WO2021129176A1 - 一种气体测量系统的布设方法 - Google Patents

一种气体测量系统的布设方法 Download PDF

Info

Publication number
WO2021129176A1
WO2021129176A1 PCT/CN2020/126457 CN2020126457W WO2021129176A1 WO 2021129176 A1 WO2021129176 A1 WO 2021129176A1 CN 2020126457 W CN2020126457 W CN 2020126457W WO 2021129176 A1 WO2021129176 A1 WO 2021129176A1
Authority
WO
WIPO (PCT)
Prior art keywords
sampling
sample gas
distribution unit
zone
analyzer
Prior art date
Application number
PCT/CN2020/126457
Other languages
English (en)
French (fr)
Inventor
赵喆
刘国栋
罗志刚
陈鸥
金鑫
沈鹏
徐浩
张浩亮
Original Assignee
北京国电龙源环保工程有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京国电龙源环保工程有限公司 filed Critical 北京国电龙源环保工程有限公司
Publication of WO2021129176A1 publication Critical patent/WO2021129176A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0011Sample conditioning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0011Sample conditioning
    • G01N33/0018Sample conditioning by diluting a gas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0073Control unit therefor

Definitions

  • the invention relates to the technical field of denitration and environmental protection, in particular to a method for laying out a gas measurement system.
  • Thermal power plants have been implementing denitrification and environmental protection for more than 10 years.
  • denitrification efficiency due to the uneven distribution of NO X concentration field at the inlet and outlet of the denitration system, the single point sampling method of NO X at the outlet of the denitration SCR cannot extract representative samples. , It cannot reflect the NO X concentration value of the entire section, and the representativeness is poor.
  • the uneven distribution of pollutant concentration cannot be monitored, which causes the problem of excessive ammonia injection for denitrification, which leads to the shortening of the life of the denitrification catalyst and air preheating caused by excessive ammonia injection in some power plants.
  • a series of problems such as the increase of the resistance of the generator, the hypertrophy of the pole line of the electrostatic precipitator, the increase of the power consumption of the induced/supply fan, the failure of the desulphurization slurry, the difficulty of lifting the load of the unit.
  • the purpose of the present invention is to provide a method for deploying a gas measurement system, which can form a matrix sampling, and achieve equal, simultaneous sequential, fully uniform mixing of the sample gas in each subarea, and strong representativeness of the measurement data.
  • the present invention provides a method for laying out a gas measurement system, which includes the following steps:
  • Sampling probes are arranged, in which a sampling probe is arranged in each section of the gas channel or the cross section at the outlet of the gas channel to form a matrix sampling, and the sampling flow of the sampling probes in each section is the same;
  • s2 Lay out the sample gas transmission pipeline connecting the sampling probes of each zone to the interface of the sampling distribution unit;
  • the sampling distribution unit distributes the sample gas of each zone into two channels by connecting the three links: one is connected to the mixing device, and the mixed sample gas is fully mixed by the mixing device and continuously enters the mixed measurement analyzer; the other is connected to the zone survey sampling group, The regional sample gas enters the patrol analyzer in sequence through the patrol sampling group;
  • s4 Install the controller so that the controller is connected to the matrix sampling probe and the sampling distribution unit device, and the controller is connected to the ammonia injection device control center through communication or hard wiring.
  • the sampling probe in step s1 is a multi-rod dilution probe with a fast bypass device, so that the transmission time of the sample gas from the channel section to the probe end is shortened from 120 seconds to 15 seconds.
  • step s2 further includes: the sample gas transmission pipelines from the sampling probes of each subarea to the sampling distribution unit interface have the same length, and the amount of sample gas flowing through the sampling probes of each subarea is the same, so as to ensure the sample gas energy of each subarea. Continuous, equal, and simultaneous transmission to the distribution unit interface.
  • the sampling probe and the distribution unit are connected through a sampling pipeline and a three-way group.
  • the deployment method in step s3 further includes: connecting to the mixing device all the way, the mixed sample gas is fully mixed by the mixing device and then continuously enters the mixed measurement analyzer, and the transmission time of the sample gas through the mixing device is less than 5 seconds ;
  • One way is connected to the patrol sampling group of the districts, the district sample gas enters the patrol analyzer in sequence through the patrol sampling group, and the single district patrol cycle ⁇ 40 seconds;
  • the step s3 layout method further includes: adjusting the flowmeter before the mixing device to ensure that the flow rate of each zone is constant at 1L/min into the uniform mixing device, and the sample gas is continuously sent to the mixing analyzer after mixing. Achieve "uniform mixing"; adjust the flowmeters of each zone before the zone survey sampling group to ensure that the flow rate of each zone is constant at 1L/min, and connect to the zone survey sampling switching valve group.
  • the zone sample gas passes the survey The front three-way discharge port of the solenoid valve is discharged to the residual gas collection device.
  • the sample gas is sent to the survey analyzer by switching the solenoid valve to realize the "zone survey";
  • the step s3 layout method further includes: according to the sample gas volume entering the mixed analyzer and the partitioned patrol analyzer, calculate and determine the sampling distribution unit to allocate the tee to the mixed test analyzer and the patrol analyzer.
  • the length of the pipeline between them ensures that the flue sample gas entering the mixed measurement analyzer and the patrol analyzer at the same time is guaranteed to ensure the synchronization of the two sampling measurements of "zoned patrol" and "uniform mixing".
  • the deployment method of the gas measurement system of the present invention has the following beneficial effects:
  • the sampling probe used in the present invention is a multi-rod dilution probe with a fast bypass device, which shortens the transmission time of the sample gas from the channel section to the probe end from 120 seconds to 15 seconds.
  • dilution sampling probes can be arranged according to the number of denitrification outlet zones, and according to the flue area, the sampling probes are multi-point sampling, which truly realizes matrix sampling.
  • the present invention realizes that the length of the sample gas transmission pipeline from the sampling probes of each partition to the interface of the sampling distribution unit is consistent, and the amount of sample gas flowing through the sampling probes of each partition is the same, ensuring that the sample gas of each partition can be transmitted continuously, equally, and simultaneously.
  • Distribution unit interface, through the mixing device to achieve "continuous uniform mixing sampling", used in denitration flue gas detection, can reduce the deviation of NO X data between the denitration outlet and the total outlet from +15mg/Nm 3 to within ⁇ 5mg/Nm 3, Compared with the single-point measurement of individual survey technology, the data is more representative.
  • the present invention realizes "continuous uniform mixing sampling” denitration outlet mixed measurement NO X value as representative data compared with the total outlet NO X value, the timing is 3 minutes ahead of time
  • the present invention realizes the "synchronized sampling measurement of partition inspection and continuous mixed measurement".
  • the mixed measurement value is used as the "synchronization reference value” to evaluate the deviation of each partition inspection value in real time, and is used for partition optimization control. It is the same as the independent inspection technology.
  • the cross-sectional average is calculated according to the zoning value, and the adjustment of the deviation of the patrol measurement value of each zone can be evaluated. Compared with the adjustment of the deviation of the inspection value of each zone, it can grasp the NO X concentration distribution characteristics of the denitrification outlet in time, the zone adjustment efficiency is higher, and the adjustment effect is better.
  • 40mg/Nm 3 is the emission benchmark value, and the unequal rate of zone deviation can be well controlled within 20%.
  • the present invention can be combined with the big data artificial intelligence control system to timely grasp the distribution characteristics of the pollutant concentration at the denitration outlet in the zone survey, and realize the dynamic monitoring of the NO X concentration field distribution at the SCR outlet and the real-time adjustment of the zoned ammonia injection amount, which is the same as the "individual survey Technology, after all the subregions are surveyed, the average value of the cross-section is calculated according to the value of each subarea, and the adjustment of the deviation of the survey value of each subarea is evaluated. "Compared with the regional adjustment, the efficiency of subarea adjustment is high, which avoids the problem of local ammonia injection and reduces the ammonia escape. harm.
  • Fig. 1 is a flow chart of a method for laying out a gas measurement system according to an embodiment of the present invention.
  • Fig. 2 is a structural block diagram of a gas measurement system according to an embodiment of the present invention.
  • 101 is the matrix sampling probe
  • 102 is the sampling distribution unit
  • 103 is the controller
  • 104 is the ammonia injection device
  • 105 is the control center
  • 106 is the big data-artificial intelligence control module
  • 107 is the three-way group
  • 485 is the communication Or hardwired.
  • Fig. 3 is a block diagram of a system structure of a sampling distribution unit according to an embodiment of the present invention.
  • 1021 is the input interface of the sample distribution unit
  • 1022 is the hybrid ⁇ zone distribution tee group
  • 1023 is the hybrid device
  • 1024 is the zone survey sampling group.
  • a preferred embodiment of the present invention provides a method for laying out a gas measurement system, which includes the following steps: s1: laying out sampling probes, where one is arranged in the gas channel or each section of the gas channel outlet section Sampling probes to form a matrix sampling with the same sampling flow rate of the sampling probes in each zone; s2: lay the sample gas transmission pipeline connecting the sampling probes of each zone to the interface of the sampling distribution unit; s3: the sampling distribution unit connects the sample gas of each zone through the three-way connection It is divided into two channels: one is connected to the mixing device, and the mixed sample gas is fully mixed by the mixing device and then continuously enters the mixed measurement analyzer; the other is connected to the partition patrol sampling group, and the partition sample gas enters the patrol analysis in sequence through the patrol sampling group Instrument; s4: Install the controller to connect the controller to the matrix sampling probe and the sampling distribution unit respectively, and the controller is connected to the ammonia injection device control center through communication or hard wiring.
  • the preferred embodiment of the present invention provides a method for laying out a gas measurement system: by adjusting the flow meter before the mixing device of the sampling distribution unit to ensure that the flow of each partition is constant at 1L/min into the uniform mixing device, after mixing
  • the sample gas is continuously sent to the mixed measurement analyzer to achieve "uniform mixing"; adjust the flow meters of each partition before the partition patrol sampling group to ensure that the flow rate of each partition is constant at 1L/min, and connect to the partition patrol sampling switching valve group.
  • the sample gas of the district is discharged to the residual gas collection device through the front three-way discharge port of the electromagnetic valve for the inspection.
  • the sample gas is sent to the inspection analyzer by switching the solenoid valve to realize the "regional inspection”. "; According to the amount of sample gas entering the mixed analyzer and the patrol analyzer, calculate and determine the length of the pipeline from the sampling distribution unit to the mixed analyzer and patrol analyzer to ensure that it enters the mixed analyzer and patrol analyzer.
  • the analyzer measures the flue gas sample at the same time to ensure the synchronization of the two sampling measurements of "zoned inspection" and "uniform mixing".
  • the layout method further includes: the sampling probe is a matrix dilution sampling probe, and the sampling probe is equipped with a fast bypass device, so that the transmission time of the sample gas from the channel section to the probe end is shortened from 120 seconds to 15 seconds. Seconds, thereby increasing the speed at which the sample gas in the flue reaches the sampling probe.
  • the layout method further includes: the sample gas transmission pipelines from each zone sampling probe to the sampling distribution unit interface have the same length, and the amount of sample gas flowing through the zone sampling probes is the same, ensuring continuous sample gas in each zone , Equal and simultaneous transmission to the distribution unit interface.
  • the layout method further includes: the sampling distribution unit distributes the sample gas of each zone into two channels, and accesses the sample gas of each zone to the zone survey sampling group all the way, and the sample gas of each zone enters in equal time sharing according to the survey rule.
  • Survey analyzer single-zone survey cycle ⁇ 40 seconds; connected to the mixing device all the way, the sample gas of each zone continuously enters the mixing device in equal amounts, and then enters the mixing analyzer after being fully mixed.
  • the transmission time of the sample gas through the mixing device is ⁇ 5 second.
  • the layout method further includes: the layout method further includes: calculating and determining the connection between the sampling distribution unit interface and the mixed measurement analyzer and the patrol analyzer according to the mixed sample gas volume and the partitioned patrol sample gas volume.
  • the length of the pipeline ensures that the flue sample gas enters the mixed measurement analyzer and the patrol analyzer at the same time, and ensures the synchronization of the two sampling measurements of "zoned patrol" and "uniform mixing".
  • the gas measurement system 100 obtained by the above arrangement method includes: a matrix sampling probe 101, a sampling distribution unit 102, a controller 103, an ammonia injection device 104, a control center 105, and a big data-artificial intelligence control module 106 .
  • the sampling distribution unit 102 is connected to the matrix sampling probe 101 through the sample gas transmission pipeline and the tee group 107.
  • the controller 103 is respectively connected with the sampling distribution unit 102 and the matrix sampling probe 101, and the controller 103 communicates through 485 or It is connected to the ammonia injection device 104 and the control center 105 in a hard-wired manner.
  • the sampling distribution unit 102 includes: a sampling distribution unit input interface 1021, a hybrid ⁇ zone distribution three-way group 1022, a mixing device 1023, and a zone survey sampling group 1024.
  • the sample gas of each partition is continuously, equal, and sequentially transmitted to the input interface 1021 of the distribution unit interface.
  • the sampling distribution unit divides the sample gas into two channels and one connection to the mixing device 1023 through the mixing ⁇ zone distribution three-way group 1022.
  • Access to the partition inspection sampling group 1024; by adjusting the front flow meter of the mixed measurement device, ensure that the flow rate of each partition is constant at 1L/min and enter the uniform mixing device.
  • the sample gas is continuously sent to the mixed measurement analyzer to achieve "uniform mixing"; Adjust the flowmeters of each zone before the zone survey sampling group to ensure that the flow rate of each zone is constant at 1L/min, and connect to the zone survey sampling switch valve group.
  • the zone sample gas passes through the front three-way of the survey solenoid valve The discharge port is discharged to the residual gas collection device.
  • the sample gas is sent to the survey analyzer by switching the solenoid valve to realize the "zone survey”; according to the sample gas volume entering the hybrid analyzer and the zone survey analyzer , Calculate and determine the length of the pipeline between the sampling distribution unit and the mixed measurement analyzer and the patrol analyzer to ensure that the mixed measurement analyzer and the patrol analyzer are the flue sample gas at the same time, and ensure that the "zoned inspection”
  • the big data-artificial intelligence control module 106 mainly includes two parts: zone optimization control and total amount optimization control:
  • the district survey has two methods: sequential survey and intelligent survey based on big data. Among them, the intelligent patrol survey prioritizes the measurement and rapid adjustment of the partitions with large fluctuations under the current working conditions, effectively improving the adjustment speed when the working conditions are changed.
  • the working principle of the ammonia injection device is: according to the gas denitration SCR inlet ammonia nozzle configuration, the SCR inlet on each side is divided into multiple zones, and each zone is equipped with an electric regulating valve and a branch ammonia mixer flowmeter on the ammonia injection branch pipe.
  • SCR inlet flue section "front, back, left, and right" different zones of the dynamic distribution of ammonia injection volume adjustment, to ensure that the denitrification inlet ammonia nitrogen molar ratio is close to the design value.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

一种气体测量系统的布设方法,包括如下步骤:s1:布设取样探头(101),其中,在气体通道中或气体通道出口处截面的每个分区布置一个取样探头(101),以形成矩阵式取样,各分区取样探头(101)取样流量一致;s2:布设连接各分区取样探头(101)至取样分配单元(102)接口的样气传输管线;s3:取样分配单元(102)通过连接三通(107)将各分区样气分配为两路:一路接入混合装置(1023),混合样气经混合装置(1023)充分混合后连续进入混测分析仪;一路接入分区巡测取样组(1024),分区样气经巡测取样组(1024)按序进入巡测分析仪;s4:安装控制器(103),使控制器(103)分别与矩阵式取样探头(101)、取样分配单元(102)连接,并且控制器(103)通过通讯或硬接线方式与喷氨装置(104)的控制中心(105)连接。该气体测量系统的布设方法能够形成矩阵式取样,通过调整管路长度、混合样气流量、巡测样气流量等具体参数,实现分区巡测与混合测量同步进行,混合数据连续、代表性强,分区巡测效率高。

Description

一种气体测量系统的布设方法 技术领域
本发明是关于脱硝环保技术领域,特别是关于一种气体测量系统的布设方法。
背景技术
火电厂实施脱硝环保已10余年,随着脱硝效率的进一步提高,受脱硝系统SCR入口、出口NO X浓度场分布不均匀影响,脱硝SCR出口NO X单点取样方式无法抽取到代表性的样气,不能反应整个断面NO X浓度值,代表性差,同时无法监测到污染物浓度分布不均匀的变化,从而引起脱硝喷氨过量的问题,导致一些电厂因喷氨过量引起脱硝催化剂寿命缩短、空预器阻力升高、电除尘器极线肥大、引/送风机电耗增加、脱硫浆液失效、机组提升负荷困难等一系列问题。
目前亟需能连续监测脱硝SCR出口截面均匀混合烟气,又能同步智能巡测SCR出口分区的取样测量技术,结合喷氨总量优化、分区巡测优化大数据-人工智能控制技术来提高喷氨及时响应性、精准性,以解决电厂最为关心的脱硝SCR出口NO X浓度场不均匀、单点测量代表性差、控制调节滞后、自动投入品质差等问题。
公开于该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不应当被视为承认或以任何形式暗示该信息构成已为本领域一般技术人员所公知的现有技术。
发明内容
本发明的目的在于提供一种气体测量系统的布设方法,其能够形成矩阵式取样,并实现各分区样气等量、同时序、充分均匀混合,测量数据代表性强。
为实现上述目的,本发明提供了一种气体测量系统的布设方法,包括如下步骤:
s1:布设取样探头,其中,在气体通道中或气体通道出口处截面的每个分区布置一个取样探头,以形成矩阵式取样,各分区取样探头取样流量一致;
s2:布设连接各分区取样探头至取样分配单元接口的样气传输管线;
s3:取样分配单元通过连接三通将各分区样气分配为两路:一路接入混合装置,混合样气经混合装置充分混合后连续进入混测分析仪;一路接入分区巡测取样组,分区样气经巡测取样组按序进入巡测分析仪;
s4:安装控制器,使控制器分别与矩阵式取样探头、取样分配单元装置连接,并且控制器通过通讯或硬接线方式与喷氨装置控制中心连接。
在本发明的一实施方式中,步骤s1中取样探头为带有快速旁路装置的多杆式稀释探 头,使样气从通道截面至探头端的传输时间由120秒缩短至15秒。
在本发明的一实施方式中,步骤s2中还包括:各分区取样探头至取样分配单元接口处的样气传输管线长度一致,流经各分区取样探头的样气量一致,保证各分区样气能连续、等量、同时序的传输至分配单元接口。
在本发明的一实施方式中,所述取样探头、分配单元通过取样管线、三通组相连通。
在本发明的一实施方式中,步骤s3中布设方法还包括:一路接入混合装置,混合样气经混合装置充分混合后连续进入混测分析仪,样气经混合装置的传输时间<5秒;一路接入分区巡测取样组,分区样气经巡测取样组按序进入巡测分析仪,单分区巡测周期≯40秒;
在本发明的一实施方式中,步骤s3布设方法还包括:调节混测装置前流量计,保证各分区流量恒定为1L/min进入均匀混合装置,混合后样气连续送入混测分析仪,实现“均匀混合”;调节分区巡测取样组前各分区流量计,保证各分区流量恒定为1L/min,接入分区巡测取样切换阀组,分区未巡测时,分区样气经通过巡测电磁阀前三通排放口排至余气收集装置,分区巡测时,通过切换电磁阀,将样气送入巡测分析仪,实现“分区巡测”;
在本发明的一实施方式中,步骤s3布设方法还包括:根据进入混合分析仪、分区巡测分析仪的样气量,计算确定取样分配单元分配三通至混测分析仪、巡测分析仪之间的管路长度,保证进入混测分析仪、巡测分析仪为同一时刻下烟道样气,保证“分区巡测”与“均匀混合”两种取样测量的同步性。
与现有技术相比,本发明的气体测量系统的布设方法,具有如下有益效果:
1、本发明采用的取样探头为带有快速旁路装置的多杆式稀释探头,使样气从通道截面至探头端的传输时间由120秒缩短至15秒。
2、本发明可根据脱硝出口分区数量对应布置稀释取样探头,并根据烟道面积,取样探头为多点式取样,真正实现矩阵式取样。
3、本发明实现各分区取样探头至取样分配单元接口处的样气传输管线长度一致,流经各分区取样探头的样气量一致,保证各分区样气能连续、等量、同时序的传输至分配单元接口,通过混合装置实现“连续均匀混合取样”,用于脱硝烟气检测中,可使脱硝出口与总排口NO X数据偏差由+15mg/Nm 3缩小到±5mg/Nm 3以内,同单独巡测技术单点测量相比,数据代表性更强。
4、本发明实现“连续均匀混合取样”脱硝出口混合测量NO X值作为代表性数据同总 排口NO X数值相比,时序上提前了3分钟
5、本发明实现“分区巡测与连续混测同步取样测量”,混合测量值作为“同步基准值”实时评估各分区巡测值偏差,用于分区优化控制,同单独巡测技术,在所有分区巡测后,再根据各分区值计算截面平均值,评估各分区巡测值偏差的调整相比,能及时掌握脱硝出口NO X浓度分布特征,分区调整效率更高,调节效果更好,以40mg/Nm 3为排放基准值,分区偏差不等率可以很好控制在20%以内。
6、本发明能够结合大数据人工智能控制系统,分区巡测及时掌握脱硝出口污染物浓度分布特征,实现SCR出口NO X浓度场分布的动态监视和分区喷氨量实时调整,同“单独巡测技术,在所有分区巡测后,再根据各分区值计算截面平均值,评估各分区巡测值偏差的调整”相比,分区调整效率高,避免了局部喷氨过量问题,减少了氨逃逸的危害。
附图说明
图1是根据本发明一实施方式的气体测量系统的布设方法流程图。
图2是根据本发明一实施方式的气体测量系统结构框图。其中,101为矩阵式取样探头、102为取样分配单元、103为控制器、104为喷氨装置、105为控制中心、106为大数据-人工智能控制模块、107为三通组、485为通讯或硬接线。
图3是根据本发明一实施方式的取样分配单元系统结构框图。其中,取1021为样分配单元输入接口、1022为混合\分区分配三通组、1023为混合装置、1024为分区巡测取样组。
具体实施方式
下面结合附图,对本发明的具体实施方式进行详细描述,但应当理解本发明的保护范围并不受具体实施方式的限制。
除非另有其它明确表示,否则在整个说明书和权利要求书中,术语“包括”或其变换如“包含”或“包括有”等等将被理解为包括所陈述的元件或组成部分,而并未排除其它元件或其它组成部分。
如图1所示,本发明优选实施方式提供了一种气体测量系统的布设方法,包括如下步骤:s1:布设取样探头,其中,在气体通道中或气体通道出口处截面的每个分区布置一个取样探头,以形成矩阵式取样,各分区取样探头取样流量一致;s2:布设连接各分区取样探头至取样分配单元接口的样气传输管线;s3:取样分配单元通过连接三通将各分区样气分配为两路:一路接入混合装置,混合样气经混合装置充分混合后连续进入混测分析仪;一路接入分区巡测取样组,分区样气经巡测取样组按序进入巡测分析仪;s4:安装控制器,使控制 器分别与矩阵式取样探头、取样分配单元装置连接,并且控制器通过通讯或硬接线方式与喷氨装置控制中心连接。
如图3所示,本发明优选实施方式提供了一种气体测量系统的布设方法:通过调节取样分配单元混测装置前流量计,保证各分区流量恒定为1L/min进入均匀混合装置,混合后样气连续送入混测分析仪,实现“均匀混合”;调节分区巡测取样组前各分区流量计,保证各分区流量恒定为1L/min,接入分区巡测取样切换阀组,分区未巡测时,分区样气经通过巡测电磁阀前三通排放口排至余气收集装置,分区巡测时,通过切换电磁阀,将样气送入巡测分析仪,实现“分区巡测”;根据进入混合分析仪、分区巡测分析仪的样气量,计算确定取样分配单元分配三通至混测分析仪、巡测分析仪之间的管路长度,保证进入混测分析仪、巡测分析仪为同一时刻下烟道样气,保证“分区巡测”与“均匀混合”两种取样测量的同步性。
在本发明的一实施方式中,布设方法还包括:取样探头为矩阵式稀释取样探头,并且取样探头带有快速旁路装置,使样气从通道截面至探头端的传输时间由120秒缩短至15秒,从而提高了烟道内样气到达取样探头的速度。
在本发明的一实施方式中,布设方法还包括:各分区取样探头至取样分配单元接口处的样气传输管线长度一致,流经各分区取样探头的样气量一致,保证各分区样气能连续、等量、同时序的传输至分配单元接口。
在本发明的一实施方式中,布设方法还包括:取样分配单元将每个分区样气分配为两路,一路接入分区巡测取样组,各分区样气按巡测规则等量分时进入巡测分析仪,单分区巡测周期≯40秒;一路接入混合装置,各分区样气连续等量进入混合装置,充分混合后进入混测分析仪,样气经混合装置的传输时间<5秒。
在本发明的一实施方式中,布设方法还包括:所述布设方法还包括:根据混合样气量、分区巡测样气量计算确定取样分配单元接口至混测分析仪、巡测分析仪之间的管路长度,保证进入混测分析仪、巡测分析仪为同一时刻下烟道样气,保证“分区巡测”与“均匀混合”两种取样测量的同步性。
如图2所示,通过上述布设方法得到的气体测量系统100包括:矩阵式取样探头101、取样分配单元102、控制器103、喷氨装置104、控制中心105以及大数据-人工智能控制模块106。其中,取样分配单元102通过样气传输管线、三通组107与矩阵式取样探头101相连通,控制器103分别与取样分配单元102、矩阵式取样探头101连接,并且控制器103通过485通讯或硬接线的方式与喷氨装置104、控制中心105相连接。
如图3所示,取样分配单元102包括:取样分配单元输入接口1021、混合\分区分配三通组1022、混合装置1023、分区巡测取样组1024。其中,各分区样气连续、等量、同时序传输至分配单元接口输入接口1021处,取样分配单元通过混合\分区分配三通组1022将样气分为两路一路接入混合装置1023,一路接入分区巡测取样组1024;通过调节混测装置前流量计,保证各分区流量恒定为1L/min进入均匀混合装置,混合后样气连续送入混测分析仪,实现“均匀混合”;调节分区巡测取样组前各分区流量计,保证各分区流量恒定为1L/min,接入分区巡测取样切换阀组,分区未巡测时,分区样气经通过巡测电磁阀前三通排放口排至余气收集装置,分区巡测时,通过切换电磁阀,将样气送入巡测分析仪,实现“分区巡测”;根据进入混合分析仪、分区巡测分析仪的样气量,计算确定取样分配单元分配三通至混测分析仪、巡测分析仪之间的管路长度,保证进入混测分析仪、巡测分析仪为同一时刻下烟道样气,保证“分区巡测”与“均匀混合”两种取样测量的同步性。
其中,大数据-人工智能控制模块106主要包括分区优化控制和总量优化控制两部分:
(1)、大数据-分区优化控制
通过大数据分析方法自学习,动态分析喷氨模块SCR入口各喷氨支管开度与SCR出口对应分区NOx浓度之间的权重关系,根据SCR出口分区NOx浓度与混测值偏差,实时动态调节分区喷氨量。分区巡测具备按序巡测和基于大数据的智能巡测两种方法。其中,智能巡测对当前工况下波动较大的分区进行优先测量和快速调整,有效提高变工况时,调节速度。
(2)、大数据-总量优化控制技术
通过大数据分析方法和机器学习算法,引入锅炉负荷、炉膛总风量、各磨煤机给煤量、各一次风速等前馈信号,自建大数据动态数学控制模型,形成总喷氨量预判指令,同时将脱硝两侧SCR出口NOx、总排口NOx等作为控制目标进行多目标动态跟踪,实时对喷氨量的预测目标进行动态调整,并对脱硫与脱硝出口NOx的偏差进行自动动态修正,实现烟囱总排口NOx的稳定排放。
其中,喷氨装置的工作原理为:气体根据脱硝SCR入口氨喷嘴配置,将每侧SCR入口划分成多个分区,各分区喷氨支管上设置一个电动调节阀和支管氨混合器流量计,实现SCR入口烟道截面“前后左右”不同分区喷氨量动态分配调节,保证脱硝入口氨氮摩尔比接近设计值。
前述对本发明的具体示例性实施方案的描述是为了说明和例证的目的。这些描述并非想将本发明限定为所公开的精确形式,并且很显然,根据上述教导,可以进行很多改变和 变化。对示例性实施例进行选择和描述的目的在于解释本发明的特定原理及其实际应用,从而使得本领域的技术人员能够实现并利用本发明的各种不同的示例性实施方案以及各种不同的选择和改变。本发明的范围意在由权利要求书及其等同形式所限定。

Claims (6)

  1. 一种气体测量系统的布设方法,其特征在于:所述布设方法包括如下步骤:
    s1:布设取样探头,其中,在气体通道中或气体通道出口处截面的每个分区布置一个取样探头,以形成矩阵式取样;
    s2:布设通过样气传输管线与取样探头连通的取样分配单元,取样分配单元具有“分区巡测与连续混测同步取样”功能;
    s3:取样分配单元将各分区样气分配为两路:一路接入分区巡测取样组,分区样气经巡测取样组按序进入巡测分析仪;一路接入混合装置,混合样气经混合装置充分混合后连续进入混测分析仪;
    s4:安装控制器,使控制器分别与矩阵式取样探头、取样分配单元装置连接,并且控制器通过通讯或硬接线方式与喷氨装置控制中心连接。
  2. 根据权利要求1所述的布设方法,其特征在于:所述取样探头为带有快速旁路装置的多杆式稀释探头,使样气从通道截面至探头端的传输时间<15秒。
  3. 根据权利要求1或2所述的布设方法,其特征在于:各分区取样探头至取样分配单元接口处的样气传输管线长度一致,流经各分区取样探头的样气量一致,保证各分区样气能连续、等量、同时序的传输至分配单元接口。
  4. 根据权利要求1或2所述的布设方法,其特征在于:所述取样探头、分配单元通过取样管线、三通组相连通。
  5. 根据权利要求1所述的布设方法,其特征在于:取样分配单元将每个分区样气分配为两路,一路接入分区巡测取样组,各分区样气按巡测规则等量分时进入巡测分析仪,单分区巡测周期≯40秒;一路接入混合装置,各分区样气连续等量进入混合装置,充分混合后进入混测分析仪,样气经混合装置的传输时间<5秒。
  6. 如权利要求1所述的布设方法,其特征在于:所述布设方法还包括:根据混合样气量、分区巡测样气量计算确定取样分配单元接口至混测分析仪、巡测分析仪之间的管路长度,保证进入混测分析仪、巡测分析仪为同一时刻下烟道样气,保证“分区巡测”与“均匀混合”两种取样测量的同步性。
PCT/CN2020/126457 2019-12-23 2020-11-04 一种气体测量系统的布设方法 WO2021129176A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911338808.XA CN110967452B (zh) 2019-12-23 2019-12-23 一种气体测量系统的布设方法
CN201911338808.X 2019-12-23

Publications (1)

Publication Number Publication Date
WO2021129176A1 true WO2021129176A1 (zh) 2021-07-01

Family

ID=70035808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/126457 WO2021129176A1 (zh) 2019-12-23 2020-11-04 一种气体测量系统的布设方法

Country Status (2)

Country Link
CN (1) CN110967452B (zh)
WO (1) WO2021129176A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110967452B (zh) * 2019-12-23 2021-03-12 北京国电龙源环保工程有限公司 一种气体测量系统的布设方法
CN112058067A (zh) * 2020-09-07 2020-12-11 天津维尔佰德科技有限公司 循环流化床锅炉精准喷氨控制方法、系统及采样装置
CN113409178B (zh) * 2021-07-20 2023-08-15 西安交通大学 污染物浓度的预测方法、装置、电子设备和介质

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090071235A1 (en) * 2007-09-18 2009-03-19 Gross Karl J Gas Sorption Tester For Rapid Screening Of Multiple Samples
CN106345298A (zh) * 2016-10-14 2017-01-25 南京博沃科技发展有限公司 一种scr脱硝装置、其喷氨调节装置及其喷氨调整方法
CN109529614A (zh) * 2018-12-28 2019-03-29 西安西热锅炉环保工程有限公司 一种NOx分区巡测动态喷氨均衡控制系统及方法
CN208969063U (zh) * 2018-07-11 2019-06-11 北京泰时康达科技有限公司 空分装置分析系统
CN109991047A (zh) * 2019-04-28 2019-07-09 北京国电龙源环保工程有限公司 具备均匀混合与分区巡测同步取样的测量系统及检测方法
CN110568129A (zh) * 2019-09-26 2019-12-13 北京国电龙源环保工程有限公司 一种SCR脱硝出口混合及分区烟气NOx浓度检测系统及其方法
CN110967455A (zh) * 2019-12-23 2020-04-07 北京国电龙源环保工程有限公司 一种利用气体测量、控制系统及在脱硝烟气检测中的应用
CN110967452A (zh) * 2019-12-23 2020-04-07 北京国电龙源环保工程有限公司 一种气体测量系统的布设方法
CN111426796A (zh) * 2019-12-23 2020-07-17 北京国电龙源环保工程有限公司 一种利用气体测量系统的检测方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102645514A (zh) * 2012-03-15 2012-08-22 浙江大学 煤粉锅炉水冷壁烟气组分分布矩阵式检测装置及方法
CN105854597B (zh) * 2016-04-14 2018-03-20 国网河南省电力公司电力科学研究院 Scr脱硝装置喷氨格栅智能优化调整系统及方法
CN206057283U (zh) * 2016-08-27 2017-03-29 华电电力科学研究院 一种多点矩阵式烟气在线连续监测装置
CN206132125U (zh) * 2016-10-31 2017-04-26 中国华电科工集团有限公司 一种scr脱硝工艺用烟道全截面氮氧化物在线测量系统
CN107449876B (zh) * 2017-09-19 2023-12-19 国电环境保护研究院 一种还原剂分配调节系统
CN109224854B (zh) * 2018-11-09 2021-12-21 上海明华电力科技有限公司 烟气脱硝网格法轮换取样氨与氮氧化物联合监测装置
CN209387613U (zh) * 2018-11-29 2019-09-13 河北华电石家庄裕华热电有限公司 便携式喷氨调平智能测量分析系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090071235A1 (en) * 2007-09-18 2009-03-19 Gross Karl J Gas Sorption Tester For Rapid Screening Of Multiple Samples
CN106345298A (zh) * 2016-10-14 2017-01-25 南京博沃科技发展有限公司 一种scr脱硝装置、其喷氨调节装置及其喷氨调整方法
CN208969063U (zh) * 2018-07-11 2019-06-11 北京泰时康达科技有限公司 空分装置分析系统
CN109529614A (zh) * 2018-12-28 2019-03-29 西安西热锅炉环保工程有限公司 一种NOx分区巡测动态喷氨均衡控制系统及方法
CN109991047A (zh) * 2019-04-28 2019-07-09 北京国电龙源环保工程有限公司 具备均匀混合与分区巡测同步取样的测量系统及检测方法
CN110568129A (zh) * 2019-09-26 2019-12-13 北京国电龙源环保工程有限公司 一种SCR脱硝出口混合及分区烟气NOx浓度检测系统及其方法
CN110967455A (zh) * 2019-12-23 2020-04-07 北京国电龙源环保工程有限公司 一种利用气体测量、控制系统及在脱硝烟气检测中的应用
CN110967452A (zh) * 2019-12-23 2020-04-07 北京国电龙源环保工程有限公司 一种气体测量系统的布设方法
CN111426796A (zh) * 2019-12-23 2020-07-17 北京国电龙源环保工程有限公司 一种利用气体测量系统的检测方法

Also Published As

Publication number Publication date
CN110967452B (zh) 2021-03-12
CN110967452A (zh) 2020-04-07

Similar Documents

Publication Publication Date Title
WO2021129176A1 (zh) 一种气体测量系统的布设方法
WO2021129174A1 (zh) 一种利用气体测量、控制系统及在脱硝烟气检测中的应用
WO2021129175A1 (zh) 一种利用气体测量系统的检测方法
CN106345298B (zh) 一种scr脱硝装置、其喷氨调节装置及其喷氨调整方法
CN102853447B (zh) 煤粉管道风粉在线调平方法
CN105597538B (zh) 一种基于时差匹配的脱硝还原剂加入控制方法及其控制装置
CN105597537B (zh) 基于预测控制技术的脱硝控制方法
CN110568129B (zh) 一种SCR脱硝出口混合及分区烟气NOx浓度检测系统及其方法
CN106984191A (zh) 一种用于scr烟气脱硝的还原剂氨高效混合系统及其工作方法
CN102032590A (zh) 基于精确测量系统的锅炉燃烧优化控制系统和优化控制方法
CN109603525B (zh) 一种基于不均匀度判断的脱硝分区喷氨控制方法
CN108344604A (zh) 一种scr反应室nox浓度在线巡回检测装置及控制方法
CN209387613U (zh) 便携式喷氨调平智能测量分析系统
CN111359432B (zh) 一种基于NOx质量流量差分布的可实现灵活分区的脱硝喷氨系统及方法
CN108398301A (zh) 一种快速检测烟气中氮氧化物浓度及其空间分布的方法及装置
CN106247396A (zh) 一种燃烧器优化燃烧的控制系统
CN110038428A (zh) Scr喷氨系统及脱硝系统
CN109520790A (zh) 一种脱硝装置出口烟气网格法混合采样装置的安装结构
CN207913518U (zh) 全负荷自适应调平的精准喷氨系统
CN205730889U (zh) 一种脱硝系统和一种脱硝系统的喷氨装置
CN113578007A (zh) 一种基于分区喷氨的燃煤烟气scr脱硝调控系统及方法
CN208205047U (zh) 适于烟气余热回收的前馈神经网络控制系统的硬件架构
CN210690541U (zh) 一种SCR脱硝出口混合及分区烟气NOx浓度检测系统
CN211955407U (zh) 一种分区精准监测燃煤烟气氮氧化物和氨浓度脱硝系统
CN207991892U (zh) 燃煤电厂脱硝出口NOx网格法取样装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20907384

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20907384

Country of ref document: EP

Kind code of ref document: A1