WO2021129222A1 - 凸极轮毂电机 - Google Patents

凸极轮毂电机 Download PDF

Info

Publication number
WO2021129222A1
WO2021129222A1 PCT/CN2020/128509 CN2020128509W WO2021129222A1 WO 2021129222 A1 WO2021129222 A1 WO 2021129222A1 CN 2020128509 W CN2020128509 W CN 2020128509W WO 2021129222 A1 WO2021129222 A1 WO 2021129222A1
Authority
WO
WIPO (PCT)
Prior art keywords
hub
silicon steel
salient pole
hub body
motor according
Prior art date
Application number
PCT/CN2020/128509
Other languages
English (en)
French (fr)
Inventor
高超
刘豪杰
白雷
Original Assignee
雅迪科技集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 雅迪科技集团有限公司 filed Critical 雅迪科技集团有限公司
Publication of WO2021129222A1 publication Critical patent/WO2021129222A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K7/0007Disposition of motor in, or adjacent to, traction wheel the motor being electric
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2786Outer rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/006Structural association of a motor or generator with the drive train of a motor vehicle

Definitions

  • This application relates to the field of electric vehicle manufacturing, for example, to a salient pole hub motor.
  • the hub motor is to install the motor in the wheel. Its biggest feature is that the power, transmission and braking devices are integrated into the hub, so the mechanical part of the electric vehicle is greatly simplified. Energy and environmental issues are highlighted, and electric vehicles have become the strategic focus of the automotive industry around the world. High-quality in-wheel motors and their control systems are important research directions and hotspots in the field of electrical engineering at home and abroad. Because of their obvious advantages, they have become electric vehicles. An important development direction of development. In the case of electric energy driving, factors such as electric energy conversion efficiency, motor weight, stability, and service life are particularly important. Therefore, it is necessary to further optimize the motor structure and improve the motor performance.
  • the present application provides a salient pole hub motor, which can improve the performance of the motor.
  • a salient pole hub motor including a hub body, a rotor core fixed on the hub body, a stator core matched with the rotor core, and a motor shaft, the stator core passing through a core support Fixedly connected to the motor shaft, an end cover is provided on the outer side of the hub body, a hub cover is provided on the inner side of the hub body, and the end cover and the hub cover are respectively matched with the motor shaft through bearings, so
  • An encoder is provided on the motor shaft, a magnetic ring matching the encoder is provided on the hub cover, wherein the rotor core includes a plurality of silicon steel blocks with gaps arranged in an annular shape, two adjacent to each other. Magnetic steel is sandwiched between two silicon steel blocks to form a complete rotor ring. Between each silicon steel block and the adjacent magnetic steel, between the outer edge of the rotor ring and the inner edge of the hub body Glue bonding and solid connection.
  • FIG. 1 is a schematic structural diagram of a salient pole hub motor provided in Embodiment 1 of the present application;
  • Embodiment 2 is a schematic cross-sectional view of the salient pole hub motor provided by Embodiment 1 of the present application;
  • FIG. 3 is a schematic diagram of the installation of the rotor iron core and the hub body in the salient pole hub motor provided in Embodiment 1 of the present application;
  • FIG. 4 is a schematic diagram of the structure of the rotor core in the salient pole hub motor provided in Embodiment 1 of the present application;
  • Figure 5 is a schematic diagram of the structure of the silicon steel block in Figure 4.
  • FIG. 6 is a schematic diagram of the structure of the valve nozzle in the salient-pole hub motor provided in Embodiment 1 of the present application;
  • FIG. 7 is a schematic diagram of the installation of the rotor core and the hub body in the salient pole hub motor provided by Embodiment 2 of the present application;
  • FIG. 8 is a schematic structural diagram of a rotor iron core in a salient pole hub motor provided in Embodiment 2 of the present application;
  • Fig. 9 is a schematic diagram of the structure of the silicon steel block in Fig. 8.
  • FIG. 10 is a schematic diagram of the installation of the rotor core and the hub body in the salient pole hub motor provided in the third embodiment of the present application;
  • FIG. 11 is a schematic diagram of the structure of the rotor iron core in the salient pole hub motor provided in Embodiment 3 of the present application;
  • Fig. 12 is a schematic diagram of the structure of the silicon steel block in Fig. 11.
  • this embodiment provides a salient pole hub motor, which includes a hub body 1, a rotor core 2 fixed on the hub body 1, a stator core 3 matched with the rotor core 2 And the motor shaft 4, the stator iron core 3 is fixedly connected to the motor shaft 4 through the iron core bracket 5, the outer side of the hub body 1 is provided with an end cover 6, and the inner side of the hub body 1 is provided with a hub cover 7, end cover 6, hub cover 7
  • the motor shaft 4 is matched with the motor shaft 4 through a bearing.
  • the motor shaft 4 is provided with an encoder 8, and the hub cover 7 is provided with a magnetic ring 9 matching the encoder 8.
  • the rotor core 2 includes a plurality of silicon steel blocks 10 with gaps arranged in an annular shape.
  • a magnet 11 is sandwiched between two adjacent silicon steel blocks 10 to form a complete rotor ring.
  • Each silicon steel block 10 Adjacent to the magnet 11, the outer edge of the rotor ring and the inner edge of the hub body 1 are glued and fixed.
  • the specific glue used is any of anaerobic glue, AB glue or epoxy glue. .
  • the windings on the stator core 3 are wound in a single-wire parallel manner to improve the copper full rate of the stator.
  • the single-wire parallel connection mode can make full use of the winding groove area, increase the copper full rate of the enameled wire from 42.9% to 52.45%, reduce the internal resistance of the motor and increase the output torque.
  • the silicon steel block 10 is provided with a first groove 12 on the edge of the wheel hub body 1 to increase the glue bonding effect, and is arranged to accommodate a preset amount of glue.
  • Each silicon steel block 10 is provided with a second groove 13 on the edge close to the stator core 3.
  • the second groove 13 can increase the salient pole rate of the motor, reduce the cogging torque, and can also be used as a process positioning slot.
  • Each silicon steel block 10 is provided with a recess 14 on the side edge where it abuts against the magnet 11, thereby forming a magnetic isolation air gap 15 with the magnet 11, where the recess 14 is located on the hub of the silicon steel block 10
  • the side end of the body 1 reduces magnetic leakage, facilitates molding, and facilitates the assembly of the magnet 11.
  • each silicon steel block 10 close to the stator core 3 is provided with a convex portion 16 that limits the position of the magnetic steel 11.
  • the convex portion 16 can reduce the cogging torque, increase the salient pole rate of the motor, and is also used to resist the magnetism. The centrifugal force of steel 11 during rotation.
  • Each silicon steel block 10 is provided with a through hole 17 for reducing cogging torque, and the through hole 17 is set in a triangular shape to guide the direction of the magnetic circuit.
  • the through hole 17 changes the direction of the magnetic circuit, improves the magnetization ability, reduces the magnetic leakage, and effectively reduces the cogging torque. It can also be used as a process positioning hole.
  • Each silicon steel block 10 is formed by stacking a plurality of silicon steel sheets, and each silicon steel sheet is provided with a plurality of buckle points 18, and adjacent silicon steel sheets are buckled by the buckle points 18 in sequence.
  • the buckle point 18 here is rectangular.
  • the buckle point 18 of the upper silicon steel sheet is engaged in the buckle point 18 of the next silicon steel sheet to form a self-fastening, replacing the original rivet positioning method.
  • This structure is self-fastening Convenient, with higher positioning accuracy relative to rivets.
  • the hub body 1 is provided with an inflation port 19, which extends from the outer surface to the inner surface of the hub body 1, and includes a threaded hole and a tapered hole 20 from the outside to the inside.
  • the inflation port 19 is used in conjunction with the valve 21.
  • the head end of the mouth 21 is configured as a cone corresponding to the tapered hole 20, and the corresponding threaded hole is provided with an external thread.
  • the cone is provided with an annular groove, and a sealing ring 22 is embedded in the annular groove.
  • the taper structure of the inflation port 19 is matched with the special structure of the valve 21 to achieve a sealing effect. Unlike the conventional valve 21, this structure is suitable for occasions where the rim space is small.
  • This embodiment provides a salient pole hub motor.
  • Embodiment 1 On the basis of Embodiment 1, another rotor structure is proposed.
  • the silicon steel block of the rotor here omits the recessed part 14 and the convex part 16, and increases the density of the silicon steel block, which is the same tooth as the stator, so as to increase the usage of the magnetic steel 11 and increase the magnetic flux of the permanent magnet. Increasing the power density of the motor also facilitates the stamping and forming of silicon steel sheets.
  • this embodiment provides a salient pole hub motor.
  • another rotor structure is proposed.
  • the silicon steel block of the rotor is provided with a third groove 23 at the convex part 16 to reduce stress, enhance the anti-stress effect, and increase the salient pole rate of the motor.
  • a plurality of circular buckle points 18 are arranged around the periphery of the through hole 17, so that the positioning accuracy is higher.
  • the above-mentioned salient pole hub motor mainly optimizes the structure of the rotor core 2 and the layout of various components to increase the salient pole rate of the rotor, increase the power density of the motor, broaden the efficiency platform of the motor, increase the mileage of the vehicle, and reduce the cogging of the motor.
  • Torque reduces the overall weight of the motor, so as to achieve the purpose of improving the performance of the motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

一种凸极轮毂电机,包括轮毂本体(1)、固定于轮毂本体(1)上的转子铁芯(2)、与转子铁芯(2)配合的定子铁芯(3)以及电机轴(4),定子铁芯(3)通过铁芯支架(5)与电机轴(4)固连,轮毂本体(1)的外侧和内侧分别设置有端盖(6)和毂盖(7),端盖(6)、毂盖(7)分别与电机轴(4)通过轴承配合,电机轴(4)上设置有编码器(8),毂盖(7)上设置有与编码器(8)匹配的磁环(9),转子铁芯(2)包括多个间隙排列成圆环状的矽钢块(10),相邻两个矽钢块(10)之间夹设有磁钢(11),以形成完整转子环,每个矽钢块(10)与相邻的磁钢(11)之间、转子环的外缘与轮毂本体(1)的内缘之间采用胶体粘接固连。

Description

凸极轮毂电机
本申请要求申请日为2019年12月28日、申请号为201911384581.2的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及电动车制造领域,例如涉及一种凸极轮毂电机。
背景技术
轮毂电机即是在车轮内装电机,它的最大特点就是将动力、传动和制动装置都整合到轮毂内,因此将电动车辆的机械部分大大简化。能源和环境问题凸显,电动汽车成为世界各国汽车行业的战略重点,高品质的轮毂电机及其控制系统是国内外电气工程领域的重要研究方向和热点,因其具有明显的优势,已成为电动汽车发展的一个重要发展方向。在电能驱动的情况下,电能转化效率、电机重量、稳定性、使用寿命等等因素尤为重要,因此需要进一步优化电机结构,提高电机性能。
发明内容
本申请提供了一种凸极轮毂电机,能够提高电机性能。
一实施提供一种凸极轮毂电机,包括轮毂本体、固定于所述轮毂本体上的转子铁芯、与所述转子铁芯配合的定子铁芯以及电机轴,所述定子铁芯通过铁芯支架与所述电机轴固连,所述轮毂本体的外侧设置有端盖,所述轮毂本体的内侧设置有毂盖,所述端盖、所述毂盖分别与所述电机轴通过轴承配合,所述电机轴上设置有编码器,所述毂盖上设置有与所述编码器匹配的磁环,其中,所述转子铁芯包括多个间隙排列成圆环状的矽钢块,相邻两个矽钢块之间夹设有磁钢,以形成完整转子环,每个矽钢块与相邻的磁钢之间、所述转子环的外缘与所述轮毂本体的内缘之间采用胶体粘接固连。
附图说明
图1是本申请实施例1提供的凸极轮毂电机的结构示意图;
图2是本申请实施例1提供的凸极轮毂电机的截面示意图;
图3是本申请实施例1提供的凸极轮毂电机中转子铁芯与轮毂本体的安装示意图;
图4是本申请实施例1提供的凸极轮毂电机中转子铁芯的结构示意图;
图5是图4中矽钢块的结构示意图;
图6是本申请实施例1提供的凸极轮毂电机中气门嘴处的结构示意图;
图7是本申请实施例2提供的凸极轮毂电机中转子铁芯与轮毂本体的安装示意图;
图8是本申请实施例2提供的凸极轮毂电机中转子铁芯的结构示意图;
图9是图8中矽钢块的结构示意图;
图10是本申请实施例3提供的凸极轮毂电机中转子铁芯与轮毂本体的安装示意图;
图11是本申请实施例3提供的凸极轮毂电机中转子铁芯的结构示意图;
图12是图11中矽钢块的结构示意图。
具体实施方式
实施例1:
请参阅图1至图6所示,本实施例提供一种凸极轮毂电机,其包括轮毂本体1、固定于轮毂本体1上的转子铁芯2、与转子铁芯2配合的定子铁芯3以及电机轴4,定子铁芯3通过铁芯支架5与电机轴4固连,轮毂本体1的外侧设置有端盖6,轮毂本体1的内侧设置有毂盖7,端盖6、毂盖7与电机轴4均通过轴承配合,电机轴4上设置有编码器8,毂盖7上设置有与编码器8匹配的磁环9。
其中,转子铁芯2包括多个间隙排列成圆环状的矽钢块10,相邻两个矽钢块10之间夹设有磁钢11,从而形成完整转子环,每个矽钢块10与相邻的磁钢11之间、转子环的外缘与轮毂本体1的内缘之间采用胶体粘接固连,具体采用的胶体为厌氧胶、AB胶或环氧胶中任一种。
定子铁芯3上的绕组采用单线并联方式绕制,以提高定子铜满率。相对于多线串联方式,单线并联方式可以充分利用绕线槽面积,使漆包线铜满率由42.9%提高到52.45%,降低电机内阻,提高输出转矩。
矽钢块10的贴靠轮毂本体1的边沿上设置有增加胶体粘接效果的第一凹槽12,设置为容纳预设量胶体。
每个矽钢块10的靠近定子铁芯3的边沿上设置有第二凹槽13,第二凹槽13可以增加电机凸极率,降低齿槽转矩,还可以做工艺定位槽使用。
每个矽钢块10与磁钢11贴靠的侧沿上设置有凹陷部14,从而与磁钢11间形成隔磁气隙15,此处的凹陷部14位于矽钢块10的贴靠轮毂本体1的侧端,减少漏磁,方便成型,也方便磁钢11装配。
每个矽钢块10的靠近定子铁芯3的侧端设置有对磁钢11限位的凸部16,该凸部16可以降低齿槽转矩,提高电机凸极率,也用于抵制磁钢11在旋转时的离心力。
每个矽钢块10上开设有降低齿槽转矩的通孔17,且通孔17为引导磁路走向设置为三角状。该通孔17改变了磁路走向,提高聚磁能力,减少漏磁,同时有效降低了齿槽转矩,还可作为工艺定位孔使用。
每个矽钢块10由多个矽钢片堆叠而成,每个矽钢片上设置有多个扣点18,相邻矽钢片通过扣点18依次卡扣。此处的扣点18为矩形状,叠压时,上一片矽钢片的扣点18卡合在下一片矽钢片的扣点18内形成自扣,取代原有铆钉定位方式,此结构自扣便捷,相对铆钉定位精度更高。
另外,轮毂本体1上开设有充气口19,充气口19自轮毂本体1的外侧表面延伸至内侧表面,且自外向内包括螺纹孔和锥形孔20,充气口19配合气门嘴21使用,气门嘴21上的头端对应锥形孔20设置为锥部,对应螺纹孔设置有外螺纹,锥部上开设有环形槽,环形槽中嵌入有密封圈22。充气口19的锥度结构与特殊结构的气门嘴21配合,达到密封效果,与常规气门嘴21不同,此结构适应轮辋空间狭小的场合。
实施例2:
请参阅图7至图9所示,本实施例提供一种凸极轮毂电机,在实施例1的基础上,提出另一种转子结构。
此处转子的矽钢块省去了凹陷部14和凸部16,并提高了矽钢块的密布数量,和定子同齿,以此增加磁钢11的使用量,提高永磁体磁通,从而提高电机功率密度,也方便矽钢片冲压成型。
实施例3:
请参阅图10至图12所示,本实施例提供一种凸极轮毂电机,在实施例1 的基础上,提出另一种转子结构。
此处转子的矽钢块于凸部16处开设有第三凹槽23,以降低应力,增强抗应效果,提高电机凸极率。另外,围绕通孔17的周围设置多个圆形的扣点18,定位精度更高。
综上,上述的凸极轮毂电机主要通过优化转子铁芯2的结构及各部件布局,以提高转子凸极率,提高电机功率密度,拓宽电机效率平台,提高车辆续行里程,降低电机齿槽转矩,降低电机整体重量,从而达到提高电机性能的目的。

Claims (10)

  1. 一种凸极轮毂电机,包括轮毂本体(1)、固定于所述轮毂本体(1)上的转子铁芯(2)、与所述转子铁芯(2)配合的定子铁芯(3)以及电机轴(4),所述定子铁芯(3)通过铁芯支架(5)与所述电机轴(4)固连,所述轮毂本体(1)的外侧设置有端盖(6),所述轮毂本体(1)的内侧设置有毂盖(7),所述端盖(6)、所述毂盖(7)分别与所述电机轴(4)通过轴承配合,所述电机轴(4)上设置有编码器(8),所述毂盖(7)上设置有与所述编码器(8)匹配的磁环(9),其中,所述转子铁芯(2)包括多个间隙排列成圆环状的矽钢块(10),相邻两个矽钢块(10)之间夹设有磁钢(11),以形成完整转子环,每个矽钢块(10)与相邻的磁钢(11)之间、所述转子环的外缘与所述轮毂本体(1)的内缘之间采用胶体粘接固连。
  2. 根据权利要求1所述的凸极轮毂电机,其中:所述每个矽钢块(10)的贴靠所述轮毂本体(1)的边沿上设置有增加胶体粘接效果的第一凹槽(12)。
  3. 根据权利要求1所述的凸极轮毂电机,其中:所述每个矽钢块(10)的靠近所述定子铁芯(3)的边沿上设置有第二凹槽(13)。
  4. 根据权利要求1所述的凸极轮毂电机,其中:所述每个矽钢块(10)与所述磁钢(11)贴靠的侧沿上设置有凹陷部(14),以与所述磁钢(11)间形成隔磁气隙(15)。
  5. 根据权利要求1所述的凸极轮毂电机,其中:所述每个矽钢块(10)的靠近所述定子铁芯(3)的侧端设置有对所述磁钢(11)限位的凸部(16)。
  6. 根据权利要求1所述的凸极轮毂电机,其中:所述每个矽钢块(10)上开设有降低齿槽转矩的通孔(17),且所述通孔(17)设置为引导磁路走向且为三角状。
  7. 根据权利要求1所述的凸极轮毂电机,其中:所述每个矽钢块(10)由多个矽钢片堆叠而成,每个矽钢片上设置有多个扣点(18),相邻两个所述矽钢片通过所述扣点(18)依次卡扣。
  8. 根据权利要求1所述的凸极轮毂电机,其中:所述胶体为厌氧胶、AB胶或环氧胶中任一种。
  9. 根据权利要求1所述的凸极轮毂电机,其中:所述定子铁芯(3)上的绕组采用单线并联方式绕制,以提高定子铜满率。
  10. 根据权利要求1所述的凸极轮毂电机,还包括气门嘴(21),所述轮毂本体(1)上开设有充气口(19),所述充气口(19)自所述轮毂本体(1)的外 侧表面延伸至内侧表面,且自外向内包括螺纹孔和锥形孔(20),所述充气口(19)设置为与所述气门嘴(21)配合使用,且所述气门嘴(21)上的头端对应所述锥形孔(20)并设置为锥部,所述气门嘴(21)上对应所述螺纹孔处设置有外螺纹,所述锥部上开设有环形槽,所述环形槽中嵌入有密封圈(22)。
PCT/CN2020/128509 2019-12-28 2020-11-13 凸极轮毂电机 WO2021129222A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911384581.2 2019-12-28
CN201911384581.2A CN110920376A (zh) 2019-12-28 2019-12-28 一种凸极轮毂电机

Publications (1)

Publication Number Publication Date
WO2021129222A1 true WO2021129222A1 (zh) 2021-07-01

Family

ID=69861252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/128509 WO2021129222A1 (zh) 2019-12-28 2020-11-13 凸极轮毂电机

Country Status (2)

Country Link
CN (1) CN110920376A (zh)
WO (1) WO2021129222A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110920376A (zh) * 2019-12-28 2020-03-27 江苏雅迪科技发展有限公司宁波分公司 一种凸极轮毂电机
CN112701822A (zh) * 2020-12-31 2021-04-23 上海雅迪信息技术有限公司 一种轮毂电机
CN113119714A (zh) * 2021-05-12 2021-07-16 台铃科技发展有限公司 电动车电机
CN115765245B (zh) * 2022-11-29 2024-01-30 江苏新伟动力科技有限公司 一种u极轮毂电机

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204304712U (zh) * 2014-11-28 2015-04-29 浙江雅迪机车有限公司 一种轮毂式编码器电机
CN204354742U (zh) * 2015-01-07 2015-05-27 马加良 微型轮毂电机轮子的充气装置
CN104953738A (zh) * 2014-03-28 2015-09-30 博世(宁波)轻型电动车电机有限公司 永磁同步电机及车辆
WO2015151344A1 (ja) * 2014-03-31 2015-10-08 株式会社日立カーエンジニアリング 永久磁石式ブラシレスモータ
CN105827036A (zh) * 2015-01-27 2016-08-03 西门子公司 电机的转子和转子区段
CN107171525A (zh) * 2017-06-21 2017-09-15 江苏雅迪科技发展有限公司宁波分公司 永磁同步轮毂电机及电动车
CN110920376A (zh) * 2019-12-28 2020-03-27 江苏雅迪科技发展有限公司宁波分公司 一种凸极轮毂电机
CN211617418U (zh) * 2019-12-28 2020-10-02 江苏雅迪科技发展有限公司宁波分公司 一种凸极轮毂电机

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104953738A (zh) * 2014-03-28 2015-09-30 博世(宁波)轻型电动车电机有限公司 永磁同步电机及车辆
WO2015151344A1 (ja) * 2014-03-31 2015-10-08 株式会社日立カーエンジニアリング 永久磁石式ブラシレスモータ
CN204304712U (zh) * 2014-11-28 2015-04-29 浙江雅迪机车有限公司 一种轮毂式编码器电机
CN204354742U (zh) * 2015-01-07 2015-05-27 马加良 微型轮毂电机轮子的充气装置
CN105827036A (zh) * 2015-01-27 2016-08-03 西门子公司 电机的转子和转子区段
CN107171525A (zh) * 2017-06-21 2017-09-15 江苏雅迪科技发展有限公司宁波分公司 永磁同步轮毂电机及电动车
CN110920376A (zh) * 2019-12-28 2020-03-27 江苏雅迪科技发展有限公司宁波分公司 一种凸极轮毂电机
CN211617418U (zh) * 2019-12-28 2020-10-02 江苏雅迪科技发展有限公司宁波分公司 一种凸极轮毂电机

Also Published As

Publication number Publication date
CN110920376A (zh) 2020-03-27

Similar Documents

Publication Publication Date Title
WO2021129222A1 (zh) 凸极轮毂电机
CN202513786U (zh) 一种电机的定子铁芯
CN204012963U (zh) 高功率密度外转子直流无刷电机
JP6253520B2 (ja) 回転電機
EP2493055B1 (en) Permanent-magnet type electric rotating machine
WO2017177740A1 (zh) 一种永磁电动机
CN109617267A (zh) 一种适用于混合动力汽车的裂槽式磁场调制永磁电机
CN104124791B (zh) 一种基于环形电机的动量轮
JP2013251948A (ja) 永久磁石埋込型電動機
WO2024037312A1 (zh) 轴向电机转子、轴向电机、动力总成及车辆
CN104506005A (zh) 一种电动汽车轮毂式永磁电机
CN211617418U (zh) 一种凸极轮毂电机
CN103840586B (zh) 永磁外转子轮毂电机
CN202696438U (zh) 一种高磁通永磁直流电机
CN102347669A (zh) 一种有限转角力矩电动机及其制作方法
CN202455171U (zh) 分瓣式磁悬浮电机
CN205489867U (zh) 轮辐式永磁自启动电机转子
CN201733147U (zh) 一种有限转角力矩电动机
CN208862650U (zh) 一种电机转子结构和电机
CN201611834U (zh) 电动车电机
CN201256312Y (zh) 无刷电机
CN106992645B (zh) 一种用于电动车的轮毂电机
CN216290394U (zh) 一种磁钢防脱落导磁环及使用该导磁环的凸极电机
JP2006314196A (ja) 永久磁石埋込型電動機
CN109905000A (zh) 径向与切向永磁磁极混合励磁电机转子生产方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20907950

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20907950

Country of ref document: EP

Kind code of ref document: A1