WO2021129043A1 - 单桩基础导向装置 - Google Patents

单桩基础导向装置 Download PDF

Info

Publication number
WO2021129043A1
WO2021129043A1 PCT/CN2020/120148 CN2020120148W WO2021129043A1 WO 2021129043 A1 WO2021129043 A1 WO 2021129043A1 CN 2020120148 W CN2020120148 W CN 2020120148W WO 2021129043 A1 WO2021129043 A1 WO 2021129043A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
pile foundation
clamping
guiding device
roller
Prior art date
Application number
PCT/CN2020/120148
Other languages
English (en)
French (fr)
Inventor
方晶
严辉煌
王九华
Original Assignee
江苏金风科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏金风科技有限公司 filed Critical 江苏金风科技有限公司
Priority to US17/757,898 priority Critical patent/US11718970B2/en
Priority to AU2020410629A priority patent/AU2020410629A1/en
Priority to CA3162337A priority patent/CA3162337A1/en
Priority to EP20904997.2A priority patent/EP4083328B1/en
Priority to BR112022012426A priority patent/BR112022012426A2/pt
Publication of WO2021129043A1 publication Critical patent/WO2021129043A1/zh
Priority to ZA2022/07331A priority patent/ZA202207331B/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D13/00Accessories for placing or removing piles or bulkheads, e.g. noise attenuating chambers
    • E02D13/04Guide devices; Guide frames
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/10Deep foundations
    • E02D27/12Pile foundations
    • E02D27/16Foundations formed of separate piles
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/32Foundations for special purposes
    • E02D27/52Submerged foundations, i.e. submerged in open water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • F03D13/22Foundations specially adapted for wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • F03D13/25Arrangements for mounting or supporting wind motors; Masts or towers for wind motors specially adapted for offshore installation
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/32Foundations for special purposes
    • E02D27/42Foundations for poles, masts or chimneys
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/32Foundations for special purposes
    • E02D27/52Submerged foundations, i.e. submerged in open water
    • E02D27/525Submerged foundations, i.e. submerged in open water using elements penetrating the underwater ground
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/727Offshore wind turbines

Definitions

  • the present disclosure relates to the technical field of offshore wind power generation, and more specifically, to a single pile foundation guiding device for offshore wind power generating sets.
  • the single pile foundation has the advantages of simple manufacturing and low equipment cost requirements, as well as superior construction efficiency. Therefore, more than 90% of offshore wind turbines use a single pile foundation.
  • the verticality requirements of the single pile foundation are extremely high, and the maximum height difference of the circumferential plane needs to be less than the set value.
  • the single pile foundation In the process of hammering the single pile foundation to penetrate the seabed, if there is a deviation in hammering, the single pile foundation is likely to be scrapped. From the later repair plan to the implementation or reconnection of the transition flange to correct the vertical
  • the cost of offshore construction vessels and cranes will be huge losses. Therefore, verticality control is the key to single pile foundation construction.
  • Some single-pile foundation guiding devices in the prior art use multiple oil cylinder structures to clamp the single-pile foundation at multiple different positions, which makes it difficult to perform synchronization operations and has low vertical synchronization control accuracy.
  • the extension length of each oil cylinder needs to be measured every time.
  • the hammering of the single pile it is necessary to pay attention to the force of each oil cylinder at any time. In this case, every time a single pile drops a certain height, it is necessary to stop the hammer and measure the verticality. If there is a deviation, it is necessary to push each oil cylinder to adjust the verticality of the single pile again.
  • Such reciprocation makes the operation process complicated and low efficiency.
  • the oil cylinder is installed on the top of the platform, and the operator needs to climb to the top of the platform to operate the oil cylinder and measure the extension length of the oil cylinder, and there is a risk of personnel falling.
  • the purpose of the present disclosure is to provide a single-pile foundation guiding device with simple operation, high safety performance and capable of accurately controlling the verticality of the single-pile foundation.
  • the single-pile foundation guiding device includes at least one guiding unit, and each of the at least one guiding unit includes a single driving unit, a transmission unit, and a clamping unit.
  • the clamping unit includes at least two clamping arms, a clamping space for clamping a single pile foundation is formed between the at least two clamping arms, and the single driving unit transmits power to the transmission The unit drives the at least two clamping arms to operate synchronously through the transmission unit, so that the clamping unit is opened or closed.
  • the at least one guide unit includes a first guide unit, the first guide unit includes a first drive unit, a first transmission unit, and a first clamping unit, and the first transmission unit includes a pusher Block, the first driving unit pushes the push block to move so as to drive the first clamping unit to close to hold the mono-pile foundation tightly.
  • the at least one guide unit includes a second guide unit, the second guide unit includes a second drive unit, a second transmission unit, and a second clamping unit, and the second transmission unit includes a ring-shaped Frame, the second clamping unit includes a plurality of clamping arms, the plurality of clamping arms are inserted into the ring frame, and the second driving unit pushes the ring frame to rotate so as to pass through the ring frame Drive the plurality of clamping arms to pivot synchronously.
  • the present disclosure abandons the traditional three-cylinder or four-cylinder oil cylinder, controls the pushing form of the clamping arm separately, adopts a single drive structure, and each clamping arm pivots synchronously and concentrically, which can realize the precise control of the verticality in the single pile construction process, and the operation is simple ,
  • the force is stable, safe and reliable.
  • Fig. 1 is a perspective view of a single pile foundation guiding device according to a first embodiment of the present disclosure
  • Fig. 2 is a state diagram of a single-pile foundation construction using the single-pile foundation guiding device according to the first embodiment of the present disclosure
  • FIG. 3 is a perspective view of the first guide unit of the single pile foundation guide device according to the first embodiment of the present disclosure
  • FIG. 4 is a top view of the first guide unit of the single pile foundation guide device according to the first embodiment of the present disclosure, wherein the first clamping unit is in a closed state;
  • FIG. 5 is a top view of the first guide unit of the single pile foundation guide device according to the first embodiment of the present disclosure, wherein the first clamping unit is in an open state;
  • Fig. 6 is a perspective view of a single pile foundation guiding device according to a second embodiment of the present disclosure.
  • Fig. 7 is a perspective view of a second guiding unit of the single pile foundation guiding device according to the second embodiment of the present disclosure.
  • FIG. 8 is a top view of the second guide unit of the single pile foundation guide device according to the second embodiment of the present disclosure, wherein the second clamping unit is in a closed state;
  • Fig. 9 is a top view of the second guiding unit of the single pile foundation guiding device according to the second embodiment of the present disclosure, wherein the second clamping unit is in an open state.
  • the single pile foundation guiding device includes at least one guiding unit, and each guiding unit may include a single driving unit, a transmission unit, and a clamping unit.
  • the power is transmitted to the transmission unit through the single driving unit, and the clamping unit is driven by the transmission unit.
  • At least two clamping arms operate synchronously, so that multiple clamping arms of the clamping unit can be opened or closed at the same time, ensuring the synchronization control accuracy of the verticality of the single pile foundation.
  • Figures 1 to 5 show schematic structural diagrams of a single pile foundation guiding device according to the first embodiment of the present disclosure.
  • the single pile foundation guiding device includes a guiding support frame 100 and a first guiding unit 1000 provided on the guiding support frame 100.
  • the guiding support frame 100 includes a plurality of positioning piles 110 and a first supporting platform 120 fixed on the positioning piles 110.
  • the positioning pile 110 is a columnar structure, and the first supporting platform 120 is welded or bolted to the positioning pile 110.
  • the positioning pile 110 can be connected to the hull of the ship or penetrate the seabed to form a stable supporting structure.
  • there are four positioning piles 110 which are enclosed in a rectangular shape.
  • the first supporting platform 120 is formed as a rectangular frame with one side open, and the four corners are respectively fixedly connected with the positioning piles 110.
  • the number of the positioning piles 110 of the guide support frame 100 of the present disclosure is not limited to this.
  • the positioning piles 110 may be at least three.
  • the shape of the first supporting platform 120 is not limited to a rectangle, and may also be a circle or a semicircle, as long as the inner side It is sufficient to form a space suitable for installing the first guide unit 1000.
  • the first guide unit 1000 is installed on the first supporting platform 120.
  • the first support platform 120 is formed as a concave structure with one side open, and the first guide unit 1000 is installed in the recess of the first support platform 120 for guiding the single pile foundation 10 when the single pile foundation 10 is hoisted, and In the process of hammering the single-pile foundation, a clamping force is applied to the single-pile foundation 10 to ensure the verticality of the single-pile foundation 10.
  • the first guide unit 1000 may include a first driving unit 300, a first transmission unit 400 and a first clamping unit 500.
  • the first clamping unit 500 has a clamping space for accommodating the single pile foundation 10.
  • the first driving unit 300 transmits the driving force to the first transmission unit 400, and the first clamping unit 500 is driven to close or open through the first transmission unit 400 to hold or loosen the monopile foundation 10 tightly.
  • the specific structure of the first guide unit 1000 will be described in more detail.
  • the first clamping unit 500 may include a first clamping arm 510 and a second clamping arm 520.
  • the first clamping arm 510 and the second clamping arm 520 may have a symmetrical structure, and an accommodation space for accommodating the single pile foundation 10 is formed between the first clamping arm 510 and the second clamping arm 520.
  • the inner side wall of the first support platform 120 may include a first inner side wall 121, a second inner side wall 122 and a third inner side wall 123 located on both sides of the first inner side wall 121, a first clamping arm 510 and a second clamp
  • the holding arms 520 may be respectively installed on the second inner side wall 122 and the third inner side wall 123 of the first support platform 120.
  • a first squeezing roller 511 may be provided on the first end of the first clamping arm 510, and a first supporting roller 512 may be provided on the second end.
  • the first clamping arm 510 may be hinged to the first support platform 120.
  • the first clamping arm 510 may be a rigid curved connecting rod, which is hinged to the first support through a first hinge shaft 515 at the middle position of the rigid curved connecting rod.
  • the first clamping arm 510 can pivot around the first hinge shaft 515 within a certain angle range.
  • a second squeeze roller 521 may be provided on the first end of the second clamping arm 520, and a second support roller 522 may be provided on the second end.
  • the second clamping arm 520 may be hinged to the first support platform 120.
  • the second clamping arm 520 may be a rigid curved connecting rod, which is hinged to the first support through a second hinged shaft 525 at the middle position of the rigid curved connecting rod.
  • the second clamping arm 520 can pivot around the second hinge shaft 525 within a certain angle range.
  • the first transmission unit 400 may include a pushing block 410, and the first driving unit 300 pushes the pushing block 410 to move toward the clamping space of the first clamping unit 500, thereby driving the first clamping unit 500 to close to hold the monopile foundation 10 tightly.
  • a limit mechanism can be provided on the first support platform 120 to limit the movement trajectory of the push block 410.
  • a groove is provided on the first support platform 120, and a protrusion matching the groove is provided on the lower surface of the push block 410. So that the protrusion is locked in the groove and can move in the groove.
  • the limit mechanism guides the movement of the push block 410 so that the push block 410 can only move along a specific track, so as to apply a stable driving force to the first clamping unit 500.
  • the pushing block 410 may include a first tapered surface 411 and a second tapered surface 412 oppositely disposed. Specifically, the distance between the first tapered surface 411 and the second tapered surface 412 decreases toward the clamping space, so that the top of the cone formed by the push block 410 faces the clamping space.
  • the first clamping arm 510 abuts on the first tapered surface 411 via the first support roller 512
  • the second clamping arm 520 abuts on the second tapered surface 412 via the second support roller 522.
  • the first support roller 512 can roll along the first tapered surface 411
  • the second support roller 522 can roll along the second tapered surface 412.
  • the first driving unit 300 pushes the push block 410 toward the clamping space
  • the first tapered surface 411 and the second tapered surface 412 on both sides of the push block 410 respectively transfer forces to the first support roller 512 and the second support roller 522 , Thereby pushing the first clamping arm 510 and the second clamping arm 520 to pivot around the hinge shafts 515 and 525, respectively.
  • the first squeezing roller 511 and the second squeezing roller 521 will move toward the clamping space to Adjust the size of the clamping space or adjust the pressing force to the single pile foundation 10.
  • the first clamping unit 500 may further include a third clamping arm, and the third clamping arm may be fixedly installed on the push block 410 and located on the push block 410. On the side facing the clamping space.
  • a third squeeze roller 531 may be installed on the third clamping arm.
  • the third clamping arm is shorter and is formed as a roller bracket for mounting the third squeezing roller 531 on the push block 410, and the roller bracket can be welded and fixed with the push block 410.
  • the first squeeze roller 511, the second squeeze roller 521, and the third squeeze roller 531 can move synchronously and coaxially while abutting the outer surface of the single pile foundation 10 and simultaneously A holding force is applied to the single-pile foundation 10, so that the single-pile foundation 10 is subjected to a symmetrical pressing force in the circumferential direction, so as to ensure the verticality of the single-pile foundation 10.
  • the third clamping arm is not necessary.
  • the end of the first clamping arm 510 where the first pressing roller 511 is installed may be formed with an arc-shaped splint to surround a part of the outer circumference of the mono-pile foundation on the outside of the mono-pile foundation.
  • a plurality of squeezing rollers may also be provided on the inner surface of the arc-shaped splint to make rolling contact with the outer surface of the single pile foundation through the plurality of squeezing rollers.
  • the end of the second clamping arm 520 where the second pressing roller 521 is installed is also formed with an arc-shaped splint, and a plurality of pressing rollers can also be installed on the inner side of the arc-shaped splint.
  • the pushing block 410 pushes the first clamping arm 510 and the second clamping arm 520 to pivotally close, the two arc-shaped splints symmetrically squeeze the single pile foundation from both sides of the single pile foundation, thereby holding the single pile foundation tightly. Ensure the verticality of the single pile foundation.
  • the push block 410 is driven by a single driving unit 300, and a plurality of clamping arms are driven by the push block 410 to operate synchronously, so that a plurality of squeezing rollers abut the outer surface of the monopile foundation 10 at the same time.
  • the structure and installation position of the first driving unit 300 are not limited, as long as the first driving unit 300 can push the push block 410 to move toward the clamping space, pushing the first clamping arm 510 and the second clamping arm 520 It can be pivoted synchronously.
  • an example of implementing the first driving unit 300 is provided.
  • the pushing block 410 further includes a first inclined surface 413, and the first tapered surface 411 and the second tapered surface 412 are located on both sides of the first inclined surface 413.
  • the first inclined surface 413 is formed on the side of the push block 410 facing away from the clamping space.
  • the first driving unit 300 includes a hydraulic cylinder 310 and a wedge 320 connected to one end of the hydraulic cylinder.
  • the wedge 320 has a second inclined surface 321.
  • the second inclined surface 321 faces the first inclined surface 413 and is in contact with each other.
  • the first driving unit 300 can be installed on the first inner side wall 121 of the first support platform 120, and the wedge 320 can slide on the first inner side wall 121 along the first direction, thereby driving the hydraulic cylinder 310 along the first direction.
  • the driving force is converted into power for the push block 410 to move in the second direction.
  • protrusions can be provided on the wedge block 320 and the push block 410, and corresponding grooves can be provided on the first support platform 120. By setting the protrusions on The groove guides the movement route of the wedge block 320 and the push block 410.
  • the three squeezing rollers 511, 521, and 531 can be arranged evenly and symmetrically along the outer circumference of the single pile foundation 10.
  • the taper of the first tapered surface 411 and the second tapered surface 412 of the push block 410 can be designed.
  • the three squeezing rollers 511, 521, and 531 apply the same squeezing force to the single pile foundation 10.
  • the inclination angle of the surface of the pushing block 410 facing the clamping space can also be adjusted.
  • the three squeezing rollers are not necessarily arranged uniformly, as long as the single pile foundation 10 can be symmetrical in force in all directions.
  • the first supporting platform 120 may further include a horizontal supporting plate supporting the first driving unit 300 and the first transmission unit 400.
  • a horizontal support plate may be provided under the push block 410 and the wedge 320 to support the bottom surface of the push block 410 and the wedge 320 so that the push block 410 and the wedge 320 slide stably in the horizontal direction.
  • the first supporting roller 512 is rotatably supported on the first tapered surface 411 of the pushing block 410
  • the second supporting roller 522 is rotatably supported on the second tapered surface 412 of the pushing block 410.
  • the push block 410 pushes the first support roller 512 and the second support roller 522 to both sides through the first tapered surface 411 and the second tapered surface 412, respectively, and drives the first clamping arm 510 and the second clamping arm 520 pivot around the hinge shafts 515 and 525, so that the first squeezing roller 511 and the second squeezing roller 521 move inward with respect to the clamping space, and abut the outer surface of the single pile foundation 10, A holding force is applied to the single pile foundation 10.
  • FIG. 4 shows a schematic diagram in which the first clamping unit 500 is closed to apply a holding force to the single pile foundation 10.
  • the wedge 320 may be a triangular wedge, preferably a right-angled triangular wedge.
  • the cross-sectional shape of the wedge block 320 may be a right-angled triangle, and the long right-angled side (also called the base side) of the triangle faces and contacts the first inner side wall 121 of the first support platform 120 so as to be in contact with the first inner side wall 121 of the first supporting platform 120.
  • the inner side wall 121 slides up.
  • the short right-angled side of the triangle is perpendicular to the first inner side wall 121, and the first driving unit 300 may be connected to the short right-angled side of the wedge 320.
  • the inclined surface (ie, the second inclined surface 321) of the wedge block 320 corresponding to the hypotenuse of the triangle and the first inclined surface 413 of the push block 410 face and contact.
  • the pushing block 410 is located between the wedge block 320 and the clamping space.
  • the inclination angle of the first inclined surface 413 and the second inclined surface 321 may be 10°-30°, preferably 20°.
  • the angle of inclination is small, the contact area between the first inclined surface 413 and the second inclined surface 321 is large, the stroke of the cylinder is large, and the adjustment speed is slow.
  • the angle of inclination is large, the contact area between the first inclined surface 413 and the second inclined surface 321 is small, the stroke of the cylinder is small, and the adjustment speed is fast. Therefore, the inclination angles of the first inclined surface 413 and the second inclined surface 321 can be set according to adjustment requirements.
  • the wedge block 320 pushes the push block 410 outwards, pushes the push block 410 away from the first inner side wall 121, and moves toward the clamping space of the first guide unit 500.
  • the wedge block 320 retracts, thereby canceling the pushing force on the pushing block 410.
  • the push block 410 also needs to retract at the same time.
  • the two inclined surfaces 321 and 413 on which the wedge block 320 and the push block 410 abut can be provided with sliding grooves and sliding rails, respectively, and the sliding rails can be locked in the sliding In the groove, the wedge block 320 and the push block 410 can be movably connected to each other, so that the push block 410 can move together with the wedge block 320.
  • the push block 410 can also retreat toward the first inner side wall 121 , Away from the clamping space.
  • the solution for retracting the push block 410 is not limited to this, and a return spring may be provided on the first inner side wall 121 to apply a pulling force to the push block 410, so that when the wedge block 320 retracts, The pushing block 410 can also move toward the first inner side wall 121 under the pulling force of the return spring.
  • FIG. 5 shows a schematic diagram of the first clamping unit 500 in an open state.
  • a reset can be provided on the first hinge shaft 515 and the second hinge shaft 525 Spring, so that when the push block 410 retreats and cancels the pushing force on the first support roller 512 and the second support roller 522, the outer ends of the first clamping arm 510 and the second clamping arm 520 can act on the elastic force of the return spring Open outward from the bottom.
  • the return spring may also be provided on the second inner side wall 122 and the third inner side wall 123.
  • roller grooves can also be provided on the first tapered surface 411 and the second tapered surface 412, and the first support roller 512 and the second support roller 522 are embedded in the roller grooves.
  • the supporting roller 522 can be engaged in the roller groove and can roll in the roller groove.
  • the first supporting roller 512 and the second supporting roller 522 cannot be disengaged from the first tapered surface 411 and the second tapered surface 412 of the pushing block 410. Therefore, the pushing block 410 is far away from the clamping space.
  • first support roller 512 and the second support roller 522 roll toward the top end of the push block 410 along the first tapered surface 411 and the second tapered surface 412, so that the first clamping arm 510 and the second clamping arm 520 respectively surround The hinge shafts 515 and 525 pivot to open the clamping space.
  • the rolling path of the roller is designed with a difference between horizontal and vertical.
  • the rolling path of the roller contacting the single pile foundation 10 is along the vertical direction
  • the rolling path of the roller contacting the push block 410 is along the vertical direction. Along the horizontal direction.
  • a single driving unit 300 can realize synchronous coaxial movement of a plurality of squeezing rollers of the first clamping unit 500.
  • a hydraulic cylinder When a hydraulic cylinder is used for driving, only one cylinder needs to be controlled, which greatly reduces the installation and subsequent maintenance costs of multiple cylinders.
  • the two tapered surfaces of the push block 410 transmit the thrust to the supporting rollers, so that stepless adjustment of the pivoting angle of the clamping arm can be achieved.
  • the extension length of the hydraulic cylinder of the first driving unit 300 the size of the clamping space formed by the first clamping unit 500 can be adjusted, so as to meet the guiding requirements for single pile foundations of different diameters.
  • the single-pile foundation guiding device according to the first embodiment of the present disclosure has a simple structure, which shortens the manufacturing cycle and greatly reduces the cost.
  • Figures 6 to 9 show a single pile foundation guiding device according to a second embodiment of the present disclosure.
  • the single-pile foundation guiding device according to the second embodiment of the present disclosure may further include a second guiding unit 2000.
  • One guiding unit 1000 is separated by a predetermined distance, and the second guiding unit 2000 can be installed below the first guiding unit 1000 (but not limited to this), so as to realize the double-layer guiding function for the single pile foundation.
  • the single-pile foundation guiding device may include a guiding support frame 100, a first guiding unit 1000 and a second guiding unit 2000 provided on the guiding support frame 100.
  • the guide support frame 100 includes a plurality of positioning piles 110 and a first support platform 120 and a second support platform 160 fixed on the positioning piles 110, and the second guide unit 2000 is installed on the second support platform 160.
  • the structure of the first guiding unit in the single pile foundation guiding device according to the second embodiment of the present disclosure is the same as the first guiding unit in the single pile foundation guiding device according to the first embodiment of the present disclosure. Therefore, only the parts different from the single pile foundation guiding device of the first embodiment will be described below with reference to FIGS. 6-9, that is, only the second supporting platform 160 and the second guiding unit 2000 will be described.
  • the second support platform 160 includes a support plate 161.
  • a through hole for the single pile foundation 10 to pass through is opened in the middle of the support plate 161.
  • the diameter of the through hole is larger than the diameter of the single pile foundation 10.
  • the supporting plate 161 shown in the figure is plate-shaped, the supporting plate 161 may also be formed of a truss, as long as it can satisfy the supporting function of the second guide unit 2000.
  • the second guide unit 2000 includes a second driving unit 600, a second transmission unit 700, and a second clamping unit 800.
  • the second transmission unit 700 may include a ring frame 710
  • the second clamping unit 800 may include a plurality of clamping arms 810.
  • the plurality of clamping arms 810 may be symmetrically arranged along the circumferential direction and arranged in the plurality of clamping arms.
  • a clamping space for accommodating the single pile foundation 10 is formed between the arms 810.
  • the plurality of clamping arms 810 are inserted into the ring frame 710 respectively, and the second driving unit 600 can push the ring frame 710 to rotate, so that the ring frame 710 drives the plurality of clamping arms 810 to pivot synchronously.
  • the second clamping unit 800 is closed or opened to apply or cancel the holding force to the single pile foundation 10.
  • the second driving unit 600 may include a screw driving structure, specifically, a screw 610, a screw driving motor (not shown), a first screw support 620, and a second screw support 630.
  • the first screw support 620 may be installed on the second support platform 160 and can rotate relative to the second support platform 160.
  • the lower end of the first screw support 620 may be provided with a pivot shaft, which is connected to the support plate 161 of the first support platform 160 through the pivot shaft.
  • One end of the screw 610 is inserted into the first screw support 620, and the screw drive motor can be installed in the first screw support 620 to drive the screw 610 to rotate.
  • the second screw support 630 may be provided with a horizontal threaded through hole, and the other end of the screw 610 may pass through the horizontal threaded through hole of the second screw support 630 to be threadedly combined with the second screw support 630.
  • the second screw support 630 is rotatably mounted on the ring frame 710.
  • the ring frame 710 is annular as a whole, with a circular through hole in the middle, and the diameter of the circular through hole is larger than the diameter of the single pile foundation 10 for the single pile foundation 10 to pass through.
  • the ring frame 710 is rotatable in a horizontal plane relative to the second support platform 160, specifically, it rotates with the axis of the single pile foundation 10 as the center of rotation.
  • the second screw support 630 is rotatably installed on the outer edge of the ring frame 710.
  • the outer peripheral edge of the ring frame 710 is provided with a convex plate 714 extending in a horizontal direction to the outside of the ring frame 710, and the second screw support 630 is rotatably installed on the convex plate 714.
  • the lower end of the second screw support 630 may be provided with a vertical insertion hole, and the convex plate 714 may be provided with a pin that can be inserted into the insertion hole at the lower part of the second screw support 630, so that the second screw support 630 can be protruded.
  • the plate 714 rotates.
  • the vertical insertion hole in the second screw support 630 is located below the horizontal threaded through hole, so as to prevent the pin inserted into the lower part of the second screw support 630 from interfering with the screw 610 inserted into the horizontal threaded through hole.
  • FIG. 7 shows a perspective view of the second guide unit 2000
  • FIGS. 8 and 9 show top views of the second guide unit 2000.
  • FIGS. 8 and 9 in order to show the structure of the clamping unit 800 more clearly, the upper part of the ring frame 710 (the upper ring plate) is removed.
  • the specific structure of the ring frame 710 will be described in detail with reference to FIGS. 7-9.
  • the ring frame 710 may include a ring plate and a sleeve 761 mounted on the ring plate.
  • the ring-shaped plate may include a first ring-shaped plate 711 on an upper layer and a second ring-shaped plate 712 on a lower layer that are coaxially arranged.
  • the intermediate connecting plate 713 connects the first annular plate 711 on the upper layer and the second annular plate 712 on the lower layer into one body.
  • the intermediate connecting plates 713 may be provided in multiple pieces, extending along the axial direction of the ring frame 710, and arranged at intervals in the circumferential direction of the ring frame 710.
  • the connection method of the first annular plate 711 on the upper layer and the second annular plate 712 on the lower layer is not limited to this, and a structure in which a plurality of connecting posts connect the two up and down as a whole can also be adopted.
  • the sleeve 761 is arranged in a horizontal direction, and may be arranged between the first annular plate 711 and the second annular plate 712.
  • the upper and lower sides of the sleeve 761 may also be provided with a sleeve pivot shaft 762, which extends in the vertical direction (parallel to the axial direction of the ring frame), one end is combined with the annular plate, and the other end is connected with the sleeve 761
  • the sleeve 761 can be connected to the annular plate through the sleeve pivot shaft 762, is stably supported by the annular plate, and can rotate around the sleeve pivot shaft 762.
  • the sleeve 761 can move with the annular plate in the circumferential direction of the annular plate, and can also pivot relative to the annular plate, so as to effectively transmit the torque to the clamping arm 810.
  • clamping arms 810 There can be at least two clamping arms 810.
  • an arc-shaped splint can be provided at the free end of the clamping arm 810, and a squeeze roller can be provided on the inner side of the arc-shaped splint to surround the single pile foundation. A part of the outer peripheral surface is in rolling contact with the outer surface of the single pile foundation at the same time.
  • the second clamping unit 800 includes three clamping arms 810, and the first end of the clamping arm 810 is pivotally connected to the second support platform 160.
  • the clamping arm hinge base 820 can be fixedly installed on the second support platform 160, and the first end of the clamping arm 810 is connected to the clamping arm hinge base 820 so as to be able to rotate around the clamping arm hinge base 820.
  • the second end of the clamping arm 810 passes through the sleeve 761 and protrudes from the sleeve 761 by a predetermined length.
  • a pressing roller 812 may be connected to the second end of the clamping arm 810 to make rolling contact with the outer surface of the single pile foundation 10 through the pressing roller 812.
  • the clamping arm 810 may be a rigid straight connecting rod.
  • the rigid straight connecting rod may be configured as a double-layer structure, that is, two straight connecting rods connected in parallel up and down are used as one clamping arm 810.
  • the cross section of the sleeve 761 may be round or square, as long as it is compatible with the shape of the clamping arm 810 and does not affect the movement of the clamping arm 810 back and forth in the sleeve 761.
  • the screw drive motor rotates, the screw 610 pushes the ring frame 710 to rotate through the second screw support 630, and the ring frame 710 drives the clamping arm 810 to pivot around the clamping arm pivot axis through the sleeve 761, and the squeeze roller 812 faces the clamping The space or move away from the clamping space, so as to adjust the size of the space through which the single pile foundation 10 can pass.
  • the squeeze roller 812 can be driven to move outward, and when the single pile foundation 10 has been inserted into the ring frame 710, the clamping arm can be driven The 810 pivots, and the squeezing roller 812 applies squeezing force to the single-pile foundation 10 at multiple positions, thereby holding the single-pile foundation 810 tightly.
  • the second guide unit according to the second embodiment of the present disclosure can push the ring structure to rotate through a driving unit, and push the three clamping arms to pivot synchronously through the ring structure, so that the squeezing rollers 812 can be attached or loosened synchronously.
  • the process of opening a single pile foundation 10 realizes the coaxial precise adjustment function.
  • the second drive unit 600 is not limited to a screw drive structure, and a gear-rack drive structure may also be used.
  • a gear can be provided on the outer ring of the ring frame 710, and a rack can be provided on the second support platform 160 to engage the rack with the gear. By moving the rack back and forth, the gear is driven to rotate, thereby driving the ring structure to rotate. It is also possible to synchronize multiple clamping arms with a single drive unit. Obviously, the installation positions of the driving gear and the driving rack can be interchanged, as long as the ring structure can be driven to rotate.
  • the two can work synchronously, so that the verticality can be adjusted at the same time on the upper and lower floors. More accurately ensure the verticality of the single pile foundation.
  • the hydraulic drive and the mechanical screw structure complement each other. If one of the adjustment structures fails, the other adjustment structure can also realize the high-precision verticality adjustment process.
  • both the first guide unit 1000 and the second guide unit 2000 are arranged up and down, both the first guide unit 1000 and the second guide unit 2000 can be used independently, and both can realize synchronous adjustment of the single pile foundation Verticality function.
  • the upper and lower multi-layer guide structure it is not limited to arranging the first guide unit 1000 and the second guide unit 2000 up and down. Instead, a plurality of first guide units 1000 can be arranged up and down, or a plurality of second guide units can be arranged.
  • the 2000 upper and lower floors are arranged, and the redundant design of the multi-layer adjustment structure can also ensure the precise verticality guiding function of the single pile foundation.
  • the driving unit of the single pile foundation guiding device is arranged at the bottom of the platform, and the operator can operate the oil cylinder and
  • the screw drive structure greatly reduces the risk of personnel operating the oil cylinder falling into the sea.
  • the single-pile foundation guiding device of the present disclosure the single-pile foundation can be guided, clamped and straightened during the installation of the single-pile foundation, ensuring that the single-pile foundation is driven vertically into the seabed and preventing the pile foundation from being driven during the piling process. Skew occurs in.
  • the clamping force of each clamping arm can be adjusted at the same time by operating a single driving structure.
  • the single During the process of pile sinking, it is necessary to stop the hammer and measure the verticality of the single pile multiple times, which greatly improves the pile sinking efficiency.
  • the upper and lower guide units can realize synchronous operation through coaxial concentricity to ensure accurate verticality.
  • the structure is simple, a large number of oil cylinders are omitted, the maintenance is convenient, and the structure cost is low.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Placing Or Removing Of Piles Or Sheet Piles, Or Accessories Thereof (AREA)
  • Foundations (AREA)
  • Revetment (AREA)
  • Load-Engaging Elements For Cranes (AREA)
  • Wind Motors (AREA)
  • Road Signs Or Road Markings (AREA)
  • Piles And Underground Anchors (AREA)

Abstract

本公开提供了一种单桩基础导向装置,所述单桩基础导向装置包括至少一个导向单元,所述至少一个导向单元中的每一个包括单个驱动单元、传动单元和夹持单元,所述夹持单元包括至少两个夹持臂,所述至少两个夹持臂之间形成用于夹持单桩基础的夹持空间,所述单个驱动单元将动力传递给所述传动单元,通过所述传动单元驱动所述至少两个夹持臂同步操作,从而使所述夹持单元打开或闭合。通过单个驱动单元能够实现多个夹持臂的同步同轴打开或闭合,从而能够实现单桩基础的高精度垂直度控制。

Description

单桩基础导向装置 技术领域
本公开涉及海上风力发电技术领域,更具体地讲,涉及一种用于海上风力发电机组的单桩基础导向装置。
背景技术
在用于海上风力发电机组的各种风机基础中,单桩基础除了具有制造简单和对设备成本要求较低的优点之外,还具有优越的施工效率的优势。因此,90%以上的海上风力发电机组采用单桩基础。
然而,对单桩基础的垂直度要求极高,圆周方向平面的最大高度差需要小于设定值。,在单桩基础施进行锤击使其贯入海床的工过程中,如果出现锤击偏差,则此单桩基础很可能出现报废的风险,从后期修复方案到执行或者重新衔接过渡段法兰纠正垂直度,再加上海上施工船舶和吊机的成本,都将是巨额的损失。因此,单桩基础施工,垂直度控制是关键。
现有技术中的部分单桩基础导向装置采用多个油缸结构,在多个不同位置对单桩基础进行夹紧,难以进行同步操作,垂直度同步控制精度低。另一方面,由于多个油缸需要多人控制,在单桩基础施工时,每次都需要测量每个油缸的伸出长度,在锤击单桩过程中,需要随时关注每个油缸的受力情况,单桩每下降一定高度,需要停锤并测量垂直度,如果出现偏差,需要再次单独推动每个油缸调节单桩垂直度,如此往复,操作过程复杂,效率低。
此外,现有技术中的单桩基础导向装置中,油缸安装在平台顶部,操作人员需要爬到平台顶部操作油缸以及测量油缸伸出长度,存在人员坠落风险。
发明内容
本公开的目的在于提供一种操作简单、安全性能高且能够精准控制单桩基础的垂直度的单桩基础导向装置。
根据本公开的一方面,提供了一种单桩基础导向装置,所述单桩基础导向装置包括至少一个导向单元,所述至少一个导向单元中的每一个包括单个 驱动单元、传动单元和夹持单元,所述夹持单元包括至少两个夹持臂,所述至少两个夹持臂之间形成用于夹持单桩基础的夹持空间,所述单个驱动单元将动力传递给所述传动单元,通过所述传动单元驱动所述至少两个夹持臂同步操作,从而使所述夹持单元打开或闭合。
根据本公开的一方面,所述至少一个导向单元包括第一导向单元,所述第一导向单元包括第一驱动单元、第一传动单元和第一夹持单元,所述第一传动单元包括推块,所述第一驱动单元推动所述推块移动从而驱动所述第一夹持单元闭合以将所述单桩基础抱紧。根据本公开的一方面,所述至少一个导向单元包括第二导向单元,所述第二导向单元包括第二驱动单元、第二传动单元和第二夹持单元,所述第二传动单元包括环形框架,所述第二夹持单元包括多个夹持臂,所述多个夹持臂插入到所述环形框架中,所述第二驱动单元推动所述环形框架旋转,从而通过所述环形框架带动所述多个夹持臂同步枢转。
本公开摈弃传统的三缸或四缸油缸,单独控制夹持臂的推动形式,采用单驱动结构,各个夹持臂同步同心枢转,能实现单桩施工过程中垂直度的精准控制,操作简单,受力平稳,安全可靠。
附图说明
通过下面结合附图进行的描述,本公开的上述和其他目的和特点将会变得更加清楚,其中:
图1是根据本公开第一实施例的单桩基础导向装置的立体图;
图2是采用根据本公开第一实施例的单桩基础导向装置进行单桩基础施工的状态图;
图3是根据本公开第一实施例的单桩基础导向装置的第一导向单元的立体图;
图4是根据本公开第一实施例的单桩基础导向装置的第一导向单元的俯视图,其中,第一夹持单元处于闭合状态;
图5是根据本公开第一实施例的单桩基础导向装置的第一导向单元的俯视图,其中,第一夹持单元处于打开状态;
图6是根据本公开第二实施例的单桩基础导向装置的立体图;
图7是根据本公开第二实施例的单桩基础导向装置的第二导向单元的立 体图;
图8是根据本公开第二实施例的单桩基础导向装置的第二导向单元的俯视图,其中,第二夹持单元处于闭合状态;
图9是根据本公开第二实施例的单桩基础导向装置的第二导向单元的俯视图,其中,第二夹持单元处于打开状态。
具体实施方式
为了解决现有技术中的多个液压缸分别驱动多个夹持臂使得多个夹持臂无法同步同轴运动导致垂直度同步控制精度低的问题,本公开提供了一种单桩基础导向装置,该单桩基础导向装置包括至少一个导向单元,每个导向单元可包括单个驱动单元、传动单元和夹持单元,通过单个驱动单元将动力传递给传动单元,通过传动单元来驱动夹持单元的至少两个夹持臂同步操作,从而夹持单元的多个夹持臂能够同时打开或闭合,保证单桩基础的垂直度同步控制精度。
以下,参照附图来详细说明本公开的实施例。
图1-图5示出了根据本公开第一实施例的单桩基础导向装置的结构示意图。
根据本公开第一实施例的单桩基础导向装置包括导向支撑架100以及设置在导向支撑架100上的第一导向单元1000。
如图1和图2所示,导向支撑架100包括多个定位桩110以及固定在定位桩110上的第一支撑平台120。定位桩110为柱状结构,第一支撑平台120与定位桩110焊接或者栓接,定位桩110可与船体连接或者穿入海底,形成稳固支撑结构。在本公开的实施例中,定位桩110设置为四根,围拢成矩形形状。第一支撑平台120形成为一侧开口的矩形框架,四角分别与定位桩110固定连接。但是,本公开的导向支撑架100的定位桩110的数量不限于此,定位桩110可以为至少三根,第一支撑平台120的外形不限于矩形,也可以为圆形或半圆形,只要内侧形成适于安装第一导向单元1000的空间即可。
第一导向单元1000安装在第一支撑平台120上。第一支撑平台120形成为一侧开口的凹形结构,第一导向单元1000安装在第一支撑平台120的凹口内,用于在吊装单桩基础10时对单桩基础10进行导正,以及在对单桩基础进行锤击的过程中,对单桩基础10施加夹紧力以保证单桩基础10的垂直度。
如图3-图5所示,第一导向单元1000可包括第一驱动单元300、第一传动单元400和第一夹持单元500。第一夹持单元500具有容纳单桩基础10的夹持空间。第一驱动单元300将驱动力传递给第一传动单元400,通过第一传动单元400驱动第一夹持单元500闭合或打开,以将单桩基础10抱紧或松开。下面,更详细地描述第一导向单元1000的具体结构。
第一夹持单元500可以包括第一夹持臂510和第二夹持臂520。第一夹持臂510和第二夹持臂520可以为对称结构,第一夹持臂510和第二夹持臂520之间形成容纳单桩基础10的容纳空间。作为示例,第一支撑平台120的内侧壁可以包括第一内侧壁121以及位于第一内侧壁121两侧的第二内侧壁122和第三内侧壁123,第一夹持臂510和第二夹持臂520可分别安装在第一支撑平台120的第二内侧壁122和第三内侧壁123上。
在第一夹持臂510的第一端上可设置有第一挤压滚轮511,在第二端上设置有第一支撑滚轮512。第一夹持臂510可与第一支撑平台120铰接,具体地,第一夹持臂510可以为刚性曲连杆,在刚性曲连杆的中部位置通过第一铰接轴515铰接到第一支撑平台120的第二侧壁122上。第一夹持臂510能够围绕第一铰接轴515在一定角度范围内枢转。
在第二夹持臂520的第一端上可设置有第二挤压滚轮521,在第二端上设置有第二支撑滚轮522。第二夹持臂520可与第一支撑平台120铰接,具体地,第二夹持臂520可以为刚性曲连杆,在刚性曲连杆的中部位置通过第二铰接轴525铰接到第一支撑平台120的第三侧壁123上。第二夹持臂520能够围绕第二铰接轴525在一定角度范围内枢转。
第一传动单元400可包括推块410,第一驱动单元300推动推块410向着第一夹持单元500的夹持空间移动,从而驱动第一夹持单元500闭合以将单桩基础10抱紧。可在第一支撑平台120上设置限位机构,限制推块410的运动轨迹,例如,在第一支撑平台120上设置凹槽,在推块410的下表面上设有与凹槽匹配的凸起,使凸起卡合在凹槽中,并能够在凹槽中运动。通过限位机构,引导推块410的运动,使推块410只能沿着特定的轨迹移动,以对第一夹持单元500施加稳定的驱动力。
推块410可包括相对设置的第一锥面411和第二锥面412。具体地,第一锥面411和第二锥面412之间的距离向着夹持空间的方向缩小,从而推块410形成的锥体的顶部面向夹持空间。第一夹持臂510通过第一支撑滚轮512 抵接在第一锥面411上,第二夹持臂520通过第二支撑滚轮522抵接在第二锥面412上。第一支撑滚轮512能够沿着第一锥面411滚动,第二支撑滚轮522能够沿着第二锥面412滚动。
当第一驱动单元300将推块410向着夹持空间推动时,推块410两侧的第一锥面411和第二锥面412分别将力传递给第一支撑滚轮512和第二支撑滚轮522,从而推动第一夹持臂510和第二夹持臂520分别围绕铰接轴515和525枢转,与此同时,第一挤压滚轮511和第二挤压滚轮521将向着夹持空间移动以调整夹持空间大小或者调整对单桩基础10的挤压力。
除了第一夹持臂510和第二夹持臂520之外,第一夹持单元500还可包括第三夹持臂,第三夹持臂可以固定安装在推块410上,位于推块410的面向夹持空间的一侧上。第三夹持臂上可安装有第三挤压滚轮531。在附图所示的示例中,第三夹持臂较短,形成为用于将第三挤压滚轮531安装在推块410上的滚轮支架,该滚轮支架可与推块410焊接固定。
在推块410向着夹持空间移动时,第一挤压滚轮511、第二挤压滚轮521以及第三挤压滚轮531能够同步同轴运动,同时抵接单桩基础10的外表面,并同时对单桩基础10施加抱紧力,使得单桩基础10在圆周方向上受到对称的挤压力,以保证单桩基础10的垂直度。
虽然在本公开的实施例中,还包括第三夹持臂,但是,第三夹持臂不是必须的。例如,第一夹持臂510的安装第一挤压滚轮511的一端可以形成有弧形夹板,以在单桩基础的外侧包围单桩基础的外圆周的一部分。弧形夹板的内侧表面上也可以设置有多个挤压滚轮,以通过多个挤压滚轮与单桩基础的外表面滚动接触。相应的,第二夹持臂520的安装第二挤压滚轮521的一端也形成有弧形夹板,弧形夹板的内侧也可以安装多个挤压滚轮。在推块410推动第一夹持臂510和第二夹持臂520枢转闭合时,两个弧形夹板从单桩基础的两侧对称挤压单桩基础,从而将单桩基础抱紧并保证单桩基础的垂直度。
根据本公开的实施例,通过单个驱动单元300驱动推块410,并通过推块410驱动多个夹持臂同步操作,使得多个挤压滚轮同时抵接单桩基础10的外表面。在本公开中,第一驱动单元300的结构和安装位置不受限制,只要第一驱动单元300能够推动推块410向着夹持空间移动,推动第一夹持臂510和第二夹持臂520同步枢转即可。
根据本公开的第一实施例,提供了一种实现第一驱动单元300的示例。
如图3-图5所示,推块410还包括第一倾斜表面413,第一锥面411和第二锥面412位于第一倾斜表面413的两侧。换句话说,第一倾斜表面413形成在推块410的背对夹持空间的一侧。第一驱动单元300包括液压缸310和连接到液压缸一端的楔块320,楔块320具有第二倾斜表面321,第二倾斜表面321与第一倾斜表面413相面对并相互接触,当液压缸310伸出而推动楔块320沿所述第一方向移动时,楔块320推动推块410第二方向移动移动。第一方向和第二方向可以均在水平面内,均与单桩基础的轴线方向垂直。
第一驱动单元300可安装在第一支撑平台120的第一内侧壁121上,楔块320能够在第一内侧壁121上沿着第一方向滑动,从而将液压缸310的沿第一方向的驱动力转换为推块410沿着第二方向移动的动力。
为了稳定地控制楔块320和推块410的运动路线,可以在楔块320和推块410上分别设置凸起,在第一支撑平台120上分别设置相应的凹槽,通过将凸起设置在凹槽中来引导楔块320和推块410的运动路线。
三个挤压滚轮511、521和531可以沿着单桩基础10的外圆周均匀对称布置,在这种情况下,可以通过设计推块410的第一锥面411、第二锥面412的锥度使得三个挤压滚轮511、521和531对单桩基础10施加同样的挤压力。此外,还可以调整推块410的面向夹持空间的表面的倾斜角度。此外,三个挤压滚轮不一定均匀设置,只要能够使得单桩基础10在各个方向上的受力对称即可。
虽然附图中没有示出,但是可以理解的是,第一支撑平台120还可包括支撑第一驱动单元300和第一传动单元400的水平支撑板。具体地,水平支撑板可设置在推块410和楔块320下方,以支撑推块410和楔块320的底表面,使得推块410和楔块320在水平方向上稳定地滑动。
第一支撑滚轮512可滚动地支撑在推块410的第一锥面411上,第二支撑滚轮522可滚动地支撑在推块410的第二锥面412上。随着推块410向着夹持空间移动,推块410通过第一锥面411和第二锥面412分别将第一支撑滚轮512和第二支撑滚轮522向两侧推动,带动第一夹持臂510和第二夹持臂520围绕铰接轴515和525枢转,从而第一挤压滚轮511和第二挤压滚轮521相对于夹持空间向内移动,抵接单桩基础10的外表面,对单桩基础10施加抱紧力。与此同时,随着推块410向着夹持空间移动,安装在推块410上的第三挤压滚轮531也到达单桩基础10的外表面,与第一挤压滚轮511和 第二挤压滚轮521同时对单桩基础10施加抱紧力。通过调节液压缸310的伸出长度,可以调节夹持空间的大小以及对单桩基础10施加的抱紧力的大小。图4示出了第一夹持单元500闭合以对单桩基础10施加抱紧力的示意图。
作为一个可选示例,楔块320可以为三角形楔块,优选为直角三角形楔块。具体地,楔块320的横截面形状可以是直角三角形,三角形的长直角边(也可称为底边)与第一支撑平台120的第一内侧壁121相面对并接触,以在第一内侧壁121上滑动。三角形的短直角边垂直于第一内侧壁121,第一驱动单元300可以连接到楔块320的短直角边上。楔块320的与三角形斜边对应的斜面(即,第二倾斜表面321)和推块410的第一倾斜表面413相面对并接触。推块410位于楔块320和夹持空间之间。
作为示例,第一倾斜表面413和第二倾斜表面321的倾斜角度可以为10°-30°,优选为20°。倾斜角度小,第一倾斜表面413和第二倾斜表面321之间的接触面积大,油缸行程大,调整速度慢。倾斜角度大,第一倾斜表面413和第二倾斜表面321之间的接触面积小,油缸行程小,调整速度快。因此,可以根据调整需求来设置第一倾斜表面413和第二倾斜表面321的倾斜角度。
当液压缸伸出时,楔块320将推块410向外顶出,推动推块410远离第一内侧壁121,向着第一导向单元500的夹持空间移动。当液压缸310缩回时,楔块320退回,从而撤销对推块410的推力。
随着楔块320退回,推块410也需要同时退回。为了使得推块410能够跟随楔块320向后回退,楔块320和推块410相抵接的两个倾斜表面321和413上可以分别设置有滑槽和滑轨,滑轨可以卡合在滑槽中,从而楔块320和推块410能够相互活动连接,使得推块410能够随着楔块320一起运动,在楔块320向后退时,推块410也能够向着第一内侧壁121回退,远离夹持空间。
然而,根据本公开的实施例,使推块410回退的方案不限于此,也可以在第一内侧壁121上设置回复弹簧,对推块410施加拉力,从而在楔块320回退时,推块410也可以在回复弹簧的拉力下向着第一内侧壁121移动。
当液压缸310缩回时,推块410逐渐朝向第一内侧壁121靠近,从而第三挤压滚轮531离开单桩基础10的外表面,撤去对单桩基础10的挤压力。与此同时,随着推块410后退,推块410撤去对第一支撑滚轮512和第二支撑滚轮522的推力,第一夹持臂510和第二夹持臂520枢转打开,第一挤压 滚轮512和第二挤压滚轮522也同时撤销对单桩10的夹持力。图5示出了第一夹持单元500处于打开状态的示意图。
为了在第一驱动单元300缩回时,第一夹持臂510和第二夹持臂520能够自动向外枢转而打开,在第一铰接轴515和第二铰接轴525上可以设置有复位弹簧,从而在推块410回退而撤销对第一支撑滚轮512和第二支撑滚轮522的推力时,第一夹持臂510和第二夹持臂520的外端能够在复位弹簧的弹力作用下向外打开。此外,回复弹簧也可以设置在第二内侧壁122和第三内侧壁123上。当设置了用于使第一夹持臂510和第二夹持臂520枢转打开的回复弹簧时,可以不用再设置时推块410向后退回的部件,推块410能够在第一支撑滚轮512和第二支撑滚轮522的推动下向后退回。
作为可选方案,还可以在第一锥面411和第二锥面412上设置滚轮槽,将第一支撑滚轮512和第二支撑滚轮522嵌在滚轮槽中,第一支撑滚轮512和第二支撑滚轮522能够卡合在所述滚轮槽中并且能够在所述滚轮槽中滚动。通过卡合在滚轮槽中,第一支撑滚轮512和第二支撑滚轮522不能从推块410的第一锥面411和第二锥面412上脱开,因此,在推块410远离夹持空间时,第一支撑滚轮512和第二支撑滚轮522沿着第一锥面411和第二锥面412向着推块410的顶端滚动,从而第一夹持臂510和第二夹持臂520分别围绕铰接轴515和525枢转而打开夹持空间。
在单桩基础10的沉降过程中,有向下的作用力。根据本公开的实施例,多个夹持臂均通过滚轮与单桩基础10接触,滚轮沿着单桩基础10的外壁向下滚动,减少对单桩基础10的外表面的摩擦,并减少对支撑平台的振动冲击力,降低安全风险,从而增加结构的稳定性。在根据本公开的第一实施例中,滚轮的滚路设计有横向和竖向的区别,与单桩基础10接触的滚轮的滚路沿竖直方向,与推块410接触的滚轮的滚路沿水平方向。
根据本公开第一实施例的单桩基础导向装置,能够通过单个驱动单元300,实现第一夹持单元500的多个挤压滚轮同步同轴运动。在采用液压缸驱动时,只需要控制一个油缸即可,大大减少多个油缸的安装和后期维护成本。此外,通过推块410的两个锥面向支撑滚轮传递推力,可实现夹持臂的枢转角度的无级调整。通过调节第一驱动单元300的液压缸的伸出长度,能够调整第一夹持单元500所形成的夹持空间的大小,从而满足对于不同直径大小的单桩基础的导正需求。根据本公开第一实施例的单桩基础导向装置结构简 单,使得制造周期缩短,成本大大降低。
图6至图9示出了根据本公开第二实施例的单桩基础导向装置。与根据本公开第一实施例的单桩基础导向装置相比,根据本公开第二实施例的单桩基础导向装置还可包括第二导向单元2000,第二导向单元2000在高度方向上与第一导向单元1000隔开预定距离,第二导向单元2000可安装在第一导向单元1000的下方(但不限于此),从而实现对单桩基础的双层导向功能。
具体地,根据本公开第二实施例的单桩基础导向装置可包括导向支撑架100、设置在导向支撑架100上的第一导向单元1000和第二导向单元2000。导向支撑架100包括多个定位桩110以及固定在定位桩110上的第一支撑平台120和第二支撑平台160,第二导向单元2000安装在第二支撑平台160上。
根据本公开第二实施例的单桩基础导向装置中的第一导向单元与根据本公开第一实施例的单桩基础导向装置中的第一导向单元的结构相同。因此,下面将参照附图6-图9仅描述与第一实施例的单桩基础导向装置不同的部分,即,仅描述第二支撑平台160和第二导向单元2000。
如图7所示,第二支撑平台160包括支撑板161,在支撑板161的中部开设有供单桩基础10穿过的通孔,通孔的直径大于单桩基础10的直径。虽然图中示出的支撑板161为板状,但是,支撑板161也可以由桁架形成,只要能够满足对第二导向单元2000的支撑功能即可。
第二导向单元2000包括第二驱动单元600、第二传动单元700和第二夹持单元800。第二传动单元700可包括环形框架710,第二夹持单元800可包括多个夹持臂810,所述多个夹持臂810可沿着圆周方向对称设置,并在所述多个夹持臂810之间形成用于容纳单桩基础10的夹持空间。所述多个夹持臂810分别插入到环形框架710中,第二驱动单元600能够推动环形框架710旋转,从而通过环形框架710带动所述多个夹持臂810同步枢转。随着夹持臂810的枢转,第二夹持单元800闭合或打开,对单桩基础10施加抱紧力或撤销抱紧力。
第二驱动单元600可包括螺杆驱动结构,具体地,可包括螺杆610、螺杆驱动电机(未示出)、第一螺杆支座620和第二螺杆支座630。
第一螺杆支座620可安装在第二支撑平台160上,并且能够相对于第二支撑平台160旋转。第一螺杆支座620的下端可设置有枢转轴,通过枢转轴连接到第一支撑平台160的支撑板161上。螺杆610的一端插入到第一螺杆 支座620内,螺杆驱动电机可安装在第一螺杆支座620内,以驱动螺杆610旋转。
第二螺杆支座630中可设置有水平螺纹通孔,螺杆610的另一端可穿过第二螺杆支座630的水平螺纹通孔,与第二螺杆支座630螺纹结合。第二螺杆支座630可旋转地安装到环形框架710上。
环形框架710整体上呈环形,中间具有圆形通孔,圆形通孔的直径大于单桩基础10的直径,以供单桩基础10穿过。环形框架710可相对于第二支撑平台160在水平面内旋转,具体地,以单桩基础10的轴线为旋转中心旋转。
第二螺杆支座630可旋转地安装到环形框架710的外边缘上。作为示例,环形框架710的外周边缘设置有一块沿水平方向向环形框架710外延伸的凸板714,第二螺杆支座630可转动地安装在凸板714上。
第二螺杆支座630的下端可设置有竖直插入孔,凸板714上可设置有能够插入第二螺杆支座630下部的插入孔中的销轴,使得第二螺杆支座630能够在凸板714上旋转。第二螺杆支座630中的竖直插入孔位于水平螺纹通孔的下方,从而避免插入第二螺杆支座630的下部的销轴与插入到水平螺纹通孔中的螺杆610相互干涉。
当螺杆驱动电机驱动螺杆610旋转时,螺杆610与第二螺杆支座630的啮合位置改变,推动第二螺杆支座630通过凸板714带动环形框架710旋转。
图7示出了第二导向单元2000的立体图,图8和图9示出了第二导向单元2000的俯视图。其中,在图8和图9中,为了更清楚地示出夹持单元800的结构,移去了环形框架710的上层部分(上层环形板)。下面,参照附图7-图9详细描述环形框架710的具体结构。
环形框架710可包括环形板和安装在环形板上的套筒761。为了稳定支撑并传递旋转力矩,环形板可包括同轴设置的在上层的第一环形板711和在下层的第二环形板712。中间连接板713将在上层的第一环形板711和在下层的第二环形板712连接为一体。中间连接板713可设置为多块,沿着环形框架710的轴向方向延伸,并在环形框架710的圆周方向上间隔设置。然而,在上层的第一环形板711和在下层的第二环形板712的连接方式不限于此,也可以采用多个连接柱将两者上下连接为一体的结构。
套筒761沿水平方向设置,可设置在第一环形板711和第二环形板712之间。在套筒761的上下两侧还可设置有套筒枢转轴762,套筒枢转轴762 沿竖直方向(与环形框架的轴线方向平行)延伸,一端与环形板结合,另一端与套筒761结合,从而套筒761能够通过套筒枢转轴762连接到环形板上,被环形板稳定地支撑,并能够围绕套筒枢转轴762旋转。在环形板旋转时,套筒761能够随着环形板在环形板的圆周方向上移动,同时还能够相对于环形板枢转,将转矩有效传递给夹持臂810。
夹持臂810可以为至少两个,在这种情况下,在夹持臂810的自由端可以设置弧形夹板,并且在弧形夹板的内侧可设置挤压滚轮,以在包围单桩基础的外周表面的一部分的同时,与单桩基础的外表面滚动接触。
在本公开的附图所示的示例中,第二夹持单元800包括三个夹持臂810,夹持臂810的第一端可枢转地连接到第二支撑平台160上。具体地,夹持臂铰接座820可固定安装到第二支撑平台160上,夹持臂810的第一端连接到夹持臂铰接座820上,从而能够围绕夹持臂铰接座820旋转。夹持臂810的第二端穿过套筒761,并从套筒761中伸出预定长度。夹持臂810的第二端可以连接有挤压滚轮812,以通过挤压滚轮812与单桩基础10的外表面滚动接触。夹持臂810可以为刚性直连杆,为了保证夹持臂810的强度,刚性直连杆可以设置为双层结构,即两个上下并联的直连杆用作一个夹持臂810。套筒761的截面可以为圆形也可以为方形,只要与夹持臂810的外形相适应并且不影响夹持臂810在套筒761中前后移动即可。
当螺杆驱动电机旋转时,螺杆610通过第二螺杆支座630推动环形框架710旋转,环形框架710通过套筒761带动夹持臂810围绕夹持臂枢转轴枢转,挤压滚轮812向着夹持空间或者远离夹持空间移动,从而调整可供单桩基础10穿过的空间大小。
当需要吊装单桩基础10以将单桩基础10插入到环形框架710中时,可以驱动挤压滚轮812向外移动,当单桩基础10已经插入到环形框架710中时,可以驱动夹持臂810枢转,通过挤压滚轮812在多个位置对单桩基础10施加挤压力,从而将单桩基础810抱紧。同样地,根据本公开第二实施例的第二导向单元能够通过一个驱动单元推动环形结构旋转,并通过环形结构推动三个夹持臂同步枢转,实现各个挤压滚轮812同步贴紧或松开单桩基础10的过程,实现同轴精确调节功能。
虽然在第二导向单元中采用丝杆驱动结构来实现第二驱动单元600,然而,第二驱动单元600不限于采用丝杆驱动结构,还可以采用齿轮-齿条驱动 结构。具体地,可以在环形框架710的外圈上设置齿轮,在第二支撑平台160上设置齿条,使齿条与齿轮啮合,通过使齿条前后移动,驱动齿轮旋转,从而带动环形结构旋转,同样能够通过单个驱动单元来使多个夹持臂同步操作。显然,驱动齿轮和驱动齿条的安装位置可以互换,只要能够驱动环形结构旋转即可。
根据本公开第二实施例的单桩基础导向装置,通过在竖直方向上设置第一导向单元和第二导向单元,两者可以同步工作,从而能够在上下两层同时进行垂直度调节,能够更准确地确保单桩基础的垂直度。此外,通过上下两层垂直度调节结构冗余设计,液压驱动和机械丝杠结构互为补充,如果其中一个调节结构出现故障,另一个调节结构也可实现高精度垂直度调节过程。
虽然在本公开第二实施例中,第一导向单元1000和第二导向单元2000上下设置,但是,第一导向单元1000和第二导向单元2000均可单独使用,均可实现同步调节单桩基础垂直度的功能。当设置上下多层导向结构时,不限于将第一导向单元1000和第二导向单元2000上下层布置,而是可以将多个第一导向单元1000上下布置,也可以将多个第二导向单元2000上下层布置,同样可以通过多层调节结构的冗余设计,确保单桩基础的精确垂直度导向功能。
根据本公开的实施例,与油缸设置在平台顶部的传统导向装置不同的是,根据本公开实施例的单桩基础导向装置的驱动单元设置在平台底部,操作人员在平台底部即可操作油缸和丝杆驱动结构,大大降低人员操作油缸坠海的风险。
根据本公开的单桩基础导向装置,能够在单桩基础的安装过程中对单桩基础起到导向、夹持和扶正的作用,确保单桩基础垂直打入海床,防止桩基在打桩过程中发生偏斜。在对单桩基础进行施加抱紧力时,对于每个导向单元,仅需通过操作单个驱动结构即可同时调整各个夹持臂的夹紧力,与传统的导向装置相比,能够省去单桩沉桩过程中需要停锤并多次测量单桩垂直度的步骤,大大提高沉桩效率。在采用多层导向单元同时进行导正的情况下,上下层导向单元可通过同轴同心实现同步操作,保证垂直度精准。结构简单,省去大量油缸,维护方便,结构成本低。
虽然已经参照本公开的示例性实施例具体示出并描述了本公开,但是本领域普通技术人员应该理解,在不脱离本公开的由权利要求限定的精神和范 围的情况下,可以在本公开中做出各种形式和细节上的改变。

Claims (15)

  1. 一种单桩基础导向装置,其特征在于,所述单桩基础导向装置包括至少一个导向单元,所述至少一个导向单元中的每一个包括单个驱动单元、传动单元和夹持单元,所述夹持单元包括至少两个夹持臂,所述至少两个夹持臂之间形成用于夹持单桩基础(10)的夹持空间,所述单个驱动单元将动力传递给所述传动单元,通过所述传动单元驱动所述至少两个夹持臂同步操作,从而使所述夹持单元打开或闭合。
  2. 如权利要求1所述的单桩基础导向装置,其特征在于,所述至少一个导向单元包括第一导向单元(1000),所述第一导向单元(1000)包括第一驱动单元(300)、第一传动单元(400)和第一夹持单元(500),所述第一传动单元(400)包括推块(410),所述第一驱动单元(300)推动所述推块(410)移动从而驱动所述第一夹持单元(500)闭合以将所述单桩基础(10)抱紧。
  3. 如权利要求2所述的单桩基础导向装置,其特征在于,所述推块(410)包括相对设置的第一锥面(411)和第二锥面(412),所述第一夹持单元(500)包括第一夹持臂(510)和第二夹持臂(520),所述第一夹持臂(510)的一端设置有第一支撑滚轮(512),所述第二夹持臂(520)的一端设置有第二支撑滚轮(522),所述第一支撑滚轮(512)支撑在所述第一锥面(411)上,所述第二支撑滚轮(522)支撑在所述第二锥面(412)上,当所述推块(410)向着所述夹持空间移动时,所述第一锥面(411)和所述第二锥面(412)分别对所述第一支撑滚轮(512)和所述第二支撑滚轮(522)施加推力使得所述第一夹持臂(510)和第二夹持臂(520)枢转闭合。
  4. 如权利要求3所述的单桩基础导向装置,其特征在于,所述推块(410)还包括第一倾斜表面(413),所述第一驱动单元(300)包括液压缸(310)和连接到所述液压缸(310)一端的楔块(320),所述楔块(320)具有第二倾斜表面(321),所述第二倾斜表面(321)与所述第一倾斜表面(413)相面对并相互接触,当所述液压缸(310)伸出而推动所述楔块(320)移动时,所述楔块(320)推动所述推块(410)向着所述夹持空间移动。
  5. 如权利要求4所述的单桩基础导向装置,其特征在于,所述第一夹持臂(510)的另一端设置有第一挤压滚轮(511),所述第二夹持臂(520)的另一端设置有第二挤压滚轮(521),所述第一夹持单元(500)还包括第三挤 压滚轮(531),所述第三挤压滚轮(531)设置在所述推块(410)的面向所述夹持空间的一侧,所述第一挤压滚轮(511)、所述第二挤压滚轮(521)和所述第三挤压滚轮(531)能够同时将所述单桩基础(10)抱紧或松开。
  6. 如权利要求4所述的单桩基础导向装置,其特征在于,所述第一倾斜表面(413)和所述第二倾斜表面(321)中的一个上设置有滑轨,另一个上设置有滑槽,所述滑轨能够卡合在所述滑槽中并且能够在所述滑槽中滑动。
  7. 如权利要求3所述的单桩基础导向装置,其特征在于,所述第一锥面(411)和所述第二锥面(412)上分别设置有滚轮槽,所述第一支撑滚轮(512)和所述第二支撑滚轮(522)能够卡合在所述滚轮槽中并且能够在所述滚轮槽中滚动。
  8. 如权利要求5所述的单桩基础导向装置,其特征在于,所述单桩基础导向装置还包括第一支撑平台(120),所述第一支撑平台(120)形成为一侧开口的凹形结构,并且包括第一内侧壁(121)以及位于所述第一内侧壁(121)两侧的第二内侧壁(122)和第三内侧壁(123),所述第一驱动单元(300)安装在所述第一内侧壁(121)上,所述楔块(320)能够在所述第一内侧壁(121)上滑动,所述第一夹持臂(510)和所述第二夹持臂(520)均为刚性曲连杆,所述第一夹持臂(510)的中部铰接到所述第二内侧壁(122)上,所述第二夹持臂(520)的中部铰接到所述第三内侧壁(123)上。
  9. 如权利要求8所述的单桩基础导向装置,其特征在于,所述第一倾斜表面(413)和第二倾斜表面(321)的倾斜角度在10°-30°范围内。
  10. 如权利要求1-9中任一项所述的单桩基础导向装置,其特征在于,所述至少一个导向单元包括第二导向单元(2000),所述第二导向单元(2000)包括第二驱动单元(600)、第二传动单元(700)和第二夹持单元(800),所述第二传动单元(700)包括环形框架(710),所述第二夹持单元(800)包括多个夹持臂(810),所述多个夹持臂(810)插入到所述环形框架(710)中,所述第二驱动单元(600)推动所述环形框架(710)旋转,从而通过所述环形框架(710)带动所述多个夹持臂(810)同步枢转。
  11. 如权利要求10所述的单桩基础导向装置,其特征在于,所述单桩基础导向装置还包括第二支撑平台(160),所述第二导向单元(2000)安装在所述第二支撑平台(160)上,所述环形框架(710)包括环形板以及设置在所述环形板上的套筒(761),所述套筒(761)通过套筒枢转轴(762)可枢 转地连接到所述环形板上,所述夹持臂(810)为刚性直连杆,所述夹持臂(810)的第一端通过夹持臂铰接座(820)铰接到所述第二支撑平台(160)上,所述夹持臂(810)的第二端穿过所述套筒(761),当所述环形框架(710)旋转时,所述套筒(761)能够带动所述直连杆围绕所述夹持臂铰接座(820)旋转。
  12. 如权利要求11所述的单桩基础导向装置,其特征在于,所述第二驱动单元(600)包括螺杆(610)、螺杆驱动电机、第一螺杆支座(620)和第二螺杆支座(630),所述螺杆驱动电机安装在所述第一螺杆支座(620)中,所述螺杆(610)的第一端插入到所述第一螺杆支座(620)中,所述螺杆(610)的第二端穿过所述第二螺杆支座(630)中的水平螺纹通孔,所述第二螺杆支座(630)可转动地安装到所述环形框架(710)上,所述螺杆驱动电机驱动所述螺杆(610)旋转,通过所述第二螺杆支座(630)带动所述环形框架(710)转动。
  13. 如权利要求12所述的单桩基础导向装置,其特征在于,所述环形框架(710)的外边缘设置有一个凸板(714),所述第二螺杆支座(630)可转动地安装在所述凸板(714)上。
  14. 如权利要求11所述的单桩基础导向装置,其特征在于,所述第二驱动单元(600)包括相互啮合的驱动齿轮和驱动齿条,所述驱动齿轮和所述驱动齿条中的一个安装到所述环形框架(710)外圈,所述驱动齿轮和驱动齿条中的另一个安装到所述第二支撑平台(160)。
  15. 如权利要求11所述的单桩基础导向装置,其特征在于,所述环形板包括同轴设置的第一环形板(711)和第二环形板(712),所述套筒(761)位于所述第一环形板(711)和所述第二环形板(712)之间,所述套筒(761)的上下两侧分别通过所述套筒枢转轴(762)与所述第一环形板(711)和所述第二环形板(712)连接。
PCT/CN2020/120148 2018-12-03 2020-10-10 单桩基础导向装置 WO2021129043A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US17/757,898 US11718970B2 (en) 2019-12-24 2020-10-10 Monopile foundation guiding device
AU2020410629A AU2020410629A1 (en) 2019-12-24 2020-10-10 Monopile foundation guiding device
CA3162337A CA3162337A1 (en) 2019-12-24 2020-10-10 Monopile foundation guiding device
EP20904997.2A EP4083328B1 (en) 2019-12-24 2020-10-10 Monopile foundation guiding device
BR112022012426A BR112022012426A2 (pt) 2019-12-24 2020-10-10 Dispositivo de guiamento de fundação monopilar
ZA2022/07331A ZA202207331B (en) 2018-12-03 2022-07-01 Monopile foundation guiding device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911345913.6A CN113026748B (zh) 2019-12-24 2019-12-24 单桩基础导向装置
CN201911345913.6 2019-12-24

Publications (1)

Publication Number Publication Date
WO2021129043A1 true WO2021129043A1 (zh) 2021-07-01

Family

ID=76451545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/120148 WO2021129043A1 (zh) 2018-12-03 2020-10-10 单桩基础导向装置

Country Status (8)

Country Link
US (1) US11718970B2 (zh)
EP (1) EP4083328B1 (zh)
CN (1) CN113026748B (zh)
AU (1) AU2020410629A1 (zh)
BR (1) BR112022012426A2 (zh)
CA (1) CA3162337A1 (zh)
CL (1) CL2022001718A1 (zh)
WO (1) WO2021129043A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113481861A (zh) * 2021-07-21 2021-10-08 中铁七局集团有限公司 一种辅助钢管柱安装定位的对中支架
CN113910285A (zh) * 2021-10-26 2022-01-11 中国船舶重工集团公司第七一六研究所 一种滚轮式工业机器人双层夹持装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113562629B (zh) * 2021-07-15 2024-03-26 海通建设集团有限公司 格构柱定位调垂系统
CN115744278B (zh) * 2022-11-23 2024-05-14 成都芯锐科技有限公司 一种pcb板制造生产线及芯片封装工艺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000212960A (ja) * 1999-01-28 2000-08-02 Nippon Sharyo Seizo Kaisha Ltd 三点支持式杭打機の杭支持構造
CN2895525Y (zh) * 2006-03-27 2007-05-02 李正兴 新型液压夹桩机构
CN201214790Y (zh) * 2007-06-16 2009-04-01 蔡宇 同步夹桩机构
CN206825649U (zh) * 2017-06-29 2018-01-02 嘉兴欣创混凝土制品有限公司 预制桩成型模中的抱抓
CN110130349A (zh) * 2019-04-18 2019-08-16 江苏亨通蓝德海洋工程有限公司 一种翻转式单桩抱桩器施工机构以及施工方法
WO2019172752A2 (en) * 2018-03-06 2019-09-12 Itrec B.V. Adjustable pile holding system, vessel and pile installation method
CN110468840A (zh) * 2019-09-16 2019-11-19 江苏亨通蓝德海洋工程有限公司 一种负压桶式单桩抱桩器施工机构及其施工方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4560863B2 (ja) * 1999-11-29 2010-10-13 コベルコクレーン株式会社 油圧装置
JP4566850B2 (ja) * 2005-07-25 2010-10-20 鹿島建設株式会社 杭打方法
CN201003167Y (zh) * 2006-11-23 2008-01-09 邓长峰 多功能打桩机
DE102010009916A1 (de) * 2010-03-02 2011-09-08 Daniel Reinsberg Vorrichtung für die Versorgung und den Service an Türmen, insbesondere für Offshore-Windkraftanlagen
CN102407004A (zh) * 2011-10-21 2012-04-11 沈阳建筑大学 多功用自动爬升装置
US8677700B2 (en) * 2012-03-01 2014-03-25 Thomas & Betts International, Inc. Foundation system for electrical utility structures
CN102660950A (zh) * 2012-05-29 2012-09-12 中国海洋石油总公司 海上风机单桩基础导向扶正机构
CN103590402B (zh) * 2013-11-29 2014-10-01 湖南新天和工程设备有限公司 梯形螺杆顶拉式液压动力沉桩机
CN204475334U (zh) * 2015-02-10 2015-07-15 中交一航局第一工程有限公司 大直径钢管桩沉桩用抱桩装置
CN205203293U (zh) * 2015-12-17 2016-05-04 江苏金风科技有限公司 海上风机的登靠装置及运维船
NL2020536B1 (en) 2018-03-06 2019-09-13 Itrec Bv Pile holding system, vessel and pile installation method
PT3517479T (pt) * 2018-01-30 2022-11-25 Deme Offshore Be Nv Dispositivo e método para fornecer um objeto alongado de grande dimensão com uma direção longitudinal num fundo subaquático
CN108708379A (zh) * 2018-03-27 2018-10-26 武汉船用机械有限责任公司 一种抱桩器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000212960A (ja) * 1999-01-28 2000-08-02 Nippon Sharyo Seizo Kaisha Ltd 三点支持式杭打機の杭支持構造
CN2895525Y (zh) * 2006-03-27 2007-05-02 李正兴 新型液压夹桩机构
CN201214790Y (zh) * 2007-06-16 2009-04-01 蔡宇 同步夹桩机构
CN206825649U (zh) * 2017-06-29 2018-01-02 嘉兴欣创混凝土制品有限公司 预制桩成型模中的抱抓
WO2019172752A2 (en) * 2018-03-06 2019-09-12 Itrec B.V. Adjustable pile holding system, vessel and pile installation method
CN110130349A (zh) * 2019-04-18 2019-08-16 江苏亨通蓝德海洋工程有限公司 一种翻转式单桩抱桩器施工机构以及施工方法
CN110468840A (zh) * 2019-09-16 2019-11-19 江苏亨通蓝德海洋工程有限公司 一种负压桶式单桩抱桩器施工机构及其施工方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4083328A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113481861A (zh) * 2021-07-21 2021-10-08 中铁七局集团有限公司 一种辅助钢管柱安装定位的对中支架
CN113481861B (zh) * 2021-07-21 2022-09-02 中铁七局集团有限公司 一种辅助钢管柱安装定位的对中支架
CN113910285A (zh) * 2021-10-26 2022-01-11 中国船舶重工集团公司第七一六研究所 一种滚轮式工业机器人双层夹持装置

Also Published As

Publication number Publication date
CN113026748A (zh) 2021-06-25
EP4083328A1 (en) 2022-11-02
CN113026748B (zh) 2022-08-09
CA3162337A1 (en) 2021-07-01
EP4083328B1 (en) 2024-03-20
AU2020410629A1 (en) 2022-07-14
US20230051368A1 (en) 2023-02-16
CL2022001718A1 (es) 2023-02-24
EP4083328A4 (en) 2023-01-04
EP4083328C0 (en) 2024-03-20
US11718970B2 (en) 2023-08-08
BR112022012426A2 (pt) 2022-08-30

Similar Documents

Publication Publication Date Title
WO2021129043A1 (zh) 单桩基础导向装置
US8601748B2 (en) Method and apparatus for wind turbine erection
EP3826953B1 (en) Coupling tool for connection to an outer end of a tubular element for upending the element and a related method for this
CN111994776B (zh) 俯仰旋转机构和叶片吊装工装
WO2012051828A1 (zh) 风机整体安装旋转抱举机构
WO2021088817A1 (zh) 火箭后支点支撑调整系统
KR20150103071A (ko) 구조물의 요소를 배치하기 위한 장치 및 방법
CN111550119B (zh) 一种通讯塔安装施工方法
CN111977506B (zh) 俯仰旋转机构和叶片吊装工装
US9328477B2 (en) Pile guide
CN112010164A (zh) 叶片夹具和叶片吊装工装
WO2013093614A1 (en) Device and method for assembling a structure at sea
GB2563465B (en) Operating method of pile guide frame coupled with rotatable arm
GB2563464B (en) Pile guide frame coupled with rotatable arm
CN211646386U (zh) 一种建筑工程打桩装置
CN219606242U (zh) 一种水利工程管道固定装置
CN111994773A (zh) 叶片吊装工装
CN201165636Y (zh) 蠕动式缆索机器人夹紧装置
CN216920310U (zh) 一种用于高桩码头断桩的临时支撑装置
CN215519232U (zh) 一种土建施工预埋设备
CN109057396B (zh) 一种烟囱拆除用脚手架的搭建方法
CN117922804A (zh) 一种光伏施工船的移船定位系统
CN116752522A (zh) 一种自由角度高承载复合扩体桩
CN112918627A (zh) 双船法拆除海上平台上部组块的缓冲装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20904997

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3162337

Country of ref document: CA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022012426

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2020410629

Country of ref document: AU

Date of ref document: 20201010

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020904997

Country of ref document: EP

Effective date: 20220725

ENP Entry into the national phase

Ref document number: 112022012426

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220622