WO2021129161A1 - 光模块老化测试装置 - Google Patents

光模块老化测试装置 Download PDF

Info

Publication number
WO2021129161A1
WO2021129161A1 PCT/CN2020/125931 CN2020125931W WO2021129161A1 WO 2021129161 A1 WO2021129161 A1 WO 2021129161A1 CN 2020125931 W CN2020125931 W CN 2020125931W WO 2021129161 A1 WO2021129161 A1 WO 2021129161A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
optical module
optical
heating
test device
Prior art date
Application number
PCT/CN2020/125931
Other languages
English (en)
French (fr)
Inventor
秦强
汪红军
陈晨
吉昌
刘红卫
成锐
黄睿
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2021129161A1 publication Critical patent/WO2021129161A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/073Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an out-of-service signal
    • H04B10/0731Testing or characterisation of optical devices, e.g. amplifiers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/44Testing lamps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/073Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an out-of-service signal

Definitions

  • the present disclosure relates to the field of communications, and in particular, to an optical module aging test device.
  • optical module In the communications field, a large number of components such as optical modules and optical fibers are used for signal conversion and transmission. In order to ensure that the delivered products are qualified products, the optical module needs to be subjected to high temperature aging test before leaving the factory.
  • optical module aging test methods include the following steps:
  • the above-mentioned optical module aging test method is a static test method. In a high-temperature environment, the optical module is not powered on, and a business test is also performed. Since the optical module is tested online in real time, many faults cannot be detected, resulting in the outgoing of inferior products.
  • the purpose of the present disclosure is to provide an optical module aging test device and an optical module aging test method using the optical module aging test device.
  • the optical module aging test method is used to perform an aging test on an optical module with higher detection Accuracy.
  • an optical module aging test device which includes a heating module configured to heat the optical module to be tested, and the optical module includes a light emitter.
  • the optical signal can be converted into an electrical signal; a monitoring module configured to determine whether the optical module is qualified according to the parameters of the optical module in the working state.
  • the optical module aging test device When the optical module aging test device is used to perform the aging test on the optical module, the optical module is powered on, and the test signal providing module provides a test signal to the light emitting sub-module, so that the optical module is in a working state. In the working state, the optical transmitting sub-module can convert the test signal into an optical signal, and transmit the optical signal to the optical receiving sub-module through the optical fiber, and then the optical receiving sub-module converts the optical signal into an electrical signal.
  • Fig. 1 is a schematic diagram of a module of an optical module aging test device provided by the present disclosure.
  • the optical module aging test device includes a heating module 210, a test signal providing module 220 and a monitoring module 230.
  • the optical module aging test device is configured to perform an aging test on the optical module 100, where the optical module 100 includes a light emitting sub-module and a light receiving sub-module connected by an optical fiber.
  • the light emitting sub-module can convert the received electrical signal into an optical signal
  • the light receiving sub-module can convert the received optical signal into an electrical signal.
  • the heating module 210 is set to heat the optical module 100 to be tested
  • the test signal providing module 220 is set to provide a test signal to the light emitting sub-module for the light emitting sub-module to convert into an optical signal
  • the light receiving The sub-module can convert the optical signal into an electrical signal
  • the monitoring module 230 is configured to determine whether the optical module 100 is qualified according to the parameters of the optical module in the working state.
  • the optical module 100 When using the optical module aging test device to perform the aging test on the optical module 100, the optical module 100 is powered on, and the test signal providing module 200 provides a test signal to the light emitting sub-module, so that the optical module 100 is in a working state. In the working state, the optical transmitting sub-module can convert the test signal into an optical signal, and transmit the optical signal to the optical receiving sub-module through the optical fiber, and then the optical receiving sub-module converts the optical signal into an electrical signal.
  • the optical module 100 in the working state can reach the aging test environment.
  • the monitoring module 230 can determine whether the optical module 100 is qualified according to various parameters of the optical module 100 in the aging environment.
  • the optical module aging test device provided by the present disclosure has the function of online monitoring and testing, and can determine whether the optical module 100 can work normally in an aging environment, so that it can more accurately determine whether the optical module 100 is a qualified product.
  • the parameters used to determine whether the optical module 100 is qualified include the bit error rate.
  • the monitoring module 230 may determine the bit error rate of the optical module according to the electrical signal, and the monitoring module 230 may also When the bit error rate is greater than a predetermined value, it is determined that the optical module 100 is unqualified.
  • the specific structure of the test signal providing module 220 is not particularly limited.
  • the test signal providing module 220 may be an FPGA, and the test signal providing module 220 may send a code stream (for example, a pseudo-random code (PRBS, Pseudo-Random Binary Sequence)) to the optical emission sub-module of the optical module 100 ).
  • the predetermined value is also not particularly limited.
  • the predetermined value may be one part per million. When the bit error rate of the optical module 100 exceeds one part per million in the aging test environment, it is determined that the optical module 100 is unqualified.
  • the parameters of the optical module in the working state also include the voltage of the optical module, the current in the optical module, the transmit power of the optical module, and the power of the optical module. At least one of the received power.
  • the monitoring module 230 determines that the optical module 100 is unqualified when the voltage of the optical module 100 is not within the qualified range.
  • the monitoring module 230 determines that the optical module 100 is unqualified when the current of the optical module 100 is not within the qualified range.
  • the processing module 230 determines that the optical module 100 is unqualified when the transmit power of the optical module 100 is not within the qualified range.
  • the processing module 230 determines that the optical module 100 is unqualified when the received power of the optical module 100 is no longer within the qualified range.
  • a special display device can be set to display various parameters of the optical module 100 during the aging test. After the operator observes various parameters, he inputs the value processing module 230 for processing by the processing module 230.
  • the optical module aging test device further includes a communication control module 240, which communicates with the heating module 210 and the test signal. Both the providing module 220 and the monitoring module 230 are in communication connection.
  • the monitoring module 230 is configured to provide a heating control signal to the heating module 210 through the communication control module 240 to control the heating module 210 to heat the optical module 100.
  • the monitoring module 230 is configured to provide the test signal to the test signal providing module 240 through the communication control module 240, and obtain the parameters through the communication control module 240.
  • the parameters can be directly obtained through the communication control module 240, so that errors caused by human reading and human operation can be avoided, and the test reception can be more accurate.
  • the present disclosure is not limited to this, and the heating module 210 can also be controlled independently instead of using the monitoring module 230 to control the heating module 210.
  • Using the monitoring module 230 to control the heating module 210 can ensure that the heating module 210 provides a more accurate test temperature and a better aging environment.
  • the specific structure of the heating module 210 is not particularly limited.
  • the heating module 210 includes a heating control unit 211 and a heating element 212.
  • the heating element 212 is arranged on the metal shell of the optical module 100.
  • the monitoring module 230 is configured to control the heating control unit 211 to provide voltage to the heating element according to a preset rule until the heating element 212 Until the first preset temperature is reached.
  • Separating the heating control unit 211 from the heating element 212 can prevent the temperature of the heating element 212 from affecting the heating control unit 211, prevent the heating control unit 211 from overheating, and increase the service life of the heating control unit 211.
  • the heating element 212 is separated from the test signal providing module 220 and the communication control module 240, so that the temperature of the test signal providing module 220 and the communication control module 240 can be prevented from being too high.
  • the heating element 212 is used to heat the optical module 100, and there is no need to install a large heating device such as a high-temperature room.
  • the optical module 100 can be subjected to extreme high temperature testing, and the cost of the optical module aging test device can be reduced. The high temperature failure of other modules in the optical module aging test device is avoided, and the service life of the optical module aging test device is prolonged.
  • the preset rule is not particularly limited.
  • the preset rule may first The temperature of the element 212 is rapidly increased to a certain temperature value (for example, 80% of the first preset temperature), and then the temperature of the heating element 212 is gradually increased to the first preset temperature.
  • the preset rule may include:
  • the absolute value of the voltage provided to the heating element 212 is increased according to the second voltage increase until the temperature of the optical module 100 reaches the first target temperature from the intermediate temperature, wherein the first voltage increase is greater than the second voltage increase.
  • the first target temperature is the target temperature of the aging test.
  • the first target temperature is 85°C
  • the intermediate temperature is 75°C.
  • the preset rule may be:
  • the initial voltage provided to the heating element 212 is +5V, and the initial temperature of the heating element 212 is 25°C.
  • the first voltage can be increased in multiple times (for example, the first voltage increase is 10V, that is, each time the heating element 212 is provided Increase the voltage of the heating element 212 by 10V) Increase the voltage (coarse adjustment) provided to the heating element 212 until the temperature of the heating element 212 reaches 75°C;
  • the voltage supplied to the heating element 212 is increased by a second voltage increase (for example, the second voltage increase is 3V, that is, the voltage supplied to the heating element 212 is increased by 3V each time) (fine adjustment) until the heating element 212 is divided into several times.
  • the temperature increased from 75°C to 85°C.
  • the temperature can be lowered by gradually reducing the voltage provided to the heating element 212 (first coarse adjustment and then fine adjustment).
  • the cooling rules include:
  • the first target temperature is 30°C
  • the intermediate temperature is 40°C.
  • the preset rule may be:
  • the initial voltage provided to the heating element 212 is +50V, and the initial temperature of the heating element 212 is 85°C.
  • the first voltage can be reduced in multiple times (for example, the first voltage is reduced by 10V, that is, each time the heating element is provided to the heating element The voltage of the element 212 is reduced by 10V compared with the previous time) Reduce the voltage provided to the heating element 212 (coarse adjustment) until the temperature of the heating element 212 reaches 40°C;
  • the second voltage reduction is 3V, that is, each time the voltage supplied to the heating element 212 is reduced by 3V compared with the previous time
  • the second voltage reduction is 3V, that is, each time the voltage supplied to the heating element 212 is reduced by 3V compared with the previous time
  • the shape of the heating element 212 is not particularly limited.
  • the heating element 212 has a sheet-like structure, and the sheet-shaped heating element 212 is attached to the optical module. 100 on the metal casing.
  • a heating temperature can be set up and down.
  • the heating module 210 is configured to feed back the temperature of the optical module 100 to the monitoring module 230 through the communication control module 240, and the monitoring module 230 is configured to control the heating module to stop heating when the temperature of the optical module 100 exceeds a second predetermined temperature.
  • the optical module aging test device may include a thermocouple, and the thermocouple is used to detect the temperature of the optical module 100.
  • the specific value of the second predetermined temperature is not particularly limited, and may be determined according to the model and function of the optical module 100.
  • the second predetermined temperature may be 85°C.
  • the optical module aging test device further includes a machine frame 300, the optical module 100, the heating module 210, the test signal providing module 220, and the communication control module 240. Set on the machine frame 300.
  • the monitoring module 230 is arranged outside the machine frame 300, so that the temperature of the heating module 210 will not affect the monitoring module 230.
  • the optical module burn-in test device further includes a cooling module 250, which is configured to control the components of the optical module burn-in test device except for the heating module 210. Partially cool.
  • the specific structure of the cooling module 250 is not particularly limited.
  • the cooling module 250 may be a fan.
  • the conventional mains power can be converted, and power can be supplied to each module of the optical module aging test device.
  • the optical module aging test device may further include a power board 260 for supplying power to a part of the optical module aging test device located on the chassis.
  • the specific structure of the monitoring module 230 is not particularly limited.
  • the monitoring module 230 may be a computer.
  • the monitoring module 230 can also play a role in recording records.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

本公开提供一种光模块老化测试装置,包括:加热模块,所述加热模块设置为对待测试的光模块进行加热,所述光模块包括光发射子模块和光接收子模块;测试信号提供模块,所述测试信号提供模块设置为向所述光发射子模块提供测试信号,以供所述光发射子模块转换为光信号,且所述光接收子模块能够将所述光信号转换为电信号;监控模块,所述监控模块设置为根据处于工作状态的所述光模块的参数判断所述光模块是否合格。所述光模块老化测试装置可以对所述光模块进行在线老化测试,提高了测试结果的精确性。

Description

光模块老化测试装置 技术领域
本公开涉及通讯领域,具体地,涉及一种光模块老化测试装置。
背景技术
在通讯领域,大量使用光模块、光纤等元器件进行信号转换和传递。为了确保出厂产品为合格品,需要在出厂前对光模块进行高温老化测试。
常用的光模块老化测试方法包括以下步骤:
将待测试的光模块放置在温箱或者高温房中;
通过加热器将温箱或者高温房的空气加热至预定温度;
预定时间后,将光模块取出,并冷却至室温;
在室温中对光模块上电,检测光模块是否正常。
上述光模块老化测试方法为静态测试方法,在高温环境中,光模块并未上电,也部进行业务测试。由于在线实时对光模块进行业务测试,因此无法检测出很多故障,导致劣品外发。
因此,如何提高老化测试的检测精度成为本领域亟待解决的技术问题。
发明内容
本公开的目的在于提供一种光模块老化测试装置和一种利用该光模块老化测试装置进行的光模块老化测试方法,利用所述光模块老化测试方法对光模块进行老化测试具有较高的检测精度。
为了实现上述目的,作为本公开的第一个方面,提供一种光模块老化测试装置,包括:加热模块,所述加热模块设置为对待测试的光模块进行加热,所述光模块包括光发射子模块和光接收子模块;测试信号提供模块,所述测试信号提供模块设置为向所述光发射子模块提供测试信号,以供所 述光发射子模块转换为光信号,且所述光接收子模块能够将所述光信号转换为电信号;监控模块,所述监控模块设置为根据处于工作状态的所述光模块的参数判断所述光模块是否合格。
在利用光模块老化测试装置对光模块进行老化测试时,对光模块上电,并通过测试信号提供模块向所述光发射子模块提供测试信号,以使得光模块处于工作状态。在工作状态中,光发射子模块可以将测试信号转换为光信号,并通过光纤将光信号传输至光接收子模块,再由该光接收子模块将光信号转换为电信号。
附图说明
附图是用来提供对本公开的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本公开,但并不构成对本公开的限制。在附图中:
图1是本公开所提供的光模块老化测试装置的模块示意图。
具体实施方式
以下结合附图对本公开的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本公开,并不用于限制本公开。
本公开提供一种光模块老化测试装置,如图1所示,该光模块老化测试装置包括加热模块210、测试信号提供模块220和监控模块230。该光模块老化测试装置设置为对光模块100进行老化测试,其中,光模块100包括通过光纤连接的光发射子模块和光接收子模块。光发射子模块能够将接收到的电信号转换为光信号,光接收子模块能够将接收到的光信号转换为电信号。
加热模块210设置为对待测试的光模块100进行加热,测试信号提供模块220设置为向所述光发射子模块提供测试信号,以供所述光发射子模 块转换为光信号,且所述光接收子模块能够将所述光信号转换为电信号,监控模块230设置为根据处于工作状态的所述光模块的参数判断光模块100是否合格。
在利用光模块老化测试装置对光模块100进行老化测试时,对光模块100上电,并通过测试信号提供模块200向所述光发射子模块提供测试信号,以使得光模块100处于工作状态。在工作状态中,光发射子模块可以将测试信号转换为光信号,并通过光纤将光信号传输至光接收子模块,再由该光接收子模块将光信号转换为电信号。
通过加热模块210对处于工作状态的光模块100进行加热,可以使得工作状态的光模块100达到老化测试环境。监控模块230可以根据老化环境中光模块100的各项参数判断该光模块100是否合格。换言之,本公开所提供的光模块老化测试装置具有在线实施监控测试的功能,能够判断光模块100在老化环境中是否能够正常工作,从而能够更准确地判断光模块100是否为合格产品。
在本公开中,对用于判断光模块100是否合格的参数不做特殊限定。作为一种可选实施方式,处于工作状态的光模块100的参数包括误码率,相应地,监控模块230可以根据所述电信号确定所述光模块的误码率,且监控模块230还可以在所述误码率大于预定值时判定光模块100不合格。
在本公开中,对测试信号提供模块220的具体结构不做特殊的限定。作为一种可选实施方式,测试信号提供模块220可以为FPGA,测试信号提供模块220可以向光模块100的光发射子模块发送码流(例如,伪随机码(PRBS,Pseudo-Random Binary Sequence))。在本公开中,对所述预定值也不做特殊限定。例如,所述预定值可以为百万分之一。当老化测试环境中,光模块100的误码率超过百万分之一,则判定该光模块100不合格。
当然,本公开并该不限于此,处于工作状态的所述光模块的参数还包括所述光模块的电压、所述光模块中的电流、所述光模块的发射功率、所述光模块的接收功率中的至少一者。
监控模块230在光模块100的电压不在合格范围内时,判定光模块100不合格。
监控模块230在光模块100的电流不在合格范围内时,判定光模块100不合格。
处理模块230在光模块100的发射功率不在合格范围内时,判定光模块100不合格。
处理模块230在光模块100的接收功率不再合格范围内时,判定光模块100不合格。
在本公开中,对如何将光模块100的参数提供给处理模块230、以供处理模块230进行判断不做特殊的限定。
例如,可以设置专门的显示装置,显示光模块100进行老化测试时的各项参数。操作人员观察到各项参数后,输入值处理模块230,以供处理模块230进行处理。
当然,本公开并不限于此,为了提高测试效率,可选地,如图1所示,所述光模块老化测试装置还包括通信控制模块240,该通信控制模块240与加热模块210、测试信号提供模块220以及监控模块230均通信连接。
监控模块230设置为通过通信控制模块240向加热模块210提供加热控制信号,以控制加热模块210对光模块100进行加热。
监控模块230设置为通过通信控制模块240向测试信号提供模块240提供所述测试信号,并通过通信控制模块240获取所述参数。
通过通信控制模块240可以直接获取到所述参数,从而可以避免人为读取、人为操作带来的误差,使测试接过更加精确。
当然,本公开并不限于此,也可以独立地对加热模块210进行控制,而非利用监控模块230对加热模块210进行控制。
利用监控模块230对加热模块210进行控制,可以确保加热模块210提供更加精确的测试温度,提供更好的老化环境。
在本公开中,对加热模块210的具体结构不做特殊的限定,为了更好地对光模块100进行加热、确保加热模块210的温度与光模块100的温度更加接近,可选地,加热模块210包括加热控制单元211和加热件212,加热件212设置在光模块100的金属外壳上,监控模块230设置为控制加热控制单元211按照预设规则向所述加热件提供电压,直至加热件212达到第一预设温度为止。
将加热控制单元211与加热件212分离设置,可以避免加热件212的温度对加热控制单元211造成影响、避免加热控制单元211过热,提高了加热控制单元211的使用寿命。同样地,加热件212与测试信号提供模块220、通信控制模块240均分离,从而可以避免测试信号提供模块220、通信控制模块240温度过高。
并且,仅通过加热件212对光模块100进行加热,不需要设置高温房等大型加热装置,既能够对光模块100进行极限高温测试,又可以降低所述光模块老化测试装置的成本,还能够避免光模块老化测试装置中的其他模块高温失效,延长了所述光模块老化测试装置的使用寿命。
在本公开中,对所述预设规则不做特殊的限定,为了在提高升温效率的同时确保达到所述第一预设温度的准确度,可选地,所述预设规则可以先将加热件212的温度快速升温至某一温度值(例如,所述第一预设温度的80%),然后再逐步将加热件212的温度升温至所述第一预设温度。
具体地,所述预设规则可以包括:
按照第一电压增幅增加提供给加热件212的电压的绝对值,直至光模块100的温度达到中间温度;
按照第二电压增幅增加提供给加热件212的电压的绝对值,直至光模块100的温度从所述中间温度达到第一目的温度,其中,所述第一电压增幅大于所述第二电压增幅。
需要指出的是,所述第一目的温度为老化测试的目标温度。
例如,第一目标温度为85℃,中间温度为75℃。
所述预设规则可以为:
初始提供给加热件212的电压为+5V、加热件212的初始温度为25℃,可以分多次以第一电压增幅(例如,第一电压增幅为10V,即每次给提供给加热件212的电压增加10V)增加提供给加热件212的电压(粗调),直至加热件212的温度达到75℃为止;
再分多次以第二电压增幅(例如,第二电压增幅为3V,即每次给提供给加热件212的电压增加3V)增加提供给加热件212的电压(精调),直至加热件212的温度从75℃增加至85℃为止。
在对光模块100进行老化测试时,有时需要光模块100在相对较高的温度运行一段时间后,再在相对较低的温度中运行。在这种情况中,可以通过逐步减小提供给加热件212的电压(先粗调后精调)的方式实现降温。
此时,降温规则包括:
按照第一电压减幅降低提供给所述加热件的电压的绝对值,直至所述光模块的温度达到临界温度;
按照第二电压减幅降低提供给所述加热件的电压的绝对值,直至所述光模块的温度从所述临界温度达到第二目的温度,其中,所述第一电压减幅大于所述第二电压减幅。
例如,第一目标温度为30℃,中间温度为40℃。
所述预设规则可以为:
初始提供给加热件212的电压为+50V、加热件212的初始温度为85℃,可以分多次以第一电压减幅(例如,第一电压减幅为10V,即每次给提供给加热件212的电压比前次降低10V)降低提供给加热件212的电压(粗调),直至加热件212的温度达到40℃为止;
再分多次以第二电压减幅(例如,第二电压减幅为3V,即每次给提供给加热件212的电压比前次减少3V)降低提供给加热件212的电压(精调),直至加热件212的温度从40℃增加至30℃为止。
在本公开中,对加热件212的形状不做特殊的限定,为了增加光模块100的受热面积,可选地,加热件212具有片状结构,该片状的加热件212贴附在光模块100的金属外壳上。
为了防止在对光模块100进行老化测试的过程中、光模块100因温度过高而失效,可以设置一个加热温度上下。相应地,加热模块210设置为通过通信控制模块240向监控模块230反馈光模块100的温度,监控模块230设置为在光模块100的温度超过第二预定温度时,控制所述加热模块停止加热。
为了便于获取光模块100的温度,可选地,所述光模块老化测试装置可以包括热电偶,该热电偶用于检测光模块100的温度。
在本公开中,对所述第二预定温度的具体数值不做特殊限制,可以根据光模块100的型号、功能等来确定。作为一种可选实施方式,所述第二预定温度可以为85℃。
为了提高所述光模块老化测试装置的集成化程度,可选地,所述光模块老化测试装置还包括机框300,光模块100、加热模块210、测试信号提供模块220、通信控制模块240均设置在机框300上。
需要指出的是,为了避免过热损伤,可选地,监控模块230设置在机框300的外部,这样加热模块210的温度不会对监控模块230造成影响。
为了提高光模块老化测试装置的使用寿命,可选地,所述光模块老化测试装置还包括冷却模块250,该冷却模块250设置为对所述光模块老化测试装置中除加热模块210之外的部分进行冷却。
在本公开中,对冷却模块250的具体结构不做特殊的限定,例如,冷却模块250可以为风扇。
在本公开中,对如何为所述光模块老化测试装置进行供电不做特殊的限定。例如,可以对常规市电进行转换,并对光模块老化测试装置的各个模块进行供电。
为了提高所述光模块老化测试装置的使用范围,可选地,所述光模块 老化测试装置还可以包括为所述光模块老化测试装置位于机框上的部分供电的电源板260。
在本公开中,对监控模块230的具体结构不做特殊的限定,作为一种可选实施方式,监控模块230可以为电脑,除了判断光模块100的参数是否在合格范围内之外,监控模块230还可以起到记录记过的作用。
可以理解的是,以上实施方式仅仅是为了说明本公开的原理而采用的示例性实施方式,然而本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离本公开的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本公开的保护范围。

Claims (10)

  1. 一种光模块老化测试装置,包括:
    加热模块,所述加热模块设置为对待测试的光模块进行加热,所述光模块包括光发射子模块和光接收子模块;
    测试信号提供模块,所述测试信号提供模块设置为向所述光发射子模块提供测试信号,以供所述光发射子模块转换为光信号,且所述光接收子模块能够将所述光信号转换为电信号;
    监控模块,所述监控模块设置为根据处于工作状态的所述光模块的参数判断所述光模块是否合格。
  2. 根据权利要求1所述的光模块老化测试装置,其中,处于工作状态的所述光模块的参数包括误码率,所述监控模块设置为根据所述电信号确定所述光模块的误码率,且所述监控模块设置为在所述误码率大于预定值时判定所述光模块不合格。
  3. 根据权利要求1所述的光模块老化测试装置,其中,处于工作状态的所述光模块的参数还包括所述光模块的电压、所述光模块中的电流、所述光模块的发射功率、所述光模块的接收功率中的至少一者。
  4. 根据权利要求1至3中任意一项所述的光模块老化测试装置,其中,所述光模块老化测试装置还包括通信控制模块,所述通信控制模块与所述加热模块、所述测试信号提供模块以及所述监控模块均通信连接;
    所述监控模块设置为通过所述通信控制模块向所述加热模块提供加热控制信号,以控制所述加热模块对所述光模块进行加热;
    所述监控模块设置为通过所述通信控制模块向所述测试信号提供模块提供所述测试信号,并通过所述通信控制模块获取所述光模块的 参数。
  5. 根据权利要求4所述的光模块老化测试装置,其中,所述加热模块包括加热控制单元和加热件,所述加热件设置在所述光模块的金属外壳上,所述监控模块设置为控制所述加热控制单元按照预设规则向所述加热件提供电压,直至所述光模块达到第一预设温度为止。
  6. 根据权利要求5所述的光模块老化测试装置,其中,所述预设规则包括:
    按照第一电压增幅增加提供给所述加热件的电压的绝对值,直至所述光模块的温度达到中间温度;
    按照第二电压增幅增加提供给所述加热件的电压的绝对值,直至所述光模块的温度从所述中间温度达到第一目的温度,其中,所述第一电压增幅大于所述第二电压增幅。
  7. 根据权利要求5所述的光模块老化测试装置,其中,所述加热件具有片状结构,所述加热件贴附在所述光模块的金属外壳上。
  8. 根据权利要求4所述的光模块老化测试装置,其中,所述加热模块设置为通过所述通信控制模块向所述监控模块反馈所述光模块的温度,所述监控模块设置为在所述光模块的温度超过第二预定温度时,控制所述加热模块停止加热。
  9. 根据权利要求4所述的光模块老化测试装置,其中,所述光模块老化测试装置还包括机框,所述光模块、所述加热模块、所述测试信号提供模块、所述通信控制模块设置在所述机框上。
  10. 根据权利要求1至3中任意一项所述的光模块老化测试装置,其中,所述光模块老化测试装置还包括冷却模块,所述冷却模块设置为对所述光模块老化测试装置中除所述加热模块之外的部分进行冷却。
PCT/CN2020/125931 2019-12-26 2020-11-02 光模块老化测试装置 WO2021129161A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911370001.4 2019-12-26
CN201911370001.4A CN113055086A (zh) 2019-12-26 2019-12-26 光模块老化测试装置

Publications (1)

Publication Number Publication Date
WO2021129161A1 true WO2021129161A1 (zh) 2021-07-01

Family

ID=76505633

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/125931 WO2021129161A1 (zh) 2019-12-26 2020-11-02 光模块老化测试装置

Country Status (2)

Country Link
CN (1) CN113055086A (zh)
WO (1) WO2021129161A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114323596A (zh) * 2022-03-04 2022-04-12 武汉普赛斯电子技术有限公司 一种Lens耦合前COB光模块的测试方法及装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114199515A (zh) * 2021-12-09 2022-03-18 中海石油(中国)有限公司 一种井下光纤氢损老化测试方法
CN114301522A (zh) * 2021-12-25 2022-04-08 长飞光纤光缆股份有限公司 一种光模块老化测试方法及系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003107059A1 (en) * 2002-05-20 2003-12-24 Song Miao Laser production and product qualification via accelerated life testing based on statistical modeling
US20080145059A1 (en) * 2006-12-19 2008-06-19 Dolfi David W Method for measuring the high speed behavior of fiber optic transceivers
CN101848120A (zh) * 2010-06-04 2010-09-29 中兴通讯股份有限公司 高温测试方法和装置
US20120212246A1 (en) * 2011-02-23 2012-08-23 Ofer Benjamin Method and apparatus for testing ic
CN103293423A (zh) * 2013-06-20 2013-09-11 四川电力科学研究院 高温环境下光电模块性能测试装置及测试方法
CN105676104A (zh) * 2014-11-18 2016-06-15 上海宏测半导体科技有限公司 一种老化处理装置及方法
CN207398579U (zh) * 2017-09-30 2018-05-22 昂纳信息技术(深圳)有限公司 一种激光器芯片的老化系统
CN109000734A (zh) * 2018-08-18 2018-12-14 成都飞机工业(集团)有限责任公司 实时监测光模块工作状态老化过程的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003107059A1 (en) * 2002-05-20 2003-12-24 Song Miao Laser production and product qualification via accelerated life testing based on statistical modeling
US20080145059A1 (en) * 2006-12-19 2008-06-19 Dolfi David W Method for measuring the high speed behavior of fiber optic transceivers
CN101848120A (zh) * 2010-06-04 2010-09-29 中兴通讯股份有限公司 高温测试方法和装置
US20120212246A1 (en) * 2011-02-23 2012-08-23 Ofer Benjamin Method and apparatus for testing ic
CN103293423A (zh) * 2013-06-20 2013-09-11 四川电力科学研究院 高温环境下光电模块性能测试装置及测试方法
CN105676104A (zh) * 2014-11-18 2016-06-15 上海宏测半导体科技有限公司 一种老化处理装置及方法
CN207398579U (zh) * 2017-09-30 2018-05-22 昂纳信息技术(深圳)有限公司 一种激光器芯片的老化系统
CN109000734A (zh) * 2018-08-18 2018-12-14 成都飞机工业(集团)有限责任公司 实时监测光模块工作状态老化过程的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114323596A (zh) * 2022-03-04 2022-04-12 武汉普赛斯电子技术有限公司 一种Lens耦合前COB光模块的测试方法及装置
CN114323596B (zh) * 2022-03-04 2022-06-17 武汉普赛斯电子技术有限公司 一种Lens耦合前COB光模块的测试方法及装置

Also Published As

Publication number Publication date
CN113055086A (zh) 2021-06-29

Similar Documents

Publication Publication Date Title
WO2021129161A1 (zh) 光模块老化测试装置
US11271404B2 (en) Photovoltaic power optimizer and method and apparatus for controlling same, and photovoltaic power generation system
CN107910742B (zh) 光模块光功率调整方法及装置
US10157115B2 (en) Detection system and method for baseboard management controller
US20140285354A1 (en) Device for indicating faults of server system
US20150042356A1 (en) Test system for testing electrostatic tester and method thereof
JP2011240361A (ja) レーザ加工装置およびレーザ加工装置の異常監視方法
TW201422922A (zh) 風扇轉速表的驗證系統及方法
CN109209962B (zh) 风扇检测芯片、风扇检测方法及风扇检测系统
CN111239637B (zh) 一种服务器电源均流检测装置及方法
CN110554302B (zh) 快速自动检测电路板故障的装置
JP2018194336A (ja) 異常検知装置および異常検知方法
CN108006891A (zh) 空调器故障提示方法及装置
WO2014187017A1 (zh) 过压保护电路以及具有过压保护电路的电子装置
CN116520111A (zh) 一种光伏逆变器的电弧故障检测方法及检测系统
CN105547643A (zh) 光电模块检测方法
CN114512416A (zh) 探针异常识别方法及装置、存储介质和电子设备
CN106370963A (zh) 一种光有源器件的自动老化系统和方法
CN103715604A (zh) Dfb激光器的驱动系统及驱动方法
US20190196461A1 (en) Internet-based semiconductor manufacturing equipment health and diagnostics monitoring
CN114816013A (zh) 一种服务器温度控制的方法、装置、设备及介质
JP2015173519A (ja) 評価装置、評価方法及び、太陽光発電システム
CN114002901A (zh) 一种投影仪高效的散热系统
KR200457049Y1 (ko) 반도체 제조설비의 모니터링 장치
US20140314566A1 (en) Electronic device, and control device and method for controlling fan employed in the electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20904469

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20904469

Country of ref document: EP

Kind code of ref document: A1