which is used as a positive electrode current collector material.
  • the upper and lower surfaces of the PET film are respectively plated with a 3 ⁇ m thick metal copper layer by electroplating to obtain a current collector D3-2 with a total thickness of 11 ⁇ m, which is used as a negative current collector material.
  • the current collector C3-2 was used to replace the current collector A3-2, and the current collector D3-2 was used to replace the current collector B3-2, and the same materials and preparation processes as in Example 3-2 were used to obtain the positive electrode sheet and the negative electrode sheet.
  • a 5 ⁇ m thick stainless steel layer is respectively bonded on the upper surface and the lower surface of the PET film layer by a bonding method to obtain a current collector C3-3 with a total thickness of 20 ⁇ m, which is used as a positive electrode current collector material.
  • the upper and lower surfaces of the PET film are respectively plated with a 3 ⁇ m thick metal copper layer by electroplating to obtain a current collector D3-3 with a total thickness of 16 ⁇ m, which is used as a negative electrode current collector material.
  • the current collector C3-3 is used to replace the current collector A3-3
  • the current collector D3-3 is used to replace the current collector B3-3
  • the same materials and preparation processes as in Example 3-3 are used to obtain the positive electrode sheet and the negative electrode sheet.
  • the functional film layer is obtained from 99 parts of polybutylene terephthalate PBT and 1 part of melamine urate, and a metal aluminum layer is provided on the upper surface and the lower surface of the functional film layer.
  • a positive electrode current collector material, and a metal silver layer is provided on the upper surface and the lower surface of the functional film layer to be used as a negative electrode current collector material.
  • the current collector can be prepared as follows:
  • the tested functional film F4 has a flame retardant grade of V1 and an oxygen index of 28.
  • the upper surface and the lower surface of the functional film layer are respectively plated with a 0.1 ⁇ m thick metallic silver layer by an electroless plating method to obtain a current collector B4-1 with a total thickness of 3.2 ⁇ m, which is used as a negative electrode current collector material.
  • NCM622 ternary positive electrode
  • acetylene black conductive agent 1.5 parts of PVDF binder
  • NMP N -Methyl pyrrolidone
  • the functional film layer is obtained from 99 parts of polybutylene terephthalate PBT and 1 part of melamine urate, and a metal aluminum layer is provided on the upper surface and the lower surface of the functional film layer.
  • a positive electrode current collector material, and a metal silver layer is provided on the upper surface and the lower surface of the functional film layer to be used as a negative electrode current collector material.
  • the current collector can be prepared as follows:
  • the tested functional film has a flame retardant grade of V1 and an oxygen index of 28.
  • the upper surface and the lower surface of the functional film layer are respectively plated with a 0.5 ⁇ m thick metallic silver layer by an electroless plating method to obtain a current collector B4-2 with a total thickness of 4 ⁇ m, which is used as a negative electrode current collector material.
  • NCM622 ternary positive electrode
  • acetylene black conductive agent 1.5 parts of PVDF binder
  • NMP N -Methyl pyrrolidone
  • the functional film layer is obtained from 99 parts of polybutylene terephthalate PBT and 1 part of melamine urate, and a metal aluminum layer is provided on the upper surface and the lower surface of the functional film layer.
  • a positive electrode current collector material, and a metal silver layer is provided on the upper surface and the lower surface of the functional film layer to be used as a negative electrode current collector material.
  • the current collector can be prepared as follows:
  • the tested functional film has a flame retardant grade of V1 and an oxygen index of 28.
  • a 2 ⁇ m thick metal aluminum layer is respectively plated on the upper surface and the lower surface of the functional film layer by a vacuum evaporation method to obtain a current collector A4-3 with a total thickness of 7 ⁇ m, which is used as a positive electrode current collector material.
  • a 2 ⁇ m thick metallic silver layer is respectively plated on the upper surface and the lower surface of the functional film by a vacuum evaporation method to obtain a collector B4-3 with a total thickness of 7 ⁇ m, which is used as a negative electrode current collector material.
  • NCM622 ternary positive electrode
  • acetylene black conductive agent 1.5 parts of PVDF binder
  • NMP N -Methyl pyrrolidone
  • the functional film layer is obtained from 99 parts of polybutylene terephthalate PBT and 1 part of melamine urate, and a metal aluminum layer is provided on the upper surface and the lower surface of the functional film layer.
  • a positive electrode current collector material, and a metal silver layer is provided on the upper surface and the lower surface of the functional film layer to be used as a negative electrode current collector material.
  • the current collector can be prepared as follows:
  • the tested functional film has a flame retardant grade of V1 and an oxygen index of 28.
  • a 10 ⁇ m thick metal aluminum layer is respectively plated on the upper surface and the lower surface of the functional film layer by a vacuum evaporation method to obtain a current collector A4-4 with a total thickness of 23 ⁇ m, which is used as a positive electrode current collector material.
  • a 10 ⁇ m thick metallic silver layer is respectively plated on the upper surface and the lower surface of the functional film layer by a vacuum evaporation method to obtain a current collector B4-4 with a total thickness of 23 ⁇ m, which is used as a negative electrode current collector material.
  • NCM622 ternary positive electrode
  • acetylene black conductive agent 1.5 parts of PVDF binder
  • NMP N -Methyl pyrrolidone
  • the upper surface and the lower surface of the PBT film are respectively coated with a 0.1 ⁇ m thick metal aluminum layer by a vacuum evaporation method to obtain a current collector C4-1 with a total thickness of 3.2 ⁇ m, which is used as a positive electrode current collector material.
  • the upper surface and the lower surface of the PBT film layer are respectively plated with a 0.1 ⁇ m thick metal silver layer by an electroless plating method to obtain a current collector D4-1 with a total thickness of 3.2 ⁇ m, which is used as a negative electrode current collector material.
  • the current collector C4-1 is used to replace the current collector A4-1
  • the current collector D4-1 is used to replace the current collector B4-1
  • the same materials and preparation processes as in Example 4-1 are used to obtain the positive electrode sheet and the negative electrode sheet.
  • a 4 ⁇ m metal aluminum current collector is used to replace the current collector A4-2
  • a 4 ⁇ m copper foil current collector is used to replace the current collector B4-2
  • the same material and preparation process as in Example 4-2 are used to obtain the positive electrode sheet and the negative electrode sheet.
  • the upper surface and the lower surface of the PBT film are respectively coated with a 0.5 ⁇ m thick metal aluminum layer by a vacuum evaporation method to obtain a current collector C4-2 with a total thickness of 4 ⁇ m, which is used as a positive electrode current collector material.
  • the upper surface and the lower surface of the PBT film layer are respectively plated with a 0.5 ⁇ m thick metal silver layer by an electroless plating method to obtain a current collector D4-2 with a total thickness of 4 ⁇ m, which is used as a negative electrode current collector material.
  • the current collector C4-2 was used to replace the current collector A4-2
  • the current collector D4-2 was used to replace the current collector B4-2
  • the same materials and preparation processes as in Example 4-2 were used to obtain the positive electrode sheet and the negative electrode sheet.
  • a 7 ⁇ m metal aluminum current collector is used to replace the current collector A4-3
  • a 7 ⁇ m copper foil current collector is used to replace the current collector B4-3
  • the same materials and preparation processes as in Example 4-3 are used to obtain the positive electrode sheet and the negative electrode sheet.
  • a 2 ⁇ m thick metal aluminum layer is respectively plated on the upper and lower surfaces of the PBT film by a vacuum evaporation method to obtain a current collector C4-3 with a total thickness of 7 ⁇ m, which is used as a positive electrode current collector material.
  • the upper and lower surfaces of the PBT film are respectively plated with a 2 ⁇ m thick metallic silver layer by a vacuum evaporation method to obtain a current collector D4-3 with a total thickness of 7 ⁇ m, which is used as a negative electrode current collector material.
  • the current collector C4-3 is used to replace the current collector A4-3
  • the current collector D4-3 is used to replace the current collector B4-3
  • the same materials and preparation processes as in Example 4-3 are used to obtain the positive electrode sheet and the negative electrode sheet.
  • the upper and lower surfaces of the PBT film are respectively plated with a 10 ⁇ m thick metal aluminum layer by a vacuum evaporation method to obtain a current collector C4-4 with a total thickness of 23 ⁇ m, which is used as a positive electrode current collector material.
  • a 10 ⁇ m thick metallic silver layer is respectively plated on the upper and lower surfaces of the PBT film by a vacuum evaporation method to obtain a current collector D4-4 with a total thickness of 23 ⁇ m, which can be used as a negative current collector material.
  • the current collector C4-4 is used to replace the current collector A4-4
  • the current collector D4-4 is used to replace the current collector B4-4
  • the same materials and preparation processes as in Example 4-4 are used to obtain the positive electrode sheet and the negative electrode sheet.
  • the functional film layer is obtained from 99 parts of polyvinylidene fluoride PVDF and 1 part of tetrabromobisphenol A, and a metal aluminum layer is provided on the upper surface and the lower surface of the functional film layer to be used as a positive electrode current collector material A metal nickel layer is provided on the upper surface and the lower surface of the functional film layer to be used as a negative electrode current collector material.
  • the current collector can be prepared as follows:
  • the tested functional film F5 has a flame retardant grade of 5VA and an oxygen index of 78.
  • the upper and lower surfaces of the functional film layer are respectively plated with a 1 ⁇ m thick metal aluminum layer by a vacuum evaporation method to obtain a current collector A5 with a total thickness of 12 ⁇ m, which is used as a positive electrode current collector material.
  • the upper surface and the lower surface of the functional film layer are respectively plated with a 0.5 ⁇ m thick metallic nickel layer and a 0.5 ⁇ m thick metallic copper layer by electroplating to obtain a current collector B5 with a total thickness of 12 ⁇ m, which is used as a negative current collector material.
  • NCM523 ternary positive electrode
  • acetylene black conductive agent 1.5 parts of PVDF binder
  • NMP N -Methyl pyrrolidone
  • a 12 ⁇ m metal aluminum current collector is used to replace the current collector A5, and a 12 ⁇ m copper foil current collector is used to replace the current collector B5, and the same material and preparation process as in Example 5 are used to obtain the positive electrode sheet and the negative electrode sheet.
  • the upper and lower surfaces of the PVDF film are respectively plated with a 1 ⁇ m thick metal aluminum layer by a vacuum evaporation method to obtain a current collector C5 with a total thickness of 12 ⁇ m, which is used as a positive electrode current collector material.
  • the upper and lower surfaces of the PVDF film are plated with a 0.5 ⁇ m thick metallic nickel layer and a 0.5 ⁇ m thick metallic copper layer respectively by electroplating to obtain a current collector D5 with a total thickness of 12 ⁇ m, which is used as a negative current collector material.
  • the current collector C5 is used to replace the current collector A5
  • the current collector D5 is used to replace the current collector B5
  • the same material and preparation process as in Example 5 are used to obtain the positive electrode sheet and the negative electrode sheet.
  • the functional film layer is obtained from 99.5 parts of polyvinyl chloride PVC and 0.5 part of melamine polyphosphate, and a metal aluminum layer is provided on the upper and lower surfaces of the functional film layer to be used as a positive electrode current collector material.
  • the upper surface and the lower surface of the functional film layer are provided with a metal copper layer as a negative electrode current collector material.
  • the current collector can be prepared as follows:
  • the tested functional film has a flame retardant grade of V0 and an oxygen index of 47.
  • the upper surface and the lower surface of the functional film layer are respectively plated with a 1.5 ⁇ m thick metal aluminum layer by a vacuum evaporation method to obtain a current collector A6 with a total thickness of 15 ⁇ m, which is used as a positive electrode current collector material.
  • the upper surface and the lower surface of the functional film layer are respectively plated with a 1.5 ⁇ m thick metal copper layer by electroplating to obtain a current collector B6 with a total thickness of 15 ⁇ m, which is used as a negative electrode current collector material.
  • NCA ternary positive electrode
  • acetylene black conductive agent 1.5 parts of PVDF binder
  • NMP N -Methyl pyrrolidone
  • a 15 ⁇ m metal aluminum current collector is used to replace the current collector A6, and a 15 ⁇ m copper foil current collector is used to replace the current collector B6, and the same material and preparation process as in Example 6 are used to obtain the positive electrode sheet and the negative electrode sheet.
  • the upper surface and the lower surface of the PVC film layer are respectively plated with a 1.5 ⁇ m thick metal aluminum layer by a vacuum evaporation method to obtain a current collector C6 with a total thickness of 15 ⁇ m, which is used as a positive electrode current collector material.
  • the upper surface and the lower surface of the PVC film layer are respectively plated with a 1.5 ⁇ m thick metal copper layer by an electroplating method to obtain a current collector D6 with a total thickness of 15 ⁇ m, which is used as a negative electrode current collector material.
  • the current collector C6 was used to replace the current collector A6, and the current collector D6 was used to replace the current collector B6, and the same materials and preparation processes as in Example 6 were used to obtain the positive electrode sheet and the negative electrode sheet.
  • the positive electrode sheet and the negative electrode sheet of the foregoing examples and comparative examples were prepared into a lithium ion battery. Specifically: the positive electrode sheet and the negative electrode sheet obtained above were matched with a polyethylene (PE) porous diaphragm, and the lithium ion battery electrolyte was passed through the lithium ion battery. The preparation process is prepared into a lithium ion battery.
  • PE polyethylene
  • the three safety tests of acupuncture, heating and overcharging of the batteries were tested. Each group was tested in parallel with 10 batteries, and the pass rate was calculated.
  • the test method refers to the GB/T 31485-2015 standard, and the test results are shown in Table 1.
  • Example 1 100% 100% 100% 100% Comparative example 1-1 0 0 0 Comparative example 1-2 10% 20% 20%
  • Example 2-2 100% 90% 100%
  • Example 2-3 100% 100% 100% 100% Comparative example 2-1 0 0 0 Comparative example 2-2 10% 10% 10%
  • Example 3-1 100% 80% 80%
  • Example 3-2 100% 100% 100% 100%
  • Example 3-3 100% 100% 100% Comparative example 3-1 0 0 0 Comparative example 3-2 10% 10% 10% Comparative example 3-3 10% 0 0 Comparative example 3-4 20% 10% 10% Comparative example 3-5 10% 0 0 Comparative example 3-6 30% 20% 20%
  • Example 4-2 100% 100% 100% 100% 100% 100% 100% Example 4-3 100% 90% 90%
  • Example 4-4 80% 70% 80% Comparative example 4-1 0 0 0 0 0
  • Comparative example 4-2 30% 10% 20% Comparative example 4-3 0 0 0 Comparative example 4-4 20% 10% 20% Comparative example 4-5 0 0 0 Comparative examples 4-6 10% 0 10% Comparative examples 4-7 0 0 0 Comparative example 4-8 10% 0 0 Example 5 100% 100% 100% Comparative example 5-1 10% 0 10% Comparative example 5-2 30% 10% 20% Example 6 100% 100% 100% Comparative example 6-1 0 0 0 Comparative example 6-2 10% 0 0 0

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明提供了一种集流体及其制备方法和应用。本发明提供的集流体包括功能膜层以及设置于所述功能膜层上表面和下表面的金属层;其中,所述功能膜层包括阻燃剂。本发明提供的集流体及其制备方法,由于在功能膜层中添加了阻燃剂,不仅可以有效降低着火点,而且可以在高温下从集流体中释放到电解液中,达到主动灭火的作用,显著提升了电池的安全性能;功能膜层还可以承载其上表面和下表面的金属层,降低了集流体的重量,提高电池能量密度。

Description

一种集流体及其制备方法和应用 技术领域
本发明属于锂电池技术领域,特别涉及一种集流体及其制备方法和应用。
背景技术
由于锂离子电池具有能量密度高、功率密度高的特点,因此其应用前景十分广阔,例如,在消费类电子产品、电动交通工具以及储能等领域中,锂离子电池已经得到广泛的应用。
常规的锂离子电池集流体采用金属箔材,正极通常用金属铝箔,负极通常用金属铜箔,该种常规的锂离子电池在一些滥用条件下(如针刺、挤压、撞击等),电池内部会发生短路引发安全事故,给锂离子电池的使用造成了极大的安全隐患。
因此,如何改善锂离子电池的安全性能受到越来越高的关注。
发明内容
本发明提供一种集流体及其制备方法,用于解决现有技术中的锂离子电池安全性能不高的问题。
本发明提供一种集流体,所述集流体包括功能膜层以及设置于所述功能膜层上表面和下表面的金属层;
其中,所述功能膜层包括阻燃剂。
图1为本发明提供的集流体剖面结构示意图,如图1所示,该集流体包括功能膜层1以及设置于所述功能膜层1上表面和下表面的金属层2,本领域技术人员可利用现有的方法在功能膜层的上表面和下表面设置金属层,功能膜层不仅用于承载其上表面和下表面的具有导电性的金属层,还能够替代常规的部分金属集流体,降低了集流体的重量,进一步提高锂离子电池的能量密度;此外,本发明的集流体中的功能膜层包括阻燃剂,在实际制备过程中,可以将阻燃剂与功能膜层的其他组分进行混合得到浆液并对浆液进行延展处理,得到该功能膜层。由于功能膜层中含有阻燃剂,因此可降低集流体的着火点,并且阻燃剂可以在高温下从集流体中释放到电解液中,达到主动灭火的作用,显著提升了电池的安全性能。
在具体实施方式中,所述阻燃剂选自三氧化二锑、氢氧化镁、氢氧化铝、羟基铝、磷酸锌、硼酸锌、聚磷酸铵、磷酸三丁酯、磷酸三(2-乙基己基)酯、磷酸三(2-氯乙基)酯、磷酸三(2,3-二氯丙基)酯、磷酸三(2,3-二溴丙基)酯、磷酸甲苯-二苯酯、磷酸三甲苯酯、磷酸三苯酯、磷酸(2-乙基己基)-二苯酯、磷酸三(二溴丙基)酯、八溴二苯基氧化物、五溴乙基苯、四溴双酚A、氯丹 酸酐、环磷酰胺聚合物、三聚氰胺尿酸盐、三聚氰胺聚磷酸盐、季戊四醇磷酸酯、三(2,4,6-三溴苯氧基)-三嗪中的一种或多种。
出于对电池安全性能以及制备成本的考虑,功能膜层中阻燃剂的质量为功能膜层质量的0.1%-10%。进一步地,阻燃剂的质量为功能膜层质量的1-10%。
在本发明提供的集流体中,除了阻燃剂,功能膜层中还可以包括聚合物,通过将包括阻燃剂和聚合物的浆液作为功能膜层的原料,经过延展处理得到该功能膜层,聚合物作为功能膜层的基底材料,可以在电池内部发生短路时切断电流,在一定程度上改善了电池的安全性能。
聚合物选自主链上包括碳元素的聚烯烃类、聚氨酯类、聚酰胺类、聚酯类、聚醚类和其他杂链聚合物,以及主链上不包括碳元素的有机聚合物中的一种或多种。
进一步地,所述聚合物选自聚乙烯、聚丙烯、聚苯乙烯、聚氯乙烯、聚丙乙烯、丙烯腈-丁二烯-苯乙烯共聚物、聚乙烯醇缩甲醛、聚乙烯醇缩丁醛、聚丙烯腈、聚醋酸乙烯酯、酚醛树脂、聚氨酯、聚酰胺、聚酰亚胺、聚对苯二甲酰对苯二胺、聚对苯二甲酸酯、聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯、聚碳酸酯、聚苯醚、聚甲醛、环氧树脂、聚四氟乙烯、聚偏氟乙烯、聚砜、聚醚砜、硅橡胶中的一种或多种。
可选地,聚合物选自聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯、聚酰胺、聚乙烯、聚丙烯、聚偏氟乙烯、聚氯乙烯中一种或多种。
本领域技术人员可自行选择具体的阻燃剂和聚合物并在上述范围内合理配比,并按照选择的比例将阻燃剂和聚合物混合得到浆液并进行延展处理,得到该功能膜层。
为了保证集流体的重量和锂离子电池的性能,需要在延展处理时控制功能膜层的厚度。在一种具体实施方式中,可以控制功能膜层的厚度为1~20μm;进一步地,功能膜层的厚度为3~10μm。
将上述功能膜层按照UL94标准中垂直燃烧法测试其阻燃等级,其阻燃等级均高于V2级;按照GBT 2406.1-2008标准测试其氧指数,其含氧指数均高于26。
在得到功能膜层后,需要在该功能膜层的上表面和下表面设置金属层,具体的,金属层选自铝、铜、镍、钛、银、不锈钢、镍铜合金、铝锆合金中一种或多种。
本领域技术人员可依据现有技术在功能膜层的上表面和下表面设置金属层,具体的,可以选自机械压合、粘结、气相沉积、化学蒸镀、电镀中的一种或多种。
其中,气相沉积法可选择物理气相沉积法,物理气相沉积法可选择蒸发法、溅射法中的一种或多种,蒸发法可选择真空蒸镀法、热蒸发法、电子束蒸发法中的一种或多种,溅射法可选择磁控溅射法。
同样,在设置金属层时需要控制金属层的厚度。在一种具体实施方式中,金属层厚度为0.1~10μm;进一步地,金属层的厚度为0.5~2μm。
本发明提供了一种集流体,包括功能膜层以及设置于所述功能膜层上表面和下表面的金属层,功能膜层用于承载其上表面和下表面的金属层,功能膜层的设置可降低集流体的重量,进一步提高锂离子电池的能量密度;其中,功能膜层包括阻燃剂,可以降低集流体的着火点,并且阻燃剂可以在高温下从集流体中释放到电解液中,达到主动灭火的作用,显著的提升了电池的安全性能。
另一方面,本发明还提供了一种集流体的制备方法,包括如下步骤:
1)对含有阻燃剂的浆液进行延展处理,得到功能膜层;
2)在所述功能物膜层的上表面和下表面设置金属层,得到所述集流体。
本发明提供了一种集流体的制备方法,首先对含有阻燃剂的浆液进行延展处理,得到该功能膜层;其次,在功能膜层的上表面和下表面设置金属层,得到该集流体。根据上述制备方法得到的集流体,由于功能膜层中含有阻燃剂,可以降低集流体的着火点,并且阻燃剂可以在高温下从集流体中释放到电解液中,达到主动灭火的作用,显著的提升了电池的安全性能;并且,功能膜层的设置,替代了常规的金属集流体,降低了集流体的重量,进一步提高锂离子电池的能量密度。
进一步地,步骤1)中的浆液还包括聚合物。通过将包括阻燃剂和聚合物的浆液作为功能膜层的原料,经过延展处理得到该功能膜层,聚合物作为功能膜层的基地材料,可以在电池内部发生短路时切断电流,在一定程度上改善了电池的安全性能。
阻燃剂以及聚合物的种类与用量与前述相同,此处不再赘述。
为了保证集流体的重量和锂离子电池的性能,需要在延展处理时控制功能膜层的厚度。例如,控制功能膜层的厚度为1~20μm。
将制备得到的功能膜层按照UL94标准中垂直燃烧法测试其阻燃等级,其阻燃等级均高于V2级;按照GBT 2406.1-2008标准测试其氧指数,其含氧指数均高于26。
在一种具体地实施方式中,步骤1)可以具体包括:将所述聚合物和所述阻燃剂熔融混炼得到所述浆液后,对所述浆液依次经过挤出、拉伸、冷却,得到所述功能膜层。
在本实施方式中,将选择好的聚合物和阻燃剂在一定温度下熔融混炼使聚合物和阻燃剂均匀混合得到浆液,随后对浆液依次经过挤出、拉伸、冷却,得到功能膜层。
具体的,挤出可使用挤出设备,拉伸可使用双向拉伸设备,冷却至室温即可,无特殊要求。
在另一种实施方式中,步骤1)可以具体包括:将所述聚合物与所述阻燃剂溶于溶剂中得到所述浆液,对所述浆液依次经过涂布,干燥,得到所述功能膜层。
在本实施方式中,可将选择好的聚合物溶于溶剂中形成溶液,再加入一定质量的阻燃剂,混合搅拌均匀后得到浆液,并对浆液依次经过涂布,干燥, 得到功能膜层。
具体的,在涂布过程中,需要将浆液涂布至基板上,干燥溶剂后,再将基板剥离,即得到该功能膜层。
在按照上述方式得到功能膜层后,再通过机械压合、粘结、气相沉积、化学蒸镀、电镀中的至少一种方式在所述功能膜层的上表面和下表面设置金属层。
具体的,气相沉积法可选择物理气相沉积法,物理气相沉积法可选择蒸发法、溅射法中的一种或多种,蒸发法可选择真空蒸镀法、热蒸发法、电子束蒸发法中的一种或多种,溅射法可选择磁控溅射法。
其中,金属层的材料和厚度与前述相同,此处不再赘述。
通过本发明提供的集流体制备方法,首先对含有阻燃剂的浆液进行延展处理,并控制其厚度,即可得到功能膜层,然后,在功能膜层的上表面和下表面设置一定厚度的金属层,即可得到该集流体。根据上述制备方法得到的集流体,由于功能膜层中含有阻燃剂,可以降低集流体的着火点,并且阻燃剂可以在高温下从集流体中释放到电解液中,达到主动灭火的作用,显著的提升了电池的安全性能;其次,在得到的功能膜层上表面和下表面设置金属层,替代了常规的金属集流体,降低了集流体的重量,进一步提高了锂离子电池的能量密度。
再一方面,本发明还提供一种锂离子电池,该锂离子电池包括如上述任一所述的集流体或上述任一所述的制备方法得到的集流体。
本发明提供的锂离子电池,本领域技术人员可将本申请提供的集流体结合现有的锂离子电池制备工艺制备得到,其集流体包括功能膜层以及设置于功能膜层上表面和下表面的金属层,并且功能膜层包括阻燃剂。由于功能膜层中含有阻燃剂,可以降低集流体的着火点,并且阻燃剂可以在高温下从集流体中释放到电解液中,达到主动灭火的作用,显著的提升了电池的安全性能;其次,功能膜层可承载其上表面和下表面的金属层,降低了集流体的重量,进一步提高锂离子电池的能量密度。
本发明的实施,至少具有以下优势:
1、采用功能膜层承载金属层降低了集流体的重量,有利于提高电池能量密度;
2、功能膜层中含有阻燃剂,不仅可以降低集流体的着火点,而且阻燃剂可以在高温下从集流体中释放到电解液中,达到主动灭火的作用,显著提升了电池的安全性能。
3、采用该集流体制备的电池的安全性能突出,尤其表现在针刺安全测试通过率、加热安全测试通过率及过充安全测试通过率的改善。
附图说明
图1为本发明提供的集流体剖面结构示意图;
1:功能膜层;2:金属层。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明的实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明各实施例所采用的聚合物的分子量为:
聚对苯二甲酸乙二醇酯PET,平均分子量为31000;聚丙烯PP,平均分子量为400000;聚对苯二甲酸丁二醇酯PBT,平均分子量为38000;聚偏氟乙烯PVDF,平均分子量为900000;聚氯乙烯PVC,平均分子量为120000。
制备锂离子电池所使用的聚乙烯(PE)多孔隔膜为上海恩捷新材料科技有限公司生产的湿法聚乙烯多孔隔膜ND12,厚度12μm;锂离子电池电解液为深圳新宙邦科技股份有限公司的LBC445B33型号电解液。
实施例1
本实施例提供的集流体,功能膜层由90份聚对苯二甲酸乙二醇酯PET和10份三氧化二锑得到,并且在该功能膜层上表面和下表面设置金属铝层用作正极集流体材料,在该功能膜层上表面和下表面设置金属铜层用作负极集流体材料。
该集流体可按如下方法制备:
1)将90份聚对苯二甲酸乙二醇酯PET和10份三氧化二锑在265℃熔融混炼20min后得到混合浆液,对该混合浆液依次经过挤出、拉伸、冷却后得到厚度为1μm的功能膜层。
经测试该功能膜层的阻燃等级为V1级,氧指数为28。
2)通过真空蒸镀法在功能膜层上表面和下表面分别镀上2μm厚的金属铝层,即可得到总厚度为5μm集流体A1,用作正极集流体材料;
通过真空蒸镀法在功能膜层上表面和下表面分别镀上2μm厚的金属铜层,即可得到总厚度为5μm集流体B1,用作负极集流体材料。
按照上述方法得到正负极的集流体材料后,按照常规的锂离子电池正极制备工艺,将97份钴酸锂正极、1.5份乙炔黑导电剂、1.5份PVDF粘结剂、60份N-甲基吡咯烷酮(NMP)通过双行星搅拌机在真空下以公转30r/min、自转1500r/min的条件搅拌4h,分散成均匀的浆料,然后将浆料涂布在集流体A1上并在130℃下烘烤30min至烘干,在40吨辊压压力下辊压,分切成所需的正极片。
按照常规的锂离子电池负极制备工艺,将97份石墨负极、1份乙炔黑导电剂、1份羧甲基纤维素钠(CMC)、1份丁苯橡胶(SBR)粘结剂、100份去离子水通过双行星搅拌机在真空下以公转30r/min、自转1500r/min的条件 搅拌4h,分散成均匀的浆料,然后将浆料涂布在集流体B1上并在100℃下烘烤30min至烘干,在40吨辊压压力下辊压,分切成所需的负极片。
对比例1-1
1)使用5μm铝箔集流体替换集流体A1,使用5μm铜箔集流体替换集流体B1,并采用与实施例1相同的材料和制备工艺得到正极片和负极片。
对比例1-2
1)将100份聚对苯二甲酸乙二醇酯PET在265℃熔融混炼20min后得到浆液,对该浆液依次经过挤出、拉伸、冷却后得到厚度为1μm的PET膜层。
2)通过真空蒸镀法在PET膜层上表面和下表面分别镀上2μm厚的金属铝层,即可得到总厚度为5μm集流体C1,用作正极集流体材料。
通过真空蒸镀法在PET膜层上表面和下表面分别镀上2μm厚的金属铜层,即可得到总厚度为5μm集流体D1,用作负极集流体材料。
使用集流体C1替换集流体A1,使用集流体D1替换集流体B1,并采用与实施例1相同的材料和制备工艺得到正极片和负极片。
实施例2-1
本实施例提供的集流体,功能膜层由99份聚丙烯PP和1份磷酸锌得到,并在在该功能膜层上表面和下表面设置金属铝层用作正极集流体材料,在该功能膜层上表面和下表面设置金属铜层用作负极集流体材料。
该集流体可按如下方法制备:
1)将99份聚丙烯PP和1份磷酸锌在170℃熔融混炼30min后得到混合浆液,对该混合浆液依次经过挤出、拉伸、冷却后得到厚度为5μm的功能膜层。
经测试功能膜层的阻燃等级为V2级,氧指数为26。
2)通过真空蒸镀法在功能膜层两侧分别镀上2μm厚的金属铝层,即可得到总厚度为9μm集流体A2-1,用作正极集流体材料。
通过真空蒸镀法在功能膜层两侧分别镀上2μm厚的金属铜层,即可得到总厚度为9μm集流体B2-1,用作负极集流体材料。
按照上述方法得到正负极的集流体材料后,按照常规的锂离子电池正极制备工艺,将97份钴酸锂正极、1.5份乙炔黑导电剂、1.5份PVDF粘结剂、60份N-甲基吡咯烷酮(NMP)通过双行星搅拌机在真空下以公转30r/min、自转1500r/min的条件搅拌4h,分散成均匀的浆料,然后将浆料涂布在集流体A2-1上并在130℃下烘烤30min至烘干,在40吨辊压压力下辊压,分切成所需的正极片。
按照常规的锂离子电池负极制备工艺,将97份石墨负极、1份乙炔黑导电剂、1份羧甲基纤维素钠(CMC)、1份丁苯橡胶(SBR)粘结剂、100份去离子水通过双行星搅拌机在真空下以公转30r/min、自转1500r/min的条件搅拌4h,分散成均匀的浆料,然后将浆料涂布在集流体B2-1上并在100℃下烘烤30min至烘干,在40吨辊压压力下辊压,分切成所需的负极片。
实施例2-2
本实施例提供的集流体,功能膜层由95份聚丙烯PP和5份磷酸锌得到,并在在该功能膜层上表面和下表面设置金属铝层用作正极集流体材料,在该功能膜层上表面和下表面设置金属铜层用作负极集流体材料。
该集流体可按如下方法制备:
1)将95份聚丙烯PP与5份磷酸锌在170℃熔融混炼30min后得到混合浆液,对该混合浆液依次经过挤出、拉伸、冷却后得到厚度为5μm的功能膜层。
经测试功能膜层的阻燃等级为V1级,氧指数为28。
2)通过真空蒸镀法在功能膜层上表面和下表面分别镀上2μm厚的金属铝层,即可得到总厚度为9μm集流体A2-2,用作正极集流体材料。
通过真空蒸镀法在功能膜层上表面和下表面分别镀上2μm厚的金属铜层,即可得到总厚度为9μm集流体B2-2,用作负极集流体材料。
按照上述方法得到正负极的集流体材料后,按照常规的锂离子电池正极制备工艺,将97份钴酸锂正极、1.5份乙炔黑导电剂、1.5份PVDF粘结剂、60份N-甲基吡咯烷酮(NMP)通过双行星搅拌机在真空下以公转30r/min、自转1500r/min的条件搅拌4h,分散成均匀的浆料,然后将浆料涂布在集流体A2-2上并在130℃下烘烤30min至烘干,在40吨辊压压力下辊压,分切成所需的正极片。
按照常规的锂离子电池负极制备工艺,将97份石墨负极、1份乙炔黑导电剂、1份羧甲基纤维素钠(CMC)、1份丁苯橡胶(SBR)粘结剂、100份去离子水通过双行星搅拌机在真空下以公转30r/min、自转1500r/min的条件搅拌4h,分散成均匀的浆料,然后将浆料涂布在集流体B2-2上并在100℃下烘烤30min至烘干,在40吨辊压压力下辊压,分切成所需的负极片。
实施例2-3
本实施例提供的集流体,功能膜层由90份聚丙烯PP和10份磷酸锌得到,并且在该功能膜层上表面和下表面设置金属铝层用作正极集流体材料,在该功能膜层上表面和下表面设置金属铜层用作负极集流体材料。
该集流体可按如下方法制备:
1)将90份聚丙烯PP与10份磷酸锌在170℃熔融混炼30min后得到混合浆液,对该混合浆液依次经过挤出、拉伸、冷却后得到厚度为5μm的功能膜层。
经测试功能薄膜F2-3的阻燃等级为V0级,氧指数为29。
2)通过真空蒸镀法在功能膜层上表面和下表面分别镀上2μm厚的金属铝层,即可得到总厚度为9μm集流体A2-3,用作正极集流体材料。
通过真空蒸镀法在功能膜层上表面和下表面分别镀上2μm厚的金属铜层,即可得到总厚度为9μm集流体B2-3,用作负极集流体材料。
按照上述方法得到正负极的集流体材料后,按照常规的锂离子电池正极制备工艺,将97份钴酸锂正极、1.5份乙炔黑导电剂、1.5份PVDF粘结剂、60份N-甲基吡咯烷酮(NMP)通过双行星搅拌机在真空下以公转30r/min、自转1500r/min的条件搅拌4h,分散成均匀的浆料,然后将浆料涂布在集流体A2-3 上并在130℃下烘烤30min至烘干,在40吨辊压压力下辊压,分切成所需的正极片。
按照常规的锂离子电池负极制备工艺,将97份石墨负极、1份乙炔黑导电剂、1份羧甲基纤维素钠(CMC)、1份丁苯橡胶(SBR)粘结剂、100份去离子水通过双行星搅拌机在真空下以公转30r/min、自转1500r/min的条件搅拌4h,分散成均匀的浆料,然后将浆料涂布在集流体B2-3上并在100℃下烘烤30min至烘干,在40吨辊压压力下辊压,分切成所需的负极片。
对比例2-1
1)使用9μm铝箔集流体替换集流体A2-1,使用9μm铜箔集流体替换集流体B2-1,并采用与实施例2-1相同的材料和制备工艺得到正极片和负极片。
对比例2-2
1)将100份聚丙烯PP在265℃熔融混炼30min后得到浆液,对该浆液依次经过挤出、拉伸、冷却后得到厚度为5μm的PP膜层。
2)通过真空蒸镀法在PP膜层上表面和下表面分别镀上2μm厚的金属铝层,即可得到总厚度为9μm集流体C2,用作正极集流体材料。
通过真空蒸镀法在PP膜层上表面和下表面分别镀上2μm厚的金属铜层,即可得到总厚度为9μm集流体D2,用作负极集流体材料。
使用集流体C2替换集流体A2-1,使用集流体D2替换集流体B2-1,并采用与实施例2-1相同的材料和制备工艺得到正极片和负极片。
实施例3-1
本实施例提供的集流体,功能膜层由98份聚对苯二甲酸乙二醇酯PET和2份磷酸三苯酯得到,并且在该功能膜层上表面和下表面设置不锈钢层用作正极集流体材料,在该功能膜层上表面和下表面设置金属铜层用作负极集流体材料。
该集流体可按如下方法制备:
1)将98份聚对苯二甲酸乙二醇酯PET和2份磷酸三苯酯在250℃熔融混炼30min后得到混合浆液,对该混合浆液依次经过挤出、拉伸、冷却后得到厚度为3μm的功能膜层。
经测试功能薄膜F3-1的阻燃等级为V1级,氧指数为28。
2)通过粘结法在功能膜层上表面和下表面分别粘结5μm厚的不锈钢层,即可得到总厚度为13μm集流体A3-1,用作正极集流体材料。
通过电镀法在功能膜层上表面和下表面分别电镀3μm厚的金属铜层,即可得到总厚度为9μm集流体B3-1,用作负极集流体材料。
按照上述方法得到正负极的集流体材料后,按照常规的锂离子电池正极制备工艺,将97份高镍三元正极(NCM811)、1.5份乙炔黑导电剂、1.5份PVDF粘结剂、60份N-甲基吡咯烷酮(NMP)通过双行星搅拌机在真空下以公转30r/min、自转1500r/min的条件搅拌4h,分散成均匀的浆料,然后将浆料涂布在集流体A3-1上并在130℃下烘烤30min至烘干,在40吨辊压压力下辊压,分切成所需的正极片。
按照常规的锂离子电池负极制备工艺,将97份硅碳功能负极、1份乙炔黑导电剂、1份羧甲基纤维素钠(CMC)、1份丁苯橡胶(SBR)粘结剂、100份去离子水通过双行星搅拌机在真空下以公转30r/min、自转1500r/min的条件搅拌4h,分散成均匀的浆料,然后将浆料涂布在集流体B3-1上并在100℃下烘烤30min至烘干,在40吨辊压压力下辊压,分切成所需的负极片。
实施例3-2
本实施例提供的集流体,功能膜层由98份聚对苯二甲酸乙二醇酯PET和2份磷酸三苯酯得到,并且在该功能膜层上表面和下表面设置不锈钢层用作正极集流体材料,在该功能膜层上表面和下表面设置金属铜层用作负极集流体材料。
该集流体可按如下方法制备:
1)将98份聚对苯二甲酸乙二醇酯PET和2份磷酸三苯酯在250℃熔融混炼30min后得到混合浆液,对该混合浆液依次经过挤出、拉伸、冷却后得到厚度为5μm的功能膜层。
经测试功能膜层的阻燃等级为V1级,氧指数为28。
2)通过粘结法在功能膜层上表面和下表面分别粘结5μm厚的不锈钢层,即可得到总厚度为15μm集流体A3-2,用作正极集流体材料。
通过电镀法在功能膜层上表面和下表面分别镀上3μm厚的金属铜层,即可得到总厚度为11μm集流体B3-2,用作负极集流体材料。
按照上述方法得到正负极的集流体材料后,按照常规的锂离子电池正极制备工艺,将97份高镍三元正极(NCM811)、1.5份乙炔黑导电剂、1.5份PVDF粘结剂、60份N-甲基吡咯烷酮(NMP)通过双行星搅拌机在真空下以公转30r/min、自转1500r/min的条件搅拌4h,分散成均匀的浆料,然后将浆料涂布在集流体A3-2上并在130℃下烘烤30min至烘干,在40吨辊压压力下辊压,分切成所需的正极片。
按照常规的锂离子电池负极制备工艺,将97份硅碳复合负极、1份乙炔黑导电剂、1份羧甲基纤维素钠(CMC)、1份丁苯橡胶(SBR)粘结剂、100份去离子水通过双行星搅拌机在真空下以公转30r/min、自转1500r/min的条件搅拌4h,分散成均匀的浆料,然后将浆料涂布在集流体B3-2上并在100℃下烘烤30min至烘干,在40吨辊压压力下辊压,分切成所需的负极片。
实施例3-3
本实施例提供的集流体,功能膜层由98份聚对苯二甲酸乙二醇酯PET和2份磷酸三苯酯得到,并且在该功能膜层上表面和下表面设置不锈钢层用作正极集流体材料,在该功能膜层上表面和下表面设置金属铜层用作负极集流体材料。
该集流体可按如下方法制备:
1)将98份聚对苯二甲酸乙二醇酯PET和2份磷酸三苯酯在265℃熔融混炼30min后得到混合浆液,对该混合浆液依次经过挤出、拉伸、冷却后得到厚度为10μm的功能膜层。
经测试功能膜层的阻燃等级为V1级,氧指数为28。
2)通过粘结法在功能膜层上表面和下表面分别粘结5μm厚的不锈钢层,即可得到总厚度为20μm集流体A3-3,用作正极集流体材料。
通过电镀法在功能膜层上表面和下表面分别电镀3μm厚的金属铜层,即可得到总厚度为16μm集流体B3-3,用作负极集流体材料。
按照上述方法得到正负极的集流体材料后,按照常规的锂离子电池正极制备工艺,将97份高镍三元正极(NCM811)、1.5份乙炔黑导电剂、1.5份PVDF粘结剂、60份N-甲基吡咯烷酮(NMP)通过双行星搅拌机在真空下以公转30r/min、自转1500r/min的条件搅拌4h,分散成均匀的浆料,然后将浆料涂布在集流体A3-3上并在130℃下烘烤30min至烘干,在40吨辊压压力下辊压,分切成所需的正极片。
按照常规的锂离子电池负极制备工艺,将97份硅碳复合负极、1份乙炔黑导电剂、1份羧甲基纤维素钠(CMC)、1份丁苯橡胶(SBR)粘结剂、100份去离子水通过双行星搅拌机在真空下以公转30r/min、自转1500r/min的条件搅拌4h,分散成均匀的浆料,然后将浆料涂布在集流体B3-3上并在100℃下烘烤30min至烘干,在40吨辊压压力下辊压,分切成所需的负极片。
对比例3-1
1)使用13μm不锈钢集流体替换集流体A3-1,使用9μm铜箔集流体替换集流体B3-1,并采用与实施例3-1相同的材料和制备工艺得到正极片和负极片。
对比例3-2
1)将100份聚对苯二甲酸乙二醇酯PET在265℃熔融混炼30min后得到浆液,对该浆液依次经过挤出、拉伸、冷却后得到厚度为3μm的PET膜层。
2)通过粘结法在PET膜层上表面和下表面分别粘结5μm厚的不锈钢层,即可得到总厚度为13μm集流体C3-1,用作正极集流体材料。
通过电镀法在PET膜层上表面和下表面分别镀上3μm厚的金属铜层,即可得到总厚度为9μm集流体D3-1,用作负极集流体材料。
使用集流体C3-1替换集流体A3-1,使用集流体D3-1替换集流体B3-1,并采用与实施例3-1相同的材料和制备工艺得到正极片和负极片。
对比例3-3
1)使用15μm不锈钢集流体替换集流体A3-2,使用11μm铜箔集流体替换集流体B3-2,并采用与实施例3-2相同的材料和制备工艺得到正极片和负极片。
对比例3-4
1)将100份聚对苯二甲酸乙二醇酯PET在265℃熔融混炼30min得到浆液,对该浆液依次经过挤出、拉伸、冷却后得到厚度为5μm的PET膜层。
2)通过粘结法在PET膜层上表面和下表面分别粘上5μm厚的不锈钢层,即可得到总厚度为15μm集流体C3-2,用作正极集流体材料。
通过电镀法在PET膜层上表面和下表面分别镀上3μm厚的金属铜层,即可得到总厚度为11μm集流体D3-2,用作负极集流体材料。
使用集流体C3-2替换集流体A3-2,使用集流体D3-2替换集流体B3-2,并 采用与实施例3-2相同的材料和制备工艺得到正极片和负极片。
对比例3-5
1)使用20μm不锈钢集流体替换集流体A3-3,使用16μm铜箔集流体替换集流体B3-3,并采用与实施例3-3相同的材料和制备工艺得到正极片和负极片。
对比例3-6
1)将100份聚对苯二甲酸乙二醇酯PET在265℃熔融混炼30min后得到浆液,对该浆液依次经过挤出、拉伸、冷却后得到厚度为10μm的PET膜层。
2)通过粘结法在PET膜层上表面和下表面分别粘结5μm厚的不锈钢层,即可得到总厚度为20μm集流体C3-3,用作正极集流体材料。
通过电镀法在PET膜层上表面和下表面分别镀上3μm厚的金属铜层,即可得到总厚度为16μm集流体D3-3,用作负极集流体材料。
使用集流体C3-3替换集流体A3-3,使用集流体D3-3替换集流体B3-3,并采用与实施例3-3相同的材料和制备工艺得到正极片和负极片。
实施例4-1
本实施例提供的集流体,功能膜层由99份聚对苯二甲酸丁二醇酯PBT和1份三聚氰胺尿酸盐得到,并且在该功能膜层上表面和下表面设置金属铝层用作正极集流体材料,在该功能膜层上表面和下表面设置金属银层用作负极集流体材料。
该集流体可按如下方法制备:
1)将99份聚对苯二甲酸丁二醇酯PBT与1份质量的三聚氰胺尿酸盐在270℃熔融混炼25min得到混合浆液,对该混合浆液依次经过挤出、拉伸、冷却后得到厚度为3μm的功能膜层。
经测试功能薄膜F4的阻燃等级为V1级,氧指数为28。
2)通过真空蒸镀法在功能膜层上表面和下表面分别镀上0.1μm厚的金属铝层,即可得到总厚度为3.2μm集流体A4-1,用作正极集流体材料。
通过化学镀方法在功能膜层上表面和下表面分别镀上0.1μm厚的金属银层,即可得到总厚度为3.2μm集流体B4-1,用作负极集流体材料。
按照上述方法得到正负极的集流体材料后,按照常规的锂离子电池正极制备工艺,将97份三元正极(NCM622)、1.5份乙炔黑导电剂、1.5份PVDF粘结剂、60份N-甲基吡咯烷酮(NMP)通过双行星搅拌机在真空下以公转30r/min、自转1500r/min的条件搅拌4h,分散成均匀的浆料,然后将浆料涂布在集流体A4-1上并在130℃下烘烤30min至烘干,在40吨辊压压力下辊压,分切成所需的正极片。
按照常规的锂离子电池负极制备工艺,将97份石墨负极、1份乙炔黑导电剂、1份羧甲基纤维素钠(CMC)、1份丁苯橡胶(SBR)粘结剂、100份去离子水通过双行星搅拌机在真空下以公转30r/min、自转1500r/min的条件搅拌4h,分散成均匀的浆料,然后将浆料涂布在集流体B4-1上并在100℃下烘烤30min至烘干,在40吨辊压压力下辊压,分切成所需的负极片。
实施例4-2
本实施例提供的集流体,功能膜层由99份聚对苯二甲酸丁二醇酯PBT和1份三聚氰胺尿酸盐得到,并且在该功能膜层上表面和下表面设置金属铝层用作正极集流体材料,在该功能膜层上表面和下表面设置金属银层用作负极集流体材料。
该集流体可按如下方法制备:
1)将99份聚对苯二甲酸丁二醇酯PBT与1份三聚氰胺尿酸盐在270℃熔融混炼25min得到混合浆液,对该混合浆液依次经过挤出、拉伸、冷却后得到厚度为3μm的功能膜层。
经测试功能膜层的阻燃等级为V1级,氧指数为28。
2)通过真空蒸镀法在功能膜层上表面和下表面分别镀上0.5μm厚的金属铝层,即可得到总厚度为4μm集流体A4-2,用作正极集流体材料。
通过化学镀方法在功能膜层上表面和下表面分别镀上0.5μm厚的金属银层,即可得到总厚度为4μm集流体B4-2,用作负极集流体材料。
按照上述方法得到正负极的集流体材料后,按照常规的锂离子电池正极制备工艺,将97份三元正极(NCM622)、1.5份乙炔黑导电剂、1.5份PVDF粘结剂、60份N-甲基吡咯烷酮(NMP)通过双行星搅拌机在真空下以公转30r/min、自转1500r/min的条件搅拌4h,分散成均匀的浆料,然后将浆料涂布在集流体A4-2上并在130℃下烘烤30min至烘干,在40吨辊压压力下辊压,分切成所需的正极片。
按照常规的锂离子电池负极制备工艺,将97份石墨负极、1份乙炔黑导电剂、1份羧甲基纤维素钠(CMC)、1份丁苯橡胶(SBR)粘结剂、100份去离子水通过双行星搅拌机在真空下以公转30r/min、自转1500r/min的条件搅拌4h,分散成均匀的浆料,然后将浆料涂布在集流体B4-2上并在100℃下烘烤30min至烘干,在40吨辊压压力下辊压,分切成所需的负极片。
实施例4-3
本实施例提供的集流体,功能膜层由99份聚对苯二甲酸丁二醇酯PBT和1份三聚氰胺尿酸盐得到,并且在该功能膜层上表面和下表面设置金属铝层用作正极集流体材料,在该功能膜层上表面和下表面设置金属银层用作负极集流体材料。
该集流体可按如下方法制备:
1)将99份聚对苯二甲酸丁二醇酯PBT与1份三聚氰胺尿酸盐在270℃熔融混炼25min得到混合浆液,对该混合浆液依次经过挤出、拉伸、冷却后得到厚度为3μm的功能膜层。
经测试功能膜层的阻燃等级为V1级,氧指数为28。
2)通过真空蒸镀法在功能膜层上表面和下表面分别镀上2μm厚的金属铝层,即可得到总厚度为7μm集流体A4-3,用作正极集流体材料。
通过真空蒸镀方法在功能膜层上表面和下表面分别镀上2μm厚的金属银层,即可得到总厚度为7μm集流体B4-3,用作负极集流体材料。
按照上述方法得到正负极的集流体材料后,按照常规的锂离子电池正极 制备工艺,将97份三元正极(NCM622)、1.5份乙炔黑导电剂、1.5份PVDF粘结剂、60份N-甲基吡咯烷酮(NMP)通过双行星搅拌机在真空下以公转30r/min、自转1500r/min的条件搅拌4h,分散成均匀的浆料,然后将浆料涂布在集流体A4-3上并在130℃下烘烤30min至烘干,在40吨辊压压力下辊压,分切成所需的正极片。
按照常规的锂离子电池负极制备工艺,将97份石墨负极、1份乙炔黑导电剂、1份羧甲基纤维素钠(CMC)、1份丁苯橡胶(SBR)粘结剂、100份去离子水通过双行星搅拌机在真空下以公转30r/min、自转1500r/min的条件搅拌4h,分散成均匀的浆料,然后将浆料涂布在集流体B4-3上并在100℃下烘烤30min至烘干,在40吨辊压压力下辊压,分切成所需的负极片。
实施例4-4
本实施例提供的集流体,功能膜层由99份聚对苯二甲酸丁二醇酯PBT和1份三聚氰胺尿酸盐得到,并且在该功能膜层上表面和下表面设置金属铝层用作正极集流体材料,在该功能膜层上表面和下表面设置金属银层用作负极集流体材料。
该集流体可按如下方法制备:
1)将99份聚对苯二甲酸丁二醇酯PBT与1份三聚氰胺尿酸盐在270℃熔融混炼25min得到混合浆液,对该混合浆液依次经过挤出、拉伸、冷却后得到厚度为3μm的功能膜层。
经测试功能膜层的阻燃等级为V1级,氧指数为28。
2)通过真空蒸镀法在功能膜层上表面和下表面分别镀上10μm厚的金属铝层,即可得到总厚度为23μm集流体A4-4,用作正极集流体材料。
通过真空蒸镀方法在功能膜层上表面和下表面分别镀上10μm厚的金属银层,即可得到总厚度为23μm集流体B4-4,用作负极集流体材料。
按照上述方法得到正负极的集流体材料后,按照常规的锂离子电池正极制备工艺,将97份三元正极(NCM622)、1.5份乙炔黑导电剂、1.5份PVDF粘结剂、60份N-甲基吡咯烷酮(NMP)通过双行星搅拌机在真空下以公转30r/min、自转1500r/min的条件搅拌4h,分散成均匀的浆料,然后将浆料涂布在集流体A4-4上并在130℃下烘烤30min至烘干,在40吨辊压压力下辊压,分切成所需的正极片。
按照常规的锂离子电池负极制备工艺,将97份石墨负极、1份乙炔黑导电剂、1份羧甲基纤维素钠(CMC)、1份丁苯橡胶(SBR)粘结剂、100份去离子水通过双行星搅拌机在真空下以公转30r/min、自转1500r/min的条件搅拌4h,分散成均匀的浆料,然后将浆料涂布在集流体B4-4上并在100℃下烘烤30min至烘干,在40吨辊压压力下辊压,分切成所需的负极片。
对比例4-1
1)使用3.2μm金属铝集流体替换集流体A4-1,使用3.2μm铜箔集流体替换集流体B4-1,并采用与实施例4-1相同的材料和制备工艺得到正极片和负极片。
对比例4-2
1)将100份聚对苯二甲酸丁二醇酯PBT在270℃熔融混炼25min得到浆液,对该浆液依次经过挤出、拉伸、冷却后得到厚度为3μm的PBT膜层。
2)通过真空蒸镀法在PBT膜层上表面和下表面分别镀上0.1μm厚的金属铝层,即可得到总厚度为3.2μm集流体C4-1,用作正极集流体材料。
通过化学镀方法在PBT膜层上表面和下表面分别镀上0.1μm厚的金属银层,即可得到总厚度为3.2μm集流体D4-1,用作负极集流体材料。
使用集流体C4-1替换集流体A4-1,使用集流体D4-1替换集流体B4-1,并采用与实施例4-1相同的材料和制备工艺得到正极片和负极片。
对比例4-3
1)使用4μm金属铝集流体替换集流体A4-2,使用4μm铜箔集流体替换集流体B4-2,并采用与实施例4-2相同的材料和制备工艺得到正极片和负极片。
对比例4-4
1)将100份聚对苯二甲酸丁二醇酯PBT在270℃熔融混炼25min得到浆液,对该浆液依次经过挤出、拉伸、冷却后得到厚度为3μm的PBT膜层。
2)通过真空蒸镀法在PBT膜层上表面和下表面分别镀上0.5μm厚的金属铝层,即可得到总厚度为4μm集流体C4-2,用作正极集流体材料。
通过化学镀方法在PBT膜层上表面和下表面分别镀上0.5μm厚的金属银层,即可得到总厚度为4μm集流体D4-2,用作负极集流体材料。
使用集流体C4-2替换集流体A4-2,使用集流体D4-2替换集流体B4-2,并采用与实施例4-2相同的材料和制备工艺得到正极片和负极片。
对比例4-5
1)使用7μm金属铝集流体替换集流体A4-3,使用7μm铜箔集流体替换集流体B4-3,并采用与实施例4-3相同的材料和制备工艺得到正极片和负极片。
对比例4-6
1)将100份聚对苯二甲酸丁二醇酯PBT在270℃熔融混炼25min后得到浆液,对该浆液依次经过挤出、拉伸、冷却后得到厚度为3μm的PBT膜层。
2)通过真空蒸镀法在PBT膜层上表面和下表面分别镀上2μm厚的金属铝层,即可得到总厚度为7μm集流体C4-3,用作正极集流体材料。
通过真空蒸镀法在PBT膜层上表面和下表面分别镀上2μm厚的金属银层,即可得到总厚度为7μm集流体D4-3,用作负极集流体材料。
使用集流体C4-3替换集流体A4-3,使用集流体D4-3替换集流体B4-3,并采用与实施例4-3相同的材料和制备工艺得到正极片和负极片。
对比例4-7
1)使用23μm铝箔集流体替换集流体A4-4,使用23μm铜箔集流体替换集流体B4-4,并采用与实施例4-4相同的材料和制备工艺得到正极片和负极片。
对比例4-8
1)将100份聚对苯二甲酸丁二醇酯PBT在270℃熔融混炼25min后得到浆液,对该浆液依次经过挤出、拉伸、冷却后得到厚度为3μm的PBT膜层。
2)通过真空蒸镀法在PBT膜层上表面和下表面分别镀上10μm厚的金属铝 层,即可得到总厚度为23μm集流体C4-4,用作正极集流体材料。
通过真空蒸镀法在PBT膜层上表面和下表面分别镀上10μm厚的金属银层,即可得到总厚度为23μm集流体D4-4,用作负极集流体材料。
使用集流体C4-4替换集流体A4-4,使用集流体D4-4替换集流体B4-4,并采用与实施例4-4相同的材料和制备工艺得到正极片和负极片。
实施例5
本实施例提供的集流体,功能膜层由99份聚偏氟乙烯PVDF和1份四溴双酚A得到,并且在该功能膜层上表面和下表面设置金属铝层用作正极集流体材料,在该功能膜层上表面和下表面设置金属镍层用作负极集流体材料。
该集流体可按如下方法制备:
1)将99份聚偏氟乙烯PVDF溶于N-甲基吡咯烷酮NMP中,再加入1份四溴双酚A后得到混合浆液,对所述混合浆液依次经过涂布,干燥,得到10μm的功能膜层。
经测试功能薄膜F5的阻燃等级为5VA级,氧指数为78。
2)通过真空蒸镀法在功能膜层上表面和下表面分别镀上1μm厚的金属铝层,即可得到总厚度为12μm集流体A5,用作正极集流体材料。
通过电镀法在功能膜层上表面和下表面分别依次镀上0.5μm厚的金属镍层及0.5μm厚的金属铜层,即可得到总厚度为12μm集流体B5,用作负极集流体材料。
按照上述方法得到正负极的集流体材料后,按照常规的锂离子电池正极制备工艺,将97份三元正极(NCM523)、1.5份乙炔黑导电剂、1.5份PVDF粘结剂、60份N-甲基吡咯烷酮(NMP)通过双行星搅拌机在真空下以公转30r/min、自转1500r/min的条件搅拌4h,分散成均匀的浆料,然后将浆料涂布在集流体A5上并在130℃下烘烤30min至烘干,在40吨辊压压力下辊压,分切成所需的正极片。
按照常规的锂离子电池负极制备工艺,将97份石墨负极、1份乙炔黑导电剂、1份羧甲基纤维素钠(CMC)、1份丁苯橡胶(SBR)粘结剂、100份去离子水通过双行星搅拌机在真空下以公转30r/min、自转1500r/min的条件搅拌4h,分散成均匀的浆料,然后将浆料涂布在集流体B5上并在100℃下烘烤30min至烘干,在40吨辊压压力下辊压,分切成所需的负极片。
对比例5-1
1)使用12μm金属铝集流体替换集流体A5,使用12μm铜箔集流体替换集流体B5,并采用与实施例5相同的材料和制备工艺得到正极片和负极片。
对比例5-2
1)将99份聚偏氟乙烯PVDF溶于N-甲基吡咯烷酮NMP中得到浆液,对所述混合浆液依次经过涂布,干燥,得到10μm的PVDF膜层。
2)通过真空蒸镀法在PVDF膜层上表面和下表面分别镀上1μm厚的金属铝层,即可得到总厚度为12μm集流体C5,用作正极集流体材料。
通过电镀法在PVDF膜层上表面和下表面分别依次镀上0.5μm厚的金属镍 层及0.5μm厚的金属铜层,即可得到总厚度为12μm集流体D5,用作负极集流体材料。
使用集流体C5替换集流体A5,使用集流体D5替换集流体B5,并采用与实施例5相同的材料和制备工艺得到正极片和负极片。
实施例6
本实施例提供的集流体,功能膜层由99.5份聚氯乙烯PVC和0.5份三聚氰胺聚磷酸盐得到,并且在该功能膜层上表面和下表面设置金属铝层用作正极集流体材料,在该功能膜层上表面和下表面设置金属铜层用作负极集流体材料。
该集流体可按如下方法制备:
1)将99.5份聚氯乙烯PVC与0.5份三聚氰胺聚磷酸盐在220℃熔融混炼20min得到混合浆液,对该浆液依次经过挤出、拉伸、冷却后得到厚度为12μm的功能膜层。
经测试功能膜层的阻燃等级为V0级,氧指数为47。
2)通过真空蒸镀法在功能膜层上表面和下表面分别镀上1.5μm厚的金属铝层,即可得到总厚度为15μm集流体A6,用作正极集流体材料。
通过电镀法在功能膜层上表面和下表面分别镀上1.5μm厚的金属铜层,即可得到总厚度为15μm集流体B6,用作负极集流体材料。
按照上述方法得到正负极的集流体材料后,按照常规的锂离子电池正极制备工艺,将97份三元正极(NCA)、1.5份乙炔黑导电剂、1.5份PVDF粘结剂、60份N-甲基吡咯烷酮(NMP)通过双行星搅拌机在真空下以公转30r/min、自转1500r/min的条件搅拌4h,分散成均匀的浆料,然后将浆料涂布在集流体A6上并在130℃下烘烤30min至烘干,在40吨辊压压力下辊压,分切成所需的正极片。
按照常规的锂离子电池负极制备工艺,将97份氧化亚硅(20wt%)+石墨(80wt%)复合负极、1份乙炔黑导电剂、1份羧甲基纤维素钠(CMC)、1份丁苯橡胶(SBR)粘结剂、100份去离子水通过双行星搅拌机在真空下以公转30r/min、自转1500r/min的条件搅拌4h,分散成均匀的浆料,然后将浆料涂布在集流体B6上并在100℃下烘烤30min至烘干,在40吨辊压压力下辊压,分切成所需的负极片。
对比例6-1
1)使用15μm金属铝集流体替换集流体A6,使用15μm铜箔集流体替换集流体B6,并采用与实施例6相同的材料和制备工艺得到正极片和负极片。
对比例6-2
1)将99.5份聚氯乙烯PVC在220℃熔融混炼20min后得到浆液,然后通过挤出设备挤出,对该浆液依次经过挤出、拉伸、冷却后得到厚度为12μm的PVC膜层。
2)通过真空蒸镀法在PVC膜层上表面和下表面分别镀上1.5μm厚的金属铝层,即可得到总厚度为15μm集流体C6,用作正极集流体材料。
通过电镀法在PVC膜层上表面和下表面分别镀上1.5μm厚的金属铜层,即可得到总厚度为15μm集流体D6,用作负极集流体材料。
使用集流体C6替换集流体A6,使用集流体D6替换集流体B6,并采用与实施例6相同的材料和制备工艺得到正极片和负极片。
将上述实施例及对比例的正极片、负极片制备成锂离子电池,具体的:将上述所得的正极片与负极片搭配聚乙烯(PE)多孔隔膜、锂离子电池电解液通过锂离子电池常规制备工艺制备成锂离子电池。
将上述实施例和对比例得到的锂离子电池充满电后测试电池的针刺、加热及过充这3项安全测试,每一组平行测试10只电池,计算通过率。测试方法参照GB/T 31485-2015标准,测试结果如表1所示。
表1:实施例以及对比例提供的锂离子电池的安全测试结果
  针刺通过率(%) 加热通过率(%) 过充通过率(%)
实施例1 100% 100% 100%
对比例1-1 0 0 0
对比例1-2 10% 20% 20%
实施例2-1 100% 80% 90%
实施例2-2 100% 90% 100%
实施例2-3 100% 100% 100%
对比例2-1 0 0 0
对比例2-2 10% 10% 10%
实施例3-1 100% 80% 80%
实施例3-2 100% 100% 100%
实施例3-3 100% 100% 100%
对比例3-1 0 0 0
对比例3-2 10% 10% 10%
对比例3-3 10% 0 0
对比例3-4 20% 10% 10%
对比例3-5 10% 0 0
对比例3-6 30% 20% 20%
实施例4-1 100% 90% 100%
实施例4-2 100% 100% 100%
实施例4-3 100% 90% 90%
实施例4-4 80% 70% 80%
对比例4-1 0 0 0
对比例4-2 30% 10% 20%
对比例4-3 0 0 0
对比例4-4 20% 10% 20%
对比例4-5 0 0 0
对比例4-6 10% 0 10%
对比例4-7 0 0 0
对比例4-8 10% 0 0
实施例5 100% 100% 100%
对比例5-1 10% 0 10%
对比例5-2 30% 10% 20%
实施例6 100% 100% 100%
对比例6-1 0 0 0
对比例6-2 10% 0 0
从表1可知,采用本发明的集流体制备的锂离子电池,电池安全性能明显提升,尤其是针刺、加热、过充等安全性能测试的通过率得到明显提升。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种集流体,其特征在于,所述集流体包括功能膜层以及设置于所述功能膜层上表面和下表面的金属层;
    其中,所述功能膜层包括阻燃剂。
  2. 根据权利要求1所述的集流体,其特征在于,所述阻燃剂选自三氧化二锑、氢氧化镁、氢氧化铝、羟基铝、磷酸锌、硼酸锌、聚磷酸铵、磷酸三丁酯、磷酸三(2-乙基己基)酯、磷酸三(2-氯乙基)酯、磷酸三(2,3-二氯丙基)酯、磷酸三(2,3-二溴丙基)酯、磷酸甲苯-二苯酯、磷酸三甲苯酯、磷酸三苯酯、磷酸(2-乙基己基)-二苯酯、磷酸三(二溴丙基)酯、八溴二苯基氧化物、五溴乙基苯、四溴双酚A、氯丹酸酐、环磷酰胺聚合物、三聚氰胺尿酸盐、三聚氰胺聚磷酸盐、季戊四醇磷酸酯、三(2,4,6-三溴苯氧基)-三嗪中的一种或多种。
  3. 根据权利要求1所述的集流体,其特征在于,所述阻燃剂的质量为所述功能膜层质量的0.1%-10%。
  4. 根据权利要求1所述的集流体,其特征在于,所述功能膜层还包括聚合物。
  5. 根据权利要求4所述的集流体,其特征在于,所述聚合物选自聚乙烯、聚丙烯、聚苯乙烯、聚氯乙烯、聚丙乙烯、丙烯腈-丁二烯-苯乙烯共聚物、聚乙烯醇缩甲醛、聚乙烯醇缩丁醛、聚丙烯腈、聚醋酸乙烯酯、酚醛树脂、聚氨酯、聚酰胺、聚酰亚胺、聚对苯二甲酰对苯二胺、聚对苯二甲酸酯、聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯、聚碳酸酯、聚苯醚、聚甲醛、环氧树脂、聚四氟乙烯、聚偏氟乙烯、硅橡胶、聚砜、聚醚砜中的一种或多种。
  6. 一种集流体的制备方法,其特征在于,包括如下步骤:
    1)对含有阻燃剂的浆液进行延展处理,得到功能膜层;
    2)在所述功能膜层的上表面和下表面设置金属层,得到所述集流体。
  7. 根据权利要求6所述的制备方法,其特征在于,所述浆液还包括聚合物。
  8. 根据权利要求7所述的制备方法,其特征在于,步骤1)包括:将所述聚合物和所述阻燃剂熔融混炼得到所述浆液后,对所述浆液依次经过挤出、拉伸、冷却,得到所述功能膜层。
  9. 根据权利要求7所述的制备方法,其特征在于,步骤1)包括:将所述聚合物与所述阻燃剂溶于溶剂中得到所述浆液,对所述浆液依次经过涂布,干燥得到所述功能膜层。
  10. 一种锂离子电池,其特征在于,包括如权利要求1-5任一所述的集流体或权利要求6-9任一所述的制备方法得到的集流体。
PCT/CN2020/138534 2019-12-26 2020-12-23 一种集流体及其制备方法和应用 WO2021129643A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20906914.5A EP3916862A4 (en) 2019-12-26 2020-12-23 Current collector, preparation method therefor and application thereof
US17/412,583 US20210384515A1 (en) 2019-12-26 2021-08-26 Current collector and preparation method thereof and application therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911368888.3 2019-12-26
CN201911368888.3A CN111048788B (zh) 2019-12-26 2019-12-26 一种集流体及其制备方法和应用

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/412,583 Continuation US20210384515A1 (en) 2019-12-26 2021-08-26 Current collector and preparation method thereof and application therefor

Publications (1)

Publication Number Publication Date
WO2021129643A1 true WO2021129643A1 (zh) 2021-07-01

Family

ID=70239076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/138534 WO2021129643A1 (zh) 2019-12-26 2020-12-23 一种集流体及其制备方法和应用

Country Status (4)

Country Link
US (1) US20210384515A1 (zh)
EP (1) EP3916862A4 (zh)
CN (1) CN111048788B (zh)
WO (1) WO2021129643A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111048788B (zh) * 2019-12-26 2021-06-01 珠海冠宇电池股份有限公司 一种集流体及其制备方法和应用
US20230163368A1 (en) * 2020-04-15 2023-05-25 The Board Of Trustees Of The Leland Stanford Junior University Ultralight, fire-extinguishing and temperature modulated current collector devices and method therefor
CN111640978A (zh) * 2020-07-10 2020-09-08 湖北亿纬动力有限公司 一种锂离子电池及其制备方法和用途
CN112712918A (zh) * 2021-01-11 2021-04-27 重庆金美新材料科技有限公司 一种导电薄膜、导电薄膜的制备方法及锂离子电池
CN112786895A (zh) * 2021-01-22 2021-05-11 华中科技大学 一种锂离子电池、新型集流体及其制备方法
CN113717652A (zh) * 2021-08-30 2021-11-30 武汉安托万拉瓦锡电池有限公司 一种具有分子级阻燃功能的锂电池卷芯固定胶
CN114156486B (zh) * 2021-10-29 2024-05-03 上海空间电源研究所 一种轻量阻燃型集流体及其制备方法、电极、电池
CN114597338A (zh) * 2022-03-31 2022-06-07 蜂巢能源科技股份有限公司 复合集流体及其制备方法与应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105470526A (zh) * 2015-12-23 2016-04-06 山东精工电子科技有限公司 一种锂电池负极集流体表面处理方法
CN107154499A (zh) * 2017-04-14 2017-09-12 深圳鑫智美科技有限公司 一种含有新型集流体的锂电池及其制备方法
CN107221676A (zh) * 2017-06-30 2017-09-29 江苏道赢科技有限公司 一种复合集流体及应用该集流体的锂离子二次电池
CN110212201A (zh) * 2019-06-13 2019-09-06 桑顿新能源科技(长沙)有限公司 电芯、电池极片及其制备方法、电池
CN111048788A (zh) * 2019-12-26 2020-04-21 珠海冠宇电池有限公司 一种集流体及其制备方法和应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4164068A (en) * 1977-08-18 1979-08-14 Exxon Research & Engineering Co. Method of making bipolar carbon-plastic electrode structure-containing multicell electrochemical device
JPH10172615A (ja) * 1996-12-17 1998-06-26 Toshiba Battery Co Ltd 非水溶媒電池及びポリマー電解質二次電池
US7078129B2 (en) * 2002-01-11 2006-07-18 Advanced Battery Technology Ltd. Fire and corrosion resistant thermally stable electrodes and batteries and method for manufacturing same
GB2470577B (en) * 2009-05-27 2013-08-28 Access Business Group Int Llc Electrical-energy storage devices
JP5623199B2 (ja) * 2010-09-06 2014-11-12 株式会社Nttファシリティーズ 非水電解液電池
CN109659565B (zh) * 2018-12-25 2023-04-07 桑顿新能源科技有限公司 复合集流体及其制备方法、电极和锂离子电池
CN109994740B (zh) * 2019-03-29 2021-08-13 宁德新能源科技有限公司 复合集流体与包含其的复合极片及电化学装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105470526A (zh) * 2015-12-23 2016-04-06 山东精工电子科技有限公司 一种锂电池负极集流体表面处理方法
CN107154499A (zh) * 2017-04-14 2017-09-12 深圳鑫智美科技有限公司 一种含有新型集流体的锂电池及其制备方法
CN107221676A (zh) * 2017-06-30 2017-09-29 江苏道赢科技有限公司 一种复合集流体及应用该集流体的锂离子二次电池
CN110212201A (zh) * 2019-06-13 2019-09-06 桑顿新能源科技(长沙)有限公司 电芯、电池极片及其制备方法、电池
CN111048788A (zh) * 2019-12-26 2020-04-21 珠海冠宇电池有限公司 一种集流体及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3916862A4 *

Also Published As

Publication number Publication date
EP3916862A4 (en) 2022-06-29
US20210384515A1 (en) 2021-12-09
CN111048788B (zh) 2021-06-01
CN111048788A (zh) 2020-04-21
EP3916862A1 (en) 2021-12-01

Similar Documents

Publication Publication Date Title
WO2021129643A1 (zh) 一种集流体及其制备方法和应用
WO2017063219A1 (zh) 一种锂离子电池复合极片及其制备方法以及一种锂离子电池
CN111048790B (zh) 一种集流体及其制备方法和应用
CN111430788A (zh) 一种复合固态电解质膜、制备方法及固态锂电池
WO2017063218A1 (zh) 一种锂离子电池复合隔膜及其制备方法以及一种锂离子电池
CN106910859A (zh) 隔板以及包括所述隔板的电化学电池
KR20150106808A (ko) 이차 전지 및 이의 제조 방법
KR20130096138A (ko) 리튬전지
CN110212201B (zh) 电芯、电池极片及其制备方法、电池
CN111697230B (zh) 一种高安全复合正极片及其制备方法和应用的锂离子电池
CN110247009A (zh) 一种防过充隔膜及其制备方法和锂离子电池
CN113764612B (zh) 一种含有高安全性热敏涂层的正极极片及锂离子电池
CN105679984A (zh) 一种无孔隔膜及其应用
CN113571672A (zh) 一种干法电极、固态锂离子电池及其制备方法
WO2012118338A2 (ko) 일체형 전극조립체 및 이를 이용한 이차전지
CN113328207A (zh) 锂离子电池复合隔膜及其制备方法
CN101295780A (zh) 锂离子二次电池正极活性材料组合物及电池
CN112072109A (zh) 锂离子电池及其制备方法
JP2014112485A (ja) 固体電池
CN110875476A (zh) 锂二次电池的负极、其制备方法和锂二次电池
CN116525952A (zh) 非水电解液及钠离子电池
JP2014116133A (ja) 固体電池用正極、及び、これを用いた固体電池
CN109216701B (zh) 电池电极及其制备方法和全固态电池
CN217239504U (zh) 锂离子电池正极极片和锂离子电池
CN113097440B (zh) 电化学装置及用电设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20906914

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020906914

Country of ref document: EP

Effective date: 20210825

NENP Non-entry into the national phase

Ref country code: DE