WO2021129310A1 - 洗衣机 - Google Patents

洗衣机 Download PDF

Info

Publication number
WO2021129310A1
WO2021129310A1 PCT/CN2020/132424 CN2020132424W WO2021129310A1 WO 2021129310 A1 WO2021129310 A1 WO 2021129310A1 CN 2020132424 W CN2020132424 W CN 2020132424W WO 2021129310 A1 WO2021129310 A1 WO 2021129310A1
Authority
WO
WIPO (PCT)
Prior art keywords
washing
water
tub
unit
control unit
Prior art date
Application number
PCT/CN2020/132424
Other languages
English (en)
French (fr)
Inventor
金田隆二
三觜绅平
Original Assignee
青岛海尔洗衣机有限公司
Aqua株式会社
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔洗衣机有限公司, Aqua株式会社, 海尔智家股份有限公司 filed Critical 青岛海尔洗衣机有限公司
Priority to CN202080090521.4A priority Critical patent/CN114867899B/zh
Publication of WO2021129310A1 publication Critical patent/WO2021129310A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F34/00Details of control systems for washing machines, washer-dryers or laundry dryers
    • D06F34/14Arrangements for detecting or measuring specific parameters
    • D06F34/22Condition of the washing liquid, e.g. turbidity
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F35/00Washing machines, apparatus, or methods not otherwise provided for
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F39/00Details of washing machines not specific to a single type of machines covered by groups D06F9/00 - D06F27/00 
    • D06F39/02Devices for adding soap or other washing agents

Definitions

  • the invention relates to a washing machine.
  • a washing method using magnesium is known. If you put magnesium into the bucket of the washing machine, the magnesium (Mg) will react chemically with the water (H 2 O) in the bucket to produce magnesium hydroxide (Mg(OH) 2 ) and hydrogen (H 2 ).
  • the water in the bucket will be It is modified into alkaline ionized water containing magnesium ions (Mg 2+ ) and hydroxide ions (OH ⁇ ).
  • Alkaline ionized water has the function of decomposing fats and oils in the same way as detergent, so it can use alkaline ionized water to remove dirt from the laundry in the bucket.
  • alkaline ionized water has a sterilization effect, so negative ion water can be used to sterilize the washing in the bucket and the bucket itself.
  • the alkaline ionized water generator described in Patent Document 1 below has a main body made of a sponge and a plurality of magnesium particles housed in the main body.
  • the alkaline ionized water generator is put into the bucket of the washing machine together with the laundry.
  • magnesium is eluted from the magnesium particles in the alkaline ionized water generator into the water in the bucket, so the magnesium reacts chemically with the water in the bucket to produce alkaline ionized water.
  • the alkaline ionized water generator described in Patent Document 1 floats in water in a bucket.
  • not all the magnesium particles in the alkaline ionized water generator may be submerged by the water in the bucket, so there is a limit to promote the chemical reaction between magnesium and water. Therefore, it is assumed that a accommodating part containing magnesium particles is arranged at the lower part of the water bucket so that the magnesium particles are submerged by the water in the water bucket.
  • magnesium particles deteriorate with use. Therefore, in a structure in which the container is arranged in the lower part of the bucket, it is difficult for the user's eyes to see the magnesium particles in the container. Therefore, even if the magnesium particles are degraded to the point where maintenance is required I am afraid that the magnesium particles may be left alone without noticing the deterioration of the magnesium particles.
  • Patent Document 1 Japanese Patent Application Publication No. 2017-99486
  • the present invention was completed under such a background, and its object is to provide a washing machine capable of grasping the timing of maintenance of magnesium particles for washing.
  • the present invention is a washing machine, comprising: a washing tub, which contains laundry and can store washing water; a containing part, arranged at a position immersed in the washing water in the washing tub, containing magnesium particles;
  • the washing water in the washing tub is energized;
  • the detection part detects the electrical characteristics of the washing water in the washing tub during the energization of the energization part;
  • the control part calculates the indication based on the detection result of the detection part An index value of the degree of deterioration of the magnesium particles in the accommodating part; and a notification part for notifying the deterioration of the magnesium particles in the accommodating part when the index value exceeds a predetermined threshold value.
  • the present invention is characterized in that the washing machine further includes a rotating wing provided in the washing tub and being rotationally driven, and the control unit is based on the detection unit detected by the detecting unit when the rotation of the rotating wing is stopped.
  • the index value is calculated based on the electrical characteristics of the washing water in the washing tub.
  • the present invention is characterized in that the washing machine further includes a water supply unit for supplying water to the washing tub, the control unit performs a dipping operation, and the dipping operation is: controlling the water supply unit to the washing tub Internal water supply, so that the laundry is immersed in the washing water in which the components of the magnesium particles in the storage section are dissolved in the washing tub, and the control section changes the operation time of the dipping operation according to the index value .
  • the present invention is characterized in that, when the index value exceeds a predetermined threshold value, the control unit performs a rejuvenation operation for rejuvenating the magnesium particles in the accommodating portion.
  • the present invention is characterized in that the energizing part includes two electrodes that are in contact with the washing water in the washing tub; and a switching part that periodically switches the polarity between the two electrodes.
  • the accommodating portion accommodating the magnesium particles is arranged at a position submerged in the washing water in the washing tub.
  • the chemical reaction between the many magnesium particles in the accommodating part and the washing water in the washing tub is promoted to produce a large amount of alkaline ionized water. Therefore, the washing can be effectively washed with a large amount of alkaline ionized water.
  • the detecting unit detects the electrical characteristics of the washing water. Then, based on the detection result of the detection unit, an index value indicating the degree of deterioration of the magnesium particles in the storage unit is calculated. When the index value exceeds a predetermined threshold value, the notification unit of the washing machine notifies the deterioration of the magnesium particles in the accommodating unit. Through this notification, the user can grasp the timing of maintenance of the magnesium particles for washing.
  • an index value indicating the degree of deterioration of the magnesium particles in the accommodating portion is calculated based on the electrical characteristics of the washing water in the washing tub detected by the detecting portion when the rotation of the rotor blade is stopped.
  • the detection unit can accurately detect the electrical characteristics of the washing water. Therefore, the index value calculated based on the electrical characteristics accurately indicates the degree of deterioration of the magnesium particles. Therefore, when the index value exceeds a predetermined threshold, the notification unit notifies the deterioration of the magnesium particles in the accommodating unit at an appropriate timing. By this notification, the user can grasp the appropriate timing for the maintenance of the magnesium particles for washing.
  • the operation time of the immersion washing operation is changed according to the index value indicating the degree of deterioration of the magnesium particles in the containing portion. Therefore, even if the magnesium particles are in a deteriorated state, the laundry in the washing tub is effectively washed by being immersed in alkaline ionized water for an appropriate time corresponding to the degree of deterioration of the magnesium particles during the immersion washing operation.
  • magnesium particles that have deteriorated to such an extent that the index value exceeds a predetermined threshold value are rejuvenated by the rejuvenation operation, thereby being able to chemically react effectively with the washing water in the washing tub as before the deterioration, resulting in a large amount of magnesium particles.
  • the energizing part energizes the washing water in the washing tub by passing an electric current between the two electrodes in contact with the washing water in the washing tub. If the polarity between the two electrodes is kept constant, it will cause problems such as blistering on the surface of the electrode or corrosion of the electrode. As a result, the detection unit may become unable to accurately detect the electricity of the washing water in the washing tub. characteristic. However, by periodically switching the polarity between these two electrodes in the energizing part, it is possible to suppress the malfunction of the electrodes.
  • Fig. 1 is a schematic vertical cross-sectional right view of a washing machine according to an embodiment of the present invention.
  • Fig. 2 is a perspective view of a part including a longitudinal section of a main part of the washing machine.
  • Fig. 3 is a block diagram showing the electrical structure of the washing machine.
  • Fig. 4 is an enlarged view of the main part of Fig. 2.
  • Fig. 5 is a circuit diagram of the main part of the washing machine.
  • Fig. 6 is a time chart showing changes in the resistance value of washing water stored in the washing tub of the washing machine.
  • Fig. 7 is a flowchart showing a washing operation executed by the washing machine.
  • Fig. 8 is a flowchart showing a washing operation of a modified example.
  • Fig. 9 is a flowchart showing a refreshing operation performed by the washing machine.
  • Fig. 10 is a flowchart showing a rejuvenation operation of a modified example.
  • washing machine 1: washing machine; 5: rotating wing; 8: washing tub; 11: receiving part; 17: display operation part; 21: water supply valve; 34: control part; 36: energization part; 37: detection part; 40: electrode; 41 : Switching part; C: threshold; L: laundry; M: magnesium granules.
  • Fig. 1 is a schematic vertical cross-sectional right view of a washing machine 1 according to an embodiment of the present invention.
  • the direction orthogonal to the surface of the paper in FIG. 1 is called the left-right direction X of the washing machine 1
  • the left-right direction in FIG. 1 is called the front-rear direction Y of the washing machine 1
  • the up-down direction in FIG. Z In the left-right direction X, the back side of the paper surface of FIG. 1 is referred to as the left side X1
  • the front side of the paper surface of FIG. 1 is referred to as the right side X2.
  • the front-rear direction Y the left side in FIG.
  • the front side Y1 is referred to as the front side Y1
  • the right side in FIG. 1 is referred to as the rear side Y2.
  • the upper side is referred to as the upper side Z1
  • the lower side is referred to as the lower side Z2.
  • the washing machine 1 includes: a box body 2, which forms the outer shell of the washing machine 1; an outer tub 3, which is contained in the box body 2 and can store washing water; an inner tub 4, which is contained in the outer tub 3; and a rotating wing 5, which is contained in the inner tub 4
  • the motor 6 generates the driving force to rotate the inner tub 4 and the rotating wing 5; and the electric transmission mechanism 7 transmits the driving force of the motor 6 to the inner tub 4 and the rotating wing 5.
  • the outer tub 3 and the inner tub 4 constitute a washing tub 8.
  • the washing machine 1 further includes: a guide cover 9 arranged in the inner tub 4 and used to circulate washing water; a filter unit 10 attached to the guide cover 9 and capture foreign matter from the washing water; Washing water is water obtained by dissolving tap water, detergent, etc. in tap water.
  • the box body 2 is made of metal, for example, and is formed in a box shape.
  • An opening 15 for communicating the inside and outside of the box 2 is formed on the upper surface 2A.
  • a door 16 that opens and closes the opening 15 is provided on the upper surface 2A.
  • a display operation unit 17 as an example of a notification unit composed of a liquid crystal operation panel or the like is provided in the area around the opening 15 in the upper surface 2A.
  • the user of the washing machine 1 can freely select the operating conditions of the washing machine 1 or instruct the washing machine 1 to start and stop the operation by operating a switch of the display operation unit 17 or the like. Information related to the operation of the washing machine 1 is visually displayed on a liquid crystal panel or the like of the display operation unit 17.
  • the outer tub 3 is made of resin, for example, and is formed in a cylindrical shape with a bottom.
  • the outer barrel 3 has: a substantially cylindrical circumferential wall 3A, which is arranged in the vertical direction Z; a bottom wall 3B, which blocks the hollow portion of the circumferential wall 3A from the lower side Z2; and a ring-shaped annular wall 3C, which divides the circumferential wall 3A The upper edge of the rim is wrapped around and protrudes toward the center side of the circumferential wall 3A.
  • an inlet and outlet 18 communicating with the hollow portion of the circumferential wall 3A from the upper side Z1 is formed on the inner side of the annular wall 3C.
  • the port 18 is in a state of being opposed to and communicating with the opening 15 of the box 2 from the lower side Z2.
  • a door 19 that opens and closes the entrance and exit 18 is provided on the annular wall 3C.
  • the bottom wall 3B is formed in a circular plate shape extending substantially horizontally, and a through hole 3D penetrating the bottom wall 3B is formed at a center position of the bottom wall 3B.
  • the water supply channel 20 connected to the tap of the tap water is connected to the annular wall 3C of the outer tub 3 from the upper side Z1, and the tap water is supplied into the outer tub 3 from the water supply channel 20.
  • a water supply valve 21 as an example of a water supply unit is provided in the middle of the water supply path 20. The water supply valve 21 is opened and closed in order to start or stop the water supply.
  • the drainage channel 22 is connected to the bottom wall 3B of the outer tub 3 from the lower side Z2, and the water in the outer tub 3 is drained from the drainage channel 22 to the outside of the machine.
  • a drain valve 23 as an example of a drain part is provided in the middle of the drain passage 22. The drain valve 23 is opened and closed in order to start or stop draining.
  • the inner tub 4 is made of metal, for example, and is formed into a cylindrical shape with a bottom that is slightly smaller than the outer tub 3, and can contain the laundry L inside.
  • the inner tub 4 has a substantially cylindrical circumferential wall 4A, which is arranged in the vertical direction Z, and a bottom wall 4B, which is provided at the lower end of the inner tub 4 and blocks the hollow portion of the circumferential wall 4A from the lower side Z2.
  • the inner peripheral surface of the circumferential wall 4A and the upper surface of the bottom wall 4B refer to the inner surface portion of the inner tub 4.
  • the upper end of the inner tub 4 is formed with an access port 24 bounded by the upper end of the inner peripheral surface of the circumferential wall 4A.
  • the port 24 exposes the hollow portion of the circumferential wall 4A to the upper side Z1, and is in a state of communicating with the port 18 of the tub 3 from the lower side Z2. The user allows the laundry L to enter and exit the inner tub 4 from the upper side Z1 through the open opening 15, the entrance 18, and the entrance 24.
  • the inner tub 4 is coaxially accommodated in the outer tub 3.
  • the inner tub 4 in the state of being accommodated in the outer tub 3 can rotate around a rotation axis J passing through the center of the inner tub 4 and extending in the up-down direction Z.
  • the rotation axis J in this embodiment strictly extends in the vertical direction, but it may also extend in an oblique direction with respect to the vertical direction.
  • the inclination direction is a direction shifted toward the front side Y1 as it goes to the upper side Z1.
  • the rotation axis J also passes through the center of the outer tub 3.
  • the rotation direction of the inner tub 4 coincides with the circumferential direction P around the rotation axis J.
  • the radial direction centered on the rotation axis J is referred to as the radial direction R.
  • the side facing the rotation axis J is referred to as the radial inner side R1
  • the side away from the rotation axis J is referred to as the radial direction. R2 to the outside.
  • a plurality of through holes 4C are formed in the circumferential wall 4A and the bottom wall 4B of the inner tub 4, and the washing water in the outer tub 3 can flow between the outer tub 3 and the inner tub 4 through the through holes 4C.
  • the inner tub 4, that is, the entire washing tub 8 can store washing water, and the water level in the outer tub 3 is consistent with the water level in the inner tub 4.
  • An annular balancer 25 along the circumferential direction P is attached to the upper end of the inner peripheral surface of the inner tub 4.
  • the balancer 25 reduces the vibration of the inner tub 4 during rotation, and the cavity 25A inside the balancer 25 contains liquid such as salt water for contributing to the reduction of vibration.
  • the bottom wall 4B of the inner tub 4 is formed in a disk shape extending substantially parallel to the bottom wall 3B of the outer tub 3 with an interval on the upper side Z1.
  • a through hole 4D that penetrates the bottom wall 4B in the vertical direction Z is formed at a center position of the bottom wall 4B that coincides with the rotation axis J.
  • the bottom wall 4B is provided with a tubular support shaft 26 that surrounds the through hole 4D and extends along the rotation axis J to the lower side Z2.
  • the support shaft 26 is inserted through the through hole 3D of the bottom wall 3B of the outer tub 3, and the lower end of the support shaft 26 is located on the lower side Z2 than the bottom wall 3B.
  • the rotating blade 5 is a so-called pulsator, formed in a disk shape centered on the rotation axis J, and is arranged on the bottom wall 4B in the inner tub 4.
  • On the lower surface of the rotor blade 5, a plurality of dorsal blades 5B arranged radially with the rotation axis J as the center are provided.
  • the lower end of the back blade 5B where the rotor blade 5 is arranged in the inner space of the inner tub 4 is referred to as a space S.
  • the rotating blade 5 is provided with a rotating shaft 27 extending from the center of the rotating blade 5 along the rotation axis J to the lower side Z2.
  • the rotating shaft 27 is inserted through the hollow portion of the support shaft 26, and the lower end of the rotating shaft 27 is located on the lower side Z2 than the bottom wall 3B of the outer tub 3.
  • the motor 6 is an electric motor such as an inverter motor.
  • the motor 6 is arranged on the lower side Z2 of the tub 3 in the case 2.
  • the motor 6 has an output shaft 28 that rotates around the rotation axis J, and generates driving force to be output from the output shaft 28.
  • the transmission mechanism 7 is interposed between the respective lower ends of the support shaft 26 and the rotating shaft 27 and the upper end of the output shaft 28 protruding from the motor 6 to the upper side Z1.
  • the transmission mechanism 7 selectively transmits the driving force output by the motor 6 from the output shaft 28 to one or both of the support shaft 26 and the rotation shaft 27.
  • As the transmission mechanism 7, a well-known mechanism is used.
  • the inner tub 4 receives the driving force of the motor 6 and is rotationally driven in the circumferential direction P.
  • the rotating wing 5 receives the driving force of the motor 6 and is rotationally driven in the circumferential direction P.
  • Each guide cover 9 has a groove shape extending from the lower end portion of the circumferential wall 4A of the inner tub 4 to the upper side Z1, and is made of resin, for example, and its plan section is formed in, for example, an arc shape that is convexly curved inwardly R1 in the radial direction.
  • the guide cover 9 is fixed to the circumferential wall 4A so as to cover a part of the circumferential wall 4A from the radially inner side R1.
  • a circulation flow path 29 extending from the lower end of the circumferential wall 4A to the upper side Z1 in the inner tub 4 is formed. That is, the guide cover 9 constitutes the circulation flow path 29. Since there are a plurality of guide covers 9, the circulation flow path 29 is also provided in plurality.
  • the lower end of the circulation flow path 29 serves as an inlet 29A of the circulation flow path 29 and is connected from the radially outer side R2 to the space S in the inner space of the inner tub 4 where the back blade 5B of the rotor blade 5 is arranged. That is, the inlet 29A is arranged on the bottom wall 4B side of the inner tub 4.
  • the guide cover 9 is formed with an opening 9A penetrating the guide cover 9 in the radial direction R.
  • the portion of the circulation flow path 29 exposed from the opening 9A to the radially inner side R1 is an outlet 29B.
  • the outlet 29B is arranged at a higher position than the inlet 29A and faces the inner tub 4.
  • the filter unit 10 includes a frame 30 just received in the opening 9A of the guide cover 9 and a filter 31 mounted on the frame 30.
  • the filter 31 is, for example, in the shape of a sheet made of a net or the like, and covers the opening 9A.
  • FIG. 2 is a perspective view of a part of the main part of the washing machine 1 including a longitudinal section.
  • the accommodating portion 11 is an arc-shaped hollow body extending in the circumferential direction P, and is arranged on the bottom side of the inner tub 4, specifically, at a position in the inner tub 4 that is submerged by washing water.
  • a plurality of accommodating portions 11 are provided, and the boundary portion between the lower end portion of the circumferential wall 4A of the inner tub 4 and the bottom wall 4B is arranged side by side in the circumferential direction P, avoiding the guide cover 9.
  • These accommodating parts 11 are preferably arranged at equal intervals in the circumferential direction P.
  • the accommodating portion 11 has an inner circumferential wall 11A that is curved in the circumferential direction P; and an outer circumferential wall 11B that is arranged on the radially outer side R2 than the inner circumferential wall 11A and is curved in the circumferential direction P.
  • the accommodating portion 11 has: a top wall 11C erected between the upper ends of the inner peripheral wall 11A and the outer peripheral wall 11B and bent along the circumferential direction P; and a bottom wall 11D erected between the lower ends of the inner peripheral wall 11A and the outer peripheral wall 11B and along the circumference Bend to P.
  • the portion on the radially inner side R1 is inclined so as to descend toward the radially inner side R1, and the portion on the radially outer side R2 extends substantially horizontally.
  • the entire bottom wall 11D is inclined in a manner of descending toward the radially inner side R1.
  • the accommodating portion 11 has an inner space 11E surrounded by an inner circumferential wall 11A, an outer circumferential wall 11B, a top wall 11C, and a bottom wall 11D and curved along the circumferential direction P.
  • the accommodating portion 11 has a first side wall 11F that blocks the internal space 11E from one side of the circumferential direction P; and a second side wall 11G that blocks the internal space 11E from the other side of the circumferential direction P.
  • the inner peripheral wall 11A, the top wall 11C, the first side wall 11F, and the second side wall 11G are respectively formed with an entrance 11H connected to the inner space 11E.
  • the port 11H formed in the inner peripheral wall 11A has a slit shape elongated in the circumferential direction P, and a plurality of ports are formed in a row in the circumferential direction P and the vertical direction Z, respectively.
  • the entrance 11H formed in the top wall 11C is a slit-like slit that straddles the radially inner portion R1 and the radially outer portion R2 in the top wall 11C and extends slenderly in the radial direction R, and is arranged in the circumferential direction P.
  • the entrances and exits 11H formed in the first side wall 11F and the second side wall 11G, respectively, are in the shape of a slit extending in the vertical direction Z, and are formed in a plurality in the circumferential direction P.
  • the magnesium particles M are particles made of magnesium, and the particle size of the magnesium particles M in the new product is set to a size of a few mm or so that the magnesium particles M cannot pass through the inlet and outlet 11H.
  • FIG. 3 is a block diagram showing the electrical structure of the washing machine 1.
  • the washing machine 1 further includes a control unit 34 formed of, for example, a microcomputer and built in the cabinet 2 (see also FIG. 1 ); and a water level sensor 35 that detects the water level of the washing water stored in the washing tub 8.
  • the control unit 34 includes a memory such as a CPU, a ROM, or a RAM, and a timer for timekeeping, and functions as an example of a notification unit.
  • the motor 6, the transmission mechanism 7, the display operation unit 17, the water supply valve 21, the drain valve 23, and the water level sensor 35 are electrically connected to the control unit 34, respectively.
  • the control unit 34 controls the duty ratio of the voltage applied to the motor 6 to control the motor 6 to rotate at a desired rotation speed.
  • the control unit 34 controls the transmission mechanism 7 to switch the transmission destination of the driving force of the motor 6 to one or both of the support shaft 26 and the rotation shaft 27.
  • the control unit 34 accepts the selection.
  • the control unit 34 controls the display of the display operation unit 17.
  • the control unit 34 controls the opening and closing of the water supply valve 21 and the drain valve 23.
  • the detection result of the water level sensor 35 is input to the control unit 34 in real time.
  • the control unit 34 executes the washing operation by controlling the operation of the motor 6, the transmission mechanism 7, the water supply valve 21, and the drain valve 23.
  • the washing operation has: a dipping operation, in which the laundry L is immersed in the washing water in the inner tub 4 for a predetermined time; a formal washing operation, in which the laundry L is officially washed after the immersion operation; and a rinsing operation, in the formal washing After the operation, the laundry L is rinsed; and a dehydration operation is performed, and the laundry L is dehydrated after the rinsing operation.
  • the control unit 34 first opens the water supply valve 21 to supply water to the washing tub 8. As a result, the washing water is stored in the washing tub 8.
  • the control unit 34 stops the water supply by closing the water supply valve 21.
  • the washing water stored in the inner tub 4 flows into the internal space 11E of the accommodating portion 11 from the inlet and outlet 11H.
  • the washing water chemically reacts with the magnesium component dissolved in the washing water from the magnesium particles M.
  • the details of the chemical reaction between the washing water and magnesium are as described above.
  • the pH of the washing water in the internal space 11E increases, thereby being modified into alkaline ionized water, which flows out into the inner tub 4 from the inlet and outlet 11H. .
  • the washing water By allowing the washing water to pass between the inner tub 4 and the inner space 11E through the inlet and outlet 11H in this way, most of the washing water in the washing tub 8 becomes alkaline ionized water. Therefore, during the immersion washing operation, the laundry L in the inner tub 4 is immersed in alkaline ionized water, which is the washing water in which the magnesium particles M in the storage portion 11 are dissolved.
  • the washing water is alkaline ionized water
  • the alkaline ionized water has a function of decomposing fats and oils, specifically acidic sebum dirt, etc., like detergents. Therefore, the laundry L in the inner tub 4 is immersed in the alkaline ionized water stored in the inner tub 4 to remove dirt.
  • the control unit 34 ends the soaking operation.
  • the inner tub 4 and the rotor blade 5 are in a stationary state during the immersion operation, but the rotor blade 5 may be rotated periodically. The rotation of the rotor blade 5 promotes an increase in the pH value of the washing water in the internal space 11E.
  • the control unit 34 starts the main washing operation and rotates the rotor blade 5. Then, the washing water in the space S on the side of the bottom wall 4B in the inner tub 4 is pushed to the radially outer side R2 by the back blade 5B of the rotating rotor blade 5, and is sent into the inlet 29A of each circulation channel 29.
  • the wash water flowing to the upper side Z1 in each circulation flow path 29 passes through the filter 31 of the filter unit 10 and flows out from the outlet 29B of the circulation flow path 29 to the radially inner side R1 (refer to the thick broken line arrow in FIG. 1 ).
  • the filter 31 captures foreign substances such as thread ends from the washing water that has passed through the filter 31 and stores them in the filter unit 10.
  • the washing water returning from the outlet 29B to the inner tub 4 is sprayed from the upper side Z1 to the laundry L in the inner tub 4, then flows to the space S, and circulates through the circulation flow path 29 again to be sprayed to the laundry L .
  • the washing water circulates along with the rotation of the rotor blade 5 in this way, and the alkaline ionized water is sprayed onto the washing L. Moreover, the laundry L is stirred by the raised portion 5A of the rotating rotor blade 5, so the dirt of the laundry L is mechanically removed.
  • the detergent may be automatically poured into the inner tub 4 or manually operated by the user.
  • the washing water in this case contains detergent components, and during the main washing operation, the dirt on the laundry L is chemically decomposed by the detergent components.
  • the alkaline component in the alkaline ionized water functions similarly to the detergent, and therefore, a high cleaning effect can be obtained even if the usage amount of the detergent is suppressed to be small.
  • the control unit 34 starts the rinsing operation. Specifically, the control unit 34 opens the water supply valve 21 to supply water to the washing tub 8, and stores the washing water in the washing tub 8 until the predetermined rinsing water level. Then, the control unit 34 rotates the rotary wing 5. In the rinsing operation, as in the dipping operation, washing water circulates along with the rotation of the rotor blade 5, and alkaline ionized water is sprayed to the washing L, the outer tub 3 and the inner tub 4 of the washing tub 8.
  • the dirt remaining in the laundry L is removed by the alkaline ionized water, and the laundry L, the outer tub 3, and the inner tub 4 are sterilized by the negative ions contained in the alkaline ionized water and the like.
  • the control unit 34 stops the rotor blade 5 and opens the drain valve 23 to drain water from the washing tub 8, thereby ending the rinsing operation.
  • the rinsing operation can also be implemented multiple times.
  • the control unit 34 starts the dehydration operation. Specifically, the control unit 34 spins the inner tub 4 by spin-drying with the drain valve 23 opened. The rotation speed of the inner tub 4 during the spin-drying process increases step by step, and finally reaches a maximum rotation speed of, for example, 800 rpm, and then the voltage application to the motor 6 is stopped, whereby the inner tub 4 performs inertial rotation. By the centrifugal force generated by the dehydration rotation of the inner tub 4, the laundry L in the inner tub 4 is dehydrated. The water seeping out from the laundry L due to dehydration is discharged from the drain 22 to the outside of the machine. When the inertial rotation of the inner tub 4 stops, the control unit 34 ends the dehydration operation.
  • the dehydration operation can be implemented not only as the final dehydration operation at the end of the washing operation, but also as an intermediate dehydration operation immediately after the completion of the main washing operation.
  • the magnesium particles M have, for example, a silvery surface when they are new, but when they are repeatedly contacted with washing water due to use, they deteriorate due to the formation of an oxide film on the surface, such as changing color to black.
  • the deteriorated magnesium particles M become difficult to chemically react with the washing water.
  • the magnesium particles M are accommodated in the accommodating portion 11 on the bottom side of the inner tub 4, and therefore, it is difficult for the user to visually confirm the deterioration of the magnesium particles M. Therefore, as a structure related to the deterioration of the magnesium particles M in the accommodating portion 11, the washing machine 1 further includes the energizing portion 36 and the detecting portion 37 shown in FIG. 3.
  • the energization unit 36 and the detection unit 37 are electrically connected to the control unit 34, respectively.
  • the energizing part 36 includes: two electrodes 40 that are in contact with the washing water in the washing tub 8; and a switching part 41 that switches the polarity between the two electrodes 40.
  • one of the two electrodes 40 may be referred to as a first electrode 40A, and the other may be referred to as a second electrode 40B.
  • the two electrodes 40 are in the shape of rods extending in the vertical direction Z, and are arranged to penetrate the bottom wall 3B of the outer tub 3 in a state of being aligned horizontally.
  • the upper end portion is a tip portion 40C
  • the lower end portion is a root portion 40D.
  • the tip portion 40C is arranged along the outer peripheral portion of the bottom wall 3B in the space T between the bottom wall 3B and the bottom wall 4B of the inner tub 4, and specifically, is arranged at the same position as the accommodating portion 11 in the radial direction R.
  • One wire 42 is connected to the root 40D of each electrode 40.
  • the electric wire 42 connected to the root 40D of the first electrode 40A may be referred to as a first electric wire 42A
  • the electric wire 42 connected to the root 40D of the second electrode 40B may be referred to as a second electric wire 42B.
  • the first electric wire 42A and the second electric wire 42B are routed on the lower side Z2 of the bottom wall 3B and connected to the switching part 41.
  • FIG. 5 is a circuit diagram related to the energizing part 36 in the washing machine 1.
  • the part of the first electric wire 42A on the opposite side to the first electrode 40A branches into a first contact 42C and a second contact 42D.
  • the part of the second electric wire 42B on the opposite side to the second electrode 40B branches into a third contact 42E and a fourth contact 42F.
  • the washing machine 1 includes: a first switch 43 selectively contacting any one of the first contact 42C and the third contact 42E; a second switch 44 selectively contacting any one of the second contact 42D and the fourth contact 42F
  • the wiring 45 connects the first switch 43 and the second switch 44; and the power source 46 is arranged in the middle of the wiring 45.
  • the first contact 42C, the third contact 42E, and the first switch 43 constitute a first relay 47.
  • the second contact 42D, the fourth contact 42F, and the second switch 44 constitute a second relay 48.
  • the switching unit 41 includes a first relay 47 and a second relay 48. Through the control by the control unit 34, the switching unit 41 brings the first switch 43 into contact with the first contact 42C in the first relay 47, and brings the second switch 44 into contact with the fourth contact 42F in the second relay 48. In this state, between the first electrode 40A and the second electrode 40B submerged by the washing water in the inner tub 4, a current generated by, for example, a weak DC voltage of 12V flows from the first electrode 40A which becomes the positive electrode to the second electrode which becomes the negative electrode.
  • the switching unit 41 makes the first switch 43 contact the third contact 42E in the first relay 47, and makes the second switch 44 contact the second contact 42D in the second relay 48 contact.
  • the polarity is switched between the first electrode 40A and the second electrode 40B submerged by the washing water in the inner tub 4, and the above-mentioned current flows from the second electrode 40B serving as the positive electrode to the first electrode 40A serving as the negative electrode. (Refer to arrow E2).
  • the energizing unit 36 energizes the washing water in the washing tub 8 by passing an electric current between the two electrodes 40 that are in contact with the washing water in the washing tub 8. If the polarity between the two electrodes 40 is kept constant, there may be problems such as blistering on the surface of the electrode 40 or corrosion of the electrode 40 due to electrolysis generated around the electrode 40. However, by periodically switching the polarity between the two electrodes 40 by the switching unit 41 controlled by the control unit 34 in the energizing unit 36, it is possible to suppress the malfunction of the electrode 40.
  • the detection unit 37 is a sensor that detects the electrical characteristics of the washing water stored in the washing tub 8 during the energization of the energization unit 36.
  • the electrical characteristic of the washing water in this embodiment is electrical resistance.
  • FIG. 6 is a time chart showing changes in the resistance value of the washing water stored in the washing tub 8. In the timing chart of FIG. 6, the horizontal axis represents the elapsed time (unit: minutes), and the vertical axis represents the resistance value (unit: k ⁇ ) of the resistance of the washing water detected by the detection unit 37.
  • the energizing part 36 continuously energizes the washing water in the washing tub 8 for, for example, 1 hour, as shown by the solid line in FIG.
  • the resistance of the washing water drops from the initial value of 18k ⁇ by about 5k ⁇ to 13k ⁇ . This is because the chemical reaction between the magnesium particles M and the washing water is promoted, thereby increasing the conductivity of the washing water.
  • the energizing portion 36 similarly energizes the washing water in the washing tub 8, the washing tub 8 is shown as a broken line in FIG.
  • the degree of decrease in the resistance of the washing water inside becomes slow, and only about 2k ⁇ is reduced from the initial value of 18k ⁇ . This is because the chemical reaction between the magnesium particles M and the washing water becomes slow, and thus the conductivity of the washing water becomes difficult to increase.
  • the washing machine 1 based on such electrical characteristics, specifically, the amount of decrease in the resistance value, it is possible to confirm the deterioration of the magnesium particles M in the accommodating portion 11 during the washing operation.
  • the control unit 34 opens the water supply valve 21 to supply water to the washing tub 8 as described above in order to start the dipping operation (step S1).
  • the control unit 34 stops the water supply, and when the rotation of the rotor blade 5 stops, the energization unit 36
  • the washing water in the washing tub 8 is energized, and the resistance value A of the washing water in this state is measured by the detection unit 37 and temporarily stored (step S3).
  • the amount of washing water in the washing tub 8 when the water level in the washing tub 8 reaches the immersion water level is, for example, 32 L.
  • the control unit 34 measures the resistance of the washing water at the current time by the detection unit 37 when the rotation of the rotor blade 5 is stopped. Value B (step S5).
  • the resistance value B is a value lower than the resistance value A.
  • the control unit 34 calculates the amount of decrease in the resistance value based on the resistance value A and the resistance value B as the detection result of the detection unit 37 when the rotation of the rotor blade 5 is stopped, and compares the amount of decrease in the resistance value with a predetermined threshold C ( Step S6).
  • the amount of decrease in the resistance value is an index value indicating the degree of deterioration of the magnesium particles M in the accommodating portion 11, and is obtained by subtracting the resistance value B from the resistance value A. If the magnesium particles M in the accommodating portion 11 are close to a new product, the decrease in the resistance value is greater than or equal to the threshold C. In this case (YES in step S6), the control unit 34 ends the dipping operation and executes the above-mentioned main washing operation (step S7), rinsing operation (step S8), and dehydration operation (step S9). By the end of the dehydration operation, the entire washing operation ends.
  • the control unit 34 notifies the user that the magnesium particles M in the accommodating unit 11 have deteriorated and are required by displaying the lighting of a maintenance lamp (not shown) in the operation unit 17 and the like. Meaning of maintenance (step S10).
  • a buzzer may be sounded instead of the display in the display operation unit 17, or the display of the display operation unit 17 may be combined with the buzzer. Combine to notify.
  • control unit 34 ends the dipping operation and performs the main washing operation (step S7), the rinsing operation (step S8), and the dehydrating operation (step S9). It should be noted that the maintenance lamp remains on even after the official washing operation when the power of the washing machine 1 is turned on.
  • the control unit 34 starts the dipping operation, and first, resets the count value D whose initial value is zero to the initial value (step S21), and supplies water to the washing tub 8 (step S1).
  • the count value D is stored by the control unit 34.
  • step S3 when the water level in the washing tub 8 reaches the soaking water level (Yes in step S2), the control unit 34 stops the water supply and energizes the washing water in the washing tub 8 through the energization unit 36, and the detection unit 37 detects the state The resistance value A of the washing water below is temporarily stored (step S3).
  • step S22 the control unit 34 increments the count value D by (+1) (step S23).
  • the count value D after increment is the same as the elapsed time (unit: minutes) from the time of the measurement of the resistance value A. If the incremented count value D is less than 90 (No in step S24), the control unit 34 measures the resistance value B of the washing water at the current time (step S5). Then, the control unit 34 calculates the amount of decrease in the resistance value by subtracting the resistance value B from the resistance value A, and compares the decrease amount with the threshold value C (step S6).
  • control unit 34 ends the dipping operation and performs the actual cleaning operation (step S7), and the rinsing operation (Step S8) and dehydration operation (Step S9).
  • step S6 when the magnesium particles M in the accommodating portion 11 have deteriorated to the extent that the decrease in the resistance value is less than the threshold value C (NO in step S6), the control portion 34 repeats the processing after step S22. As a result, the count value D becomes larger (step S23). Then, when the elapsed time from the measurement of the resistance value A reaches 90 minutes (Yes in step S24), the control unit 34 turns on the maintenance lamp of the display operation unit 17 to notify the user of the Deterioration of the magnesium particles M (step S10).
  • the control unit 34 extends the operating time of the immersion operation, that is, the above-mentioned immersion time to a maximum of 90 minutes. That is, the control unit 34 changes the immersion time in accordance with the amount of decrease in the resistance value.
  • the control unit 34 after turning on the maintenance lamp performs the main washing operation (step S7), the rinsing operation (step S8), and the spin-drying operation (step S9).
  • the control unit 34 can perform a rejuvenation operation that maintains the magnesium particles M in the storage portion 11, that is, makes the storage portion A dedicated process for the renewal of magnesium particles M within 11.
  • the control unit 34 opens the water supply valve 21 to supply water to the empty washing tub 8 (step S31).
  • the control unit 34 stops the water supply, and temporarily stops the overall operation of the washing machine 1 to make The above-mentioned buzzer sounds (step S33).
  • the amount of wash water in the washing tub 8 when the water level in the washing tub 8 reaches the rejuvenation water level is, for example, 16 L, and the water surface of the wash water at the rejuvenation water level is located higher than the accommodating portion 11.
  • the user who has received the notification of the buzzer opens the door 16 and the door 19, and manually puts a predetermined cleaning agent into the inner tub 4 from the entrance 24 (refer to FIG. 1).
  • the cleaning agent here include citric acid tablets and liquids.
  • the control unit 34 releases the temporary stop of the washing machine 1 and restarts it (step S34).
  • the control unit 34 agitates the washing water in the washing tub 8 by rotating the rotor blade 5 (step S35).
  • the cleaning agent is effectively dissolved in the washing water to generate a citric acid aqueous solution, and flows into the internal space 11E from the inlet and outlet 11H of the container 11 (see FIG. 1).
  • the magnesium particles M in the internal space 11E are immersed in the citric acid aqueous solution.
  • the magnesium particles M are rejuvenated by removing the oxide film from the surface.
  • step S35 After the control unit 34 continues the stirring of the washing water in step S35 for, for example, 1 minute, the rotation of the rotor blade 5 is stopped, and the drain valve 23 is opened to drain water from the washing tub 8. Then, the control unit 34 rinses the magnesium particles M by supplying water to the washing tub 8 and rotating the rotor blade 5, and then, by rotating the inner tub 4 with the drain valve 23 opened, the magnesium particles M are dehydrated (step S36). After that, the control unit 34 turns off the maintenance lamp in the display operation unit 17 to end the rejuvenation operation (step S37).
  • the rejuvenation operation can include the modification shown in FIG. 10.
  • the washing machine 1 includes, for example, a liquid storage tank 51 that stores detergent liquid; and a supply path 52 that connects a portion of the water supply path 20 on the downstream side of the water supply valve 21 to the liquid storage tank 51 ; And the supply valve 53 is arranged in the middle of the supply path 52 and is opened and closed by the control unit 34 (see FIGS. 1 and 3).
  • the control unit 34 supplies water to the washing tub 8 in order to start the refreshing operation of the modified example (step S31). Then, when the water level in the washing tub 8 reaches the refreshing water level (YES in step S32), the control section 34 stops the water supply and opens the supply valve 53 (step S41). Thereby, the cleaning agent in the liquid storage tank 51 flows through the supply path 52 and the water supply path 20 in this order, and is automatically injected into the washing tub 8. After that, the control unit 34 agitates the washing water in the washing tub 8 by rotating the rotor blade 5 (step S35). Thus, the magnesium particles M in the internal space 11E of the accommodating portion 11 are renewed by being immersed in the citric acid aqueous solution.
  • step S35 After the control unit 34 continues the stirring of the washing water in step S35 for, for example, 1 minute, the rotation of the rotor blade 5 is stopped, and the drain valve 23 is opened to drain water from the washing tub 8. Then, the control unit 34 rinses the magnesium particles M, and then spins the inner tub 4 with the drain valve 23 opened to dehydrate the magnesium particles M (step S36). After that, the control unit 34 turns off the maintenance lamp in the display operation unit 17 to end the rejuvenation operation (step S37).
  • the accommodating portion 11 accommodating the magnesium particles M is arranged in the washing tub 8 at a position submerged by the washing water.
  • the chemical reaction between almost all the magnesium particles M in the container 11 and the washing water in the washing tub 8 is promoted to produce a large amount of alkaline ionized water. Therefore, the washing L can be effectively treated with a large amount of alkaline ionized water. washing.
  • a large amount of magnesium particles M can be accommodated in a dedicated space such as the accommodating portion 11, a large amount of alkaline ionized water can be generated and the cleaning power can be improved.
  • the control unit 34 calculates the amount of decrease in the resistance value indicating the degree of deterioration of the magnesium particles M in the accommodating unit 11 based on the detection result of the detection unit 37 (step S6).
  • the control unit 34 notifies the deterioration of the magnesium particles M in the accommodating unit 11 through the display operation unit 17 (step S10). Through this notification, the user can grasp the timing of maintenance of the magnesium particles M for washing.
  • control unit 34 calculates the amount of decrease in the resistance value based on the resistance of the washing water detected by the detection unit 37 when the rotation of the rotor blade 5 is stopped.
  • the detection unit 37 can accurately detect the resistance value of the washing water (steps S3 and S5). Therefore, the amount of decrease calculated based on the resistance value accurately indicates the degree of deterioration of the magnesium particles M. Therefore, when the amount of decrease exceeds the threshold value C, the control unit 34 informs the storage unit 11 at an appropriate timing through the display operation unit 17 The magnesium particles M inside are deteriorated (step S10). By this notification, the user can grasp the appropriate timing for the maintenance of the magnesium particles M for washing.
  • the operation time of the immersion washing operation is changed according to an index value indicating the degree of deterioration of the magnesium particles M in the housing portion 11 (steps S23 and S24). Therefore, even if the magnesium particles M are in a deteriorated state, the laundry L in the washing tub 8 is effectively washed by being soaked in alkaline ionized water for an appropriate time corresponding to the degree of deterioration of the magnesium particles M during the immersion operation. . That is, when the magnesium particles M are deteriorated, the immersion time is prolonged, so that the same cleaning effect as when the magnesium particles M are new can be obtained.
  • the magnesium particles M degraded to such an extent that the decrease in the resistance value exceeds the threshold value C is rejuvenated by the rejuvenation operation (refer to FIGS. 9 and 10), so that it can be the same as the washing water in the washing tub before the deterioration. Effective chemical reaction occurs to produce a large amount of alkaline ionized water.
  • the accommodating portion 11 may also be detachable from the inner tub 4.
  • the user after detaching the accommodating portion 11 from the inner tub 4 and maintaining the magnesium particles M in the accommodating portion 11, the user can reattach the accommodating portion 11 to the inner tub 4 in the reverse order of the detachment. Thereby, the maintainability of magnesium can be improved.
  • the user when the above-mentioned maintenance lamp is on, the user may also detach the accommodating portion 11 from the inner tub 4 and replace the magnesium particles M in the accommodating portion 11 with new ones.
  • the electrical resistance is used in the above-mentioned embodiment, but the electrical conductivity may also be used.
  • the amount of decrease in the resistance value is lower than the threshold value C, it is determined that the magnesium particles M have deteriorated.
  • an index value other than the amount of decrease in the resistance value it may be determined that the magnesium particles M are deteriorated when the index value is higher than a predetermined threshold value.
  • the washing machine 1 is a vertical washing machine, but it may be a drum washing machine in which the rotation axis J of the inner tub 4 extends horizontally in the front-rear direction Y.
  • the washing machine 1 may be an integrated washer-dryer with a drying function, or may be a double-tub washing machine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Control Of Washing Machine And Dryer (AREA)

Abstract

本发明提供一种能掌握洗涤用的镁粒的维护的定时的洗衣机。本发明的洗衣机(1)包括:洗涤桶,容纳洗涤物并能蓄留洗涤水;容纳部,配置于洗涤桶内的被洗涤水浸没的位置并容纳镁粒;通电部(36),对洗涤桶内的洗涤水进行通电;检测部(37),在通电部(36)进行通电的过程中检测洗涤桶内的洗涤水的电特性;控制部(34);以及显示操作部(17)。控制部(34)基于检测部(37)的检测结果来计算出表示容纳部内的镁粒的劣化程度的指标值。在指标值超过规定的阈值的情况下,控制部(34)通过显示操作部(17)通知容纳部内的镁粒的劣化。

Description

洗衣机 技术领域
本发明涉及一种洗衣机。
背景技术
已知使用镁的洗涤方法。若向洗衣机的水桶投入镁,则镁(Mg)与水桶内的水(H 2O)发生化学反应,产生氢氧化镁(Mg(OH) 2)和氢气(H 2),水桶内的水被改性为包含镁离子(Mg 2+)和氢氧根离子(OH )的碱性离子水。碱性离子水与洗涤剂同样地具有分解油脂成分的作用,因此能利用碱性离子水从水桶内的洗涤物去除污垢。此外,碱性离子水具有除菌作用,因此能利用负离子水来对水桶内的洗涤物和水桶本身进行除菌。
下述专利文献1所记载的碱性离子水生成用具具有由海绵构成的主体部和容纳于主体部内的多个镁粒。碱性离子水生成用具与洗涤物一起被投入洗衣机的水桶内。当向水桶内注入水时,镁从碱性离子水生成用具内的镁粒溶出至水桶内的水中,因此镁与水桶内的水发生化学反应而生成碱性离子水。
专利文献1所记载的碱性离子水生成用具在水桶内漂浮于水中。这样的话,存在并非碱性离子水生成用具内的所有镁粒都被水桶内的水浸没的情况,因此促进镁与水的化学反应是有极限的。因此,假定一种将容纳有镁粒的容纳部配置于水桶内的下部以使镁粒被水桶内的水浸没的结构。另一方面,镁粒随着使用而劣化,因此,在将容纳部配置于水桶内的下部的结构中,由于用户的眼睛不易看到容纳部内的镁粒,因此,即使镁粒劣化至需要维护的状态,恐怕也会未注意到镁粒的劣化而被放置不管。
现有技术文献
专利文献
专利文献1:日本特开2017-99486号公报
发明内容
发明所要解决的问题
本发明是在这样的背景下完成的,其目的在于提供一种能掌握洗涤用的镁粒的维护的定时的洗衣机。
用于解决问题的方案
本发明是一种洗衣机,包括:洗涤桶,容纳洗涤物并能蓄留洗涤水;容纳部,配置于所述洗涤桶内的被洗涤水浸没的位置,容纳镁粒;通电部,对所述洗涤桶内的洗涤水进行通电;检测部,在所述通电部进行通电的过程中检测所述洗涤桶内的洗涤水的电特性;控制部,基于所述检测部的检测结果来计算出表示所述容纳部内的镁粒的劣化程度的指标值;以及通知部,在所述指标值超过规定的阈值的情况下,通知所述容纳部内的镁粒的劣化。
此外,本发明的特征在于,所述洗衣机还包括设于所述洗涤桶内并被旋转驱动的旋转翼,所述控制部基于在所述旋转翼的旋转停止时由所述检测部检测出的所述洗涤桶内的洗涤水的电特性来计算出所述指标值。
此外,本发明的特征在于,所述洗衣机还包括向所述洗涤桶内供水的供水部,所述控制部执行浸洗运转,所述浸洗运转为:控制所述供水部向所述洗涤桶内供水,由此使洗涤物在所述洗涤桶内浸泡于溶解有所述容纳部的镁粒的成分的洗涤水中,所述控制部根据所述指标值来变更所述浸洗运转的运转时间。
此外,本发明的特征在于,在所述指标值超过规定的阈值的情况下,所述控制部执行使所述容纳部内的镁粒焕新的焕新运转。
此外,本发明的特征在于,所述通电部包括:两个电极,与所述洗涤桶内的洗涤水接触;以及切换部,定期地切换这两个电极之间的极性。
发明效果
根据本发明,在洗衣机中,容纳镁粒的容纳部配置于洗涤桶内的被洗涤水浸没的位置。由此,促进容纳部内的许多镁粒与洗涤桶内的洗涤水的化学反应而大量生成碱性离子水,因此能利用大量的碱性离子水有效地对洗涤物进行洗 涤。
在洗衣机中,在通电部对洗涤桶内的洗涤水进行通电的期间,检测部检测洗涤水的电特性。然后,基于检测部的检测结果来计算出表示容纳部内的镁粒的劣化程度的指标值。在该指标值超过规定的阈值的情况下,洗衣机的通知部通知容纳部内的镁粒的劣化。通过该通知,用户能掌握洗涤用的镁粒的维护的定时。
此外,根据本发明,在洗衣机中,基于在旋转翼的旋转停止时由检测部检测出的洗涤桶内的洗涤水的电特性来计算出表示容纳部内的镁粒的劣化程度的指标值。在旋转翼的旋转停止时,洗涤桶内的洗涤水处于不产生不规则的水流的稳定的状态,因此检测部能准确地检测洗涤水的电特性。因此,基于该电特性计算出的指标值准确地表示镁粒的劣化程度,因此,在该指标值超过规定的阈值的情况下,通知部在适当的定时通知容纳部内的镁粒的劣化。通过该通知,用户能掌握对于洗涤用的镁粒的维护而言适当的定时。
此外,根据本发明,浸洗运转的运转时间根据表示容纳部内的镁粒的劣化程度的指标值来变更。因此,即使镁粒处于劣化的状态,洗涤桶内的洗涤物也通过在浸洗运转中以与镁粒的劣化程度对应的适当的时间浸泡于碱性离子水中而有效地被清洗。
此外,根据本发明,劣化至指标值超过规定的阈值的程度的镁粒通过焕新运转而被焕新,由此能与劣化前同样地与洗涤桶内的洗涤水有效地发生化学反应而大量生成碱性离子水。
此外,根据本发明,通电部通过在与洗涤桶内的洗涤水接触的两个电极之间通入电流来对洗涤桶内的洗涤水进行通电。若这两个电极之间的极性保持固定,则会产生在电极的表面起泡或电极发生腐蚀的不良情况,由此检测部恐怕会变得无法准确地检测洗涤桶内的洗涤水的电特性。但是,通过在通电部中定期地切换这两个电极之间的极性,能抑制电极的不良情况。
附图说明
图1是本发明的一实施方式的洗衣机的示意性纵剖右视图。
图2是关于洗衣机的主要部分的局部包括纵剖面的立体图。
图3是表示洗衣机的电结构的框图。
图4是图2的主要部分放大图。
图5是关于洗衣机的主要部分的电路图。
图6是表示蓄留于洗衣机的洗涤桶内的洗涤水的电阻的值的变化的时序图。
图7是表示洗衣机所执行的洗涤运转的流程图。
图8是表示变形例的洗涤运转的流程图。
图9是表示洗衣机所执行的焕新运转的流程图。
图10是表示变形例的焕新运转的流程图。
附图标记说明
1:洗衣机;5:旋转翼;8:洗涤桶;11:容纳部;17:显示操作部;21:供水阀;34:控制部;36:通电部;37:检测部;40:电极;41:切换部;C:阈值;L:洗涤物;M:镁粒。
具体实施方式
以下,参照附图,对本发明的实施方式具体地进行说明。图1是本发明的一实施方式的洗衣机1的示意性纵剖右视图。将图1的与纸面正交的方向称为洗衣机1的左右方向X,将图1中的左右方向称为洗衣机1的前后方向Y,将图1中的上下方向称为洗衣机1的上下方向Z。在左右方向X中,将图1的纸面的里侧称为左侧X1,将图1的纸面的表侧称为右侧X2。在前后方向Y中,将图1中的左侧称为前侧Y1,将图1中的右侧称为后侧Y2。在上下方向Z中,将上侧称为上侧Z1,将下侧称为下侧Z2。
洗衣机1包括:箱体2,形成洗衣机1的外壳;外桶3,容纳于箱体2内并能蓄留洗涤水;内桶4,容纳于外桶3内;旋转翼5,容纳于内桶4内;马达6,产生使内桶4和旋转翼5旋转的驱动力;以及电动的传递机构7,将马达6的驱动力传递至内桶4、旋转翼5。外桶3和内桶4构成洗涤桶8。洗衣机1还包括: 引导罩9,配置于内桶4内并用于使洗涤水循环;过滤单元10,装接于引导罩9并从洗涤水捕获异物;以及容纳部11,容纳镁粒M。洗涤水是自来水、洗涤剂等溶解于自来水中而成的水。
箱体2例如为金属制,形成为箱状。在上表面2A形成有使箱体2的内外连通的开口15。在上表面2A设有将开口15开闭的门16。在上表面2A中开口15的周围的区域设有由液晶操作面板等构成的作为通知部的一例的显示操作部17。洗衣机1的用户能通过操作显示操作部17的开关等来自由地选择洗衣机1的运转条件或者对洗衣机1指示运转开始、运转停止等。在显示操作部17的液晶面板等,以可目视的方式显示有与洗衣机1的运转相关的信息。
外桶3例如为树脂制,形成为有底圆筒状。外桶3具有:大致圆筒状的圆周壁3A,沿上下方向Z配置;底壁3B,从下侧Z2堵住圆周壁3A的中空部分;以及环状的环状壁3C,将圆周壁3A的上端缘包边并且向圆周壁3A的圆心侧伸出。在环状壁3C的内侧形成有从上侧Z1与圆周壁3A的中空部分连通的出入口18。出入口18处于从下侧Z2与箱体2的开口15对置并连通的状态。在环状壁3C设有将出入口18开闭的门19。底壁3B形成为大致水平地延伸的圆板状,在底壁3B的圆心位置形成有贯通底壁3B的贯通孔3D。
与自来水的水龙头相连的供水路20从上侧Z1连接于外桶3的环状壁3C,自来水从供水路20供给至外桶3内。在供水路20的中途设有作为供水部的一例的供水阀21。供水阀21为了开始或停止供水而被开闭。排水路22从下侧Z2连接于外桶3的底壁3B,外桶3内的水从排水路22排出至机外。在排水路22的中途设有作为排水部的一例的排水阀23。排水阀23为了开始或停止排水而被开闭。
内桶4例如为金属制,形成为比外桶3小一圈的有底圆筒状,能在内部容纳洗涤物L。内桶4具有:大致圆筒状的圆周壁4A,沿上下方向Z配置;以及底壁4B,设于内桶4的下端并从下侧Z2堵住圆周壁4A的中空部分。
圆周壁4A的内周面和底壁4B的上表面是指内桶4的内表面部。在内桶4的上端形成有被圆周壁4A的内周面的上端包边的出入口24。出入口24使圆周壁4A的中空部分向上侧Z1露出,处于从下侧Z2与外桶3的出入口18连通的状态。用户经由敞开的开口15、出入口18以及出入口24使洗涤物L从上侧Z1 出入于内桶4。
内桶4同轴地容纳于外桶3内。容纳于外桶3内的状态的内桶4能绕穿过内桶4的圆心并在上下方向Z延伸的旋转轴线J旋转。本实施方式中的旋转轴线J严格来说在垂直方向延伸,但也可以在相对于垂直方向的倾斜方向延伸。作为一例,倾斜方向为随着趋向上侧Z1而向前侧Y1偏移的方向。旋转轴线J也穿过外桶3的圆心。内桶4的旋转方向与绕旋转轴线J的周向P一致。以下,将以旋转轴线J为中心的径向称为径向R,在径向R中,将朝向旋转轴线J的一侧称为径向内侧R1,将远离旋转轴线J的一侧称为径向外侧R2。在内桶4的圆周壁4A和底壁4B形成有多个贯通孔4C,外桶3内的洗涤水能经由贯通孔4C在外桶3与内桶4之间往来。由此,在内桶4也就是洗涤桶8的整体都能蓄留洗涤水,外桶3内的水位与内桶4内的水位一致。
在内桶4的内周面的上端部安装有沿着周向P的环状的平衡器25。平衡器25使旋转时的内桶4的振动减轻,在平衡器25的内部的空腔25A容纳有用于有助于振动减轻的盐水等液体。
内桶4的底壁4B形成为以在上侧Z1隔开间隔的方式与外桶3的底壁3B大致平行地延伸的圆板状。在底壁4B的与旋转轴线J一致的圆心位置形成有在上下方向Z贯通底壁4B的贯通孔4D。在底壁4B设有包围贯通孔4D并且沿旋转轴线J向下侧Z2延伸出的管状的支承轴26。支承轴26插通外桶3的底壁3B的贯通孔3D,支承轴26的下端部位于比底壁3B靠下侧Z2。
旋转翼5是所谓的波轮,形成为以旋转轴线J为圆心的圆盘状,在内桶4内配置于底壁4B上。在旋转翼5的面向内桶4的出入口24的上表面,设有向上侧Z1隆起并且以旋转轴线J为圆心呈放射状配置的多个隆起部5A。在旋转翼5的下表面,设有以旋转轴线J为圆心呈放射状配置的多个背叶5B。将内桶4的内部空间中配置有旋转翼5的背叶5B的下端部称为空间S。在旋转翼5设有从旋转翼5的圆心沿旋转轴线J向下侧Z2延伸的旋转轴27。旋转轴27插通支承轴26的中空部分,旋转轴27的下端部位于比外桶3的底壁3B靠下侧Z2。
马达6是变频马达等电动马达。马达6在箱体2内配置于外桶3的下侧Z2。马达6具有以旋转轴线J为中心旋转的输出轴28,产生驱动力并从输出轴28输出。
传递机构7夹置于支承轴26和旋转轴27各自的下端部与从马达6向上侧Z1突出的输出轴28的上端部之间。传递机构7将马达6从输出轴28输出的驱动力选择性地传递至支承轴26和旋转轴27中的一方或双方。作为传递机构7,使用公知的机构。当来自马达6的驱动力传递至支承轴26时,内桶4接受马达6的驱动力而在周向P被旋转驱动。当来自马达6的驱动力传递至旋转轴27时,旋转翼5接受马达6的驱动力而在周向P被旋转驱动。
引导罩9存在多个,在周向P上分散地排列于圆周壁4A的内周面。这些引导罩9优选在周向P上等间隔地配置。各个引导罩9为从内桶4的圆周壁4A的下端部向上侧Z1延伸的槽状,例如为树脂制,其俯视剖面例如形成为向径向内侧R1凸弯曲的圆弧状。引导罩9以从径向内侧R1覆盖圆周壁4A的一部分的方式固定于圆周壁4A。由此,在引导罩9与圆周壁4A之间,形成有在内桶4内从圆周壁4A的下端部向上侧Z1延伸的循环流路29。即,引导罩9构成循环流路29。由于存在多个引导罩9,因此循环流路29也设有多个。
循环流路29的下端部作为循环流路29的入口29A而从径向外侧R2与内桶4的内部空间中配置有旋转翼5的背叶5B的空间S连接。也就是说,入口29A配置于内桶4的底壁4B侧。在引导罩9形成有在径向R贯通引导罩9的开口9A。循环流路29中从开口9A向径向内侧R1露出的部分是出口29B,出口29B配置于比入口29A高的位置并面向内桶4内。
过滤单元10包括恰好容纳于引导罩9的开口9A的框架30和安装于框架30的过滤器31。过滤器31例如是由网等构成的片状,覆盖开口9A。
图2是关于洗衣机1的主要部分的局部包括纵剖面的立体图。容纳部11是在周向P延伸的圆弧状的中空体,配置于内桶4的底侧,具体而言配置于内桶4内的被洗涤水浸没的位置。容纳部11设有多个,在内桶4的圆周壁4A的下端部与底壁4B的边界部,避开引导罩9在周向P排列设置。这些容纳部11优选在周向P等间隔地配置。容纳部11具有:内周壁11A,沿周向P弯曲;以及外周壁11B,配置于比内周壁11A靠径向外侧R2且沿周向P弯曲。
容纳部11具有:顶壁11C,架设于内周壁11A和外周壁11B的上端之间且沿周向P弯曲;以及底壁11D,架设于内周壁11A和外周壁11B的下端之间且沿周向P弯曲。在顶壁11C中,径向内侧R1的部分以随着趋向径向内侧R1而 下降的方式倾斜,径向外侧R2的部分大致水平地延伸。整个底壁11D以随着趋向径向内侧R1而下降的方式倾斜。容纳部11具有由内周壁11A、外周壁11B、顶壁11C以及底壁11D围成且沿周向P弯曲的内部空间11E。容纳部11具有:第一侧壁11F,从周向P的一侧堵住内部空间11E;以及第二侧壁11G,从周向P的另一侧堵住内部空间11E。
在内周壁11A、顶壁11C、第一侧壁11F以及第二侧壁11G分别形成有与内部空间11E相连的出入口11H。形成于内周壁11A的出入口11H为在周向P细长地延伸的狭缝状,在周向P和上下方向Z分别排列形成有多个。形成于顶壁11C的出入口11H为在顶壁11C中跨越径向内侧R1的部分和径向外侧R2的部分并在径向R细长地延伸的狭缝状,在周向P排列形成有多个。分别形成于第一侧壁11F和第二侧壁11G的出入口11H为在上下方向Z细长地延伸的狭缝状,在周向P排列形成有多个。
在各容纳部11的内部空间11E容纳有许多的镁粒M。镁粒M为镁制的颗粒,新品时的镁粒M的粒径被设定为镁粒M无法通过出入口11H的几mm左右的大小。
图3是表示洗衣机1的电结构的框图。洗衣机1还包括:控制部34,例如由微型计算机构成且内置于箱体2内(也参照图1);以及水位传感器35,检测蓄留于洗涤桶8内的洗涤水的水位。控制部34包括CPU、ROM或RAM等存储器以及计时用的计时器,作为通知部的一例发挥功能。马达6、传递机构7、显示操作部17、供水阀21、排水阀23以及水位传感器35分别与控制部34电连接。控制部34通过控制施加于马达6的电压的占空比,将马达6控制为以所希望的转速旋转。控制部34通过控制传递机构7,将马达6的驱动力的传递目标切换为支承轴26和旋转轴27中的一方或双方。当用户操作显示操作部17来选择运转条件等时,控制部34受理该选择。控制部34控制显示操作部17的显示。控制部34控制供水阀21和排水阀23的开闭。水位传感器35的检测结果被实时输入控制部34。
控制部34通过控制马达6、传递机构7、供水阀21以及排水阀23的动作来执行洗涤运转。作为一例,洗涤运转具有:浸洗运转,将洗涤物L在内桶4内的洗涤水中浸泡规定时间;正式清洗运转,在浸洗运转后正式地对洗涤物L 进行清洗;漂洗运转,在正式清洗运转后对洗涤物L进行漂洗;以及脱水运转,在漂洗运转后对洗涤物L进行脱水。
参照图1,在浸洗运转中,控制部34首先打开供水阀21向洗涤桶8供水。由此,洗涤水蓄留于洗涤桶8内。当洗涤桶8内的水位上升至比内桶4内的洗涤物L的上端高的浸泡水位时,控制部34通过关闭供水阀21来停止供水。
蓄留于内桶4的洗涤水从出入口11H流入容纳部11的内部空间11E。在内部空间11E中,洗涤水与从镁粒M溶解于洗涤水中的镁成分发生化学反应。洗涤水与镁的化学反应的详情如上所述,通过该化学反应,内部空间11E内的洗涤水的pH值变大,由此被改性为碱性离子水,从出入口11H流出至内桶4内。通过这样使洗涤水穿过出入口11H往来于内桶4内和内部空间11E,洗涤桶8内的大部分洗涤水成为碱性离子水。因此,在浸洗运转中,内桶4内的洗涤物L浸泡于作为溶解有容纳部11的镁粒M的成分的洗涤水的碱性离子水中。
如上所述,洗涤水是碱性离子水,碱性离子水与洗涤剂同样地具有分解油脂成分、具体而言为酸性的皮脂污垢等的作用。因此,内桶4内的洗涤物L通过被蓄留在内桶4内的碱性离子水浸没而被去除污垢。当供水停止后经过规定的浸泡时间时,控制部34结束浸洗运转。需要说明的是,在本实施方式中,浸洗运转中的内桶4和旋转翼5处于静止的状态,但也可以是旋转翼5定期地旋转。通过旋转翼5的旋转,会促进内部空间11E内的洗涤水的pH值的增加。
接着,控制部34开始正式清洗运转,使旋转翼5旋转。于是,内桶4内的底壁4B侧的空间S的洗涤水被旋转的旋转翼5的背叶5B推向径向外侧R2而送入各循环流路29的入口29A。在各循环流路29中向上侧Z1流动的洗涤水通过过滤单元10的过滤器31而从循环流路29的出口29B向径向内侧R1流出(参照图1中的粗虚线的箭头)。过滤器31从通过过滤器31的洗涤水中捕获线头等异物,并蓄留于过滤单元10内。从出口29B返回至内桶4内的洗涤水从上侧Z1喷淋至内桶4内的洗涤物L后,流落至空间S,以再次穿过循环流路29被喷淋至洗涤物L的方式循环。
在正式清洗运转中,像这样洗涤水伴随着旋转翼5的旋转而循环,碱性离子水被喷淋至洗涤物L。而且,洗涤物L被旋转的旋转翼5的隆起部5A搅拌,因此洗涤物L的污垢被机械地去除。需要说明的是,在洗涤运转开始时等,也 可以向内桶4内自动投入洗涤剂或者通过用户的手动操作来投入洗涤剂。该情况下的洗涤水包含洗涤剂成分,在正式清洗运转中,洗涤物L的污垢被洗涤剂成分化学分解。需要说明的是,碱性离子水中的碱性成分与洗涤剂同样地发挥功能,因此即使将洗涤剂的使用量抑制得少也能得到高的清洗效果。当与旋转翼5的旋转相伴的洗涤水的循环开始后经过规定的清洗时间时,控制部34停止旋转翼5,打开排水阀23而从洗涤桶8排水,由此结束正式清洗运转。
接着,控制部34开始漂洗运转。具体而言,控制部34打开供水阀21向洗涤桶8供水,将洗涤水蓄留于洗涤桶8直至规定的漂洗水位。然后,控制部34使旋转翼5旋转。在漂洗运转中,与浸洗运转同样地,洗涤水伴随着旋转翼5的旋转而循环,碱性离子水被喷淋至洗涤物L、洗涤桶8的外桶3、内桶4。由此,残留于洗涤物L的污垢被碱性离子水去除,并且通过碱性离子水所含的负离子等对洗涤物L、外桶3、内桶4进行除菌。当与旋转翼5的旋转相伴的洗涤水的循环开始后经过规定的漂洗时间时,控制部34停止旋转翼5,打开排水阀23而从洗涤桶8排水,由此结束漂洗运转。漂洗运转也可以被实施多次。
接着,控制部34开始脱水运转。具体而言,控制部34在打开了排水阀23的状态下使内桶4脱水旋转。脱水旋转过程中的内桶4的转速阶段性地上升,最终达到例如800rpm的最高转速后,停止向马达6施加电压,由此内桶4进行惯性旋转。通过由内桶4的脱水旋转产生的离心力,内桶4内的洗涤物L被脱水。因脱水而从洗涤物L渗出的水从排水路22排出至机外。当内桶4的惯性旋转停止时,控制部34结束脱水运转。脱水运转不仅可以作为最终脱水运转在洗涤运转的最后被实施,也可以作为中间脱水运转在正式清洗运转等刚结束后被实施。
镁粒M在新品时具有例如银色的表面,但当因使用而反复与洗涤水接触时,会因在表面形成氧化膜而劣化,例如变色为黑色。劣化的镁粒M变得难以与洗涤水发生化学反应。如上所述,镁粒M容纳于内桶4的底侧的容纳部11内,因此,对于用户而言,难以通过目视来确认镁粒M的劣化情况。因此,作为与容纳部11内的镁粒M的劣化相关的结构,洗衣机1还包括图3所示的通电部36和检测部37。通电部36和检测部37分别与控制部34电连接。
通电部36包括:两个电极40,与洗涤桶8内的洗涤水接触;以及切换部 41,切换这两个电极40之间的极性。以下,有时将两个电极40中的一方称为第一电极40A,将另一方称为第二电极40B。参照作为图2的主要部分放大图的图4,这两个电极40为在上下方向Z延伸的棒状,以横向排列的状态贯通外桶3的底壁3B而配置。在各电极40中,上端部为顶端部40C,下端部为根部40D。顶端部40C在底壁3B与内桶4的底壁4B之间的空间T沿着底壁3B的外周部配置,具体而言在径向R上配置于与容纳部11相同的位置。在各电极40的根部40D各连接有一根电线42。有时将与第1电极40A的根部40D连接的电线42称为第一电线42A,将与第二电极40B的根部40D连接的电线42称为第二电线42B。第一电线42A和第二电线42B在底壁3B的下侧Z2引绕而连接于切换部41。
图5是洗衣机1中与通电部36有关的电路图。第一电线42A中与第一电极40A相反侧的部分分支为第一接点42C和第二接点42D。第二电线42B中与第二电极40B相反侧的部分分支为第三接点42E和第四接点42F。洗衣机1包括:第一开关43,选择性地与第一接点42C和第三接点42E中的任一个接触;第二开关44,选择性地与第二接点42D和第四接点42F中的任一个接触;布线45,将第一开关43与第二开关44相连;以及电源46,配置于布线45的中途。
第一接点42C、第三接点42E以及第一开关43构成第一继电器47。第二接点42D、第四接点42F以及第二开关44构成第二继电器48。切换部41包括第一继电器47和第二继电器48。通过由控制部34进行的控制,切换部41在第一继电器47中使第一开关43与第一接点42C接触,在第二继电器48中使第二开关44与第四接点42F接触。在该状态下被内桶4内的洗涤水浸没的第1电极40A和第2电极40B之间,例如由12V的弱直流电压产生的电流从成为正极的第一电极40A朝向成为负极的第二电极40B流动(参照箭头E1)。另一方面,通过由控制部34进行的控制,切换部41在第一继电器47中使第一开关43与第三接点42E接触,在第二继电器48中使第二开关44与第二接点42D接触。在该状态下被内桶4内的洗涤水浸没的第1电极40A和第2电极40B之间,极性被切换,上述的电流从成为正极的第二电极40B朝向成为负极的第一电极40A流动(参照箭头E2)。
这样,通电部36通过在与洗涤桶8内的洗涤水接触的两个电极40之间通 入电流来对洗涤桶8内的洗涤水进行通电。若这两个电极40之间的极性保持固定,则恐怕会产生因在电极40的周边产生的电解而在电极40的表面起泡或电极40发生腐蚀的不良情况。但是,通过在通电部36中利用接受了控制部34的控制的切换部41定期地切换这两个电极40之间的极性,能抑制电极40的不良情况。
检测部37是在通电部36进行通电的过程中检测蓄留于洗涤桶8的洗涤水的电特性的传感器。本实施方式中的洗涤水的电特性是电阻。图6是表示蓄留于洗涤桶8内的洗涤水的电阻的值的变化的时序图。在图6的时序图中,横轴表示经过时间(单位:分钟),纵轴表示由检测部37检测出的洗涤水的电阻的电阻值(单位:kΩ)。
在容纳于容纳部11的镁粒M全部为新品的情况下,若通电部36对洗涤桶8内的洗涤水连续通电例如1小时,则如图6中实线所示,洗涤桶8内的洗涤水的电阻从18kΩ的初始值降低5kΩ左右直至13kΩ。这是因为,镁粒M与洗涤水的化学反应被促进,由此洗涤水的导电率提高。另一方面,在容纳于容纳部11的镁粒M发生了劣化的情况下,若通电部36对洗涤桶8内的洗涤水同样地进行通电,则如图6中虚线所示,洗涤桶8内的洗涤水的电阻的下降程度变得缓慢,从18kΩ的初始值仅降低2kΩ左右。这是因为,镁粒M与洗涤水的化学反应变慢,由此洗涤水的导电率变得难以上升。在洗衣机1中,基于这样的电特性、具体而言为电阻值的降低量,能在洗涤运转中确认容纳部11内的镁粒M的劣化情况。
具体而言,参照图7的流程图,控制部34为了开始浸洗运转而如上所述打开供水阀21向洗涤桶8供水(步骤S1)。当基于水位传感器35的检测结果确认到洗涤桶8内的水位上升并到达浸泡水位时(在步骤S2中为是),控制部34停止供水,在旋转翼5的旋转停止时,通过通电部36对洗涤桶8内的洗涤水进行通电,通过检测部37测定该状态下的洗涤水的电阻值A并暂时存储(步骤S3)。洗涤桶8内的水位到达浸泡水位时的洗涤桶8内的洗涤水的量例如为32L。
当从电阻值A的测定时起到达例如60分钟的浸泡时间时(在步骤S4中为是),控制部34在旋转翼5的旋转停止时通过检测部37测定当前时间点的洗涤水的电阻值B(步骤S5)。电阻值B是比电阻值A低的值。控制部34基于 作为旋转翼5的旋转停止时的检测部37的检测结果的电阻值A和电阻值B来计算出电阻值的降低量,将电阻值的降低量与规定的阈值C进行比较(步骤S6)。电阻值的降低量是表示容纳部11内的镁粒M的劣化程度的指标值,通过从电阻值A减去电阻值B而得到。如果容纳部11内的镁粒M接近新品,则电阻值的降低量为阈值C以上。在该情况下(在步骤S6中为是),控制部34结束浸洗运转并实施上述的正式清洗运转(步骤S7)、漂洗运转(步骤S8)以及脱水运转(步骤S9)。通过脱水运转的结束,整个洗涤运转结束。
另一方面,如果容纳部11内的镁粒M处于劣化至无法接受的程度的状态,则电阻值的降低量超过阈值C而小于阈值C。在该情况下(在步骤S6中为否),控制部34通过显示操作部17中的保养灯(未图示)的点亮等来向用户通知容纳部11内的镁粒M发生劣化而需要保养的意思(步骤S10)。需要说明的是,对于洗衣机1而言,作为此处的通知的一例,可以代替显示操作部17中的显示而使蜂鸣器鸣响,也可以通过将显示操作部17的显示与蜂鸣器组合来进行通知。然后,控制部34结束浸洗运转并实施正式清洗运转(步骤S7)、漂洗运转(步骤S8)以及脱水运转(步骤S9)。需要说明的是,保养灯在接通了洗衣机1的电源的状态下,在正式清洗运转以后也保持点亮。
洗涤运转可列举出图8所示的变形例。需要说明的是,在图8中,对与图7的处理步骤相同的处理步骤标注与图7相同的步骤编号,省略对该处理步骤的详细说明。在变形例中,控制部34开始浸洗运转,首先,将初始值为零的计数值D复位为初始值(步骤S21),向洗涤桶8供水(步骤S1)。计数值D由控制部34存储。然后,当洗涤桶8内的水位到达浸泡水位时(在步骤S2中为是),控制部34停止供水并通过通电部36对洗涤桶8内的洗涤水进行通电,通过检测部37测定该状态下的洗涤水的电阻值A并暂时存储(步骤S3)。
然后,当从电阻值A的测定时起经过1分钟时(在步骤S22中为是),控制部34使计数值D递增(+1)(步骤S23)。递增后的计数值D与从电阻值A的测定时起的经过时间(单位:分钟)相同。如果递增后的计数值D小于90(在步骤S24中为否),则控制部34测定当前时间点的洗涤水的电阻值B(步骤S5)。然后,控制部34通过从电阻值A减去电阻值B来计算出电阻值的降低量,将降低量与阈值C进行比较(步骤S6)。如果因容纳部11内的颗粒M接近新品而 电阻值的降低量为阈值C以上(在步骤S6中为是),则控制部34结束浸洗运转并实施正式清洗运转(步骤S7)、漂洗运转(步骤S8)以及脱水运转(步骤S9)。
另一方面,当容纳部11内的镁粒M劣化至电阻值的降低量小于阈值C时(在步骤S6中为否),控制部34反复进行步骤S22以后的处理。由此,计数值D变大(步骤S23)。然后,当从电阻值A的测定时起的经过时间到达90分钟时(在步骤S24中为是),控制部34通过使显示操作部17的保养灯点亮来向用户通知容纳部11内的镁粒M的劣化(步骤S10)。这样,如果电阻值的降低量小于阈值C(在步骤S6中为否),则控制部34将浸洗运转的运转时间、也就是上述的浸泡时间延长至最大90分钟。即,控制部34根据电阻值的降低量来变更浸泡时间。使保养灯点亮后的控制部34实施正式清洗运转(步骤S7)、漂洗运转(步骤S8)以及脱水运转(步骤S9)。
在如上所述电阻值的降低量小于阈值C而点亮了保养灯的情况下,控制部34能执行焕新运转,该焕新运转是保养容纳部11内的镁粒M也就是使容纳部11内的镁粒M焕新的专用的进程。具体而言,参照图9的流程图,当用户操作显示操作部17来指示开始焕新运转时,控制部34打开供水阀21向空的洗涤桶8供水(步骤S31)。当基于水位传感器35的检测结果确认到洗涤桶8内的水位上升并到达规定的焕新水位时(在步骤S32中为是),控制部34停止供水,并且暂时停止洗衣机1的整体动作,使上述的蜂鸣器鸣响(步骤S33)。洗涤桶8内的水位到达焕新水位时的洗涤桶8内的洗涤水的量例如为16L,焕新水位的洗涤水的水面位于比容纳部11高的位置。
接收到蜂鸣器的通知的用户打开门16和门19,通过手动操作将规定的清洗剂从出入口24投入内桶4内(参照图1)。作为此处的清洗剂,可列举出柠檬酸的片剂、液体。当投入了清洗剂的用户关闭门16和门19并操作显示操作部17时,控制部34解除洗衣机1的暂时停止并再启动(步骤S34)。然后,控制部34通过使旋转翼5旋转来搅拌洗涤桶8内的洗涤水(步骤S35)。由此,清洗剂有效地溶解于洗涤水而生成柠檬酸水溶液,从容纳部11的出入口11H流入内部空间11E(参照图1)。内部空间11E中的镁粒M浸渍于柠檬酸水溶液中。于是,镁粒M通过从表面被去除氧化膜而进行焕新。
控制部34在使步骤S35中的洗涤水的搅拌持续例如1分钟后,停止旋转翼5的旋转,打开排水阀23而从洗涤桶8排水。然后,控制部34通过向洗涤桶8供水并使旋转翼5旋转来对镁粒M进行漂洗,之后,通过在打开了排水阀23的状态下使内桶4旋转来对镁粒M进行脱水(步骤S36)。之后,控制部34使显示操作部17中的保养灯熄灭而结束焕新运转(步骤S37)。
焕新运转可列举出图10所示的变形例。需要说明的是,在图10中,对与图9的处理步骤相同的处理步骤标注与图9相同的步骤编号,省略对该处理步骤的详细说明。此外,与变形例关联地,洗衣机1例如包括:蓄液罐51,蓄留有清洗剂的液体;供给路52,将供水路20中比供水阀21靠下游侧的部分与蓄液罐51相连;以及供给阀53,配置于供给路52的中途并由控制部34开闭(参照图1和图3)。
控制部34为了开始变形例的焕新运转而向洗涤桶8供水(步骤S31)。然后,当洗涤桶8内的水位到达焕新水位时(在步骤S32中为是),控制部34停止供水并且打开供给阀53(步骤S41)。由此,蓄液罐51内的清洗剂依次流过供给路52和供水路20而被自动投入洗涤桶8内。之后,控制部34通过使旋转翼5旋转来搅拌洗涤桶8内的洗涤水(步骤S35)。由此,容纳部11的内部空间11E中的镁粒M通过浸渍于柠檬酸水溶液中而进行焕新。
控制部34在使步骤S35中的洗涤水的搅拌持续例如1分钟后,停止旋转翼5的旋转,打开排水阀23而从洗涤桶8排水。然后,控制部34对镁粒M进行漂洗,之后,通过在打开了排水阀23的状态下使内桶4旋转来对镁粒M进行脱水(步骤S36)。之后,控制部34使显示操作部17中的保养灯熄灭而结束焕新运转(步骤S37)。
如上所述,在洗衣机1中,容纳镁粒M的容纳部11配置于洗涤桶8内的被洗涤水浸没的位置。由此,促进容纳部11内的几乎所有的镁粒M与洗涤桶8内的洗涤水的化学反应而大量生成碱性离子水,因此能利用大量的碱性离子水有效地对洗涤物L进行洗涤。特别是,能在容纳部11这样的专用的空间容纳大量的镁粒M,因此能生成大量的碱性离子水而谋求清洗力的提高。
在洗衣机1中,在通电部36对洗涤桶8内的洗涤水进行通电的期间,检测部37检测洗涤水的电阻的电阻值。控制部34基于检测部37的检测结果来计算 出表示容纳部11内的镁粒M的劣化程度的电阻值的降低量(步骤S6)。在该指标值超过阈值C的情况下(在步骤S6中为否),控制部34通过显示操作部17通知容纳部11内的镁粒M的劣化(步骤S10)。通过该通知,用户能掌握洗涤用的镁粒M的维护的定时。
此外,控制部34基于在旋转翼5的旋转停止时由检测部37检测出的洗涤水的电阻来计算出电阻值的降低量。在旋转翼5的旋转停止时,洗涤桶8内的洗涤水处于不产生不规则的水流的稳定的状态,因此检测部37能准确地检测洗涤水的电阻值(步骤S3和S5)。因此,基于该电阻值计算出的降低量准确地表示镁粒M的劣化程度,因此,在该降低量超过阈值C的情况下,控制部34通过显示操作部17在适当的定时通知容纳部11内的镁粒M的劣化(步骤S10)。通过该通知,用户能掌握对于洗涤用的镁粒M的维护而言适当的定时。
此外,浸洗运转的运转时间根据表示容纳部11内的镁粒M的劣化程度的指标值来变更(步骤S23和S24)。因此,即使镁粒M处于劣化的状态,洗涤桶8内的洗涤物L也通过在浸洗运转中以与镁粒M的劣化程度对应的适当的时间浸泡于碱性离子水中而有效地被清洗。即,在镁粒M发生了劣化的情况下,浸泡时间被延长,因此可得到与镁粒M为新品的情况同样的清洗效果。
此外,劣化至电阻值的降低量超过阈值C的程度的镁粒M通过焕新运转(参照图9和图10)而被焕新,由此能与劣化前同样地与洗涤桶内的洗涤水有效地发生化学反应而大量生成碱性离子水。
本发明并不限定于以上说明的实施方式,能在技术方案所记载的范围内进行各种变更。
例如,容纳部11也可以能相对于内桶4拆装。在该情况下,用户能在使容纳部11从内桶4脱离并对容纳部11内的镁粒M进行维护之后,以与脱离时相反的顺序将容纳部11重新装接于内桶4。由此,能谋求镁的维护性的提高。此外,在上述的保养灯点亮的情况下,用户也可以使容纳部11从内桶4脱离并将容纳部11内的镁粒M更换为新品。
此外,作为用于计算出表示镁粒M的劣化程度的指标值的洗涤水的电特性,在上述的实施方式中使用了电阻,但也可以使用导电率。此外,在上述的实施 方式中,在电阻值的降低量低于阈值C的情况下,判断为镁粒M发生了劣化。另一方面,在使用了电阻值的降低量以外的指标值的情况下,也有可能在该指标值高于规定的阈值的情况下,判断为镁粒M发生了劣化。
此外,在上述的实施方式中,洗衣机1是立式洗衣机,但也可以是内桶4的旋转轴线J沿前后方向Y水平地延伸的滚筒式洗衣机。而且,洗衣机1可以是具有烘干功能的洗干一体机,也可以是双桶式洗衣机。

Claims (5)

  1. 一种洗衣机,其特征在于,包括:
    洗涤桶,容纳洗涤物并能蓄留洗涤水;
    容纳部,配置于所述洗涤桶内的被洗涤水浸没的位置,容纳镁粒;
    通电部,对所述洗涤桶内的洗涤水进行通电;
    检测部,在所述通电部进行通电的过程中检测所述洗涤桶内的洗涤水的电特性;
    控制部,基于所述检测部的检测结果来计算出表示所述容纳部内的镁粒的劣化程度的指标值;以及
    通知部,在所述指标值超过规定的阈值的情况下,通知所述容纳部内的镁粒的劣化。
  2. 根据权利要求1所述的洗衣机,其特征在于,
    还包括设于所述洗涤桶内并被旋转驱动的旋转翼,
    所述控制部基于在所述旋转翼的旋转停止时由所述检测部检测出的所述洗涤桶内的洗涤水的电特性来计算出所述指标值。
  3. 根据权利要求1或2所述的洗衣机,其特征在于,
    还包括向所述洗涤桶内供水的供水部,
    所述控制部执行浸洗运转,所述浸洗运转为:控制所述供水部向所述洗涤桶内供水,由此使洗涤物在所述洗涤桶内浸泡于溶解有所述容纳部的镁粒的成分的洗涤水中,
    所述控制部根据所述指标值来变更所述浸洗运转的运转时间。
  4. 根据权利要求1至3中任一项所述的洗衣机,其特征在于,
    在所述指标值超过规定的阈值的情况下,所述控制部执行使所述容纳部内的镁粒焕新的焕新运转。
  5. 根据权利要求1至4中任一项所述的洗衣机,其特征在于,
    所述通电部包括:两个电极,与所述洗涤桶内的洗涤水接触;以及切换部,定期地切换这两个电极之间的极性。
PCT/CN2020/132424 2019-12-26 2020-11-27 洗衣机 WO2021129310A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080090521.4A CN114867899B (zh) 2019-12-26 2020-11-27 洗衣机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019237021A JP7390650B2 (ja) 2019-12-26 2019-12-26 洗濯機
JP2019-237021 2019-12-26

Publications (1)

Publication Number Publication Date
WO2021129310A1 true WO2021129310A1 (zh) 2021-07-01

Family

ID=76572934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/132424 WO2021129310A1 (zh) 2019-12-26 2020-11-27 洗衣机

Country Status (3)

Country Link
JP (1) JP7390650B2 (zh)
CN (1) CN114867899B (zh)
WO (1) WO2021129310A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101198737A (zh) * 2005-06-08 2008-06-11 伊莱克斯家用产品股份有限公司 包括燃料电池和制氢反应器的洗涤机
JP2008194604A (ja) * 2007-02-13 2008-08-28 Kaiyo Bokujo:Kk 還元水製造装置
CN103850096A (zh) * 2012-11-30 2014-06-11 海尔集团公司 集成软化水系统的洗涤剂投放装置及具有该装置的洗衣机
JP2017099486A (ja) * 2015-11-30 2017-06-08 レック株式会社 洗濯機用アルカリイオン水生成用具
CN109505094A (zh) * 2017-09-14 2019-03-22 株式会社宫本制作所 由镁形成洗涤水收容部的内表面的洗衣机
CN211227745U (zh) * 2019-04-30 2020-08-11 深圳海能动力控股有限公司 镁基衣物清洗辅助用品

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3629413B2 (ja) * 2000-06-29 2005-03-16 株式会社日立製作所 電気洗濯機
AU2003284774B2 (en) 2002-11-28 2007-06-21 Lg Electronics Inc. Washing machine, conductivity sensor in washing machine, and controlling method of same
JP3605644B1 (ja) * 2003-08-06 2004-12-22 テクノエクセル株式会社 洗剤槽装着型石灰軟化式硬水用洗濯機
JP2004097836A (ja) * 2003-11-11 2004-04-02 Sanyo Electric Co Ltd 洗濯機及びドラム式洗濯機
JP2004358274A (ja) * 2004-09-22 2004-12-24 Sanyo Electric Co Ltd 洗濯機、及び洗浄機
JP4660396B2 (ja) * 2006-02-27 2011-03-30 株式会社東芝 洗濯機
JP2011030973A (ja) * 2009-08-06 2011-02-17 Panasonic Corp 洗濯機
JP2011055980A (ja) * 2009-09-09 2011-03-24 Panasonic Corp 洗濯機
JP6594673B2 (ja) * 2015-06-18 2019-10-23 アクア株式会社 洗濯機
CN205062496U (zh) * 2015-08-14 2016-03-02 深圳市日新益康科技有限公司 衣物去污洁净用品
PL3433409T3 (pl) * 2016-03-24 2024-04-02 Electrolux Appliances Aktiebolag Pralka do prania zawierająca urządzenie zmiękczające wodę

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101198737A (zh) * 2005-06-08 2008-06-11 伊莱克斯家用产品股份有限公司 包括燃料电池和制氢反应器的洗涤机
JP2008194604A (ja) * 2007-02-13 2008-08-28 Kaiyo Bokujo:Kk 還元水製造装置
CN103850096A (zh) * 2012-11-30 2014-06-11 海尔集团公司 集成软化水系统的洗涤剂投放装置及具有该装置的洗衣机
JP2017099486A (ja) * 2015-11-30 2017-06-08 レック株式会社 洗濯機用アルカリイオン水生成用具
CN109505094A (zh) * 2017-09-14 2019-03-22 株式会社宫本制作所 由镁形成洗涤水收容部的内表面的洗衣机
CN211227745U (zh) * 2019-04-30 2020-08-11 深圳海能动力控股有限公司 镁基衣物清洗辅助用品

Also Published As

Publication number Publication date
CN114867899B (zh) 2024-03-22
JP2021104210A (ja) 2021-07-26
CN114867899A (zh) 2022-08-05
JP7390650B2 (ja) 2023-12-04

Similar Documents

Publication Publication Date Title
KR100576282B1 (ko) 드럼식 세탁기
CN103649399B (zh) 滚筒式洗衣机
KR20080090929A (ko) 세탁기의 제어방법
JP6917547B2 (ja) 洗濯機
US20180080158A1 (en) Washing Machine
JP2019107309A (ja) 洗濯機
JP2019037357A (ja) 液剤自動投入装置を搭載した洗濯機
JP2003071184A (ja) 洗濯機、および洗浄機
WO2021129310A1 (zh) 洗衣机
KR100478669B1 (ko) 세탁기 및 세정기
JP2003071183A (ja) 洗濯機、および洗浄機
JP2003290591A (ja) 洗濯機及びドラム式洗濯機
JP2013094205A (ja) 洗濯機
KR100479407B1 (ko) 세탁기 및 세정기
WO2022027995A1 (zh) 洗衣机
JPH11137888A (ja) 電気洗濯機
JP2019037358A (ja) 洗剤入れを備える洗濯機
CN116113735A (zh) 洗衣机
JP4171320B2 (ja) 洗濯機
WO2021129291A1 (zh) 洗衣机
JP2004097836A (ja) 洗濯機及びドラム式洗濯機
JP3973598B2 (ja) 洗濯機
JP2004358274A (ja) 洗濯機、及び洗浄機
JP2004208712A (ja) ドラム式洗濯機
JP4435100B2 (ja) 洗濯機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20907403

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20907403

Country of ref document: EP

Kind code of ref document: A1