WO2021129175A1 - 一种利用气体测量系统的检测方法 - Google Patents

一种利用气体测量系统的检测方法 Download PDF

Info

Publication number
WO2021129175A1
WO2021129175A1 PCT/CN2020/126441 CN2020126441W WO2021129175A1 WO 2021129175 A1 WO2021129175 A1 WO 2021129175A1 CN 2020126441 W CN2020126441 W CN 2020126441W WO 2021129175 A1 WO2021129175 A1 WO 2021129175A1
Authority
WO
WIPO (PCT)
Prior art keywords
sampling
partition
patrol
sample gas
analyzer
Prior art date
Application number
PCT/CN2020/126441
Other languages
English (en)
French (fr)
Inventor
唐坚
陈鸥
罗志刚
刘国栋
金鑫
沈鹏
徐浩
张浩亮
Original Assignee
北京国电龙源环保工程有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京国电龙源环保工程有限公司 filed Critical 北京国电龙源环保工程有限公司
Publication of WO2021129175A1 publication Critical patent/WO2021129175A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0006Calibrating gas analysers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0011Sample conditioning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0011Sample conditioning
    • G01N33/0018Sample conditioning by diluting a gas

Definitions

  • the invention relates to the technical field of denitration matrix sampling and precise ammonia injection, and particularly relates to a detection method using a gas measurement system.
  • the purpose of the present invention is to provide a detection method using a gas measurement system, which can overcome the shortcomings of the prior art.
  • the present invention provides a detection method using a gas measurement system, which includes the following steps:
  • s1 Deploy a sampling measurement system, where the deployment of the sampling measurement system includes the following steps:
  • a multi-rod dilution probe with a fast bypass device is arranged in each zone of the cross section of the gas channel outlet to form a matrix sampling;
  • s12 Set up a backflush calibration valve group; connect the dilution sampling probe, backflush calibration tee, backflush solenoid valve and calibration solenoid valve through the sampling pipeline to form a probe backflush and calibration gas transmission path; when the probe is backflushed, The calibration solenoid valve is closed and the blowback solenoid valve is opened; when calibration, the calibration solenoid valve is opened and the blowback solenoid valve is closed;
  • s13 Lay out the sample gas transmission pipeline from the partition sampling probe to the interface of the sampling distribution unit;
  • s15 Adjust the length of the pipelines to the mixed measurement analyzer and the patrol analyzer respectively, and adjust the specific parameters such as the mixed sample gas flow rate and the patrol sample gas flow rate to ensure the synchronization of the partitioned patrol measurement and the mixed measurement;
  • s3 The controller starts the uniform mixing sampling mode
  • s4 The controller starts the partition inspection mode
  • s5 Test the synchronization of the partition inspection and uniform mixing sampling measurement, and put it into use after passing the test.
  • the controller starts the uniform mixing sampling and zone survey mode steps as follows: close all zone backflush solenoid valves and calibrate solenoid valves, and send the sample gas to the sampling distribution unit at a flow rate of 2L/min;
  • the three-way group of sampling distribution unit distributes the sample gas of each zone into two channels, one is connected to the mixing device, the other is connected to the zone survey sampling group; adjust the flowmeter before the mixing device to ensure that the flow rate of each zone is constant at 1L/min and enters evenly Mixing device, after mixing, the sample gas is continuously sent to the mixed measurement analyzer to achieve "uniform mixing"; adjust the flowmeters of each district before the district patrol sampling group to ensure that the flow rate of each district is constant at 1L/min, and access the district patrol sampling switch
  • the valve group is not patrolled in the partition, the partition sample gas is discharged to the waste gas collection device through the bypass.
  • the sample gas is sent to the patrol analyzer through the valve group switch to realize the "area patrol".
  • step s3 the numerical conversion method after uniform mixing is as follows:
  • D i is the dilution ratio of partition i
  • n is the number of partitions
  • D average is the average dilution ratio of multiple partitions
  • P is the instrument value mixing uniformly mixed sample gas analyzer is fixed at 100: 1 dilution ratio of the measured value display.
  • step s4 the working procedure of the zone survey mode and the conversion method of zone survey values are as follows:
  • P i is the converted value of the partition of the partition i
  • D i is the dilution ratio of the partition i.
  • the uniform mixing mode specifically includes the following steps:
  • s31 Start the program, enter the uniform mixing mode, and set the working status label K of the uniform mixing mode to 1;
  • s34 Close all calibration solenoid valves, and close all three-way solenoid valves for patrol inspection in all zones;
  • s36 Delay waiting for T1 time
  • s39 Delay and wait for T2 time. When T2 time is up, skip to step s34.
  • the homogeneous mixing mode further includes the following steps: setting the local manual button command and the remote control center to stop the homogeneous mixing mode working program command; the stop command trigger will stop the homogeneous mixing analyzer and turn off all Backflush solenoid valve, calibration solenoid valve, reset time parameter T1, reset time parameter T2, set backflush label M to 0, and set the uniform mixing mode working status label K to 0.
  • the zone survey mode specifically includes the following steps:
  • Manual button or remote control center sends the command to start the zone survey mode to start the zone survey analyzer
  • s44 Delay and wait for T3 time, when T3 time is up, go to step s45;
  • s48 Determine whether the F value is greater than the number of partitions, if the F value is greater than the number of partitions, go to step s49, if the F value is not greater than the number of partitions, then skip to step s43;
  • s410 Judge whether to stop the patrol test, if it is determined to stop the patrol test, go to step s414, if it is judged not to stop the patrol test, then skip to step s42;
  • the intelligent zone survey mode specifically further includes the following steps: setting a manual button command and a remote control center stop zone survey mode working program instruction; the stop command trigger will stop the zone survey analyzer , Close all the zone survey solenoid valves (the sample gas is discharged from the front three-way valve), reset the T3 time parameter, set the zone number F to 1, and at the same time set the zone survey mode working status label to 0.
  • the detection method using a gas measurement system of the present invention has the following advantages:
  • the gas measurement and detection method provided by the present invention realizes the "uniform mixing sampling” technology, which is used in the detection of denitration flue gas, so that the deviation of NO X data between the denitration outlet and the total outlet is reduced from +15mg/Nm 3 to ⁇ 5mg/Nm Within 3 , the data is more representative than the single-point measurement of the individual patrol technology.
  • the gas measurement and detection method provided by the present invention realizes the "uniform mixing sampling” technology, which uses the mixed measured NO X value at the denitration outlet as the target value for total amount control, and is the same as the separate inspection technology using the total outlet NO X value adjustment spray Compared with the ammonia control strategy, the control response time is 3 minutes earlier, 9:59:32 denitration outlet mixed NO X measurement peak, 10:02:29 total exhaust NO X measurement peak.
  • the gas measurement and detection method provided by the present invention realizes "zoned survey and uniformly mixed synchronous sampling measurement", and the mixed measurement value is used as the "synchronous reference value" to evaluate the deviation of each zone's survey value in real time, and is used for zone optimization control, the same as the individual
  • the patrol measurement technology after patrolling all the districts, calculates the average value of the section according to the value of each district, and evaluates the adjustment of the deviation of the patrol measurement value of each district. Compared with the adjustment, it can grasp the NO X concentration distribution characteristics of the denitrification outlet in time and the district adjustment efficiency is higher. The regulation effect is better. Taking 40mg/Nm 3 as the emission benchmark value, the variability of the zone deviation can be well controlled within 20%.
  • the gas measurement and detection method provided by the present invention realizes "zoned survey and uniformly mixed synchronous sampling measurement", and the zoned mixed measurement value is used as the "synchronized reference value" to evaluate the deviation of each zone's survey value in real time, which is used for zone optimization control, and the zone deviation
  • the unequal rate can be controlled within 20%. Compared with only the mixed measurement technology, the problem of excessive local ammonia injection is avoided, and the harm of ammonia escape is reduced.
  • the real-time ammonia injection rate is about lower than the original single-point measurement (no zone inspection, no mixed measurement) technology. 17.3%, which is about 12.2% lower than the ammonia consumption of only homogeneous mixing technology.
  • the gas measurement and detection method provided by the present invention realizes that the sample gas of each subarea reaches the interface of the sampling distribution unit continuously and sequentially through the sampling probe, which greatly shortens the sample gas replacement and sample gas transmission time of the subarea sampling tube, and improves the inspection Measurement efficiency, single-zone inspection cycle ⁇ 40 seconds.
  • Fig. 1 is a flow chart of a detection method according to an embodiment of the present invention
  • Figure 2 is a flow chart of the working procedure of the homogeneous mixing sampling mode
  • Figure 3 is a flow chart of the working procedure of the partition survey sampling mode
  • Figure 4 is a comparison chart of ammonia consumption reduction of various sampling and measurement techniques.
  • the measurement system of the present invention includes: sampling probe (including backflush calibration valve group, sampling pipeline, etc.), sampling distribution unit (distribution interface, mixing device, partition inspection group), analysis unit (mixed measurement analyzer, inspection analyzer) ) And the controller.
  • the sampling probes are respectively set in each section of the gas channel outlet section, and the sample gas of each section reaches the interface of the sampling distribution unit through the sampling probe in a continuous equal amount and at the same time; the sampling distribution unit distributes the sample gas of each section into two channels, and accesses one channel.
  • the partition inspection sampling group is connected to the mixing device all the way; the mixed sample gas is fully mixed by the mixing device and then continuously enters the mixed measurement analyzer, and each partition sample gas enters the inspection analyzer in order according to the inspection rule by the inspection sampling group, and passes Adjust specific parameters such as pipeline length, mixed sample gas flow, and patrol sample gas flow to ensure the synchronization of zone patrol and mixed measurement;
  • the control center includes a controller and a big data-artificial intelligence control module, including sampling probes and sampling The distribution unit, analysis unit, etc. control the access controller.
  • Fig. 1 is a flowchart of a detection method according to an embodiment of the present invention. As shown in the figure, the detection method of the present invention includes the following steps:
  • s1 Deploy a sampling measurement system, where the deployment of the sampling measurement system includes the following steps:
  • a multi-rod dilution probe with a fast bypass device is arranged in each zone of the cross section of the gas channel outlet to form a matrix sampling;
  • s12 Set up a backflush calibration valve group; connect the dilution sampling probe, backflush calibration tee, backflush solenoid valve and calibration solenoid valve through the sampling pipeline to form a probe backflush and calibration gas transmission path; when the probe is backflushed, The calibration solenoid valve is closed and the blowback solenoid valve is opened; when calibration, the calibration solenoid valve is opened and the blowback solenoid valve is closed;
  • s13 Lay out the sample gas transmission pipeline from the partition sampling probe to the interface of the sampling distribution unit;
  • s15 Adjust the length of the pipelines to the mixed measurement analyzer and the patrol analyzer respectively, and adjust the specific parameters such as the mixed sample gas flow rate and the patrol sample gas flow rate to ensure the synchronization of the partitioned patrol measurement and the mixed measurement;
  • s3 The controller starts the uniform mixing sampling mode
  • s4 The controller starts the partition inspection mode
  • s5 Test the synchronization of the partition inspection and uniform mixing sampling measurement, and put it into use after being qualified;
  • the controller starts the uniform mixing sampling and zone survey mode steps as follows: close all zone backflush solenoid valves and calibrate solenoid valves, and send the sample gas to the sampling distribution unit at a flow rate of 2L/min;
  • the three-way group of sampling distribution unit distributes the sample gas of each zone into two channels, one is connected to the mixing device, the other is connected to the zone survey sampling group; adjust the flowmeter before the mixing device to ensure that the flow rate of each zone is constant at 1L/min and enters evenly Mixing device, after mixing, the sample gas is continuously sent to the mixed measurement analyzer to achieve "uniform mixing"; adjust the flowmeters of each partition before the partition patrol sampling group to ensure that the flow rate of each partition is constant at 1L/min, and access the partition patrol sampling switch
  • the valve group is not patrolled, the sample gas of the partition is discharged to the residual gas collection device through the front three-way discharge port of the patrol solenoid valve.
  • the sample gas is sent to the patrol analyzer by switching
  • step s3 the numerical conversion method after uniform mixing is as follows:
  • D i is the dilution ratio of partition i
  • n is the number of partitions
  • D average is the average dilution ratio of multiple partitions
  • P is the instrument value mixing uniformly mixed sample gas analyzer is fixed at 100: 1 dilution ratio of the measured value display.
  • step s4 the working procedure of the zone survey mode and the conversion method of zone survey values are as follows:
  • P i is the converted value of the partition of the partition i
  • D i is the dilution ratio of the partition i.
  • the uniform mixing mode specifically includes the following steps:
  • s31 Start the program, enter the uniform mixing mode, and set the working status label K of the uniform mixing mode to 1;
  • s34 Close all calibration solenoid valves, and close all three-way solenoid valves for patrol inspection in all zones;
  • s36 Delay waiting for T1 time
  • s39 Delay and wait for T2 time. When T2 time is up, skip to step s34.
  • the homogeneous mixing mode further includes the following steps: setting the local manual button command and the remote control center to stop the homogeneous mixing mode working program command; the stop command trigger will stop the homogeneous mixing analyzer and turn off all Backflush solenoid valve, calibration solenoid valve, reset time parameter T1, reset time parameter T2, set backflush label M to 0, and set the uniform mixing mode working status label K to 0.
  • the zone survey mode specifically includes the following steps:
  • Manual button or remote control center sends the command to start the zone survey mode to start the zone survey analyzer
  • s44 Delay and wait for T3 time, when T3 time is up, go to step s45;
  • s48 Determine whether the F value is greater than the number of partitions, if the F value is greater than the number of partitions, go to step s49, if the F value is not greater than the number of partitions, then skip to step s43;
  • s410 Judge whether to stop the patrol test, if it is determined to stop the patrol test, go to step s414, if it is judged not to stop the patrol test, then skip to step s42;
  • the intelligent zone survey mode specifically further includes the following steps: setting a manual button command and a remote control center stop zone survey mode working program instruction; the stop command trigger will stop the zone survey analyzer , Close all the zone survey solenoid valves (the sample gas is discharged from the front three-way valve), reset the T3 time parameter, set the zone number F to 1, and at the same time set the zone survey mode working status label to 0.
  • Table 1 The distribution data table of NO X concentration field at the denitrification outlet of "zoned inspection and uniform mixing synchronous sampling measurement"
  • Table 2 The distribution data table of NO X concentration field at the denitrification outlet of "zoned inspection and uniform mixing synchronous sampling measurement"

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

一种利用气体测量系统的检测方法,包括如下步骤:s1:布设取样测量系统,其包括如下步骤:s11:布设带有快速旁路装置的多杆式矩阵稀释探头;s12:布设反吹校准阀组;通过取样管线将稀释取样探头、反吹校准三通、反吹电磁阀和校准电磁阀相连通,形成探头反吹、校准气传输路径;s13:布设从取样探头至取样分配单元接口的等长度样气传输管线;s14:布设取样分配单元内部气路:取样分配单元将各分区样气分配为两路,一路接入混合装置;混合样气经混合装置充分混合后连续进入混测分析仪;一路接入分区巡测取样组,各分区样气经巡测取样组按序进入巡测分析仪;s15:分别调整至混测分析仪、巡测分析仪管路长度,调整混合样气流量和巡测样气流量等具体参数,保证分区巡测与混合测量的同步性;s2:安装控制中心;s3:控制器启动均匀混合取样模式;s4:控制器启动分区巡测模式;s5:测试分区巡测与均匀混合取样测量同步性,合格后投入使用。

Description

一种利用气体测量系统的检测方法 技术领域
本发明是关于脱硝矩阵式取样及精准喷氨技术领域,特别是关于一种利用气体测量系统的检测方法。
背景技术
火电厂实施脱硝环保已10余年,随着脱硝效率的进一步提高,受脱硝系统SCR入口、出口NOX浓度场分布不均匀影响,脱硝SCR出口NOX单点取样方式无法抽取到代表性的样气,不能反应整个断面NOX浓度值,代表性差,同时无法监测到污染物浓度分布不均匀的变化,从而引起脱硝喷氨过量的问题,导致一些电厂因喷氨过量引起脱硝催化剂寿命缩短、空预器阻力升高、电除尘器极线肥大、引/送风机电耗增加、脱硫浆液失效、机组提升负荷困难等一系列问题。
目前亟需能连续监测脱硝SCR出口截面均匀混合烟气,又能同步智能巡测SCR出口分区的取样测量技术,结合喷氨总量优化、分区巡测优化大数据-人工智能控制技术来提高喷氨及时响应性、精准性,以解决电厂最为关心的脱硝SCR出口NOX浓度场不均匀、单点测量代表性差、控制调节滞后、自动投入品质差等问题。
公开于该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不应当被视为承认或以任何形式暗示该信息构成已为本领域一般技术人员所公知的现有技术。
发明内容
本发明的目的在于提供一种利用气体测量系统的检测方法,其能够克服现有技术的缺点。
为实现上述目的,本发明提供了一种利用气体测量系统的检测方法,包括如下步骤:
s1:布设取样测量系统,其中,所述布设取样测量系统包括如下步骤:
s11:在气体通道出口的截面每个分区布设带有快速旁路装置的多杆式稀释探头,形成矩阵式取样;
s12:布设反吹校准阀组;通过取样管线将稀释取样探头、反吹校准三通、反吹电磁阀和校准电磁阀相连通,形成探头反吹、校准气传输路径;当反吹探头时,所述校准电磁阀关闭,所述反吹电磁阀打开;当校准时,所述校准电磁阀打开,所述反吹电磁阀关闭;
s13:布设从分区取样探头至取样分配单元接口的样气传输管线;
s14:布设取样分配单元内部混合测量与分区巡测样气分配传输气路:
s15:分别调整至混测分析仪、巡测分析仪管路长度,调整混合样气流量和巡测样气流量等具体参数,保证分区巡测与混合测量的同步性;
s2:安装控制器;
s3:控制器启动均匀混合取样模式;
s4:控制器启动分区巡测模式;
s5:测试分区巡测与均匀混合取样测量同步性,合格后投入使用。
在一优选实施方式中,控制器启动均匀混合取样、分区巡测模式步骤如下:关闭所有分区反吹电磁阀、校准电磁阀,以2L/min的流量将样气送至取样分配单元;通过调整取样分配单元三通组将各分区样气分配为两路,一路接入混合装置,一路接入分区巡测取样组;调节混测装置前流量计,保证各分区流量恒定为1L/min进入均匀混合装置,混合后样气连续送入混测分析仪, 实现“均匀混合”;调节分区巡测取样组前各分区流量计,保证各分区流量恒定为1L/min,接入分区巡测取样切换阀组,分区未巡测时,分区样气经通过旁路排放至废气收集装置,分区巡测时,通过阀组切换,将样气送入巡测分析仪,实现“分区巡测”。
在一优选实施方式中,在步骤s3中,均匀混合后数值折算方法如下:
其中,D i为分区i的稀释比,n为分区数量,D 平均为多路分区平均稀释比,
Figure PCTCN2020126441-appb-000001
Figure PCTCN2020126441-appb-000002
P 混合值为均匀混合后数值,P 混合仪表值为均匀混合样气分析仪按固定100:1稀释比显示的测量值。
在一优选实施方式中,在步骤s4中,分区巡测模式的工作程序,分区巡测数值折算方法如下:
Figure PCTCN2020126441-appb-000003
其中,P 分区i为分区i的折算数值,P 分区i仪表值为分区i的样气分析仪按固定100:1稀释比显示的测量值,D i为分区i的稀释比。
在一优选实施方式中,在步骤s3中,均匀混合模式具体包括如下步骤:
s31:启动程序,进入均匀混合模式,均匀混合模式工作状态标签K置1;
s32:启动均匀混合分析仪,其中,设置分区序号参数i=1,反吹标签M=0,校准标签N=0;
s34:关闭所有校准电磁阀,关闭所有分区巡测三通电磁阀;
s35:打开第i分区反吹电磁阀,设置反吹标签M=1,并复位反吹间隔时间T2;
s36:延时等待T1时间;
s26:当经过T1时间之后,复位吹扫持续时间参数T1,关闭第i分区反吹电磁阀,并设置i=i+1,延时120秒;
s37:判断吹扫分区i是否大于分区数量n,如果判断吹扫分区i不大于分区数量n,则跳至步骤s34,如果判断吹扫分区i大于分区数量n,则设置i=1,并跳至步骤s38;
s38:设置反吹标签M=0;以及
s39:延时等待T2时间,T2时间到,则跳至步骤s34。
在一优选实施方式中,在步骤s3中,均匀混合模式还包括如下步骤:设置就地手动按钮指令和远程控制中心停止均匀混合模式工作程序指令;停止指令触发将停止均匀混合分析仪、关闭所有反吹电磁阀、校准电磁阀,复位时间参数T1,复位时间参数T2,将反吹标签M置0,同时将均匀混合模式工作状态标签K置0。
在一优选实施方式中,在步骤s4中,分区巡测模式具体包括如下步骤:
s41:手动按钮或远程控制中心发送启动分区巡测模式指令,启动分区巡测分析仪;
s42:将分区巡测模式工作状态标签置1,设置分区序号F=1;
s43:打开序号F分区巡测电磁阀;
s44:延时等待T3时间,T3时间到,则执行步骤s45;
s45:关闭序号F分区巡测电磁阀;
s46:复位T3时间参数,
s47:序号分区F=F+1;
s48:判断F值是否大于分区数量,如果F值大于分区数量,则执行步骤s49,如果F值不大于分区数量,则跳至步骤s43;
s49:设置F=1,并跳至步骤s410;
s410:判断是否停止巡测,如果判断停止巡测,则执行步骤s414,如果判断不停止巡测,则跳至步骤s42;
s411:分区巡测程序结束,设置F=1。
在一优选实施方式中,在步骤s4中,智能分区巡测模式具体还包括如下步骤:设置手动按钮指令和远程控制中心停止分区巡测模式工作程序指令;停止指令触发将停止分区巡测分析仪,关闭所有分区巡测电磁阀(样气从阀前三通排放),复位T3时间参数,将分区序号F置1,同时将分区巡测模式工作状态标签置0。
与现有技术相比,本发明的利用一种利用气体测量系统的检测方法具有如下优点:
1、本发明提供的气体测量检测方法,实现“均匀混合取样”技术,用于脱硝烟气检测中,使脱硝出口与总排口NO X数据偏差由+15mg/Nm 3缩小到±5mg/Nm 3以内,同单独巡测技术单点测量相比,数据代表性更强。
2、本发明提供的气体测量检测方法,实现“均匀混合取样”技术,将脱硝出口混合测量NO X值作为目标值用于总量控制,同单独巡测技术用总排口NO X值调整喷氨的控制策略相比,控制响应时间提前了3分钟,9:59:32脱硝出口混合NO X测量峰值,10:02:29总排口NO X测量峰值。
3、本发明提供的气体测量检测方法,实现“分区巡测与均匀混合同步取样测量”,混合测量值作为“同步基准值”实时评估各分区巡测值偏差,用于分区优化控制,同单独巡测技术,在所有分区巡测后,再根据各分区值计算截面平均值,评估各分区巡测值偏差的调整相比,能及时掌握脱硝出口NO X浓度分布特征,分区调整效率更高,调节效果更好,以40mg/Nm 3为排放基准值,分区偏差不等率可以很好控制在20%以内。
本发明提供的气体测量检测方法,实现“分区巡测与均匀混合同步取样测量”,分区混合测量值作为“同步基准值”实时评估各分区巡测值偏差,用于分区优化控制,将分区偏差不等率可以控制在20%以内,同只有混测技术相比较,避免了局部喷氨过量问题,减少了氨逃逸的危害。
根据在线运行数据,某电厂#1机脱硝采用“分区巡测与均匀混合同步取样测量”技术后,实时喷氨量比原单点测量(无分区巡测、无混测)技术氨耗量降低约17.3%,比仅均匀混合技术氨耗量降低约12.2%。
本发明提供的气体测量检测方法,实现各分区样气经取样探头连续等量、同时序到达取样分配单元接口,极大的缩短了分区取样管的样气置换和样气传输时间,提高了巡测效率,单分区巡测周期≯40秒。
附图说明
图1是根据本发明一实施方式的检测方法流程图;
图2是均匀混合取样模式工作程序流程图;
图3是分区巡测取样模式工作程序流程图;
图4是各种取样测量技术氨耗降低对比图。
具体实施方式
下面结合附图,对本发明的具体实施方式进行详细描述,但应当理解本发明的保护范围并不受具体实施方式的限制。
除非另有其它明确表示,否则在整个说明书和权利要求书中,术语“包括”或其变换如“包含”或“包括有”等等将被理解为包括所陈述的元件或组成部分,而并未排除其它元件或其它组成部分。
本发明的测量系统包括:取样探头(含反吹校准阀组、取样管线等)、取样分配单元(分配接口、混合装置、分区巡测组)、分析单元(混测分析仪、巡测分析仪)以及控制器。
其中,取样探头分别设置在气体通道出口的截面各分区,各分区样气经取样探头连续等量、同时序到达取样分配单元接口;取样分配单元将各分区样气分配为两路,一路接入分区巡测取样组,一路接入混合装置;混合样气经混合装置充分混合后连续进入混测分析仪,各分区样气经巡测取样组按巡测规则按序进入巡测分析仪,通过调整管路长度、混合样气流量、巡测样气流量等具体参数,保证分区巡测与混合测量的同步性;控制中心包含控制器和大数据-人工智能控制模块,其中,取样探头、取样分配单元、分析单元等控制接入控制器。
图1是根据本发明一实施方式的检测方法流程图。如图所示,本发明的检测方法包括如下步骤:
s1:布设取样测量系统,其中,所述布设取样测量系统包括如下步骤:
s11:在气体通道出口的截面每个分区布设带有快速旁路装置的多杆式稀释探头,形成矩阵式取样;
s12:布设反吹校准阀组;通过取样管线将稀释取样探头、反吹校准三通、反吹电磁阀和校准电磁阀相连通,形成探头反吹、校准气传输路径;当反吹探头时,所述校准电磁阀关闭,所述反吹电磁阀打开;当校准时,所述校准电磁阀打开,所述反吹电磁阀关闭;
s13:布设从分区取样探头至取样分配单元接口的样气传输管线;
s14:布设取样分配单元内部混合测量与分区巡测样气分配传输气路:
s15:分别调整至混测分析仪、巡测分析仪管路长度,调整混合样气流量和巡测样气流量等具体参数,保证分区巡测与混合测量的同步性;
s2:安装控制器;
s3:控制器启动均匀混合取样模式;
s4:控制器启动分区巡测模式;
s5:测试分区巡测与均匀混合取样测量同步性,合格后投入使用;
在一优选实施方式中,控制器启动均匀混合取样、分区巡测模式步骤如下:关闭所有分区反吹电磁阀、校准电磁阀,以2L/min的流量将样气送至取样分配单元;通过调整取样分配单元三通组将各分区样气分配为两路,一路接入混合装置,一路接入分区巡测取样组;调节混测装置前流量计,保证各分区流量恒定为1L/min进入均匀混合装置,混合后样气连续送入混测分析仪,实现“均匀混合”;调节分区巡测取样组前各分区流量计,保证各分区流量恒定为1L/min,接入分区巡测取样切换阀组,分区未巡测时,分区样气经通过巡测电磁阀前三通排放口排至余气收集装置,分区巡测时,通过切换电磁阀,将样气送入巡测分析仪,实现“分区巡测”。
在一优选实施方式中,在步骤s3中,均匀混合后数值折算方法如下:
其中,D i为分区i的稀释比,n为分区数量,D 平均为多路分区平均稀释比,
Figure PCTCN2020126441-appb-000004
Figure PCTCN2020126441-appb-000005
P 混合值为均匀混合后数值,P 混合仪表值为均匀混合样气分析仪按固定100:1稀释比显示的测量值。
在一优选实施方式中,在步骤s4中,分区巡测模式的工作程序,分区巡测数值折算方法如下:
Figure PCTCN2020126441-appb-000006
其中,P 分区i为分区i的折算数值,P 分区i仪表值为分区i的样气分析仪按固定100:1稀释比显示的测量值,D i为分区i的稀释比。
在一优选实施方式中,在步骤s3中,均匀混合模式具体包括如下步骤:
s31:启动程序,进入均匀混合模式,均匀混合模式工作状态标签K置1;
s32:启动均匀混合分析仪,其中,设置分区序号参数i=1,反吹标签M=0,校准标签N=0;
s34:关闭所有校准电磁阀,关闭所有分区巡测三通电磁阀;
s35:打开第i分区反吹电磁阀,设置反吹标签M=1,并复位反吹间隔时间T2;
s36:延时等待T1时间;
s26:当经过T1时间之后,复位吹扫持续时间参数T1,关闭第i分区反吹电磁阀,并设置i=i+1,延时120秒;
s37:判断吹扫分区i是否大于分区数量n,如果判断吹扫分区i不大于分区数量n,则跳至步骤s34,如果判断吹扫分区i大于分区数量n,则设置i=1,并跳至步骤s38;
s38:设置反吹标签M=0;以及
s39:延时等待T2时间,T2时间到,则跳至步骤s34。
在一优选实施方式中,在步骤s3中,均匀混合模式还包括如下步骤:设置就地手动按钮指令和远程控制中心停止均匀混合模式工作程序指令;停止指令触发将停止均匀混合分析仪、关闭所有反吹电磁阀、校准电磁阀,复位时间参数T1,复位时间参数T2,将反吹标签M置0,同时将均匀混合模式工作状态标签K置0。
在一优选实施方式中,在步骤s4中,分区巡测模式具体包括如下步骤:
s41:手动按钮或远程控制中心发送启动分区巡测模式指令,启动分区巡测分析仪;
s42:将分区巡测模式工作状态标签置1,设置分区序号F=1;
s43:打开序号F分区巡测电磁阀;
s44:延时等待T3时间,T3时间到,则执行步骤s45;
s45:关闭序号F分区巡测电磁阀;
s46:复位T3时间参数,
s47:序号分区F=F+1;
s48:判断F值是否大于分区数量,如果F值大于分区数量,则执行步骤s49,如果F值不大于分区数量,则跳至步骤s43;
s49:设置F=1,并跳至步骤s410;
s410:判断是否停止巡测,如果判断停止巡测,则执行步骤s414,如果判断不停止巡测,则跳至步骤s42;
s411:分区巡测程序结束,设置F=1。
在一优选实施方式中,在步骤s4中,智能分区巡测模式具体还包括如下步骤:设置手动按钮指令和远程控制中心停止分区巡测模式工作程序指令;停止指令触发将停止分区巡测分析仪,关闭所有分区巡测电磁阀(样气从阀前三通排放),复位T3时间参数,将分区序号F置1,同时将分区巡测模式工作状态标签置0。
Figure PCTCN2020126441-appb-000007
Figure PCTCN2020126441-appb-000008
表1:“分区巡测与均匀混合同步取样测量”脱硝出口NO X浓度场分布数据表
Figure PCTCN2020126441-appb-000009
表2:“分区巡测与均匀混合同步取样测量”脱硝出口NO X浓度场分布数据表

Claims (12)

  1. 一种利用气体测量系统的检测方法,其特征在于:所述利用气体测量系统的检测方法包括如下步骤:
    s1:布设取样测量系统,其中,所述布设取样测量系统包括如下步骤:
    s11:在气体通道出口的截面每个分区布设带有快速旁路装置的多杆式稀释探头,形成矩阵式取样;
    s12:布设反吹校准阀组;通过取样管线将稀释取样探头、反吹校准三通、反吹电磁阀和校准电磁阀相连通,形成探头反吹、校准气传输路径;当反吹探头时,所述校准电磁阀关闭,所述反吹电磁阀打开;当校准时,所述校准电磁阀打开,所述反吹电磁阀关闭;
    s13:布设从分区取样探头至取样分配单元接口的样气传输管线;
    s14:布设取样分配单元内部混合测量与分区巡测样气分配传输气路:
    s15:分别调整至混测分析仪、巡测分析仪管路长度,调整混合样气流量和巡测样气流量等具体参数,保证分区巡测与混合测量的同步性;
    s2:安装控制器;
    s3:控制器启动均匀混合取样模式;
    s4:控制器启动分区巡测模式;
    s5:测试分区巡测与均匀混合取样测量同步性,合格后投入使用。
  2. 如权利要求1所述的利用一种利用气体测量系统的检测方法,其特征在于:所述取样探头为带有快速旁路装置的多杆式稀释探头,使样气从通道截面至探头端的传输时间由120秒缩短至15秒。
  3. 如权利要求1所述的利用气体测量系统的检测方法,其特征在于:各分区取样探头至取样分配单元接口处的样气传输管线长度一致,流经各分区 取样探头的样气量一致,保证各分区样气能连续、等量、同时序的传输至配单元接口。
  4. 如权利要求1所述的利用气体测量系统的检测方法,其特征在于:取样分配单元通过三通组将各分区样气分配为两路,一路接入混合装置;混合样气经混合装置充分混合后连续进入混测分析仪;一路接入分区巡测取样组,各分区样气经巡测取样组按序进入巡测分析仪。
  5. 如权利要求1所述的利用气体测量系统的检测方法,其特征在于:根据混合样气量、分区巡测样气量计算确定取样分配单元接口至混测分析仪、巡测分析仪之间的管路长度,保证进入混测分析仪、巡测分析仪为同一时刻下烟道样气,保证“分区巡测”与“均匀混合”两种取样测量的同步性。
  6. 如权利要求1所述的利用气体测量系统的检测方法,其特征在于:控制器可同步启动均匀混合和分区巡测两种取样模式。
  7. 如权利要求1所述的利用气体测量系统的检测方法,其特征在于:在步骤s3中,均匀混合后数值折算方法如下:
    Figure PCTCN2020126441-appb-100001
    Figure PCTCN2020126441-appb-100002
    其中,D i为分区i的稀释比,n为分区数量,D 平均为多路分区平均稀释比,P 混合值为均匀混合后数值,P 混合仪表值为均匀混合样气分析仪按固定100:1稀释比显示的测量值。
  8. 如权利要求1所述的利用气体测量系统的检测方法,其特征在于:在步骤s4中,分区巡测模式的工作程序,分区巡测数值折算方法如下:
    Figure PCTCN2020126441-appb-100003
    其中,P 分区i为分区i的折算数值,P 分区i仪表值为分区i的样气分析仪按固定100:1稀释比显示的测量值,D i为分区i的稀释比。
  9. 如权利要求1所述的利用气体测量系统的检测方法,其特征在于:在步骤s3中,均匀混合模式具体包括如下步骤:
    s31:启动程序,进入均匀混合模式,均匀混合模式工作状态标签K置1;
    s32:启动均匀混合分析仪,其中,设置分区序号参数i=1,反吹标签M=0,校准标签N=0;
    s34:关闭所有校准电磁阀,关闭所有分区巡测三通电磁阀;
    s35:打开第i分区反吹电磁阀,设置反吹标签M=1,并复位反吹间隔时间T2;
    s36:延时等待T1时间;
    s26:当经过T1时间之后,复位吹扫持续时间参数T1,关闭第i分区反吹电磁阀,并设置i=i+1,延时120秒;
    s37:判断吹扫分区i是否大于分区数量n,如果判断吹扫分区i不大于分区数量n,则跳至步骤s34,如果判断吹扫分区i大于分区数量n,则设置i=1,并跳至步骤s38;
    s38:设置反吹标签M=0;以及
    s39:延时等待T2时间,T2时间到,则跳至步骤s34。
  10. 如权利要求9所述的利用气体测量系统的检测方法,其特征在于:在步骤s3中,均匀混合模式还包括如下步骤:
    设置就地手动按钮指令和远程控制中心停止均匀混合模式工作程序指令;
    停止指令触发将停止均匀混合分析仪、关闭所有反吹电磁阀、校准电磁 阀,复位时间参数T1,复位时间参数T2,将反吹标签M置0,同时将均匀混合模式工作状态标签K置0。
  11. 如权利要求1所述的利用气体测量系统的检测方法,其特征在于:在步骤s4中,分区巡测模式具体包括如下步骤:
    s41:手动按钮或远程控制中心发送启动分区巡测模式指令,启动分区巡测分析仪;
    s42:将分区巡测模式工作状态标签置1,设置分区序号F=1;
    s43:打开序号F分区巡测电磁阀;
    s44:延时等待T3时间,T3时间到,则执行步骤s45;
    s45:关闭序号F分区巡测电磁阀;
    s46:复位T3时间参数,
    s47:序号分区F=F+1;
    s48:判断F值是否大于分区数量,如果F值大于分区数量,则执行步骤s49,如果F值不大于分区数量,则跳至步骤s43;
    s49:设置F=1,并跳至步骤s410;
    s410:判断是否停止巡测,如果判断停止巡测,则执行步骤s414,如果判断不停止巡测,则跳至步骤s42;
    s411:分区巡测程序结束,设置F=1。
  12. 如权利要求11所述的利用气体测量系统的检测方法,其特征在于:在步骤s4中,分区巡测模式具体还包括如下步骤:
    设置手动按钮指令和远程控制中心停止分区巡测模式工作程序指令;停止指令触发将停止分区巡测分析仪,关闭所有分区巡测电磁阀(样气从阀前三通排放),复位T3时间参数,将分区序号F置1,同时将分区巡测模式工作状态标签置0。
PCT/CN2020/126441 2019-12-23 2020-11-04 一种利用气体测量系统的检测方法 WO2021129175A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911344448.4 2019-12-23
CN201911344448.4A CN111426796B (zh) 2019-12-23 2019-12-23 一种利用气体测量系统的检测方法

Publications (1)

Publication Number Publication Date
WO2021129175A1 true WO2021129175A1 (zh) 2021-07-01

Family

ID=71546926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/126441 WO2021129175A1 (zh) 2019-12-23 2020-11-04 一种利用气体测量系统的检测方法

Country Status (2)

Country Link
CN (1) CN111426796B (zh)
WO (1) WO2021129175A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI797747B (zh) * 2021-09-10 2023-04-01 研能科技股份有限公司 微型氣體偵測系統

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111426796B (zh) * 2019-12-23 2021-06-15 国能龙源环保有限公司 一种利用气体测量系统的检测方法
CN110967452B (zh) * 2019-12-23 2021-03-12 北京国电龙源环保工程有限公司 一种气体测量系统的布设方法
CN113790893B (zh) * 2021-07-19 2023-10-20 江铃汽车股份有限公司 排放设备快速校核验证系统及校核验证方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013231638A (ja) * 2012-04-27 2013-11-14 Mitsubishi Heavy Ind Ltd 濃度測定装置及び脱硝装置
JP2013245951A (ja) * 2012-05-23 2013-12-09 Mitsubishi Heavy Ind Ltd 濃度測定装置及び脱硝装置
CN107607370A (zh) * 2017-09-22 2018-01-19 华电电力科学研究院 烟道截面矩阵式实时同步在线采样分析装置及其采样方法
CN109407611A (zh) * 2018-12-18 2019-03-01 广东省计量科学研究院(华南国家计量测试中心) 工业过程排放气体成分在线巡回检测智能控制系统及方法
CN109991047A (zh) * 2019-04-28 2019-07-09 北京国电龙源环保工程有限公司 具备均匀混合与分区巡测同步取样的测量系统及检测方法
CN110596322A (zh) * 2019-10-11 2019-12-20 山东微立方信息技术股份有限公司 火电机组脱硝均匀性智能测量系统及方法
CN111426796A (zh) * 2019-12-23 2020-07-17 北京国电龙源环保工程有限公司 一种利用气体测量系统的检测方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105865860B (zh) * 2016-05-31 2019-10-25 邢红涛 用于scr脱硝工艺的烟气检测装置
US11198118B2 (en) * 2017-03-29 2021-12-14 Princeton Biochemicals, Inc. Integrated modular unit containing one or more analyte concentrator-microreactor devices to be coupled to a cartridge-cassette and methods of operation
CN108380043B (zh) * 2018-02-12 2020-08-14 南京博沃科技发展有限公司 一种scr脱硝装置分区喷氨调节控制方法
CN109603525B (zh) * 2018-12-27 2023-11-03 浙江浙能温州发电有限公司 一种基于不均匀度判断的脱硝分区喷氨控制方法
CN209476006U (zh) * 2018-12-28 2019-10-11 西安西热锅炉环保工程有限公司 一种NOx分区巡测动态喷氨均衡控制系统
CN109529614A (zh) * 2018-12-28 2019-03-29 西安西热锅炉环保工程有限公司 一种NOx分区巡测动态喷氨均衡控制系统及方法
CN110568129B (zh) * 2019-09-26 2024-03-12 国能龙源环保有限公司 一种SCR脱硝出口混合及分区烟气NOx浓度检测系统及其方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013231638A (ja) * 2012-04-27 2013-11-14 Mitsubishi Heavy Ind Ltd 濃度測定装置及び脱硝装置
JP2013245951A (ja) * 2012-05-23 2013-12-09 Mitsubishi Heavy Ind Ltd 濃度測定装置及び脱硝装置
CN107607370A (zh) * 2017-09-22 2018-01-19 华电电力科学研究院 烟道截面矩阵式实时同步在线采样分析装置及其采样方法
CN109407611A (zh) * 2018-12-18 2019-03-01 广东省计量科学研究院(华南国家计量测试中心) 工业过程排放气体成分在线巡回检测智能控制系统及方法
CN109991047A (zh) * 2019-04-28 2019-07-09 北京国电龙源环保工程有限公司 具备均匀混合与分区巡测同步取样的测量系统及检测方法
CN110596322A (zh) * 2019-10-11 2019-12-20 山东微立方信息技术股份有限公司 火电机组脱硝均匀性智能测量系统及方法
CN111426796A (zh) * 2019-12-23 2020-07-17 北京国电龙源环保工程有限公司 一种利用气体测量系统的检测方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI797747B (zh) * 2021-09-10 2023-04-01 研能科技股份有限公司 微型氣體偵測系統

Also Published As

Publication number Publication date
CN111426796A (zh) 2020-07-17
CN111426796B (zh) 2021-06-15

Similar Documents

Publication Publication Date Title
WO2021129175A1 (zh) 一种利用气体测量系统的检测方法
WO2021129174A1 (zh) 一种利用气体测量、控制系统及在脱硝烟气检测中的应用
WO2021129176A1 (zh) 一种气体测量系统的布设方法
CN106345298B (zh) 一种scr脱硝装置、其喷氨调节装置及其喷氨调整方法
CN103018079B (zh) 一种柴油机排气微粒部分流等动态稀释取样系统及控制方法
CN106247396B (zh) 一种燃烧器优化燃烧的控制系统
US7201071B2 (en) Wide range continuous diluter
CN202274761U (zh) 加热炉氧化烧损优化气氛燃烧自动控制装置
CN209387613U (zh) 便携式喷氨调平智能测量分析系统
CN109445383A (zh) 一种带前置静态混合器的scr分区喷氨优化控制方法
CN208860147U (zh) 使用混合煤气的加热炉的节能控制系统用现场仪表
CN101486917B (zh) 焦炉α值在线检测系统及其焦炉加热制度调节方法
CN109991047A (zh) 具备均匀混合与分区巡测同步取样的测量系统及检测方法
CN111359432B (zh) 一种基于NOx质量流量差分布的可实现灵活分区的脱硝喷氨系统及方法
JP2000028499A (ja) 排気ガス中の混合物質捕集装置
CN205730889U (zh) 一种脱硝系统和一种脱硝系统的喷氨装置
CN109086949B (zh) 基于煤气成份变化的高炉煤气发生量及其热值预测方法
CN103913548A (zh) 一种研究新型干法水泥生产分解炉内选择性非催化还原性能的实验装置和实验方法
CN211374237U (zh) 一种烟气实时分区取样及测量系统
CN109342129A (zh) 一种指导各支管喷氨量调整的烟气取样结构
CN112221323A (zh) 一种基于流速加权的NOx分区测量方法
CN209945814U (zh) 具备均匀混合与分区巡测同步取样的测量系统
CN207991892U (zh) 燃煤电厂脱硝出口NOx网格法取样装置
CN207689445U (zh) 一种scr脱硝催化剂全尺寸性能检测评价装置
US8650973B2 (en) Diluter for measuring engine exhaust emissions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20905123

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20905123

Country of ref document: EP

Kind code of ref document: A1