WO2021129370A1 - 一种基于柔性光电纳米薄膜的自驱动应变传感器 - Google Patents

一种基于柔性光电纳米薄膜的自驱动应变传感器 Download PDF

Info

Publication number
WO2021129370A1
WO2021129370A1 PCT/CN2020/134370 CN2020134370W WO2021129370A1 WO 2021129370 A1 WO2021129370 A1 WO 2021129370A1 CN 2020134370 W CN2020134370 W CN 2020134370W WO 2021129370 A1 WO2021129370 A1 WO 2021129370A1
Authority
WO
WIPO (PCT)
Prior art keywords
sliding groove
sliding
groove unit
sliding plate
strain
Prior art date
Application number
PCT/CN2020/134370
Other languages
English (en)
French (fr)
Inventor
张鹤
全力威
沈昕昳
吕朝锋
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Publication of WO2021129370A1 publication Critical patent/WO2021129370A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Definitions

  • the invention relates to the field of bridge engineering, in particular to a self-driving strain sensor based on a flexible photoelectric nano film.
  • strain measuring instruments are widely used in strain measurement of bridges, railways, dams and various construction facilities.
  • the commonly used strain measuring instruments mainly include dial gauge strain gauges, resistance strain gauges, vibrating wire strain gauges, and so on.
  • the dial gauge strain gauge is a mechanical strain measuring instrument that compares the difference between two measurements to the required deformation.
  • the dial gauge strain gauge must be marked on the standard gauge before measuring on the structure to be measured, which is more cumbersome, and due to the limitation of the marked length and installation, it is more limited in practical application. Big.
  • Resistance strain gauges work by using the "strain resistance effect" of a certain metal wire conductor, but they have non-linearity, weak output signal, poor anti-interference ability, and greater environmental impact, and they can only measure one point on the surface of the component. Strain in a certain direction cannot be measured globally.
  • the vibrating wire strain gauge can sense the change in the internal stress of the structure, and transfer its deformation to the vibrating wire through the front and rear seats and transform it into a change in the vibrating wire stress, thereby changing the vibration frequency of the vibrating wire.
  • the frequency signal is transmitted to the vibrating wire via the cable.
  • the reading device can then measure the amount of strain inside the structure, but the vibrating wire strain gauge has the disadvantages of high sensor material and processing technology requirements, and low measurement accuracy.
  • the present invention proposes a self-driving strain sensor based on flexible photoelectric nano-film, which can convert the deformation energy of the component to be measured into electrical energy and output it in the form of electrical signals, with simple structure, high measurement accuracy, and response speed. Fast and wide application range.
  • the specific technical solutions are as follows:
  • a self-driving strain sensor based on a flexible photoelectric nano film, used to measure the strain of a component to be measured, comprising a sliding groove unit and a sliding plate unit arranged in the sliding groove unit.
  • the sliding groove unit includes a bottom plate and A connecting end at one end of the bottom plate and a limiting sleeve arranged in the middle of the bottom plate, the sliding plate unit includes a sliding plate body and a protrusion arranged at the end of the sliding plate body, the sliding plate body It can be moved along the sliding groove unit, and the sliding plate body is attached to the sliding groove unit through the limit sleeve, and the connecting end at one end of the bottom plate is used to fix the test
  • the protrusion at the end of the sliding plate body is also used to fix the component to be tested; the surface of the sliding plate body and the sliding groove unit is provided with a photosensitive layer, and the bottom surface of the bottom plate is provided Light-shielding layer; a conductive layer is provided on the surface of the sliding groove unit and
  • the photosensitive layer includes a photoetched substrate and electrodes arranged on both sides of the photoetched substrate.
  • One electrode is provided with a graphene layer
  • the other electrode is provided with a Pa-type silicon layer.
  • the Pa-type silicon layer and the graphene layer are laid in sequence, and the Pa-type silicon layer is close to the photoetching substrate.
  • the electrode is an aluminum electrode.
  • the sliding plate body is made of high-pressure polyethylene
  • the sliding groove unit is made of ethylene-vinyl acetate copolymer with a vinyl acetate content of more than 30%.
  • the chute unit is made of propylene-ethylene random copolymer.
  • the lengths of the sliding plate body and the bottom plate are equal, and the widths of the sliding plate body and the limiting sleeve are equal.
  • a measuring circuit which includes a wire and an electric signal measuring device, and the electric signal measuring device measures the induced current of the strain sensor.
  • the measurement circuit is integrated at the bottom of the chute.
  • the invention converts the mechanical law when the component is strained into an electric signal according to its force-electricity conversion characteristic, and passes through the signal processing device in the device, so the strain magnitude can be expressed and output by the electric signal through the output device.
  • the self-driving strain sensor based on flexible photoelectric nano-film has the advantages of simple structure, high measurement accuracy, fast response speed, and wide application range.
  • the self-driving strain sensor based on the flexible photoelectric nano film provided by the present invention has extremely fast response speed and extremely high sensitivity due to its heterojunction structure.
  • the sliding plate body and the sliding groove unit are made of flexible polymer materials, they have good ductility and deformability, and can deform with the deformation of the component to be measured. Compared with the traditional rigid strain measurement method, it has Better applicability.
  • Figure 1 is a structural diagram of a self-driving strain sensor based on a flexible photoelectric nano-film
  • Figure 2 is a structural diagram of the photosensitive layer
  • Figure 3 is a spectral response diagram of the photosensitive layer
  • Figure 4 is a perspective view and a cross-sectional view of the tensile strain measurement state of the sensor
  • Figure 5 is a three-dimensional view and a cross-sectional view of the compression strain measurement state of the sensor
  • bottom plate 1 bottom plate connecting end 2, limit sleeve 3, sliding plate body 4, sliding plate protrusion 5, shading layer 6, photosensitive layer 7, Pa-type silicon layer 7-1, graphene layer 7- 2.
  • the self-driving strain sensor based on the flexible photoelectric nano-film of the present invention is used to measure the strain of the component to be measured. It includes a sliding groove unit and a sliding plate unit arranged in the sliding groove unit.
  • the groove unit includes a bottom plate 1, a connecting end 2 provided at one end of the bottom plate 1, and a limit sleeve 3 provided in the middle of the bottom plate 1.
  • the sliding plate unit includes a sliding plate body 4 and a sliding plate arranged on the The protrusion 5 at the end of the body 4, the sliding plate body 4 can move along the sliding groove unit, and the sliding plate body 4 and the sliding groove are realized by the limiting sleeve 3
  • the unit is attached, the connecting end 2 at one end of the bottom plate is used to fix the component to be tested, and the protrusion 5 at the end of the slide body is also used to fix the component to be measured; the slide body 4 is connected to the A photosensitive layer 7 is provided on the surface where the slide groove unit is attached, and a light-shielding layer 6 is provided on the bottom surface of the bottom plate; a conductive layer is provided on the surface where the slide groove unit is attached to the slide body 4.
  • the photosensitive layer 7 includes a photoetched substrate and electrodes provided on both sides of the photoetched substrate.
  • One electrode is provided with a graphene layer 7-2
  • the other electrode is provided with a graphene layer 7-2.
  • the silicon layer 7-1 is close to the photoetched substrate.
  • Figures 4 and 5 respectively show the deformed state of the self-driving strain sensor based on the flexible photoelectric nano-film of the present invention when it is fixed on the component to be measured.
  • Figure 4 is the tension of the component to be measured
  • Figure 5 is the compression.
  • the chute unit and the sliding plate unit are relatively displaced, and the photosensitive surface can receive external light to generate an induced current; the magnitude of the induced current can be measured by the electrical signal measuring device. According to the induced current, the strain amount of the component to be measured can be obtained by conversion.
  • the self-driving strain sensor based on the flexible photoelectric nano-film of the present invention when matched with visible light to near infrared shortwave as the optical signal source (wavelength is 400-1100nm), where the signal has two peaks at wavelengths of 680nm and 960nm (as shown in Figure 3 Shown), which means that the sensor has the best response.
  • the laser is in the invisible wavelength band when the wavelength is 960nm
  • a laser with a wavelength of 680nm can be selected as the light source when in use.
  • the self-driving strain sensor based on the flexible photoelectric nano film of the present invention has an extremely short response speed (5 ns) to light signals, and has extremely high sensitivity as a strain sensing technology.
  • the photoelectric conversion of the device is realized through the heterojunction between graphene and silicon material.
  • the valence electrons in silicon absorb the photon energy in the incident light and undergo energy level transitions, thereby forming electron-hole pairs.
  • the electron-hole pairs are separated and induced current is generated, thereby realizing the conversion between optical signals and electrical signals.
  • ⁇ (t) is the strain of the component to be measured at time t
  • l 0 is the initial length of the component measurement section when the strain sensor device is installed.
  • the forward current is divided into two parts, one is the first part that can be obtained according to the forward current of the ideal PN junction:
  • J s is the reverse saturation current of the PN junction, which has the form: among them with Are the thermal equilibrium electron and hole concentrations in the P and N regions, respectively; q is the single-electron charge, D n and D p are the diffusion coefficients of electrons and holes, respectively; L n and L p are the diffusion lengths of electrons and holes, respectively ; K and T are Boltzmann's constant and temperature respectively; r is the polar coordinate. It is the potential distribution of the P area. In the formula of the forward current, the potential of the N area can be considered as 0, and the forward photovoltage between the P area and the N area can be directly used instead.
  • the second part is the forward current density formed by the separation of photogenerated electron-hole pairs in the space charge region:
  • f is the rate at which electron-hole pairs are separated in a lateral unit area (the current in this part of the area is 0 in the area without light).
  • the current I(t) and the strain ⁇ (t) have a mapping relationship ⁇ (t) ⁇ I(t) at a certain time t, that is, at a certain time t, by measuring the current I(t), we can get The amount of strain ⁇ (t) at the moment is thus expressed as an electrical signal through the measurement circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

一种基于柔性光电纳米薄膜的自驱动应变传感器,用于测量待测构件的应变,包括一滑槽单元和设置在滑槽单元内的滑片单元(4),滑片本体(4)可沿滑槽单元移动,底板(1)一端的连接端(2)用于固连待测构件,滑片本体(4)端部的凸起(5)也用于固连待测构件;滑片本体(4)与滑槽单元贴合的表面设置感光层(7),底板(1)的底面设置遮光层(6);滑槽单元与滑片本体(4)贴合的表面设置导电层。感光层(7)基于异质结结构制作,当待测构件产生应变时,感光层(7)部分接收到光照,可根据输出的电流信号反算得到构件应变。相对于传统应变测量方法,应变传感器具有结构简单、测量精度高、响应速度快、应用范围广的优点。

Description

一种基于柔性光电纳米薄膜的自驱动应变传感器 技术领域
本发明涉及桥梁工程领域,具体涉及一种基于柔性光电纳米薄膜的自驱动应变传感器。
背景技术
对结构进行应变测量是了解结构受力状态、进行结构维护与设计优化、保障结构安全的重要环节,在工程中具有重要意义。在当前的工程行业中,应变测量仪器广泛应用于桥梁、铁路、大坝以及各种建筑设施的应变测量。目前常用的应变测量仪器主要有千分表应变计、电阻应变计、振弦式应变计,等等。千分表应变计是一种机械式应变测量仪器,通过比较两次测量之间的差值为所求变形量。但千分表应变计在每次测量前都必须在标准针距尺上标读之后才能在待测结构上进行测量,较为繁琐,且由于标注长度以及安装的限制,在实际应用中受限较大。电阻应变计利用某种金属丝导体的“应变电阻效应”工作,但其具有非线性,输出信号微弱,抗干扰能力较差,受环境影响较大等缺陷,且其只能测构件表面一个点沿某个方向的应变而不能进行全域性测量。振弦式应变计能够感应到结构内部的应力变化,将其变形通过前、后端座传递给振弦转变成振弦应力的变化,从而改变振弦的振动频率,其频率信号经电缆传输至读数装置,进而测出结构内部的应变量,但振弦式应变计存在其传感器材料及加工工艺要求较高,且测量精度较低等缺陷。
发明内容
针对现有技术的不足,本发明提出一种基于柔性光电纳米薄膜的自驱动应变传感器,能够将待测构件变形能转化为电能并以电信号的形式输出,结构简单、测量精度高、响应速度快、应用范围广。具体的技术方案如下:
一种基于柔性光电纳米薄膜的自驱动应变传感器,用于测量待测构件的应变,包括一滑槽单元和设置在滑槽单元内的滑片单元,所述的滑槽单元包括底板、设置在底板一端的连接端以及设置在所述的底板中部的限位套筒,所述的滑片单元包括滑片本体以及设置在所述的滑片本体端部的凸起,所述的滑片本体可沿所述的滑槽单元移动,且通过所述的限位套筒实现所述的滑片本体与所述的滑槽单元贴合,所述的底板一端的连接端用于固连待测构件,所述的滑片本体端部的凸起也用于固连待测构件;所述的滑片本体与所述的滑槽单元贴合的表面设置感光层,所述的底板的底面设置遮光层;所述的滑槽单元与所述的滑片本体贴合的表面设置导电层。
进一步地,所述的感光层包括光刻蚀衬底、以及设置在光刻蚀衬底上两侧的电极,其中一个电极上设置石墨烯层,另一个电极上设置Pa型硅层,且在所述的光刻蚀衬底上两个电极的中间,所述的Pa型硅层和石墨烯层依次铺设,所述的Pa型硅层靠近光刻蚀衬底。
进一步地,所述的电极为铝电极。
进一步地,所述的滑片本体由高压聚乙烯制成,所述的滑槽单元由乙酸乙烯酯含量大于30%的乙烯-乙酸乙烯共聚物制成。
进一步地,所述的滑槽单元由丙烯-乙烯无规共聚物制成。
进一步地,所述的滑片本体与所述的底板的长度相等,所述的滑片本体与所述的限位套筒的宽度相等。
进一步地,还包括测量电路,测量电路包括电线与电信号测量装置,电信号测量装置测量应变传感器的感应电流。
进一步地,所述测量电路集成在滑槽的底部。
本发明的有益效果是:
本发明根据其力电转换特性将构件发生应变时的力学规律转化为电信号,经过该装置中的信号处理装置,因此通过输出装置能够将应变大小用电信号表示并输出。相比其他应变测量装置来说,基于柔性光电纳米薄膜的自驱动应变传感器具有结构简单、测量精度高、响应速度快、应用范围广等优点。本发明所提供的基于柔性光电纳米薄膜的自驱动应变传感器由于其异质结结构,具有极快的响应速度和极高的灵敏度。同时因为滑片本体与滑槽单元均采用柔性高分子材料制成,具有较好的延展性与变形能力,能够随着待测构件的变形而变形,相比于传统的刚性应变测量方法,具有更好的适用性。
附图说明
图1是基于柔性光电纳米薄膜的自驱动应变传感器的结构图;
图2是感光层的结构图;
图3是感光层的光谱响应图;
图4是传感器的拉伸应变测量状态的立体图和截面图;
图5是传感器的压缩应变测量状态立体图和截面图;
图中标号:底板1、底板连接端2、限位套筒3、滑片本体4、滑片凸起5、遮光层6、感光层7、Pa型硅层7-1、石墨烯层7-2、铝电极7-3、PI衬底7-4;l 0为应变传感器的初始标注;x(t)为t时刻时构件拉伸量/缩短量。
具体实施方式
下面根据附图和优选实施例详细描述本发明,本发明的目的和效果将变得更加明白。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
如图1所示,本发明的基于柔性光电纳米薄膜的自驱动应变传感器,用于测量待测构件的应变,包括一滑槽单元和设置在滑槽单元内的滑片单元,所述的滑槽单元包括底板1、设置在底板1一端的连接端2以及设置在所述的底板1中部的限位套筒3,所述的滑片单元包括滑片本体4以及设置在所述的滑片本体4端部的凸起5,所述的滑片本体4可沿所述的滑槽单元移动,且通过所述的限位套筒3实现所述的滑片本体4与所述的滑槽单元贴合,所述的底板一端的连接端2用于固连待测构件,所述的滑片本体端部的凸起5也用于固连待测构件;所述的滑片本体4与所述的滑槽单元贴合的表面设置感光层7,所述的底板的底面设置遮光层6;所述的滑槽单元与所述的滑片本体4贴合的表面设置导电层。
为了提高硅基材料的光电转换效率,采用石墨烯作为另一种导电材料形成异质结,作为本发明所提供的自驱动应变传感器的感光层。如图2所示,所述的感光层7包括光刻蚀衬底、以及设置在光刻蚀衬底上两侧的电极,其中一个电极上设置石墨烯层7-2,另一个电极上设置Pa型硅层7-1,且在所述的光刻蚀衬底上两个电极的中间,所述的Pa型硅层7-1和石墨烯层7-2依次铺设,所述的Pa型硅层7-1靠近光刻蚀衬底。
图4和图5分别给出了本发明的基于柔性光电纳米薄膜的自驱动应变传感器固定在待测构件上时的变形状态,其中图4为待测构件拉伸,图5为压缩,在待测构拉伸或压缩的过程中,滑槽单元和滑片单元发生相对位移,感光面可以接收到外部光照,产生感应电流;经电信号测量装置测量,即可测得该感应电流的大小。根据该感应电流,通过换算即可得到待测构件的应变量。
本发明的基于柔性光电纳米薄膜的自驱动应变传感器,当配合以可见光至近红外短波为光信号源(波长为400-1100nm),其中在波长为680nm与960nm时信号为两处峰值(如图3所示),即代表传感器响应最好。考虑到波长为960nm时激光为不可见波段,为了便于装置布设,故使用时可选择波长为680nm的激光作为光源。
本发明的基于柔性光电纳米薄膜的自驱动应变传感器对光信号响应速度极短(5ns),作为应变传感技术,具有极高的灵敏度。器件光电转换通过石墨烯与硅材料之间的异质结实现,当收到光信号时,硅中的价电子吸收入射光中的光子能量发生能级跃迁,从而形成电子-空穴对,在内建电场的作用下,电子-空穴对被分离,产生感应电流,从而实现光信号与电信号的 转换。
本发明的基于柔性光电纳米薄膜的自驱动应变传感器实现应变测量的原理如下:
以图4所示拉伸应变的测量状态为例,在某一时刻t时,感光面与遮光材料的相对位移量为x(t),则此时构件应变表达式为:
Figure PCTCN2020134370-appb-000001
其中ε(t)为t时刻待测构件的应变,l 0为应变传感器装置安装时构件测量段的初始长度。
在基于柔性光电纳米薄膜的自驱动应变传感器中,当感光层接收到光照时,感光层由于光电效应产生光电流,其表达式如下:
Figure PCTCN2020134370-appb-000002
其中r是极坐标,W p是P区厚度。J L(r)是侧向电流密度。
正向电流分为两个部分,一是根据理想PN结的正向电流可以得到的第一部分:
Figure PCTCN2020134370-appb-000003
其中J s是PN结的反向饱和电流,它具有形式:
Figure PCTCN2020134370-appb-000004
其中
Figure PCTCN2020134370-appb-000005
Figure PCTCN2020134370-appb-000006
分别是P区和N区的热平衡电子和空穴浓度;q为单电子电量,D n和D p分别是电子和空穴的扩散系数;L n和L p分别是电子和空穴的扩散长度;k和T分别是玻尔兹曼常数和温度;r为极坐标。
Figure PCTCN2020134370-appb-000007
是P区的电势分布,在正向电流的公式中可认为N区的电势为0,则P区和N区之间的正向光电压可直接用
Figure PCTCN2020134370-appb-000008
代替。
第二部分是光生电子空穴对在空间电荷区被分离形成的正向电流密度:
Figure PCTCN2020134370-appb-000009
其中f是侧向单位面积中电子-空穴对被分离的速率(在没有光照的区域此部分电流为0)。
那么总的正向光电流便是:
Figure PCTCN2020134370-appb-000010
那么侧向电流I(t)可以由欧姆定律得到:
Figure PCTCN2020134370-appb-000011
其中ρ P是P区的电阻率,b是感光层宽度,d 0是P区厚度。
综合上述公式,可得到:
Figure PCTCN2020134370-appb-000012
综上可解得待测构件的动应变ε(t)为:
Figure PCTCN2020134370-appb-000013
由上式可以得到电流I(t)与应变量ε(t)在某时刻t存在映射关系ε(t)→I(t),即某时刻t,通过测量电流I(t),能够得出此刻的应变量ε(t)从而通过测量电路将应变量表达为电信号。
图5所示的压缩应变测量状态原理与上述相同。
本领域普通技术人员可以理解,以上所述仅为发明的优选实例而已,并不用于限制发明,尽管参照前述实例对发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实例记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在发明的精神和原则之内,所做的修改、等同替换等均应包含在发明的保护范围之内。

Claims (4)

  1. 一种基于柔性光电纳米薄膜的自驱动应变传感器,用于测量待测构件的应变,其特征在于,包括一滑槽单元和设置在滑槽单元内的滑片单元;所述的滑槽单元包括底板、设置在底板一端的连接端以及设置在所述的底板中部的限位套筒,所述的滑片单元包括滑片本体以及设置在所述的滑片本体端部的凸起,所述的滑片本体与所述的底板的长度相等,所述的滑片本体与所述的限位套筒的宽度相等;所述的滑片本体可沿所述的滑槽单元移动,且通过所述的限位套筒实现所述的滑片本体与所述的滑槽单元贴合,所述的底板一端的连接端用于固连待测构件,所述的滑片本体端部的凸起也用于固连待测构件;所述的滑片本体与所述的滑槽单元贴合的表面设置感光层,所述的底板的底面设置遮光层;所述的滑槽单元与所述的滑片本体贴合的表面设置导电层;
    所述的感光层包括光刻蚀衬底、以及设置在光刻蚀衬底上两侧的电极,其中一个电极上设置石墨烯层,另一个电极上设置Pa型硅层,且在所述的光刻蚀衬底上两个电极的中间,所述的Pa型硅层和石墨烯层依次铺设,所述的Pa型硅层靠近光刻蚀衬底;
    所述的自驱动应变传感器还包括测量电路,集成在滑槽的底部,测量电路包括电线与电信号测量装置,电信号测量装置测量应变传感器的感应电流。
  2. 根据权利要求1所述的自驱动应变传感器,其特征在于,所述的电极为铝电极。
  3. 根据权利要求1所述的自驱动应变传感器,其特征在于,所述的滑片本体由高压聚乙烯制成,所述的滑槽单元由乙酸乙烯酯含量大于30%的乙烯-乙酸乙烯共聚物制成。
  4. 根据权利要求1所述的自驱动应变传感器,其特征在于,所述的滑槽单元由丙烯-乙烯无规共聚物制成。
PCT/CN2020/134370 2019-12-28 2020-12-08 一种基于柔性光电纳米薄膜的自驱动应变传感器 WO2021129370A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911383410.8 2019-12-28
CN201911383410.8A CN111156912B (zh) 2019-12-28 2019-12-28 一种基于柔性光电纳米薄膜的自驱动应变传感器

Publications (1)

Publication Number Publication Date
WO2021129370A1 true WO2021129370A1 (zh) 2021-07-01

Family

ID=70558795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/134370 WO2021129370A1 (zh) 2019-12-28 2020-12-08 一种基于柔性光电纳米薄膜的自驱动应变传感器

Country Status (2)

Country Link
CN (1) CN111156912B (zh)
WO (1) WO2021129370A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12013224B2 (en) * 2019-12-28 2024-06-18 Zhejiang University Contactless displacement sensor employing flexible photoelectric nanofilm

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111156912B (zh) * 2019-12-28 2020-11-13 浙江大学 一种基于柔性光电纳米薄膜的自驱动应变传感器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104197890A (zh) * 2014-09-15 2014-12-10 中国矿业大学 一种测量井壁表面二维应变的装置及方法
CN105266773A (zh) * 2015-11-04 2016-01-27 上海箩箕技术有限公司 脉搏波传感器和可穿戴电子设备
US20180249909A1 (en) * 2017-03-06 2018-09-06 Jeffrey N. Anker Blinking multiplexed led strain and chemical sensors for implanted medical devices
CN108613623A (zh) * 2018-05-11 2018-10-02 浙江大学 静电式自供能应变传感器
CN109458922A (zh) * 2018-11-05 2019-03-12 浙江大学 一种静电式自供能位移栅格传感器
CN111156912A (zh) * 2019-12-28 2020-05-15 浙江大学 一种基于柔性光电纳米薄膜的自驱动应变传感器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103913649A (zh) * 2013-01-07 2014-07-09 酒泉职业技术学院 一种普通光敏电阻实现线性遮光检测结构的方法
FR3004248B1 (fr) * 2013-04-05 2015-12-25 Univ Troyes Technologie Nanocapteur de deformation, procedes de fabrication et de determination d'une deformation
CN105068279B (zh) * 2015-08-04 2018-02-16 电子科技大学 一种基于弧形石墨烯的偏振不敏感光调制器
CN108075009A (zh) * 2016-11-09 2018-05-25 香港生产力促进局 基于光子晶体光响应增强技术的石墨烯红外传感器及其制备方法
JP2018185346A (ja) * 2018-08-27 2018-11-22 ミネベアミツミ株式会社 ひずみゲージ
CN110047957B (zh) * 2019-04-01 2021-03-30 南京邮电大学 一种中红外光探测器及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104197890A (zh) * 2014-09-15 2014-12-10 中国矿业大学 一种测量井壁表面二维应变的装置及方法
CN105266773A (zh) * 2015-11-04 2016-01-27 上海箩箕技术有限公司 脉搏波传感器和可穿戴电子设备
US20180249909A1 (en) * 2017-03-06 2018-09-06 Jeffrey N. Anker Blinking multiplexed led strain and chemical sensors for implanted medical devices
CN108613623A (zh) * 2018-05-11 2018-10-02 浙江大学 静电式自供能应变传感器
CN109458922A (zh) * 2018-11-05 2019-03-12 浙江大学 一种静电式自供能位移栅格传感器
CN111156912A (zh) * 2019-12-28 2020-05-15 浙江大学 一种基于柔性光电纳米薄膜的自驱动应变传感器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12013224B2 (en) * 2019-12-28 2024-06-18 Zhejiang University Contactless displacement sensor employing flexible photoelectric nanofilm

Also Published As

Publication number Publication date
CN111156912A (zh) 2020-05-15
CN111156912B (zh) 2020-11-13

Similar Documents

Publication Publication Date Title
WO2021129370A1 (zh) 一种基于柔性光电纳米薄膜的自驱动应变传感器
CN205844405U (zh) 基于悬臂梁级联结构的高精度微波功率检测系统
CN104062045B (zh) 一种压阻式压力传感器及其制造方法
CN107256899B (zh) 无源位置灵敏探测器、其制备方法及其测量方法
CN103400887B (zh) 一种背照式Si-PIN光电探测器的制备方法
US11402293B2 (en) Electrostatic self-powered displacement grid sensor
CN104795411A (zh) 栅控石墨烯纳米带阵列THz探测器及调谐方法
CN103681895A (zh) 一种基于碳纳米管的红外成像探测器及其制备方法
CN104795410A (zh) 基于光波导的石墨烯纳米带阵列太赫兹传感器
CN103557944B (zh) 一种低功耗高灵敏度的碳纳米管红外传感器
CN100594621C (zh) 一种具有高灵敏度的光电位置探测器
CN106199173A (zh) 基于悬臂梁级联结构的高精度微波功率检测系统及方法
Feng et al. Direct laser writing of vertical junctions in graphene oxide films for broad spectral position-sensitive detectors
CN104167451A (zh) 基于量子点-碳纳米管的红外成像探测器及其制备方法
TWI617790B (zh) 圖像感測器
RU2699930C1 (ru) Быстродействующий фотодетектор
JPS61277024A (ja) 光スペクトル検知器
CN107702765A (zh) 高温高压极端环境下光学全反射式水位传感器
Suntao et al. Measurement and analysis of the characteristic parameters for the porous silicon/silicon using photovoltage spectra
JPS6136978A (ja) 触視覚センサ
Teshima et al. Extension for Short Wavelength Detection Limit of Filter-Free Fluorescence Sensor by using Indium Tin Oxide Photogate
CN102445223A (zh) 一种光电传感器
Huang et al. A Silicon-Based Photosensor With Photosensitive Cavity Structure
Zhou et al. Measurement Error Analysis of Seawater Refractive Index Measurement Sensor Based on a Position-Sensitive Detector
Tong et al. Micro pressure sensors based on ultra-thin amorphous carbon film as both sensitive and structural components

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20907710

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20907710

Country of ref document: EP

Kind code of ref document: A1