US20140131016A1 - Contra-Rotating Fan Arrangement And Fan Drive System For Evaporative Cooling Equipment - Google Patents

Contra-Rotating Fan Arrangement And Fan Drive System For Evaporative Cooling Equipment Download PDF

Info

Publication number
US20140131016A1
US20140131016A1 US13/678,095 US201213678095A US2014131016A1 US 20140131016 A1 US20140131016 A1 US 20140131016A1 US 201213678095 A US201213678095 A US 201213678095A US 2014131016 A1 US2014131016 A1 US 2014131016A1
Authority
US
United States
Prior art keywords
fan
transmission
axial fan
output shaft
evaporative cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/678,095
Inventor
John SANTORO
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JVS Associates Inc
Original Assignee
JVS Associates Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JVS Associates Inc filed Critical JVS Associates Inc
Priority to US13/678,095 priority Critical patent/US20140131016A1/en
Assigned to JVS Associates, Inc. reassignment JVS Associates, Inc. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SANTORO, JOHN
Priority to US13/759,811 priority patent/US20140130535A1/en
Priority to CA2891674A priority patent/CA2891674A1/en
Priority to PCT/US2013/070430 priority patent/WO2014078740A1/en
Publication of US20140131016A1 publication Critical patent/US20140131016A1/en
Priority to US14/612,760 priority patent/US20160298908A9/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/10Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by imparting a pulsating motion to the flow, e.g. by sonic vibration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28CHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
    • F28C3/00Other direct-contact heat-exchange apparatus
    • F28C3/06Other direct-contact heat-exchange apparatus the heat-exchange media being a liquid and a gas or vapour
    • F28C3/08Other direct-contact heat-exchange apparatus the heat-exchange media being a liquid and a gas or vapour with change of state, e.g. absorption, evaporation, condensation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/024Multi-stage pumps with contrarotating parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/002Axial flow fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F25/00Component parts of trickle coolers
    • F28F25/10Component parts of trickle coolers for feeding gas or vapour
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/54Free-cooling systems

Definitions

  • cooling towers Common applications for evaporative cooling equipment, such as cooling towers, include providing cooled process fluid for HVAC, manufacturing, refrigeration and electric power generation.
  • the cooling towers serve to transfer heat from the process fluid into the surrounding environment.
  • the process fluid that needs to be cooled is delivered to the cooling tower and distributed over a heat transfer medium, also known as fill, typically by a series of nozzles that atomize the water over the fill.
  • the fill facilitates heat transfer by promoting evaporation through commingling the process fluid with dry outside air.
  • the fill provides a large surface area and provides a required time of contact between the process fluid and the dry, unsaturated airstream supplied by the fan within the cooling tower.
  • heat is transferred to the atmosphere through the saturated discharge airstream of the cooling tower.
  • a portion of the process fluid is lost through the endothermic process of evaporation leaving the remaining process fluid at a lower temperature than before it entered the cooling tower.
  • the cooled water is collected in a collection basin at the bottom of the cooling tower and then withdrawn therefrom.
  • Closed circuit cooling towers also known as fluid coolers
  • Closed circuit cooling towers have similar functionality, with the difference being that the process fluid is contained within a serpentine coil and not directly exposed to the surrounding environment. Water stored in the basin of the unit is sprayed over the coils to promote heat transfer from the liquid to the make-up water, while at the same time promoting the endothermic process of evaporation. The end result is the process fluid within the coil is cooled through evaporation of spray water on the outside surface of the coil and to a much lesser degree some heat is transferred through the temperature gradient between the spray water and the coil when atmospheric conditions allow.
  • Evaporative condensers are substantially identical to a closed circuit cooling tower or fluid cooler, except for the process medium.
  • a refrigerant is used as the process medium, in lieu of process fluids.
  • the evaporative condensers are typically used in the refrigeration industry comprising of cold storage, ice skating rinks, cryogenics, and so forth.
  • Airflow through evaporative cooling equipment is typically facilitated by a fan in combination with an intake air conduit and an exhaust air conduit, which are provided for each heat transfer section, or cell, of the cooling tower.
  • the fan In induced draft equipment, the fan is mounted near the exhaust of the evaporative cooling unit and draws air from the intake through the interior of the cooling unit and across the fill and drift eliminator sections.
  • the fan In forced draft equipment, the fan is mounted near the intake and pushes the air through the interior of the cooling unit, across the fill and drift eliminators, and out via the exhaust.
  • the evaporative cooling equipment systems that use axial fans for these applications are single-stage systems.
  • a counter-rotating fan system for evaporative cooling equipment can include a first axial fan disposed in an air conduit of an evaporative equipment unit, a second axial fan disposed in the air conduit and arranged coaxially with the first fan, a transmission for driving the first axial fan and the second axial fan, and a motor for driving the transmission, wherein the direction of rotation of the first axial fan is opposite to the direction of rotation of the second axial fan.
  • an evaporative cooling equipment unit can include an enclosure, at least one air conduit, a first axial fan disposed in the at least one air conduit, and a second axial fan disposed in the at least one air conduit and arranged coaxially with the first fan, wherein the direction of rotation of the first axial fan is opposite to the direction of rotation of the second axial fan, and wherein the speed of rotation of the first axial fan is different than the speed of rotation of the second axial fan.
  • FIG. 1 a shows a first exemplary embodiment of a counter-rotating fan system for evaporative cooling equipment.
  • FIG. 1 b shows an exemplary embodiment of a transmission for a counter-rotating fan system.
  • FIG. 2 a shows a second exemplary embodiment of a counter-rotating fan system for evaporative cooling equipment.
  • FIG. 2 b shows an exemplary embodiment of a transmission and fan hub for a counter-rotating fan system.
  • FIG. 3 shows a third exemplary embodiment of a counter-rotating fan system for evaporative cooling equipment.
  • FIG. 4 shows a fourth exemplary embodiment of a counter-rotating fan system for evaporative cooling equipment.
  • FIG. 5 shows a fifth exemplary embodiment of a counter-rotating fan system for evaporative cooling equipment.
  • FIG. 6 a shows a sixth exemplary embodiment of a counter-rotating fan system for evaporative cooling equipment.
  • FIG. 6 b shows an exemplary embodiment of a transmission for a counter-rotating fan system.
  • the word “exemplary” means “serving as an example, instance or illustration.”
  • the embodiments described herein are not limiting, but rather are exemplary only. It should be understood that the described embodiment are not necessarily to be construed as preferred or advantageous over other embodiments.
  • the terms “embodiments of the invention”, “embodiments” or “invention” do not require that all embodiments of the invention include the discussed feature, advantage or mode of operation.
  • counter-rotating fan systems for evaporative cooling equipment may be disclosed.
  • the fan systems may include a pair of coaxial, counter-rotating fans and associated drive and transmission components.
  • FIG. 1 a shows a first exemplary embodiment of a counter-rotating fan drive system 100 for evaporative cooling equipment.
  • System 100 can include a first fan 102 and a second fan 104 , which may be disposed in an air conduit 106 .
  • Air conduit 106 may be in fluid communication with the interior of evaporative cooling unit 10 and the exterior environment.
  • the fans 102 , 104 and air conduit 106 may be provided in any location on an evaporative cooling equipment unit 10 that enables system 100 to function as described herein.
  • air conduit 106 may be an exhaust air conduit, for example in an induced draft cooling unit.
  • air conduit 106 may be an intake air conduit, for example in a forced draft cooling unit.
  • Air conduit 106 may also function as a fan cowl for fans 102 , 104 .
  • the first fan 102 and second fan 104 may be axial fans and may be arranged coaxially with respect to each other.
  • fans 102 , 104 may include removable airfoil-type blades which may be pitched to a desired angle. The blades may be pitched such that the blade pitch of first fan 102 may be different from the blade pitch of second fan 104 .
  • a motor 108 may be provided to drive system 100 .
  • Motor 108 may be an electric motor, or any motor known to one having ordinary skill in the art that enables system 100 to function as described herein, and may have any power rating suitable for the particular application of system 100 .
  • Motor 108 may drive an output shaft 110 on which a drive pulley 112 is mounted.
  • Drive pulley 112 may engage a belt 114 , which can in turn engage a driven pulley 116 that is coupled to an input shaft 118 of transmission 120 .
  • Transmission 120 may drive fans 102 , 104 via first and second output shafts 122 , 124 .
  • First fan 102 may be rigidly coupled to first output shaft 122
  • second fan 104 may be rigidly coupled to second output shaft 124 .
  • Output shafts 122 , 124 may be arranged coaxially with respect to each other such that first output shaft 122 drives first fan 102 and second output shaft 124 drives second fan 104 .
  • second output shaft 124 and second fan 104 may each have a bore defined therein, the bores being sized such that first shaft 122 may pass through the bore.
  • Transmission 120 may include gearing arrangements for rotating the output shafts 122 , 124 at speeds different from the speed of the input shaft 118 .
  • Transmission 120 may also include gearing arrangements, for example a planetary gearset, that are adapted to drive first fan 102 in a direction counter to that of second fan 104 . Furthermore, transmission 120 may be adapted to drive first fan 102 at a different speed than second fan 104 .
  • gearing arrangements for example a planetary gearset
  • FIG. 1 b An exemplary embodiment of transmission 120 is shown in FIG. 1 b .
  • input shaft 118 may engage first output shaft 122 via a gear or belt drive that may be adapted for gearing reduction.
  • input shaft 118 may be rigidly coupled to, or may function as, first output shaft 122 , with gearing reduction provided by pulleys 112 , 116 .
  • the first output shaft 122 can carry a sun gear 126 a that engages a plurality of planet gears 126 b , which, in turn, engage a ring gear 126 c .
  • the planet gears 126 b are coupled to a carrier 128 that can maintain the positions of the planet gears.
  • Carrier 128 may be held stationary so as to allow the planet gears to act as idlers.
  • the ring gear 126 c may be coupled to second output shaft 124 .
  • first output shaft can rotate sun gear 126 a , causing ring gear 126 c to rotate in a direction opposite to the sun gear, thereby rotating second output shaft 124 in a direction opposite to that of first output shaft 122 .
  • the ratios of the gears may further be adapted to rotate second output shaft 124 at a speed different than that of first output shaft 122 .
  • transmission 120 may be substantially similar to that disclosed in U.S. Pat. No. 6,540,570, entitled Counter-Rotating Transmission, the disclosure of which is hereby incorporated by reference in its entirety.
  • FIG. 1 a An exemplary layout for counter-rotating fan drive system 100 is shown in FIG. 1 a .
  • a support member 130 may be coupled to an evaporative cooling equipment unit 10 .
  • Motor 108 and transmission 120 may be mounted on support member 130 .
  • Motor 108 may be mounted in a substantially laterally offset position from transmission 120 and oriented such that belt 114 can engage drive pulley 112 and driven pulley 116 .
  • Transmission 120 may be mounted proximate air conduit 106 such output shafts 122 , 124 can extend towards fans 102 , 104 , which may be disposed within air conduit 106 .
  • support member 130 as well as motor 108 and transmission 120 , may be mounted within the interior space of the evaporative cooling unit 10 .
  • the specific layout and positioning of the components system 100 may depend on the configuration of the particular evaporative cooling unit 10 with which system 100 may be used and may be adapted or modified as desired by one having ordinary skill in the art.
  • FIG. 2 a shows a second exemplary embodiment of a counter-rotating fan drive system 200 for evaporative cooling equipment.
  • substantially similar functional elements to those in the first exemplary embodiment are represented by similar numerals, with the leading digit incremented to 2. Thus, a detailed description of the substantially similar elements may be omitted.
  • the second exemplary embodiment has substantially similar structure and functionality to the first exemplary embodiment, except for the features described below.
  • motor 208 may drive a drive shaft 210 that may function as, or be coupled to, an input shaft of a transmission 240 .
  • Transmission 240 can include any gear arrangement that enables system 200 to function as described herein.
  • the gear arrangement can function to rotate output shaft 242 at a speed different from that of drive shaft 210 of motor 208 .
  • the gear arrangement may include an input gear rigidly coupled to drive shaft 210 , and an output gear rigidly coupled to output shaft 242 and engaged with the input gear.
  • the input and output gears may have different ratios.
  • Output shaft 242 of transmission 240 may extend to first fan 202 and may be rigidly coupled thereto so as to drive first fan 202 .
  • Second fan 204 may be arranged coaxially with output shaft 242 .
  • Second fan 204 may operatively engage output shaft 242 via a fan hub 250 .
  • Fan hub 250 can include a bore through which output shaft 242 may extend.
  • Fan hub 250 can further include a stator portion 252 on which second fan 204 may be rotatably mounted. So as to support fan hub 250 and second fan 204 in place, a support structure 256 can extend between, and be coupled to, transmission 240 and the stator portion 252 of fan hub 250 .
  • Fan hub 250 can further include a gear arrangement therein which can be operatively engaged with both output shaft 242 and second fan 204 .
  • An exemplary embodiment of fan hub 250 is shown in FIG. 2 b .
  • the gear arrangement can be operable to rotate second fan 204 in a direction opposite to that of output shaft 242 and consequently in a direction opposite to that of first fan 202 .
  • the gear arrangement can further be operable to rotate second fan 204 at a speed different from that of output shaft 242 and consequently first fan 202 .
  • a sun gear 254 a may be carried by output shaft 242 .
  • the sun gear 254 a can engages a plurality of planet gears 254 b , that are disposed within fan hub 250 .
  • the planet gears 254 b can, in turn, engage a ring gear 254 c .
  • the planet gears 254 b may be coupled to a carrier 258 , which can maintain the positions of the planet gears.
  • Carrier 258 may in turn be coupled to stator portion 252 of fan hub 250 , thereby allowing carrier 258 to be held stationary so as to allow the planet gears to act as idlers.
  • the ring gear 254 c may be coupled to, or may be part of the rotor of second fan 204 .
  • first output shaft can rotate sun gear 254 a , causing ring gear 254 c to rotate in a direction opposite to the sun gear, thereby rotating second fan 204 in a direction opposite to that of first output shaft 222 .
  • the ratios of the gears may further be adapted to rotate second fan 204 at a speed different than that of first output shaft 222 .
  • FIG. 2 a An exemplary layout for counter-rotating fan drive system 200 is shown in FIG. 2 a .
  • a support member 230 may be coupled to an evaporative cooling equipment unit 20 .
  • Motor 208 and transmission 240 may be provided as an integrated unit, and may be mounted on support member 230 .
  • Motor 208 and transmission 240 may be mounted proximate air conduit 206 such that output shaft 242 can extend towards fans 202 , 204 , which may be disposed within air conduit 206 .
  • support member 230 as well as motor 208 and transmission 220 , may be mounted within the interior cavity of the evaporative cooling unit 20 .
  • the specific layout and positioning of the components system 200 may depend on the configuration of the particular evaporative cooling unit 20 with which system 200 may be used and may be adapted or modified as desired by one having ordinary skill in the art.
  • FIG. 3 shows a third exemplary embodiment of a counter-rotating fan drive system 300 for evaporative cooling equipment.
  • substantially similar functional elements to those in the first exemplary embodiment are represented by similar numerals, with the leading digit incremented to 3. Thus, a detailed description of the substantially similar elements may be omitted.
  • the third exemplary embodiment has substantially similar structure and functionality to the first exemplary embodiment, except for the features described below.
  • motor 308 may drive a drive shaft 310 that can function as, or be coupled to, an input shaft of transmission 320 .
  • Transmission 320 may drive fans 302 , 304 via first and second output shafts 322 , 324 and may have substantially similar structure and functionality to any of the embodiments of transmission 120 .
  • FIG. 3 An exemplary layout for counter-rotating fan drive system 300 is shown in FIG. 3 .
  • a first support member 330 and a second support member 332 may be coupled to an evaporative cooling equipment unit 30 .
  • Motor 308 may be mounted on support member 330 while transmission 320 may be mounted on support member 332 .
  • Motor 308 may be mounted substantially proximate transmission 320 .
  • Transmission 320 may be mounted proximate air conduit 306 such output shafts 322 , 324 can extend towards fans 302 , 304 , which may be disposed within air conduit 306 .
  • support members 330 , 332 , as well as motor 308 and transmission 320 may be mounted within the interior space of the evaporative cooling unit 30 .
  • the specific layout and positioning of the components of system 300 may depend on the configuration of the particular evaporative cooling unit 30 with which system 300 may be used and may be adapted or modified as desired by one having ordinary skill in the art.
  • FIG. 4 shows a fourth exemplary embodiment of a counter-rotating fan drive system 400 for evaporative cooling equipment.
  • substantially similar functional elements to those in the first exemplary embodiment are represented by similar numerals, with the leading digit incremented to 4. Thus, a detailed description of the substantially similar elements may be omitted.
  • the fourth exemplary embodiment has substantially similar structure and functionality to the first exemplary embodiment, except for the features described below.
  • motor 408 may drive a drive shaft 410 , which may be coupled to a connecting shaft 415 via a first coupling 411 .
  • Connecting shaft 415 may in turn be coupled to an input shaft 418 of a transmission 420 via a second coupling 411 .
  • Couplings 411 may be rigid couplings or may be flexible couplings. A suitable type of coupling may chosen for a particular application by one having ordinary skill in the art.
  • Transmission 420 may drive fans 402 , 404 via first and second output shafts 422 , 424 and may have substantially similar structure and functionality to any of the embodiments of transmission 120 .
  • the drive shaft 410 and connecting shaft 415 may be oriented at an angle to the output shafts 422 , 424 of transmission 420 . Therefore, an angle gearing arrangement may be provided.
  • the angle gearing arrangement may be any known gearing arrangement that enables system 400 to function as described herein, and may include gear reduction capabilities.
  • the angle gearing arrangement may be disposed external to transmission 420 .
  • transmission 420 may be adapted by one having ordinary skill in the art to include an angle gearing arrangement therein.
  • FIG. 4 An exemplary layout for counter-rotating fan drive system 400 is shown in FIG. 4 .
  • a support member 430 may be coupled to an evaporative cooling equipment unit 40 .
  • Motor 408 may be mounted in a substantially laterally offset position from transmission 420 and disposed externally to evaporative cooling unit 40 , while transmission 420 may be mounted on support member 430 and disposed within the interior space of unit 40 .
  • motor 408 may be mounted on an exterior surface of the enclosure 42 of unit 40 .
  • Connecting shaft 415 may extend from motor 408 to transmission 420 via an aperture in the enclosure 42 .
  • Transmission 420 may be mounted proximate air conduit 406 such output shafts 422 , 424 can extend towards fans 402 , 404 , which may be disposed within air conduit 406 .
  • the specific layout and positioning of the components system 400 may depend on the configuration of the particular evaporative cooling unit 40 with which system 400 may be used and may be adapted or modified as desired by one having ordinary skill in the art.
  • FIG. 5 shows a fifth exemplary embodiment of a counter-rotating fan drive system 500 for evaporative cooling equipment.
  • substantially similar functional elements to those in the fourth exemplary embodiment are represented by similar numerals, with the leading digit incremented to 5. Thus, a detailed description of the substantially similar elements may be omitted.
  • the fifth exemplary embodiment has substantially similar structure and functionality to the fourth exemplary embodiment, except for the features described below.
  • motor 508 may drive a drive shaft 510 , which may be coupled to an input shaft 518 of a transmission 520 via a coupling 511 .
  • Couplings 511 may be a rigid couplings or may be a flexible coupling. A suitable type of coupling may chosen for a particular application by one having ordinary skill in the art.
  • the drive shaft 510 may be oriented at an angle to the output shafts 522 , 524 of transmission 520 . Therefore, an angle gearing arrangement may be provided, substantially as described in the exemplary embodiment of system 400 .
  • FIG. 5 An exemplary layout for counter-rotating fan drive system 500 is shown in FIG. 5 .
  • a support member 530 may be coupled to an evaporative cooling equipment unit 50 .
  • Motor 508 may be mounted in a substantially laterally offset position from transmission 520 .
  • Transmission 520 may be mounted proximate air conduit 506 such output shafts 522 , 524 can extend towards fans 502 , 504 , which may be disposed within air conduit 506 .
  • support member 530 as well as motor 508 and transmission 520 , may be mounted within the interior space of the evaporative cooling unit 50 .
  • the specific layout and positioning of the components system 500 may depend on the configuration of the particular evaporative cooling unit 50 with which system 500 may be used and may be adapted or modified as desired by one having ordinary skill in the art.
  • FIG. 6 a shows a sixth exemplary embodiment of a counter-rotating fan drive system 600 for evaporative cooling equipment.
  • substantially similar functional elements to those in the fourth exemplary embodiment are represented by similar numerals, with the leading digit incremented to 6. Thus, a detailed description of the substantially similar elements may be omitted.
  • the sixth exemplary embodiment has substantially similar structure and functionality to the first exemplary embodiment, except for the features described below.
  • motor 608 may drive a drive shaft 610 , which may be coupled to a connecting shaft 615 via a first coupling 611 .
  • Connecting shaft 615 may in turn be coupled to an input shaft 618 of a transmission 660 via a second coupling 611 .
  • Couplings 611 may be rigid couplings or may be flexible couplings. A suitable type of coupling may chosen for a particular application by one having ordinary skill in the art.
  • connecting shaft 615 may be omitted, and drive shaft 610 may be coupled to input shaft 618 via a rigid or flexible coupling 611 .
  • Transmission 660 may be disposed in between first fan 602 and second fan 604 .
  • a first output shaft 662 may extend to, and be rigidly coupled to first fan 602
  • a second output shaft 664 may extend to, and be rigidly coupled to second fan 604 .
  • input shaft 618 may be oriented at an angle to the output shafts 662 , 664 of transmission 640 .
  • Transmission 660 can therefore include a gearing arrangement for transferring power from input shaft 618 to output shafts 662 , 664 .
  • An exemplary gearing arrangement is shown in FIG. 6 b .
  • the gearing arrangement may include an input gear 666 carried by input shaft 618 , a first output gear 668 a carried by first output shaft 662 and engaged with the input gear, and a second output gear 668 b carried by second output shaft 664 and engaged with the input gear.
  • the input and output gears may be bevel gears, and may have differing ratios.
  • Transmission 660 can thus drive output shaft 662 at a different speed than, and in a direction counter to output shaft 664 .
  • any other configuration for transmission 660 that enables system 600 to function as described herein may be contemplated and provided by one having ordinary skill in the art.
  • FIG. 6 a An exemplary layout for counter-rotating fan drive system 600 is shown in FIG. 6 a .
  • a support member 630 may be coupled to an evaporative cooling equipment unit 40 and disposed within the interior space thereof.
  • Fans 602 , 604 may be disposed within air conduit 606
  • transmission 660 may be mounted within air conduit 606 between fans 602 , 604 .
  • the fan and transmission assembly may be supported on support member 630 by second shaft 664 , which may be coupled to a turntable 634 .
  • Turntable 634 may include a fixed portion coupled to support member 630 , and a rotating portion to which second shaft 664 may be coupled.
  • the rotating portion may be rotatably coupled to the fixed portion of turntable 634 .
  • Bearings, rollers, or any other friction reducing members may be provided to facilitate the rotatable coupling between the rotating portion and the fixed portion of turntable 634 .
  • Motor 608 may be mounted in a substantially laterally offset position from transmission 660 and disposed externally to evaporative cooling unit 60 .
  • motor 608 may be mounted on an exterior surface of the enclosure 62 of unit 60 .
  • a motor mount 636 may be provided so as to position motor 608 relative to transmission 660 so as to facilitate the coupling between motor 608 and transmission 660 .
  • Connecting shaft 615 may extend from motor 608 to transmission 660 via an aperture in the enclosure 62 .
  • the specific layout and positioning of the components system 600 may depend on the configuration of the particular evaporative cooling unit 60 with which system 600 may be used and may be adapted or modified as desired by one having ordinary skill in the art.
  • the embodiments described herein can provide several advantages over conventional, single-stage fan systems for evaporative cooling equipment.
  • the embodiments disclosed herein can result in reduced vibration transmission to the evaporative cooling unit, due to the cancelling out of the gyroscopic forces of the fans. The reduced vibration can be beneficial for meeting updated building codes that have strict vibration requirements, and can also facilitate increased life of the mechanical components of the fan drive systems.
  • the dual axial fans of the embodiments disclosed herein can generate higher static pressure within the evaporative cooling unit than can be generated by conventional single stage fan units, which can present several advantages.
  • the higher static pressure can result in an increased thermal performance of the evaporative cooling unit with which the counter-rotating fan system is used.
  • air may be drawn from portions of the cooling unit that are typically known as low-performance areas, such as the corners of the unit or other areas with suboptimal airflow when single stage fans are used.
  • the higher static pressure can shrink the air envelope requirement for a cooling unit, thereby facilitating improved flexibility for the layout of the cooling equipment.
  • sound attenuation devices may be used in conjunction with the embodiments disclosed herein, as the pressure drops created by the sound attenuation devices are mitigated by the increased pressure generated by the dual axial fans, allowing the evaporative cooling unit to maintain satisfactory thermal performance. Additional advantages of the embodiments disclosed herein include the reduction of the necessity to de-ice the fan blades, as the counter-rotating action of the two axial fans inhibits ice from forming during operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • General Details Of Gearings (AREA)

Abstract

A counter-rotating fan system for evaporative cooling equipment. The system can include a first axial fan disposed in an air conduit of an evaporative equipment unit, a second axial fan disposed in the air conduit and arranged coaxially with the first fan, a transmission for driving the first axial fan and the second axial fan, and a motor for driving the transmission, wherein the direction of rotation of the first axial fan is opposite to the direction of rotation of the second axial fan.

Description

    BACKGROUND
  • Common applications for evaporative cooling equipment, such as cooling towers, include providing cooled process fluid for HVAC, manufacturing, refrigeration and electric power generation. The cooling towers serve to transfer heat from the process fluid into the surrounding environment.
  • In an open circuit cooling tower, the process fluid that needs to be cooled is delivered to the cooling tower and distributed over a heat transfer medium, also known as fill, typically by a series of nozzles that atomize the water over the fill. The fill facilitates heat transfer by promoting evaporation through commingling the process fluid with dry outside air. The fill provides a large surface area and provides a required time of contact between the process fluid and the dry, unsaturated airstream supplied by the fan within the cooling tower. As the process fluid droplets pass through the fill, heat is transferred to the atmosphere through the saturated discharge airstream of the cooling tower. A portion of the process fluid is lost through the endothermic process of evaporation leaving the remaining process fluid at a lower temperature than before it entered the cooling tower. The cooled water is collected in a collection basin at the bottom of the cooling tower and then withdrawn therefrom.
  • Closed circuit cooling towers, also known as fluid coolers, have similar functionality, with the difference being that the process fluid is contained within a serpentine coil and not directly exposed to the surrounding environment. Water stored in the basin of the unit is sprayed over the coils to promote heat transfer from the liquid to the make-up water, while at the same time promoting the endothermic process of evaporation. The end result is the process fluid within the coil is cooled through evaporation of spray water on the outside surface of the coil and to a much lesser degree some heat is transferred through the temperature gradient between the spray water and the coil when atmospheric conditions allow. Evaporative condensers are substantially identical to a closed circuit cooling tower or fluid cooler, except for the process medium. In an evaporative condenser, a refrigerant is used as the process medium, in lieu of process fluids. The evaporative condensers are typically used in the refrigeration industry comprising of cold storage, ice skating rinks, cryogenics, and so forth.
  • Airflow through evaporative cooling equipment is typically facilitated by a fan in combination with an intake air conduit and an exhaust air conduit, which are provided for each heat transfer section, or cell, of the cooling tower. In induced draft equipment, the fan is mounted near the exhaust of the evaporative cooling unit and draws air from the intake through the interior of the cooling unit and across the fill and drift eliminator sections. In forced draft equipment, the fan is mounted near the intake and pushes the air through the interior of the cooling unit, across the fill and drift eliminators, and out via the exhaust. Typically, the evaporative cooling equipment systems that use axial fans for these applications are single-stage systems.
  • Several considerations are present in the installation and design of evaporative cooling systems, including airflow, sound output, space requirements, energy requirements, and vibration transmission. It is desirable to minimize noise emitted by operation of the fan, the energy consumed by the fan drive system, and the vibrations emitted by the fan drive system. However, minimizing these negative attributes requires reducing the rotational speed of the fans, which reduces airflow and static pressure below the required minimums to maintain the endothermic process of evaporation within a given evaporative cooling unit. A solution to minimize the negative attributes of cooling tower operation while meeting minimum airflow and static pressure requirements of a given evaporative cooling unit is therefore desired.
  • SUMMARY
  • According to at least one exemplary embodiment, a counter-rotating fan system for evaporative cooling equipment is disclosed. The system can include a first axial fan disposed in an air conduit of an evaporative equipment unit, a second axial fan disposed in the air conduit and arranged coaxially with the first fan, a transmission for driving the first axial fan and the second axial fan, and a motor for driving the transmission, wherein the direction of rotation of the first axial fan is opposite to the direction of rotation of the second axial fan.
  • According to another exemplary embodiment, an evaporative cooling equipment unit is disclosed. The unit can include an enclosure, at least one air conduit, a first axial fan disposed in the at least one air conduit, and a second axial fan disposed in the at least one air conduit and arranged coaxially with the first fan, wherein the direction of rotation of the first axial fan is opposite to the direction of rotation of the second axial fan, and wherein the speed of rotation of the first axial fan is different than the speed of rotation of the second axial fan.
  • BRIEF DESCRIPTION OF THE FIGURES
  • Advantages of embodiments of the present invention will be apparent from the following detailed description of the exemplary embodiments. The following detailed description should be considered in conjunction with the accompanying figures in which:
  • FIG. 1 a shows a first exemplary embodiment of a counter-rotating fan system for evaporative cooling equipment.
  • FIG. 1 b shows an exemplary embodiment of a transmission for a counter-rotating fan system.
  • FIG. 2 a shows a second exemplary embodiment of a counter-rotating fan system for evaporative cooling equipment.
  • FIG. 2 b shows an exemplary embodiment of a transmission and fan hub for a counter-rotating fan system.
  • FIG. 3 shows a third exemplary embodiment of a counter-rotating fan system for evaporative cooling equipment.
  • FIG. 4 shows a fourth exemplary embodiment of a counter-rotating fan system for evaporative cooling equipment.
  • FIG. 5 shows a fifth exemplary embodiment of a counter-rotating fan system for evaporative cooling equipment.
  • FIG. 6 a shows a sixth exemplary embodiment of a counter-rotating fan system for evaporative cooling equipment.
  • FIG. 6 b shows an exemplary embodiment of a transmission for a counter-rotating fan system.
  • DETAILED DESCRIPTION
  • Aspects of the invention are disclosed in the following description and related drawings directed to specific embodiments of the invention. Alternate embodiments may be devised without departing from the spirit or the scope of the invention. Additionally, well-known elements of exemplary embodiments of the invention will not be described in detail or will be omitted so as not to obscure the relevant details of the invention. Further, to facilitate an understanding of the description discussion of several terms used herein follows.
  • As used herein, the word “exemplary” means “serving as an example, instance or illustration.” The embodiments described herein are not limiting, but rather are exemplary only. It should be understood that the described embodiment are not necessarily to be construed as preferred or advantageous over other embodiments. Moreover, the terms “embodiments of the invention”, “embodiments” or “invention” do not require that all embodiments of the invention include the discussed feature, advantage or mode of operation.
  • According to at least one exemplary embodiment, counter-rotating fan systems for evaporative cooling equipment may be disclosed. The fan systems may include a pair of coaxial, counter-rotating fans and associated drive and transmission components.
  • FIG. 1 a shows a first exemplary embodiment of a counter-rotating fan drive system 100 for evaporative cooling equipment. System 100 can include a first fan 102 and a second fan 104, which may be disposed in an air conduit 106. Air conduit 106 may be in fluid communication with the interior of evaporative cooling unit 10 and the exterior environment. The fans 102, 104 and air conduit 106 may be provided in any location on an evaporative cooling equipment unit 10 that enables system 100 to function as described herein. In some exemplary embodiments, air conduit 106 may be an exhaust air conduit, for example in an induced draft cooling unit. In other exemplary embodiments, air conduit 106 may be an intake air conduit, for example in a forced draft cooling unit. Air conduit 106 may also function as a fan cowl for fans 102, 104.
  • The first fan 102 and second fan 104 may be axial fans and may be arranged coaxially with respect to each other. In some exemplary embodiments, fans 102, 104 may include removable airfoil-type blades which may be pitched to a desired angle. The blades may be pitched such that the blade pitch of first fan 102 may be different from the blade pitch of second fan 104.
  • A motor 108 may be provided to drive system 100. Motor 108 may be an electric motor, or any motor known to one having ordinary skill in the art that enables system 100 to function as described herein, and may have any power rating suitable for the particular application of system 100. Motor 108 may drive an output shaft 110 on which a drive pulley 112 is mounted. Drive pulley 112 may engage a belt 114, which can in turn engage a driven pulley 116 that is coupled to an input shaft 118 of transmission 120.
  • Transmission 120 may drive fans 102, 104 via first and second output shafts 122, 124. First fan 102 may be rigidly coupled to first output shaft 122, while second fan 104 may be rigidly coupled to second output shaft 124. Output shafts 122, 124 may be arranged coaxially with respect to each other such that first output shaft 122 drives first fan 102 and second output shaft 124 drives second fan 104. To that end, second output shaft 124 and second fan 104 may each have a bore defined therein, the bores being sized such that first shaft 122 may pass through the bore. Transmission 120 may include gearing arrangements for rotating the output shafts 122, 124 at speeds different from the speed of the input shaft 118.
  • Transmission 120 may also include gearing arrangements, for example a planetary gearset, that are adapted to drive first fan 102 in a direction counter to that of second fan 104. Furthermore, transmission 120 may be adapted to drive first fan 102 at a different speed than second fan 104.
  • An exemplary embodiment of transmission 120 is shown in FIG. 1 b. In some exemplary embodiments of transmission 120, input shaft 118 may engage first output shaft 122 via a gear or belt drive that may be adapted for gearing reduction. Alternatively, input shaft 118 may be rigidly coupled to, or may function as, first output shaft 122, with gearing reduction provided by pulleys 112, 116. The first output shaft 122 can carry a sun gear 126 a that engages a plurality of planet gears 126 b, which, in turn, engage a ring gear 126 c. The planet gears 126 b are coupled to a carrier 128 that can maintain the positions of the planet gears. Carrier 128 may be held stationary so as to allow the planet gears to act as idlers. The ring gear 126 c may be coupled to second output shaft 124. Thus, in operation, first output shaft can rotate sun gear 126 a, causing ring gear 126 c to rotate in a direction opposite to the sun gear, thereby rotating second output shaft 124 in a direction opposite to that of first output shaft 122. The ratios of the gears may further be adapted to rotate second output shaft 124 at a speed different than that of first output shaft 122.
  • In yet other exemplary embodiments, transmission 120 may be substantially similar to that disclosed in U.S. Pat. No. 6,540,570, entitled Counter-Rotating Transmission, the disclosure of which is hereby incorporated by reference in its entirety.
  • An exemplary layout for counter-rotating fan drive system 100 is shown in FIG. 1 a. A support member 130 may be coupled to an evaporative cooling equipment unit 10. Motor 108 and transmission 120 may be mounted on support member 130. Motor 108 may be mounted in a substantially laterally offset position from transmission 120 and oriented such that belt 114 can engage drive pulley 112 and driven pulley 116. Transmission 120 may be mounted proximate air conduit 106 such output shafts 122, 124 can extend towards fans 102, 104, which may be disposed within air conduit 106. In the exemplary embodiment, support member 130, as well as motor 108 and transmission 120, may be mounted within the interior space of the evaporative cooling unit 10. The specific layout and positioning of the components system 100 may depend on the configuration of the particular evaporative cooling unit 10 with which system 100 may be used and may be adapted or modified as desired by one having ordinary skill in the art.
  • FIG. 2 a shows a second exemplary embodiment of a counter-rotating fan drive system 200 for evaporative cooling equipment. For convenience of illustration, substantially similar functional elements to those in the first exemplary embodiment are represented by similar numerals, with the leading digit incremented to 2. Thus, a detailed description of the substantially similar elements may be omitted. The second exemplary embodiment has substantially similar structure and functionality to the first exemplary embodiment, except for the features described below.
  • In the second exemplary embodiment, motor 208 may drive a drive shaft 210 that may function as, or be coupled to, an input shaft of a transmission 240. Transmission 240 can include any gear arrangement that enables system 200 to function as described herein. The gear arrangement can function to rotate output shaft 242 at a speed different from that of drive shaft 210 of motor 208. For example, the gear arrangement may include an input gear rigidly coupled to drive shaft 210, and an output gear rigidly coupled to output shaft 242 and engaged with the input gear. The input and output gears may have different ratios.
  • Output shaft 242 of transmission 240 may extend to first fan 202 and may be rigidly coupled thereto so as to drive first fan 202. Second fan 204 may be arranged coaxially with output shaft 242. Second fan 204 may operatively engage output shaft 242 via a fan hub 250. Fan hub 250 can include a bore through which output shaft 242 may extend. Fan hub 250 can further include a stator portion 252 on which second fan 204 may be rotatably mounted. So as to support fan hub 250 and second fan 204 in place, a support structure 256 can extend between, and be coupled to, transmission 240 and the stator portion 252 of fan hub 250.
  • Fan hub 250 can further include a gear arrangement therein which can be operatively engaged with both output shaft 242 and second fan 204. An exemplary embodiment of fan hub 250 is shown in FIG. 2 b. The gear arrangement can be operable to rotate second fan 204 in a direction opposite to that of output shaft 242 and consequently in a direction opposite to that of first fan 202. The gear arrangement can further be operable to rotate second fan 204 at a speed different from that of output shaft 242 and consequently first fan 202.
  • In some exemplary embodiments, a sun gear 254 a may be carried by output shaft 242. The sun gear 254 a can engages a plurality of planet gears 254 b, that are disposed within fan hub 250. The planet gears 254 b can, in turn, engage a ring gear 254 c. The planet gears 254 b may be coupled to a carrier 258, which can maintain the positions of the planet gears. Carrier 258 may in turn be coupled to stator portion 252 of fan hub 250, thereby allowing carrier 258 to be held stationary so as to allow the planet gears to act as idlers. The ring gear 254 c may be coupled to, or may be part of the rotor of second fan 204. Thus, in operation, first output shaft can rotate sun gear 254 a, causing ring gear 254 c to rotate in a direction opposite to the sun gear, thereby rotating second fan 204 in a direction opposite to that of first output shaft 222. The ratios of the gears may further be adapted to rotate second fan 204 at a speed different than that of first output shaft 222.
  • An exemplary layout for counter-rotating fan drive system 200 is shown in FIG. 2 a. A support member 230 may be coupled to an evaporative cooling equipment unit 20. Motor 208 and transmission 240 may be provided as an integrated unit, and may be mounted on support member 230. Motor 208 and transmission 240 may be mounted proximate air conduit 206 such that output shaft 242 can extend towards fans 202, 204, which may be disposed within air conduit 206. In the exemplary embodiment, support member 230, as well as motor 208 and transmission 220, may be mounted within the interior cavity of the evaporative cooling unit 20. The specific layout and positioning of the components system 200 may depend on the configuration of the particular evaporative cooling unit 20 with which system 200 may be used and may be adapted or modified as desired by one having ordinary skill in the art.
  • FIG. 3 shows a third exemplary embodiment of a counter-rotating fan drive system 300 for evaporative cooling equipment. For convenience of illustration, substantially similar functional elements to those in the first exemplary embodiment are represented by similar numerals, with the leading digit incremented to 3. Thus, a detailed description of the substantially similar elements may be omitted. The third exemplary embodiment has substantially similar structure and functionality to the first exemplary embodiment, except for the features described below.
  • In the third exemplary embodiment, motor 308 may drive a drive shaft 310 that can function as, or be coupled to, an input shaft of transmission 320. Transmission 320 may drive fans 302, 304 via first and second output shafts 322, 324 and may have substantially similar structure and functionality to any of the embodiments of transmission 120.
  • An exemplary layout for counter-rotating fan drive system 300 is shown in FIG. 3. A first support member 330 and a second support member 332 may be coupled to an evaporative cooling equipment unit 30. Motor 308 may be mounted on support member 330 while transmission 320 may be mounted on support member 332. Motor 308 may be mounted substantially proximate transmission 320. Transmission 320 may be mounted proximate air conduit 306 such output shafts 322, 324 can extend towards fans 302, 304, which may be disposed within air conduit 306. In the exemplary embodiment, support members 330, 332, as well as motor 308 and transmission 320, may be mounted within the interior space of the evaporative cooling unit 30. The specific layout and positioning of the components of system 300 may depend on the configuration of the particular evaporative cooling unit 30 with which system 300 may be used and may be adapted or modified as desired by one having ordinary skill in the art.
  • FIG. 4 shows a fourth exemplary embodiment of a counter-rotating fan drive system 400 for evaporative cooling equipment. For convenience of illustration, substantially similar functional elements to those in the first exemplary embodiment are represented by similar numerals, with the leading digit incremented to 4. Thus, a detailed description of the substantially similar elements may be omitted. The fourth exemplary embodiment has substantially similar structure and functionality to the first exemplary embodiment, except for the features described below.
  • In the fourth exemplary embodiment, motor 408 may drive a drive shaft 410, which may be coupled to a connecting shaft 415 via a first coupling 411. Connecting shaft 415 may in turn be coupled to an input shaft 418 of a transmission 420 via a second coupling 411. Couplings 411 may be rigid couplings or may be flexible couplings. A suitable type of coupling may chosen for a particular application by one having ordinary skill in the art.
  • Transmission 420 may drive fans 402, 404 via first and second output shafts 422, 424 and may have substantially similar structure and functionality to any of the embodiments of transmission 120. The drive shaft 410 and connecting shaft 415 may be oriented at an angle to the output shafts 422, 424 of transmission 420. Therefore, an angle gearing arrangement may be provided. The angle gearing arrangement may be any known gearing arrangement that enables system 400 to function as described herein, and may include gear reduction capabilities. In some exemplary embodiments, the angle gearing arrangement may be disposed external to transmission 420. In other exemplary embodiments, transmission 420 may be adapted by one having ordinary skill in the art to include an angle gearing arrangement therein.
  • An exemplary layout for counter-rotating fan drive system 400 is shown in FIG. 4. A support member 430 may be coupled to an evaporative cooling equipment unit 40. Motor 408 may be mounted in a substantially laterally offset position from transmission 420 and disposed externally to evaporative cooling unit 40, while transmission 420 may be mounted on support member 430 and disposed within the interior space of unit 40. For example, motor 408 may be mounted on an exterior surface of the enclosure 42 of unit 40. Connecting shaft 415 may extend from motor 408 to transmission 420 via an aperture in the enclosure 42. Transmission 420 may be mounted proximate air conduit 406 such output shafts 422, 424 can extend towards fans 402, 404, which may be disposed within air conduit 406. The specific layout and positioning of the components system 400 may depend on the configuration of the particular evaporative cooling unit 40 with which system 400 may be used and may be adapted or modified as desired by one having ordinary skill in the art.
  • FIG. 5 shows a fifth exemplary embodiment of a counter-rotating fan drive system 500 for evaporative cooling equipment. For convenience of illustration, substantially similar functional elements to those in the fourth exemplary embodiment are represented by similar numerals, with the leading digit incremented to 5. Thus, a detailed description of the substantially similar elements may be omitted. The fifth exemplary embodiment has substantially similar structure and functionality to the fourth exemplary embodiment, except for the features described below.
  • In the fifth exemplary embodiment, motor 508 may drive a drive shaft 510, which may be coupled to an input shaft 518 of a transmission 520 via a coupling 511. Couplings 511 may be a rigid couplings or may be a flexible coupling. A suitable type of coupling may chosen for a particular application by one having ordinary skill in the art.
  • The drive shaft 510 may be oriented at an angle to the output shafts 522, 524 of transmission 520. Therefore, an angle gearing arrangement may be provided, substantially as described in the exemplary embodiment of system 400.
  • An exemplary layout for counter-rotating fan drive system 500 is shown in FIG. 5. A support member 530 may be coupled to an evaporative cooling equipment unit 50. Motor 508 may be mounted in a substantially laterally offset position from transmission 520. Transmission 520 may be mounted proximate air conduit 506 such output shafts 522, 524 can extend towards fans 502, 504, which may be disposed within air conduit 506. In the exemplary embodiment, support member 530, as well as motor 508 and transmission 520, may be mounted within the interior space of the evaporative cooling unit 50. The specific layout and positioning of the components system 500 may depend on the configuration of the particular evaporative cooling unit 50 with which system 500 may be used and may be adapted or modified as desired by one having ordinary skill in the art.
  • FIG. 6 a shows a sixth exemplary embodiment of a counter-rotating fan drive system 600 for evaporative cooling equipment. For convenience of illustration, substantially similar functional elements to those in the fourth exemplary embodiment are represented by similar numerals, with the leading digit incremented to 6. Thus, a detailed description of the substantially similar elements may be omitted. The sixth exemplary embodiment has substantially similar structure and functionality to the first exemplary embodiment, except for the features described below.
  • In the sixth exemplary embodiment, motor 608 may drive a drive shaft 610, which may be coupled to a connecting shaft 615 via a first coupling 611. Connecting shaft 615 may in turn be coupled to an input shaft 618 of a transmission 660 via a second coupling 611. Couplings 611 may be rigid couplings or may be flexible couplings. A suitable type of coupling may chosen for a particular application by one having ordinary skill in the art. In other exemplary embodiments, connecting shaft 615 may be omitted, and drive shaft 610 may be coupled to input shaft 618 via a rigid or flexible coupling 611.
  • Transmission 660 may be disposed in between first fan 602 and second fan 604. A first output shaft 662 may extend to, and be rigidly coupled to first fan 602, and a second output shaft 664 may extend to, and be rigidly coupled to second fan 604. Furthermore, input shaft 618 may be oriented at an angle to the output shafts 662, 664 of transmission 640. Transmission 660 can therefore include a gearing arrangement for transferring power from input shaft 618 to output shafts 662, 664. An exemplary gearing arrangement is shown in FIG. 6 b. For example, the gearing arrangement may include an input gear 666 carried by input shaft 618, a first output gear 668 a carried by first output shaft 662 and engaged with the input gear, and a second output gear 668 b carried by second output shaft 664 and engaged with the input gear. The input and output gears may be bevel gears, and may have differing ratios. Transmission 660 can thus drive output shaft 662 at a different speed than, and in a direction counter to output shaft 664. However, any other configuration for transmission 660 that enables system 600 to function as described herein may be contemplated and provided by one having ordinary skill in the art.
  • An exemplary layout for counter-rotating fan drive system 600 is shown in FIG. 6 a. A support member 630 may be coupled to an evaporative cooling equipment unit 40 and disposed within the interior space thereof. Fans 602, 604 may be disposed within air conduit 606, and transmission 660 may be mounted within air conduit 606 between fans 602, 604. The fan and transmission assembly may be supported on support member 630 by second shaft 664, which may be coupled to a turntable 634. Turntable 634 may include a fixed portion coupled to support member 630, and a rotating portion to which second shaft 664 may be coupled. The rotating portion may be rotatably coupled to the fixed portion of turntable 634. Bearings, rollers, or any other friction reducing members may be provided to facilitate the rotatable coupling between the rotating portion and the fixed portion of turntable 634.
  • Motor 608 may be mounted in a substantially laterally offset position from transmission 660 and disposed externally to evaporative cooling unit 60. For example, motor 608 may be mounted on an exterior surface of the enclosure 62 of unit 60. A motor mount 636 may be provided so as to position motor 608 relative to transmission 660 so as to facilitate the coupling between motor 608 and transmission 660. Connecting shaft 615 may extend from motor 608 to transmission 660 via an aperture in the enclosure 62. The specific layout and positioning of the components system 600 may depend on the configuration of the particular evaporative cooling unit 60 with which system 600 may be used and may be adapted or modified as desired by one having ordinary skill in the art.
  • The embodiments described herein can provide several advantages over conventional, single-stage fan systems for evaporative cooling equipment. First, due to the increased efficiency inherent to a counter-rotating fan arrangement, lower rotational speeds are required for the fans of the counter-rotating systems disclosed herein. Consequently, utilizing any of the embodiments disclosed herein in a cooling tower can result in decreased noise levels and decreased energy requirements when compared with single-stage fan systems. Furthermore, the embodiments disclosed herein can result in reduced vibration transmission to the evaporative cooling unit, due to the cancelling out of the gyroscopic forces of the fans. The reduced vibration can be beneficial for meeting updated building codes that have strict vibration requirements, and can also facilitate increased life of the mechanical components of the fan drive systems.
  • Additionally, the dual axial fans of the embodiments disclosed herein can generate higher static pressure within the evaporative cooling unit than can be generated by conventional single stage fan units, which can present several advantages. The higher static pressure can result in an increased thermal performance of the evaporative cooling unit with which the counter-rotating fan system is used. As a result of this higher static pressure, air may be drawn from portions of the cooling unit that are typically known as low-performance areas, such as the corners of the unit or other areas with suboptimal airflow when single stage fans are used. Additionally, the higher static pressure can shrink the air envelope requirement for a cooling unit, thereby facilitating improved flexibility for the layout of the cooling equipment. Furthermore, as a consequence of the increased static pressure, sound attenuation devices may be used in conjunction with the embodiments disclosed herein, as the pressure drops created by the sound attenuation devices are mitigated by the increased pressure generated by the dual axial fans, allowing the evaporative cooling unit to maintain satisfactory thermal performance. Additional advantages of the embodiments disclosed herein include the reduction of the necessity to de-ice the fan blades, as the counter-rotating action of the two axial fans inhibits ice from forming during operation.
  • The foregoing description and accompanying figures illustrate the principles, preferred embodiments and modes of operation of the invention. However, the invention should not be construed as being limited to the particular embodiments discussed above. Additional variations of the embodiments discussed above will be appreciated by those skilled in the art.
  • Therefore, the above-described embodiments should be regarded as illustrative rather than restrictive. Accordingly, it should be appreciated that variations to those embodiments can be made by those skilled in the art without departing from the scope of the invention as defined by the following claims.

Claims (19)

What is claimed is:
1. A counter-rotating fan system for evaporative cooling equipment, comprising:
a first axial fan disposed in an air conduit of an evaporative equipment unit;
a second axial fan disposed in the air conduit and arranged coaxially with the first fan;
a transmission for driving the first axial fan and the second axial fan; and
a motor for driving the transmission;
wherein the direction of rotation of the first axial fan is opposite to the direction of rotation of the second axial fan.
2. The fan system of claim 1, wherein the speed of rotation of the first axial fan is different from the speed of rotation of the second axial fan.
3. The fan system of claim 1, further comprising:
a first output shaft coupled to the first axial fan and driven by the transmission in a first direction; and
a second output shaft coupled to the second axial fan and driven by the transmission in a direction opposite to the first direction.
4. The fan system of claim 3, wherein the first output shaft is rotatably disposed within the second output shaft.
5. The fan system of claim 1, wherein the transmission is disposed between the first axial fan and the second axial fan.
6. The fan system of claim 1, further comprising:
a first output shaft coupled to the first axial fan and driven by the transmission in a first direction; and
a hub operatively coupled to the first output shaft and the second axial fan, the hub adapted to drive the second axial fan in a direction opposite to the first direction.
7. The fan system of claim 1, wherein an output shaft of the motor is coupled to an input shaft of the transmission via a belt drive.
8. The fan system of claim 1, wherein an output shaft of the motor is directly coupled to an input shaft of the transmission.
9. The fan system of claim 1, wherein an output shaft of the motor is coupled to an input shaft of the transmission via an angle gearing arrangement.
10. The fan system of claim 1, wherein the air conduit is an air discharge conduit.
11. The fan system of claim 1, wherein the air conduit is an air intake conduit.
12. An evaporative cooling equipment unit, comprising:
an enclosure;
at least one air conduit;
a first axial fan disposed in the at least one air conduit; and
a second axial fan disposed in the at least one air conduit and arranged coaxially with the first fan;
wherein the direction of rotation of the first axial fan is opposite to the direction of rotation of the second axial fan; and
wherein the speed of rotation of the first axial fan is different than the speed of rotation of the second axial fan.
13. The evaporative cooling equipment unit of claim 12, wherein the at least one air conduit is an air discharge conduit.
14. The evaporative cooling equipment unit of claim 12, wherein the at least one air conduit is an air intake conduit.
15. The evaporative cooling equipment unit of claim 12, further comprising:
a transmission for driving the first axial fan and the second axial fan; and
a motor for driving the transmission.
16. The fan system of claim 15, further comprising:
a first output shaft coupled to the first axial fan and driven by the transmission in a first direction; and
a second output shaft coupled to the second axial fan and driven by the transmission in a direction opposite to the first direction.
17. The fan system of claim 16, wherein the first output shaft is rotatably disposed within the second output shaft.
18. The fan system of claim 15, wherein the transmission is disposed between the first axial fan and the second axial fan.
19. The fan system of claim 15, further comprising:
a first output shaft coupled to the first axial fan and driven by the transmission in a first direction; and
a hub operatively coupled to the first output shaft and the second axial fan, the hub adapted to drive the second axial fan in a direction opposite to the first direction.
US13/678,095 2012-11-15 2012-11-15 Contra-Rotating Fan Arrangement And Fan Drive System For Evaporative Cooling Equipment Abandoned US20140131016A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/678,095 US20140131016A1 (en) 2012-11-15 2012-11-15 Contra-Rotating Fan Arrangement And Fan Drive System For Evaporative Cooling Equipment
US13/759,811 US20140130535A1 (en) 2012-11-15 2013-02-05 Contra-rotating fan arrangement and fan drive system for evaporative cooling equipment
CA2891674A CA2891674A1 (en) 2012-11-15 2013-11-15 Counter-rotating fan arrangement and fan drive system for evaporative cooling equipment
PCT/US2013/070430 WO2014078740A1 (en) 2012-11-15 2013-11-15 Counter-rotating fan arrangement and fan drive system for evaporative cooling equipment
US14/612,760 US20160298908A9 (en) 2012-11-15 2015-02-03 Contra-rotating axial fan system and transmission for dry and evaporative cooling equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/678,095 US20140131016A1 (en) 2012-11-15 2012-11-15 Contra-Rotating Fan Arrangement And Fan Drive System For Evaporative Cooling Equipment

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/759,811 Continuation US20140130535A1 (en) 2012-11-15 2013-02-05 Contra-rotating fan arrangement and fan drive system for evaporative cooling equipment
US14/176,452 Continuation-In-Part US8951012B1 (en) 2012-11-15 2014-02-10 Contra-rotating axial fan transmission for evaporative and non-evaporative cooling and condensing equipment

Publications (1)

Publication Number Publication Date
US20140131016A1 true US20140131016A1 (en) 2014-05-15

Family

ID=50680367

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/678,095 Abandoned US20140131016A1 (en) 2012-11-15 2012-11-15 Contra-Rotating Fan Arrangement And Fan Drive System For Evaporative Cooling Equipment
US13/759,811 Abandoned US20140130535A1 (en) 2012-11-15 2013-02-05 Contra-rotating fan arrangement and fan drive system for evaporative cooling equipment

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/759,811 Abandoned US20140130535A1 (en) 2012-11-15 2013-02-05 Contra-rotating fan arrangement and fan drive system for evaporative cooling equipment

Country Status (3)

Country Link
US (2) US20140131016A1 (en)
CA (1) CA2891674A1 (en)
WO (1) WO2014078740A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140130535A1 (en) * 2012-11-15 2014-05-15 John V. SANTORO Contra-rotating fan arrangement and fan drive system for evaporative cooling equipment
US20150049496A1 (en) * 2013-08-13 2015-02-19 Advanced Optoelectronic Technology, Inc. Light emitting diode lamp
WO2016014600A1 (en) * 2014-07-21 2016-01-28 Prime Datum Development Company, Llc Cooling schemes and methods for cooling tower motors
US20160069624A1 (en) * 2013-02-09 2016-03-10 Patrick M. Rollins Direct-Drive System For Cooling System Fans, Exhaust Blowers And Pumps
CN109405208A (en) * 2018-10-18 2019-03-01 美的集团武汉制冷设备有限公司 Control method, device, air conditioner and the computer readable storage medium of air conditioner
CN111765108A (en) * 2020-06-29 2020-10-13 深圳源泰建设工程有限公司 Fireproof fluid machine
CN113096931A (en) * 2021-04-20 2021-07-09 南通米兰特电气有限公司 Low-consumption energy-saving control transformer for elevator
US20220252282A1 (en) * 2019-12-26 2022-08-11 Guangdong Midea White Home Appliance Technology Innovation Center Co., Ltd. Air Conditioner Outdoor Unit

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104481922A (en) * 2014-11-18 2015-04-01 常州市金海珑机械制造有限公司 Air-conditioning fan device
CN104612989A (en) * 2014-12-06 2015-05-13 无锡高卓流体设备有限公司 Energy-saving two-stage fan
CN107036204A (en) * 2017-03-08 2017-08-11 西安工程大学 Multi-energy complementation type dew point evaporates cooling air processor group
US20200088268A1 (en) * 2017-05-31 2020-03-19 Genesis Robotics And Motion Technologies Canada, Ulc Actuator with speed reducer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4540369A (en) * 1983-02-22 1985-09-10 Richard Caires Counterrotating dual-propeller boat drive
US5720661A (en) * 1996-02-27 1998-02-24 Marix Co., Ltd. Inversion type ventilating fan
US20080089786A1 (en) * 2006-10-17 2008-04-17 Sinreich Mark G Counter-Rotating Integrated Propeller Assembly
US20110174011A1 (en) * 2010-01-21 2011-07-21 Lg Electronics Inc. Ventilating device and outdoor unit having the same
US20110312264A1 (en) * 2009-03-12 2011-12-22 Lg Electronic, Inc. Outdoor unit for air conditioner
US20140130535A1 (en) * 2012-11-15 2014-05-15 John V. SANTORO Contra-rotating fan arrangement and fan drive system for evaporative cooling equipment

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3900301A (en) * 1974-07-16 1975-08-19 Metalul Rosu Cluj Intreprinder Air treatment apparatus
AR206451A1 (en) * 1975-01-13 1976-07-23 Ecodyne Corp AN ASSEMBLY OF FAN AND COOLING TOWER THAT UNDERSTANDS YOU
US4182131A (en) * 1978-11-27 1980-01-08 Consoli Ronald P High efficiency air conditioner
GB8923784D0 (en) * 1989-10-23 1989-12-06 Northern Eng Ind Improvements in drive transmissions
US7137263B2 (en) * 2004-02-02 2006-11-21 Emerson Electric Co. Low profile condenser motor
JP4128194B2 (en) * 2005-09-14 2008-07-30 山洋電気株式会社 Counter-rotating axial fan
JP4033891B1 (en) * 2007-04-18 2008-01-16 山洋電気株式会社 Counter-rotating axial fan

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4540369A (en) * 1983-02-22 1985-09-10 Richard Caires Counterrotating dual-propeller boat drive
US5720661A (en) * 1996-02-27 1998-02-24 Marix Co., Ltd. Inversion type ventilating fan
US20080089786A1 (en) * 2006-10-17 2008-04-17 Sinreich Mark G Counter-Rotating Integrated Propeller Assembly
US20110312264A1 (en) * 2009-03-12 2011-12-22 Lg Electronic, Inc. Outdoor unit for air conditioner
US20110174011A1 (en) * 2010-01-21 2011-07-21 Lg Electronics Inc. Ventilating device and outdoor unit having the same
US20140130535A1 (en) * 2012-11-15 2014-05-15 John V. SANTORO Contra-rotating fan arrangement and fan drive system for evaporative cooling equipment

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140130535A1 (en) * 2012-11-15 2014-05-15 John V. SANTORO Contra-rotating fan arrangement and fan drive system for evaporative cooling equipment
US10345056B2 (en) * 2013-02-09 2019-07-09 Prime Datum Development Company, Llc Direct-drive system for cooling system fans, exhaust blowers and pumps
US20160069624A1 (en) * 2013-02-09 2016-03-10 Patrick M. Rollins Direct-Drive System For Cooling System Fans, Exhaust Blowers And Pumps
US9557047B2 (en) * 2013-08-13 2017-01-31 Advanced Optoelectronic Technology, Inc. Light emitting diode lamp
US20150049496A1 (en) * 2013-08-13 2015-02-19 Advanced Optoelectronic Technology, Inc. Light emitting diode lamp
WO2016014600A1 (en) * 2014-07-21 2016-01-28 Prime Datum Development Company, Llc Cooling schemes and methods for cooling tower motors
US10411561B2 (en) * 2014-07-21 2019-09-10 Prime Datum Development Company, Llc Cooling schemes and methods for cooling tower motors
US10998795B2 (en) * 2014-07-21 2021-05-04 Prime Datum Development Company, Llc Cooling schemes and methods for cooling tower motors
US20210226510A1 (en) * 2014-07-21 2021-07-22 Prime Datum Development Company, Llc Cooling Schemes And Methods For Cooling Tower Motors
CN109405208A (en) * 2018-10-18 2019-03-01 美的集团武汉制冷设备有限公司 Control method, device, air conditioner and the computer readable storage medium of air conditioner
US20220252282A1 (en) * 2019-12-26 2022-08-11 Guangdong Midea White Home Appliance Technology Innovation Center Co., Ltd. Air Conditioner Outdoor Unit
CN111765108A (en) * 2020-06-29 2020-10-13 深圳源泰建设工程有限公司 Fireproof fluid machine
CN113096931A (en) * 2021-04-20 2021-07-09 南通米兰特电气有限公司 Low-consumption energy-saving control transformer for elevator

Also Published As

Publication number Publication date
US20140130535A1 (en) 2014-05-15
CA2891674A1 (en) 2014-05-22
WO2014078740A1 (en) 2014-05-22

Similar Documents

Publication Publication Date Title
US20140131016A1 (en) Contra-Rotating Fan Arrangement And Fan Drive System For Evaporative Cooling Equipment
US20150219398A1 (en) Contra-rotating axial fan system and transmission for dry and evaporative cooling equipment
US8951012B1 (en) Contra-rotating axial fan transmission for evaporative and non-evaporative cooling and condensing equipment
US5916253A (en) Compact trailer refrigeration unit
US10560001B2 (en) Cooling tower having thermally managed motor
JP5167845B2 (en) Turbo compressor and refrigerator
CN107421005B (en) Portable window type air conditioner
JP5262155B2 (en) Turbo compressor and refrigerator
EP3450701B1 (en) Turbomachine systems with magnetic bearing
EP2238345A2 (en) A wind turbine generator with a heat exchanger
JP2011185175A (en) Turbo compressor and turbo refrigerator
US3962874A (en) Rotary heat engine powered single fluid cooling and heating apparatus
CN111594461A (en) Heat exchange type speed-increasing air pump
EP3992454B1 (en) Method and system for cooling a wind turbine gearbox oil heat-exchanger
WO2018128148A1 (en) Air conditioning device
CN112412713A (en) Cooling system of wind generating set
CN111566419A (en) Condenser device for air conditioner in sand wind environment
WO2022123229A1 (en) Propulsion systems for aircraft
CN211288081U (en) Integrated air compressor using rare earth motor
JP5545326B2 (en) Turbo compressor and refrigerator
CN215586815U (en) High-speed refrigerated centrifuge convenient to heat dissipation
US20140155218A1 (en) Axial fan drive and hub assembly for evaporative cooling equipment
CN117514683A (en) Circulating pump and motor spraying phase-change cooling system
CN109747407A (en) A kind of car tail portion mechanical equipment cooling device
TWM570365U (en) Rotor vacuum pump

Legal Events

Date Code Title Description
AS Assignment

Owner name: JVS ASSOCIATES, INC., NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SANTORO, JOHN;REEL/FRAME:029305/0839

Effective date: 20121109

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION