WO2021129318A1 - 空调室外机 - Google Patents

空调室外机 Download PDF

Info

Publication number
WO2021129318A1
WO2021129318A1 PCT/CN2020/132689 CN2020132689W WO2021129318A1 WO 2021129318 A1 WO2021129318 A1 WO 2021129318A1 CN 2020132689 W CN2020132689 W CN 2020132689W WO 2021129318 A1 WO2021129318 A1 WO 2021129318A1
Authority
WO
WIPO (PCT)
Prior art keywords
fan blade
stage fan
stage
motor
outdoor unit
Prior art date
Application number
PCT/CN2020/132689
Other languages
English (en)
French (fr)
Inventor
詹东文
胡斯特
闫嘉超
张龙新
李跃飞
王其桢
武谷雨
Original Assignee
广东美的白色家电技术创新中心有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201911366885.6A external-priority patent/CN113048579A/zh
Priority claimed from CN201911369821.1A external-priority patent/CN113048580A/zh
Application filed by 广东美的白色家电技术创新中心有限公司, 美的集团股份有限公司 filed Critical 广东美的白色家电技术创新中心有限公司
Priority to EP20906407.0A priority Critical patent/EP4023948A4/en
Publication of WO2021129318A1 publication Critical patent/WO2021129318A1/zh
Priority to US17/732,414 priority patent/US20220252282A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/024Multi-stage pumps with contrarotating parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/38Fan details of outdoor units, e.g. bell-mouth shaped inlets or fan mountings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/522Casings; Connections of working fluid for axial pumps especially adapted for elastic fluid pumps
    • F04D29/526Details of the casing section radially opposing blade tips
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/60Mounting; Assembling; Disassembling
    • F04D29/64Mounting; Assembling; Disassembling of axial pumps
    • F04D29/644Mounting; Assembling; Disassembling of axial pumps especially adapted for elastic fluid pumps
    • F04D29/646Mounting or removal of fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • F24F1/16Arrangement or mounting thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/46Component arrangements in separate outdoor units
    • F24F1/48Component arrangements in separate outdoor units characterised by air airflow, e.g. inlet or outlet airflow
    • F24F1/50Component arrangements in separate outdoor units characterised by air airflow, e.g. inlet or outlet airflow with outlet air in upward direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/56Casing or covers of separate outdoor units, e.g. fan guards
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0606Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump

Definitions

  • This application relates to the technical field of air conditioning equipment, and specifically to an outdoor unit of an air conditioner.
  • the counter-rotating fan is mainly used in coal mine ventilation, while the application cases in central air conditioning are very rare.
  • central air-conditioning due to the existence of over-current components such as electric control boxes and brackets, the airflow conditions at the inlet of the fan are extremely complicated. Under such complicated airflow conditions, the flow loss and aerodynamic noise caused by the leakage of the rotor blade tip become more and more obvious. .
  • This application aims to solve at least one of the technical problems existing in the prior art or related technologies.
  • the purpose of this application is to propose an air conditioner outdoor unit.
  • an object of the present application provides an outdoor unit of an air conditioner, including: a motor, the motor is provided with a first output shaft and a second output shaft; a first-stage fan blade, a first-stage fan blade and a first output shaft The second-stage fan blade, the second-stage fan blade is connected with the second output shaft; the shell, the shell is provided with an outlet, the first-stage fan blade and the second-stage fan blade are located at the outlet, the first-stage fan The blades are the upstream fan blades, and the second-stage fan blades are the downstream fan blades; the motor support, the motor support is connected to the housing, and the motor is arranged on the motor support; wherein the motor is configured to be suitable for driving the first-stage fan blades and the second-stage fan blades.
  • the two-stage fan blade rotates, the rotation direction of the first-stage fan blade and the second-stage fan blade are opposite; the motor is located in the middle of the first-stage fan blade and the second-stage fan blade; or the motor is located in the first-stage fan blade and the second-stage fan blade The same side of the fan blade.
  • the outdoor unit of the air conditioner provided in the present application is provided with a motor, a first-stage fan blade, a second-stage fan blade, and a motor bracket, so that the motor drives the first-stage fan blades to rotate through the first output shaft, and drives the second-stage fan blades through the second output shaft.
  • the counter-rotating fan rotates in the opposite direction to form the counter-rotating fan; further, the counter-rotating fan is arranged at the outlet of the shell, and the first-stage fan blade is used as the upstream fan blade, and the second-stage fan blade is used as the downstream fan blade.
  • the counter-rotation of the fan blade and the downstream fan blade improves the wind pressure and resistance to wind resistance, makes the air supply smoother, and reduces the probability of backflow.
  • the same motor has the first output shaft and the second output shaft, which realizes that one motor can directly drive two output shafts, and the motor has a compact structure and saves space.
  • the first stage fan blade and the second stage fan blade are connected to the first output shaft and the second output shaft respectively, so that the motor drives the first stage fan blade and the second stage simultaneously through the first output shaft and the second output shaft. Fan leaves.
  • the counter-rotating design of the two-stage fan blades is adopted to enhance the function of the motor, and at the same time make the first-stage fan blades and the second-stage fan blades
  • the speed of the fan is significantly lower than that of the single axial fan of the same level, which increases the service life and reduces the high-strength requirement of the high-speed fan structure.
  • one embodiment is to arrange the motor in the middle of the first-stage fan blade and the second-stage fan blade, and the first-stage fan blade and the second-stage fan blade are distributed on both sides of the motor;
  • the motor is arranged on the same side of the first-stage fan blade and the second-stage fan blade, that is, the first-stage fan blade and the second-stage fan blade are both located on the same side of the motor; different installation methods can meet the needs of different working conditions.
  • the relative position of the motor and the two-stage fan blades can be adjusted according to the size of the internal space of the outdoor unit without affecting the performance, so as to ensure a reasonable structural layout.
  • the motor bracket is used to support and fix the motor to ensure the safe and stable operation of the motor. According to the actual situation, the motor bracket is connected with the shell, which ensures the reasonable layout of the structure.
  • the outdoor unit of the air conditioner in the above technical solution provided by this application may also have the following additional technical features:
  • the rotation axis of the first output shaft and the rotation axis of the second output shaft are collinear.
  • the first output shaft is a hollow shaft; the second output shaft passes through the hollow shaft.
  • the range of the rotation speed ratio between the second output shaft and the first output shaft is 0.5 to 2.
  • the outdoor unit of the air conditioner further includes: an air guide ring arranged at the outlet, and the first-level fan blades and the second-level fan blades are located in the air guide ring.
  • the wind guide ring includes: a wind ring body, one end of the wind ring body forms an air outlet end; a contraction part, the contraction part is connected to the other end of the wind ring body, and the contraction part is connected to the wind ring body.
  • a transition arc is formed between the main bodies; wherein the center of the transition arc is located outside the air guide ring.
  • 10% to 90% of the height of the first-stage fan blade is located in the wind ring main body.
  • the direction perpendicular to the rotation axis of the first-stage fan blade is the radial direction of the first-stage fan blade, and along the radial direction of the first-stage fan blade, the direction of the first-stage fan blade
  • the distance between the tip of the blade and the axis of the first-stage fan blade is L1; the value range of the corresponding radius of the transition arc is 0.01 ⁇ L1 to 2 ⁇ L1.
  • the direction perpendicular to the rotation axis of the first-stage fan blade is the radial direction of the first-stage fan blade, and along the radial direction of the first-stage fan blade, the direction of the first-stage fan blade
  • the distance between the tip of the blade and the axis of the first-stage fan blade is L1;
  • the rotation direction perpendicular to the second-stage fan blade is taken as the radial direction of the second-stage fan blade, and along the radial direction of the second-stage fan blade, the second-stage fan
  • the distance between the tip of the blade and the axis of the second-stage fan blade is L2;
  • the range of the axial distance between the first-stage fan blade and the motor support is 5mm to 2 ⁇ L1; or the second-stage fan blade and the motor
  • the range of the axial distance between the stents is 5mm to 2 ⁇ L2.
  • the direction perpendicular to the rotation axis of the first-stage fan blade is the radial direction of the first-stage fan blade, and along the radial direction of the first-stage fan blade, the direction of the first-stage fan blade
  • the distance between the tip of the blade and the axis of the first-stage fan blade is L1;
  • the rotation direction perpendicular to the second-stage fan blade is taken as the radial direction of the second-stage fan blade, and along the radial direction of the second-stage fan blade, the second-stage fan
  • the distance from the tip of the blade to the axis of the second-stage fan blade is L2; along the radial direction of the first-stage fan blade, the distance from the tip of the first-stage fan blade to the air guide ring ranges from 0.01 ⁇ L1 to 0.1 ⁇ L1; and/or along the radial direction of the second-stage fan blade, the range of the distance from the tip of the second-stage fan blade to the air guide ring is 0.01 ⁇ L
  • the wind guide ring further includes: an expansion part connected with the other end of the wind ring main body.
  • the outdoor unit of the air conditioner further includes a net cover, which is arranged at the air outlet end of the air guide ring.
  • the outdoor unit of the air conditioner further includes: a heat exchanger, the heat exchanger is arranged in the shell, the heat exchanger is located between the air inlet and the outlet of the shell; the electric control component is arranged in the shell Physically.
  • the distance between the electronic control component and the motor support is greater than 0.02 ⁇ L1.
  • the outdoor unit further includes: a third-stage fan blade, the third-stage fan blade is arranged on the wind guide ring and located at the air outlet end of the wind guide ring.
  • the direction perpendicular to the rotation axis of the first-stage fan blade is the radial direction of the first-stage fan blade, and along the radial direction of the first-stage fan blade, the direction of the first-stage fan blade
  • the distance between the tip of the blade and the axis of the first-stage fan blade is L1;
  • the rotation direction perpendicular to the second-stage fan blade is taken as the radial direction of the second-stage fan blade, and along the radial direction of the second-stage fan blade, the second-stage fan
  • the distance between the tip of the blade and the axis of the second-stage fan blade is L2;
  • the range of the axial distance between the first-stage fan blade and the second-stage fan blade is 0.02 ⁇ L1 to 2 ⁇ L1; or
  • the range of the axial distance between the first-stage fan blade and the second-stage fan blade is 0.02 ⁇ L2 to 2 ⁇ L2.
  • a first aspect of the present application provides an outdoor unit of an air conditioner, comprising: a first motor; a first-stage fan blade, the first-stage fan blade is connected to the output shaft of the first motor, and the first motor is configured to be suitable for driving The first-stage fan blades rotate; the second motor, the rotation axis of the output shaft of the first motor and the rotation axis of the second motor's output shaft are arranged collinearly; the second-stage fan blades, the second-stage fan blades and the second motor The output shaft is connected, the second motor is configured to drive the second stage fan blades to rotate, the rotation direction of the first stage fan blades is opposite to the rotation direction of the second stage fan blades; the housing, the housing is provided with an outlet, the first The first-level fan blades and the second-level fan blades are located at the outlet, the first-level fan blades are upstream fans, and the second-level fan blades are downstream fans; the first motor support, the first motor is arranged on the first motor support, The first motor support is connected
  • the same side of the second-stage fan blade; or the first motor bracket is located between the first-stage fan blade and the second-stage fan blade; the second motor support is located on the same side of the first-stage fan blade and the second-stage fan blade; or The second motor bracket is located between the first-stage fan blade and the second-stage fan blade.
  • the outdoor unit of the air conditioner provided in the present application enables the first motor to drive the first-stage fan blade through the arrangement of the first motor, the first-stage fan blade, the second motor, the second-stage fan blade, the first motor support and the second motor support Rotation, the second motor drives the second-stage fan blades to rotate in reverse, and because the rotation axes of the output shafts of the first motor and the second motor are collinear, the two-stage fan blades are arranged in series, forming the first-stage fan blades and The counter-rotating fan of the second-stage fan blades that rotates in opposite directions (hereinafter referred to as counter-rotation); further, the counter-rotating fan is arranged at the outlet of the shell, and the first-stage fan blade is used as the upstream fan blade, and the second-stage fan blade is the upstream fan blade. As a downstream fan, the fan blades work through the counter-rotation of the upstream fan blades and the downstream fan blades, thereby increasing the wind pressure and resistance to wind resistance, making the air
  • the functional power of the motor is enhanced.
  • the rotation speed of the first-stage fan blade and the second-stage fan blade is significantly lower than that of the single-axial fan of the same level.
  • the service life is reduced, and the high-strength requirement of the high-speed fan blade structure is reduced.
  • the motor bracket is used to support and fix the motor.
  • the first motor bracket is located on the same side of the first stage fan blade and the second stage fan blade or between the first stage fan blade and the second stage fan blade
  • the second motor support is located on the first stage fan blade and the second stage fan.
  • the outdoor unit of the air conditioner in the above technical solution provided by this application may also have the following additional technical features:
  • the outdoor unit of the air conditioner further includes: an air guide ring, the air guide ring is arranged at the outlet, and the first-stage fan blades and the second-stage fan blades are located in the air guide ring.
  • the wind guide ring includes: a wind ring body, one end of the wind ring body forms an air outlet end; a contraction part, one end of the contraction part is connected to the other end of the wind ring body, and the contraction part is connected to the other end of the wind ring body.
  • a transition arc is formed between the main bodies of the wind ring; wherein the center of the transition arc is located outside the wind guide ring.
  • 10% to 90% of the height of the first-stage fan blade is located in the main body of the wind ring; and/or along the axis of the output shaft, the second-stage The fan blade is located in the main body of the wind ring.
  • the direction perpendicular to the rotation axis of the first-stage fan blade is the radial direction of the first-stage fan blade, and along the radial direction of the first-stage fan blade, the direction of the first-stage fan blade
  • the distance between the tip of the blade and the axis of the first-stage fan blade is L1;
  • the rotation direction perpendicular to the second-stage fan blade is taken as the radial direction of the second-stage fan blade, and along the radial direction of the second-stage fan blade, the second-stage fan
  • the distance between the tip of the blade and the axis of the second-stage fan blade is L2;
  • the range of the axial distance between the first-stage fan blade and the second-stage fan blade is 0.02 ⁇ L1 to 2 ⁇ L1; or
  • the range of the axial distance between the first-stage fan blade and the second-stage fan blade is 0.02 ⁇ L2 to 2 ⁇ L2.
  • the range of the axial distance between the first-stage fan blade and the motor support is 5mm to 2 ⁇ L1; or the axial distance between the second-stage fan blade and the motor support The range of the distance is from 5mm to 2 ⁇ L2.
  • the direction perpendicular to the rotation axis of the first-stage fan blade is the radial direction of the first-stage fan blade, and along the radial direction of the first-stage fan blade, the direction of the first-stage fan blade
  • the distance between the tip of the blade and the axis of the first-stage fan blade is L1;
  • the rotation direction perpendicular to the second-stage fan blade is taken as the radial direction of the second-stage fan blade, and along the radial direction of the second-stage fan blade, the second-stage fan
  • the distance from the tip of the blade to the axis of the second-stage fan blade is L2; along the radial direction of the first-stage fan blade, the distance from the tip of the first-stage fan blade to the air guide ring ranges from 0.01 ⁇ L1 to 0.1 ⁇ L1; and/or along the radial direction of the second-stage fan blade, the range of the distance from the tip of the second-stage fan blade to the air guide ring is 0.01 ⁇ L
  • the direction perpendicular to the rotation axis of the first-stage fan blade is the radial direction of the first-stage fan blade, and along the radial direction of the first-stage fan blade, the direction of the first-stage fan blade
  • the distance between the tip of the blade and the axis of the first-stage fan blade is L1; the value range of the corresponding radius of the transition arc is 0.01 ⁇ L1 to 2 ⁇ L1.
  • the air outlet end of the wind guide ring is provided with an expansion part extending outside the wind guide ring; based on when the second motor bracket is located on the same side of the first stage fan blade and the second stage fan blade , The second motor support is located outside the wind guide ring.
  • the outdoor unit of the air conditioner further includes a net cover, which is arranged at the air outlet end of the air guide ring.
  • the second motor support and the net cover are an integrated structure.
  • the outdoor unit of the air conditioner further includes: an outer shell, the outer shell is connected to the shell, the outer shell is arranged on the air outlet end of the air guide ring, and the mesh cover is arranged on the outer shell;
  • the motor support is located on the same side of the first-stage fan blade and the second-stage fan blade, the second motor support is located in the housing cover.
  • the outdoor unit of the air conditioner further includes: a heat exchanger, the heat exchanger is arranged in the shell, and the heat exchanger is located between the air inlet and the outlet of the shell; an electric control assembly, an electric control assembly Set on the shell.
  • the direction perpendicular to the rotation axis of the first-stage fan blade is the radial direction of the first-stage fan blade, and along the radial direction of the first-stage fan blade, the direction of the first-stage fan blade
  • the distance between the tip of the blade and the axis of the first-stage fan blade is L1; along the axis of the output shaft, the distance between the electronic control component and the motor support is greater than 0.02 ⁇ L1.
  • the outdoor unit further includes: a third-stage fan blade, the third-stage fan blade is arranged on the wind guide ring and located at the air outlet end of the wind guide ring.
  • FIG. 1 is a schematic structural diagram of an outdoor unit of an air conditioner (without a mesh cover) according to an embodiment of the present application, and the straight arrow in the figure indicates the airflow direction;
  • Figure 2 is a top view of Figure 1 (including net cover);
  • Figure 3 is a top view of Figure 1 (without net cover);
  • Fig. 4 is a schematic diagram of the three-dimensional structure of Fig. 1 (without the net cover);
  • Fig. 5 is a schematic cross-sectional view of a part of the structure in the direction A-A in Fig. 2;
  • Fig. 6 is a schematic cross-sectional view of a part of the structure in the direction B-B in Fig. 2;
  • Fig. 7 is a schematic structural diagram of a motor of the air conditioner outdoor unit shown in Fig. 1;
  • Fig. 8 is a schematic diagram of the structure of the counter-rotating fan of the outdoor unit of the air conditioner shown in Fig. 1, and the arrows in the figure indicate the airflow direction.
  • FIG. 9 is a schematic structural diagram of an outdoor unit of an air conditioner according to another embodiment of the present application, and the straight arrow in the figure indicates the direction of air flow;
  • Figure 10 is a top view of Figure 9 (without the net cover);
  • FIG. 11 is a schematic diagram of the three-dimensional structure of the outdoor unit of the air conditioner shown in FIG. 9;
  • Fig. 12 is a partial structural diagram of the outdoor unit of the air conditioner shown in Fig. 9;
  • Fig. 13 is a schematic diagram of the structure of direction C-C in Fig. 12;
  • Fig. 14 is a schematic diagram of the structure of the counter-rotating fan of the outdoor unit of the air conditioner shown in Fig. 9, and the arrows in the figure indicate the airflow direction.
  • Air conditioner outdoor unit 100 motor, 102 first output shaft, 104 second output shaft, 200 first-stage fan blade, 300 second-stage fan blade, 110 first motor, 120 second motor, 310 first motor bracket, 320 second motor support, 400 wind guide ring, 412 wind ring main body, 414 contraction part, 416 expansion part, 500 motor support, 600 shell, 700 heat exchanger, 800 electric control components, 900 mesh cover, 902 shell cover.
  • the embodiment of the first aspect of the present application provides an air conditioner outdoor unit 1, including: a motor 100, a first-stage fan blade 200, a second-stage fan blade 300, a housing 600, and a motor support 500 .
  • the motor 100 is provided with a first output shaft 102 and a second output shaft 104; the first-stage fan blade 200 is connected with the first output shaft 102; the second-stage fan blade 300 is connected with the second output shaft 104; the housing 600 is provided with an outlet, the first-stage fan blade 200 and the second-stage fan blade 300 are located at the outlet, the first-stage fan blade 200 is the upstream fan blade, and the second-stage fan blade 300 is the downstream fan blade; the motor support 500 and the housing 600 phase connection, the motor 100 is arranged on the motor support 500; the motor 100 is configured to drive the first stage fan blade 200 and the second stage fan blade 300 to rotate, the first stage fan blade 200 and the second stage fan blade 300 The direction of rotation is opposite.
  • the air conditioner outdoor unit 1 is configured with a motor 100, a first-stage fan blade 200, a second-stage fan blade 300, and a motor bracket 500, so that the motor 100 drives the first-stage fan blade 200 to rotate through the first output shaft 102.
  • the second-stage fan blade 300 is driven to rotate in the reverse direction by the second output shaft 104 to form a counter-rotating fan; further, the counter-rotating fan is arranged at the outlet of the housing 600, and the first-stage fan blade 200 is used as the upstream fan.
  • the second-stage fan blade 300 is used as a downstream fan blade, through the counter-rotation of the upstream fan blade and the downstream fan blade, and by recovering the rotation energy of the airflow, a greater wind pressure is achieved.
  • the same motor 100 has the first output shaft 102 and the second output shaft 104, which realizes that two output shafts can be directly driven by one motor 100, and the motor 100 is compact in structure and saves space.
  • the first stage fan blade 200 and the second stage fan blade 300 are respectively connected to the first output shaft 102 and the second output shaft 104, so that the motor 100 drives the first output shaft 102 and the second output shaft 104 at the same time.
  • the first-stage fan blade 200 and the second-stage fan blade 300 are respectively connected to the first output shaft 102 and the second output shaft 104, so that the motor 100 drives the first output shaft 102 and the second output shaft 104 at the same time.
  • the function of the motor 100 is enhanced, and the first-stage fan blade 200 and the second-stage fan blade 200
  • the rotation speed of the secondary fan blade 300 is significantly lower than that of a single axial fan of the same level, which increases the service life and reduces the high-strength requirement of the high-speed fan blade structure.
  • the motor 100 is arranged on the same side of the first-stage fan blade 200 and the second-stage fan blade 300, that is, the first-stage fan blade and the second-stage fan blade are both on the same side of the motor. side.
  • the first output shaft 102 and the second output shaft 104 can have different rotation speeds and rotation directions.
  • the second output shaft 104 may be a hollow shaft or a solid shaft.
  • the motor may be located at the air inlet end or the air outlet end of the counter-rotating fan.
  • the motor can also be arranged in the middle of the first stage fan blade 200 and the second stage fan blade 300, the first stage fan blade 200 and the second stage fan blade 300 are distributed on both sides of the motor 100 (not shown in the figure) Out).
  • the motor support 500 is connected to the housing 600, and the motor 100 is arranged on the motor support 500.
  • the motor support 500 is used to support and fix the motor 100 so that the motor 100 can operate safely and stably. According to the actual situation, the motor support 500 is connected with the housing 600, so that the overall structure layout is reasonable.
  • the two ends of the motor support 500 are fixedly connected to the housing. Further, the two ends of the motor support 500 are provided with mounting holes, which are fixed to the housing by screws.
  • an embodiment of the present application provides an air conditioner outdoor unit 1, including: a motor 100, a first-stage fan blade 200, a second-stage fan blade 300, and a housing Body 600 and motor bracket 500.
  • the motor 100 is provided with a first output shaft 102 and a second output shaft 104; the first-stage fan blade 200 is connected with the first output shaft 102; the second-stage fan blade 300 is connected with the second output shaft 104; the motor 100 It is configured to be suitable for driving the first-stage fan blade 200 and the second-stage fan blade 300 to rotate, and the rotation directions of the first-stage fan blade 200 and the second-stage fan blade 300 are opposite.
  • the rotation axis of the first output shaft 102 and the rotation axis of the second output shaft 104 are collinear, realizing the serial arrangement of the first-stage fan blade 200 and the second-stage fan blade 300, so that the airflow passes through the first-stage fan blade After the acceleration of 200, the second-stage fan blade 300 is pressurized to make the wind pressure higher and the ability to resist wind resistance is strong.
  • the motor 100 is arranged on the same side of the first-stage fan blade 200 and the second-stage fan blade 300, that is, the first-stage fan blade and the second-stage fan blade are both on the same side of the motor. side.
  • the first output shaft 102 is a hollow shaft; the second output shaft 104 passes through the hollow shaft, which makes the structure more compact, and can make the first output shaft 102 and the second output shaft 104 With different speeds and steering.
  • the second output shaft 104 may be a hollow shaft or a solid shaft.
  • the motor can also be arranged in the middle of the first-stage fan blade 200 and the second-stage fan blade 300, and the first-stage fan blade 200 and the second-stage fan blade 300 are distributed on both sides of the motor 100 (not shown in the figure). Out).
  • the rotation speed ratio of the second output shaft 104 and the first output shaft 102 is limited to between 0.5 and 2, so that the first-stage fan blade 200 and the second-stage fan blade 300 have different rotation speeds, and the air flow is changed. At the same time, the purpose of increasing the wind pressure is realized.
  • the direction perpendicular to the rotation axis of the first-stage fan blade 200 is set as the radial direction of the first-stage fan blade 200, and along the radial direction of the first-stage fan blade 200, the first stage The distance from the tip of the fan blade 200 to the axis of the first-stage fan blade 200 is L1.
  • the direction perpendicular to the axis of rotation of the second-stage fan blade 300 is set as the radial direction of the second-stage fan blade 300.
  • the tip of the second-stage fan blade 300 reaches the second The distance of the axis of the stage fan 300 is L2.
  • the distance from the tip of the first-stage fan blade 200 to the axis of the first-stage fan blade 200 is L1, which means that it is aligned along the axial direction of the first-stage fan blade 200.
  • the first-stage fan blade 200 is projected, and the radius R corresponding to the circle with the largest radius formed in the contour line of the projection of the first-stage fan blade 200 is from the tip of the first-stage fan blade 200 to the first-stage fan blade 200
  • the distance of the axis is L1.
  • the distance from the tip of the second-stage fan blade 300 to the axis of the second-stage fan blade 300 is L2, which means that the distance along the axial direction of the second-stage fan blade 300
  • the second-stage fan blade 300 is projected, and the radius R corresponding to the circle with the largest radius formed in the contour line of the second-stage fan blade 300 is from the tip of the second-stage fan blade 300 to the second-stage fan blade 300
  • the distance of the axis is L2.
  • the distance L1 from the tip of the first-stage fan blade 200 to the axis of the first-stage fan blade 200 may be set to be the same as the distance L1 from the tip of the second-stage fan blade 300 to the second-stage fan blade.
  • the distance L2 of the axis of 300 is equal to reduce the production mold and reduce the production cost.
  • the value range of the axial distance between the first-stage fan blade 200 and the second-stage fan blade 300 is set to be 0.02 ⁇ L1 to 2 ⁇ L1; or the first-stage fan blade 200 and the second-stage fan blade
  • the range of the axial distance between the blades 300 is 0.02 ⁇ L2 to 2 ⁇ L2.
  • the first fan blade includes a leading edge and a trailing edge
  • the second stage fan blade includes a leading edge and a trailing edge.
  • the axial distance L3 between the two is the distance between the trailing edge of the first-stage fan blade 200 and the front edge of the second-stage fan blade 300.
  • the reasonable setting of the axial distance makes the axial distance of the two-stage fan blades have enough space to avoid the possible interference of the two-stage fan blades, and at the same time avoid the performance degradation and the performance caused by the excessively large axial distance of the two-stage fan blades. Other structural problems caused by this.
  • the value range of the axial distance between the first-stage fan blade 200 and the second-stage fan blade 300 is set to be 0.05 ⁇ L1 to 0.3 ⁇ L1; or the first-stage fan blade 200 and the second-stage fan blade
  • the axial distance between 300 ranges from 0.05 ⁇ L2 to 0.3 ⁇ L2.
  • the air conditioner outdoor unit 1 further includes: an air guide ring 400.
  • the air guide ring 400 is arranged at the exit of the housing 600, and the first-stage fan blade 200 and the second-stage fan blade 300 are located in the air guide ring 400.
  • the casing 600 is used to protect the internal structure of the outdoor unit 1 of the air conditioner from damage by external forces.
  • the outlet of the housing 600 is provided with an air guide ring 400 and the first stage fan blade 200 and the second stage fan blade 300 are arranged in the air guide ring 400, so that the airflow passes through the air guide ring 400 through the action of the two-stage fan blades. After the wind pressure increases, it reaches the exit.
  • the projection on the axis of rotation is projected, the projection of the second-stage fan blades is completely within the projection of the air guide ring, and the projection of the first-stage fan blades at least partially fall into the guide ring.
  • the projection of the first-stage fan blades at least partially fall into the guide ring.
  • the wind guide ring 400 includes a wind ring main body 412 and a constriction 414.
  • one end of the wind ring main body 412 forms an air outlet end
  • the second-stage fan blade 300 is arranged as a downstream fan on the side of the wind ring main body 412 close to the air outlet end.
  • the constriction 414 is connected to the other end of the wind ring main body 412 and forms a transition arc with the wind ring main body 412 to make the air flow smoothly transition.
  • wind ring body 412 is straight cylindrical.
  • the air guide ring 400 is disposed at the outlet of the housing 600, and can be connected to the outlet of the housing 600 through the air ring main body 412, so that the constriction 414 is located in the housing 600, and can also be connected to the housing through the constriction 414.
  • the outlet of the body 600 is connected, and the inlet end of the constriction 414 is located in the housing 600.
  • the specific installation method can be designed according to the model of the entire air conditioner outdoor unit 1 to adapt to more use environments.
  • 10% to 90% of the height of the first-stage fan blade 200 is located in the wind ring main body 412.
  • that 10% to 90% of the height of the first-stage fan blade 200 is located in the wind ring main body 412 means that, in a direction perpendicular to the axis, the first-stage fan blade 200 and the wind ring main body 412 are both directed to their rotation axis.
  • 10% to 90% of the projection height of the first-stage fan blade 200 on the axis of rotation is located within the projection of the wind ring body 412, so that when the internal space is limited, the wind ring body 412 can cover at least the first opposite one.
  • a small part of the height of the first-stage fan blade 200 meets the minimum requirements for air supply efficiency, or when the internal space is not limited, the wind ring main body 412 can cover most of the height of the opposite first-stage fan blade 200 to ensure air supply higher efficiency.
  • the height of the first-stage fan blade 200 refers to the projected length of the first-stage fan blade 200 on its rotation axis along the radial direction of the first-stage fan blade 200.
  • the center of the transition arc of the constriction 414 is set on the outside of the air guide ring 400, so that the air inlet end of the air guide ring 400 expands outward, which is beneficial to the collection and introduction of airflow.
  • the range of the corresponding radius of the transition arc is defined as 0.01 ⁇ L1 to 2 ⁇ L1, so that the constriction 414 of the air guide ring 400 maintains an outwardly expanded shape to facilitate the collection and introduction of airflow.
  • the value range of the corresponding radius r of the transition arc is defined to be 0.1 ⁇ L1 to 0.5 ⁇ L1, so as to facilitate the collection and introduction of airflow.
  • the motor support 500 may also be fixedly connected to the air guide ring 400, and the motor support 500 is fixed on the air guide ring by screws or bolts.
  • the value range of the axial distance between the first-stage fan blade 200 and the motor support 500 is set to be 5 mm to 2 ⁇ L1; or the axial distance between the second-stage fan blade 300 and the motor support 500 The value range is 5mm to 2 ⁇ L2. It can be considered that the axial distance between the fan blade and the motor support 500 is the shortest distance between the projection of the fan blade peripheral edge and the plane of the motor support 500 opposite to it on the axis of the output shaft. By setting a reasonable axial distance, the fan blades and the motor support 500 are sufficiently spaced to avoid possible interference between the fan blades and the motor support 500, and the length of the output shaft of the motor 100 is limited, and the output shaft is prevented from protruding too long. Produce eccentricity.
  • the distance between the two-stage fan blades and the motor support 500 needs to be limited respectively; when the motor 100 is located on the same side of the two-stage fan blades, only the fan blades and the motor close to the motor 100 need to be restricted
  • the spacing of the bracket 500 As shown in Fig. 5, the first-stage fan blade 200 is arranged close to the motor support 500, and the axial distance between the first-stage fan blade 200 and the motor support 500 is L4.
  • the value range of the axial distance between the first-stage fan blade 200 and the motor support 500 is set from 5 mm to 0.5 ⁇ L1; or the axial distance between the second-stage fan blade 300 and the motor support 500 The range of the distance is from 5mm to 0.5 ⁇ L2.
  • the motor support can also be arranged at the air outlet end of the wind guide ring, and is not limited to the embodiments shown in FIG. 5 and FIG. 6.
  • the value range of the distance B1 from the tip of the first-stage fan blade 200 to the air guide ring 400 It is 0.01 ⁇ L1 to 0.1 ⁇ L1; and/or along the radial direction of the second-stage fan blade 300, the distance B2 from the tip of the second-stage fan blade 300 to the air guide ring 400 ranges from 0.01 ⁇ L2 to 0.1 ⁇ L2, the value range is set to avoid possible interference between the fan blades and the wind guide ring 400 due to too close distance, and to avoid possible reduction of fan efficiency due to too far away.
  • the value range of the distance B1 from the tip of the first-stage fan blade 200 to the air guide ring 400 is set to 0.025 ⁇ L1 to 0.055 ⁇ L1; and/or along the radial direction of the second-stage fan blade 300, The distance B2 from the tip of the secondary fan blade 300 to the air guide ring 400 ranges from 0.025 ⁇ L2 to 0.055 ⁇ L2.
  • the air outlet end of the air guide ring 400 is provided with an expansion part 416 extending outside the air guide ring 400, so that the air flow will expand outward when passing through the air outlet end, thereby reducing the wind speed, reducing the resistance, reducing energy loss, and facilitating the recovery of the air flow. Pressure and improve the efficiency of air supply.
  • the air conditioner outdoor unit 1 further includes: a net cover 900, and the net cover 900 is disposed at the air outlet end of the air guide ring 400.
  • the mesh cover 900 is arranged at the air outlet end of the air guide ring 400, on the one hand, it prevents external debris from entering the air guide ring 400 to cause abnormal operation of the fan, and effectively protects the internal parts of the air guide ring 400 from Damaged; on the other hand, it prevents people or other animals from touching the fan when the outdoor unit 1 of the air conditioner is working, thereby improving the safety of the outdoor unit 1 of the air conditioner.
  • the air conditioner outdoor unit 1 further includes: a heat exchanger 700 and an electric control assembly 800.
  • the heat exchanger 700 is located between the air inlet and the outlet of the housing 600, and the heat exchanger 700 is correspondingly provided on the three sides of the housing 600, so that the airflow can enter the air conditioner through the heat exchanger 700 from multiple directions.
  • the outdoor unit 1 improves the air supply efficiency.
  • the electronic control assembly 800 is disposed on the housing 600.
  • the front, left, and right sides of the entire air conditioner outdoor unit are equipped with heat exchanger 700, and the electric control assembly 800 is installed on the back plate to achieve air intake from three sides.
  • the circle is discharged to improve the working efficiency of the outdoor unit.
  • the position of the electric control component can be set at the lower part of the back plate, and a heat exchanger 700 can be added to the upper part of the back plate, so that the outdoor unit can enter air from all sides.
  • the air conditioner outdoor unit 1 as shown in FIGS. 1 to 4 has side air inlet and top air outlet.
  • the air outlet can also be arranged on the side of the housing to achieve air inlet from the top and other sides.
  • the specific structure can be set according to the specific situation and is not limited to this.
  • the electronic control assembly 800 is disposed outside the casing 600, or at least a part of it is disposed outside the casing 600.
  • the distance between the electronic control assembly 800 and the motor support 500 is greater than 0.02 ⁇ L1, so as to avoid the reduction of air supply efficiency due to obstruction of air flow.
  • the distance between the electronic control assembly 800 and the motor support 500 is greater than 0.1 ⁇ L1.
  • the structure of the outdoor unit 1 of the air conditioner is shown in Figs. 1, 2 and 4.
  • the back plate of the shell 600 is equipped with an electric control assembly 800, and the other three sides are provided with a heat exchanger 700.
  • the shell 600 is equipped with compressors, pipelines and other components.
  • the upper part of the shell 600 is provided with a motor support 500, a motor 100, an air guide ring 400, a first-stage fan blade 200, a second-stage fan blade 300, and a net cover 900 to form a counter-rotating fan.
  • the rotation directions of the first-stage fan blade 200 and the second-stage fan blade 300 are opposite, the first-stage fan blade 200 is installed on the first output shaft 102 of the motor 100, and the second-stage fan is installed on the second output of the motor 100.
  • the motor 100 is fixed to the outdoor unit 1 of the air conditioner through the motor bracket 500.
  • the air ring body 412 of the air guide ring 400 has the same inner diameter from the end connected to the contraction part 414 to the end connected to the expansion part 416, which plays a role of diversion and sealing; the outlet end of the air guide ring 400 is equipped with a net cover 900.
  • the airflow enters the outdoor unit 1 of the air conditioner through the heat exchanger 700 on the three sides of the shell 600. After passing through the electronic control assembly 800 and the motor bracket 500, it is collected by the air guide ring 400 and enters the first The two-stage fan blade 200 and the second-stage fan blade 300 are supercharged by the two-stage fan blades, and finally exhaust the air conditioner outdoor unit 1 from the net cover 900.
  • FIG. 8 is a part of the structure of the outdoor unit 1 of the air conditioner shown in FIG.
  • the distance between the two-stage fan blades is smaller, and it can be larger when it is not limited.
  • the distance between the leading edge of the first-stage fan blade 200 and the opposite motor bracket 500 in the axial direction of the output shaft is the distance between the first-stage fan blade 200 and the motor bracket 500, and the value range is 5mm to 2R. This prevents the fan blades from interfering with the motor support 500, and prevents the output shaft of the motor 100 from protruding too long and possible eccentricity.
  • the motor 100 is provided with two shafts.
  • the first output shaft 102 is a hollow shaft with a shorter length and a larger diameter.
  • the first-stage fan blade 200 is mounted on it;
  • the second output shaft 104 is The solid shaft has a longer length and a smaller diameter, and a second-stage fan blade 300 is mounted on it.
  • the rotation directions of the two output shafts are opposite, and the rotation speeds may also be different.
  • the ratio of the rotation speeds of the second output shaft 104 to the first output shaft 102 ranges from 0.5 to 2.
  • the direction perpendicular to the axis of rotation of the fan blade is the radial direction of the fan blade, and the outer periphery of the two-stage fan blade is connected to the air guide.
  • the range of the radial spacing of the ring 400 is 0.01R to 0.1R. The smaller the radial distance, the higher the efficiency of the fan. However, if the radial distance is too small, the fan blades may cause interference between the fan blades and the air guide ring 400.
  • the air conditioner outdoor unit 1 further includes: a third-stage fan blade (not shown in the figure).
  • the third-stage fan blades are fixed inside the air guide ring 400 and close to the air outlet end (not shown in the figure), so that the airflow changes the flow direction when passing through the third-stage fan blades, which further improves the air supply efficiency.
  • the third-stage fan blades By arranging the third-stage fan blades on the air guide ring 400, the use of more than two-stage moving blades is realized, and the working efficiency is improved through the combination of the multi-stage moving blades and the stationary blades, and the air outlet effect is improved.
  • the wind guide ring 400 is an asymmetric structure.
  • the radius range of the transition arc of the air guide ring 400 is set to 0.01R to 2R, which not only ensures that the air supply efficiency cannot be reduced due to the excessive radius, but also ensures that the transition arc maintains an outwardly expanded shape to facilitate airflow Collection and import.
  • the first-stage fan blade 200 is not completely covered by the wind guide ring 400.
  • the first-stage fan blade 200 is at the height of 416 minutes of the unexpanded part of the wind guide ring 400.
  • the ratio of the height of the first-stage fan blade 200 to the first-stage fan blade 200 is the coverage rate.
  • the coverage rate of the first-stage fan blade 200 ranges from 0.1 to 0.9.
  • the second-stage fan blades 300 are completely covered by the wind guide ring 400, and the outlet of the wind guide ring 400 expands outward, which facilitates the recovery of dynamic pressure and increases efficiency.
  • the outlet of the wind guide ring 400 may not be expanded.
  • the position of the electronic control assembly 800 may affect the air flow entering the counter-rotating fan from the housing 600, reducing the performance and efficiency of the counter-rotating fan. Therefore, the axial distance between the electronic control assembly 800 and the motor support 500 is set to be greater than 0.1R. The vertical distance between the electronic control assembly 800 and the corresponding housing 600 is as small as possible.
  • the air conditioner outdoor unit 1 proposed in this embodiment adopts a two-stage series design of a first-stage fan blade 200 and a second-stage fan blade 300. After the airflow is accelerated by the first-stage fan blade 200, it is supercharged by the second-stage fan blade 300. , Which makes the wind pressure higher and the ability to resist wind resistance is strong. Secondly, the counter-rotating design is adopted to make the function more powerful. The speed of the first-stage fan blade 200 and the second-stage fan blade 300 are significantly lower than that of a single axial fan, and the working life is long, and the structural requirements can also be reduced. Third, since the rotation direction of the first fan blade and the second-stage fan blade 300 are opposite, the torque is balanced, and the vibration of the fuselage is reduced. And because the speed is significantly reduced, the frequency on the noise spectrum and the resonant single-tone noise are greatly reduced, which improves the product quality.
  • the second aspect of the present application proposes an air conditioner, which includes the air conditioner outdoor unit 1 in any of the above embodiments, and therefore all the beneficial effects of the air conditioner outdoor unit 1 described above.
  • the application is not limited to the application of the outdoor unit of the central air conditioner, but can be used in alternative applications in other applications such as air purifiers and other single-axial fans.
  • the central air conditioner further includes an indoor unit, and the indoor unit is connected to the outdoor unit described in any of the above embodiments to realize the adjustment of the temperature and humidity of the indoor environment.
  • the embodiment of the third aspect of the present application provides an air conditioner outdoor unit 1, including: a first motor 110, a first-stage fan blade 200, a second motor 120, a second-stage fan blade 300, The first motor support 310, the second motor support 320, and the housing 600.
  • the first stage fan blade 200 is connected to the output shaft of the first motor 110, and the first motor 110 is configured to drive the first stage fan blade 200 to rotate; the rotation axis of the output shaft of the first motor 110 is the same as that of the second motor 110.
  • the rotation axes of the output shaft of the motor 120 are arranged collinearly; the second-stage fan blade 300 is connected to the output shaft of the second motor 120, and the second motor 120 is configured to drive the second-stage fan blade 300 to rotate;
  • the direction of rotation of the fan blade 200 is opposite to the direction of rotation of the second-stage fan blade 300;
  • the housing 600 is provided with an outlet, the first-stage fan blade 200 and the second-stage fan blade 300 are located at the outlet, and the first-stage fan blade 200 is upstream Fan blades, the second-stage fan blade 300 is a downstream fan blade;
  • the first motor 110 is arranged on the first motor support 310; the second motor 120 is arranged on the second motor support 320.
  • the first motor support 310 is located on the same side of the first stage fan blade 200 and the second stage fan blade 300; or the first motor support 310 is located between the first stage fan blade 200 and the second stage fan blade 300; the second motor support 320 is located on the same side of the first stage fan blade 200 and the second stage fan blade 300; or the second motor support 320 is located between the first stage fan blade 200 and the second stage fan blade 300.
  • the air conditioner outdoor unit 1 provided in the present application is configured with the first motor 110, the first-stage fan blade 200, the second motor 120, and the second-stage fan blade 300, the first motor bracket 310, and the second motor bracket 320 to make the first motor
  • the motor 110 drives the first stage fan blade 200 to rotate through the first output shaft
  • the second motor 120 drives the second stage fan blade 300 to rotate in reverse through the second output shaft.
  • the axis of rotation is collinear to realize the series arrangement of the two-stage fan blades, forming a counter-rotating fan with the first-stage fan blade 200 and the second-stage fan blade 300 in relative reverse rotation (hereinafter referred to as counter-rotation); further, the The counter-rotating fan is arranged at the exit of the housing 600, the first-stage fan blade 200 is used as the upstream fan blade, and the second-stage fan blade 300 is used as the downstream fan blade, that is, along the flow direction of the airflow in the outdoor unit of the air conditioner, the first The first-stage fan blade 200 is located upstream of the airflow, and the second-stage fan blade 300 is located downstream of the airflow.
  • the rotation energy of the airflow is recovered to achieve greater wind pressure.
  • the functional power of the motor is enhanced, and at the same time, the rotation speed of the first-stage fan blade 200 and the second-stage fan blade 300 are significantly lower than that of a single-axial fan of the same level.
  • the service life is increased, and the high-strength requirement of the high-speed fan blade structure is reduced.
  • the first motor bracket 310 is located on the same side of the first stage fan blade 200 and the second stage fan blade 300; the second motor support 320 is located on the first stage fan blade 200 and the second stage fan blade.
  • the same side of 300; that is, the first stage fan blade 200 and the second stage fan blade 300 are located in the middle of the first motor support 310 and the second motor support 320.
  • both the first motor support 310 and the second motor support 320 may be placed between the first-stage fan blade 200 and the second-stage fan blade 300 (not shown in the figure). Or one of the first motor support 310 and the second motor support 320 is located at the first stage fan blade 200 and the second stage fan blade 300.
  • the motor bracket is set to support and fix the motor, and the relative position of the motor and the two-stage fan blades can be adjusted according to the size of the internal space of the outdoor unit 1 of the air conditioner without affecting the performance, so as to ensure reasonable The structure layout.
  • the present application provides an air conditioner outdoor unit 1, including: a first motor 110, a first-stage fan blade 200, a second motor 120, a second-stage fan blade 300, and a A motor support 310, a second motor support 320, a housing 600 and an air guide ring 400.
  • the first stage fan blade 200 is connected to the output shaft of the first motor 110, and the first motor 110 is configured to drive the first stage fan blade 200 to rotate;
  • the rotation axis of the output shaft of the first motor 110 is the same as that of the second motor 110.
  • the rotation axes of the output shaft of the motor 120 are arranged collinearly;
  • the second-stage fan blade 300 is connected to the output shaft of the second motor 120, and the second motor 120 is configured to drive the second-stage fan blade 300 to rotate;
  • the direction of rotation of the fan blade 200 is opposite to the direction of rotation of the second-stage fan blade 300.
  • the air conditioner outdoor unit 1 further includes: a first motor support 310 and a second motor support 320.
  • the first motor 110 is arranged on the first motor support 310; the second motor 120 is arranged on the second motor support 320.
  • the first motor support 310 is located on the same side of the first stage fan blade 200 and the second stage fan blade 300; or the first motor support 310 is located between the first stage fan blade 200 and the second stage fan blade 300; the second motor support 320 is located on the same side of the first stage fan blade 200 and the second stage fan blade 300; or the second motor support 320 is located between the first stage fan blade 200 and the second stage fan blade 300.
  • the housing 600 is provided with an outlet; the air guide ring 400 is arranged at the outlet, the first-stage fan blade 200 and the second-stage fan blade 300 are located in the air guide ring 400; the first motor bracket 310 is connected to the housing 600 , The second motor support 320 is connected with the wind guide ring 400 or the housing 600.
  • the casing 600 is used to protect the internal structure of the outdoor unit 1 of the air conditioner from damage by external forces.
  • the outlet of the housing 600 is provided with an air guide ring 400 and the first stage fan blade 200 and the second stage fan blade 300 are arranged in the air guide ring 400, so that the airflow passes through the air guide ring 400 through the action of the two-stage fan blades. After the wind pressure increases, it reaches the exit.
  • the first motor bracket 310 and the second motor bracket 320 are respectively connected to the housing 600 or the air guide ring 400, so that the motor support is fixed to the housing 600 or the air guide ring 400, so as to make full use of the limited internal space of the outdoor unit 1 of the air conditioner.
  • the projection of the second-stage fan blade 300 is completely located within the projection of the air guide ring 400, and the first-stage fan blade 200 is projected onto the rotation axis.
  • both ends of the first motor bracket 310 are fixedly connected to the housing 600. Further, both ends of the first motor bracket 310 are provided with mounting holes and are fixed to the housing 600 by screws.
  • the second motor support 320 may also be fixedly connected to the air guide ring 400, and the second motor support 320 is fixed on the air guide ring by screws or bolts. Or the two ends of the second motor support 320 are fixedly connected to the housing, and the two ends of the second motor support 320 are provided with mounting holes, which are fixed to the housing 600 by screws.
  • the inner diameters of the air guide ring 400 are set to be equal, so that the air flow passes through more smoothly, avoids air leakage, and plays a role of diversion and sealing.
  • the wind guide ring 400 includes a wind ring main body 412 and a constriction 414.
  • An air outlet end is formed at one end of the wind ring main body 412, and the second-stage fan blade 300 is arranged as a downstream fan blade on the side of the air ring main body close to the air outlet end.
  • the constriction 414 is connected to the other end of the wind ring body 412, and forms a transition arc with the wind ring body 412, so that the wind guide ring 400 can be operated when the internal space is not limited. Shrink to make the structure compact.
  • the air inlet end of the air guide ring is contracted to form a transition arc, which is conducive to the collection and introduction of airflow.
  • 10% to 90% of the height of the first stage fan blade 200 is located in the wind ring main body 412; and/or along the axis direction of the output shaft, the second The stage fan 300 is located in the wind ring main body 412.
  • 10% to 90% of the height of the first-stage fan blade 200 is located in the wind ring main body 412 means that, in a direction perpendicular to the axis, the first-stage fan blade 200 and the wind ring main body 412 are both directed to their rotation axis.
  • 10% to 90% of the projection height of the first-stage fan blade 200 on the rotation axis is located within the projection of the wind ring main body 412.
  • the air ring body 412 of the air guide ring 400 can cover at least a small part of the height of the first-stage fan blade 200 opposite to it, so as to meet the minimum requirements for air supply efficiency; or the internal space is not limited
  • the air ring main body 412 of the hour air guide ring 400 can cover most of the height of the first-stage fan blade 200 opposite to it, ensuring that the air supply efficiency reaches a higher value.
  • the second-stage fan blade 300 is located in the wind ring main body 412, that is, the wind guide ring 400 completely covers the second-stage fan blade 300.
  • the height of the fan blade refers to the projection length of the fan blade on its axis of rotation along the radial direction of the fan blade.
  • the direction perpendicular to the rotation axis of the first-stage fan blade 200 is set as the radial direction of the first-stage fan blade 200.
  • the distance from the tip of the first-stage fan blade 200 to the axis of the first-stage fan blade 200 is L1.
  • the rotation direction of the second-stage fan blade 300 is set as the radial direction of the second-stage fan blade 300.
  • the blades of the second-stage fan blade 300 The distance from the tip to the axis of the second-stage fan blade 300 is L2.
  • the distance from the tip of the first-stage fan blade 200 to the axis of the first-stage fan blade 200 is L1, which means that it is aligned along the axial direction of the first-stage fan blade 200.
  • the first-stage fan blade 200 is projected, and the radius R corresponding to the circle with the largest radius formed in the contour line of the projection of the first-stage fan blade 200 is from the tip of the first-stage fan blade 200 to the first-stage fan blade 200
  • the distance of the axis is L1.
  • the distance from the tip of the second-stage fan blade 300 to the axis of the second-stage fan blade 300 is L2, which means that the distance along the axial direction of the second-stage fan blade 300
  • the second-stage fan blade 300 is projected, and the radius R corresponding to the circle with the largest radius formed in the contour line of the second-stage fan blade 300 is from the tip of the second-stage fan blade 300 to the second-stage fan blade 300
  • the distance of the axis is L2.
  • the value range of the axial distance between the first-stage fan blade 200 and the second-stage fan blade 300 is set to be 0.02 ⁇ L1 to 2 ⁇ L1; or the first-stage fan blade 200 and the second-stage fan blade
  • the range of the axial distance between the blades 300 is 0.02 ⁇ L2 to 2 ⁇ L2.
  • the first fan blade along the air intake direction, the first fan blade includes a leading edge and a trailing edge, and the second stage fan blade includes a leading edge and a trailing edge.
  • the axial distance L3 between the two is the distance between the trailing edge of the first-stage fan blade 200 and the front edge of the second-stage fan blade 300.
  • the reasonable setting of the axial distance makes the axial distance of the two-stage fan blades have sufficient distance to avoid interference between the two-stage fan blades; at the same time, it avoids the performance degradation caused by the excessively large axial distance between the two-stage fan blades. Other structural issues.
  • the value range of the axial distance between the first-stage fan blade 200 and the second-stage fan blade 300 is set to be 0.05 ⁇ L1 to 0.3 ⁇ L1; or the first-stage fan blade 200 and the second-stage fan blade
  • the range of the axial distance between the blades 300 is 0.05 ⁇ L2 to 0.3 ⁇ L2.
  • the distance L1 from the tip of the first-stage fan blade 200 to the axis of the first-stage fan blade 200 can be set to be the same as the distance L1 from the tip of the second-stage fan blade 300 to the second-stage fan blade.
  • the distance L2 of the axis of 300 is equal to reduce the production mold and reduce the production cost.
  • the value range of the axial distance L4 between the first-stage fan blade 200 and the first motor support 310 is set to be 5mm to 2 ⁇ L1; or the second-stage fan blade 300 and the first motor support 310
  • the axial distance L5 between the two motor supports 320 ranges from 5 mm to 2 ⁇ L2.
  • the range of the axial distance between the first-stage fan blade 200 and the first motor support 310 is thus set to be 5mm to 0.5 ⁇ L1; or the second-stage fan blade 300 and the second motor support 320 The range of the axial distance between them is 5mm to 0.5 ⁇ L2.
  • the first stage fan blade 200 As shown in FIGS. 9 and 11, in any of the above embodiments, further, as shown in FIGS. 12, 13 and 14, along the radial direction of the first stage fan blade 200, the first stage fan blade 200
  • the distance B1 from the tip of the blade to the wind guide ring 400 ranges from 0.01 ⁇ L1 to 0.1 ⁇ L1; and/or along the radial direction of the second stage fan blade 300, the tip of the second stage fan blade 300 to the wind guide ring
  • the distance B2 of 400 ranges from 0.01 ⁇ L2 to 0.1 ⁇ L2. Avoid possible interference between the fan blades and the wind guide ring 400 due to the close distance, and avoid the reduction of the efficiency of the fan due to the too far distance between the fan blades and the wind guide ring 400.
  • the value range of the distance B1 from the tip of the first-stage fan blade 200 to the air guide ring 400 is set to 0.025 ⁇ L1 to 0.055 ⁇ L1; and/or along the radial direction of the second-stage fan blade 300, The distance B2 from the tip of the secondary fan blade 300 to the air guide ring 400 ranges from 0.025 ⁇ L2 to 0.055 ⁇ L2. Further, as shown in FIG. 12, the value range of the corresponding radius r of the transition arc is limited to 0.01 ⁇ L1 to 2 ⁇ L1.
  • the contraction part 414 of the air guide ring 400 cannot reduce the air supply efficiency due to the excessively large radius of the transition arc, and at the same time, the contraction part 414 of the air guide ring 400 maintains an outwardly expanded shape in a minimum state to facilitate airflow Collection and import.
  • the value range of the corresponding radius r of the transition arc is defined to be 0.1 ⁇ L1 to 0.5 ⁇ L1, so as to facilitate the collection and introduction of airflow.
  • the air outlet end of the air guide ring 400 is provided with an expansion part extending outside the air guide ring 400 to expand the air flow when passing through the air outlet end, thereby reducing part of the wind speed and resistance, reducing capacity loss, and facilitating recovery Dynamic pressure and improve air supply efficiency.
  • the second motor bracket 320 is located outside the air guide ring 400 to ensure that when the two-stage fan blades are arranged oppositely in the air guide ring 400, there is no other structure in the middle, and the ventilation is smooth.
  • the air conditioner outdoor unit 1 further includes: a net cover 900 provided at the air outlet end of the air guide ring 400.
  • the net cover 900 is arranged at the air outlet end of the air guide ring 400, on the one hand, it prevents external debris from entering the air guide ring 400 to cause abnormal operation of the fan, and effectively protects the internal parts of the air guide ring 400. Damaged; on the other hand, it avoids the danger of people or other animals touching the fan when the air conditioner outdoor unit 1 is working, and improves the safety of the air conditioner outdoor unit 1.
  • the second motor support 320 and the net cover 900 are an integral structure. This makes the structure more compact, avoids the separate disassembly and assembly process of the second motor bracket 320, and saves installation time.
  • the air conditioner outdoor unit 1 further includes a housing cover 902.
  • a net cover 900 is installed on the housing cover 902, connected to the housing 600, and is arranged at the air outlet end of the air guide ring 400, and forms a complete air-conditioning outdoor unit 1 housing with the housing 600 to make the external environment and the air-conditioning outdoor unit 1
  • a certain degree of isolation is formed inside, which effectively protects the internal structure of the air conditioner outdoor unit 1, and at the same time prevents people or other animals from touching the fan when the air conditioner outdoor unit 1 is working, and improves the air conditioner outdoor unit 1. safety.
  • the second motor support 320 is arranged in the housing cover 902, so that the second motor support 320 is protected by the housing cover 902, and does not affect the normal ventilation in the air guide ring 400, so that the air flow passes through the air guide ring 400 and the second motor.
  • the bracket 320 is then discharged from the net cover 900 without loss.
  • the net cover 900 may adopt a square structure to fit the housing cover 902.
  • the outdoor unit 1 of the air conditioner further includes: a heat exchanger 700 and an electric control assembly 800.
  • the heat exchanger 700 is located between the air inlet and the outlet of the housing 600, and heat exchangers 700 are correspondingly provided on the three sides of the housing 600, which can make the air flow enter the air-conditioning outdoor through the heat exchanger 700 from multiple directions.
  • Machine 1 improve the efficiency of air supply.
  • the electronic control assembly 800 is arranged on the housing 600.
  • the front, left and right sides of the entire air conditioner outdoor unit 1 are equipped with heat exchangers 700, and the electric control assembly 800 is arranged on the back plate to achieve air intake from three sides. Exhaust from the air guide ring 400 improves the working efficiency of the outdoor unit 1 of the air conditioner.
  • the position of the electric control assembly 800 can be set in the lower part of the back plate, and a heat exchanger 700 can be added to the upper part of the back plate, so that the air-conditioning outdoor unit 1 can enter air from all sides.
  • the air conditioner outdoor unit 1 shown in Figs. 9 to 11 has side air inlet and top air outlet.
  • the air outlet can also be arranged on the side of the housing 600 to achieve air inlet at the top and other sides.
  • the specific structure can be set according to the specific situation and is not limited to this.
  • the electronic control assembly 800 may also be arranged outside the housing 600, or at least a part of it may be arranged outside the housing 600.
  • the distance between the electronic control assembly 800 and the motor support is greater than 0.02 ⁇ L1, so as to avoid the reduction of air supply efficiency due to obstruction of air flow.
  • third-stage fan blades as static blades on the air guide ring 400, and use more than two-stage moving blades to improve the air supply efficiency through the combination of multi-stage moving blades and static blades.
  • the air conditioner outdoor unit 1 further includes: a third-stage fan blade (not shown in the figure).
  • the third-stage fan blades are fixed inside the air guide ring 400 and close to the air outlet end (not shown in the figure), so that the airflow changes the flow direction when passing through the third-stage fan blades, which further improves the air supply efficiency.
  • the third-stage fan blades By arranging the third-stage fan blades on the air guide ring 400, the use of more than two-stage moving blades is realized, and the working efficiency is improved through the combination of the multi-stage moving blades and the stationary blades, and the air outlet effect is improved.
  • the structure of the outdoor unit 1 of the air conditioner is shown in FIG. 9 and FIG. 11.
  • the back plate of the shell 600 is equipped with an electric control assembly 800, and the other three sides are provided with a heat exchanger 700.
  • the shell 600 is equipped with compressors, pipelines and other components.
  • the components constitute the counter-rotating fan.
  • the first-stage fan blade 200 is installed on the first motor 110, the first motor 110 is fixed on the air conditioner outdoor unit 1 by the first motor bracket 310, the second-stage fan blade 300 is installed on the second motor 120, The second motor 120 is fixed on the outdoor unit 1 of the air conditioner by a second motor bracket 320.
  • the rotation directions of the first-stage fan blade 200 and the second-stage fan blade 300 are opposite.
  • the inner diameter of the air guide ring 400 is the same, and has the functions of diversion and sealing.
  • a square housing cover 902 is installed at the outlet end of the air guide ring 400 to cover the second motor support 320 so that the air flow passes through the air guide ring 400 and the second motor support 320 and is discharged from the net cover 900.
  • the net cover 900 is installed on the housing cover 902 to prevent foreign matter from entering the outdoor unit 1 of the air conditioner.
  • the airflow enters the outdoor unit 1 of the air conditioner through the heat exchanger 700 on the three sides of the housing 600, and is collected by the air guide ring 400 after passing through the electronic control assembly 800 and the first motor bracket 310.
  • the first-stage fan blade 200 and the second-stage fan blade 300 are pressurized by the two-stage fan blades, and finally exhaust the air conditioner outdoor unit 1 from the net cover 900.
  • Fig. 14 is a part of the structure of the air conditioner outdoor unit 1 shown in Fig. 9 to show the spatial positional relationship between the fan blades and the motor bracket.
  • the distance between the two-stage fan blades is smaller, and it can be larger when it is not limited.
  • the distance between the peripheral edge of the first-stage fan blade 200 and the projection of the first motor bracket 310 opposite to it on the axis of the output shaft is set as the distance between the first-stage fan blade 200 and the first motor bracket 310, and its value range It is 5mm to 2R to avoid interference between the first-stage fan blade 200 and the first motor bracket 310, and prevent the output shaft of the first motor 110 from extending too long and causing eccentricity.
  • the distance between the periphery of the second-stage fan blade 300 and the projection of the second motor bracket 320 opposite to it on the axis of the output shaft is set as the distance between the second-stage fan blade 300 and the second motor bracket 320, which The value range is 5mm to 2R.
  • the direction perpendicular to the rotation axis of the fan blade is the radial direction of the fan blade, and the two-stage fan blades are connected to the air guide ring 400 respectively.
  • the range of the radial spacing is 0.01R to 0.1R. The smaller the radial distance, the higher the efficiency of the fan. However, if the radial distance is too small, the fan blades may cause interference between the fan blades and the air guide ring 400.
  • the air guide ring 400 is an asymmetric structure, and the radius of the transition arc of the air guide ring 400 is set to 0.01R to 2R, which not only ensures that the air guide ring 400 cannot be caused by excessive radius.
  • the reduced wind efficiency also ensures that the transition arc maintains an outwardly expanding shape to facilitate the collection and introduction of airflow.
  • the first-stage fan blade 200 is not completely covered by the wind guide ring 400.
  • the first-stage fan blade 200 is at the height of the unexpanded part of the wind guide ring 400.
  • the ratio of the height of the first-stage fan blade 200 to the first-stage fan blade 200 is the coverage rate.
  • the coverage rate of the primary fan blade 200 ranges from 0.1 to 0.9.
  • the second-stage fan blade 300 is completely covered by the wind guide ring 400, and the wind guide ring 400 is located below the second motor support 320.
  • the outlet of the air guide ring 400 expands outward to facilitate the recovery of dynamic pressure and increase efficiency.
  • the outlet of the wind guide ring 400 may not be expanded.
  • the net cover 900 and the outer shell cover 902 can be adjusted and improved according to the outlet form of the wind guide ring 400.
  • the position of the electronic control component 800 may affect the air flow entering the counter-rotating fan from the housing 600, reducing the performance and efficiency of the counter-rotating fan. Therefore, the axial distance between the electronic control assembly 800 and the motor support is set to be greater than 0.02R, and the distance between the tip of the fan blade and the axis is the radius of the fan blade, and the value is R.
  • the vertical distance between the electronic control assembly 800 and the corresponding housing 600 is as small as possible.
  • the air conditioner outdoor unit 1 proposed in this embodiment adopts a two-stage series design of a first-stage fan blade 200 and a second-stage fan blade 300. After the airflow is accelerated by the first-stage fan blade 200, it is supercharged by the second-stage fan blade 300. , Which makes the wind pressure higher and the ability to resist wind resistance is strong. Secondly, the counter-rotation design is adopted to make the function more powerful. The speed of the first-stage fan blade 200 and the second-stage fan blade 300 is significantly lower than that of a single axial fan, and the working life is long, and the structural requirements can also be reduced. Third, since the rotation direction of the first fan blade and the second-stage fan blade 300 are opposite, the torque is balanced, and the vibration of the fuselage is reduced. And because the speed is significantly reduced, the BPF and resonant single-tone noise on the noise spectrum are greatly reduced, and the sound quality is high.
  • the fourth aspect of the present application proposes an air conditioner, which includes the air conditioner outdoor unit 1 in any of the above embodiments, and therefore all the beneficial effects of the air conditioner outdoor unit 1 described above.
  • the present application is not limited to the application of the outdoor unit of central air conditioner, but can be substituted in other applications such as air purifiers and other single-axial fans.
  • the central air conditioner further includes an indoor unit, and the indoor unit is connected to the outdoor unit of the air conditioner described in any of the above embodiments to realize the adjustment of the temperature and humidity of the indoor environment.
  • the term “plurality” refers to two or more than two, unless otherwise clearly defined, the orientation or positional relationship indicated by the terms “upper” and “lower” are based on the orientation described in the drawings. Or the positional relationship is only for the convenience of describing the application and simplifying the description, rather than indicating or implying that the device or element referred to must have a specific orientation, be constructed and operated in a specific orientation, and therefore cannot be understood as a limitation of the application; “Connected”, “installed”, “fixed”, etc. should all be understood in a broad sense.
  • “connected” can be a fixed connection, a detachable connection, or an integral connection; it can be directly connected or through an intermediary. Indirectly connected.
  • the specific meanings of the above-mentioned terms in this application can be understood according to specific circumstances.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

本申请提供了一种空调室外机,包括:电机,电机设置有第一输出轴和第二输出轴;第一级扇叶,第一级扇叶与第一输出轴相连接;第二级扇叶,第二级扇叶与第二输出轴相连接;电机被配置为适于驱动第一级扇叶和第二级扇叶转动,第一级扇叶与第二级扇叶的转动方向相反;电机位于第一级扇叶和第二级扇叶的中间;或电机位于第一级扇叶和第二级扇叶的同一侧。本申请提供的室外机通过电机、第一级扇叶以及第二级扇叶的设置,使电机通过第一输出轴驱动第一级扇叶转动,通过第二输出轴驱动第二级扇叶反向转动,通过回收气流的旋转能量,实现更高风压。

Description

空调室外机
本申请要求于2019年12月26日提交中国专利局、申请号为“201911366885.6”、发明名称为“空调室外机”的中国专利申请的优先权,其全部内容通过引用结合在本申请中;
本申请要求于2019年12月26日提交中国专利局、申请号为“201911369821.1”、发明名称为“空调室外机”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及空调设备技术领域,具体而言,涉及到一种空调室外机。
背景技术
现有技术中,对旋风机主要应用于煤矿通风中,而在中央空调中的应用案例非常少见。在中央空调中,由于电控盒以及支架等过流组件的存在,导致风机进口气流条件异常复杂,在如此复杂的气流条件下,转子叶尖泄漏流动引发的流动损失以及气动噪声问题愈发明显。
发明内容
本申请旨在至少解决现有技术或相关技术中存在的技术问题之一。
为此,本申请的目的在于提出了一种空调室外机。
有鉴于此,本申请的一个目的提供了一种空调室外机,包括:电机,电机设置有第一输出轴和第二输出轴;第一级扇叶,第一级扇叶与第一输出轴相连接;第二级扇叶,第二级扇叶与第二输出轴相连接;壳体,壳体设置有出口,第一级扇叶和第二级扇叶位于出口处,第一级扇叶为上游扇叶,第二级扇叶为下游扇叶;电机支架,电机支架与壳体相连接,电机设置于电机支架上;其中,电机被配置为适于驱动第一级扇叶和第二级扇叶转动,第一级扇叶与第二级扇叶的转动方向相反;电机位于第一级扇叶和第二级扇叶的中间;或电机位于第一级扇叶和第二级扇叶的同一侧。
本申请提供的空调室外机通过电机、第一级扇叶、第二级扇叶和电机支架的设置,使电机通过第一输出轴驱动第一级扇叶转动,通过第二输出轴驱动第二级扇叶反向转动形成了对旋风机;进一步地,将对旋风机设置在壳体的出口处,将第一级扇叶作为上游扇叶,第二级扇叶作为下游扇叶,通过上游扇叶和下游扇叶的对旋工作,提高了风压、抗风阻能力,使送风更为顺畅,降低了出现回流的机率。
具体地,同一台电机具有第一输出轴和第二输出轴的设置,实现了由一个电机直接驱动两个输出轴,并且使电机结构紧凑、节约了空间。通过第一级扇叶和第二级扇叶分别与第一输出轴和第二输出轴相连接,使电机分别通过第一输出轴和第二输出轴同时驱动第一级扇叶和第二级扇叶。通过使第一级扇叶和第二级扇叶互相反向旋转,即采用两级扇叶的对旋式设计,使电机做功能力增强,同时使第一级扇叶和第二级扇叶的转速显著低于同级别的单轴流风扇,增加了使用寿命,并降低了高转速对扇叶结构的高强度要求。这些设置,使气流在通过室外机时经过两级扇叶的共同作用下实现加速和增压,从而使风力得到加强,并提高了抗风阻能力,进而使气流通过外接排风管的排风能力大大加强。
具体地,一种实施方式是将电机设置于第一级扇叶和第二级扇叶的中间,第一级扇叶和第二级扇叶分布于电机的两侧;一种实施方式是将电机设置于第一级扇叶和第二级扇叶的同一侧,即第一级扇叶和第二级扇叶均位于电机的同一侧;通过不同的安装方式能够满足不同工况的需求,实现了在不影响使用性能的情况下根据室外机内部空间的大小调整电机及两级扇叶的相对位置,从而保证合理的结构布局。进一步地,电机支架用于支撑和固定电机,确保电机安全、稳定地运行。根据实际情况使电机支架与壳体相连接,保证了结构的合理布局。
此外,由于第一级扇叶和第二级扇叶的旋转方向相反,使作用在转轴上的扭矩相对平衡,减小了机身的振动以及由振动引起的噪声,进而提升用户的使用体验。
另外,本申请提供的上述技术方案中的空调室外机还可以具有如下附加技术特征:
在上述技术方案中,进一步地,第一输出轴的转动轴线和第二输出轴的转动轴线共线。
在上述任一技术方案中,进一步地,第一输出轴为空心轴;第二输出轴穿过空心轴。
在上述任一技术方案中,进一步地,第二输出轴和第一输出轴的转速比的取值范围为0.5至2。
在上述任一技术方案中,进一步地,空调室外机还包括:导风圈,设置于出口处,第一级扇叶和第二级扇叶位于导风圈内。
在上述任一技术方案中,进一步地,导风圈包括:风圈主体,风圈主体的一端形成出风端;收缩部,收缩部与风圈主体的另一端相连接,收缩部与风圈主体之间形成有过渡圆弧;其中,过渡圆弧的圆心位于导风圈的外部。
在上述任一技术方案中,进一步地,沿输出轴的轴线方向,第一级扇叶的高度的10%至90%位于风圈主体内。
在上述任一技术方案中,进一步地,以垂直于第一级扇叶的转动轴线的方向为第一级扇叶的径向,沿第一级扇叶的径向,第一级扇叶的叶尖至第一级扇叶的轴线的距离为L1;过渡圆弧的对应的半径的取值范围为0.01×L1至2×L1。
在上述任一技术方案中,进一步地,以垂直于第一级扇叶的转动轴线的方向为第一级扇叶的径向,沿第一级扇叶的径向,第一级扇叶的叶尖至第一级扇叶的轴线的距离为L1;以垂直于第二级扇叶的转动方向作为第二级扇叶的径向,沿第二级扇叶的径向,第二级扇叶的叶尖至第二级扇叶的轴线的距离为L2;第一级扇叶与电机支架之间的轴向距离的取值范围为5mm至2×L1;或第二级扇叶与电机支架之间的轴向距离的取值范围为5mm至2×L2。
在上述任一技术方案中,进一步地,以垂直于第一级扇叶的转动轴线的方向为第一级扇叶的径向,沿第一级扇叶的径向,第一级扇叶的叶尖至第一级扇叶的轴线的距离为L1;以垂直于第二级扇叶的转动方向作为第二级扇叶的径向,沿第二级扇叶的径向,第二级扇叶的叶尖至第二级扇叶的 轴线的距离为L2;沿第一级扇叶的径向,第一级扇叶的叶尖至导风圈的距离的取值范围为0.01×L1至0.1×L1;和/或沿第二级扇叶的径向,第二级扇叶的叶尖至导风圈的距离的取值范围为0.01×L2至0.1×L2。
上述任一技术方案中,进一步地,导风圈还包括:扩张部,扩张部与风圈主体的另一端相连接。
在上述任一技术方案中,进一步地,空调室外机还包括网罩,网罩设置于导风圈的出风端。
在上述任一技术方案中,进一步地,空调室外机还包括:换热器,换热器设置于壳体内,换热器位于壳体的进风口和出口之间;电控组件,设置于壳体上。
在上述任一技术方案中,进一步地,沿输出轴的轴线方向,电控组件与电机支架之间的距离大于0.02×L1。
在上述任一技术方案中,进一步地,室外机还包括:第三级扇叶,第三级扇叶设置于导风圈上,位于导风圈的出风端。
在上述任一技术方案中,进一步地,以垂直于第一级扇叶的转动轴线的方向为第一级扇叶的径向,沿第一级扇叶的径向,第一级扇叶的叶尖至第一级扇叶的轴线的距离为L1;以垂直于第二级扇叶的转动方向作为第二级扇叶的径向,沿第二级扇叶的径向,第二级扇叶的叶尖至第二级扇叶的轴线的距离为L2;第一级扇叶与第二级扇叶之间的轴向距离的取值范围为0.02×L1至2×L1;或第一级扇叶与第二级扇叶之间的轴向距离的取值范围为0.02×L2至2×L2。
本申请的第一方面提供了一种空调室外机,包括:第一电机;第一级扇叶,第一级扇叶与第一电机的输出轴相连接,第一电机被配置为适于驱动第一级扇叶转动;第二电机,第一电机的输出轴的转动轴线与第二电机的输出轴的转动轴线共线设置;第二级扇叶,第二级扇叶与第二电机的输出轴相连接,第二电机被配置为适于驱动第二级扇叶转动,第一级扇叶的转动方向与第二级扇叶的转动方向相反;壳体,壳体设置有出口,第一级扇叶和第二级扇叶位于出口处,第一级扇叶为上游扇叶,第二级扇叶为下游扇叶;第一电机支架,第一电机设置于第一电机支架上,第一电机支架 与壳体相连接;第二电机支架,第二电机设置于第二电机支架上,第二电机支架与壳体相连接;其中,第一电机支架位于第一级扇叶和第二级扇叶的同一侧;或第一电机支架位于第一级扇叶和第二级扇叶之间;第二电机支架位于第一级扇叶和第二级扇叶的同一侧;或第二电机支架位于第一级扇叶和第二级扇叶之间。
本申请提供的空调室外机通过第一电机、第一级扇叶、第二电机以及第二级扇叶、第一电机支架和第二电机支架的设置,使第一电机驱动第一级扇叶转动,第二电机驱动第二级扇叶反向转动,并由于第一电机和第二电机的输出轴的转动轴线共线,实现两级扇叶的串联布置,形成了第一级扇叶和第二级扇叶的相对反向旋转(以下简称对旋)的对旋风机;进一步地,将对旋风机设置在壳体的出口处,将第一级扇叶作为上游扇叶,第二级扇叶作为下游扇叶,通过上游扇叶和下游扇叶的对旋工作,从而提高了风压、抗风阻能力,使送风更为顺畅,降低了出现回流的机率。
具体地,通过采用两级扇叶的对旋式设计,使电机做功能力增强,同时使第一级扇叶和第二级扇叶的转速显著低于同级别的单轴流风机,增加了使用寿命,并降低了高转速对扇叶结构的高强度要求。这些设置,使气流在通过空调室外机时经过两级扇叶的共同作用下实现加速和增压,从而使风力得到加强,并提高了抗风阻能力,进而使气流通过外接排风管的排风能力大大加强。
此外,由于第一级扇叶和第二级扇叶的旋转方向相反,使作用在转轴上的扭矩相对平衡,减小了机身的振动以及由振动引起的噪声,进而提升了用户的使用体验。
进一步地,电机支架用于支撑和固定电机。第一电机支架位于第一级扇叶和第二级扇叶的同侧或第一级扇叶和第二级扇叶之间,以及第二电机支架位于第一级扇叶和第二级扇叶的同侧或第一级扇叶和第二级扇叶之间的设置,实现了在不影响使用性能的情况下根据空调室外机内部空间的大小调整电机及两级扇叶的相对位置,从而保证合理的结构布局。将第一电机支架和第二电机支架与壳体相连接,以提升电机支架安装的稳定性。
另外,本申请提供的上述技术方案中的空调室外机还可以具有如下附 加技术特征:
在上述技术方案中,进一步地,空调室外机还包括:导风圈,导风圈设置于出口处,第一级扇叶和第二级扇叶位于导风圈内。
在上述任一技术方案中,进一步地,导风圈包括:风圈主体,风圈主体的一端形成出风端;收缩部,收缩部的一端与风圈主体的另一端相连接,收缩部与风圈主体之间形成有过渡圆弧;其中,过渡圆弧的圆心位于导风圈的外部。
在上述任一技术方案中,进一步地,沿输出轴的轴线方向,第一级扇叶的高度的10%至90%位于风圈主体内;和/或沿输出轴的轴线方向,第二级扇叶位于风圈主体内。
在上述任一技术方案中,进一步地,以垂直于第一级扇叶的转动轴线的方向为第一级扇叶的径向,沿第一级扇叶的径向,第一级扇叶的叶尖至第一级扇叶的轴线的距离为L1;以垂直于第二级扇叶的转动方向作为第二级扇叶的径向,沿第二级扇叶的径向,第二级扇叶的叶尖至第二级扇叶的轴线的距离为L2;第一级扇叶与第二级扇叶之间的轴向距离的取值范围为0.02×L1至2×L1;或第一级扇叶与第二级扇叶之间的轴向距离的取值范围为0.02×L2至2×L2。
在上述任一技术方案中,进一步地,第一级扇叶与电机支架之间的轴向距离的取值范围为5mm至2×L1;或第二级扇叶与电机支架之间的轴向距离的取值范围为5mm至2×L2。
在上述任一技术方案中,进一步地,以垂直于第一级扇叶的转动轴线的方向为第一级扇叶的径向,沿第一级扇叶的径向,第一级扇叶的叶尖至第一级扇叶的轴线的距离为L1;以垂直于第二级扇叶的转动方向作为第二级扇叶的径向,沿第二级扇叶的径向,第二级扇叶的叶尖至第二级扇叶的轴线的距离为L2;沿第一级扇叶的径向,第一级扇叶的叶尖至导风圈的距离的取值范围为0.01×L1至0.1×L1;和/或沿第二级扇叶的径向,第二级扇叶的叶尖至导风圈的距离的取值范围为0.01×L2至0.1×L2。
在上述任一技术方案中,进一步地,以垂直于第一级扇叶的转动轴线的方向为第一级扇叶的径向,沿第一级扇叶的径向,第一级扇叶的叶尖至 第一级扇叶的轴线的距离为L1;过渡圆弧的对应的半径的取值范围为0.01×L1至2×L1。
在上述任一技术方案中,进一步地,导风圈的出风端设置有向导风圈外部延伸的扩张部;基于第二电机支架位于第一级扇叶和第二级扇叶的同一侧时,第二电机支架位于导风圈的外部。
在上述任一技术方案中,进一步地,空调室外机还包括:网罩,网罩设置于导风圈的出风端。
在上述任一技术方案中,进一步地,基于第二电机支架位于第一级扇叶和第二级扇叶的同一侧时,第二电机支架与网罩为一体式结构。
在上述任一技术方案中,进一步地,空调室外机还包括:外壳罩,外壳罩与壳体相连接,罩设于导风圈的出风端,网罩设置于外壳罩上;基于第二电机支架位于第一级扇叶和第二级扇叶的同一侧时,第二电机支架位于外壳罩内。
在上述任一技术方案中,进一步地,空调室外机还包括:换热器,换热器设置于壳体内,换热器位于壳体的进风口和出口之间;电控组件,电控组件设置于壳体上。
在上述任一技术方案中,进一步地,以垂直于第一级扇叶的转动轴线的方向为第一级扇叶的径向,沿第一级扇叶的径向,第一级扇叶的叶尖至第一级扇叶的轴线的距离为L1;沿输出轴的轴线方向,电控组件与电机支架之间的距离大于0.02×L1。
在上述任一技术方案中,进一步地,室外机还包括:第三级扇叶,第三级扇叶设置于导风圈上,位于导风圈的出风端。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是本申请的一个实施例的空调室外机(不含网罩)的结构示意图,图中直箭头表示气流方向;
图2是图1的俯视图(含网罩);
图3是图1的俯视图(不含网罩);
图4是图1的立体结构示意图(不含网罩);
图5是图2中A-A向的部分结构剖视示意图;
图6是图2中B-B向的部分结构剖视示意图;
图7是图1所示的空调室外机的电机的结构示意图;
图8是图1所示的空调室外机的对旋风机的结构的示意图,图中箭头表示气流方向。
图9是本申请的再一个实施例的空调室外机的结构示意图,图中直箭头表示气流方向;
图10是图9的俯视图(不含网罩);
图11是图9所示空调室外机的立体结构示意图;
图12是图9所示空调室外机的部分结构示意图;
图13是图12中C-C向的结构示意图;
图14是图9所示的空调室外机的对旋风机的结构示意图,图中箭头表示气流方向。
其中,图1至图14中的附图标记与部件名称之间的对应关系为:
1空调室外机,100电机,102第一输出轴,104第二输出轴,200第一级扇叶,300第二级扇叶,110第一电机,120第二电机,310第一电机支架,320第二电机支架,400导风圈,412风圈主体,414收缩部,416扩张部,500电机支架,600壳体,700换热器,800电控组件,900网罩,902外壳罩。
具体实施方式
为了能够更清楚地理解本申请的上述目的、特征和优点,下面结合附图和具体实施方式对本申请进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本申请,但是,本申请还可以采用其他不同于在此描述的其他方式来实施,因此,本申请的保护范围并不受下面公开的具体实施例的限制。
下面参照图1至图8描述根据本申请第一个实施例提供的空调室外机1。
如图1所示,本申请的第一方面的实施例提供了一种空调室外机1,包括:电机100、第一级扇叶200、第二级扇叶300、壳体600和电机支架500。
其中,电机100设置有第一输出轴102和第二输出轴104;第一级扇叶200与第一输出轴102相连接;第二级扇叶300与第二输出轴104相连接;壳体600设置有出口,第一级扇叶200和第二级扇叶300位于出口处,第一级扇叶200为上游扇叶,第二级扇叶300为下游扇叶;电机支架500与壳体600相连接,电机100设置于电机支架500上;电机100被配置为适于驱动第一级扇叶200和第二级扇叶300转动,第一级扇叶200与第二级扇叶300的转动方向相反。
本申请提供的空调室外机1通过电机100、第一级扇叶200以及第二级扇叶300、电机支架500的设置,使电机100通过第一输出轴102驱动第一级扇叶200转动,通过第二输出轴104驱动第二级扇叶300反向转动形成了对旋风机;进一步地,将对旋风机设置在壳体600的出口处,将第一级扇叶200作为上游扇叶,第二级扇叶300作为下游扇叶,通过上游扇叶和下游扇叶的对旋工作,通过回收气流旋转能量,实现更大风压。
具体地,同一台电机100具有第一输出轴102和第二输出轴104的设置,实现了由一个电机100直接驱动两个输出轴,并且使电机100结构紧凑、节约了空间。通过第一级扇叶200和第二级扇叶300分别与第一输出轴102和第二输出轴104相连接,使电机100分别通过第一输出轴102和第二输出轴104同时驱动第一级扇叶200和第二级扇叶300。通过使第一级扇叶200和第二级扇叶300互相反向旋转,即采用两级扇叶的对旋式设计,使电机100做功能力增强,同时使第一级扇叶200和第二级扇叶300的转速显著低于同级别的单轴流风扇,增加了使用寿命,并降低了高转速对扇叶结构的高强度要求。这些设置,使气流在通过空调室外机1时经过两级扇叶的共同作用下实现增压,从而使风压得到加强,并提高了抗风阻能力,进而使气流通过外接排风管的排风能力大大加强。
此外,由于第一级扇叶200和第二级扇叶300的旋转方向相反,使作用在转轴上的扭矩相对平衡,减小了机身的振动以及由振动引起的噪声,进而提升用户的使用体验。
进一步地,一个实施例如图8所示,将电机100设置于第一级扇叶200和第二级扇叶300的同一侧,即第一级扇叶和第二级扇叶均在电机的同一侧。并可以使第一输出轴102和第二输出轴104具有不同的转速和转向。具体地,第二输出轴104可以为空心轴,也可以为实心轴。具体地,电机可以位于对旋风机的进风端或出风端。
进一步地,还可以将电机设置于第一级扇叶200和第二级扇叶300的中间,第一级扇叶200和第二级扇叶300分布于电机100的两侧(图中未示出)。
通过不同的安装方式能够满足不同工况的需求,实现了在不影响使用性能的情况下根据空调室外机1内部空间的大小调整电机100及两级扇叶的相对位置,从而保证合理的结构布局。
进一步地,如图1和图8所示,电机支架500与壳体600相连接,电机100设置于电机支架500上。电机支架500用于支撑和固定电机100,使得电机100安全、稳定地运行。根据实际情况使电机支架500与壳体600相连接,使得整体结构的布局合理。
具体地,电机支架500的两端与壳体进行固定连接,进一步地,电机支架500的两端设置有安装孔,通过螺钉固定于壳体上。
进一步地,如图1、图5至图8所示,本申请的一个实施例提供了一种空调室外机1,包括:电机100、第一级扇叶200和第二级扇叶300、壳体600和电机支架500。
其中,电机100设置有第一输出轴102和第二输出轴104;第一级扇叶200与第一输出轴102相连接;第二级扇叶300与第二输出轴104相连接;电机100被配置为适于驱动第一级扇叶200和第二级扇叶300转动,第一级扇叶200与第二级扇叶300的转动方向相反。
进一步地,第一输出轴102的转动轴线和第二输出轴104的转动轴线共线,实现了第一级扇叶200和第二级扇叶300的串联布置,使得气流经 过第一级扇叶200的加速后,再由第二级扇叶300进行增压,使得风压更高,抗风阻能力强。
具体地,一个实施例如图8所示,将电机100设置于第一级扇叶200和第二级扇叶300的同一侧,即第一级扇叶和第二级扇叶均在电机的同一侧。如图7所示的实施例中,第一输出轴102为空心轴;第二输出轴104穿设于空心轴,使结构更为紧凑,并可以使第一输出轴102和第二输出轴104具有不同的转速和转向。具体地,第二输出轴104可以为空心轴,也可以为实心轴。
具体地,还可以将电机设置于第一级扇叶200和第二级扇叶300的中间,第一级扇叶200和第二级扇叶300分布于电机100的两侧(图中未示出)。
通过不同的安装方式能够满足不同工况的需求,实现了在不影响使用性能的情况下根据空调室外机1内部空间的大小调整电机100及两级扇叶的相对位置,从而保证合理的结构布局。
进一步地,将第二输出轴104和第一输出轴102的转速比限制在0.5至2之间,使第一级扇叶200和第二级扇叶300分别具有不同的转速,改变了气流通过时的状态,进而实现了加大风压的目的。
进一步地,如图4所示,设定以垂直于第一级扇叶200的转动轴线的方向为第一级扇叶200的径向,沿第一级扇叶200的径向,第一级扇叶200的叶尖至第一级扇叶200的轴线的距离为L1。
设定以垂直于第二级扇叶300的转动轴线的方向作为第二级扇叶300的径向,沿第二级扇叶300的径向,第二级扇叶300的叶尖至第二级扇叶300的轴线的距离为L2。
具体地,沿第一级扇叶200的径向,第一级扇叶200的叶尖至第一级扇叶200的轴线的距离为L1是指,沿第一级扇叶200的轴向对第一级扇叶200进行投影,第一级扇叶200的投影的轮廓线中的形成的最大半径的圆对应的半径R为第一级扇叶200的叶尖至第一级扇叶200的轴线的距离L1。
具体地,沿第二级扇叶300的径向,第二级扇叶300的叶尖至第二级扇叶300的轴线的距离为L2是指,沿第二级扇叶300的轴向对第二级扇叶 300进行投影,第二级扇叶300的投影的轮廓线中的形成的最大半径的圆对应的半径R为第二级扇叶300的叶尖至第二级扇叶300的轴线的距离L2。
具体地,如图3所示,可以将第一级扇叶200的叶尖至第一级扇叶200的轴线的距离L1设置为与第二级扇叶300的叶尖至第二级扇叶300的轴线的距离L2相等,以减少生产模具,降低生产成本。
由此进一步地,设定第一级扇叶200与第二级扇叶300之间的轴向距离的取值范围为0.02×L1至2×L1;或第一级扇叶200与第二级扇叶300之间的轴向距离的取值范围为0.02×L2至2×L2。如图5所示,沿气流的进气方向,第一扇叶包括前缘和尾缘,第二级扇叶包括前缘和尾缘,第一级扇叶200与第二级扇叶300之间的轴向距离L3为第一级扇叶200的尾缘与第二级扇叶300的前缘之间的距离。轴向距离的合理设置,使得两级扇叶的轴向具有足够的间距,避免两级扇叶可能发生干涉,同时避免了两级扇叶的轴向间距过大可能带来的性能降低和由此引发的其他结构问题。
进一步地,设定第一级扇叶200与第二级扇叶300之间的轴向距离的取值范围为0.05×L1至0.3×L1;或第一级扇叶200与第二级扇叶300之间的轴向距离的取值范围为0.05×L2至0.3×L2。
如图1至图4所示,在上述任一实施例中,进一步地,空调室外机1还包括:导风圈400。
其中,导风圈400设置于壳体600的出口处,第一级扇叶200和第二级扇叶300位于导风圈400内。
在该实施例中,壳体600用于保护空调室外机1的内部结构免受外力的破坏。壳体600的出口设有导风圈400并将第一级扇叶200和第二级扇叶300设于导风圈400内,使气流通过导风圈400时经过两级扇叶的作用而风压变大后到达出口。
具体地,沿垂直于第一级扇叶的转动轴线方向,向转动轴线上投影,第二级扇叶的投影完全位于导风圈的投影内,第一级扇叶的投影至少部分落入导风圈内。
进一步地,导风圈400包括风圈主体412和收缩部414。具体地,如图6所示,风圈主体412的一端形成出风端,第二级扇叶300作为下游扇叶 设置于风圈主体412靠近出风端的一侧。收缩部414与风圈主体412的另一端相连接,并与风圈主体412之间形成过渡圆弧,使气流光滑过渡。
进一步地,风圈主体412为直筒状。
进一步地,导风圈400设置于壳体600的出口处,可以通过风圈主体412与壳体600的出口相连接,以使得收缩部414位于壳体600内,也可以通过收缩部414与壳体600的出口相连接,收缩部414的进口端位于壳体600内,具体的安装方式可以根据整个空调室外机1的机型进行设计,以适应更多的使用环境。
进一步地,沿输出轴的轴线方向,第一级扇叶200的高度的10%至90%位于风圈主体412内。具体地,第一级扇叶200的高度的10%至90%位于风圈主体412内是指,沿垂直于轴线方向,将第一级扇叶200和风圈主体412均向其转动轴线上作投影,第一级扇叶200在转动轴线上的投影高度的10%至90%位于风圈主体412的投影内,使得在内部空间受限时风圈主体412至少能够覆盖与之相对的第一级扇叶200的小部分高度,满足对送风效率的最低要求,或者在内部空间不受限时风圈主体412能够覆盖与之相对的第一级扇叶200的大部分高度,确保送风效率更高。
具体地,第一级扇叶200的高度是指沿第一级扇叶200的径向,第一级扇叶200在其转动轴线上的投影长度。
进一步地,如图5所示,将收缩部414的过渡圆弧的圆心设置在导风圈400的外部,使导风圈400的入风端向外扩张,利于气流的收集和导入。
进一步地,限定了过渡圆弧的对应的半径的取值范围为0.01×L1至2×L1,使得导风圈400的收缩部414保持向外扩张的形状,以利于气流的收集和导入。
进一步地,限定了过渡圆弧的对应的半径r的取值范围为0.1×L1至0.5×L1,以利于气流的收集和导入。
具体的,电机支架500也可以与导风圈400固定连接,通过螺钉或螺栓将电机支架500固定在导风圈上。
进一步地,设定第一级扇叶200与电机支架500之间的轴向距离的取值范围为5mm至2×L1;或第二级扇叶300与电机支架500之间的轴向距离的取值范围为5mm至2×L2。可以认为,扇叶与电机支架500之间的轴向 距离为扇叶周缘与与之相对的电机支架500所在平面在输出轴的轴线上投影之间的最短距离。通过设置合理的轴向距离,使得扇叶与电机支架500具有足够的间距,避免扇叶与电机支架500可能发生干涉,且限定了电机100输出轴的长度,避免输出轴伸出过长而可能产生偏心。在电机100位于两级扇叶之间时,需分别限制两级扇叶与电机支架500的间距;在电机100位于两级扇叶的同一侧时,只需限制靠近电机100的扇叶与电机支架500的间距。如图5所示,第一级扇叶200靠近电机支架500设置,第一级扇叶200与电机支架500之间的轴向距离为L4。
进一步地,由此设定第一级扇叶200与电机支架500之间的轴向距离的取值范围为5mm至0.5×L1;或第二级扇叶300与电机支架500之间的轴向距离的取值范围为5mm至0.5×L2。
具体地,电机支架还可以设置于导风圈的出风端,并不局限于如图5和图6所示的实施例。
进一步地,如图5、图6和图8所示,沿垂直于第一级扇叶200的转动轴线方向,第一级扇叶200的叶尖至导风圈400的距离B1的取值范围为0.01×L1至0.1×L1;和/或沿第二级扇叶300的径向,第二级扇叶300的叶尖至导风圈400的距离B2的取值范围为0.01×L2至0.1×L2,该取值范围的设置,避免因距离过近导致扇叶与导风圈400可能发生干涉,避免因距离过远导致风扇的效率可能降低。
进一步地,设定第一级扇叶200的叶尖至导风圈400的距离B1的取值范围为0.025×L1至0.055×L1;和/或沿第二级扇叶300的径向,第二级扇叶300的叶尖至导风圈400的距离B2的取值范围为0.025×L2至0.055×L2。
进一步地,导风圈400的出风端设有向导风圈400外部延伸的扩张部416,使气流通过出风端时会向外扩张,进而降低风速,阻力降低,能量损失减少,便于回收动压和提高送风效率。
如图1和图2所示,在上述任一实施例中,进一步地,空调室外机1还包括:网罩900,网罩900设置于导风圈400的出风端。
在该实施例中,将网罩900设置于导风圈400的出风端,一方面防止外界杂物进入导风圈400引起风扇运转异常,有效地保护了导风圈400内部 的零部件免受破坏;另一方面避免了人或其他动物在空调室外机1工作时触碰到风扇而发生危险,提高了空调室外机1的安全性。
进一步地,如图1和图4所示,空调室外机1还包括:换热器700和电控组件800。具体地,换热器700位于壳体600的进风口和出口之间,并且壳体600的3个侧面上对应设置有换热器700,可以使气流从多个方向通过换热器700进入空调室外机1,提高了送风效率。电控组件800设置于壳体600上。
具体地,如图1和图4所示,空调室外机整机的前面、左面和右面均设置有换热器700,电控组件800设置于背板上,实现了三面进风,从导风圈排出,提升室外机的工作效率。
进一步地,可将电控组件的设置位置设置在背板的下部,在背板的上部增加一个换热器700,进而就可以实现了室外机四面进风。
具体地,如图1至图4所示的空调室外机1是侧面进风,顶部出风,具体实施中,还可以将出风口设置于壳体的侧面,实现顶部和其余侧部进风,具体结构均可根据具体情况设定,并不局限于此。
具体地,电控组件800设置于壳体600外侧,或者至少一部分设置于壳体600外侧。
进一步地,如图5或图6所示,设定沿输出轴的轴线方向,电控组件800与电机支架500之间的距离大于0.02×L1,从而避免因阻碍气流而造成送风效率降低。
进一步地,电控组件800与电机支架500之间的距离大于0.1×L1。
具体实施例中,空调室外机1的结构如图1、图2和图4所示。壳体600的背板装有电控组件800,其余三面均设有换热器700,壳体600内部装有压缩机、管线等零部件。壳体600上部设置有电机支架500、电机100、导风圈400、第一级扇叶200、第二级扇叶300和网罩900等零部件构成了对旋风机。
具体地,第一级扇叶200与第二级扇叶300的旋转方向相反,第一级扇叶200安装在电机100第一输出轴102上,第二级扇安装在电机100的第二输出轴104上,再通过电机支架500将电机100固定在空调室外机1 上。导风圈400的风圈主体412由与收缩部414相连接的一端至与扩张部416相连接的一端的内径一致,起到导流和密封作用;导风圈400的出口端安装有网罩900。
当对旋风机运转时,气流通过壳体600三个侧面的换热器700进入空调室外机1,经过电控组件800和电机支架500等零部件后,由导风圈400收集并进入第一级扇叶200和第二级扇叶300,通过两级扇叶的增压,最后从网罩900排出空调室外机1。
图8为图1所示空调室外机1的一部分结构,用来表示扇叶与电机支架500的空间位置关系。设定以输出轴的轴线方向为轴向,扇叶沿轴向的投影轮廓线中,以扇叶叶尖对应的轮廓线中的最大半径对应的圆作为扇叶的半径,取值为R。由此进一步设定第一级扇叶200的尾缘与第二级扇叶300的前缘之间的距离满足为0.02R至2R。整机轴向空间受限时,两级扇叶的间距就较小,不受限时可较大。第一级扇叶200的前缘与与之相对的电机支架500在输出轴的轴线方向上的距离为第一级扇叶200与电机支架500的间距,其取值范围为5mm至2R,避免了扇叶与电机支架500可能发生干涉,且防止电机100输出轴伸出过长而可能产生偏心。
进一步地,如图7所示,电机100设有两个轴,第一输出轴102为空心轴,长度较短,直径较大,其上装有第一级扇叶200;第二输出轴104为实心轴,长度较长,直径较小,其上装有第二级扇叶300。两个输出轴的旋转方向相反,旋转速度也可以不同,第二输出轴104与第一输出轴102的旋转速度比值范围为0.5至2。
进一步地,结合图5和图6所示的空调室外机1的部分结构,设定以垂直于扇叶的转动轴线的方向为扇叶的径向,两级扇叶的外周缘分别与导风圈400的径向间距的取值范围为0.01R至0.1R。其径向间距越小风扇效率越高,但径向间距过小时扇叶可能会导致扇叶与导风圈400发生干涉。
进一步地,空调室外机1还包括:第三级扇叶(图中未示出)。具体地,将第三级扇叶固定于导风圈400的内部并靠近出风端(图中未示出),使气流经过第三级扇叶时改变了流向,进一步提高了送风效率。通过设置在导风圈400的上设置第三级扇叶,实现了采用大于两级的动叶,通过多 级动叶与静叶的组合提升工作效率,改善出风效果。
进一步地,如图2、图5和图6所示,导风圈400是非对称结构。设定导风圈400的过渡圆弧的半径范围为0.01R至2R,既保证了不能因半径过大而造成送风效率降低,也保证了使过渡圆弧保持向外扩张的形状以利于气流的收集和导入。第一级扇叶200并没有完全被导风圈400完全覆盖,第一级扇叶200处于导风圈400未扩张部416分的高度,与第一级扇叶200高度的比值为覆盖率,则第一级扇叶200的覆盖率范围为0.1至0.9。
第二级扇叶300被导风圈400完全覆盖,导风圈400的出口向外扩张,便于回收动压增加效率。此外,导风圈400的出口也可以不进行扩张。
电控组件800的位置可能会影响从壳体600进入对旋风扇的气流,降低对旋风扇的性能和效率。因此设定电控组件800与电机支架500的轴向距离大于0.1R。电控组件800与对应壳体600的垂直距离越小越好。
该实施例提出的空调室外机1采用第一级扇叶200与第二级扇叶300的两级串联设计,气流经过第一级扇叶200加速后,再由第二级扇叶300增压,使得风压更高,抗风阻能力强。其次,采用对旋设计,做功能力更强,第一级扇叶200与第二级扇叶300的转速显著低于单轴流风扇,工作寿命长,对结构的要求也可以降低。再次,第一扇叶与第二级扇叶300由于旋转方向相反,扭矩平衡,减小了机身的振动。并由于转速显著降低,噪声频谱上的频率及谐振的单音噪声大幅下降,提升产品品质。
本申请的第二方面提出了一种空调器,包括上述任一实施例中的空调室外机1,因此上述空调室外机1的全部有益效果。
具体实施例中,本申请不仅限于中央空调室外机的应用,而在其他如空气净化器等单轴流风扇的应用场合均可进行替代应用。
具体实施例中,中央空调器还包括室内机,室内机与上述任一实施例所述的室外机相连接,实现对室内环境的温度和湿度的调节。
下面参照图9至图14描述根据本申请第二个实施例提供的空调室外机1。
如图9所示,本申请的第三方面的实施例提供了一种空调室外机1,包括:第一电机110、第一级扇叶200、第二电机120、第二级扇叶300、 第一电机支架310、第二电机支架320以及壳体600。
其中,第一级扇叶200与第一电机110的输出轴相连接,第一电机110被配置为适于驱动第一级扇叶200转动;第一电机110的输出轴的转动轴线与第二电机120的输出轴的转动轴线共线设置;第二级扇叶300与第二电机120的输出轴相连接,第二电机120被配置为适于驱动第二级扇叶300转动;第一级扇叶200的转动方向与第二级扇叶300的转动方向相反;壳体600设置有出口,第一级扇叶200和第二级扇叶300位于出口处,第一级扇叶200为上游扇叶,第二级扇叶300为下游扇叶;第一电机110设置于第一电机支架310上;第二电机120设置于第二电机支架320上。第一电机支架310位于第一级扇叶200和第二级扇叶300的同一侧;或第一电机支架310位于第一级扇叶200和第二级扇叶300之间;第二电机支架320位于第一级扇叶200和第二级扇叶300的同一侧;或第二电机支架320位于第一级扇叶200和第二级扇叶300之间。
本申请提供的空调室外机1通过第一电机110、第一级扇叶200、第二电机120以及第二级扇叶300、第一电机支架310、第二电机支架320的设置,使第一电机110通过第一输出轴驱动第一级扇叶200转动,第二电机120通过第二输出轴驱动第二级扇叶300反向转动,并由于第一电机110和第二电机120的输出轴的转动轴线共线,实现两级扇叶的串联布置,形成了第一级扇叶200和第二级扇叶300的相对反向旋转(以下简称对旋)的对旋风机;进一步地,将对旋风机设置在壳体600的出口处,将第一级扇叶200作为上游扇叶,第二级扇叶300作为下游扇叶,即,沿气流在空调室外机中的流动方向,第一级扇叶200位于气流上游,第二级扇叶300位于气流下游,通过上游扇叶和下游扇叶的对旋工作,回收气流旋转能量,实现更大风压。
具体地,通过采用两级扇叶的对旋式设计,使电机做功能力增强,同时使第一级扇叶200和第二级扇叶300的转速显著低于同级别的单轴流风机,增加了使用寿命,并降低了高转速对扇叶结构的高强度要求。这些设置,使气流在通过空调室外机1时经过两级扇叶的共同作用下实现增压,从而使风压得到加强,并提高了抗风阻能力,进而使气流通过外接排风管 的排风能力大大加强。
此外,由于第一级扇叶200和第二级扇叶300的旋转方向相反,使作用在转轴上的扭矩相对平衡,减小了机身的振动以及由振动引起的噪声,进而提升了用户的使用体验。
具体地,如图14所示,第一电机支架310位于第一级扇叶200和第二级扇叶300的同一侧;第二电机支架320位于第一级扇叶200和第二级扇叶300的同一侧;即第一级扇叶200和第二级扇叶300位于第一电机支架310和第二电机支架320的中间。
具体地,还可以将第一电机支架310和第二电机支架320都置于第一级扇叶200和第二级扇叶300之间(图中未示出)。或者第一电机支架310和第二电机支架320中的一个位于第一级扇叶200和第二级扇叶300。
通过上述两种方式设置电机支架,用于支撑和固定电机,并实现了在不影响使用性能的情况下根据空调室外机1内部空间的大小调整电机及两级扇叶的相对位置,从而保证合理的结构布局。
进一步地,如图9和图14所示,本申请提供了一种空调室外机1,包括:第一电机110、第一级扇叶200、第二电机120、第二级扇叶300、第一电机支架310、第二电机支架320以及壳体600和导风圈400。
其中,第一级扇叶200与第一电机110的输出轴相连接,第一电机110被配置为适于驱动第一级扇叶200转动;第一电机110的输出轴的转动轴线与第二电机120的输出轴的转动轴线共线设置;第二级扇叶300与第二电机120的输出轴相连接,第二电机120被配置为适于驱动第二级扇叶300转动;第一级扇叶200的转动方向与第二级扇叶300的转动方向相反。
进一步地,空调室外机1还包括:第一电机支架310和第二电机支架320。第一电机110设置于第一电机支架310上;第二电机120设置于第二电机支架320上。第一电机支架310位于第一级扇叶200和第二级扇叶300的同一侧;或第一电机支架310位于第一级扇叶200和第二级扇叶300之间;第二电机支架320位于第一级扇叶200和第二级扇叶300的同一侧;或第二电机支架320位于第一级扇叶200和第二级扇叶300之间。
进一步地,壳体600设置有出口;导风圈400设置于出口处,第一级 扇叶200和第二级扇叶300位于导风圈400内;第一电机支架310与壳体600相连接,第二电机支架320与导风圈400或壳体600相连接。
在该实施例中,壳体600用于保护空调室外机1的内部结构免受外力的破坏。壳体600的出口设有导风圈400并将第一级扇叶200和第二级扇叶300设于导风圈400内,使气流通过导风圈400时经过两级扇叶的作用而风压变大后到达出口。将第一电机支架310和第二电机支架320分别与壳体600或导风圈400相连接,使电机支架固定于壳体600或导风圈400,充分利用空调室外机1有限的内部空间。
进一步地,具体地,沿垂直于第一级扇叶200的转动轴线方向,向转动轴线上投影,第二级扇叶300的投影完全位于导风圈400的投影内,第一级扇叶200的投影至少部分落入导风圈400内。
具体地,第一电机支架310的两端与壳体600进行固定连接,进一步地,第一电机支架310的两端设置有安装孔,通过螺钉固定于壳体600上。
具体的,第二电机支架320也可以与导风圈400固定连接,通过螺钉或螺栓将第二电机支架320固定在导风圈上。或者第二电机支架320的两端与壳体进行固定连接,第二电机支架320的两端设置有安装孔,通过螺钉固定于壳体600上。
进一步地,设置导风圈400的内径相等,使气流通过时更为顺畅,避免漏气,起到了导流和密封的作用。
进一步地,导风圈400包括风圈主体412和收缩部414。风圈主体412的一端形成有出风端,第二级扇叶300作为下游扇叶设置于风圈主体靠近出风端的一侧。具体地,如图12所示,收缩部414与风圈主体412的另一端相连接,并与风圈主体412之间形成过渡圆弧,可以使导风圈400在内部空间不受限时进行收缩,以使结构紧凑。如图12所示,在空调室外机1的两侧方向,空间不受限时,将导风圈的进风口端进行收缩,形成过渡圆弧,利于气流的收集和导入。
进一步地,沿输出轴的轴线方向,沿输出轴的轴线方向,第一级扇叶200的高度的10%至90%位于风圈主体412内;和/或沿输出轴的轴线方向,第二级扇叶300位于风圈主体412内。
具体地,第一级扇叶200的高度的10%至90%位于风圈主体412内是指,沿垂直于轴线方向,将第一级扇叶200和风圈主体412均向其转动轴线上作投影,第一级扇叶200在转动轴线上的投影高度的10%至90%位于风圈主体412的投影内。使得在内部空间受限时导风圈400的风圈主体412至少能够覆盖与之相对的第一级扇叶200的小部分高度,满足对送风效率的最低要求;或者在内部空间不受限时导风圈400的风圈主体412能够覆盖与之相对的第一级扇叶200的大部分高度,确保送风效率达到较高值。第二级扇叶300位于风圈主体412内,即实现了导风圈400完全覆盖第二级扇叶300。其中,扇叶的高度是指沿扇叶的径向,扇叶在其转动轴线上的投影长度。
在上述任一实施例中,进一步地,如图12所示,设定以垂直于第一级扇叶200的转动轴线的方向为第一级扇叶200的径向,沿第一级扇叶200的径向,第一级扇叶200的叶尖至第一级扇叶200的轴线的距离为L1。
如图12所示,设定以垂直于第二级扇叶300的转动方向作为第二级扇叶300的径向,沿第二级扇叶300的径向,第二级扇叶300的叶尖至第二级扇叶300的轴线的距离为L2。
具体地,沿第一级扇叶200的径向,第一级扇叶200的叶尖至第一级扇叶200的轴线的距离为L1是指,沿第一级扇叶200的轴向对第一级扇叶200进行投影,第一级扇叶200的投影的轮廓线中的形成的最大半径的圆对应的半径R为第一级扇叶200的叶尖至第一级扇叶200的轴线的距离L1。
具体地,沿第二级扇叶300的径向,第二级扇叶300的叶尖至第二级扇叶300的轴线的距离为L2是指,沿第二级扇叶300的轴向对第二级扇叶300进行投影,第二级扇叶300的投影的轮廓线中的形成的最大半径的圆对应的半径R为第二级扇叶300的叶尖至第二级扇叶300的轴线的距离L2。
由此进一步地,设定第一级扇叶200与第二级扇叶300之间的轴向距离的取值范围为0.02×L1至2×L1;或第一级扇叶200与第二级扇叶300之间的轴向距离的取值范围为0.02×L2至2×L2。如图12所示,沿气流的进气方向,第一扇叶包括前缘和尾缘,第二级扇叶包括前缘和尾缘,第一级扇叶200与第二级扇叶300之间的轴向距离L3为第一级扇叶200的尾缘与 第二级扇叶300的前缘之间的距离。轴向距离的合理设置,使得两级扇叶的轴向具有足够的间距,避免两级扇叶发生干涉;同时避免了两级扇叶的轴向间距过大带来的性能降低和由此引发的其他结构问题。
由此进一步地,设定第一级扇叶200与第二级扇叶300之间的轴向距离的取值范围为0.05×L1至0.3×L1;或第一级扇叶200与第二级扇叶300之间的轴向距离的取值范围为0.05×L2至0.3×L2。
具体地,如图10所示,可以将第一级扇叶200的叶尖至第一级扇叶200的轴线的距离L1设置为与第二级扇叶300的叶尖至第二级扇叶300的轴线的距离L2相等,以减少生产模具,降低生产成本。
进一步地,如图12所示,设定第一级扇叶200与第一电机支架310之间的轴向距离L4的取值范围为5mm至2×L1;或第二级扇叶300与第二电机支架320之间的轴向距离L5的取值范围为5mm至2×L2。上述对第一级扇叶200或第二级扇叶300与电机支架之间的轴向距离的取值范围的设定,使得扇叶与电机支架具有足够的间距,避免扇叶与电机支架发生干涉;通过限定了电机轴的长度,避免电机轴伸出过长而产生偏心。
进一步地,由此设定第一级扇叶200与第一电机支架310之间的轴向距离的取值范围为5mm至0.5×L1;或第二级扇叶300与第二电机支架320之间的轴向距离的取值范围为5mm至0.5×L2。
如图9和图11所示,在上述任一实施例中,进一步地,如图12、图13和图14所示,沿第一级扇叶200的径向,第一级扇叶200的叶尖至导风圈400的距离B1的取值范围为0.01×L1至0.1×L1;和/或沿第二级扇叶300的径向,第二级扇叶300的叶尖至导风圈400的距离B2的取值范围为0.01×L2至0.1×L2。避免因距离过近导致扇叶与导风圈400可能发生干涉,同时避免因扇叶和导风圈400距离过远导致风机的效率降低。
进一步地,设定第一级扇叶200的叶尖至导风圈400的距离B1的取值范围为0.025×L1至0.055×L1;和/或沿第二级扇叶300的径向,第二级扇叶300的叶尖至导风圈400的距离B2的取值范围为0.025×L2至0.055×L2。进一步地,如图12所示,限定了过渡圆弧的对应的半径r的取值范围为0.01×L1至2×L1。使得导风圈400的收缩部414不能因过渡圆弧的半径过 大而造成送风效率降低,同时在导风圈400的收缩部414在最小状态下也保持向外扩张的形状,以利于气流的收集和导入。
进一步地,限定了过渡圆弧的对应的半径r的取值范围为0.1×L1至0.5×L1,以利于气流的收集和导入。
进一步地,导风圈400的出风端设有向导风圈400外部延伸的扩张部,使气流通过出风端时向外扩张,进而降低了部分风速和阻力,减小了能力损失,便于回收动压和提高送风效率。第二电机支架320位于导风圈400的外部,保证两级扇叶在导风圈400内相对设置时,中间并无其他结构阻挡,通风顺畅。
如图9所示,在上述任一实施例中,进一步地,空调室外机1还包括:网罩900,网罩900设置于导风圈400的出风端。
在该实施例中,将网罩900设置于导风圈400的出风端,一方面防止外界杂物进入导风圈400引起风机运转异常,有效地保护了导风圈400内部的零部件免受破坏;另一方面避免了人或其他动物在空调室外机1工作时触碰到风机而发生危险,提高了空调室外机1的安全性。
进一步地,第二电机支架320与网罩900为一体式结构。这样使结构更为紧凑,同时避免了单独对第二电机支架320的拆装过程,节约了安装时间。
进一步地,如图11所示,空调室外机1还包括外壳罩902。外壳罩902上安装有网罩900,与壳体600连接,并罩设于导风圈400的出风端,与壳体600形成了完整的空调室外机1外壳,使外部环境与空调室外机1内部形成了一定程度地隔离,有效地保护了空调室外机1的内部结构,同时避免了人或其他动物在空调室外机1工作时触碰到风机而发生危险,提高了空调室外机1的安全性。第二电机支架320设置于外壳罩902内,使第二电机支架320既得到了外壳罩902的保护,也不影响导风圈400内正常的通风,使气流在经过导风圈400和第二电机支架320后无损失地从网罩900排出。
具体地,网罩900可以采用方形结构以适配于外壳罩902。
进一步地,如图9和图11所示,空调室外机1还包括:换热器700和 电控组件800。具体地,换热器700位于壳体600的进风口和出口之间,壳体600的3个侧面上对应设有换热器700,可以使气流从多个方向通过换热器700进入空调室外机1,提高了送风效率。将电控组件800设置于壳体600上。
具体地,如图9和图11所示,空调室外机1整机的前面、左侧和右侧均设置有换热器700,电控组件800设置于背板上,实现了三面进风,从导风圈400排出,提升空调室外机1的工作效率。
进一步地,可将电控组件800的设置位置设置在背板的下部,在背板的上部增加一个换热器700,进而就可以实现了空调室外机1四面进风。
具体地,如图9至图11所示的空调室外机1是侧面进风,顶部出风,具体实施中,还可以将出风口设置于壳体600的侧面,实现顶部和其余侧部进风,具体结构均可根据具体情况设定,并不局限于此。
具体地,电控组件800还可以设置在壳体600外侧,或者至少一部分设置于壳体600外侧。
进一步地,如图12或图13所示,设定沿输出轴的轴线方向,电控组件800与电机支架之间的距离大于0.02×L1,从而避免因阻碍气流而造成送风效率降低。
具体地,还可以通过设置在导风圈400的上设置第三级扇叶作为静叶,并采用大于两级的动叶,通过多级动叶与静叶的组合提升送风效率。
进一步地,空调室外机1还包括:第三级扇叶(图中未示出)。具体地,将第三级扇叶固定于导风圈400的内部并靠近出风端(图中未示出),使气流经过第三级扇叶时改变了流向,进一步提高了送风效率。通过设置在导风圈400的上设置第三级扇叶,实现了采用大于两级的动叶,通过多级动叶与静叶的组合提升工作效率,改善出风效果。
具体实施例中,空调室外机1的结构如图9和图11所示。壳体600的背板装有电控组件800,其余三面均设有换热器700,壳体600内部装有压缩机、管线等零部件。壳体600上部的第一电机支架310、第一电机110、导风圈400、第一级扇叶200、第二级扇叶300、第二电机支架320、第二电机120和网罩900等零部件构成了对旋风机。
具体地,第一级扇叶200安装在第一电机110上,第一电机110由第一电机支架310固定在空调室外机1上,第二级扇叶300安装在第二电机120上,第二电机120由第二电机支架320固定在空调室外机1上。第一级扇叶200和第二级扇叶300的旋转方向相反。导风圈400的内径相同,具有导流和密封的作用。导风圈400的出口端安装有方形的外壳罩902,罩住第二电机支架320,使气流通过导风圈400和第二电机支架320后从网罩900排出。网罩900安装外壳罩902上,防止异物进入空调室外机1。
当对旋风机运转时,气流通过壳体600三个侧面的换热器700进入空调室外机1,经过电控组件800和第一电机支架310等零部件后,由导风圈400收集并进入第一级扇叶200和第二级扇叶300,通过两级扇叶的增压,最后从网罩900排出空调室外机1。
图14为图9所示的空调室外机1的一部分结构,用来表示扇叶与电机支架的空间位置关系。设定以输出轴的轴线方向为轴向,以扇叶叶尖距离轴线的距离为扇叶的半径,取值为R。由此进一步设定第一级扇叶200的尾缘与第二级扇叶300的前缘之间间距为两级扇叶的轴向间距,其取值范围为0.02R至2R。整机轴向空间受限时,两级扇叶的间距就较小,不受限时可较大。设定第一级扇叶200周缘与与之相对的第一电机支架310在输出轴的轴线上投影之间的距离为第一级扇叶200与第一电机支架310的间距,其取值范围为5mm至2R,避免第一级扇叶200与第一电机支架310发生干涉,且防止第一电机110的输出轴伸出过长而产生偏心。同样地,设定第二级扇叶300周缘与与之相对的第二电机支架320在输出轴的轴线上投影之间的距离为第二级扇叶300与第二电机支架320的间距,其取值范围为5mm至2R。
进一步地,结合图12和图13所示的空调室外机1的部分结构,设定以垂直于扇叶的转动轴线的方向为扇叶的径向,两级扇叶分别与导风圈400的径向间距的取值范围为0.01R至0.1R。其径向间距越小风机效率越高,但径向间距过小时扇叶可能会导致扇叶与导风圈400发生干涉。
进一步地,如图12和图13所示,导风圈400是非对称结构,设定导风圈400的过渡圆弧的半径范围为0.01R至2R,既保证了不能因半径过大 而造成送风效率降低,也保证了使过渡圆弧保持向外扩张的形状以利于气流的收集和导入。第一级扇叶200并没有完全被导风圈400完全覆盖,第一级扇叶200处于导风圈400未扩张部分的高度,与第一级扇叶200高度的比值为覆盖率,则第一级扇叶200的覆盖率范围为0.1至0.9。
第二级扇叶300被导风圈400完全覆盖,且导风圈400位于第二电机支架320一下。导风圈400的出口向外扩张,便于回收动压增加效率。此外,导风圈400的出口也可以不进行扩张。网罩900与外壳罩902可以根据导风圈400的出口形式作出相应的调整和改进。
电控组件800的位置可能会影响从壳体600进入对旋风机的气流,降低对旋风机的性能和效率。因此设定电控组件800与电机支架的轴向距离大于0.02R,以扇叶叶尖距离轴线的距离为扇叶的半径,取值为R。电控组件800与对应壳体600的垂直距离越小越好。
该实施例提出的空调室外机1采用第一级扇叶200与第二级扇叶300的两级串联设计,气流经过第一级扇叶200加速后,再由第二级扇叶300增压,使得风压更高,抗风阻能力强。其次,采用对旋设计,做功能力更强,第一级扇叶200与第二级扇叶300的转速显著低于单轴流风机,工作寿命长,对结构的要求也可以降低。再次,第一扇叶与第二级扇叶300由于旋转方向相反,扭矩平衡,减小了机身的振动。并由于转速显著降低,噪声频谱上的BPF及谐振的单音噪声大幅下降,声品质高。
本申请的第四方面提出了一种空调器,包括上述任一实施例中的空调室外机1,因此上述空调室外机1的全部有益效果。
具体实施例中,本申请不仅限于中央空调空调室外机的应用,而在其他如空气净化器等单轴流风机的应用场合均可进行替代应用。
具体实施例中,中央空调器还包括室内机,室内机与上述任一实施例所述的空调室外机相连接,实现对室内环境的温度和湿度的调节。
本申请的描述中,术语“多个”则指两个或两个以上,除非另有明确的限定,术语“上”、“下”等指示的方位或位置关系为基于附图所述的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能 理解为对本申请的限制;术语“连接”、“安装”、“固定”等均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请的描述中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本申请的至少一个实施例或示例中。在本申请中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (31)

  1. 一种空调室外机,其中,包括:
    电机,所述电机设置有第一输出轴和第二输出轴;
    第一级扇叶,所述第一级扇叶与所述第一输出轴相连接;
    第二级扇叶,所述第二级扇叶与所述第二输出轴相连接;
    壳体,所述壳体设置有出口,所述第一级扇叶和所述第二级扇叶位于所述出口处,所述第一级扇叶为上游扇叶,所述第二级扇叶为下游扇叶;
    电机支架,所述电机支架与所述壳体相连接,所述电机设置于所述电机支架上;
    其中,所述电机被配置为驱动所述第一级扇叶和所述第二级扇叶转动,所述第一级扇叶与所述第二级扇叶的转动方向相反;以及
    所述电机位于所述第一级扇叶和所述第二级扇叶的中间;或
    所述电机位于所述第一级扇叶和所述第二级扇叶的同一侧。
  2. 根据权利要求1所述的空调室外机,其中,
    所述第一输出轴的转动轴线和所述第二输出轴的转动轴线共线。
  3. 根据权利要求1所述的空调室外机,其中,
    所述第一输出轴为空心轴;所述第二输出轴穿过所述空心轴。
  4. 根据权利要求1所述的空调室外机,其中,
    所述第二输出轴和所述第一输出轴的转速比的取值范围为0.5至2。
  5. 根据权利要求1至4中任一项所述的空调室外机,其中,还包括:
    导风圈,所述导风圈设置于所述出口处,所述第一级扇叶和所述第二级扇叶设置于所述导风圈内。
  6. 根据权利要求5所述的空调室外机,其中,所述导风圈包括:
    风圈主体,所述风圈主体的一端形成出风端;
    收缩部,所述收缩部与所述风圈主体的另一端相连接,所述收缩部与所述风圈主体之间形成过渡圆弧;
    其中,所述过渡圆弧的圆心位于所述导风圈的外部。
  7. 根据权利要求6所述的空调室外机,其中,
    沿所述输出轴的轴线方向,所述第一级扇叶的高度的10%至90%位于所述风圈主体内。
  8. 根据权利要求6所述的空调室外机,其中,
    以垂直于所述第一级扇叶的转动轴线的方向为所述第一级扇叶的径向,沿所述第一级扇叶的径向,所述第一级扇叶的叶尖至所述第一级扇叶的轴线的距离为L1;
    所述过渡圆弧的对应的半径的取值范围为0.01×L1至2×L1。
  9. 根据权利要求1至4中任一项所述的空调室外机,其中,
    以垂直于所述第一级扇叶的转动轴线的方向为所述第一级扇叶的径向,沿所述第一级扇叶的径向,所述第一级扇叶的叶尖至所述第一级扇叶的轴线的距离为L1;
    以垂直于所述第二级扇叶的转动轴线的方向作为所述第二级扇叶的径向,沿所述第二级扇叶的径向,所述第二级扇叶的叶尖至所述第二级扇叶的轴线的距离为L2;
    所述第一级扇叶与所述电机支架之间的轴向距离的取值范围为5mm至2×L1;或
    所述第二级扇叶与所述电机支架之间的轴向距离的取值范围为5mm至2×L2。
  10. 根据权利要求5所述的空调室外机,其中,
    以垂直于所述第一级扇叶的转动轴线的方向为所述第一级扇叶的径向,沿所述第一级扇叶的径向,所述第一级扇叶的叶尖至所述第一级扇叶的轴线的距离为L1;
    以垂直于所述第二级扇叶的转动方向作为所述第二级扇叶的径向,沿所述第二级扇叶的径向,所述第二级扇叶的叶尖至所述第二级扇叶的轴线的距离为L2;
    沿所述第一级扇叶的径向,所述第一级扇叶的叶尖至所述导风圈的距离的取值范围为0.01×L1至0.1×L1;和/或
    沿所述第二级扇叶的径向,所述第二级扇叶的叶尖至所述导风圈的距离的取值范围为0.01×L2至0.1×L2。
  11. 根据权利要求6所述的空调室外机,其中,所述导风圈还包括:扩张部,所述扩张部与所述风圈主体的所述出风端相连接。
  12. 根据权利要求5所述的空调室外机,其中,还包括:
    网罩,所述网罩设置于所述导风圈的出风端。
  13. 根据权利要求5所述的空调室外机,其中,还包括:
    换热器,所述换热器设置于所述壳体内,所述换热器位于所述壳体的进风口和所述出口之间;
    电控组件,设置于所述壳体上。
  14. 根据权利要求13所述的空调室外机,其中,
    以垂直于所述第一级扇叶的转动轴线的方向为所述第一级扇叶的径向,沿所述第一级扇叶的径向,所述第一级扇叶的叶尖至所述第一级扇叶的轴线的距离为L1;
    沿所述输出轴的轴线方向,所述电控组件与所述电机支架之间的距离大于0.02×L1。
  15. 根据权利要求5所述的空调室外机,其中,还包括:第三级扇叶,所述第三级扇叶设置于所述导风圈上,位于所述导风圈的出风端。
  16. 根据权利要求1至4中任一项所述的空调室外机,其中,
    以垂直于所述第一级扇叶的转动轴线的方向为所述第一级扇叶的径向,沿所述第一级扇叶的径向,所述第一级扇叶的叶尖至所述第一级扇叶的轴线的距离为L1;
    以垂直于所述第二级扇叶的转动轴线的方向作为所述第二级扇叶的径向,沿所述第二级扇叶的径向,所述第二级扇叶的叶尖至所述第二级扇叶的轴线的距离为L2;
    所述第一级扇叶与所述第二级扇叶之间的轴向距离的取值范围为0.02×L1至2×L1;或
    所述第一级扇叶与所述第二级扇叶之间的轴向距离的取值范围为0.02×L2至2×L2。
  17. 一种空调室外机,其中,包括:
    第一电机;
    第一级扇叶,所述第一级扇叶与所述第一电机的输出轴相连接,所述第一电机被配置为驱动所述第一级扇叶转动;
    第二电机,所述第一电机的输出轴的转动轴线与所述第二电机的输出轴的转动轴线共线设置;
    第二级扇叶,所述第二级扇叶与所述第二电机的输出轴相连接,所述第二电机被配置为驱动所述第二级扇叶转动,所述第一级扇叶的转动方向与所述第二级扇叶的转动方向相反;
    壳体,所述壳体设置有出口,所述第一级扇叶和所述第二级扇叶位于所述出口处,所述第一级扇叶为上游扇叶,所述第二级扇叶为下游扇叶;
    第一电机支架,所述第一电机设置于所述第一电机支架上,所述第一电机支架与所述壳体相连接;
    第二电机支架,所述第二电机设置于所述第二电机支架上,所述第二电机支架与所述壳体相连接;
    其中,所述第一电机支架位于所述第一级扇叶和所述第二级扇叶的同一侧;或所述第一电机支架位于所述第一级扇叶和所述第二级扇叶之间;
    所述第二电机支架位于所述第一级扇叶和所述第二级扇叶的同一侧;或所述第二电机支架位于所述第一级扇叶和所述第二级扇叶之间。
  18. 根据权利要求17所述的空调室外机,其中,还包括:
    导风圈,所述导风圈设置于所述出口处,所述第一级扇叶和所述第二级扇叶位于所述导风圈内。
  19. 根据权利要求18所述的空调室外机,其中,所述导风圈包括:
    风圈主体,所述风圈主体的一端形成出风端;
    收缩部,所述收缩部的一端与所述风圈主体的另一端相连接,所述收缩部与所述风圈主体之间形成有过渡圆弧;
    其中,所述过渡圆弧的圆心位于所述导风圈的外部。
  20. 根据权利要求19所述的空调室外机,其中,
    沿所述输出轴的轴线方向,所述第一级扇叶的高度的10%至90%位于所述风圈主体内;和/或
    沿所述输出轴的轴线方向,所述第二级扇叶位于所述风圈主体内。
  21. 根据权利要求18所述的空调室外机,其中,
    以垂直于所述第一级扇叶的转动轴线的方向为所述第一级扇叶的径向,沿所述第一级扇叶的径向,所述第一级扇叶的叶尖至所述第一级扇叶的轴线的距离为L1;
    以垂直于所述第二级扇叶的转动轴线的方向作为所述第二级扇叶的径向,沿所述第二级扇叶的径向,所述第二级扇叶的叶尖至所述第二级扇叶的轴线的距离为L2;
    所述第一级扇叶与所述第二级扇叶之间的轴向距离的取值范围为0.02×L1至2×L1;或
    所述第一级扇叶与所述第二级扇叶之间的轴向距离的取值范围为0.02×L2至2×L2。
  22. 根据权利要求21所述的空调室外机,其中,还包括:
    所述第一级扇叶与所述第一电机支架之间的轴向距离的取值范围为5mm至2×L1;或
    所述第二级扇叶与所述第二电机支架之间的轴向距离的取值范围为5mm至2×L2。
  23. 根据权利要求19所述的空调室外机,其中,
    以垂直于所述第一级扇叶的转动轴线的方向为所述第一级扇叶的径向,沿所述第一级扇叶的径向,所述第一级扇叶的叶尖至所述第一级扇叶的轴线的距离为L1;
    以垂直于所述第二级扇叶的转动轴线的方向作为所述第二级扇叶的径向,沿所述第二级扇叶的径向,所述第二级扇叶的叶尖至所述第二级扇叶的轴线的距离为L2;
    沿所述第一级扇叶的径向,所述第一级扇叶的叶尖至所述导风圈的距离的取值范围为0.01×L1至0.1×L1;和/或
    沿所述第二级扇叶的径向,所述第二级扇叶的叶尖至所述导风圈的距离的取值范围为0.01×L2至0.1×L2。
  24. 根据权利要求19所述的空调室外机,其中,
    以垂直于所述第一级扇叶的转动轴线的方向为所述第一级扇叶的径 向,沿所述第一级扇叶的径向,所述第一级扇叶的叶尖至所述第一级扇叶的轴线的距离为L1;
    所述过渡圆弧的对应的半径的取值范围为0.01×L1至2×L1。
  25. 根据权利要求19所述的空调室外机,其中,
    所述导风圈的所述出风端设置有向所述导风圈外部延伸的扩张部;
    基于所述第二电机支架位于所述第一级扇叶和所述第二级扇叶的同一侧时,所述第二电机支架位于所述导风圈的外部。
  26. 根据权利要求18至25中任一项所述的空调室外机,其中,还包括:网罩,所述网罩设置于所述导风圈的出风端。
  27. 根据权利要求26所述的空调室外机,其中,基于所述第二电机支架位于所述第一级扇叶和所述第二级扇叶的同一侧时,所述第二电机支架与所述网罩为一体式结构。
  28. 根据权利要求26所述的空调室外机,其中,还包括:
    外壳罩,所述外壳罩与所述壳体相连接,罩设于所述导风圈的出风端,所述网罩设置于所述外壳罩上。
  29. 根据权利要求17至25中任一项所述的空调室外机,其中,还包括:
    换热器,所述换热器设置于所述壳体内,所述换热器位于所述壳体的进风口和所述出口之间;
    电控组件,所述电控组件设置于所述壳体。
  30. 根据权利要求29所述的空调室外机,其中,
    以垂直于所述第一级扇叶的转动轴线的方向为所述第一级扇叶的径向,沿所述第一级扇叶的径向,所述第一级扇叶的叶尖至所述第一级扇叶的轴线的距离为L1;
    沿所述输出轴的轴线方向,所述电控组件与所述第一电机支架之间的距离大于0.02×L1。
  31. 根据权利要求18至25中任一项所述的空调室外机,其中,还包括:第三级扇叶,所述第三级扇叶设置于所述导风圈上,位于所述导风圈的出风端。
PCT/CN2020/132689 2019-12-26 2020-11-30 空调室外机 WO2021129318A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20906407.0A EP4023948A4 (en) 2019-12-26 2020-11-30 OUTDOOR UNIT OF AN AIR CONDITIONER
US17/732,414 US20220252282A1 (en) 2019-12-26 2022-04-28 Air Conditioner Outdoor Unit

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201911366885.6A CN113048579A (zh) 2019-12-26 2019-12-26 空调室外机
CN201911366885.6 2019-12-26
CN201911369821.1 2019-12-26
CN201911369821.1A CN113048580A (zh) 2019-12-26 2019-12-26 空调室外机

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/732,414 Continuation US20220252282A1 (en) 2019-12-26 2022-04-28 Air Conditioner Outdoor Unit

Publications (1)

Publication Number Publication Date
WO2021129318A1 true WO2021129318A1 (zh) 2021-07-01

Family

ID=76573162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/132689 WO2021129318A1 (zh) 2019-12-26 2020-11-30 空调室外机

Country Status (3)

Country Link
US (1) US20220252282A1 (zh)
EP (1) EP4023948A4 (zh)
WO (1) WO2021129318A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013137008A (ja) * 2011-12-28 2013-07-11 Daikin Industries Ltd 空気調和機
CN203671796U (zh) * 2013-12-24 2014-06-25 珠海格力电器股份有限公司 空调室外机及空调器
CN108758837A (zh) * 2018-08-31 2018-11-06 广东美的制冷设备有限公司 轴流风机组件和空调器
CN109958639A (zh) * 2019-04-22 2019-07-02 广东美的制冷设备有限公司 空调室外机的风机组件及具有其的空调室外机
KR20190139054A (ko) * 2018-06-07 2019-12-17 엘지전자 주식회사 공기 조화기의 실외기

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3023433B2 (ja) * 1995-04-10 2000-03-21 日立建機株式会社 熱交換器の冷却装置
US7137263B2 (en) * 2004-02-02 2006-11-21 Emerson Electric Co. Low profile condenser motor
JP2008096020A (ja) * 2006-10-11 2008-04-24 Matsushita Electric Ind Co Ltd 空気調和機の室外機
US20110312264A1 (en) * 2009-03-12 2011-12-22 Lg Electronic, Inc. Outdoor unit for air conditioner
US20140131016A1 (en) * 2012-11-15 2014-05-15 JVS Associates, Inc. Contra-Rotating Fan Arrangement And Fan Drive System For Evaporative Cooling Equipment
CN103835971A (zh) * 2014-03-17 2014-06-04 胡小全 一种新型对旋式通风机
WO2017042942A1 (ja) * 2015-09-10 2017-03-16 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド 空気調和機の室外機
CN107461832A (zh) * 2017-08-22 2017-12-12 广东美的制冷设备有限公司 空调室外机及具有其的空调器
CN108716473B (zh) * 2018-03-02 2020-12-29 青岛海信日立空调系统有限公司 一种轴流风扇和空调器室外机
CN108458420A (zh) * 2018-03-20 2018-08-28 广东美的制冷设备有限公司 空调室外机和空调器
CN108317613A (zh) * 2018-03-20 2018-07-24 广东美的制冷设备有限公司 空调柜机及空调器
CN111043063B (zh) * 2018-10-15 2021-06-18 广东美的白色家电技术创新中心有限公司 对旋风扇
CN110044008A (zh) * 2019-04-22 2019-07-23 广东美的制冷设备有限公司 空调室外机的控制方法
CN109958637A (zh) * 2019-04-22 2019-07-02 广东美的制冷设备有限公司 空调室外机的风机组件及具有其的空调室外机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013137008A (ja) * 2011-12-28 2013-07-11 Daikin Industries Ltd 空気調和機
CN203671796U (zh) * 2013-12-24 2014-06-25 珠海格力电器股份有限公司 空调室外机及空调器
KR20190139054A (ko) * 2018-06-07 2019-12-17 엘지전자 주식회사 공기 조화기의 실외기
CN108758837A (zh) * 2018-08-31 2018-11-06 广东美的制冷设备有限公司 轴流风机组件和空调器
CN109958639A (zh) * 2019-04-22 2019-07-02 广东美的制冷设备有限公司 空调室外机的风机组件及具有其的空调室外机

Also Published As

Publication number Publication date
EP4023948A4 (en) 2023-03-08
EP4023948A1 (en) 2022-07-06
US20220252282A1 (en) 2022-08-11

Similar Documents

Publication Publication Date Title
EP2447542B1 (en) Air conditioner with outdoor unit
JP6225332B2 (ja) 送風機、およびその送風機を搭載した室外ユニット
US10052931B2 (en) Outdoor cooling unit in vehicle air-conditioning apparatus
CN104428509A (zh) 离心压缩机
CN107923413B (zh) 送风机以及空气调节装置
JP2016044586A (ja) 空気調和機の室外ユニット
WO2022027663A1 (zh) 空气净化器
CN104428595A (zh) 空气调节机的室内机及具有该室内机的空气调节机
TWI716681B (zh) 離心式送風機、送風裝置、空調裝置以及冷凍循環裝置
CN102828977B (zh) 节能风机
JP2004218450A (ja) 遠心式送風機
WO2021129318A1 (zh) 空调室外机
WO2023186082A1 (zh) 风扇罩和风扇
WO2021057001A1 (zh) 空调室外机及空调设备
CN105090122A (zh) 一种离心式风机及其无叶扩压器
CN102808793B (zh) 一种对旋式轴流风机
WO2021135696A1 (zh) 空调室外机
CN104033964A (zh) 空调器室外机
JP4720203B2 (ja) 遠心送風機、空気調和機
JP6229157B2 (ja) 送風機、およびその送風機を搭載した室外ユニット
CN207527738U (zh) 一种室外机以及空调器
CN113048579A (zh) 空调室外机
CN113048580A (zh) 空调室外机
CN114688049B (zh) 风机组件和空调器
JP2004060622A (ja) シロッコ形遠心ファンロータを用いた遠心送風機および空気調和機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20906407

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020906407

Country of ref document: EP

Effective date: 20220330

NENP Non-entry into the national phase

Ref country code: DE