WO2021128824A1 - 一种基于硅光芯片的激光雷达 - Google Patents

一种基于硅光芯片的激光雷达 Download PDF

Info

Publication number
WO2021128824A1
WO2021128824A1 PCT/CN2020/103518 CN2020103518W WO2021128824A1 WO 2021128824 A1 WO2021128824 A1 WO 2021128824A1 CN 2020103518 W CN2020103518 W CN 2020103518W WO 2021128824 A1 WO2021128824 A1 WO 2021128824A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
module
light
grating
coupler
Prior art date
Application number
PCT/CN2020/103518
Other languages
English (en)
French (fr)
Inventor
金里
曹睿
冯俊波
刘祖文
蒋平
郭进
路侑锡
刘其鑫
杨米杰
李同辉
Original Assignee
联合微电子中心有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 联合微电子中心有限责任公司 filed Critical 联合微电子中心有限责任公司
Priority to US17/788,313 priority Critical patent/US20230027271A1/en
Publication of WO2021128824A1 publication Critical patent/WO2021128824A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S17/34Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/50Systems of measurement based on relative movement of target
    • G01S17/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • G01S7/4812Constructional features, e.g. arrangements of optical elements common to transmitter and receiver transmitted and received beams following a coaxial path
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning

Definitions

  • the invention relates to a laser radar, in particular to a laser radar based on a silicon optical chip.
  • the frequency modulated continuous wave lidar system uses the received echo signal and the transmitted local oscillator signal to interfere by transmitting a frequency modulated continuous wave, thereby obtaining the difference frequency signal of the ranging information, and then using the difference frequency signal to measure the distance and speed .
  • a frequency-modulated continuous wave three-beam all-fiber lidar is used for distance measurement and speed measurement.
  • the reference light, measurement local oscillation light, and echo signal light are respectively coupled into the optical fiber, and the distance and speed information are obtained through interference detection through optical fiber transmission.
  • the existing all-fiber lidar Due to the minimum bending radius of the optical fiber and the volume limitation of various optical fiber devices, the existing all-fiber lidar has low integration, not compact structure, and poor environmental stability.
  • silicon-based optoelectronics the technology for integrating optical devices on silicon has also become an area that researchers are keen on.
  • the current integrated optical devices in the field of lidar only use the extremely small silicon-based The advantages of bending radius, low power consumption, high power tolerance, etc.
  • the present invention provides a silicon optical chip and a silicon optical chip-based lidar, which are used to solve the low integration of the lidar system and the system volume in the prior art. Restricted, poor environmental stability and other shortcomings.
  • a silicon optical chip includes a silicon basic body.
  • the silicon basic body integrates: a beam splitter module, an optical measurement interference module, an optical modulation interference module, and an optical detection module.
  • the beam splitter module is used to receive external input Signal light, and split the signal light to the optical modulation interference module and the optical measurement interference module;
  • the optical measurement interference module is used to split the received signal light into measurement light and local oscillation light, and after transmitting the measurement light to the outside, Receive a part of the reflected light of the measurement light to interfere with the local oscillation light to form the measurement interference light;
  • the optical modulation interference module splits the received signal light into the first reference light and the second reference light, and compares the first reference light and/ Or the second reference light undergoes optical phase adjustment and then combines and interferes to form a reference interference light;
  • the light detection module receives the measurement interference light and the reference interference light respectively, and performs photoelectric conversion to externally output electrical signals.
  • the present invention also proposes a laser radar based on a silicon optical chip, including the above-mentioned silicon optical chip, laser module, beam collimator module and signal processing module, wherein the output of the laser module is connected to the input optical path of the silicon optical chip.
  • the electrical signal output of the optical chip is electrically connected to the signal processing module to process and analyze laser measurement information;
  • the beam collimator module is arranged on the side of the measurement light exit of the silicon optical chip, and makes the silicon optical chip in the beam collimator The focal plane area of the module.
  • the present invention has the following beneficial effects:
  • a silicon optical chip of the present invention integrates the beam splitter module, the optical measurement interference module, the optical modulation interference module and the optical detection module in the optical device on the same silicon base to form a chip-level system for transmitting signal light, which improves The stability and reliability of the optical components reduce the noise of the system, realize a more compact chip integrated system, and meet the current requirements for miniaturization of lidar.
  • the present invention is a laser radar based on a silicon optical chip, which adopts an integrated silicon optical chip, which greatly improves the integration of the laser radar system, reduces the volume and weight of the system, improves the stability and reliability of the system, and reduces the production cost. And the difficulty of assembly.
  • FIG. 1 is a system diagram of the lidar of the present invention.
  • laser 101 isolator 102, silicon optical chip 2, first grating coupler 201, first light splitting coupler 202, optical modulation interference module 203, first balanced detector 204, second light splitting coupler 205, The second grating coupler 206, the third grating coupler 207, the fourth grating coupler 208, the fifth grating coupler 209, the optical switch 210, the transceiving grating unit 211, the second balanced detector 212, the optical ring module 3, the beam Collimator module 4, target 5, signal processing module 6.
  • the present invention provides a silicon optical chip, including a silicon basic body.
  • the silicon basic body is integrated with: a beam splitter module, an optical measurement interference module, an optical modulation interference module 203, and an optical detection module.
  • the beamer module is used to receive externally input signal light, and split the signal light to the optical modulation interference module 203 and the optical measurement interference module;
  • the optical measurement interference module is used to split the received signal light into measurement light and local oscillator After transmitting the measuring light to the outside, it receives a part of the reflected light of the measuring light to interfere with the local oscillation light to form the measuring interference light;
  • the optical modulation interference module 203 splits the received signal light into the first reference light and the first reference light. Two reference lights, the first reference light and/or the second reference light are optically phase adjusted and then combined and interfered to form a reference interference light;
  • the optical detection module receives the measurement interference light and the reference interference light respectively, and performs photoelectric conversion for external output electric signal.
  • An optical path for the beam splitter module, the optical measurement interference module, the optical modulation interference module 203 and the optical detection module to transmit signal light is integrated in the silicon basic body, and the optical path uses an optical fiber or an optical waveguide to transmit the signal light.
  • the beam splitter module includes a first grating coupler 201 and a first light splitting coupler 202; the first grating coupler 201 is used to receive externally input signal light, and its output is connected to the optical path of the input end of the first light splitting coupler 202 Connection; The output end of the first optical splitter 202 is respectively connected to the input optical path of the optical modulation interference module 203 and the optical measurement interference module.
  • the optical measurement interference module includes a second optical splitter coupler 205, an optical circle module 3, a fifth grating coupler 209, and a transceiver grating unit 211; the input end of the second optical splitter coupler 205 and the output of the first optical splitter 202 Optical path connection, the output end of the second splitting optical coupler 205 is optically connected to the first port of the optical ring module 3 and one of the input ends of the fifth grating coupler 209; the second port of the optical ring module 3 is connected to the transceiver grating
  • the input optical path of the unit 211 is connected, and the third port is connected to the other input optical path of the fifth grating coupler 209; the output of the fifth grating coupler 209 is connected to the input optical path of the optical detection module; the transmitting and receiving grating unit 211 Used to transmit the measurement light, and receive or transmit a part of the reflected light of the measurement light.
  • the optical circulator module 3 also includes a second grating coupler 206, a third grating coupler 207, a fourth grating coupler 208 and an optical circulator; one end of the optical circulator is connected to the optical path of the second grating coupler 206
  • the first port and the second end of the optical ring module 3 are connected with the optical path of the third grating coupler 207 to form the second port and the third end of the optical ring module 3 are connected with the optical path of the fourth grating coupler 208 to form the third optical path of the optical ring module 3.
  • the optical loop module 3 through the second grating coupler 206, the third grating coupler 207, and the fourth grating coupler 208 respectively correspond to the second light splitting coupler 205, the transmitting and receiving grating unit 211, and the fifth grating coupler 209, respectively Optical connection.
  • the optical modulation of the optical modulation interference module 203 includes one of electro-optic modulation, thermo-optic modulation, or acousto-optic modulation, or two optical paths with different lengths are used to achieve optical path difference, so as to perform different modulations on the phase of light.
  • the design structure is simple and easy to manufacture.
  • the optical path difference is also fixed due to the fixed structure, the phase difference of light with a fixed frequency is relatively fixed, but for continuous frequency modulation lasers, it can interfere with the beat signal and still achieve laser nonlinearity.
  • the optical modulation interference module 203 can use a Mach-Zehnder interferometer, including a 1x2 coupler integrated at the input end and a 2x2 coupler integrated at the output end, as a port device for accessing and transmitting signal light.
  • the optical detection module includes a first balanced detector 204 and a second balanced detector 212.
  • the fifth grating coupler 209 is a 2x2 optical coupler; the input and optical modulation of the first balanced detector 204
  • the output optical path of the interference module 203 is connected, the input of the 2x2 optical coupler is connected to the output of the second optical splitter 205 and the third port optical path of the optical ring module 3 respectively, and the output of the 2x2 optical coupler is connected to the second balanced detector 212.
  • the input optical path is connected, and the first balanced detector 204 and the second balanced detector 212 photoelectrically convert the received optical signal to form an electrical signal for external output.
  • the transmitting and receiving grating unit 211 is a single grating or a grating array; the grating array includes a plurality of optical switches and a plurality of gratings, and each grating is converged by an optical path and connected to the optical path of the second port of the optical ring module 3; each optical switch 210 is provided in each grating In the optical path connected to the second port of the optical ring module 3, light transmission that forms a unique optical path between any grating and the second port of the optical ring module 3 is controlled.
  • the first grating coupler 201 is used as the starting end of the silicon optical chip to receive signal light, and is directly connected to the outside for coupling external signal light into the silicon optical chip; the first light splitting coupler 202 is coupled to the first grating The device 201 is connected, and the function is to split the received signal light and transmit it to the Mach-Zehnder interferometer and the second splitting coupler 205 respectively.
  • the Mach-Zehnder interferometer has two optical waveguides with different lengths.
  • the Mach-Zehnder interferometer splits the received signal light and transmits it to the two optical waveguides with different lengths and then interferes, forming a reference interference light entering
  • the first balanced detector 204, and the first balanced detector 204 performs photoelectric detection of the reference interference light to form an electrical signal and output it to the outside; at the same time, the Mach-Zehnder interferometer can also realize the phase of light through voltage modulation.
  • the second light splitting coupler 205 splits most of the energy of the received signal light into measurement light, such as splitting the beam into measurement light and local oscillation light at a ratio of 99:1 according to the split energy ratio, and transmits the local oscillation light to the fifth Grating coupler 209; after transmitting the measurement light to the second grating coupler 206 at the same time, it is transmitted to the optical switch 210 through the 1 end, 2 end of the optical circulator and the third grating coupler 207, and is controlled by the optical switch 210 to connect to it
  • the two-dimensional array transceiving grating unit 211 transmits the measurement light to the outside; in the silicon optical chip, the transceiving grating unit 211 receives part of the reflected light of the measurement light returned from the outside, and passes through the third grating coupler 207 and the optical circulator.
  • Ends 2 and 3 are transmitted to the fourth grating coupler 208, and then transmitted to the fifth grating coupler 209 through the on-chip waveguide to merge with the local oscillator light; the reflected light and the local oscillator light interfere to form the measurement interference light and enter the second balanced detection
  • the second balanced detector 212 performs photoelectric detection of the measuring interference light to form an electrical signal and output it to the outside.
  • the waveguide integrated in the silicon base body for connection and transmission uses SiO2, SiON or SiN materials, so that the signal light is transmitted in the silicon optical chip with extremely low loss, reduces the noise inside the chip, and improves the quality of the optical components.
  • the optical detection module adopts Ge detector, and its preparation process is compatible with silicon-based COMS process. It also has the characteristics of flexible integration, low price and excellent photoelectric characteristics, so that it can be directly integrated into the silicon optical chip.
  • the optical circulator can adopt a micro-crystal optical circulator device, and the silicon optical chip adopts an inverted cone structure
  • the micro-assembly and connection of the end-face coupling method not only improves the integration of the silicon optical chip, but also uses the non-reciprocal characteristics of the optical circulator to form the main optical component of the optical transceiver in the silicon optical chip, avoiding the signal light beam
  • the transceiving grating unit 211 adopts a single grating form, or uses a tree structure to separate the optical path into a two-dimensional grating array form.
  • the transmitting and receiving grating unit 211 integrates the transmitting grating and the receiving grating as a whole, so that the internal structure of the chip is more miniaturized.
  • the silicon optical chip provided in this embodiment integrates the beam splitter module, the optical measurement interference module, the optical modulation interference module and the optical detection module in the optical device on the same silicon base to form a chip-level system for transmitting signal light, which improves The stability and reliability of the various optical components reduces the noise of the system, realizes a more compact chip integrated system, and meets the current requirements for miniaturization of lidar.
  • this embodiment also provides a laser radar based on a silicon optical chip, including the above-mentioned silicon optical chip 2, a laser module, a beam collimator module 4, and a signal processing module 6, wherein the output of the laser module Connected to the input optical path of the silicon optical chip 2, the electrical signal output of the silicon optical chip 2 is electrically connected to the signal processing module 6 to process and analyze the laser measurement information; the beam collimator module 4 is set on the measurement light of the silicon optical chip On the exit side, and make the silicon optical chip in the focal plane area of the beam collimator module 4.
  • the laser module includes a laser 101 and an isolator 102.
  • the laser 101 is connected to the optical path of the silicon optical chip 2 through the isolator 102; the output of the laser 101 is a continuous frequency modulation laser.
  • the laser 101 emits a frequency modulated continuous laser whose frequency is modulated into a triangular wave to the isolator 102, and the isolator 102 couples the received laser light into the first grating coupler 201 of the silicon optical chip 2 through a transmission fiber.
  • the laser light is transmitted into the silicon optical chip 2.
  • the first grating coupler 201 is coupled and packaged with the transmission fiber, which not only simplifies the wiring layout, and makes the lidar system more integrated.
  • the first grating coupler 201 also has a larger diameter optical fiber The function of being transferred into the silicon optical chip 2 with a smaller optical size achieves a better transmission effect.
  • the first grating coupler 201 transmits the received laser light to the first light splitting coupler 202, and then the first light splitting coupler 202 splits the laser light and transmits the laser light to the Mach-Zehnder interferometer and the second light splitting coupler 205 respectively.
  • the Mach-Zehnder interferometer splits the received reference light into two waveguides of different lengths, and then interferes.
  • the reference interference light enters the first balanced detector 204 and is paired by the first balanced detector 204.
  • the reference interference light is subjected to photoelectric detection to form an electrical signal used to correct the nonlinear error of the frequency-modulated continuous laser and output to the signal processing module 6.
  • the second light splitting coupler 205 splits most of the energy of the received laser light into measurement light, such as splitting the beam into the measurement light and the local oscillation light in different optical paths according to the split energy ratio at a ratio of 99:1.
  • the local oscillation light is transmitted to the fifth grating coupler 209; the measuring light is transmitted to the second grating coupler 206 at the same time, and then transmitted to the optical switch 210 through the 1 end, 2 end of the optical circulator, and the third grating coupler 207.
  • the optical switch 210 controls the transmitting grating of the two-dimensional array transmitting and receiving grating unit 211 connected to it, and spatially couples with the beam collimator module 4 through the transmitting grating, and transmits the measurement light to the target 5 after compressing the beam divergence angle;
  • the receiving grating of the transceiving grating unit 211 is spatially coupled with the beam collimator module 4, and receives a part of the reflected light of the measurement light transmitted back from the target 5, and passes through the third grating coupler 207 and the 2 ends of the optical circulator.
  • the third end is transmitted to the fourth grating coupler 208, and then transmitted to the fifth grating coupler 209 through the on-chip waveguide to merge with the local oscillation light; the reflected light and the local oscillation light interfere to form the measurement interference light and enter the second balanced detector 212 and The second balanced detector 212 performs photoelectric detection on the measurement interference light, forms a distance measurement electrical signal and outputs it to the signal processing module 6.
  • the signal processing module 6 analyzes and processes the received nonlinear error electrical signal and the ranging electrical signal to obtain the distance and speed information of the target 5.
  • the measurement light irradiated on the long-distance target 5 is diffusely reflected, and part of the diffusely reflected reflected light is received by the beam collimator module 4 and spatially coupled into the transceiving grating unit 211; if the transceiving grating unit 211 uses a single grating For spatial coupling with the beam collimator module 4, since the measurement angle is fixed, the back-end signal processing module 6 obtains the distance and speed information of a certain positioning point of the target; if the transceiving grating unit 211 adopts a two-dimensional grating array Form, because the gratings at different positions are located at different positions of the focal plane of the beam collimator module 4, the angle of the exiting beam will also change accordingly.
  • the position of the exiting grating of the measuring light is controlled by the optical switch 210, which can be used without any mechanical movement. In the case of two-dimensional scanning, the back-end signal processing module 6 obtains the distance and speed information of the target two-dimensional surface.
  • This embodiment provides a lidar based on a silicon optical chip, which uses an integrated silicon optical chip. Compared with the traditional lidar, it greatly improves the integration of the system, reduces the volume and weight of the system, and improves the system. Stability and reliability reduce the production cost and assembly difficulty.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种基于硅光芯片的激光雷达,包括硅光芯片(2)、激光模块、光束准直器模块(4)和信号处理模块(6),其中,激光模块发出连续调频激光传递给硅光芯片(2),激光在硅光芯片(2)内分束传递,一方面形成参考干涉光和本振光,另一方面经光束准直器模块(4)传递至目标(5)后,接收反射光与本振光进行干涉形成测量干涉光;在硅光芯片(2)内光电探测参考干涉光和测量干涉光,并形成电信号输出给信号处理模块(6),由此得到目标的距离和速度信息。硅光芯片(2)内集成了大部分光纤传输光路、耦合器件、光探测器,使激光雷达系统高度集成和小型化。由此,一种基于硅光芯片(2)的激光雷达,具有集成度高、体积小、重量轻、制作简单、系统稳定性和可靠性优越的特点。

Description

一种基于硅光芯片的激光雷达 技术领域
本发明涉及一种激光雷达,具体涉及一种基于硅光芯片的激光雷达。
背景技术
目前,激光调制技术和窄线宽激光器技术的发展已趋于成熟,且调频连续波(Frequency Modulated Continuous Wave,FMCW)激光雷达系统具有抗干扰能力强、所需要的发射能量较小、容易调制、成本低、信号处理简单等优点,使其被广泛应用于测距和测速领域中。调频连续波激光雷达系统是通过发射调频连续波,利用接收到的回波信号和发射的本振信号进行干涉,从而得到测距信息的差频信号,进而利用差频信号进行距离和速度的测算。
现有技术中,采用调频连续波三波束全光纤激光雷达测距和测速,分别将参考光、测量本振光、回波信号光耦合进光纤,通过光纤传输进行干涉及探测得到距离和速度信息。由于光纤存在最小弯折半径及各类光纤器件的体积限制,现有的全光纤激光雷达集成度较低,结构不紧凑,且环境稳定性差。近年来,由于硅基光电子学的发展,针对在硅基上集成光学器件的技术也成为研究者们热衷的一个方面,但是目前在激光雷达领域集成的光学器件也只是利用硅基具有的极小弯曲半径、低功耗、高功率容限等优势将它们各自分别在硅基上制作,然后通过多芯片系统联动集成,这样的集成方式增加了激光雷达各主要光学部件之间的电性连接,结构仍然不紧凑,还存在部分光学部件因连接、封装等不良环境引起的断接或短接,导致激光雷达系统工作不稳定。
发明内容
针对现有技术中所存在的不足,本发明提供了一种硅光芯片及一种基于硅光芯片的激光雷达,其用于解决现有技术中所存在的激光雷达系统集成度低,系统体积受限制,环境稳定性差等缺点。
为实现上述目的,本发明采用了如下的技术方案:
一种硅光芯片,包括硅基本体,所述硅基本体内集成有:分束器模块、光测量干涉模块、光学调制干涉模块与光探测模块,其中,分束器模块用于接收外部输入的信号光,并将信号光分束传递给光学调制干涉模块与光测量干涉模块;光测量干涉模块用于将接收的信号光分束为测量光与本振光,并传递测量光至外部后,接收一部分测量光的反射光以与 本振光进行干涉,形成测量干涉光;光学调制干涉模块将接收到的信号光分束为第一参考光与第二参考光,对第一参考光和/或第二参考光进行光学相位调整后合束干涉并形成参考干涉光;光探测模块分别接收测量干涉光与参考干涉光,并进行光电转换以对外输出电信号。
本发明还提出了一种基于硅光芯片的激光雷达,包括上述硅光芯片、激光模块、光束准直器模块和信号处理模块,其中,激光模块的输出与硅光芯片的输入光路连接,硅光芯片的电信号输出与信号处理模块电性相连,以处理分析激光测量信息;所述光束准直器模块设置于硅光芯片的测量光出口一侧,并使得硅光芯片处于光束准直器模块的焦面区域。
相比于现有技术,本发明具有如下有益效果:
本发明一种硅光芯片,将光学器件中的分束器模块、光测量干涉模块、光学调制干涉模块与光探测模块集成在同一硅基上,形成传输信号光的芯片级系统,提高了各光学部件之间的稳定性和可靠性,降低了系统的噪声,实现了更加紧凑的芯片集成系统,满足目前对于激光雷达小型化的要求。
本发明一种基于硅光芯片的激光雷达,采用集成式硅光芯片,极大地提高了激光雷达系统集成度,减小了系统体积和重量,提高了系统稳定性和可靠性,降低了制作成本及装配难度。
本发明的其它优点、目标和特征将部分通过下面的说明体现,部分还将通过对本发明的研究和实践而为本领域的技术人员所理解。
附图说明
图1为本发明激光雷达的系统图。
在图中:激光器101、隔离器102、硅光芯片2、第一光栅耦合器201、第一分光耦合器202、光学调制干涉模块203、第一平衡探测器204、第二分光耦合器205、第二光栅耦合器206、第三光栅耦合器207、第四光栅耦合器208、第五光栅耦合器209、光开关210、收发光栅单元211、第二平衡探测器212、光环行模块3、光束准直器模块4、目标5、信号处理模块6。
具体实施方式
以下结合说明书附图对本发明作进一步详细说明,并给出具体实施方式。
参照图1,本发明提供了一种硅光芯片,包括硅基本体,所述硅基本体内集成有:分 束器模块、光测量干涉模块、光学调制干涉模块203与光探测模块,其中,分束器模块用于接收外部输入的信号光,并将信号光分束传递给光学调制干涉模块203与光测量干涉模块;光测量干涉模块用于将接收的信号光分束为测量光与本振光,并传递测量光至外部后,接收一部分测量光的反射光以与本振光进行干涉,形成测量干涉光;光学调制干涉模块203将接收到的信号光分束为第一参考光与第二参考光,对第一参考光和/或第二参考光进行光学相位调整后合束干涉并形成参考干涉光;光探测模块分别接收测量干涉光与参考干涉光,并进行光电转换以对外输出电信号。
所述硅基本体内集成有供所述分束器模块、光测量干涉模块、光学调制干涉模块203与光探测模块传输信号光的光路,所述光路采用光纤或光波导传输信号光。
所述分束器模块包括第一光栅耦合器201和第一分光耦合器202;所述第一光栅耦合器201用于接收外部输入的信号光,其输出与第一分光耦合器202输入端光路连接;所述第一分光耦合器202输出端分别与光学调制干涉模块203和光测量干涉模块的输入光路连接。
所述光测量干涉模块包括第二分光耦合器205、光环行模块3、第五光栅耦合器209和收发光栅单元211;所述第二分光耦合器205输入端与第一分光耦合器202的输出光路连接,第二分光耦合器205的输出端分别与光环行模块3的第1端口和第五光栅耦合器209的其中一个输入端光路连接;所述光环行模块3的第2端口与收发光栅单元211的输入光路连接,第3端口与第五光栅耦合器209的另一个输入端光路连接;所述第五光栅耦合器209的输出与光探测模块的输入光路连接;所述收发光栅单元211用于传递测量光,并接收或传递一部分测量光的反射光。
所述光环行模块3还包括第二光栅耦合器206、第三光栅耦合器207、第四光栅耦合器208和光环行器;所述光环行器的1端与第二光栅耦合器206光路连接组成光环行模块3的第1端口、2端与第三光栅耦合器207光路连接组成光环行模块3的第2端口、3端与第四光栅耦合器208光路连接组成光环行模块3的第3端口;光环行模块3通过第二光栅耦合器206、第三光栅耦合器207、第四光栅耦合器208分别与第二分光耦合器205、收发光栅单元211、第五光栅耦合器209一一对应光路连接。
所述光学调制干涉模块203的光学调制包括电光调制、热光调制或声光调制的其中一种,或通过两路不同长度的光路实现光程差异,从而对光的相位进行不同的调制,其设计结构简单,便于制造,虽然由于结构固定,光程差异也固定,对于固定频率的光其相位差较为固定,但对于连续调频激光而言,能够干涉出拍频信号,仍能实现激光非线性误差的 检测;相比之下,电光调制、热光调制或声光调制能够实现更为灵活的相位差调节,对于制造精度的冗余程度更高,对于硅光芯片的应用也更为灵活。光学调制干涉模块203可以使用马赫曾德干涉仪,包含输入端集成的1x2耦合器和输出端集成的2x2耦合器,作为接入和传递信号光的端口器件。
所述光探测模块包括第一平衡探测器204和第二平衡探测器212,对应的,所述第五光栅耦合器209为2x2光耦合器;所述第一平衡探测器204的输入与光学调制干涉模块203的输出光路连接,2x2光耦合器的输入分别与第二分光耦合器205的输出、光环行模块3的第3端口光路连接,2x2光耦合器的输出与第二平衡探测器212的输入光路连接,所述第一平衡探测器204和第二平衡探测器212将接收的光信号进行光电转换后形成电信号对外输出。
所述收发光栅单元211为单个光栅或光栅阵列;光栅阵列包括若干光开关及若干个光栅,各光栅经光路汇聚后与光环行模块3的第2端口光路连接;各光开关210设于各光栅与光环行模块3的第2端口的连接光路中,以控制任一光栅与光环行模块3的第2端口之间形成唯一光路的光传递。
前述方案中,第一光栅耦合器201作为硅光芯片接收信号光的始端,直接与外部连接,用于将外部的信号光耦合进入硅光芯片内;第一分光耦合器202与第一光栅耦合器201相接,作用是将接收到的信号光分束后分别传递给马赫曾德干涉仪和第二分光耦合器205。
本实施例中,马赫曾德干涉仪具有两路不同长度的光波导,马赫曾德干涉仪将接收到的信号光分束传递给两个不同长度的光波导后发生干涉,形成参考干涉光进入第一平衡探测器204,并由所述第一平衡探测器204对所述参考干涉光进行光电检测,以形成电信号并对外输出;同时,马赫曾德干涉仪也能够通过电压实现光的相位调制。第二分光耦合器205将接收的信号光中大部分能量分束为测量光,如按分光能量比以99:1的比例分束为测量光与本振光,并传递本振光至第五光栅耦合器209;同时传递测量光至第二光栅耦合器206后,经光环行器的1端、2端和第三光栅耦合器207传递至光开关210,由光开关210控制与之相接的二维阵列收发光栅单元211将测量光传递至外部;在硅光芯片内,收发光栅单元211接收外部传回的一部分测量光的反射光,并经第三光栅耦合器207和光环行器的2端、3端传递至第四光栅耦合器208,再经片上波导传递至第五光栅耦合器209与本振光汇合;反射光和本振光发生干涉,形成测量干涉光进入第二平衡探测器212,并由所述第二平衡探测器212对所述测量干涉光进行光电检测,以形成电信号并对外输出。
所述硅基本体内集成用作连接和传输的波导采用SiO2、SiON或SiN材料,使信号光 在硅光芯片内以极低的损耗进行传输,降低了芯片内部的噪声、提高了各光学部件之间的稳定性和可靠性;所述光探测模块采用Ge探测器,其制备工艺与硅基COMS工艺兼容,还具有集成灵活、价格低廉和光电特性优良的特点,使其直接集成到硅光芯片内,用于组成探测信号光所需的第一平衡探测器204和第二平衡探测器212;所述光环行器可以采用微型晶体光环行器件,并将其与硅光芯片采用倒锥型结构进行端面耦合的方式微组装连接,不仅提高了硅光芯片的集成度,还利用光环行器的非互易特性,使其构成硅光芯片内光学收发一体的主要光学部件,避免了信号光光束之间的干扰;所述收发光栅单元211采用单个光栅形式,或使用树形结构将光路分离为二维光栅阵列的形式,这样设计的目的是便于控制传递至外部的测量光角度,灵活地获得外部固定点位或二维面的反射光,另一方面,收发光栅单元211集成了发射光栅和接收光栅为一体,使芯片内部结构更加小型化。
本实施例提供的硅光芯片,将光学器件中的分束器模块、光测量干涉模块、光学调制干涉模块与光探测模块集成在同一硅基上,形成传输信号光的芯片级系统,提高了各光学部件之间的稳定性和可靠性,降低了系统的噪声,实现了更加紧凑的芯片集成系统,满足目前对于激光雷达小型化的要求。
参照图1,本实施例还提供了一种基于硅光芯片的激光雷达,包括上述硅光芯片2、激光模块、光束准直器模块4和信号处理模块6,其中,所述激光模块的输出与硅光芯片2的输入光路连接,硅光芯片2的电信号输出与信号处理模块6电性相连,以处理分析激光测量信息;所述光束准直器模块4设置于硅光芯片的测量光出口一侧,并使得硅光芯片处于光束准直器模块4的焦面区域。
所述激光模块包括激光器101和隔离器102,所述激光器101经过隔离器102与硅光芯片2光路连接;所述激光器101的输出为连续调频激光。
前述方案中,所述激光器101发出频率调制为三角波的调频连续激光给隔离器102,所述隔离器102将接收到的激光经传输光纤耦合后进入硅光芯片2的始端第一光栅耦合器201,由此,激光被传递进入了所述硅光芯片2内。所述第一光栅耦合器201与所述传输光纤进行了耦合封装,不仅更简化了连线的布局,使激光雷达系统更加集成,第一光栅耦合器201还具有将激光从较大口径的光纤传递进光学尺寸较小的硅光芯片2内的作用,实现了更好的传输效果。
第一光栅耦合器201将接收到的激光传递至第一分光耦合器202,再由第一分光耦合器202将激光分束后分别传递给马赫曾德干涉仪和第二分光耦合器205。一方面,马赫曾德干涉仪将接收到的参考光分束传递给两个不同长度的波导后发生干涉,形成参考干涉光 进入第一平衡探测器204并由所述第一平衡探测器204对所述参考干涉光进行光电检测,形成用来校正调频连续激光器的非线性误差的电信号输出给信号处理模块6。与此同时,第二分光耦合器205将接收的激光中大部分能量分束为测量光,如按分光能量比以99:1的比例分束为测量光与本振光在不同光路进行传输,并传递本振光至第五光栅耦合器209;同时传递测量光至第二光栅耦合器206后,经光环行器的1端、2端和第三光栅耦合器207传递至光开关210,由光开关210控制与之相接的二维阵列收发光栅单元211的发射光栅,经发射光栅与光束准直器模块4进行空间耦合,压缩光束发散角后将测量光传递至目标5;在硅光芯片内,收发光栅单元211的接收光栅与光束准直器模块4空间耦合,接收从目标5传回的一部分测量光的反射光,并经第三光栅耦合器207和光环行器的2端、3端传递至第四光栅耦合器208,再经片上波导传递至第五光栅耦合器209与本振光汇合;反射光和本振光发生干涉,形成测量干涉光进入第二平衡探测器212并由所述第二平衡探测器212对所述测量干涉光进行光电检测,形成测距电信号输出给信号处理模块6。最后由信号处理模块6对接收的非线性误差电信号和测距电信号经过分析和处理后获得目标5的距离和速度信息。
所述测量光照射在远距离目标5上发生了漫反射,部分漫反射回来的反射光由光束准直器模块4接收并空间耦合进入收发光栅单元211;所述收发光栅单元211若采用单个光栅与光束准直器模块4进行空间耦合,由于测量角度固定,则后端信号处理模块6获得的是目标某个定位点的距离和速度信息;所述收发光栅单元211若采用二维光栅阵列的形式,由于不同位置的光栅位于光束准直器模块4焦面的不同位置,其出射光束角度也会随之变化,通过光开关210来控制测量光的出射光栅位置,可以在不产生任何机械运动的情况下实现二维扫描,则后端信号处理模块6获得的是目标二维面的距离和速度信息。
本实施例提供了一种基于硅光芯片的激光雷达,采用集成式硅光芯片,相比于传统的激光雷达,极大地提高了系统的集成度,减小了系统体积和重量,提高了系统稳定性和可靠性,降低了制作成本及装配难度。
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (10)

  1. 一种硅光芯片,包括硅基本体,其特征在于,硅基本体内集成有:分束器模块、光测量干涉模块、光学调制干涉模块(203)与光探测模块;
    ——所述分束器模块用于接收外部输入的信号光,并将信号光分束传递给光学调制干涉模块(203)与光测量干涉模块;
    ——所述光测量干涉模块用于将接收的信号光分束为测量光与本振光,并传递测量光至外部后,接收一部分测量光的反射光以与本振光进行干涉,形成测量干涉光;
    ——所述光学调制干涉模块(203)将接收到的信号光分束为第一参考光与第二参考光,对第一参考光和/或第二参考光进行光学相位调整后合束干涉并形成参考干涉光;
    ——所述光探测模块分别接收测量干涉光与参考干涉光,并进行光电转换以对外输出电信号。
  2. 如权利要求1所述的一种硅光芯片,其特征在于,所述分束器模块包括第一光栅耦合器(201)和第一分光耦合器(202);所述第一光栅耦合器(201)用于接收外部输入的信号光,其输出与第一分光耦合器(202)输入端光路连接;所述第一分光耦合器(202)输出端分别与光学调制干涉模块(203)和光测量干涉模块的输入光路连接。
  3. 如权利要求1或2所述的一种硅光芯片,其特征在于,所述光测量干涉模块包括第二分光耦合器(205)、光环行模块(3)、第五光栅耦合器(209)和收发光栅单元(211);所述第二分光耦合器(205)输入端与第一分光耦合器(202)的输出光路连接,第二分光耦合器(205)的输出端分别与光环行模块(3)的第1端口和第五光栅耦合器(209)的其中一个输入端光路连接;所述光环行模块(3)的第2端口与收发光栅单元(211)的输入光路连接,第3端口与第五光栅耦合器(209)的另一个输入端光路连接;所述第五光栅耦合器(209)的输出与光探测模块的输入光路连接;所述收发光栅单元(211)用于传递测量光,并接收或传递一部分测量光的反射光。
  4. 如权利要求3所述的一种硅光芯片,其特征在于,所述收发光栅单元(211)为单个光栅。
  5. 如权利要求3所述的一种硅光芯片,其特征在于,所述收发光栅单元(211)包括若干光开关及若干个光栅,各光栅形成光栅阵列,并经光路汇聚后与光环行模块(3)的第2端口光路连接;各光开关(210)设于各光栅与光环行模块(3)的第2端口的连接光路中,以控制任一光栅与光环行模块(3)的第2端口之间形成唯一光路的光传递。
  6. 如权利要求3所述的一种硅光芯片,其特征在于,所述光环行模块(3)还包括第二光栅耦合器(206)、第三光栅耦合器(207)与第四光栅耦合器(208),光环行模块(3)通过第二 光栅耦合器(206)、第三光栅耦合器(207)、第四光栅耦合器(208)分别与第二分光耦合器(205)、收发光栅单元(211)、第五光栅耦合器(209)一一对应光路连接。
  7. 如权利要求1所述的一种硅光芯片,其特征在于,所述光学调制干涉模块(203)的光学调制包括电光调制、热光调制或声光调制的其中一种。
  8. 如权利要求3所述的一种硅光芯片,其特征在于,所述光探测模块包括第一平衡探测器(204)和第二平衡探测器(212),对应的,所述第五光栅耦合器(209)为2x2光耦合器;所述第一平衡探测器(204)的输入与光学调制干涉模块(203)的输出光路连接,2x2光耦合器的输入分别与第二分光耦合器(205)的输出、光环行模块(3)的第3端口光路连接,2x2光耦合器的输出与第二平衡探测器(212)的输入光路连接,所述第一平衡探测器(204)和第二平衡探测器(212)将接收的光信号进行光电转换后形成电信号对外输出。
  9. 一种基于硅光芯片的激光雷达,包括激光模块、光束准直器模块(4)和信号处理模块(6),其特征在于,还包括如权利要求1-8任一项所述的硅光芯片,所述激光模块的输出与硅光芯片的输入光路连接,硅光芯片的电信号输出与信号处理模块(6)电性相连,以处理分析激光测量信息;所述光束准直器模块(4)设置于硅光芯片的测量光出口一侧,并使得硅光芯片处于光束准直器模块(4)的焦面区域。
  10. 如权利要求9所述的一种基于硅光芯片的激光雷达,其特征在于,所述激光模块包括激光器(101)和隔离器(102),所述激光器(101)经过隔离器(102)与硅光芯片光路连接;所述激光器(101)的输出为连续调频激光。
PCT/CN2020/103518 2019-12-24 2020-07-22 一种基于硅光芯片的激光雷达 WO2021128824A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/788,313 US20230027271A1 (en) 2019-12-24 2020-07-22 Silicon photonics chip-based lidar

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911344165.XA CN111007483B (zh) 2019-12-24 2019-12-24 一种基于硅光芯片的激光雷达
CN201911344165.X 2019-12-24

Publications (1)

Publication Number Publication Date
WO2021128824A1 true WO2021128824A1 (zh) 2021-07-01

Family

ID=70115983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/103518 WO2021128824A1 (zh) 2019-12-24 2020-07-22 一种基于硅光芯片的激光雷达

Country Status (3)

Country Link
US (1) US20230027271A1 (zh)
CN (1) CN111007483B (zh)
WO (1) WO2021128824A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023066397A1 (zh) * 2021-10-22 2023-04-27 杭州视光半导体科技有限公司 一种片上相干检测的扫描同轴面阵收发机
CN116719044A (zh) * 2023-08-10 2023-09-08 赛丽科技(苏州)有限公司 一种调频连续波激光雷达

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111007483B (zh) * 2019-12-24 2022-06-28 联合微电子中心有限责任公司 一种基于硅光芯片的激光雷达
US11585930B2 (en) * 2020-02-06 2023-02-21 Honeywell International Inc. Silicon photonics integrated optical velocimeter
CN111880190B (zh) * 2020-08-24 2023-12-08 国科光芯(海宁)科技股份有限公司 一种相干激光测距芯片及其系统
CN112130130A (zh) * 2020-09-07 2020-12-25 联合微电子中心有限责任公司 硅光芯片以及激光雷达系统
CN112113884A (zh) * 2020-09-24 2020-12-22 挚感(苏州)光子科技有限公司 一种基于集成光学芯片的多波长激光光束光幕实现方法
CN112068147A (zh) * 2020-10-15 2020-12-11 联合微电子中心有限责任公司 用于目标检测的集成芯片和电子装置
CN112526484B (zh) * 2020-12-09 2024-04-30 联合微电子中心有限责任公司 硅光芯片及其形成方法、激光雷达系统
CN113259008B (zh) * 2021-06-24 2022-05-27 上海交通大学 硅基集成光学频率传递系统
WO2023065149A1 (zh) * 2021-10-20 2023-04-27 深圳市速腾聚创科技有限公司 激光雷达及激光雷达控制方法
US11982748B2 (en) * 2022-01-20 2024-05-14 Silc Technologies, Inc. Imaging system having multiple cores
WO2023207600A1 (zh) * 2022-04-29 2023-11-02 深圳市速腾聚创科技有限公司 调频连续波激光雷达
CN114894227A (zh) * 2022-07-15 2022-08-12 安徽至博光电科技股份有限公司 一种光纤传感集成光学芯片及其系统
CN115184903B (zh) * 2022-09-09 2022-11-29 北京摩尔芯光半导体技术有限公司 激光雷达收发组件、激光雷达装置
CN115343691B (zh) * 2022-10-18 2023-01-06 中国电子科技集团公司信息科学研究院 探测系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105259548A (zh) * 2015-10-29 2016-01-20 哈尔滨工业大学 一种用于fmcw绝对距离测量技术中色散失配校正方法
CN109031338A (zh) * 2018-09-28 2018-12-18 深圳市速腾聚创科技有限公司 激光雷达及其测距方法
CN109521436A (zh) * 2018-10-16 2019-03-26 天津大学 一种基于双光路调频连续波的运动物体动态距离测量方法
WO2019228350A1 (en) * 2018-05-29 2019-12-05 Huawei Technologies Co., Ltd. Liquid crystal on silicon (lcos) lidar scanner with multiple light sources
CN111007483A (zh) * 2019-12-24 2020-04-14 联合微电子中心有限责任公司 一种基于硅光芯片的激光雷达

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106684104B (zh) * 2016-12-29 2019-05-17 中国科学院半导体研究所 一种单片集成平衡探测器及其制备方法
CN107144847B (zh) * 2017-05-26 2020-03-31 吉林大学 一种激光雷达收发系统
CN107247381B (zh) * 2017-07-11 2019-09-24 中国科学院半导体研究所 一种硅基集成任意波形信号发生器
CN110208774B (zh) * 2018-08-01 2021-10-08 王飞 一种激光雷达芯片及系统
CN109991582B (zh) * 2019-03-13 2023-11-03 上海交通大学 硅基混合集成激光雷达芯片系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105259548A (zh) * 2015-10-29 2016-01-20 哈尔滨工业大学 一种用于fmcw绝对距离测量技术中色散失配校正方法
WO2019228350A1 (en) * 2018-05-29 2019-12-05 Huawei Technologies Co., Ltd. Liquid crystal on silicon (lcos) lidar scanner with multiple light sources
CN109031338A (zh) * 2018-09-28 2018-12-18 深圳市速腾聚创科技有限公司 激光雷达及其测距方法
CN109521436A (zh) * 2018-10-16 2019-03-26 天津大学 一种基于双光路调频连续波的运动物体动态距离测量方法
CN111007483A (zh) * 2019-12-24 2020-04-14 联合微电子中心有限责任公司 一种基于硅光芯片的激光雷达

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BHARGAVA P.; KIM T.; POULTON C. V.; NOTAROS J.; YAACOBI A.; TIMURDOGAN E.; BAIOCCO C.; FAHRENKOPF N.; KRUGER S.; NGAI T.; TIMALSIN: "Fully Integrated Coherent LiDAR in 3D-Integrated Silicon Photonics/65nm CMOS", 2019 SYMPOSIUM ON VLSI CIRCUITS, JSAP, 9 June 2019 (2019-06-09), XP033583861, DOI: 10.23919/VLSIC.2019.8778154 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023066397A1 (zh) * 2021-10-22 2023-04-27 杭州视光半导体科技有限公司 一种片上相干检测的扫描同轴面阵收发机
CN116719044A (zh) * 2023-08-10 2023-09-08 赛丽科技(苏州)有限公司 一种调频连续波激光雷达
CN116719044B (zh) * 2023-08-10 2023-11-21 赛丽科技(苏州)有限公司 一种调频连续波激光雷达

Also Published As

Publication number Publication date
US20230027271A1 (en) 2023-01-26
CN111007483A (zh) 2020-04-14
CN111007483B (zh) 2022-06-28

Similar Documents

Publication Publication Date Title
WO2021128824A1 (zh) 一种基于硅光芯片的激光雷达
CN109991582B (zh) 硅基混合集成激光雷达芯片系统
WO2020224007A1 (zh) 基于一维光相控阵的三维扫描激光雷达
CN115639543B (zh) 调频连续波激光雷达及自动驾驶设备
JP5752040B2 (ja) 対チャープfmcwコヒーレントレーザレーダー用の小型の光ファイバ配置
US11796680B2 (en) Lens and integrated beam transceiver based lidar detection device
CN115685147B (zh) 调频连续波激光雷达及自动驾驶设备
WO2022062105A1 (zh) 一种阵列式相干测距芯片及其系统
CN114325639A (zh) 可用于雷达的光学组件及硅光芯片
CN115656975B (zh) 波导转换芯片、调频连续波激光雷达及自动驾驶设备
CN111880190B (zh) 一种相干激光测距芯片及其系统
WO2023019498A1 (zh) 一种基于dwdm光开关模块测量三维风量的光路切换通道和切换方法、及激光雷达
CN112511239B (zh) 一种相干接收装置及测风激光雷达系统
CN114791611A (zh) 调频连续波激光雷达
Poulton Integrated LIDAR with optical phased arrays in silicon photonics
CN109557557B (zh) 一种软件自定义多功能激光雷达
CN112130130A (zh) 硅光芯片以及激光雷达系统
CN116626696A (zh) 一种调频连续波激光测距装置
CN110687546A (zh) 一种采用相位调制器的双光束激光多普勒测速系统
CN115343691A (zh) 探测系统
US20230046152A1 (en) Frequency shifter for heterodyne interferometry measurements and device for heterodyne interferometry measurements having such a frequency shifter
CN112147628B (zh) 基于光电振荡器的远距离位移测量装置和测量方法
WO2023207600A1 (zh) 调频连续波激光雷达
CN221007868U (zh) 一种多光学器件集成光路结构
US20230266466A1 (en) Device and Method for Scanning Frequency-Modulated Continuous Wave (FMCW) LiDAR Range Measurement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20904695

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20904695

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20904695

Country of ref document: EP

Kind code of ref document: A1