WO2024037312A1 - 轴向电机转子、轴向电机、动力总成及车辆 - Google Patents

轴向电机转子、轴向电机、动力总成及车辆 Download PDF

Info

Publication number
WO2024037312A1
WO2024037312A1 PCT/CN2023/109891 CN2023109891W WO2024037312A1 WO 2024037312 A1 WO2024037312 A1 WO 2024037312A1 CN 2023109891 W CN2023109891 W CN 2023109891W WO 2024037312 A1 WO2024037312 A1 WO 2024037312A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
support part
soft
permanent magnet
axial
Prior art date
Application number
PCT/CN2023/109891
Other languages
English (en)
French (fr)
Inventor
石超杰
周朝
徐曙光
Original Assignee
华为数字能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为数字能源技术有限公司 filed Critical 华为数字能源技术有限公司
Publication of WO2024037312A1 publication Critical patent/WO2024037312A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2793Rotors axially facing stators
    • H02K1/2795Rotors axially facing stators the rotor consisting of two or more circumferentially positioned magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K7/0007Disposition of motor in, or adjacent to, traction wheel the motor being electric
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2793Rotors axially facing stators
    • H02K1/2795Rotors axially facing stators the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2798Rotors axially facing stators the rotor consisting of two or more circumferentially positioned magnets where both axial sides of the stator face a rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
    • H02K1/30Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures using intermediate parts, e.g. spiders
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/02Machines with one stator and two or more rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/006Structural association of a motor or generator with the drive train of a motor vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/12Transversal flux machines

Definitions

  • This application relates to the technical field of axial motors, and in particular to an axial motor rotor, axial motor, power assembly and vehicle.
  • axial magnetic field permanent magnet motors Compared with traditional radial magnetic field permanent magnet motors, axial magnetic field permanent magnet motors have significant advantages such as compact structure, high torque density, and high efficiency.
  • the axial magnetic field permanent magnet motor has a low speed in practical applications, and its structure is mostly surface-mounted. As the operating frequency of the rotor increases, the eddy current loss of the traditional surface-mounted permanent magnet rotor structure increases. A significant increase will cause the performance of the motor to decline. At the same time, the reluctance torque component of the rotor is small, and the power drops quickly at high speeds. Considering the structural strength and the need to maintain high power at high speeds, the iron core of the rotor is made into an overall annular structure.
  • the ring-shaped core structure is generally made of rolled silicon steel sheets, and its inner ring wall is an Archimedean involute rather than a circle, causing this It is difficult for the inner and outer ring walls of the rotor core to effectively cooperate with other motor rotor structural parts through interference, making the connection between the inner ring wall of the magnet and the motor shaft unreliable and making it difficult to improve the structural strength.
  • the slots on the wound core are punched by a single punch, their specifications and dimensions are fixed, which means that the magnetic steel cannot be sector-shaped, which will cause the magnetic steel to occupy the outer diameter of the core.
  • the core size is smaller and the motor performance is insufficient.
  • This application provides an axial motor rotor, an axial motor, a power assembly and a vehicle.
  • the application provides an axial motor rotor.
  • the axial motor rotor includes a rotor bracket and a magnet structure; the rotor bracket includes a first support part and a second support part coaxially arranged, and the first support
  • the magnet structure includes a plurality of magnet units, and the plurality of magnet units are arranged in sequence along the circumferential direction of the second support part.
  • the magnet unit includes a first soft magnet and a first permanent magnet, and at least part of the first soft magnet and at least part of the first permanent magnet are along the The second supporting parts are axially stacked.
  • the magnet structure is fixed between the first support part and the second support part, and the two ends of the magnet unit along the radial direction of the second support part are respectively connected with the first support part. It is fixed with the second support part to improve the structural stability between the magnet structure and the rotor bracket, so as to increase the overall reliability of the axial motor rotor; secondly, the rotor bracket is limited and fixed by two coaxially arranged support parts. At both ends of the magnet unit in the radial direction, the rotor bracket has a simple structure and saves space. The saved space can be used to fill the magnet unit, which is beneficial to increasing the volume of the magnet unit, thereby increasing the magnetic density, thereby improving the performance of the axial motor.
  • each magnet unit surrounds the second support part to form an annular magnet structure.
  • Each magnet unit only occupies a part of the annular magnet structure. Compared with the overall annular magnet structure, it is formed by surrounding and splicing multiple magnet units. The magnet structure is simpler to process and has higher processing precision, which is beneficial to improving the reliability of the axial motor;
  • each magnet unit includes a first soft magnet and a first soft magnet that are stacked at least partially along the axial direction of the second support part. The permanent magnet and the first soft magnet are conducive to the flow of magnetic lines of force and provide a smooth flow path for the magnetic lines of force.
  • the magnetic lines of force flowing outward from the first permanent magnet can pass through the third A soft magnet flows into the first permanent magnet in the adjacent magnet unit.
  • the first soft magnet is more conducive to the magnetic field lines than the air. Circulation can reduce magnetic flux loss.
  • the circumferential size of the magnet unit gradually increases from an end close to the second support part to an end away from the second support part. Since the second support part is located on the inside and the first support part is on the outside, the circumferential size of the first support part is larger than the circumferential size of the second support part, so that the space between the first support part and the second support part is from close to the first support part. The area area of the two support parts gradually increases toward the area area close to the first support part.
  • the magnet unit is arranged as above so that the magnet unit is fan-shaped to fit the first support part and the second support part. The space between the two parts allows the magnet unit to fill a larger area between the first support part and the second support part, making full use of the internal space of the rotor bracket to increase the area of the magnet unit, improve the magnetic density, and increase the output torque. .
  • the first permanent magnet is continuous along the radial direction of the second support part. If the first permanent magnet is along the second branch
  • the support part is not continuous in the radial direction, but is composed of multiple sub-magnet units arranged in the radial direction.
  • Permanent magnets generally have high structural strength and are relatively difficult to process.
  • the permanent magnets are magnetic steel, and the surfaces of the three permanent magnets on both sides of the circumferential direction are Processing alignment is difficult and the processing cost is high.
  • the space of the rotor bracket will be wasted, resulting in a reduced filling amount of permanent magnets, thereby reducing the performance of the axial motor; and
  • the three sub-magnet units require three sets of stamping dies and require a large amount of magnetic steel grinding tools. In order to ensure the coaxiality of the internal and external arc walls of the three sub-magnet units, the processing accuracy is high, making the processing technology complex.
  • the first permanent magnet is continuous along the radial direction of the second support part, and the continuous and integral structure in the radial direction can align the surfaces of the first permanent magnet on both sides of the circumferential direction, which is not only simple to process, but also It is also helpful to increase the volume of the magnet unit and improve the magnetic density.
  • the first permanent magnet is located within the first soft magnet in the projection of the first soft magnet along the axial direction of the second support part.
  • the arrangement in this implementation mode makes the circumferential size of the first soft magnet larger than the circumferential size of the first permanent magnet, which is beneficial to gathering magnetic flux lines and conducive to magnetic conduction.
  • the area of the largest surface of the first permanent magnet is smaller than the area of the largest surface of the first soft magnet, so that most or all of the magnetic lines of force flowing out from the first permanent magnet can enter the first soft magnet and pass through The first soft magnets gather together and flow through the first soft magnets into adjacent magnet units.
  • the magnet unit further includes a second soft magnet
  • the first permanent magnet includes a first main body part, a first sub-part and a second sub-part
  • the first soft magnet includes a first main body part, a first sub-part and a second sub-part
  • the first soft magnet includes a first main body part, a first sub-part and a second sub-part
  • the first soft magnet includes a first main body part, a first sub-part and a second sub-part
  • the first soft magnet are stacked along the axial direction of the second support part, and the first sub-part and the second sub-part are arranged along the circumferential direction of the second support part. on both sides of the first main body part and the second soft magnetic body.
  • a first soft magnet and a second soft magnet are respectively provided on both sides of the first permanent magnet along the axial direction, so that the magnetic lines of force on both sides of the first permanent magnet along the axial direction are gathered by the soft magnets, thereby increasing the air gap. Magnetic density.
  • the arrangement of the first sub-section and the second sub-section is conducive to gathering the magnetic lines of force.
  • the magnetic lines of force converge into the winding coils on the stator. , making the air gap magnetic density waveform close to a sine wave, which can increase the output torque and reduce torque fluctuations.
  • the first permanent magnet is a magnetic steel, wherein the circumferential size of the first body part extends from an end close to the second support part to an end far away from the second support part. gradually increase.
  • the first main body part is fan-shaped, and the first main body part is also made of magnetic steel.
  • the magnetic steel is fan-shaped, which can make full use of the space in the rotor bracket and avoid causing the size of the magnet unit occupied by the magnetic steel at the outer diameter to be smaller.
  • the motor performance is insufficient, and the magnets are fan-shaped, which can effectively improve the performance of the axial motor; and the magnets are built into the magnet unit, which increases the reluctance torque component of the axial motor, so that the axial motor can still operate under high-speed conditions. Can maintain greater power.
  • the first main body part, the first sub-part and the second sub-part are independent structures, which is beneficial to processing.
  • the first permanent magnet is magnetic steel
  • the strength of the magnetic steel is relatively high and difficult to shape.
  • three independent structures are used to form the first permanent magnet in a "U" shape structure. Conducive to processing.
  • the magnet unit further includes a second permanent magnet, a surface of the second soft magnet facing away from the first body part is provided with a groove, and the second permanent magnet is located in the groove. inside the tank.
  • the second permanent magnet and the first permanent magnet are used together to generate magnetic lines of force, increase magnetic flux, increase output torque, and improve motor performance.
  • the projection of the second permanent magnet on the first main body part along the axial direction of the second support part is located in the first main body part.
  • the second permanent magnet and the first main body part are arranged as above so that the circumferential size of the second permanent magnet is smaller than the circumferential size of the first main body part.
  • the second permanent magnet is compared with the first main body part, When closer to the air gap, the area of the magnetic field lines of the second permanent magnet is smaller than the area of the magnetic field lines of the first body part, and the magnetic field lines gradually converge from the first body part toward the air gap, which is beneficial to increasing the magnetic density passing through the air gap.
  • the arc of the second permanent magnet along the circumferential direction of the second support part is smaller than the arc of the first main body part along the circumferential direction of the second support part.
  • the circumferential direction of the second supporting part is also the circumferential direction of the motor shaft, or the circumferential direction of the first supporting part, or the circumferential direction of the magnet structure.
  • the arc of the second permanent magnet along the circumferential direction is smaller than the arc of the first body part along the circumferential direction, so that the magnet unit is more conducive to gathering the magnetic lines of force, so that the magnetic density entering the air gap is closer to a sine wave.
  • the first soft magnetic body and the second soft magnetic body are soft magnetic composite material magnets.
  • Soft magnetic composite material magnets refer to magnets formed by processing soft magnetic composite materials, which can reduce high-frequency eddy current losses and increase application frequency.
  • soft magnetic composite materials are easy to shape and can be processed into soft magnetic structures of required shapes.
  • the second soft magnet can be processed into a groove, wherein the groove matches the shape of the second permanent magnet, so that the second permanent magnet can be accommodated in the groove, and both sides of the second permanent magnet along the circumferential direction are grooved. The contact between the two side walls can improve the stability of both sides of the second permanent magnet along the circumferential direction.
  • the magnet unit further includes a third soft magnet
  • the second permanent magnet includes a second main body part, a third subpart and a fourth subpart
  • the third soft magnet is located at the The side of the second main body part away from the second soft magnetic body, the third sub-part and the fourth sub-part are arranged along the first direction between the second main body part and the third soft magnetic body. both sides.
  • the third part and the fourth part of the second permanent magnet protrude toward the air gap side relative to the second main body part, thereby improving the effect of gathering magnetic lines of force, thereby making the air gap magnetic density waveform closer to a sine wave. Improve the air gap magnetic density.
  • At least one of the first soft magnetic body, the second soft magnetic body and the third soft magnetic body is a soft magnetic body.
  • Soft magnetic composite material magnets refer to magnets formed by processing soft magnetic composite materials, which can reduce high-frequency eddy current losses and increase application frequency. Moreover, soft magnetic composite materials are easy to shape and can be processed into soft magnetic structures of required shapes.
  • the magnet unit further includes a second soft magnet and a second permanent magnet, and the first soft magnet, the first permanent magnet and the second soft magnet are arranged along the second
  • the support parts are axially stacked, a groove is provided on the surface of the second soft magnet away from the first permanent magnet, the second permanent magnet is located in the groove, and the second permanent magnet is arranged along the The axial projection of the second support portion on the first permanent magnet is located inside the first permanent magnet.
  • the cross-sections of the first permanent magnet and the second permanent magnet have a "-" shaped structure, the second permanent magnet is located in the groove of the second soft magnet, and both sides of the second permanent magnet along the circumferential direction are surrounded by the second permanent magnet.
  • the two soft magnets are covered so that the magnetic lines of force flowing out from both sides of the second permanent magnet along the circumferential direction can be gathered by the second soft magnets, thereby increasing the air gap magnetic density.
  • the rotor support further includes a plurality of positioning posts, and two ends of each positioning post are respectively connected to the first support part and the second support part.
  • the support part is fixedly connected, the positioning post separates two adjacent magnet units, part of the first support part and part of the second part between the two adjacent positioning posts and the connected two positioning posts.
  • the two supporting parts enclose a receiving space, and the magnet unit is located in the receiving space.
  • the positioning post is used to fix the first support part and the second support part and improve the stability between the first support part and the second support part; in addition, the first support part, the second support part and
  • the rotor bracket composed of positioning posts is a bracket structure with more space, which is conducive to heat dissipation of the magnet structure.
  • the magnet unit can be bonded to the first support part, the second support part and the positioning post through adhesive glue.
  • adhesive glue can be filled in the gap between the magnet unit and the rotor bracket to enhance the bonding strength and improve structural reliability.
  • the rotor bracket further includes limiting ribs located on both sides of the positioning column in the circumferential direction, and the two adjacent positioning columns are provided with limited space on the opposite surfaces.
  • the limiting ribs are used to snap into the limiting grooves of the magnet unit. This further improves the structural reliability of the magnet unit and rotor bracket.
  • the positioning column is provided with a through hole extending radially along the second support part. Through-holes facilitate heat dissipation.
  • the rotor bracket is a non-magnetic permeable bracket.
  • the non-magnetic bracket can reduce magnetic flux leakage and reduce magnetic flux loss, so that most of the magnetic flux of the two adjacent magnet units flows into the winding coil of the stator, increasing the output torque. If a magnetic permeable bracket is used, the magnetic permeable bracket will cause part of the magnetic flux to disperse radially from the rotor bracket, thereby consuming part of the magnetic flux, which will affect the performance of the axial motor.
  • the size of the cross section of the second permanent magnet gradually decreases from an end close to the first main body part to an end far away from the first main body part.
  • the cross-section of the second permanent magnet refers to the cross-section obtained by cutting the second permanent magnet along the axial direction of the second support part with an arc that has the same arc as the second permanent magnet.
  • the size of the cross-section of the second permanent magnet gradually decreases from the end close to the first body part to the end far away from the first body part, so that the size of the end close to the air gap side is smaller than the end far away from the air gap side. The size makes the magnetic lines of force converge closer to the air gap side, making the air gap magnetic density waveform closer to a sine wave and improving the air gap magnetic density.
  • the magnet unit further includes a third soft magnet
  • the second permanent magnet includes a second main body part, a third sub-part and a fourth sub-part
  • the third soft magnet is located at the The two main parts are on one side away from the second soft magnetic body, and the third sub-part and the fourth sub-part are arranged along the circumferential direction of the second support part between the second main part and the third soft magnetic body. both sides.
  • the cross section of the first permanent magnet is a "-" shaped structure
  • the cross section of the second permanent magnet is a "U" shaped structure
  • the third and fourth subsections of the second permanent magnet are opposite to the second permanent magnet.
  • the main body protrudes toward the air gap side to improve the effect of gathering magnetic lines of force, thereby making the air gap magnetic density waveform closer to a sine wave and improving the air gap magnetic density.
  • the angle between the third sub-section and the fourth sub-section and the second main body part is greater than 90°; in the In the first permanent magnet, an included angle between the first sub-part and the second sub-part and the first main body part is greater than 90°.
  • the present application provides an axial motor.
  • the axial motor includes a motor shaft, a stator and an axial motor rotor as described in any one of the above.
  • the stator is installed on the motor shaft and connected with the motor shaft.
  • the motor shaft is rotationally connected, the axial motor rotor is installed on the motor shaft and fixedly connected to the motor shaft, and the first soft magnet is located on the side of the first permanent magnet facing away from the stator.
  • the axial motor includes two axial motor rotors, and the two axial motor rotors are both installed on the motor shaft and fixedly connected to the motor shaft, so The two axial motor rotors are located on both sides of the stator along the axial direction of the motor shaft.
  • the present application provides a powertrain, including a gearbox and an axial motor as described above.
  • the axial motor is drivingly connected to the power input shaft in the gearbox and is used to input power to the The shaft outputs power.
  • the present application provides a vehicle, which includes a vehicle body and an axial motor as described above, and the axial motor is installed on the vehicle body.
  • the vehicle further includes wheels, the wheels are installed on the vehicle body, and the axial motor is drivingly connected to the wheels for driving the wheels.
  • Figure 1 is an overall schematic diagram of an axial motor provided by an embodiment of the present application
  • Figure 2 is an exploded view of the axial motor provided in Figure 1 of this application;
  • Figure 3a is a schematic structural diagram of the rotor and stator of the axial motor in the axial motor provided by an embodiment of the present application;
  • Figure 3b is a side view of the rotor and stator of the axial motor in the axial motor provided by an embodiment of the present application;
  • Figure 4 is a schematic structural diagram of a powertrain provided by an embodiment of the present application.
  • Figure 5 is a schematic structural diagram of a vehicle provided by an embodiment of the present application.
  • Figure 6 is a schematic structural diagram of an axial motor rotor provided by an embodiment of the present application.
  • Figure 7 is a schematic structural diagram of an axial motor rotor provided by an embodiment of the present application.
  • Figure 8a is a schematic structural diagram of a rotor bracket in an axial motor rotor provided by an embodiment of the present application
  • Figure 8b is a partial enlarged view of part M in Figure 8a of the present application.
  • Figure 9 is a partial schematic diagram of the magnet structure in the axial motor rotor provided by an embodiment of the present application.
  • Figure 10 is a schematic structural diagram of a magnet unit provided by an embodiment of the present application.
  • Figure 11 is a schematic structural diagram of two magnet units provided by an embodiment of the present application.
  • Figure 12 is a schematic structural diagram of a discontinuous magnet unit
  • Figure 13 is a schematic structural diagram of a magnet unit provided by an embodiment of the present application.
  • Figure 14 is a schematic structural diagram of the first main body part and the second permanent magnet of the first permanent magnet in the magnet unit provided by an embodiment of the present application;
  • Figure 15 is a magnetic circuit diagram of an axial motor provided by an embodiment of the present application.
  • Figure 16 is a waveform diagram of the air gap magnetic density of an axial motor provided by an embodiment of the present application.
  • Figure 17 is the air gap magnetic density waveform diagram of an axial motor using only magnets
  • Figure 18 is a schematic diagram of a magnet unit provided by an embodiment of the present application.
  • Figure 19 is a schematic structural diagram of a magnet unit in an axial motor rotor provided by an embodiment of the present application.
  • Figure 20 is a magnetic circuit diagram of an axial motor rotor provided by an embodiment of the present application.
  • Figure 21 is a schematic structural diagram of a magnet unit in an axial motor rotor provided by an embodiment of the present application.
  • Figure 22 is a magnetic circuit diagram of an axial motor rotor provided by an embodiment of the present application.
  • Figure 23 is a schematic structural diagram of a magnet unit in an axial motor rotor provided by an embodiment of the present application.
  • Figure 24 is a magnetic circuit diagram of two pairs of pole magnet units in an axial motor rotor provided by an embodiment of the present application;
  • Figure 25 is a schematic structural diagram of a magnet unit in an axial motor rotor provided by an embodiment of the present application.
  • Figure 26 is a magnetic circuit diagram of two pairs of pole magnet units in an axial motor rotor provided by an embodiment of the present application;
  • Figure 27 is a schematic structural diagram of a magnet unit in an axial motor rotor provided by an embodiment of the present application.
  • Figure 28 is a magnetic circuit diagram of two pairs of pole magnet units in an axial motor rotor provided by an embodiment of the present application.
  • Soft magnetic composite material SMC, the full name is soft magnetic composite material.
  • Soft magnetic composite material refers to a soft magnetic material formed by evenly dispersing magnetic particles in non-magnetic materials.
  • the present application provides an axial motor rotor, including a rotor bracket and a magnet structure.
  • the rotor bracket includes a first support part and a second support part coaxially arranged.
  • the first support part is sleeved on the second support part. part away from the side of the axis of the second support part;
  • the magnet structure It includes a plurality of magnet units, the plurality of magnet units are arranged in sequence along the circumferential direction of the second support part, and each of the plurality of magnet units is located between the first support part and the third support part. Between the two support parts, the two ends of the magnet unit along the radial direction of the second support part are respectively fixed to the first support part and the second support part.
  • the magnet unit includes a first soft magnet and a third A permanent magnet, and at least part of the first soft magnet and at least part of the first permanent magnet are stacked along the axial direction of the second support part.
  • multiple magnet units are arranged around to form a magnet structure.
  • Each magnet unit is a part of the annular magnet structure. Compared with the magnet structure that is annular as a whole, the processing technology of each magnet unit is simpler; in this application, each magnet unit is a part of an annular magnet structure.
  • Each magnet unit includes a stacked first soft magnet and a first permanent magnet, where the first soft magnet is used to gather magnetic lines of force, provide a path for the lines of magnetic force, increase the air gap magnetic density, increase output torque, and reduce torque ripple.
  • Figure 1 is an overall schematic diagram of the axial motor 1 provided by an embodiment of the present application.
  • Figure 2 is an exploded view of the axial motor 1 provided in Figure 1 of the present application.
  • the axial motor 1 includes an axial motor rotor 10, a motor shaft 11 and a stator 12.
  • the stator 12 is installed on the motor shaft 11 and is rotationally connected with the motor shaft 11.
  • the axial motor rotor 10 is installed on the motor shaft 11 and is connected with the motor shaft 11. Fixed connection.
  • alternating current is supplied to the armature winding of the stator 12 , the generated alternating magnetic flux interacts with the permanent magnetic flux generated by the axial motor rotor 10 , causing the axial motor rotor 10 to rotate relative to the stator 12 .
  • the axial motor rotor 10 is fixedly connected to the motor shaft 11 so that the motor shaft 11 rotates following the axial motor rotor 10 .
  • the stator 12 is rotationally connected to the motor shaft 11 so that the motor shaft 11 can rotate relative to the stator 12 .
  • the stator 12 does not move, and the axial motor rotor 10 and the motor shaft 11 rotate synchronously.
  • the output end of the motor shaft 11 is used to drive external components to rotate.
  • the axial motor 1 also includes a housing 13 and an end cover 14 (as shown in FIG. 2 ).
  • the housing 13 is located outside the stator 12
  • the end cover 14 is located away from the stator 10 and the axial motor rotor 10 . 12 on one side.
  • the end cover 14 is fixed to the housing 13
  • the axial motor rotor 10 is located between the end cover 14 and the stator 12 .
  • the axial motor 1 includes two axial motor rotors 10 , both of which are installed on the motor shaft 11 and fixedly connected to the motor shaft 11 .
  • the two axial motor rotors 10 10 is located on both sides of the stator 12 along the axial direction of the motor shaft 11 .
  • the two axial motor rotors 10 improve the working efficiency of the axial motor 1 .
  • the axial motor 1 includes two end covers 14. As shown in Figure 2, the two end covers 14 and the housing 13 form a receiving space.
  • the two axial motor rotors 10 and the stator 12 are located in the receiving space. Inside.
  • the motor shaft 11 includes a first motor half shaft 11a and a second motor half shaft 11b, where the first motor half shaft 11a and the second motor half shaft 11b are fixedly connected.
  • 11a is provided with a first fixed plate 15.
  • the first fixed plate 15 is used to be fixedly connected to one of the axial motor rotors 10.
  • the first fixed plate 15 and the axial motor rotor 10 can be connected by screws;
  • the second The motor half shaft 11b is provided with a bearing 16.
  • the stator 12 is sleeved on the motor shaft 11 through the bearing 16.
  • the stator 12 is rotationally connected to the motor shaft 11 through the bearing 16.
  • the second motor half shaft 11b is also provided with a second fixed plate. 17.
  • the second fixed plate 17 is used for fixed connection with another axial motor rotor 10.
  • the second fixed plate 17 and the axial motor rotor 10 can be connected through screws.
  • the motor shaft 11 can also be a whole body, and the motor shaft 11 is provided with a first fixed plate 15 , a bearing 16 and a second fixed plate 17 .
  • the axial motor 1 includes an axial motor rotor 10 and a stator 12 .
  • the axial motor 1 includes an axial motor rotor 10 and two stators 12 .
  • the two stators 12 are distributed on both sides of the axial motor rotor 10 along the axial direction of the motor shaft 11 .
  • the axial motor 1 includes multiple axial motor rotors 10 and multiple stators 12 , and the axial motor rotors 10 and the stators 12 are alternately arranged along the axial direction of the motor shaft 11 .
  • the axial motor 1 includes three axial motor rotors 10 and two stators 12 .
  • the stator 12 may be a wound winding stator or a distributed winding stator.
  • the wound winding stator refers to a plurality of stator cores distributed around the motor shaft 11, and windings are wound on each stator core to form a wound winding.
  • the stator 12 shown in FIG. 2 is a wound winding stator.
  • the distributed winding stator refers to the stator core that is arranged entirely around the motor shaft 11.
  • the stator core is an integral structure. The winding slots are punched on the stator core and the windings are wound in the winding slots to form distributed windings.
  • Figure 3a is a schematic structural diagram of the axial motor rotor 10 and stator 12 provided by an embodiment of the present application.
  • Figure 3b is a side view of Figure 3a.
  • there is an air gap Q between the stator 12 and the axial motor rotor 10 and the magnetic field lines L generated in the axial motor rotor 10 enter the stator 12 through the air gap Q.
  • the gaps between the two axial motor rotors 10 and the stators 12 form two air gaps Q.
  • the axial motor 1 adopts the axial motor rotor 10 of the present application, and forms a magnet structure by arranging multiple magnet units around each other.
  • Each magnet unit is a part of the annular magnet structure. Compared with the magnet structure that is annular as a whole, each magnet unit is annular.
  • the processing technology of the magnet unit is simpler; and, each magnet unit includes a first soft magnet and a first permanent magnet arranged in a stack, wherein the first soft magnet is used to gather the magnetic force lines, and the first soft magnet is also used to provide a path for the magnetic force lines.
  • the air gap magnetic density is increased, the output torque is increased, and the torque ripple is reduced, thereby improving the performance of the axial motor 1.
  • Figure 4 is a schematic structural diagram of a powertrain 3 provided by an embodiment of the present application.
  • the powertrain 3 includes a gearbox 31 and the axial motor 1 as mentioned above.
  • the axial motor 1 and the gearbox 31 The power input shaft 32 is transmission connected and used to output power to the power input shaft 32 .
  • the gearbox 31 and the axial motor 1 in the powertrain 3 may be separate or integrated.
  • the gearbox 31 is provided with a wheel drive shaft (not shown in the figure), and the wheel drive shaft provides power to the wheels after receiving the power output by the axial motor 1 .
  • gear components are provided in the gearbox 31 to realize power transmission between the axial motor 1 and the wheel drive shaft.
  • the powertrain 3 also includes an engine 33 and a generator 34.
  • the engine 33 is drivingly connected to another power input shaft in the gearbox 31 for outputting to the other power input shaft.
  • the generator 34 is drivingly connected to the engine 33 through the gear components in the gearbox 31 .
  • the power output by the engine 33 is transmitted to the generator 34 through the gearbox 31.
  • the generator 34 generates electricity and is used to store electrical energy in the power battery and charge the power battery.
  • the powertrain 3 provided in Figure 4 includes an engine 33 and a generator 34.
  • the powertrain 3 is a hybrid system.
  • the engine 33 and the generator 34 may not be provided, and only include a shaft.
  • the powertrain 3 is a pure electric power system.
  • the powertrain 3 also includes at least one of MCU, OBC, DC-DC, PDU and BCU.
  • MCU is a motor controller, and its full name in English is Motor Control Unit
  • OBC is an on-board charger, and its full English name is On-Board Charger
  • DC-DC is a DC converter
  • PDU is a power distribution unit, and its full English name is Power Distribution Unit
  • BCU It is the battery control unit, the full English name is Battery Control Unit.
  • the powertrain 3 can integrate at least one of the above components as needed.
  • An embodiment of the present application provides a vehicle 2 .
  • the vehicle 2 includes a vehicle body 21 and the above-mentioned axial motor 1 .
  • the axial motor 1 is installed on the vehicle body 21 .
  • Vehicle 2 includes cars, robots or other forms of driving equipment, and vehicles include electric vehicles/electric vehicles (EV), pure electric vehicles (Pure Electric Vehicle/BatteryElectric Vehicle, referred to as: PEV/BEV), hybrid vehicles Car (Hybrid Electric Vehicle, referred to as: HEV), extended range electric vehicle (Range Extended Electric Vehicle, referred to as REEV), plug-in hybrid electric vehicle (Plug-in Hybrid Electric Vehicle, referred to as: PHEV), new energy vehicle (New Energy Vehicle) etc.
  • vehicles include passenger cars and various special operation vehicles with specific functions, such as engineering rescue vehicles, sprinkler trucks, sewage suction trucks, cement mixer trucks, crane trucks, medical vehicles, etc.
  • the vehicle 2 is a car.
  • the vehicle 2 also includes wheels 22.
  • the wheels 22 are installed on the vehicle body 21.
  • the axial motor 1 is transmission connected with the wheels 22 and is used to drive the wheels 22 to operate.
  • the vehicle is moving.
  • the vehicle 2 is provided with the powertrain 3 as described above.
  • the powertrain 3 is installed on the vehicle body 21 and is used to drive the vehicle 2 to move.
  • Figure 6 is a schematic structural diagram of the axial motor rotor 10 provided in the first embodiment of the present application.
  • Figure 7 is a schematic diagram of the axial motor rotor 10 in Figure 6 viewed from the side away from the stator 12.
  • Figure 8a is a schematic structural diagram of the rotor bracket 100 in Figure 6.
  • the axial motor rotor 10 includes a rotor bracket 100 and a magnet structure 200.
  • the rotor bracket 100 includes a coaxially arranged first support part 110 and a second The support part 120, and the first support part 110 is sleeved on the side of the second support part 120 away from the axis of the second support part 120 (as shown in Figure 8a);
  • the magnet structure 200 includes a plurality of magnet units 210 (as shown in Figure 6 as shown), the plurality of magnet units 210 are sequentially arranged along the circumferential direction C of the second support part 120, and each of the plurality of magnet units 210 is located between the first support part 110 and the second support part 120 (As shown in FIG.
  • the magnet unit 210 includes a first soft magnetic body 211 and a first The permanent magnet 212 (shown in FIGS. 9 , 10 and 11 ), and at least part of the first soft magnet 211 and at least part of the first permanent magnet 212 are stacked along the axial direction of the second support part 120 .
  • the first support part 110 and the second support part 120 are annular in shape and are used to be sleeved on the motor shaft 11 and fixedly connected with the motor shaft 11 .
  • a support fixed plate 121 is provided on the inner side of the second support part 120 .
  • the support fixed plate 121 is fixedly connected to the first fixed plate 15 on the motor shaft 11 through screws (as shown in FIG. 2 ).
  • the axis of the second support part 120 coincides with the axis of the motor shaft 11
  • the axial direction O of the second support part 120 coincides with the axial direction of the motor shaft 11
  • the extension direction of the axis of the second support part 120 is is the axial direction O of the second supporting part 120
  • the radial direction R of the second supporting part 120 is the same as the radial direction of the motor shaft 11 .
  • the plurality of magnet units 210 are arranged in sequence along the circumferential direction C of the second support part 120 , where the circumferential direction C of the second support part 120 refers to the direction surrounding the second support part 120 .
  • 210 is arranged around the second support part 120, and both ends of each magnet unit 210 along the radial direction R of the second support part 120 are respectively fixed to the first support part 110 and the second support part 120, so that each magnet unit 210 is stably fixed. between the first support part 110 and the second support part 120 .
  • the first support part 110 and the second support part 120 are spaced apart, and the space between them is used to accommodate the magnet unit 210.
  • the rotor bracket 100 is limited by two annular support parts 110, 120.
  • the two ends of the magnet unit 210 are fixed in the radial direction R.
  • the rotor bracket 100 has a simple structure and saves space, so that the saved space can be used to fill the magnet.
  • the body unit 210 is conducive to increasing the volume of the magnet unit 210, which is conducive to increasing the magnetic density, thereby improving the performance of the axial motor 1.
  • the performance indicators of the axial motor include torque constant, back electromotive force coefficient, permanent magnet usage, torque output, vertical and horizontal axis inductance and other performance index parameters.
  • a plurality of magnet units 210 surround the second support part 120 to form an annular magnet structure 200.
  • Each magnet unit 210 only occupies a part of the annular magnet structure 200.
  • the magnet structure 200 formed by surrounding and splicing multiple magnet units 210 is simpler to process.
  • the overall annular magnet structure 200 needs to be sleeved on the motor shaft 11.
  • the inner wall of the overall annular magnet structure 200 needs to be processed into a circle in order to be better installed with the motor shaft 11. However, it is generally difficult to add a circular shape, and the process The accuracy is difficult to achieve.
  • each magnet unit 210 is simpler. Both ends of each magnet unit 210 along the radial direction R are arc-shaped. Compared with circular shapes, arc-shaped shapes are easier to process and have higher processing accuracy. , the size of each magnet unit 210 can be the same. After the magnet unit 210 is processed, multiple magnet units 210 are then spliced around the first support part 110 and the second support part 120, where the first support part 110 and the second support part 120 are spliced together.
  • the size of the two supporting parts 120 can be set according to the size of the magnet structure 200 . It can be seen from this that in this application, the annular magnet structure 200 formed by multiple magnet units 210 surrounding the second support part 120 is easier to process and has higher processing accuracy, which is beneficial to improving the reliability of the axial motor 1 .
  • each magnet unit 210 includes a first soft magnet 211 and a first permanent magnet 212 that are stacked at least partially along the axial direction O of the second support part 120 .
  • the first soft magnet 211 is conducive to the flow of magnetic force lines L and provides a smooth flow path for the magnetic force lines L.
  • the first soft magnet 211 When the first soft magnet 211 is located on the side of the first permanent magnet 212 away from the air gap Q (as shown in Figure 11), the first soft magnet 211 The magnetic field lines L flowing outward from the permanent magnets 212 can flow into the first permanent magnets 212 in the adjacent magnet units 210 through the first soft magnets 211. In contrast, the magnetic field lines L flowing out of the first permanent magnets 212 flow into the connected magnet units through the air. Among the first permanent magnets 212 in 210, the first soft magnet 211 is more conducive to the circulation of magnetic force lines L than air, which can reduce magnetic flux loss.
  • two adjacent magnet units 210 are a pair of pole magnet units.
  • the magnetizing directions of the first permanent magnets 212 in the two adjacent magnet units 210 are opposite, so that the magnetic fluxes of the two adjacent magnet units 210 form a loop.
  • the first permanent magnet 212 is also called magnet steel.
  • Commonly used permanent magnet materials are divided into alnico-based permanent magnet alloys, iron-chromium-cobalt-based permanent magnet alloys, permanent ferrite, and rare earth permanent magnet materials ( NdFeB (Nd2Fe14B) and composite permanent magnet materials, etc.
  • the circumferential size of the magnet unit 210 gradually increases from an end close to the second support part 120 to an end away from the second support part 120 . Since the second support part 120 is located on the inside and the first support part 110 is on the outside, the circumferential size of the first support part 110 is larger than the circumferential size of the second support part 120 , so that the first support part 110 and the second support part 120 The space between them gradually increases from the area close to the second support part 120 to the area close to the first support part 110.
  • the magnet unit 210 is arranged as above, so that the magnet unit 210 is fan-shaped, so that it can Adapt the space between the first support part 110 and the second support part 120 so that the magnet unit 210 fills a larger area between the first support part 110 and the second support part 120 and fully utilizes the internal space of the rotor bracket 100 , increase the area of the magnet unit 210, increase the magnetic density, and increase the output torque.
  • the first permanent magnet 212 is continuous along the radial direction of the second support part 120 . If the first permanent magnet 212 is discontinuous along the radial direction of the second support part 120, as shown in Figure 12, the permanent magnet includes three sub-magnet units 201/202/203 distributed in the radial direction.
  • the permanent magnet generally has a high structural strength. It is difficult to process. For example, if the permanent magnet is made of magnetic steel, it is difficult to process and align the surfaces of the three permanent magnets on both sides of the circumferential direction C, and the processing cost is high.
  • the space of the rotor bracket 100 will be wasted, which will reduce the permanent magnet filling amount, thereby reducing the performance of the axial motor 1; and the three sub-magnet units require three sets of stamping dies, and the amount of magnetic steel grinding tools will be large.
  • high processing accuracy is required, making the processing technology complex.
  • the first permanent magnet 212 is continuous along the radial direction R of the second support part 120 , and the continuous integral structure in the radial direction R can make the two sides of the first permanent magnet 212 along the circumferential direction C Surface alignment not only makes processing simple, but also helps increase the volume of the magnet unit 210 and improve the magnetic density.
  • the projection of the first permanent magnet 212 on the first soft magnet 211 along the axial direction O of the second support part 120 is located within the first soft magnet 211 (as shown in FIG. 11 ).
  • the arrangement in this embodiment makes the circumferential size of the first soft magnetic body 211 larger than the circumferential size of the first permanent magnet 212, which is beneficial to gathering the magnetic flux lines L and conducive to magnetic conduction.
  • the area of the largest surface of the first permanent magnet 212 is smaller than the area of the largest surface of the first soft magnet 211 , so that most or all of the magnetic lines of force L flowing out from the first permanent magnet 212 can enter the first soft magnet.
  • the largest surface of the first soft magnetic body 211 and the largest surface of the first permanent magnet 212 both intersect perpendicularly with the axial direction O of the second support part 120 .
  • the magnet unit 210 also includes a second soft magnet 213, and the first permanent magnet 212 includes a first main body part 2121, a first sub-part 2122 and a second sub-part. part 2123, the first soft magnetic body 211, the first main body part 2121 and the The two soft magnetic bodies 213 are stacked along the axial direction O of the second support part 120 .
  • the first sub-part 2122 and the second sub-part 2123 are arranged on the first main body part 2121 and the second soft magnetic part along the circumferential direction C of the second support part 120 . both sides of magnet 213. As shown in FIG.
  • a first soft magnet 211 and a second soft magnet 213 are respectively provided on both sides of the first permanent magnet 212 along the axial direction O, so that the first permanent magnet 212 has two sides along the axial direction O.
  • the magnetic field lines L on both sides are gathered by soft magnets to increase the air gap magnetic density.
  • the arrangement of the first sub-section 2122 and the second sub-section 2123 is conducive to gathering the magnetic force lines L.
  • the cross section of the first permanent magnet 212 is “U” shaped (as shown in FIG. 13 ).
  • the first permanent magnet 212 is magnetic steel, and the circumferential size of the first main body part 2121 gradually increases from an end close to the second support part 120 to an end away from the second support part 120 .
  • the first main body part 2121 is fan-shaped, and the first main body part 2121 is also made of magnetic steel.
  • the magnetic steel is fan-shaped, which can make full use of the space in the rotor bracket 100 and avoid causing the size of the magnet unit 210 occupied by the magnetic steel at the outer diameter to be larger.
  • the motor performance is insufficient due to small resistance.
  • the magnetic steel is fan-shaped, which can effectively improve the performance of the axial motor; and the magnetic steel adopts a solution built into the magnet unit 210, which increases the reluctance torque component of the axial motor 1, making the axial motor 1. It can still maintain large power under high-speed working conditions.
  • the magnetization direction of the first main body part 2121 is the same as the axial direction O of the second support part 120, and the magnetization directions of the first sub-part 2122 and the second sub-part 2123 are the same as the magnetization direction of the second support part 120.
  • the axis O of 120 intersects. This causes the magnetic field lines L in the first part 2122 and the second part 2123 to flow in or out from the middle of the two parts, and the magnetic field lines L flowing in or out from the middle of the first part 2122 and the second part 2123 will attract the third part.
  • the magnetic lines of force flowing in or out of the main body part 2121 are more concentrated, so that the magnetic density waveform passing through the air gap is close to a sine wave, which can increase the output torque and reduce the torque ripple.
  • the magnetization direction of the first main body part 2121 is perpendicular to the largest surface of the first main body part 2121
  • the magnetization direction of the first sub-part 2122 is perpendicular to the largest surface of the first sub-part 2122
  • the second sub-part 2122 is perpendicular to the maximum surface of the first main part 2121.
  • the magnetizing direction of 2123 is perpendicular to the largest surface of the second portion 2123.
  • the first main body part 2121, the first sub-part 2122 and the second sub-part 2123 are independent structures, which is beneficial to processing.
  • the first permanent magnet 212 is magnetic steel
  • the strength of the magnetic steel is relatively high and difficult to shape.
  • three independent structures are used to form the first permanent magnet in a "U" shape. 212, which is beneficial to processing.
  • the magnet unit 210 also includes a second permanent magnet 214.
  • the surface of the second soft magnet 213 facing away from the first main body part 2121 is provided with a groove 2131.
  • the second permanent magnet 214 Located in groove 2131.
  • the second permanent magnet 214 and the first permanent magnet 212 are used together to generate magnetic lines of force L, increase magnetic flux, increase output torque, and improve motor performance.
  • the magnetizing direction of the second permanent magnet 214 is a direction perpendicular to the largest surface of the second permanent magnet 214 , or the magnetizing direction of the second permanent magnet 214 is the axial direction O.
  • the first main body part 2121 and the second permanent magnet 214 are axially magnetized permanent magnets, and the first sub-part 2122 and the second sub-part 2123 are tangentially magnetized permanent magnets.
  • the first soft magnetic body 211 and the second soft magnetic body 213 are soft magnetic composite material magnets.
  • Soft magnetic composite material magnets refer to magnets formed by processing soft magnetic composite materials, which can reduce high-frequency eddy current losses and increase application frequency. Moreover, soft magnetic composite materials are easy to shape and can be processed into soft magnetic structures of required shapes.
  • the second soft magnet 213 can be processed into a groove 2131 (as shown in FIG. 11 ), where the groove 2131 matches the shape of the second permanent magnet 214 so that the second permanent magnet 214 can be accommodated in the groove 2131 .
  • the two sides of the second permanent magnet 214 along the circumferential direction C are abutted by the two side walls of the groove 2131, which can improve the stability of the two sides of the second permanent magnet 214 along the circumferential direction C.
  • the first permanent magnet 212 and the second permanent magnet 214 are magnetic steel.
  • the projection of the second permanent magnet 214 on the first body part 2121 along the axial direction O of the second support part 120 is located within the first body part 2121 (as shown in FIG. 13 ).
  • the second permanent magnet 214 and the first main body part 2121 are arranged as above, so that the size of the second permanent magnet 214 along the circumferential direction C is smaller than the size of the first main body part 2121 along the circumferential direction C.
  • the area of the magnetic force lines of the second permanent magnet 214 is smaller than the area of the magnetic force lines L of the first main body part 2121.
  • the magnetic force lines L move from the first main body part 2121 to the air gap Q.
  • the directions gradually converge, which is conducive to increasing the magnetic density passing through the air gap Q.
  • the maximum surface of the second permanent magnet 214 is smaller than the maximum surface of the first main body part 2121 , and the maximum surface of the second permanent magnet 214 and the maximum surface of the first main body part 2121 are both aligned with the axis of the second support part 120 Intersect towards O.
  • the arc of the second permanent magnet 214 along the circumferential direction C of the second support part 120 is smaller than the arc of the first main body part 2121 along the circumferential direction C of the second support part 120 .
  • the circumferential direction C of the second support part 120 is also the circumferential direction of the motor shaft 11 , or the circumferential direction of the first support part 110 , or the circumferential direction of the magnet structure 200 . As shown in FIG.
  • the arc of the second permanent magnet 214 along the circumferential direction C is ⁇ 1
  • the arc of the first main body 2121 along the circumferential direction C is ⁇ 2, where ⁇ 1 is smaller than ⁇ 2, so that the magnet unit 210 is more conducive to gathering the magnetic lines of force, making the entry
  • the magnetic density of air gap Q is closer to a sine wave.
  • the size parameters of each part in the magnet unit 210 can be adjusted as needed. For example, parameters such as the thickness, radian, and radial size of the first permanent magnet 212 and the first main body 2121 can be set, and the first Parameters such as the thickness, radial size, and width of the segment 2122 and the second segment 2123, and parameters such as the thickness, radian, and radial size of the first soft magnet 211 and the second soft magnet 213 can be set, In order to make the axial motor 1 have better performance, for example, the required amount of permanent magnets, torque output, vertical and horizontal axis inductance and other performance indicators can be obtained.
  • Figure 8a is a schematic structural diagram of the rotor bracket 100 provided by an embodiment of the present application.
  • Figure 8b is a partial enlarged view of part M in Figure 8a.
  • the rotor support 100 further includes a plurality of positioning posts 130 , and both ends of each of the plurality of positioning posts 130 are fixedly connected to the first support part 110 and the second support part 120 respectively.
  • the positioning posts 130 separate two adjacent magnet units 210, and part of the first support part 110 and part of the second support part 120 between the two adjacent positioning posts 130 and the two connected two positioning posts 130 are enclosed for storage.
  • Space 140, the magnet unit 210 is located in the receiving space 140.
  • the positioning post 130 is used to fix the first support part 110 and the second support part 120 to improve the stability between the first support part 110 and the second support part 120; in addition, the first support part 110
  • the rotor bracket 100 composed of the second support part 120 and the positioning column 130 is a bracket structure with more space, which is beneficial to the heat dissipation of the magnet structure 200.
  • the magnet unit 210 can be bonded to the first support part 110 , the second support part 120 and the positioning post 130 through adhesive glue.
  • adhesive glue can be filled in the gap between the magnet unit 210 and the rotor bracket 100 to enhance the bonding strength and improve the reliability of the structure. sex.
  • the rotor support 100 further includes limiting ribs 150 , which are located on both sides of the positioning column 130 along the circumferential direction C, and the two adjacent positioning columns 130 are provided with limited spacers on the opposite surfaces.
  • the limiting ribs 150 are used to snap into the limiting grooves 230 of the magnet unit 210 (as shown in FIG. 13 ), thereby improving the structural reliability of the magnet unit 210 and the rotor bracket 100 .
  • other limiting structures may be provided on the surfaces of the positioning column 130 , the first support part 110 and the second support part 120 facing the receiving space 140 for positioning the magnet unit 210 and lifting the magnet unit 210 and the rotor bracket 100 structural reliability.
  • the rotor bracket 100 is a non-magnetic permeable bracket.
  • the non-magnetic bracket can reduce magnetic flux leakage and reduce magnetic flux loss, so that most of the magnetic flux of the two adjacent magnet units 210 flows into the winding coils of the stator 12, thereby increasing the output torque. If a magnetic permeable bracket is used, the magnetic permeable bracket will cause part of the magnetic flux to disperse from the rotor bracket 100 along the radial direction R, thereby consuming part of the magnetic flux, which will affect the performance of the axial motor 1 .
  • the positioning column 130 is provided with a through hole 131 extending along the radial direction R of the second support part 120 .
  • the through holes 131 are beneficial to heat dissipation.
  • Figure 15 is a magnetic circuit diagram of the axial motor 1 provided in the first embodiment of the present application.
  • the first soft magnet 211 and the second soft magnet 213 are omitted in Figure 15.
  • the axial motor 1 includes two axial motor rotors 10 , where the structure of the magnet unit 210 in each axial motor rotor 10 is as shown in FIGS. 9 , 10 , 11 and 13 .
  • the magnet unit 210 includes a first soft magnet 211, a first permanent magnet 212, a second soft magnet 213 and a second permanent magnet 214, wherein the first permanent magnet 212 includes a first main body part 2121, a first part part 2122 and the second sub-part 2123, the size of the second permanent magnet 214 along the circumferential direction C is smaller than the size of the first main body part 2121 along the circumferential direction C, and protruding toward the air gap Q is provided on both sides of the first main body part 2121
  • the first part 2122 and the second part 2123 are the magnet unit 210 with the magnetization effect composed of the first permanent magnet 212 and the second permanent magnet 214, so that the generated magnetic field lines L gather together and then enter the air gap Q, so that the air gap
  • the Q magnetic density waveform is close to a sine wave, which can increase the output torque and reduce torque fluctuations.
  • FIG 15 the magnetic circuit diagram of the pair of pole magnet units 210 and the stator 12 in the two axial motor rotors 10 is shown.
  • the two magnet units 210 in the axial motor rotor 10 in the upper part of Figure 15 are A pair of pole magnet units are respectively the magnet unit 210a and the magnet unit 210d, wherein the magnetizing directions of the magnet unit 210a and the magnet unit 210d are opposite.
  • the first main body portion 2121 of the first permanent magnet 212 in the magnet unit 210a and the second permanent magnet 214 in the magnet unit 210a have the same magnetizing direction
  • the first permanent magnet 212 of the magnet unit 210d has the same magnetizing direction.
  • the magnetization directions of the main body part 2121 and the second permanent magnet 214 in the magnet unit 210d are the same, but the magnetization directions of the first main body part 2121 in the first permanent magnet 212 in the magnet unit 210a and the magnet unit 210d are opposite.
  • the magnetizing directions of the second permanent magnets 214 in the magnet unit 210a and the magnet unit 210d are opposite; the first portion 2122 of the first permanent magnet 212 in the magnet unit 210a is different from the first portion 2122 of the first permanent magnet 212 in the magnet unit 210d.
  • the magnetizing direction of one section 2122 is opposite, and the magnetizing direction of the second section 2123 of the first permanent magnet 212 in the magnet unit 210a is opposite to that of the second section 2123 of the first permanent magnet 212 of the magnet unit 210d. .
  • the two magnet units 210 in the axial motor rotor 10 in the lower part of Figure 15 are a pair of pole magnet units, namely the magnet unit 210b and the magnet unit 210c, where the magnetizing directions of the magnet unit 210b and the magnet unit 210c are opposite.
  • the magnetizing directions of the magnet unit 210b and the magnet unit 210c can be understood with reference to the magnetizing directions of the magnet unit 210a and the magnet unit 210d, which will not be described again here.
  • the directions of one of the magnetic circuit diagrams are: magnet unit 210a, magnet unit 210b, magnet unit
  • the magnetic field lines L generated by the unit 210c and the magnet unit 210d enter the winding coils in the stator 12 through the air gap Q.
  • the magnetic field lines L generated by the winding coils of the stator 12 enter the magnet unit 210b through the air gap Q, and pass through the third outside the magnet unit 210b.
  • a soft magnet 211 enters the adjacent magnet unit 210c.
  • the magnetic field lines L generated by the magnet unit 210c enter the winding coil in the stator 12 through the air gap Q.
  • the magnetic field lines L generated by the winding coil of the stator 12 enter the magnet unit 210d through the air gap Q. , and enters the adjacent magnet unit 210a through the first soft magnet 211 outside the magnet unit 210d, forming a magnetic circuit loop.
  • the air gap magnetic density waveform in this embodiment is shown in Figure 16.
  • the abscissa in Figure 16 represents the electrical angle, and the unit of the electrical angle is °.
  • the ordinate represents the magnetic density (B), and the unit of the magnetic density is T. From the figure 16 It can be seen that the waveform is close to a sine wave, the magnetic density on both sides of the waveform is lower than the middle magnetic density, and the peak magnetic density of the waveform reaches 1.15T. It can be seen from this that the magnet unit 210 with the magnetization effect in this embodiment It can make the air gap magnetic density waveform close to a sine wave, which can increase the output torque and reduce the torque fluctuation.
  • Figure 17 is the magnetic density waveform of the magnet unit using magnetic steel as the rotor.
  • the rotor only contains magnetic steel, no soft magnets, and only one magnetic steel piece. From Figure 17, you can It can be seen that the air gap magnetic density waveform is closer to a square wave, which reduces the output torque and the performance of the axial motor 1.
  • the peak magnetic density in Figure 17 is 0.69T, which is smaller than the peak magnetic density in Figure 15. It can be seen from this that the axial motor rotor 10 in the above-mentioned first embodiment can increase the peak magnetic density of the air gap by more than 30%.
  • FIG. 18 is a schematic structural diagram of the axial motor rotor 10 provided in the second embodiment of the present application.
  • the size of the cross section of the second permanent magnet 214 gradually decreases from the end close to the first main body part 2121 to the end far away from the first main body part 2121, wherein the second permanent magnet 214
  • the cross section of the permanent magnet 214 refers to a cross section obtained by cutting the second permanent magnet 214 along the axial direction O of the second support part 120 with an arc that has the same arc as the second permanent magnet 214 .
  • the cross-sectional size of the second permanent magnet 214 gradually decreases from an end close to the first main body 2121 to an end far away from the first main body 2121, so that the size of the end close to the air gap Q side is smaller than the end far away from the air gap Q.
  • the size of one end of the gap Q causes the magnetic field lines L to converge closer to the air gap Q side, making the air gap magnetic density waveform closer to a sine wave and increasing the air gap magnetic density.
  • Figure 18 shows a magnetic circuit diagram in one embodiment, in which the direction of the arrow is the direction of the magnetic field lines.
  • the description of the structure and positional relationship between the rotor bracket 100 and the magnet structure 200 in the first embodiment is also applicable to the description of the structure and positional relationship between the rotor bracket 100 and the magnet structure 200 in the second embodiment;
  • First Embodiment The description of the knot position relationship between the rotor bracket 100, the first soft magnet 211, the first permanent magnet 212, the second permanent magnet 214, and the second soft magnet 213 is also applicable to the rotor bracket 100 and the first soft magnet in the second embodiment. 211.
  • the description of the junction position relationship of the first permanent magnet 212, the second permanent magnet 214, and the second soft magnet 213 will not be repeated here.
  • FIG. 19 is a schematic structural diagram of the axial motor rotor 10 provided in the third embodiment of the present application.
  • the magnet unit 210 also includes a third soft magnet 215, and the second permanent magnet 214 includes a second main body part 2141, a third subpart 2142 and a fourth subpart 2143.
  • the third soft magnetic body 215 is located on the side of the second main body part 2141 away from the second soft magnetic body 213.
  • the third sub-section 2142 and the fourth sub-section 2143 are arranged on the second main body part 2141 along the circumferential direction C of the second support part 120. and both sides of the third soft magnet 215.
  • the third subsection 2142 and the fourth subsection 2143 in the second permanent magnet 214 protrude toward the air gap Q side relative to the second main body 2141, thereby improving the effect of gathering the magnetic force lines L, thereby making the air gap magnetically dense.
  • the waveform is closer to a sine wave, improving the air gap magnetic density.
  • At least one of the first soft magnetic body 211 , the second soft magnetic body 213 and the third soft magnetic body 215 is a soft magnetic composite material magnet.
  • the first soft magnetic body 211, the second soft magnetic body 213 and the third soft magnetic body 215 are all soft magnetic composite material magnets.
  • Figure 20 is a magnetic circuit diagram of the magnet units 210 of two opposite poles of the two axial motor rotors 10.
  • Figure 20 shows the magnetic circuit diagram in one embodiment, in which the direction of the arrow is the direction of the magnetic field line L.
  • the first soft magnet 211, the second soft magnet 213, the third soft magnet 215 and the rotor bracket 100 are omitted in Figure 20.
  • two Two opposite pole magnet units 210 form a magnetic circuit loop.
  • the description of the structure and positional relationship between the rotor bracket 100 and the magnet structure 200 in the first embodiment is also applicable to the description of the structure and positional relationship between the rotor bracket 100 and the magnet structure 200 in the third embodiment;
  • First Embodiment The structural relationship and description of the rotor bracket 100 , the first soft magnet 211 , the first permanent magnet 212 , and the second soft magnet 213 are also applicable to the rotor bracket 100 , the first soft magnet 211 , and the first permanent magnet in the third embodiment. 212.
  • the structural relationship and description of the second soft magnetic body 213 will not be described again here.
  • FIG. 21 is a schematic structural diagram of the axial motor rotor 10 provided in the fourth embodiment of the present application.
  • the cross-sections of the first permanent magnet 212 and the second permanent magnet 214 have a "-" shape structure.
  • the magnet unit 210 includes a first soft magnet 211, a first The permanent magnet 212, the second soft magnet 213 and the second permanent magnet 214, the first soft magnet 211, the first permanent magnet 212 and the second soft magnet 213 are stacked along the axial direction O of the second support part 120, and the second soft magnet The surface of 213 facing away from the first permanent magnet 212 is provided with a groove 2131.
  • the second permanent magnet 214 is located in the groove 2131.
  • the second permanent magnet 214 is located along the axial direction O of the second support part 120 at the projection of the first permanent magnet 212. inside the first permanent magnet 212 .
  • the second permanent magnet 214 is located in the groove 2131 of the second soft magnet 213, and both sides of the second permanent magnet 214 along the circumferential direction C are covered by the second soft magnet 213, so that from the second permanent magnet 214 The magnetic lines of force flowing out along both sides of the circumferential direction C can be gathered by the second soft magnetic body 213, thereby increasing the air gap magnetic density.
  • the projection of the second permanent magnet 214 on the first permanent magnet 212 along the axial direction O is located within the first permanent magnet 212 .
  • the arc of the second permanent magnet 214 is smaller than the arc of the first permanent magnet 212 .
  • a permanent magnet 212 is disposed close to the air gap Q, and the range of the magnetic field lines L generated by the second permanent magnet 214 is smaller than the range of the magnetic field lines L generated by the first permanent magnet 212, so that the magnetic field lines L of the second permanent magnet 214 are closer together, and the range of the magnetic field lines L generated by the second permanent magnet 214 is smaller.
  • the more concentrated magnetic force lines L of the permanent magnet 214 will attract the magnetic force lines L generated by the first permanent magnet 212, causing the magnetic force lines L of the first permanent magnet 212 and the second permanent magnet 214 to be more concentrated, thereby causing more magnetic force lines L to enter the air gap.
  • Increasing the air gap magnetic density makes the air gap magnetic density waveform closer to a sine wave, increases the output torque, and improves the performance of the axial motor 1.
  • Figure 22 is a magnetic circuit diagram of the two opposite pole magnet units 210 of the two axial motor rotors 10.
  • the first soft magnet 211, the second soft magnet 213 and the rotor are omitted in Figure 22
  • one of the axial magnet units 210 of a pair of poles in the motor rotor 10 has opposite magnetizing directions
  • the other axial magnet unit 210 of a pair of poles in the motor rotor 10 has opposite magnetizing directions
  • the two axes The direction of magnetization to the magnet units 210 of the two pairs of poles in the motor rotor 10 is such that a circulation loop of magnetic field lines L is formed in the magnet units 210 of the two pairs of poles, and the magnetic field lines L enter the winding coils in the middle stator 12 , as shown in FIG. 22
  • the two opposite pole magnet units 210 form a magnetic circuit loop.
  • the description of the structure and positional relationship between the rotor bracket 100 and the magnet structure 200 in the first embodiment is also applicable to the description of the structure and positional relationship between the rotor bracket 100 and the magnet structure 200 in the fourth embodiment;
  • the structural relationship and description of the rotor bracket 100 , the first soft magnet 211 , and the second soft magnet 213 are also applicable to the structural relationship and description of the rotor bracket 100 , the first soft magnet 211 , and the second soft magnet 213 in the fourth embodiment. , which will not be described in detail here.
  • FIG. 23 is a schematic structural diagram of the magnet unit 210 in the axial motor rotor 10 provided by the fifth embodiment of the present application.
  • the cross section of the first permanent magnet 212 is a "-" shaped structure
  • the cross section of the second permanent magnet 214 is a "U" shaped structure.
  • the magnet unit 210 also includes a third soft magnet 215.
  • the second permanent magnet 214 includes a second main body part 2141, a third sub-part 2142 and a fourth sub-part 2143.
  • the third soft magnet 215 is located away from the second main part 2141.
  • the third subsection 2142 and the fourth subsection 2143 are arranged on both sides of the second main body part 2141 and the third soft magnetic body 215 along the circumferential direction C of the second support part 120 .
  • the third subsection 2142 and the fourth subsection 2143 in the second permanent magnet 214 protrude toward the air gap Q side relative to the second main body 2141, thereby improving the effect of gathering the magnetic force lines L, thereby making the air gap magnetically dense.
  • the waveform is closer to a sine wave, improving the air gap magnetic density.
  • Figure 24 is a magnetic circuit diagram of the magnet units 210 of two opposite poles of the two axial motor rotors 10.
  • the first soft magnet 211, the second soft magnet 213 and the third soft magnet are omitted in Figure 24.
  • the three soft magnets 215 and the rotor support 100 are shown in FIG. 24 as a magnetic circuit diagram in one embodiment, in which the direction of the arrow is the direction of the magnetic field lines L.
  • the description of the structure and positional relationship between the rotor bracket 100 and the magnet structure 200 in the first embodiment is also applicable to the description of the structure and positional relationship between the rotor bracket 100 and the magnet structure 200 in the fifth embodiment;
  • the structural relationship and description of the rotor bracket 100 , the first soft magnet 211 , and the second soft magnet 213 are also applicable to the structural relationship and description of the rotor bracket 100 , the first soft magnet 211 , and the second soft magnet 213 in the fifth embodiment. , which will not be described in detail here.
  • FIG. 25 is a schematic structural diagram of the magnet unit 210 in the axial motor rotor 10 provided in the sixth embodiment of the present application.
  • the first permanent magnet 212 includes a first main body part 2121, a first sub-part 2122 and a second sub-part 2123.
  • the first soft magnetic body 211, the first main body part 2121 and the second soft magnetic body 213 They are stacked along the axial direction O of the second support part 120 .
  • the first sub-parts 2122 and the second sub-parts 2123 are arranged on both sides of the first main body part 2121 and the second soft magnetic body 213 along the circumferential direction C of the second support part 120 . side.
  • a first soft magnet 211 and a second soft magnet 213 are respectively provided on both sides of the first permanent magnet 212 along the axial direction O, so that the magnetic lines of force on both sides of the first permanent magnet 212 along the axial direction O are soft.
  • the magnets gather together to increase the magnetic density of the air gap.
  • the arrangement of the first sub-section 2122 and the second sub-section 2123 is conducive to gathering the magnetic force lines L.
  • the magnetic force lines L converge. Entering the winding coil on the stator 12 makes the air gap magnetic density waveform close to a sine wave, which can increase the output torque and reduce the torque ripple.
  • the cross section of the first permanent magnet 212 is “U” shaped.
  • Figure 26 is a magnetic circuit diagram of the magnet units 210 of two opposite poles of the two axial motor rotors 10.
  • the first soft magnet 211, the second soft magnet 213 and the rotor are omitted in Figure 26
  • Figure 26 shows the magnetic circuit diagram of the bracket 100 in one embodiment, in which the direction of the arrow is the direction of the magnetic field lines L.
  • the description of the structure and positional relationship between the rotor bracket 100 and the magnet structure 200 in the first embodiment is also applicable to the description of the structure and positional relationship between the rotor bracket 100 and the magnet structure 200 in the sixth embodiment;
  • the structural relationship and description of the rotor bracket 100 , the first soft magnet 211 , and the second soft magnet 213 are also applicable to the structural relationship and description of the rotor bracket 100 , the first soft magnet 211 , and the second soft magnet 213 in the sixth embodiment. , which will not be described in detail here.
  • FIG. 27 is a schematic structural diagram of the magnet unit 210 in the axial motor rotor 10 provided by the seventh embodiment of the present application.
  • the first permanent magnet 212 and the second permanent magnet 214 have a “U”-shaped cross section, and the first permanent magnet 212 and the second permanent magnet 214 have a “U” shape in cross section.
  • the angle between the branches and the main body of the magnet 212 is greater than 90°, and the angle between the branches and the main body of the second permanent magnet 214 is greater than 90°.
  • the magnet unit 210 also includes a third soft magnet 215.
  • the second permanent magnet 214 includes a second main body part 2141, a third subpart 2142 and a fourth subpart 2143.
  • the third soft magnet 215 is located at The second main body part 2141 is on the side away from the second soft magnetic body 213.
  • the third sub-parts 2142 and the fourth sub-parts 2143 are arranged on the second main body part 2141 and the third soft magnetic body 215 along the circumferential direction C of the second support part 120. both sides.
  • the third sub-section 2142 and the fourth sub-section 2143 in the second permanent magnet 214 protrude toward the air gap side relative to the second main body part 2141, thereby improving the effect of gathering magnetic lines of force, thereby making the air gap magnetic density waveform more precise. It is close to a sine wave and increases the air gap magnetic density.
  • the angle between the third sub-section 2142 and the fourth sub-section 2143 and the second main body part 2141 is greater than 90°; in the first permanent magnet 212, the first The angle between the branch portion 2122 and the second branch portion 2123 and the first main body portion 2121 is greater than 90°.
  • the angle value of the angle between the third sub-part 2142 and the fourth sub-part 2143 and the second main body part 2141 can be set as needed, and the first sub-part 2122 and the second sub-part 2122 can be set as needed.
  • the angle value of the angle between the branch portion 2123 and the first main body portion 2121 is such that the magnet structure 200 meets the magnetic density requirements, output torque requirements, etc. of the axial motor 1 .
  • the shapes and sizes of the first soft magnet 211, the second soft magnet 213, and the third soft magnet 215 can be set according to the shapes and sizes of the first permanent magnet 212 and the second permanent magnet 214, so that the magnet unit 210 can be installed in the rotor bracket 100 .
  • Figure 28 is a magnetic circuit diagram of the magnet units 210 of two opposite poles of the two axial motor rotors 10.
  • the first soft magnet 211, the second soft magnet 213 and the third soft magnet are omitted in Figure 28.
  • the three soft magnets 215 and the rotor support 100 are shown in FIG. 28 as a magnetic circuit diagram in one embodiment, in which the direction of the arrow is the direction of the magnetic field lines L.
  • the description of the structure and positional relationship between the rotor bracket 100 and the magnet structure 200 in the first embodiment is also applicable to the description of the structure and positional relationship between the rotor bracket 100 and the magnet structure 200 in the seventh embodiment.

Abstract

本申请提供一种轴向电机转子、轴向电机、动力总成及车辆,轴向电机转子包括转子支架和磁体结构,转子支架包括同轴设置的第一支撑部和第二支撑部,第一支撑部套设在第二支撑部远离第二支撑部的轴线的一侧;磁体结构中的多个磁体单元沿周向依次排布,且每一个磁体单元位于第一支撑部和第二支撑部之间,磁体单元沿第二支撑部径向的两端分别与第一支撑部和第二支撑部固定,磁体单元中的至少部分第一软磁体和至少部分第一永磁体沿轴向层叠设置。本申请通过将多个磁体单元环绕排布构成磁体结构,每个磁体单元的加工工艺更简单,且通过转子支架固定,提升可靠性;第一软磁体用于聚拢磁力线,提高气隙磁密,增加输出转矩,提升轴向电机性能。

Description

轴向电机转子、轴向电机、动力总成及车辆
本申请要求于2022年8月15日提交中国专利局、申请号为202210976224.0、申请名称为“轴向电机转子、轴向电机、动力总成及车辆”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及轴向电机技术领域,特别涉及一种轴向电机转子、轴向电机、动力总成及车辆。
背景技术
与传统径向磁场永磁电机相比,轴向磁场永磁电机具有结构紧凑、转矩密度高、效率高等显著优点。现有技术中,轴向磁场永磁电机在实际应用中,其转速不高,且结构多为表贴式结构,随着转子的运行频率的增加,传统表贴式永磁转子结构的涡流损耗明显增加,会使得电机性能下降,同时转子磁阻转矩分量小,高速下功率下降快;考虑到结构强度和高速下功率保持较大的需求,将转子的铁芯做成整体环形的结构,将磁钢内嵌于转子铁芯之中是优选方案,但是环形铁芯结构一般是由硅钢片卷绕而成,其内环壁为阿基米德渐开线而非圆形,造成这种转子铁芯内外环壁难以和其它电机转子结构件通过过盈的方式实现有效配合,使得磁钢的内环壁与电机轴之间连接不可靠,结构强度难以提升。此外,卷绕铁芯上的槽由于是通过单一冲头冲制而成,其规格尺寸是固定不变的,这就造成磁钢不能够是扇形,这会造成铁芯外径处磁钢占据的铁芯尺寸较小,电机性能不足。
发明内容
本申请提供一种轴向电机转子、轴向电机、动力总成及车辆。
第一方面,本申请提供一种轴向电机转子,轴向电机转子包括转子支架和磁体结构;所述转子支架包括同轴设置的第一支撑部和第二支撑部,且所述第一支撑部套设在所述第二支撑部远离所述第二支撑部的轴线的一侧;所述磁体结构包括多个磁体单元,所述多个磁体单元沿所述第二支撑部的周向依次排布,且所述多个磁体单元中的每一个磁体单元位于所述第一支撑部和所述第二支撑部之间,所述磁体单元沿所述第二支撑部径向的两端分别与所述第一支撑部和所述第二支撑部固定,所述磁体单元包括第一软磁体和第一永磁体,且至少部分所述第一软磁体和至少部分所述第一永磁体沿所述第二支撑部的轴向层叠设置。
在本申请中,第一方面将磁体结构固定在第一支撑部和第二支撑部之间,且所述磁体单元沿所述第二支撑部径向的两端分别与所述第一支撑部和所述第二支撑部固定,提升磁体结构与转子支架之间的结构稳定性,使得轴向电机转子整体可靠性增加;第二方面转子支架通过两个同轴设置的支撑部来限位固定磁体单元沿径向的两端,转子支架结构简单,节省空间,使得节省出来的空间可用于填充磁体单元,有利于增大磁体单元的体积,进而有利于增加磁密,进而提升轴向电机性能;第三方面由多个磁体单元环绕第二支撑部形成环形的磁体结构,每个磁体单元仅占据环形磁体结构的一部分,相较于整体呈环形的磁体结构,由多个磁体单元环绕拼接形成的磁体结构加工更简单,加工精度更高,有利于提升轴向电机的可靠性;第四方面每个磁体单元包括至少部分沿第二支撑部的轴向层叠设置的第一软磁体和第一永磁体,第一软磁体有利于磁力线流通,为磁力线提供顺畅的流通路径,当第一软磁体位于第一永磁体背离气隙的一侧时,第一永磁体向外流通的磁力线可通过第一软磁体流入相邻的磁体单元中的第一永磁体中,相较于第一永磁体的磁力线通过空气流入相连的磁体单元中的第一永磁体中,第一软磁体比空气更利于磁力线流通,可减小磁通损耗。
在一种可能的实现方式中,所述磁体单元的周向尺寸自靠近所述第二支撑部一端向远离所述第二支撑部的一端逐渐增大。由于第二支撑部位于内侧,第一支撑部位于外侧,第一支撑部的周向尺寸大于第二支撑部的周向尺寸,使得第一支撑部和第二支撑部之间的空间从靠近第二支撑部的区域面积向靠近第一支撑部的区域面积逐渐增大,而在本实施方式中,将磁体单元如上设置,使得磁体单元呈扇形,以可以适配第一支撑部和第二支撑部之间的空间,使得磁体单元更大面积的填充在第一支撑部和第二支撑部之间,充分利用转子支架的内部空间,增大磁体单元的面积,提升磁密,增加输出转矩。
在一种可能的实现方式中,所述第一永磁体沿所述第二支撑部的径向连续。如果第一永磁体沿第二支 撑部的径向不连续,而是由多个子磁体单元沿径向排布,永磁体一般结构强度高,比较难加工,例如永磁体为磁钢,三个永磁体沿周向两侧的表面加工对齐比较困难,加工成本高,如果三个永磁体沿周向两侧的表面如果不对齐,就会浪费转子支架的空间,使得永磁体填充量减小,进而降低轴向电机的性能;并且三个子磁体单元需三套冲压模具,磁钢磨具量较多,且为保证三个子磁体单元内外弧形壁的同轴度,加工精度要求高,使得加工工艺复杂。在本实现方式中,第一永磁体沿第二支撑部的径向连续不断的,在径向上为连续整体的结构可以使得第一永磁体的沿周向两侧的表面对齐,不仅加工简单,而且还有利于增加磁体单元体积,提升磁密。
在一种可能的实现方式中,所述第一永磁体沿所述第二支撑部的轴向在所述第一软磁体的投影位于所述第一软磁体内。在本实现方式中的设置,使得第一软磁体的周向尺寸大于第一永磁体的周向尺寸,有利于聚拢磁通线,且有利于导磁。在本实现方式中,使得第一永磁体的最大表面的面积小于第一软磁体的最大表面的面积,使得从第一永磁体流出的磁力线能够大部分或者全部进入第一软磁体中,并通过第一软磁体聚拢,以及通过第一软磁体流入相邻的磁体单元中。
在一种可能的实现方式中,所述磁体单元还包括第二软磁体,所述第一永磁体包括第一主体部、第一分部和第二分部,所述第一软磁体、所述第一主体部和所述第二软磁体沿所述第二支撑部的轴向层叠设置,所述第一分部和所述第二分部沿所述第二支撑部的周向排布在所述第一主体部和所述第二软磁体的两侧。在本实施方式中,在第一永磁体沿轴向的两侧分别设置第一软磁体和第二软磁体,使得第一永磁体沿轴向两侧的磁力线均被软磁体聚拢,增加气隙磁密。在本实施方式中,第一分部和第二分部的设置,有利于聚拢磁力线,当第一分部和第二分部朝向气隙的一侧突出,使得磁力线汇聚进入定子上的绕组线圈中,使得气隙磁密波形接近正弦波,可增加输出扭矩,减小转矩波动。
在一种可能的实现方式中,所述第一永磁体为磁钢,其中所述第一主体部的周向尺寸自自靠近所述第二支撑部一端向远离所述第二支撑部的一端逐渐增大。使得第一主体部呈扇形,其中第一主体部也为磁钢,磁钢为扇形,可充分利用转子支架内的空间,不至于造成外径处磁钢占据的磁体单元尺寸较小耐导致的电机性能不足,磁钢呈扇形,可有效提升轴向电机性能;并且磁钢采用内置于磁体单元中的方案,提升了轴向电机磁阻转矩分量,使轴向电机在高速工况下仍能保持较大的功率。
在一种可能的实现方式中,在所述第一永磁体中,所述第一主体部、所述第一分部和所述第二分部为各自独立的结构,有利于加工。示例性的,当第一永磁体为磁钢时,磁钢的强度较大,不易塑形,在本实施方式中,采用三个独立的结构设置成“U”字形结构的第一永磁体,有利于加工。
在一种可能的实现方式中,所述磁体单元还包括第二永磁体,所述第二软磁体背离所述第一主体部的表面设有凹槽,所述第二永磁体位于所述凹槽内。在本实施方式中,第二永磁体和第一永磁体共同用于产生磁力线,增加磁通,增加输出扭矩,提升电机性能。
在一种可能的实现方式中,所述第二永磁体沿所述第二支撑部的轴向在所述第一主体部的投影位于所述第一主体部内。在本实施方式中,第二永磁体和第一主体部的如上设置,使得第二永磁体的周向尺寸小于第一主体部的周向尺寸,当第二永磁体相较于第一主体部更靠近气隙时,第二永磁体的磁力线的面积小于第一主体部的磁力线的面积,磁力线自第一主体部向气隙的方向逐渐聚拢,有利于增加经过气隙的磁密。
在一种可能的实现方式中,所述第二永磁体沿所述第二支撑部周向的弧度小于所述第一主体部沿所述第二支撑部周向的弧度。其中,第二支撑部的周向也为电机轴的周向、或者也为第一支撑部的周向、或者也为磁体结构的周向。如图所示,第二永磁体沿周向的弧度小于第一主体部沿周向的弧度,使得磁体单元更利于聚拢磁力线,使得进入气隙的磁密更接近正弦波。
在一种可能的实现方式中,所述第一软磁体和所述第二软磁体为软磁复合材料磁体。软磁复合材料磁体是指采用软磁复合材料加工形成的磁体,可减少高频涡流损耗,提高应用频率,并且软磁复合材料易塑形,可加工成所需形状的软磁体结构。例如第二软磁体中可加工成凹槽,其中凹槽与第二永磁体的形状匹配,使得第二永磁体可收容于凹槽中,第二永磁体沿周向的两侧被凹槽的两侧壁抵接,可提升第二永磁体沿周向两侧的稳固性。
在一种可能的实现方式中,所述磁体单元还包括第三软磁体,所述第二永磁体包括第二主体部、第三分部和第四分部,所述第三软磁体位于所述第二主体部远离所述第二软磁体的一侧,所述第三分部和所述第四分部沿第一方向排布在所述第二主体部和所述第三软磁体的两侧。在本实施方式中,第二永磁体中的第三分部和第四分部相对第二主体部向气隙侧突出,提升聚拢磁力线的效果,进而使得气隙磁密波形更接近正弦波,提升气隙磁密。
在一种可能的实现方式中,所述第一软磁体、所述第二软磁体和所述第三软磁体中的至少一种为软磁 复合材料磁体。软磁复合材料磁体是指采用软磁复合材料加工形成的磁体,可减少高频涡流损耗,提高应用频率,并且软磁复合材料易塑形,可加工成所需形状的软磁体结构。
在一种可能的实现方式中,所述磁体单元还包括第二软磁体和第二永磁体,所述第一软磁体、所述第一永磁体和所述第二软磁体沿所述第二支撑部的轴向层叠设置,所述第二软磁体背离所述第一永磁体的表面设有凹槽,所述第二永磁体位于所述凹槽内,所述第二永磁体沿所述第二支撑部的轴向在所述第一永磁体的投影位于所述第一永磁体内。在本实施方式中,第一永磁体和第二永磁体的剖面为“一”字形结构,第二永磁体位于第二软磁体的凹槽内,第二永磁体沿周向的两侧被第二软磁体覆盖,使得从第二永磁体沿周向的两侧流出的磁力线能够被第二软磁体聚拢,进而增加气隙磁密。
在一种可能的实现方式中,所述转子支架还包括多个定位柱,所述多个定位柱中的每一个所述定位柱的两端分别与所述第一支撑部和所述第二支撑部固定连接,所述定位柱将相邻的两个所述磁体单元间隔,相邻的两个所述定位柱以及所述相连的两个定位柱之间的部分第一支撑部和部分第二支撑部围合成收容空间,所述磁体单元位于所述收容空间内。在本实施方式中,定位柱用于将第一支撑部和第二支撑部固定,提升第一支撑部和第二支撑部之间的稳定性;另外,第一支撑部、第二支撑部和定位柱构成的转子支架为支架结构,具有较多的空间,有利于磁体结构散热。
在一种可能的实现方式中,可通过粘结胶将磁体单元粘结在第一支撑部、第二支撑部和定位柱上。
在一种可能的实现方式中,当磁体单元安装在转子支架上后,可再将粘结胶填充在磁体单元和转子支架之间的缝隙中,增强粘结强度,提升结构可靠性。
在一种可能的实现方式中,所述转子支架还包括限位筋,所述限位筋位于定位柱沿周向的两侧,相邻的两个所述定位柱相对的表面上均设有限位筋,所述限位筋用于卡入所述磁体单元的限位槽中。进而提升磁体单元与转子支架的结构可靠性。
在一种可能的实现方式中,所述定位柱内设有沿所述第二支撑部径向延伸的通流孔。通流孔有利于散热。
在一种可能的实现方式中,所述转子支架为非导磁支架。不导磁支架可减小漏磁,减小磁通损耗,使得相邻两个磁体单元的磁通大部分流入定子的绕组线圈中,增加输出扭矩。如果采用导磁支架,导磁支架会使得部分磁通从沿径向从转子支架分散,进而消耗掉部分磁通,会影响轴向电机的性能。
在一种可能的实现方式中,所述第二永磁体的剖面的尺寸自靠近所述第一主体部的一端向远离所述第一主体部的一端逐渐减小。其中,第二永磁体的剖面是指以与第二永磁体相同弧度的弧线沿第二支撑部的轴向剖切第二永磁体所得到剖面。在本实施方式中,第二永磁体的剖面的尺寸自靠近第一主体部的一端向远离第一主体部的一端逐渐减小,使得靠近气隙侧的一端的尺寸小于远离气隙侧的一端的尺寸,使得磁力线更加向气隙一侧聚拢,使得气隙磁密波形更接近正弦波,提升气隙磁密。
在一种可能的实现方式中,所述磁体单元还包括第三软磁体,所述第二永磁体包括第二主体部、第三分部和第四分部,所述第三软磁体位于第二主体部远离第二软磁体的一侧,所述第三分部和所述第四分部沿第二支撑部的周向排布在所述第二主体部和所述第三软磁体的两侧。在本实施方式中,第一永磁体的剖面为“一”字形结构,第二永磁体的剖面为“U”字形结构,第二永磁体中的第三分部和第四分部相对第二主体部向气隙侧突出,提升聚拢磁力线的效果,进而使得气隙磁密波形更接近正弦波,提升气隙磁密。
在一种可能的实现方式中,在所述第二永磁体中,所述第三分部和所述第四分部与所述第二主体部之间的夹角大于90°;在所述第一永磁体中,所述第一分部和所述第二分部与所述第一主体部之间的夹角大于90°。
第二方面,本申请提供一种轴向电机,所述轴向电机包括电机轴、定子和如上任一项所述的轴向电机转子,所述定子安装在所述电机轴上且与所述电机轴转动连接,所述轴向电机转子安装在所述电机轴上且与所述电机轴固定连接,所述第一软磁体位于所述第一永磁体背离所述定子的一侧。
在一种可能的实现方式中,所述轴向电机包括两个所述轴向电机转子,所述两个轴向电机转子均安装在所述电机轴上且与所述电机轴固定连接,所述两个轴向电机转子位于所述定子沿所述电机轴轴向的两侧。
第三方面,本申请提供一种动力总成,包括变速箱和如上所述的轴向电机,所述轴向电机与所述变速箱中的动力输入轴传动连接,用于向所述动力输入轴输出动力。
第四方面,本申请提供一种车辆,所述车辆包括车本体和如上所述的轴向电机,所述轴向电机安装在所述车本体上。
在一种可能的实现方式中,所述车辆还包括车轮,所述车轮安装在所述车本体上,所述轴向电机与所述车轮传动连接,用于驱动所述车轮运转。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对本申请实施例中所需要使用的附图进行说明。
图1是本申请一实施例提供的轴向电机的整体示意图;
图2是本申请图1提供的轴向电机的爆炸图;
图3a是本申请一实施例提供的轴向电机中的轴向电机转子和定子的结构示意图;
图3b是本申请一实施例提供的轴向电机中的轴向电机转子和定子的侧视图;
图4是本申请一实施例提供的动力总成的结构示意图;
图5是本申请一实施例提供的车辆的结构示意图;
图6是本申请一实施例提供的轴向电机转子的结构示意图;
图7是本申请一实施例提供的轴向电机转子的结构示意图;
图8a是本申请一实施例提供的轴向电机转子中的转子支架的结构示意图;
图8b是本申请图8a中M部分的局部放大图;
图9是本申请一实施例提供的轴向电机转子中的磁体结构的部分示意图;
图10是本申请一实施例提供的磁体单元的结构示意图;
图11是本申请一实施例提供的两个磁体单元的结构示意图;
图12是不连续的磁体单元的结构示意图;
图13是本申请一实施例提供的磁体单元的结构示意图;
图14是本申请一实施例提供的磁体单元中第一永磁体中第一主体部和第二永磁体的结构示意图;
图15是本申请一实施例提供的轴向电机的磁路图;
图16是本申请一实施例提供的轴向电机的气隙磁密波形图;
图17是仅采用磁钢的轴向电机的气隙磁密波形图;
图18是本申请一实施例提供的磁体单元的示意图;
图19是本申请一实施例提供的轴向电机转子中的磁体单元的结构示意图;
图20是本申请一实施例提供的轴向电机转子的磁路图;
图21是本申请一实施例提供的轴向电机转子中的磁体单元的结构示意图;
图22是本申请一实施例提供的轴向电机转子的磁路图;
图23是本申请一实施例提供的轴向电机转子中的磁体单元的结构示意图;
图24是本申请一实施例提供的轴向电机转子中两对极的磁体单元的磁路图;
图25是本申请一实施例提供的轴向电机转子中的磁体单元的结构示意图;
图26是本申请一实施例提供的轴向电机转子中两对极的磁体单元的磁路图;
图27是本申请一实施例提供的轴向电机转子中的磁体单元的结构示意图;
图28是本申请一实施例提供的轴向电机转子中两对极的磁体单元的磁路图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。
本文中,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
此外,本文中,“上”、“下”等方位术语是相对于附图中的结构示意置放的方位来定义的,应当理解到,这些方向性术语是相对的概念,它们用于相对于的描述和澄清,其可以根据结构所放置的方位的变化而相应地发生变化。
为方便理解,下面先对本申请实施例所涉及的英文简写和有关技术术语进行解释和描述。
软磁复合材料:SMC,全称为soft magnetic composite,软磁复合材料是指将磁性微粒均匀分散在非磁性物中形成的软磁材料。
本申请提供一种轴向电机转子,包括转子支架和磁体结构,所述转子支架包括同轴设置的第一支撑部和第二支撑部,所述第一支撑部套设在所述第二支撑部远离所述第二支撑部的轴线的一侧;所述磁体结构 包括多个磁体单元,所述多个磁体单元沿所述第二支撑部的周向依次排布,且所述多个磁体单元中的每一个磁体单元位于所述第一支撑部和所述第二支撑部之间,所述磁体单元沿所述第二支撑部径向的两端分别与所述第一支撑部和所述第二支撑部固定,所述磁体单元包括第一软磁体和第一永磁体,且至少部分所述第一软磁体和至少部分所述第一永磁体沿所述第二支撑部的轴向层叠设置。本申请通过将多个磁体单元环绕排布构成磁体结构,每个磁体单元为环形磁体结构的一部分,相较于整体为环形的磁体结构,每个磁体单元的加工工艺更简单;在本申请每个磁体单元包括层叠设置的第一软磁体和第一永磁体,其中第一软磁体用于聚拢磁力线,为磁力线提供通路,提高气隙磁密,增加输出转矩,减小转矩波动,本申请的轴向电机转子应用于轴向电机中时,可提升轴向电机性能。
请参阅图1和图2,图1本申请一实施例提供的轴向电机1的整体示意图,图2为本申请图1提供的轴向电机1的爆炸图。轴向电机1包括轴向电机转子10、电机轴11和定子12,定子12安装在电机轴11上且与电机轴11转动连接,轴向电机转子10安装在电机轴11上且与电机轴11固定连接。其中,当定子12的电枢绕组中通入交流电时,产生的交变磁通与轴向电机转子10产生的永磁磁通之间相互作用,使得轴向电机转子10相对定子12转动。轴向电机转子10与电机轴11固定连接,使得电机轴11跟随轴向电机转子10转动,定子12与电机轴11转动连接,使得电机轴11能够相对定子12转动。在轴向电机1工作时,定子12不动,轴向电机转子10和电机轴11同步转动。其中电机轴11的输出端用于驱动外部部件转动。
在一种可能的实现方式中,轴向电机1还包括壳体13和端盖14(如图2所示),壳体13位于定子12的外侧,端盖14位于轴向电机转子10远离定子12的一侧。端盖14与壳体13固定,轴向电机转子10位于端盖14与定子12之间。
在一种可能的实现方式中,轴向电机1包括两个轴向电机转子10,两个轴向电机转子10均安装在电机轴11上且与电机轴11固定连接,两个轴向电机转子10位于定子12沿电机轴11轴向的两侧。两个轴向电机转子10提升轴向电机1工作效率。在本实施方式中,轴向电机1包括两个端盖14,如图2所示,两个端盖14和壳体13围合成收容空间,两个轴向电机转子10和定子12位于收容空间内。
在一种可能的实现方式中,电机轴11包括第一电机半轴11a和第二电机半轴11b,其中第一电机半轴11a和第二电机半轴11b固定连接,在第一电机半轴11a上设有第一固定盘15,第一固定盘15用于与其中一个轴向电机转子10固定连接,示例性的,可通过螺钉连接第一固定盘15和轴向电机转子10;第二电机半轴11b上设有轴承16,定子12通过轴承16套设在电机轴11上,其中定子12通过轴承16与电机轴11转动连接,第二电机半轴11b上还设有第二固定盘17,第二固定盘17用于与另一个轴向电机转子10固定连接,示例性的,可通过螺钉连接第二固定盘17和轴向电机转子10。
在一些实施例中,电机轴11也可以为一个整体,在电机轴11上设有第一固定盘15、轴承16和第二固定盘17。
在一种可能的实现方式中,轴向电机1包括一个轴向电机转子10和一个定子12。
在一种可能的实现方式中,轴向电机1包括一个轴向电机转子10和两个定子12,沿电机轴11的轴向,两个定子12分布在轴向电机转子10的两侧。
在一种可能的实现方式中,轴向电机1包括多个轴向电机转子10和多个定子12,轴向电机转子10和定子12沿电机轴11的轴向依次交替排布。示例性的,轴向电机1包括三个轴向电机转子10和两个定子12。
在一种可能的实现方式中,定子12可为卷绕式绕组定子或者分布式绕组定子。其中卷绕式绕组定子是指包括多个环绕电机轴11分布的定子铁心,将绕组卷绕在每一个定子铁心上,形成卷绕式绕组。其中,图2示出的定子12为卷绕式绕组定子。分布式绕组定子是指整体环绕电机轴11设置的定子铁心,定子铁心为整体结构,再通过在定子铁心上冲压绕线槽,将绕组卷绕在绕线槽中,形成分布式绕组。
请参阅图3a和图3b,图3a为本申请一实施例提供的轴向电机转子10和定子12的结构示意图,图3b为图3a的侧视图。在本实施例中,在定子12和轴向电机转子10之间具有气隙Q,轴向电机转子10中产生的磁力线L通过气隙Q进入定子12中。在本实施例中,两个轴向电机转子10与定子12之间的间隙形成两个气隙Q。
轴向电机1采用本申请的轴向电机转子10,通过将多个磁体单元环绕排布构成磁体结构,每个磁体单元为环形磁体结构的一部分,相较于整体为环形的磁体结构,每个磁体单元的加工工艺更简单;并且,每个磁体单元包括层叠设置的第一软磁体和第一永磁体,其中第一软磁体用于聚拢磁力线,第一软磁体还用于为磁力线提供通路,提高气隙磁密,增加输出转矩,减小转矩波动,进而提升轴向电机1性能。
请参阅图4,图4为本申请一实施例提供的动力总成3的结构示意图,动力总成3包括变速箱31和如上所述的轴向电机1,轴向电机1与变速箱31中的动力输入轴32传动连接,用于向动力输入轴32输出动力。在本实施例中,动力总成3中的变速箱31与轴向电机1可以是分体式的或者集成为一体式的。
在一种可能的实现方式中,变速箱31内设有车轮驱动轴(图中未示出),车轮驱动轴在接收轴向电机1输出的动力后向车轮提供动力。在本实施方式中,变速箱31内设有齿轮部件以实现轴向电机1到车轮驱动轴之间的动力传递。
在一种可能的实现方式中,动力总成3还包括发动机33和发电机34,发动机33与变速箱31中的另一个动力输入轴传动连接,用于向所述的另一个动力输入轴输出动力,发电机34通过变速箱31内的齿轮部件与发动机33传动连接。发动机33输出的动力通过变速箱31传输给发电机34,发电机34发电并用于将电能储存在动力电池中,给动力电池充电。需要说明的是,在图4中提供的动力总成3包括发动机33和发电机34,动力总成3为混合动力系统,在一些实施方式中,可不设置发动机33和发电机34,仅包括轴向电机1和变速箱31,此时动力总成3为纯电动力系统。
在一种可能的实现方式中,动力总成3还包括MCU、OBC、DC-DC、PDU和BCU中的至少一种。其中MCU为电机控制器,英文全称为Motor Control Unit;OBC为车载充电器,英文全称为On-Board Charger;DC-DC为直流转换器;PDU为电源分配单元,英文全称为Power Distribution Unit;BCU为电池控制单元,英文全称Battery Control Unit。其中动力总成3可根据需要集成上述部件中的至少一种。
请参阅图5,本申请一实施例提供一种车辆2,车辆2包括车本体21和如上的轴向电机1,轴向电机1安装在车本体21上。
其中车辆2包括汽车、机器人或者其他形式的行驶设备,其中车辆包括电动车/电动汽车(Electric Vehicle,简称EV)、纯电动汽车(Pure Electric Vehicle/BatteryElectric Vehicle,简称:PEV/BEV)、混合动力汽车(Hybrid Electric Vehicle,简称:HEV)、增程式电动汽车(Range Extended Electric Vehicle,简称REEV)、插电式混合动力汽车(Plug-in Hybrid Electric Vehicle,简称:PHEV)、新能源汽车(New Energy Vehicle)等。在一些实施方式中,车辆包括乘用车、各种具有特定功能的专项作业车,例如工程抢险车、洒水车、吸污车、水泥搅拌车、起重车、医疗车等。
示例性的,如图5所示,车辆2为汽车,车辆2还包括车轮22,车轮22安装在车本体21上,轴向电机1与车轮22传动连接,用于驱动车轮22运转,以驱动车辆行驶。在一些实施方式中,车辆2中设有如上所述的动力总成3,动力总成3安装在车本体21上,动力总成3用于驱动车辆2行驶。
下面详细介绍本申请的轴向电机转子。
请参阅图6、图7和图8a,图6为本申请第一实施例提供的轴向电机转子10的结构示意图,图7为图6轴向电机转子10从背离定子12一侧看的示意图,图8a为图6中转子支架100的结构示意图,在本实施例中,轴向电机转子10包括转子支架100和磁体结构200,转子支架100包括同轴设置的第一支撑部110和第二支撑部120,且第一支撑部110套设在第二支撑部120远离第二支撑部120的轴线的一侧(如图8a所示);磁体结构200包括多个磁体单元210(如图6所示),多个磁体单元210沿第二支撑部120的周向C依次排布,且多个磁体单元210中的每一个磁体单元210位于第一支撑部110和第二支撑部120之间(如图7所示),磁体单元210沿第二支撑部120径向R的两端分别与第一支撑部110和第二支撑部120固定,磁体单元210包括第一软磁体211和第一永磁体212(如图9、图10和图11所示),且至少部分第一软磁体211和至少部分第一永磁体212沿第二支撑部120的轴向层叠设置。
其中,第一支撑部110和第二支撑部120呈圆环形,用于套设在电机轴11上并与电机轴11固定连接。示例性的,第二支撑部120的内侧设有支撑固定盘121,支撑固定盘121通过螺钉与电机轴11上的第一固定盘15固定连接(如图2所示)。
在本实施例中,第二支撑部120的轴线与电机轴11的轴线重合,第二支撑部120的轴向O与电机轴11的轴向重合,第二支撑部120的轴线的延伸方向即为第二支撑部120的轴向O,其中第二支撑部120的径向R与电机轴11的径向相同。
在本实施例中,多个磁体单元210沿第二支撑部120的周向C依次排布,其中第二支撑部120的周向C是指环绕第二支撑部120的方向,多个磁体单元210环绕第二支撑部120设置,每个磁体单元210沿第二支撑部120径向R的两端分别与第一支撑部110和第二支撑部120固定,使得每个磁体单元210稳定的固定在第一支撑部110和第二支撑部120之间。其中,第一支撑部110和第二支撑部120之间间隔,两者之间的空间用于容纳磁体单元210,在本申请中,转子支架100通过两个环形的支撑部110、120来限位固定磁体单元210沿径向R的两端,转子支架100结构简单,节省空间,使得节省出来的空间可用于填充磁 体单元210,有利于增大磁体单元210的体积,进而有利于增加磁密,进而提升轴向电机1性能。其中,轴向电机性能指标包括转矩常数、反电势系数、永磁体用量、转矩输出、交直轴电感等性能指标参数。
在本实施例中,由多个磁体单元210环绕第二支撑部120形成环形的磁体结构200,每个磁体单元210仅占据环形磁体结构200的一部分,相较于整体呈环形的磁体结构,由多个磁体单元210环绕拼接形成的磁体结构200加工更简单。对于整体呈环形的磁体结构200,需要套设在电机轴11上,整体环形的磁体结构200内壁需要加工为圆形才能与电机轴11较好的安装,但加成为圆形一般比较困难,工艺精度难以达到,如果精度不够磁体结构200的内壁与电机轴11不匹配,轴向电机转子10与电机轴11之间连接可靠性变差,进而使得轴向电机1整体的可靠性变差,容易损坏。而在本申请中,对于每个磁体单元210的加工工艺更简单,每个磁体单元210沿径向R的两端为弧形,弧形相较于圆形更好加工,且加工精度更高,每个磁体单元210的尺寸可相同,磁体单元210加工完成后,再将多个磁体单元210环绕拼接在第一支撑部110和第二支撑部120之间,其中第一支撑部110和第二支撑部120的尺寸可根据磁体结构200的尺寸来设置。据此可知,本申请中由多个磁体单元210环绕第二支撑部120形成环形的磁体结构200更好加工,且加工精度更高,有利于提升轴向电机1的可靠性。
请参阅图9、图10和图11,其中图9为磁体结构200的局部示意图,图10为磁体单元210的结构示意图,图11为磁体单元210从背离轴线的一侧看的示意图。在本实施例中,每个磁体单元210包括至少部分沿第二支撑部120的轴向O层叠设置的第一软磁体211和第一永磁体212。第一软磁体211有利于磁力线L流通,为磁力线L提供顺畅的流通路径,当第一软磁体211位于第一永磁体212背离气隙Q的一侧时(如图11所示),第一永磁体212向外流通的磁力线L可通过第一软磁体211流入相邻的磁体单元210中的第一永磁体212中,相较于第一永磁体212的磁力线L通过空气流入相连的磁体单元210中的第一永磁体212中,第一软磁体211比空气更利于磁力线L流通,可减小磁通损耗。
在一种可能的实现方式中,相邻的两个磁体单元210为一对极磁体单元。其中,相邻的两个磁体单元210中的第一永磁体212的充磁方向相反,使得相邻两个磁体单元210的磁通形成回路。
在一实施方式中,第一永磁体212也称为磁钢,常用的永磁材料分为铝镍钴系永磁合金、铁铬钴系永磁合金、永磁铁氧体、稀土永磁材料(钕铁硼Nd2Fe14B)和复合永磁材料等。
再次参阅图6和图7,在一种可能的实现方式中,磁体单元210的周向尺寸自靠近第二支撑部120一端向远离第二支撑部120的一端逐渐增大。由于第二支撑部120位于内侧,第一支撑部110位于外侧,第一支撑部110的周向尺寸大于第二支撑部120的周向尺寸,使得第一支撑部110和第二支撑部120之间的空间从靠近第二支撑部120的区域面积向靠近第一支撑部110的区域面积逐渐增大,而在本实施方式中,将磁体单元210如上设置,使得磁体单元210呈扇形,以可以适配第一支撑部110和第二支撑部120之间的空间,使得磁体单元210更大面积的填充在第一支撑部110和第二支撑部120之间,充分利用转子支架100的内部空间,增大磁体单元210的面积,提升磁密,增加输出转矩。
在一种可能的实现方式中,第一永磁体212沿第二支撑部120的径向连续。如果第一永磁体212沿第二支撑部120的径向不连续,如图12所示,永磁体包括沿径向分布的三个子磁体单元201/202/203,永磁体一般结构强度高,比较难加工,例如永磁体为磁钢,三个永磁体沿周向C两侧的表面加工对齐比较困难,加工成本高,如果三个永磁体沿周向C两侧的表面如果不对齐(如图12所示),就会浪费转子支架100的空间,使得永磁体填充量减小,进而降低轴向电机1的性能;并且三个子磁体单元需三套冲压模具,磁钢磨具量较多,且为保证三个子磁体单元内外弧形壁的同轴度,加工精度要求高,使得加工工艺复杂。在本实施方式中,第一永磁体212沿第二支撑部120的径向R连续不断的,在径向R上为连续整体的结构可以使得第一永磁体212的沿周向C两侧的表面对齐,不仅加工简单,而且还有利于增加磁体单元210体积,提升磁密。
在一种可能的实现方式中,第一永磁体212沿第二支撑部120的轴向O在第一软磁体211的投影位于第一软磁体211内(如图11所示)。在本实施方式中的设置,使得第一软磁体211的周向尺寸大于第一永磁体212的周向尺寸,有利于聚拢磁通线L,且有利于导磁。在本实施方式中,使得第一永磁体212的最大表面的面积小于第一软磁体211的最大表面的面积,使得从第一永磁体212流出的磁力线L能够大部分或者全部进入第一软磁体211中,并通过第一软磁体211聚拢,以及通过第一软磁体211流入相邻的磁体单元210中。其中,第一软磁体211的最大表面、第一永磁体212的最大表面均与第二支撑部120的轴向O垂直相交。
请继续参阅图10和图11,在一种可能的实现方式中,磁体单元210还包括第二软磁体213,第一永磁体212包括第一主体部2121、第一分部2122和第二分部2123,第一软磁体211、第一主体部2121和第 二软磁体213沿第二支撑部120的轴向O层叠设置,第一分部2122和第二分部2123沿第二支撑部120的周向C排布在第一主体部2121和第二软磁体213的两侧。如图13所示,在本实施方式中,在第一永磁体212沿轴向O的两侧分别设置第一软磁体211和第二软磁体213,使得第一永磁体212沿轴向O两侧的磁力线L均被软磁体聚拢,增加气隙磁密。在本实施方式中,第一分部2122和第二分部2123的设置,有利于聚拢磁力线L,当第一分部2122和第二分部2123朝向气隙Q的一侧突出,使得磁力线L汇聚进入定子12上的绕组线圈中,使得气隙磁密波形接近正弦波,可增加输出扭矩,减小转矩波动。在本实施方式中,第一永磁体212的剖面为“U”字形(如图13所示)。
在一种可能的实现方式中,第一永磁体212为磁钢,其中第一主体部2121的周向尺寸自自靠近第二支撑部120一端向远离第二支撑部120的一端逐渐增大。使得第一主体部2121呈扇形,其中第一主体部2121也为磁钢,磁钢为扇形,可充分利用转子支架100内的空间,不至于造成外径处磁钢占据的磁体单元210尺寸较小耐导致的电机性能不足,磁钢呈扇形,可有效提升轴向电机性能;并且磁钢采用内置于磁体单元210中的方案,提升了轴向电机1磁阻转矩分量,使轴向电机1在高速工况下仍能保持较大的功率。
在一种可能的实现方式中,第一主体部2121的充磁方向与第二支撑部120的轴向O相同,第一分部2122和第二分部2123的充磁方向与第二支撑部120的轴向O相交。使得第一分部2122和第二分部2123中的磁力线L从两者中的中间流入或者流出,而从第一分部2122和第二分部2123的中间流入或者流出的磁力线L会吸引第一主体部2121流入或者流出的磁力线更加集中聚拢,进而使得经过气隙的磁密波形接近正弦波,可增加输出扭矩,减小转矩波动。在本实施方式中,第一主体部2121的充磁方向与第一主体部2121的最大表面垂直,第一分部2122的充磁方向与第一分部2122的最大表面垂直,第二分部2123的充磁方向与第二分部2123的最大表面垂直。
在一种可能的实现方式中,在第一永磁体212中,第一主体部2121、第一分部2122和第二分部2123为各自独立的结构,有利于加工。示例性的,当第一永磁体212为磁钢时,磁钢的强度较大,不易塑形,在本实施方式中,采用三个独立的结构设置成“U”字形结构的第一永磁体212,有利于加工。
请继续参阅图13,在一种可能的实现方式中,磁体单元210还包括第二永磁体214,第二软磁体213背离第一主体部2121的表面设有凹槽2131,第二永磁体214位于凹槽2131内。在本实施方式中,第二永磁体214和第一永磁体212共同用于产生磁力线L,增加磁通,增加输出扭矩,提升电机性能。
在一实施方式中,第二永磁体214的充磁方向为垂直于第二永磁体214最大表面的方向,或者第二永磁体214的充磁方向为轴向O。在一实施方式中,第一主体部2121和第二永磁体214为轴向充磁永磁体,第一分部2122和第二分部2123为切向充磁永磁体。
在一种可能的实现方式中,第一软磁体211和第二软磁体213为软磁复合材料磁体。软磁复合材料磁体是指采用软磁复合材料加工形成的磁体,可减少高频涡流损耗,提高应用频率,并且软磁复合材料易塑形,可加工成所需形状的软磁体结构。例如第二软磁体213中可加工成凹槽2131(如图11所示),其中凹槽2131与第二永磁体214的形状匹配,使得第二永磁体214可收容于凹槽2131中,第二永磁体214沿周向C的两侧被凹槽2131的两侧壁抵接,可提升第二永磁体214沿周向C两侧的稳固性。
在一种可能的实现方式中,第一永磁体212和第二永磁体214为磁钢。
在一种可能的实现方式中,第二永磁体214沿第二支撑部120的轴向O在第一主体部2121的投影位于第一主体部2121内(如图13所示)。在本实施方式中,第二永磁体214和第一主体部2121的如上设置,使得第二永磁体214沿周向C的尺寸小于第一主体部2121沿周向C的尺寸,当第二永磁体214相较于第一主体部2121更靠近气隙Q时,第二永磁体214的磁力线的面积小于第一主体部2121的磁力线L的面积,磁力线L自第一主体部2121向气隙Q的方向逐渐聚拢,有利于增加经过气隙Q的磁密。在本实施方式中,第二永磁体214的最大表面小于第一主体部2121的最大表面,第二永磁体214的最大表面和第一主体部2121的最大表面均与第二支撑部120的轴向O相交。
请参阅图14,在一种可能的实现方式中,第二永磁体214沿第二支撑部120周向C的弧度小于第一主体部2121沿第二支撑部120周向C的弧度。其中,第二支撑部120的周向C也为电机轴11的周向、或者也为第一支撑部110的周向、或者也为磁体结构200的周向。如图13所示,第二永磁体214沿周向C的弧度为γ1,第一主体部2121沿周向C的弧度为γ2,其中γ1小于γ2,使得磁体单元210更利于聚拢磁力线,使得进入气隙Q的磁密更接近正弦波。
在一实施方式中,可根据需要来调整磁体单元210中各部分的尺寸参数,例如可设置第一永磁体212、第一主体部2121的厚度、弧度、径向尺寸等参数,以及设置第一分部2122和第二分部2123的厚度、径向尺寸和宽度等参数,以及可以设置第一软磁体211和第二软磁体213的厚度、弧度、径向尺寸等参数, 来使得轴向电机1具有较佳的性能,例如可得到所需要的永磁体用量、转矩输出、交直轴电感等性能指标。
请参阅图8a和图8b,图8a为本申请一实施例提供的转子支架100的结构示意图,图8b为图8a中M部分的局部放大图。在一种可能的实现方式中,转子支架100还包括多个定位柱130,多个定位柱130中的每一个定位柱130的两端分别与第一支撑部110和第二支撑部120固定连接,定位柱130将相邻的两个磁体单元210间隔,相邻的两个定位柱130以及相连的两个定位柱130之间的部分第一支撑部110和部分第二支撑部120围合成收容空间140,磁体单元210位于收容空间140内。在本实施方式中,定位柱130用于将第一支撑部110和第二支撑部120固定,提升第一支撑部110和第二支撑部120之间的稳定性;另外,第一支撑部110、第二支撑部120和定位柱130构成的转子支架100为支架结构,具有较多的空间,有利于磁体结构200散热。
在一种可能的实现方式中,可通过粘结胶将磁体单元210粘结在第一支撑部110、第二支撑部120和定位柱130上。
在一种可能的实现方式中,当磁体单元210安装在转子支架100上后,可再将粘结胶填充在磁体单元210和转子支架100之间的缝隙中,增强粘结强度,提升结构可靠性。
在一种可能的实现方式中,转子支架100还包括限位筋150,限位筋150位于定位柱130沿周向C的两侧,相邻的两个定位柱130相对的表面上均设有限位筋150,限位筋150用于卡入磁体单元210的限位槽230中(如图13所示),进而提升磁体单元210与转子支架100的结构可靠性。
具体的,请再次参阅图13,在本实施方式中,在轴向O上,第一永磁体212中的第一分部2122与第一软磁体211之间具有间隙,第一分部2122、第一软磁体211和第一主体部2121围设成限位槽230,限位筋150卡入在限位槽230内。
在其他实施方式中,定位柱130、第一支撑部110和第二支撑部120朝向收容空间140的表面还可以设置其他限位结构,用于定位磁体单元210,提升磁体单元210与转子支架100的结构可靠性。
在一种可能的实现方式中,转子支架100为非导磁支架。不导磁支架可减小漏磁,减小磁通损耗,使得相邻两个磁体单元210的磁通大部分流入定子12的绕组线圈中,增加输出扭矩。如果采用导磁支架,导磁支架会使得部分磁通从沿径向R从转子支架100分散,进而消耗掉部分磁通,会影响轴向电机1的性能。
请继续参阅图8b,在一种可能的实现方式中,定位柱130内设有沿第二支撑部120径向R延伸的通流孔131。通流孔131有利于散热。
请参阅图15,图15为本申请第一实施例提供的轴向电机1的磁路图,为了清楚示意磁路图,图15中省去了第一软磁体211和第二软磁体213,在本实施例中,轴向电机1包括两个轴向电机转子10,其中每个轴向电机转子10中的磁体单元210的结构如图9、图10、图11以及图13所示。在本实施例中,磁体单元210包括第一软磁体211、第一永磁体212、第二软磁体213和第二永磁体214,其中第一永磁体212包括第一主体部2121、第一分部2122和第二分部2123,第二永磁体214沿周向C的尺寸小于第一主体部2121沿周向C的尺寸,以及在第一主体部2121的两侧设置朝向气隙Q突出的第一分部2122和第二分部2123,由第一永磁体212和第二永磁体214组成的具有聚磁效果的磁体单元210,使得产生的磁力线L聚拢后进入气隙Q,使得气隙Q磁密波形接近正弦波,可增加输出扭矩,减小转矩波动。
在图15中,示出了两个轴向电机转子10中的一对极磁体单元210与定子12的磁路图,在图15上方中的轴向电机转子10中的两个磁体单元210为一对极磁体单元,分别为磁体单元210a和磁体单元210d,其中磁体单元210a和磁体单元210d的充磁方向相反。具体的,磁体单元210a中的第一永磁体212中的第一主体部2121和磁体单元210a中的第二永磁体214的充磁方向相同,磁体单元210d中的第一永磁体212中的第一主体部2121和磁体单元210d中的第二永磁体214的充磁方向相同,但是磁体单元210a和磁体单元210d中的第一永磁体212中的第一主体部2121的充磁方向相反,磁体单元210a和磁体单元210d中的第二永磁体214的充磁方向相反;磁体单元210a中的第一永磁体212中的第一分部2122与磁体单元210d中的第一永磁体212中的第一分部2122的充磁方向相反,磁体单元210a中的第一永磁体212中的第二分部2123与磁体单元210d中的第一永磁体212中的第二分部2123的充磁方向相反。
在图15下方中的轴向电机转子10中的两个磁体单元210位一对极磁体单元,分别为磁体单元210b和磁体单元210c,其中磁体单元210b和磁体单元210c的充磁方向相反。可参阅磁体单元210a和磁体单元210d的充磁方向来理解磁体单元210b和磁体单元210c的充磁方向,在此不再赘述。
当定子12中的绕组线圈通电后,产生的磁力线与磁体单元210中的磁力线相互作用,驱动轴向电机转子10旋转,其中在图15中,其中一种磁路图的方向依次为:磁体单元210a、磁体单元210b、磁体单 元210c以及磁体单元210d,产生的磁力线L通过气隙Q进入定子12中的绕组线圈中,定子12的绕组线圈产生的磁力线L通过气隙Q进入磁体单元210b,并通过磁体单元210b外侧的第一软磁体211进入相邻的磁体单元210c中,磁体单元210c生的磁力线L通过气隙Q进入定子12中的绕组线圈中,定子12的绕组线圈产生的磁力线L通过气隙Q进入磁体单元210d,并通过磁体单元210d外侧的第一软磁体211进入相邻的磁体单元210a中,形成磁路回路。
其中本实施例中气隙磁密波形如图16所示,图16中横坐标表示电角度,电角度的单位为°,纵坐标表示磁密(B),磁密的单位为T,从图16可以看出,波形接近正弦波,波形的两侧的磁密低于中间磁密,其中该波形的峰值磁密达到1.15T,由此可知,本实施例中具有聚磁效果的磁体单元210可使得气隙磁密波形接近正弦波,可增加输出扭矩,减小转矩波动。
请参阅图17,图17是将磁钢作为转子的磁体单元的磁密波形,其中,在本方案中,转子中仅包含磁钢,没有软磁体,且只要一个磁钢片,从图17可以看出气隙磁密波形更接近方波,使得输出转矩降低,轴向电机1的性能下降,且图17中的峰值磁密为0.69T,小于图15中的峰值磁密。由此可以看出,上述第一实施例中的轴向电机转子10可使得气隙峰值磁密提高30%以上。
请参阅图18,图18为本申请第二实施例提供的轴向电机转子10的结构示意图。在本实施例中,与第一实施例不同的是,第二永磁体214的剖面的尺寸自靠近第一主体部2121的一端向远离第一主体部2121的一端逐渐减小,其中,第二永磁体214的剖面是指以与第二永磁体214相同弧度的弧线沿第二支撑部120的轴向O剖切第二永磁体214所得到的剖面。
在本实施例中,第二永磁体214的剖面的尺寸自靠近第一主体部2121的一端向远离第一主体部2121的一端逐渐减小,使得靠近气隙Q侧的一端的尺寸小于远离气隙Q侧的一端的尺寸,使得磁力线L更加向气隙Q一侧聚拢,使得气隙磁密波形更接近正弦波,提升气隙磁密。
图18示出了其中一种实施方式中的磁路图,其中箭头的方向为磁力线的方向。需要说明的是,第一实施例中转子支架100和磁体结构200的结构和位置关系描述同样也适用于第二实施例中转子支架100和磁体结构200的结构和位置关系描述;第一实施例中转子支架100、第一软磁体211、第一永磁体212、第二永磁体214、第二软磁体213的结位置关系描述同样也适用于第二实施例中转子支架100、第一软磁体211、第一永磁体212、第二永磁体214、第二软磁体213的结位置关系描述,在此不再赘述。
请参阅图19,图19为本申请第三实施例提供的轴向电机转子10的结构示意图。在本实施例中,与第一实施例不同的是,磁体单元210还包括第三软磁体215,第二永磁体214包括第二主体部2141、第三分部2142和第四分部2143,第三软磁体215位于第二主体部2141远离第二软磁体213的一侧,第三分部2142和第四分部2143沿第二支撑部120的周向C排布在第二主体部2141和第三软磁体215的两侧。在本实施例中,第二永磁体214中的第三分部2142和第四分部2143相对第二主体部2141向气隙Q侧突出,提升聚拢磁力线L的效果,进而使得气隙磁密波形更接近正弦波,提升气隙磁密。
在一种可能的实现方式中,第一软磁体211、第二软磁体213和第三软磁体215中的至少一种为软磁复合材料磁体。在本实施例中,第一软磁体211、第二软磁体213和第三软磁体215均为软磁体复合材料磁体。
请参阅图20,图20为两个轴向电机转子10相对的两对极的磁体单元210的磁路图,图20中示出了其中一种实施方式中的磁路图,其中箭头的方向为磁力线L的方向,为了清楚示意磁路图,图20中省去了第一软磁体211、第二软磁体213和第三软磁体215和转子支架100,在图20中示出了,两个对极的磁体单元210形成了磁路回路。需要说明的是,第一实施例中转子支架100和磁体结构200的结构和位置关系描述同样也适用于第三实施例中转子支架100和磁体结构200的结构和位置关系描述;第一实施例中转子支架100、第一软磁体211、第一永磁体212、第二软磁体213的结构关系和描述同样也适用于第三实施例中转子支架100、第一软磁体211、第一永磁体212、第二软磁体213的结构关系和描述,在此不再赘述。
请参阅图21,图21为本申请第四实施例提供的轴向电机转子10的结构示意图。在本实施例中,与第一实施例不同的是,第一永磁体212和第二永磁体214的剖面为“一”字形结构,具体的,磁体单元210包括第一软磁体211、第一永磁体212、第二软磁体213和第二永磁体214,第一软磁体211、第一永磁体212和第二软磁体213沿第二支撑部120的轴向O层叠设置,第二软磁体213背离第一永磁体212的表面设有凹槽2131,第二永磁体214位于凹槽2131内,第二永磁体214沿第二支撑部120的轴向O在第一永磁体212的投影位于第一永磁体212内。在本实施例中,第二永磁体214位于第二软磁体213的凹槽2131内,第二永磁体214沿周向C的两侧被第二软磁体213覆盖,使得从第二永磁体214沿周向C的两侧流出的磁力线能够被第二软磁体213聚拢,进而增加气隙磁密。
在一种可能的实现方式中,第二永磁体214沿轴向O在第一永磁体212的投影位于第一永磁体212内。在一实施方式中,第二永磁体214的弧度小于第一永磁体212的弧度。当将本实施例中的轴向电机转子10安装在轴向电机1上时,第二永磁体214相较于第一永磁体212靠近定子12设置,或者说第二永磁体214相较于第一永磁体212靠近气隙Q设置,第二永磁体214产生的磁力线L的范围比第一永磁体212产生的磁力线L的范围小,使得第二永磁体214的磁力线L更聚拢,而第二永磁体214更聚拢的磁力线L会吸引聚拢第一永磁体212产生的磁力线L,使得第一永磁体212和第二永磁体214的磁力线L更聚拢,进而使得进入气隙的磁力线L更多,提升气隙磁密,使得气隙磁密波形更接近正弦波,增加输出扭矩,提升轴向电机1的性能。
图22为两个轴向电机转子10相对的两对极的磁体单元210的磁路图,为了清楚示意磁路图,图22中省去了第一软磁体211、第二软磁体213和转子支架100,其中一个轴向电机转子10中一对极的磁体单元210的充磁方向相反,另一个轴向电机转子10中的一对极的磁体单元210的充磁方向相反,且两个轴向电机转子10中的两对极的磁体单元210的充磁方向满足在两对极的磁体单元210中形成磁力线L流通回路,磁力线L进入中间定子12中的绕组线圈中,在图22中示出了,两个对极的磁体单元210形成了磁路回路。
需要说明的是,第一实施例中转子支架100和磁体结构200的结构和位置关系描述同样也适用于第四实施例中转子支架100和磁体结构200的结构和位置关系描述;第一实施例中转子支架100、第一软磁体211、第二软磁体213的结构关系和描述同样也适用于第四实施例中转子支架100、第一软磁体211、第二软磁体213的结构关系和描述,在此不再赘述。
请参阅图23,图23为本申请第五实施例提供的轴向电机转子10中的磁体单元210的结构示意图。在本实施例中,与第一实施例不同的是,第一永磁体212的剖面为“一”字形结构,第二永磁体214的剖面为“U”字形结构。具体的,磁体单元210还包括第三软磁体215,第二永磁体214包括第二主体部2141、第三分部2142和第四分部2143,第三软磁体215位于第二主体部2141远离第二软磁体213的一侧,第三分部2142和第四分部2143沿第二支撑部120的周向C排布在第二主体部2141和第三软磁体215的两侧。在本实施例中,第二永磁体214中的第三分部2142和第四分部2143相对第二主体部2141向气隙Q侧突出,提升聚拢磁力线L的效果,进而使得气隙磁密波形更接近正弦波,提升气隙磁密。
图24为两个轴向电机转子10相对的两对极的磁体单元210的磁路图,为了清楚示意磁路图,图24中省去了第一软磁体211、第二软磁体213和第三软磁体215和转子支架100,图24中示出了其中一种实施方式中的磁路图,其中箭头的方向为磁力线L的方向。需要说明的是,第一实施例中转子支架100和磁体结构200的结构和位置关系描述同样也适用于第五实施例中转子支架100和磁体结构200的结构和位置关系描述;第一实施例中转子支架100、第一软磁体211、第二软磁体213的结构关系和描述同样也适用于第五实施例中转子支架100、第一软磁体211、第二软磁体213的结构关系和描述,在此不再赘述。
请参阅图25,图25为本申请第六实施例提供的轴向电机转子10中的磁体单元210的结构示意图。在本实施例中,与第一实施例不同的是,仅包括第一永磁体212,第一永磁体212的剖面为“U”字形结构。具体的,在本实施例中,第一永磁体212包括第一主体部2121、第一分部2122和第二分部2123,第一软磁体211、第一主体部2121和第二软磁体213沿第二支撑部120的轴向O层叠设置,第一分部2122和第二分部2123沿第二支撑部120的周向C排布在第一主体部2121和第二软磁体213的两侧。在本实施方式中,在第一永磁体212沿轴向O的两侧分别设置第一软磁体211和第二软磁体213,使得第一永磁体212沿轴向O两侧的磁力线均被软磁体聚拢,增加气隙磁密。在本实施方式中,第一分部2122和第二分部2123的设置,有利于聚拢磁力线L,当第一分部2122和第二分部2123朝向定子12的一侧突出,使得磁力线L汇聚进入定子12上的绕组线圈中,使得气隙磁密波形接近正弦波,可增加输出扭矩,减小转矩波动。在本实施例中,第一永磁体212的剖面为“U”字形。
图26为两个轴向电机转子10相对的两对极的磁体单元210的磁路图,为了清楚示意磁路图,图26中省去了第一软磁体211、第二软磁体213和转子支架100,图26中示出了其中一种实施方式中的磁路图,其中箭头的方向为磁力线L的方向。需要说明的是,第一实施例中转子支架100和磁体结构200的结构和位置关系描述同样也适用于第六实施例中转子支架100和磁体结构200的结构和位置关系描述;第一实施例中转子支架100、第一软磁体211、第二软磁体213的结构关系和描述同样也适用于第六实施例中转子支架100、第一软磁体211、第二软磁体213的结构关系和描述,在此不再赘述。
请参阅图27,图27为本申请第七实施例提供的轴向电机转子10中的磁体单元210的结构示意图。在本实施例中,与第一实施例不同的是,第一永磁体212和第二永磁体214的剖面呈“U”字形,且第一永 磁体212中分部与主体部的夹角大于90°,第二永磁体214中分部与主体部的夹角大于90°。具体的,在本实施例中,磁体单元210还包括第三软磁体215,第二永磁体214包括第二主体部2141、第三分部2142和第四分部2143,第三软磁体215位于第二主体部2141远离第二软磁体213的一侧,第三分部2142和第四分部2143沿第二支撑部120的周向C排布在第二主体部2141和第三软磁体215的两侧。在本实施例中,第二永磁体214中的第三分部2142和第四分部2143相对第二主体部2141向气隙侧突出,提升聚拢磁力线的效果,进而使得气隙磁密波形更接近正弦波,提升气隙磁密。
在本实施例中,在第二永磁体214中,第三分部2142和第四分部2143与第二主体部2141之间的夹角大于90°;在第一永磁体212中,第一分部2122和第二分部2123与第一主体部2121之间的夹角大于90°。在一些实施方式中,可根据需要来设置第三分部2142和第四分部2143与第二主体部2141之间的夹角的角度值,可根据需要来设置第一分部2122和第二分部2123与第一主体部2121之间的夹角的角度值,以使得磁体结构200满足轴向电机1的磁密需求、输出转矩需求等。
在本实施例中,第一软磁体211、第二软磁体213和第三软磁体215的形状和尺寸可根据第一永磁体212和第二永磁体214的形状和尺寸来设置,使得磁体单元210能够安装在转子支架100中。
图28为两个轴向电机转子10相对的两对极的磁体单元210的磁路图,为了清楚示意磁路图,图28中省去了第一软磁体211、第二软磁体213和第三软磁体215和转子支架100,图28中示出了其中一种实施方式中的磁路图,其中箭头的方向为磁力线L的方向。需要说明的是,第一实施例中转子支架100和磁体结构200的结构和位置关系描述同样也适用于第七实施例中转子支架100和磁体结构200的结构和位置关系描述。
以上对本申请实施例所提供的轴向电机转子、轴向电机、动力总成及车辆进行了详细介绍,本文中应用了具体个例对本申请的原理及实施例进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施例及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (15)

  1. 一种轴向电机转子,其特征在于,包括;
    转子支架,包括同轴设置的第一支撑部和第二支撑部,且所述第一支撑部套设在所述第二支撑部远离所述第二支撑部的轴线的一侧;
    磁体结构,包括多个磁体单元,所述多个磁体单元沿所述第二支撑部的周向依次排布,且所述多个磁体单元中的每一个磁体单元位于所述第一支撑部和所述第二支撑部之间,所述磁体单元沿所述第二支撑部径向的两端分别与所述第一支撑部和所述第二支撑部固定,所述磁体单元包括第一软磁体和第一永磁体,且至少部分所述第一软磁体和至少部分所述第一永磁体沿所述第二支撑部的轴向层叠设置。
  2. 根据权利要求1所述的轴向电机转子,其特征在于,所述磁体单元的周向尺寸自靠近所述第二支撑部一端向远离所述第二支撑部的一端逐渐增大。
  3. 根据权利要求1所述的轴向电机转子,其特征在于,所述第一永磁体沿所述第二支撑部的径向连续。
  4. 根据权利要求1所述的轴向电机转子,其特征在于,所述第一永磁体沿所述第二支撑部的轴向在所述第一软磁体的投影位于所述第一软磁体内。
  5. 根据权利要求1-4任一项所述的轴向电机转子,其特征在于,所述磁体单元还包括第二软磁体,所述第一永磁体包括第一主体部、第一分部和第二分部,所述第一软磁体、所述第一主体部和所述第二软磁体沿所述第二支撑部的轴向层叠设置,所述第一分部和所述第二分部沿所述第二支撑部的周向排布在所述第一主体部和所述第二软磁体的两侧。
  6. 根据权利要求5所述的轴向电机转子,其特征在于,所述磁体单元还包括第二永磁体,所述第二软磁体背离所述第一主体部的表面设有凹槽,所述第二永磁体位于所述凹槽内。
  7. 根据权利要求6所述的轴向电机转子,其特征在于,所述第二永磁体沿所述第二支撑部的轴向在所述第一主体部的投影位于所述第一主体部内。
  8. 根据权利要求6所述的轴向电机转子,其特征在于,所述磁体单元还包括第三软磁体,所述第二永磁体包括第二主体部、第三分部和第四分部,所述第三软磁体位于所述第二主体部远离所述第二软磁体的一侧,所述第三分部和所述第四分部沿第一方向排布在所述第二主体部和所述第三软磁体的两侧。
  9. 根据权利要求8所述的轴向电机转子,其特征在于,所述第一软磁体、所述第二软磁体和所述第三软磁体中的至少一种为软磁复合材料磁体。
  10. 根据权利要求1-4任一项所述的轴向电机转子,其特征在于,所述磁体单元还包括第二软磁体和第二永磁体,所述第一软磁体、所述第一永磁体和所述第二软磁体沿所述第二支撑部的轴向层叠设置,所述第二软磁体背离所述第一永磁体的表面设有凹槽,所述第二永磁体位于所述凹槽内,所述第二永磁体沿所述第二支撑部的轴向在所述第一永磁体的投影位于所述第一永磁体内。
  11. 根据权利要求1-10任一项所述的轴向电机转子,其特征在于,所述转子支架还包括多个定位柱,所述多个定位柱中的每一个所述定位柱的两端分别与所述第一支撑部和所述第二支撑部固定连接,所述定位柱将相邻的两个所述磁体单元间隔,相邻的两个所述定位柱以及所述相连的两个定位柱之间的部分第一支撑部和部分第二支撑部围合成收容空间,所述磁体单元位于所述收容空间内。
  12. 一种轴向电机,其特征在于,所述轴向电机包括电机轴、定子和如权利要求1-11任一项所述的轴向电机转子,所述定子安装在所述电机轴上且与所述电机轴转动连接,所述轴向电机转子安装在所述电机轴上且与所述电机轴固定连接,所述第一软磁体位于所述第一永磁体背离所述定子的一侧。
  13. 根据权利要求12所述的轴向电机,其特征在于,所述轴向电机包括两个所述轴向电机转子,所述两个轴向电机转子均安装在所述电机轴上且与所述电机轴固定连接,所述两个轴向电机转子位于所述定子沿所述电机轴轴向的两侧。
  14. 一种动力总成,其特征在于,包括变速箱和如权利要求12所述的轴向电机,所述轴向电机与所述变速箱中的动力输入轴传动连接,用于向所述动力输入轴输出动力。
  15. 一种车辆,其特征在于,所述车辆包括车本体和如权利要求12或者13所述的轴向电机,所述轴向电机安装在所述车本体上;或者
    所述车辆包括车本体和如权利要求14所述的动力总成,所述动力总成安装在所述车本体上。
PCT/CN2023/109891 2022-08-15 2023-07-28 轴向电机转子、轴向电机、动力总成及车辆 WO2024037312A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210976224.0 2022-08-15
CN202210976224.0A CN115411857A (zh) 2022-08-15 2022-08-15 轴向电机转子、轴向电机、动力总成及车辆

Publications (1)

Publication Number Publication Date
WO2024037312A1 true WO2024037312A1 (zh) 2024-02-22

Family

ID=84159071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/109891 WO2024037312A1 (zh) 2022-08-15 2023-07-28 轴向电机转子、轴向电机、动力总成及车辆

Country Status (2)

Country Link
CN (1) CN115411857A (zh)
WO (1) WO2024037312A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115411857A (zh) * 2022-08-15 2022-11-29 华为数字能源技术有限公司 轴向电机转子、轴向电机、动力总成及车辆

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050285467A1 (en) * 2004-06-29 2005-12-29 Nissan Motor Co., Ltd. Rotor of axial gap motor and method of producing same
CN103036376A (zh) * 2011-10-10 2013-04-10 三星电子株式会社 电动机和电动机的转子
CN111541325A (zh) * 2020-04-30 2020-08-14 南京理工大学 一种轴向磁场永磁电机组合充磁型永磁体内置式转子
CN113381540A (zh) * 2021-06-16 2021-09-10 南京理工大学 一种轴向磁通电机内置式永磁转子结构
CN115411857A (zh) * 2022-08-15 2022-11-29 华为数字能源技术有限公司 轴向电机转子、轴向电机、动力总成及车辆
CN115425784A (zh) * 2022-08-12 2022-12-02 华为数字能源技术有限公司 转子、盘式电机、电机驱动系统及车辆

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050285467A1 (en) * 2004-06-29 2005-12-29 Nissan Motor Co., Ltd. Rotor of axial gap motor and method of producing same
CN103036376A (zh) * 2011-10-10 2013-04-10 三星电子株式会社 电动机和电动机的转子
CN111541325A (zh) * 2020-04-30 2020-08-14 南京理工大学 一种轴向磁场永磁电机组合充磁型永磁体内置式转子
CN113381540A (zh) * 2021-06-16 2021-09-10 南京理工大学 一种轴向磁通电机内置式永磁转子结构
CN115425784A (zh) * 2022-08-12 2022-12-02 华为数字能源技术有限公司 转子、盘式电机、电机驱动系统及车辆
CN115411857A (zh) * 2022-08-15 2022-11-29 华为数字能源技术有限公司 轴向电机转子、轴向电机、动力总成及车辆

Also Published As

Publication number Publication date
CN115411857A (zh) 2022-11-29

Similar Documents

Publication Publication Date Title
CN104883016B (zh) 一种双定子磁场调制型永磁电机
Rasmussen et al. Motor integrated permanent magnet gear with a wide torque-speed range
CN101299567B (zh) 一种无耦合电气无级变速器电机本体拓扑结构
CN103219842B (zh) 双机械端口机电能量变换器
CN111884460B (zh) 一种轴向磁通混合励磁记忆电机
CN101849344A (zh) 旋转电机和驱动装置
WO2024037312A1 (zh) 轴向电机转子、轴向电机、动力总成及车辆
CN108988598B (zh) 一种定子内置磁通调制式永磁游标电机
CN203942424U (zh) 一种无轭闭口槽多盘式永磁电机
CN105207438A (zh) 一种磁场调制式定转子混合永磁记忆电机
CN104113171A (zh) 一种无轭闭口槽多盘式永磁电机
WO2024037268A1 (zh) 轴向电机转子、轴向电机、动力总成及电动设备
EP2493055A2 (en) Permanent-magnet type electric rotating machine
CN110611384A (zh) 一种磁路分解型游标永磁电机
EP4325694A1 (en) Rotor, disc-type motor, motor-driven system, and vehicle
CN103904846A (zh) 一种混合动力汽车用定子永磁型双转子电机结构
CN116722681A (zh) 一种定子混合模块化永磁游标电机
EP4050761A1 (en) Wound stator core, stator comprising such a core and its manufacturing method
CN112688517B (zh) 一种混合励磁轴向磁场永磁电机
CN203617864U (zh) 一种混合动力汽车用定子永磁型双转子电机结构
CN106100271A (zh) 新型轴径向磁通的调磁电机
Ozeki et al. Comparative study of integrated radial-axial flux rotor motor using ferrite magnet
CN109194071A (zh) 弱磁多定子六相永磁同步驱动电机、电动汽车及其方法
TWI741757B (zh) 具有電磁感應發電裝置之電動車輛
CN109639035A (zh) 基于双层转子结构的电机及双层储能飞轮

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23854216

Country of ref document: EP

Kind code of ref document: A1