WO2021128754A1 - 并列型自卷曲弹性纤维及其制备方法 - Google Patents

并列型自卷曲弹性纤维及其制备方法 Download PDF

Info

Publication number
WO2021128754A1
WO2021128754A1 PCT/CN2020/095554 CN2020095554W WO2021128754A1 WO 2021128754 A1 WO2021128754 A1 WO 2021128754A1 CN 2020095554 W CN2020095554 W CN 2020095554W WO 2021128754 A1 WO2021128754 A1 WO 2021128754A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
hole
forming polymer
distribution hole
distribution
Prior art date
Application number
PCT/CN2020/095554
Other languages
English (en)
French (fr)
Inventor
范红卫
王丽丽
汤方明
康爱旗
王山水
Original Assignee
江苏恒力化纤股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏恒力化纤股份有限公司 filed Critical 江苏恒力化纤股份有限公司
Priority to US17/788,309 priority Critical patent/US20230026569A1/en
Priority to JP2022538787A priority patent/JP7370471B2/ja
Publication of WO2021128754A1 publication Critical patent/WO2021128754A1/zh

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/14Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D10/00Physical treatment of artificial filaments or the like during manufacture, i.e. during a continuous production process before the filaments have been collected
    • D01D10/02Heat treatment
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/22Formation of filaments, threads, or the like with a crimped or curled structure; with a special structure to simulate wool
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • D01D5/30Conjugate filaments; Spinnerette packs therefor
    • D01D5/32Side-by-side structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/12Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyamide as constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/16Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one other macromolecular compound obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds as constituent
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/02Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/04Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/06Load-responsive characteristics
    • D10B2401/061Load-responsive characteristics elastic

Definitions

  • the invention belongs to the technical field of polyester fibers, and relates to a side-by-side self-crimping elastic fiber and a preparation method thereof.
  • Crimping is an important indicator of fiber, which affects the textile processing process and the characteristics and application performance of the final product.
  • the side-by-side two-component composite fiber is an important member. It uses the difference in thermal shrinkage properties of the two components to cause the fiber to bend away from the fiber axis, showing permanent Three-dimensional helical crimp to obtain crimp similar to wool fiber.
  • the crimping of this kind of fiber does not require the deformation processing performed when ordinary thermoplastic fibers are crimped, and avoids the thermal damage of chemical fibers. Therefore, it is usually called "self-crimped fiber", also known as three-dimensional crimped fiber. This kind of crimping has The characteristics of long-lasting stability and good elasticity can give the fabric better elasticity, bulkiness and coverage.
  • the parallel two-component composite fiber has The advantages of designable performance and high application value, so it is favored and valued by the fiber manufacturing industry.
  • the invention provides a side-by-side self-crimped elastic fiber and a preparation method thereof, and aims to solve the problem of random "striated unevenness" when the side-by-side two-component fiber is applied to knitted fabric products in the prior art.
  • the present invention uses X (the second fiber-forming polymer/first fiber-forming polymer side-by-side composite monofilament with a mass ratio of the first fiber-forming polymer to the second fiber-forming polymer of 3:2 to 2:1) and Y (the second fiber-forming polymer/first fiber-forming polymer side-by-side composite monofilament with the mass ratio of the first fiber-forming polymer to the second fiber-forming polymer of 2:3 ⁇ 1:2) in a bundle of fibers
  • X the second fiber-forming polymer/first fiber-forming polymer side-by-side composite monofilament with a mass ratio of the first fiber-forming polymer to the second fiber-forming polymer of 3:2 to 2:1
  • Y the second fiber-forming polymer/first
  • a method for preparing side-by-side self-crimped elastic fibers According to a specific spinning process, after distributing the first fiber-forming polymer melt and the second fiber-forming polymer melt, they are removed from the spinneret holes on the same spinneret m and the spinneret hole n are extruded to obtain side-by-side self-crimped elastic fiber;
  • the first fiber-forming polymer and the second fiber-forming polymer have compatibility or partial compatibility (by mixing the first fiber-forming polymer and the second fiber-forming polymer, according to the glass transition temperature of the two To judge the compatibility between the two polymers);
  • the difference between the apparent viscosity of the second fiber-forming polymer melt and the first fiber-forming polymer melt does not exceed 5% (apparent viscosity It is determined by simulation, specifically by using a rheometer to measure the apparent viscosity of the polymer melt at a specific temperature);
  • Distribution hole A and distribution hole B are equal-height cylindrical holes, the ratio of the diameter of the distribution hole A to the distribution hole B is 1.10 ⁇ 1.20:1, the distribution hole C and the distribution hole D are equal-height cylindrical holes, the distribution hole C and the distribution hole The diameter ratio of D is 1:1.10 ⁇ 1.20;
  • the specific spinning process is POY process, FDY process, POY-DTY process or POY-DT process. After the POY process, FDY process and POY-DT process are completed, the fiber is also subjected to relaxation heat treatment.
  • the first fiber-forming polymer melt is distributed through the distribution holes A and C
  • the second fiber-forming polymer melt is distributed through the distribution holes B and D, and is arranged in the distribution hole A and the distribution hole B.
  • the difference between the apparent viscosity of the second fiber-forming polymer melt and the first fiber-forming polymer melt is no more than 5%.
  • Each distribution hole is a cylindrical hole of equal height.
  • the ratio of the diameter of A to the distribution hole B is not equal to the ratio of the diameter of the distribution hole C to the distribution hole D, so that the first fiber-forming polymer melt and the second fiber-forming polymer distributed in the spinneret hole m are melted
  • the mass ratio of the fiber is different from the mass ratio of the first fiber-forming polymer melt and the second fiber-forming polymer melt distributed in the spinneret n, which realizes the coexistence of X and Y in a bundle of fibers, ensuring Because of the different crimping shapes, correspondingly, the number and positional relationship of the distribution holes and guide holes are set reasonably to ensure the smooth distribution; the present invention distributes the spinneret holes m and the spinneret holes n in concentric circles, and controls the same
  • the spinneret holes on the circle are all m or n, which ensures that a part of Y can be mixed into the middle of another part X, which breaks the shape of a neat left and right spiral; the present invention does not need
  • the spinning melt is constantly flowing.
  • the calculation formula of the melt flow rate according to the melt flowing in the tube is:
  • ⁇ Q is the melt flow rate
  • d is the diameter of the tube
  • is the apparent viscosity of the melt at the entrance of the tube
  • l is the length of the tube
  • ⁇ P is the pressure drop after the melt passes through the tube. It can be seen that when ⁇ P, ⁇ , and l remain equal, the ratio of the melt flow in the two circular tubes is close to the ratio of the fourth power of the diameter of the circular tube;
  • the present invention is based on a specific spinning process, after the first fiber-forming polymer melt and the second fiber-forming polymer melt are distributed, they are extruded from the spinning hole m and the spinning hole n on the same spinneret.
  • the distribution means that the first fiber-forming polymer melt is distributed through the distribution hole A, while the second fiber-forming polymer melt is distributed into the spinneret hole m through the distribution hole B.
  • the first fiber-forming polymer melt is distributed through the distribution hole C, while the second fiber-forming polymer melt is distributed into the spinneret hole n through the distribution hole D;
  • ⁇ Q1, d1, ⁇ 1, l1, and ⁇ P1 correspond to distribution hole A (or C)
  • ⁇ Q2, d2, ⁇ 2, l2, and ⁇ P2 correspond to distribution hole B (or D); because at the entrance of distribution hole A and distribution hole B
  • the apparent viscosity of the second fiber-forming polymer melt and the first fiber-forming polymer melt are close to the same (the difference is less than 5%), and the second fiber-forming polymer melt and the first fiber-forming polymer melt are at the entrance of the distribution hole C and the distribution hole D.
  • the apparent viscosity of a fiber-forming polymer melt is close to the same (the difference is less than 5%), so ⁇ 1 and ⁇ 2 are approximately equal; because, at the entrance of the distribution hole A, the distribution hole B, the distribution hole C, and the distribution hole D, the first The apparent viscosity difference between the second fiber-forming polymer melt and the first fiber-forming polymer melt is no more than 5%, and the distribution hole A, the distribution hole B, the distribution hole C and the distribution hole D are all arranged on the distribution plate, The size is small, so the pressure drop after the first fiber-forming polymer melt passes through the distribution hole A is basically the same as the pressure drop after the second fiber-forming polymer melt passes through the distribution hole B.
  • the first fiber-forming polymer melt passes through
  • the pressure drop after the distribution hole C is basically the same as the pressure drop after the second fiber-forming polymer melt passes through the distribution hole D, so ⁇ P1 and ⁇ P2 are approximately equal; because the distribution hole A and the distribution hole B are equal in height, the distribution hole C and the distribution hole B are equal in height.
  • Hole D has the same height, so l1 and l2 are equal;
  • the ratio of the diameter of the distribution hole C to the distribution hole D is 1:1.10 to 1.20
  • the ratio of the melt flow rate of the fiber polymer is about 2:3 ⁇ 1:2
  • the mass ratio of the first fiber-forming polymer to the second fiber-forming polymer in the monofilament finally extruded from the nozzle hole n is 2:3 ⁇ 1:2;
  • the thermal shrinkage rate of the first fiber-forming polymer and the second fiber-forming polymer used in the present invention are different.
  • the two thermal Polymers with different shrinkage rates have compatibility or partial compatibility. The existence of compatibility allows the polymers to pass through the same spinneret (that is, the two fiber-forming polymer melts are distributed together in a parallel composite spinning mode and then extruded. It can be bonded together when it exits).
  • the polymer side-by-side composite monofilament can be formed into a self-crimped form after heat treatment, so that it has elasticity.
  • This self-crimped form is specifically: a fiber-forming polymer with a large heat shrinkage rate is on the inner side of a spiral crimp, and a small heat shrinkage rate is formed.
  • the fiber polymer is on the outside of the spiral coil;
  • the mass ratio of the first fiber-forming polymer to the second fiber-forming polymer in a part of the second fiber-forming polymer/first fiber-forming polymer side-by-side composite monofilament is 3:2 to 2:1
  • the mass ratio of the first fiber-forming polymer to the second fiber-forming polymer in the second fiber-forming polymer/first fiber-forming polymer side-by-side composite monofilament is 2:3 ⁇ 1:2, so different monofilament There is a certain difference in the crimp shape.
  • This difference plays the role of breaking the pure second fiber-forming polymer/first fiber-forming polymer side-by-side composite yarn to form a neat left and right spiral shape, making the obtained side-by-side self-crimping elasticity After the fiber is relaxed and heat-treated, the crimp direction of the monofilament is randomly distributed, so the surface of the knitted fabric woven from the self-crimped elastic fiber does not appear random "striated unevenness".
  • the mass ratio of the second fiber-forming polymer melt to the first fiber-forming polymer melt is 50:50.
  • the spinneret holes m or the spinneret holes n are circular, elliptical or "8"-shaped spinneret holes.
  • the shape of the wire hole n is specially adjusted, and the commonly used side-by-side composite spinneret hole can be selected to meet the requirements.
  • the first fiber-forming polymer and the second fiber-forming polymer are made of the same material and have different viscosities, or the first fiber-forming polymer and the second fiber-forming polymer
  • the material of the polymer is different, and there must be a difference in thermal shrinkage between polymers that meet these two conditions.
  • the fiber can form a self-crimped form; the material of the first fiber-forming polymer and the second fiber-forming polymer It is selected from polyester homopolymer, polyester copolymer, polyester modified product, polyamide homopolymer, polyamide copolymer and polyamide modified product.
  • the spinneret hole m is composed of the guide hole E, the transition hole and the capillary pores that are connected in sequence
  • the spinneret hole n is composed of the guide hole F and the transition hole that are connected in sequence
  • the guide hole E is connected to the distribution hole A and the distribution hole B at the same time
  • the guide hole F is connected to the distribution hole C and the distribution hole D at the same time
  • the distribution hole A, the distribution hole B, the distribution hole C and the distribution hole D are located On the distribution plate in the spinning box III, the second fiber-forming polymer melt is transported to the distribution hole B and the distribution hole D through the spinning box I, and the first fiber-forming polymer melt is transported through the spinning box II
  • the distribution hole A and the distribution hole C in the present invention, the intrinsic viscosity of the first fiber-forming polymer melt, the intrinsic viscosity of the second fiber-forming polymer melt, the temperature of
  • the temperature of the relaxation heat treatment is 90-120°C and the time is 20-30 minutes.
  • the present invention also provides a side-by-side self-crimped elastic fiber prepared by the method for preparing a side-by-side self-crimped elastic fiber as described in any one of the above, which is composed of a plurality of second fiber-forming polymers/first fiber-forming polymers side by side It is composed of composite monofilaments. In the same bundle of fibers, a part of the second fiber-forming polymer/first fiber-forming polymer is side by side.
  • the mass ratio of the first fiber-forming polymer to the second fiber-forming polymer in the composite monofilament is 3:2 ⁇ 2:1, the mass ratio of the first fiber-forming polymer to the second fiber-forming polymer in the second fiber-forming polymer/first fiber-forming polymer side-by-side composite monofilament is 2:3 ⁇ 1:2;
  • the crimping direction of the self-crimped elastic fiber is randomly distributed. Random distribution is a mathematical concept, that is, the crimp shape of each fiber is different from other fibers, so that the fabric produced does not have "striated unevenness".
  • the method for preparing side-by-side self-crimped elastic fibers of the present invention can not form a regular arrangement of spiral crimps by side-by-side self-crimped elastic fibers, thereby solving the problem of "stripes" formed by side-by-side composite fibers in knitted fabrics. "Uneven status";
  • the side-by-side self-crimped elastic fiber prepared by the method for preparing the side-by-side self-crimped elastic fiber of the present invention has excellent elasticity, better comprehensive performance, and a wider application range.
  • Figure 1 is a schematic diagram of the melt distribution of the present invention; wherein, A, B, C, and D are independent distribution holes, and E and F are independent guide holes.
  • the crimp shrinkage rate and crimp stability of the present invention are obtained by testing the tow using GB6506-2001 "Test Method for Crimp Performance of Synthetic Fiber Textured Yarn";
  • the shrinkage elongation (reflecting the elasticity and crimp degree of the deformed yarn, the fiber first bears a light load and then a heavy load, calculates the ratio of the length difference under the two loads to the crimp length) and the crimp elastic recovery rate test methods are as follows:
  • CE (l 2 -l 1 )/l 1 ;
  • PET melt intrinsic viscosity of 0.6dL/g
  • PA6 melt intrinsic viscosity of 2.2dL/g
  • FDY filament is extruded from the spinning hole m (round) and spinning hole n (round) on the same spinneret and then subjected to relaxation heat treatment to obtain side-by-side self-crimped elastic fibers;
  • the PA6 melt and the PET melt each contain 5wt% of the PET-PA6 copolymer melt;
  • the preparation process of the PET-PA6 copolymer is: the PET with a number average molecular weight of 2000 and the PA6 with a number average molecular weight of 2000 according to 1: After mixing with a mass ratio of 1, under the conditions of a temperature of 273°C and a vacuum of 45 Pa, the polycondensation reaction is carried out for 60 minutes;
  • the distribution refers to distributing the PA6 melt through the distributing hole A and at the same time distributing the PET melt through the distributing hole B into the spinneret hole m; distributing the PA6 melt through the distributing hole C and at the same time distributing the PET melt through the distributing hole D To the spinneret hole n; at the entrance of the distribution hole A, the distribution hole B, the distribution hole C and the distribution hole D, the apparent viscosity of the PET melt and the PA6 melt are different by 5%;
  • Distribution hole A and distribution hole B are equal-height cylindrical holes, the ratio of the diameter of the distribution hole A to the distribution hole B is 1.10:1, the distribution hole C and the distribution hole D are equal-height cylindrical holes, the distribution hole C and the distribution hole D The ratio of diameter is 1:1.10;
  • spinneret holes are distributed in concentric circles, and the spinneret holes on the same circle are all m or all n;
  • the spinneret hole m is composed of a guide hole E, transition hole and capillary micropores connected in sequence
  • the spinneret hole n is composed of a guide hole F, transition hole and capillary micropores connected in sequence
  • the guide hole E is at the same time
  • the guide hole F is connected to the distribution hole C and the distribution hole D at the same time
  • the distribution hole A, the distribution hole B, the distribution hole C and the distribution hole D are located on the distribution plate in the spinning box III
  • PET melt is transported to distribution hole B and distribution hole D through spinning box I
  • PA6 melt is transported to distribution hole A and distribution hole C through spinning box II;
  • the temperature of the spinning box I is 285°C
  • the temperature of the spinning box II is 270°C
  • the temperature of the spinning box III is 282°C;
  • the parameters of FDY process are: cooling temperature 25°C, network pressure 0.2MPa, one roll speed 1600m/min, one roll temperature 80°C, two roll speed 2760m/min, two roll temperature 140°C, winding speed 2710m/min; relaxation
  • the heat treatment temperature is 104°C, and the time is 30 minutes.
  • the final side-by-side self-crimped elastic fiber is composed of multiple PA6/PET side-by-side composite monofilaments; the crimp directions of the side-by-side self-crimped elastic fibers are randomly distributed; the crimp shrinkage rate of the side-by-side self-crimped elastic fiber is 52%.
  • the crimp stability is 80%, the shrinkage elongation is 88%, and the crimp elastic recovery rate is 93%;
  • the breaking strength of the side-by-side self-crimped elastic fiber is ⁇ 2.5cN/dtex, the breaking elongation is 50.5%, and the total fineness is 100dtex.
  • the side-by-side self-crimped elastic fiber prepared above was made into a knitted fabric to test the unevenness of the stripe.
  • the result of the test is:
  • the D value of the knitted fabric made of side-by-side self-crimped elastic fiber is 0.57%; this shows that The side-by-side self-crimped elastic fiber prepared by the present invention does not have the problem of "uneven strips”.
  • a method for preparing side-by-side self-crimping elastic fibers according to the FDY process, the mass ratio of 50:50 PET melt (intrinsic viscosity 0.63dL/g) and PA6 melt (intrinsic viscosity of 2dL/g) distribution Then, extrude from the spinneret hole m (ellipse) and spinneret hole n ("8" shape) on the same spinneret to form FDY filaments and perform relaxation heat treatment to obtain side-by-side self-crimped elastic fibers;
  • the PA6 melt and the PET melt each contain 5wt% of the PET-PA6 copolymer melt;
  • the preparation process of the PET-PA6 copolymer is: the PET with a number average molecular weight of 2500 and the PA6 with a number average molecular weight of 2500 according to 1: After mixing with a mass ratio of 1, under the conditions of a temperature of 275°C and a vacuum of 45 Pa, the polycondensation reaction is carried out for 55 minutes;
  • the distribution refers to distributing the PA6 melt through the distributing hole A and at the same time distributing the PET melt through the distributing hole B into the spinneret hole m; distributing the PA6 melt through the distributing hole C and at the same time distributing the PET melt through the distributing hole D To the spinneret hole n; at the entrance of the distribution hole A, the distribution hole B, the distribution hole C and the distribution hole D, the apparent viscosity difference of the PET melt and the PA6 melt is 2.8%;
  • Distribution hole A and distribution hole B are equal-height cylindrical holes, the ratio of the diameter of the distribution hole A to the distribution hole B is 1.18:1, the distribution hole C and the distribution hole D are equal-height cylindrical holes, the distribution hole C and the distribution hole D The ratio of diameter is 1: 1.18;
  • spinneret holes are distributed in concentric circles, and the spinneret holes on the same circle are all m or all n;
  • the spinneret hole m is composed of a guide hole E, transition hole and capillary micropores connected in sequence
  • the spinneret hole n is composed of a guide hole F, transition hole and capillary micropores connected in sequence.
  • the guide hole E is at the same time as the distribution hole A and the distribution hole.
  • the hole B is connected, and the guide hole F is connected to the distribution hole C and the distribution hole D at the same time; the distribution hole A, the distribution hole B, the distribution hole C and the distribution hole D are located on the distribution plate in the spinning box III, and the PET melt is spun
  • the silk box body I is conveyed to the distribution hole B and the distribution hole D, and the PA6 melt is conveyed to the distribution hole A and the distribution hole C through the spinning box II;
  • the temperature of the spinning box I is 283°C
  • the temperature of the spinning box II is 265°C
  • the temperature of the spinning box III is 282°C;
  • the parameters of FDY process are: cooling temperature 23°C, network pressure 0.24MPa, one roll speed 1550m/min, one roll temperature 80°C, two roll speed 2800m/min, two roll temperature 144°C, winding speed 2670m/min; relaxation
  • the heat treatment temperature is 90°C and the time is 24 minutes.
  • the final side-by-side self-crimped elastic fiber is composed of multiple PA6/PET side-by-side composite monofilaments; the crimping direction of the side-by-side self-crimped elastic fiber is randomly distributed; the crimp shrinkage rate of the side-by-side self-crimped elastic fiber is 51.5%, The crimp stability is 77.3%, the shrinkage elongation is 87.9%, and the crimp elastic recovery rate is 92.8%; the breaking strength of the side-by-side self-crimped elastic fiber is ⁇ 2.5cN/dtex, the breaking elongation is 57%, and the total fineness is 95dtex.
  • the side-by-side self-crimped elastic fiber prepared above was made into a knitted fabric to test the unevenness of the stripe.
  • the result of the test is: the D value of the knitted fabric made of side-by-side self-crimped elastic fiber is 0.24%; this shows The side-by-side self-crimped elastic fiber prepared by the present invention does not have the problem of "uneven strips”.
  • PET melt intrinsic viscosity of 0.55dL/g
  • PBT melt intrinsic viscosity of 1.1dL/g
  • the distribution refers to distributing the PBT melt through the distributing hole A and at the same time distributing the PET melt through the distributing hole B into the spinneret hole m; distributing the PBT melt through the distributing hole C and at the same time distributing the PET melt through the distributing hole D To the spinneret hole n; at the entrance of the distribution hole A, the distribution hole B, the distribution hole C and the distribution hole D, the apparent viscosity of the PET melt and the PBT melt differ by 4.9%;
  • Distribution hole A and distribution hole B are equal-height cylindrical holes, the ratio of the diameter of the distribution hole A to the distribution hole B is 1.15:1, the distribution hole C and the distribution hole D are equal-height cylindrical holes, the distribution hole C and the distribution hole D The ratio of diameter is 1: 1.15;
  • spinneret holes are distributed in concentric circles, and the spinneret holes on the same circle are all m or all n;
  • the spinneret hole m is composed of a guide hole E, transition hole and capillary micropores connected in sequence
  • the spinneret hole n is composed of a guide hole F, transition hole and capillary micropores connected in sequence.
  • the guide hole E is at the same time as the distribution hole A and the distribution hole.
  • the hole B is connected, and the guide hole F is connected to the distribution hole C and the distribution hole D at the same time; the distribution hole A, the distribution hole B, the distribution hole C and the distribution hole D are located on the distribution plate in the spinning box III, and the PET melt is spun
  • the silk box I is transported to the distribution hole B and the distribution hole D, and the PBT melt is transported to the distribution hole A and the distribution hole C through the spinning box II;
  • the temperature of the spinning box I is 280°C
  • the temperature of the spinning box II is 260°C
  • the temperature of the spinning box III is 276°C;
  • the parameters of the POY-DT process are: cooling temperature 23°C, winding speed 2800m/min, setting temperature 133°C, stretching temperature 95°C, stretching ratio 1.8;
  • the temperature of the relaxation heat treatment is 90°C, and the time is 30 minutes.
  • the final side-by-side self-crimped elastic fiber is composed of multiple PBT/PET side-by-side composite monofilaments; the crimp directions of the side-by-side self-crimped elastic fibers are randomly distributed; the crimp shrinkage rate of the side-by-side self-crimped elastic fiber is 66%, and the crimp stability It was 92.3%, the shrinkage elongation was 114%, the crimp elastic recovery was 80%, the breaking strength was 3.07 cN/dtex, the breaking elongation was 47%, and the total fineness was 80 dtex.
  • a method for preparing side-by-side self-crimped elastic fibers is as follows:
  • the PTT melt (intrinsic viscosity of 0.9dL/g) and PBT melt (intrinsic viscosity of 1.21dL/g) with a mass ratio of 50:50 are distributed, and then sprayed from the same spinneret Hole m (round) and spinneret hole n (round) are extruded to produce side-by-side self-crimped elastic fibers;
  • the distribution refers to the PBT melt through the distribution hole A, while the PTT melt through the distribution hole B into the spinneret hole m, PBT melt through the distribution hole C, while the PTT melt through the distribution hole D is distributed into the spinneret hole n; at the entrance of the distribution hole A, the distribution hole B, the distribution hole C and the distribution hole D, the apparent viscosity of the PTT melt and the PBT melt is different by 5%;
  • Distribution hole A and distribution hole B are equal-height cylindrical holes, the ratio of the diameter of the distribution hole A to the distribution hole B is 1.1:1, the distribution hole C and the distribution hole D are equal-height cylindrical holes, the distribution hole C and the distribution hole D The ratio of diameter is 1:1.1;
  • the spinneret hole m is composed of a guide hole E, transition hole and capillary micropores connected in sequence
  • the spinneret hole n is composed of a guide hole F, transition hole and capillary micropores connected in sequence.
  • the guide hole E is at the same time as the distribution hole A and the distribution hole.
  • the hole B is connected, and the guide hole F is connected to the distribution hole C and the distribution hole D at the same time; the distribution hole A, the distribution hole B, the distribution hole C and the distribution hole D are located on the distribution plate in the spinning box III, and the PTT melt is spun
  • the filament box I is transported to the distribution hole B and the distribution hole D, and the PBT melt is transported to the distribution hole A and the distribution hole C through the spinning box II; the temperature of the spinning box I is 255°C, and the temperature of the spinning box II The temperature is 266°C, and the temperature of the spinning box III is 265°C;
  • spinneret holes are distributed in concentric circles, and the spinneret holes on the same circle are all m or all n;
  • the parameters of the POY process are: cooling temperature 24°C, winding speed 2660m/min;
  • the prepared side-by-side self-crimped elastic fiber is composed of multiple PBT/PTT side-by-side composite monofilaments; the DT yarn made from side-by-side self-crimped elastic fiber has a random distribution of the crimp direction of the monofilament, the crimp shrinkage rate is 70%, and the crimp is stable The tensile strength is 93.3%, the shrinkage elongation is 113%, and the crimp elastic recovery rate is 85%; the breaking strength of the side-by-side self-crimped elastic fiber is 2.29cN/dtex, the breaking elongation is 125%, and the monofilament fineness is 0.5 dtex, the total fineness is 110 dtex.
  • a method for preparing side-by-side self-crimped elastic fibers According to the POY-DT process, the mass ratio of PET melt (intrinsic viscosity of 0.52dL/g) and PBT melt (intrinsic viscosity of 1.14dL/ g) After distributing, extrude POY-DT filament from the spinneret hole m (round) and spinneret hole n (round) on the same spinneret, and then perform relaxation heat treatment to obtain the side-by-side self-crimped elastic fiber ;
  • the distribution refers to distributing the PBT melt through the distributing hole A and at the same time distributing the PET melt through the distributing hole B into the spinneret hole m; distributing the PBT melt through the distributing hole C and at the same time distributing the PET melt through the distributing hole D To the spinneret hole n; at the entrance of the distribution hole A, the distribution hole B, the distribution hole C and the distribution hole D, the apparent viscosity of the PET melt and the PBT melt differ by 5%;
  • Distribution hole A and distribution hole B are equal-height cylindrical holes, the ratio of the diameter of the distribution hole A to the distribution hole B is 1.17:1, the distribution hole C and the distribution hole D are equal-height cylindrical holes, the distribution hole C and the distribution hole D The ratio of diameter is 1: 1.17;
  • spinneret holes are distributed in concentric circles, and the spinneret holes on the same circle are all m or all n;
  • the spinneret hole m is composed of a guide hole E, transition hole and capillary micropores connected in sequence
  • the spinneret hole n is composed of a guide hole F, transition hole and capillary micropores connected in sequence.
  • the guide hole E is at the same time as the distribution hole A and the distribution hole.
  • the hole B is connected, and the guide hole F is connected to the distribution hole C and the distribution hole D at the same time; the distribution hole A, the distribution hole B, the distribution hole C and the distribution hole D are located on the distribution plate in the spinning box III, and the PET melt is spun
  • the silk box I is transported to the distribution hole B and the distribution hole D, and the PBT melt is transported to the distribution hole A and the distribution hole C through the spinning box II;
  • the temperature of spinning box I is 279°C
  • the temperature of spinning box II is 261°C
  • the temperature of spinning box III is 277°C
  • the parameters of the POY-DT process are: cooling temperature 25°C, winding speed 3100m/min, setting temperature 134°C, stretching temperature 89°C, stretching ratio 1.7;
  • the temperature of the relaxation heat treatment is 98°C, and the time is 27 minutes.
  • the final side-by-side self-crimped elastic fiber is composed of multiple PBT/PET side-by-side composite monofilaments; the crimp directions of the side-by-side self-crimped elastic fibers are randomly distributed; the crimp shrinkage rate of the side-by-side self-crimped elastic fiber is 67%, The crimp stability is 92.6%, the shrinkage elongation is 114%, the crimp elastic recovery is 80%, the breaking strength is 3.02 cN/dtex, the breaking elongation is 51%, and the total fineness is 140 dtex.
  • a method for preparing side-by-side self-crimping elastic fibers According to the POY-DT process, the mass ratio of PET melt (intrinsic viscosity of 0.51dL/g) and PBT melt (intrinsic viscosity of 1.14dL/ g) After distributing, extrude POY-DT filament from the spinneret hole m (round) and spinneret hole n (round) on the same spinneret, and then perform relaxation heat treatment to obtain the side-by-side self-crimped elastic fiber ;
  • the distribution refers to distributing the PBT melt through the distributing hole A and at the same time distributing the PET melt through the distributing hole B into the spinneret hole m; distributing the PBT melt through the distributing hole C and at the same time distributing the PET melt through the distributing hole D To the spinneret hole n; at the entrance of the distribution hole A, the distribution hole B, the distribution hole C and the distribution hole D, the apparent viscosity of the PET melt and the PBT melt differ by 4.4%;
  • Distribution hole A and distribution hole B are equal-height cylindrical holes, the ratio of the diameter of the distribution hole A to the distribution hole B is 1.18:1, the distribution hole C and the distribution hole D are equal-height cylindrical holes, the distribution hole C and the distribution hole D The ratio of diameter is 1: 1.18;
  • spinneret holes are distributed in concentric circles, and the spinneret holes on the same circle are all m or all n;
  • the spinneret hole m is composed of a guide hole E, transition hole and capillary micropores connected in sequence
  • the spinneret hole n is composed of a guide hole F, transition hole and capillary micropores connected in sequence.
  • the guide hole E is at the same time as the distribution hole A and the distribution hole.
  • the hole B is connected, and the guide hole F is connected to the distribution hole C and the distribution hole D at the same time; the distribution hole A, the distribution hole B, the distribution hole C and the distribution hole D are located on the distribution plate in the spinning box III, and the PET melt is spun
  • the silk box I is conveyed to the distribution hole B and the distribution hole D, and the PBT melt is conveyed to the distribution hole A and the distribution hole C through the spinning box II;
  • the temperature of the spinning box I is 279°C
  • the temperature of the spinning box II is 260°C
  • the temperature of the spinning box III is 274°C;
  • the parameters of the POY-DT process are: cooling temperature 25°C, winding speed 2840m/min, setting temperature 135°C, stretching temperature 95°C, stretching ratio 1.7;
  • the temperature of the relaxation heat treatment was 101°C, and the time was 26 minutes.
  • the final side-by-side self-crimped elastic fiber is composed of multiple PBT/PET side-by-side composite monofilaments; the crimp directions of the side-by-side self-crimped elastic fibers are randomly distributed; the crimp shrinkage rate of the side-by-side self-crimped elastic fiber is 68%, The crimp stability is 92.9%, the shrinkage elongation is 115%, the crimp elastic recovery rate is 82%, the breaking strength is 3.04 cN/dtex, the breaking elongation is 49%, and the total fineness is 90 dtex.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Multicomponent Fibers (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

一种并列型自卷曲弹性纤维及其制备方法,将相容或部分相容的第一和第二成纤聚合物(P1和P2)熔体分配后,从同一喷丝板上的喷丝孔m与n挤出制得,其中P1和P2熔体经分配孔A、B流至喷丝孔m中,经分配孔C、D流至喷丝孔n中,A、B或C、D为等高圆柱孔,A与B的直径之比为1.10~1.20:1,C与D的直径之比为1:1.10~1.20,在A~D的入口处,P1和P2熔体的表观粘度相差不超过5%;制得的纤维由P1与P2的质量比为3:2~2:1的P2/P1并列复合单丝以及P1与P2的质量比为2:3~1:2的P2/P1并列复合单丝组成。解决了并列复合纤维在针织物中的"条阴状不匀"的问题。

Description

[根据细则37.2由ISA制定的发明名称] 并列型自卷曲弹性纤维及其制备方法 技术领域
本发明属于聚酯纤维技术领域,涉及一种并列型自卷曲弹性纤维及其制备方法。
背景技术
卷曲是纤维的一项重要指标,影响纺织加工过程和最终成品特征与应用性能。
在双组份复合纤维这一大家族中,并列型双组份复合纤维是重要的一员,是利用两组份热收缩性能的差异,使纤维产生偏离纤维轴向的弯曲,呈现出永久性三维螺旋状卷曲,获得如羊毛纤维类似的卷曲。这种纤维的卷曲不需要普通热塑性纤维获得卷曲时进行的变形加工,免去了化学纤维的热损伤,故通常称其为“自卷曲纤维”,也称为三维立体卷曲纤维,这种卷曲具有持久稳定、弹性好等特点,可赋予织物更好的弹性、蓬松性和覆盖性。通过改变组份高聚物特性、横截面形状、组份分布、组份比例、纺丝牵伸及热定型工艺参数可获得不同性能的并列双组份复合纤维,并列双组份复合纤维由于具有性能可设计的优势,有较高的应用价值,因此受到纤维制造业的青睐与重视。
虽然并列型双组份纤维广泛应用于机织织物,但是在推进纤维更广泛地应用于针织领域时,出现了非常棘手的问题:由于并列型双组份纤维热收缩时形成规整的螺旋卷曲结构,织造的针织物表面会出现随机性的“条阴状不匀”,尤其在平纹针织物上更为明显。这一问题导致并列型双组份纤维无法应用于如仿真丝针织内衣面料等很多种针织产品上,因而,并列型双组份纤维的针织物曾经得到的评价是条干不匀的低档品,严重制约了并列型双组份纤维针织物开发应用。
因此,开发一种避免随机性的“条阴状不匀”出现的并列型双组份纤维的针织物及其制备方法具有十分重要的意义。
发明内容
本发明提供一种并列型自卷曲弹性纤维及其制备方法,目的是解决现有技术中并列型双组份纤维应用于针织物产品时出现随机性的“条阴状不匀”的问题。本发明采用将X(第一成纤聚合物与第二成纤聚合物的质量比为3:2~2:1的第二成纤聚合物/第一成纤聚合物并列复合单丝)与Y(第一成纤聚合物与第二成纤聚合物的质量比为2:3~1:2的第二成纤聚合物/第一成纤聚合物并列复合单丝)在一束纤维中共存的方式,由于两种第一成纤聚合物与第二成纤聚合物的质量比不同的第二成纤聚合物/第一成纤聚合物并列复合纤维的收缩的方式和形态不同,打破了一束纯X(或Y)纤维形成整齐的左、右螺旋形态,进而解决了由一束纯X(或Y)纤维制得的针织物存在的“条阴状不匀”的问题。
为达到上述目的,本发明采用的方案如下:
一种并列型自卷曲弹性纤维的制备方法,按特定的纺丝工艺,将第一成纤聚合物熔体和第二成纤聚 合物熔体分配后,从同一喷丝板上的喷丝孔m与喷丝孔n挤出制得并列型自卷曲弹性纤维;
所述分配是指将第一成纤聚合物熔体经分配孔A,同时将第二成纤聚合物熔体经分配孔B分配至喷丝孔m中,将第一成纤聚合物熔体经分配孔C,同时将第二成纤聚合物熔体经分配孔D分配至喷丝孔n中;
第一成纤聚合物和第二成纤聚合物具有相容性或部分相容性(通过将第一成纤聚合物和第二成纤聚合物混合后,根据二者玻璃化转变温度的变化来判断两种聚合物之间的相容性);
在分配孔A、分配孔B、分配孔C和分配孔D的入口处,第二成纤聚合物熔体和第一成纤聚合物熔体的表观粘度相差不超过5%(表观粘度是通过模拟确定的,具体是采用流变仪测量聚合物熔体在特定温度下的表观粘度得到的);
分配孔A和分配孔B为等高圆柱孔,分配孔A与分配孔B的直径之比为1.10~1.20:1,分配孔C和分配孔D为等高圆柱孔,分配孔C与分配孔D的直径之比为1:1.10~1.20;
特定的纺丝工艺为POY工艺、FDY工艺、POY-DTY工艺或POY-DT工艺,其中,POY工艺、FDY工艺和POY-DT工艺结束后,还对纤维进行松弛热处理。
具体地,本发明采用将第一成纤聚合物熔体经分配孔A和C、将第二成纤聚合物熔体经分配孔B和D进行分配,且设置在分配孔A、分配孔B、分配孔C和分配孔D的入口处,第二成纤聚合物熔体和第一成纤聚合物熔体的表观粘度相差不超过5%,各分配孔为等高圆柱孔,分配孔A与分配孔B的直径之比不等于分配孔C与分配孔D的直径之比的方式,使得分配至喷丝孔m中的第一成纤聚合物熔体与第二成纤聚合物熔体的质量比和分配至喷丝孔n中的第一成纤聚合物熔体与第二成纤聚合物熔体的质量比不同,实现了X和Y在一束纤维中的共存,保证了卷曲形态的不同,相应地,合理设置了分配孔和导孔的数量和位置关系,以保证分配的顺利进行;本发明将喷丝孔m和喷丝孔n按同心圆进行分布,并控制同一圆上的喷丝孔都为m或者都为n,保证了一部分Y可以混入另一部分X中间,起到打破形成整齐的左、右螺旋形态的作用;本发明无需对喷丝孔的形状进行调整,选用常用的并列型复合喷丝孔即可;本发明选用了特定的纺丝工艺,使其能够与第一成纤聚合物熔体的特性粘度和第二成纤聚合物熔体的特性粘度相互配合,保证从喷丝孔挤出的第一成纤聚合物组份和第二成纤聚合物组份的表观粘度较为接近,既起到了控制并列复合单丝的质量比的作用,也保证了纺丝的顺利进行,制得的纤维的弹性优良,综合性能较好。
本发明的原理如下:
在纺丝过程中,纺丝熔体是不断流动的,为了更好地控制熔体的流量,根据熔体在圆管内流动的熔体流量计算公式:
Figure PCTCN2020095554-appb-000001
式中,ΔQ为熔体流量,d为圆管直径,μ为圆管入口处熔体的表观粘度, l为圆管长度,ΔP为熔体经过圆管后的压力降,从式中可以看出,当ΔP、μ、l保持相等时,在两个圆管内流动的熔体流量之比接近圆管直径的四次方之比;
本发明是按特定的纺丝工艺,将第一成纤聚合物熔体和第二成纤聚合物熔体分配后,从同一喷丝板上的喷丝孔m与喷丝孔n挤出制得并列型自卷曲弹性纤维的,其中分配是指将第一成纤聚合物熔体经分配孔A,同时将第二成纤聚合物熔体经分配孔B分配至喷丝孔m中,将第一成纤聚合物熔体经分配孔C,同时将第二成纤聚合物熔体经分配孔D分配至喷丝孔n中;
流经分配孔A(或C)的第一成纤聚合物熔体流量与流经分配孔B(或D)的第二成纤聚合物熔体流量之比
Figure PCTCN2020095554-appb-000002
式中,ΔQ1、d1、μ1、l1、ΔP1对应分配孔A(或C),ΔQ2、d2、μ2、l2、ΔP2对应分配孔B(或D);由于在分配孔A和分配孔B入口处第二成纤聚合物熔体和第一成纤聚合物熔体的表观粘度接近一致(相差小于5%),在分配孔C和分配孔D入口处第二成纤聚合物熔体和第一成纤聚合物熔体的表观粘度接近一致(相差小于5%),因此μ1与μ2近似相等;由于,在分配孔A、分配孔B、分配孔C和分配孔D的入口处,第二成纤聚合物熔体和第一成纤聚合物熔体的表观粘度相差不超过5%,且分配孔A、分配孔B、分配孔C和分配孔D都设置在分配板上,自身尺寸较小,因此第一成纤聚合物熔体经过分配孔A后的压力降与第二成纤聚合物熔体经过分配孔B后的压力降基本相同,第一成纤聚合物熔体经过分配孔C后的压力降与第二成纤聚合物熔体经过分配孔D后的压力降基本相同,因此ΔP1与ΔP2近似相等;由于分配孔A和分配孔B等高,分配孔C和分配孔D等高,因此l1与l2相等;
经计算可知,
Figure PCTCN2020095554-appb-000003
Figure PCTCN2020095554-appb-000004
近似相等,由于分配孔A与分配孔B的直径之比为1.10~1.20:1,因此流经分配孔A的第一成纤聚合物熔体流量与流经分配孔B的第二成纤聚合物熔体流量之比约为3:2~2:1,最终从喷丝孔m挤出的单丝中第一成纤聚合物与第二成纤聚合物的质量比为3:2~2:1,同理,由于分配孔C与分配孔D的直径之比为1:1.10~1.20,因此流经分配孔C的第一成纤聚合物熔体与流经分配孔D的第二成纤聚合物熔体流量之比约为2:3~1:2,最终从喷丝孔n挤出的单丝中第一成纤聚合物与第二成纤聚合物的质量比为2:3~1:2;
此外,本发明采用的第一成纤聚合物和第二成纤聚合物的热收缩率不同,进一步地,通过将第一成纤聚合物和第二成纤聚合物混合后,这两种热收缩率不同的聚合物具有相容性或部分相容性,相容性的存在使得聚合物通过同一个喷丝孔(即两种成纤聚合物熔体一起按照并列复合纺丝方式分配后挤出)时可以粘合在一起,这种粘合作用与不同的热收缩率作用一起,使得从同一个喷丝孔出来的两种聚合物纤维(即第二成纤聚合物/第一成纤聚合物并列复合单丝)在经过热处理后可以形成自卷曲形态,从而具有 弹性,这种自卷曲形态具体为:热收缩率大的成纤聚合物在螺旋卷曲的内侧,热收缩率小的成纤聚合物在螺旋卷曲的外侧;
由于同一束纤维中,一部分第二成纤聚合物/第一成纤聚合物并列复合单丝中第一成纤聚合物与第二成纤聚合物的质量比为3:2~2:1,另一部分第二成纤聚合物/第一成纤聚合物并列复合单丝中第一成纤聚合物与第二成纤聚合物的质量比为2:3~1:2,因此不同单丝的卷曲形态存在一定的差异,这种差异发挥了打破纯第二成纤聚合物/第一成纤聚合物并列复合丝形成整齐的左、右螺旋形态的作用,使得制得的并列型自卷曲弹性纤维经松弛热处理后单丝卷曲方向随机分布,因而由该自卷曲弹性纤维织造的针织物表面不会出现随机性的“条阴状不匀”。
作为优选的技术方案:
如上所述的一种并列型自卷曲弹性纤维的制备方法,第二成纤聚合物熔体与第一成纤聚合物熔体的质量之比为50:50。
如上所述的一种并列型自卷曲弹性纤维的制备方法,喷丝孔m或喷丝孔n为圆形、椭圆形或“8”字形喷丝孔,本发明无需对喷丝孔m或喷丝孔n的形状进行特别调整,选用常用的并列型复合喷丝孔即可满足要求。
如上所述的一种并列型自卷曲弹性纤维的制备方法,所有的喷丝孔呈同心圆分布,同一圆上的喷丝孔都为m或者都为n,从而保证Y(或X)可以混入X(或Y)中间,起到打破形成整齐的左、右螺旋形态的作用。
如上所述的一种并列型自卷曲弹性纤维的制备方法,第一成纤聚合物和第二成纤聚合物的材质相同,粘度不同,或者第一成纤聚合物和第二成纤聚合物的材质不同,满足这两种条件的聚合物之间,也必然存在热收缩率的不同,经热处理后,纤维才能形成自卷曲形态;第一成纤聚合物和第二成纤聚合物的材质选自于聚酯均聚物、聚酯共聚物、聚酯改性产物、聚酰胺均聚物、聚酰胺共聚物和聚酰胺改性产物。
如上所述的一种并列型自卷曲弹性纤维的制备方法,喷丝孔m由顺序连接的导孔E、过渡孔和毛细微孔构成,喷丝孔n由顺序连接的导孔F、过渡孔和毛细微孔构成,导孔E同时与分配孔A和分配孔B连接,导孔F同时与分配孔C和分配孔D连接;分配孔A、分配孔B、分配孔C和分配孔D位于纺丝箱体III中的分配板上,第二成纤聚合物熔体经纺丝箱体I输送至分配孔B和分配孔D,第一成纤聚合物熔体经纺丝箱体II输送至分配孔A和分配孔C(本发明是通过第一成纤聚合物熔体的特性粘度、第二成纤聚合物熔体的特性粘度、纺丝箱体I的温度、纺丝箱体II的温度、纺丝箱体III的温度相互配合,实现在分配孔A~D入口处第二成纤聚合物熔体和第一成纤聚合物熔体的表观粘度接近一致的)。
如上所述的一种并列型自卷曲弹性纤维的制备方法,松弛热处理的温度为90~120℃,时间为 20~30min。
本发明还提供采用如上任一项所述的一种并列型自卷曲弹性纤维的制备方法制得的并列型自卷曲弹性纤维,由多根第二成纤聚合物/第一成纤聚合物并列复合单丝组成,同一束纤维中,一部分第二成纤聚合物/第一成纤聚合物并列复合单丝中第一成纤聚合物与第二成纤聚合物的质量比为3:2~2:1,另一部分第二成纤聚合物/第一成纤聚合物并列复合单丝中第一成纤聚合物与第二成纤聚合物的质量比为2:3~1:2;并列型自卷曲弹性纤维经热处理后单丝卷曲方向随机分布,随机分布是一个数学概念,即每根纤维的卷曲形态不同于其它纤维,从而使得制得的织物不存在“条阴状不匀”。
有益效果:
(1)本发明的一种并列型自卷曲弹性纤维的制备方法,由于同一束纤维中,一部分第二成纤聚合物/第一成纤聚合物并列复合单丝中第一成纤聚合物与第二成纤聚合物的质量比为3:2~2:1,另一部分第二成纤聚合物/第一成纤聚合物并列复合单丝中第一成纤聚合物与第二成纤聚合物的质量比为2:3~1:2,经松弛热处理后各纤维的螺旋卷曲状态随机,可使每根纤维的卷曲形态不同于其它纤维;
(2)本发明的一种并列型自卷曲弹性纤维的制备方法,由并列型自卷曲弹性纤维无法形成螺旋卷曲的规整排列,从而解决了并列型复合纤维在针织织物中所形成的“条阴状不匀”的问题;
(3)本发明的一种并列型自卷曲弹性纤维的制备方法制得的并列型自卷曲弹性纤维,弹性优良,综合性能较好,应用范围更加广阔。
附图说明
图1为本发明的熔体分配示意图;其中,A、B、C、D为相互独立的分配孔,E、F为相互独立的导孔。
具体实施方式
下面结合具体实施方式,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
本发明的卷曲收缩率和卷曲稳定度是采用GB6506-2001《合成纤维变形丝卷缩性能试验方法》对丝束进行测试得到的;
紧缩伸长率(反映变形丝的弹性和卷曲程度,纤维先承受轻负荷,再承受重负荷,计算两种负荷下的长度差值与卷曲长度的比值)和卷缩弹性回复率测试方法如下:
首先剪取长度约50cm的纤维试样两根,放入100℃热水中处理30min,取出后进行自然干燥,再截取约30cm长的试样,一端固定,一端加载0.0018cN/dtex的负荷,持续30s,在20cm处作标记,即为 试样的初始长度l 1;然后改为加载0.09cN/dtex的负荷,持续30s,测量标记点的位置,即为试样加重负荷时的长度l 2;最后去掉重负荷,试样无负荷回缩2min后再加0.0018cN/dtex的负荷,持续30s,测量标记点在标尺上的位置,即为回复长度l 3;紧缩伸长率(CE)和卷缩弹性回复率(SR)按下式计算:
CE=(l 2-l 1)/l 1
SR=(l 2-l 3)/(l 2-l 1)。
实施例1
一种并列型自卷曲弹性纤维的制备方法,按FDY工艺,将质量之比为50:50的PET熔体(特性粘度为0.6dL/g)和PA6熔体(特性粘度为2.2dL/g)分配后,从同一喷丝板上的喷丝孔m(圆形)与喷丝孔n(圆形)挤出制成FDY丝后进行松弛热处理,即得并列型自卷曲弹性纤维;
PA6熔体与PET熔体中各含有5wt%的PET-PA6共聚物熔体;PET-PA6共聚物的制备过程为:将数均分子量为2000的PET与数均分子量为2000的PA6按1:1的质量比混合后,在温度为273℃且真空度为45Pa的条件下,缩聚反应60min;
所述分配是指将PA6熔体经分配孔A,同时将PET熔体经分配孔B分配至喷丝孔m中;将PA6熔体经分配孔C,同时将PET熔体经分配孔D分配至喷丝孔n中;在分配孔A、分配孔B、分配孔C和分配孔D的入口处,PET熔体和PA6熔体的表观粘度相差5%;
分配孔A和分配孔B为等高圆柱孔,分配孔A与分配孔B的直径之比为1.10:1,分配孔C和分配孔D为等高圆柱孔,分配孔C与分配孔D的直径之比为1:1.10;
所有的喷丝孔呈同心圆分布,同一圆上的喷丝孔都为m或者都为n;
如图1所示,喷丝孔m由顺序连接的导孔E、过渡孔和毛细微孔构成,喷丝孔n由顺序连接的导孔F、过渡孔和毛细微孔构成,导孔E同时与分配孔A和分配孔B连接,导孔F同时与分配孔C和分配孔D连接;分配孔A、分配孔B、分配孔C和分配孔D位于纺丝箱体III中的分配板上,PET熔体经纺丝箱体I输送至分配孔B和分配孔D,PA6熔体经纺丝箱体II输送至分配孔A和分配孔C;
纺丝箱体I的温度为285℃,纺丝箱体II的温度为270℃,纺丝箱体III的温度为282℃;
FDY工艺的参数为:冷却温度25℃,网络压力0.2MPa,一辊速度1600m/min,一辊温度80℃,二辊速度2760m/min,二辊温度140℃,卷绕速度2710m/min;松弛热处理的温度为104℃,时间为30min。
最终制得的并列型自卷曲弹性纤维由多根PA6/PET并列复合单丝组成;并列型自卷曲弹性纤维中单丝卷曲方向随机分布;并列型自卷曲弹性纤维的卷曲收缩率为52%,卷曲稳定度为80%,紧缩伸长率为88%,卷缩弹性回复率为93%;并列型自卷曲弹性纤维的断裂强度≥2.5cN/dtex,断裂伸长率为50.5%,总纤度为100dtex。
将上述制得的并列型自卷曲弹性纤维制成针织织物进行条阴状不匀情况测试,测试得到的结果为: 并列型自卷曲弹性纤维制成的针织物的D值为0.57%;这说明本发明制得的并列型自卷曲弹性纤维不存在“条阴状不匀”的问题。
实施例2
一种并列型自卷曲弹性纤维的制备方法,按FDY工艺,将质量之比为50:50的PET熔体(特性粘度为0.63dL/g)和PA6熔体(特性粘度为2dL/g)分配后,从同一喷丝板上的喷丝孔m(椭圆形)与喷丝孔n(“8”字形)挤出制成FDY丝后进行松弛热处理,即得并列型自卷曲弹性纤维;
PA6熔体与PET熔体中各含有5wt%的PET-PA6共聚物熔体;PET-PA6共聚物的制备过程为:将数均分子量为2500的PET与数均分子量为2500的PA6按1:1的质量比混合后,在温度为275℃且真空度为45Pa的条件下,缩聚反应55min;
所述分配是指将PA6熔体经分配孔A,同时将PET熔体经分配孔B分配至喷丝孔m中;将PA6熔体经分配孔C,同时将PET熔体经分配孔D分配至喷丝孔n中;在分配孔A、分配孔B、分配孔C和分配孔D的入口处,PET熔体和PA6熔体的表观粘度相差2.8%;
分配孔A和分配孔B为等高圆柱孔,分配孔A与分配孔B的直径之比为1.18:1,分配孔C和分配孔D为等高圆柱孔,分配孔C与分配孔D的直径之比为1:1.18;
所有的喷丝孔呈同心圆分布,同一圆上的喷丝孔都为m或者都为n;
喷丝孔m由顺序连接的导孔E、过渡孔和毛细微孔构成,喷丝孔n由顺序连接的导孔F、过渡孔和毛细微孔构成,导孔E同时与分配孔A和分配孔B连接,导孔F同时与分配孔C和分配孔D连接;分配孔A、分配孔B、分配孔C和分配孔D位于纺丝箱体III中的分配板上,PET熔体经纺丝箱体I输送至分配孔B和分配孔D,PA6熔体经纺丝箱体II输送至分配孔A和分配孔C;
纺丝箱体I的温度为283℃,纺丝箱体II的温度为265℃,纺丝箱体III的温度为282℃;
FDY工艺的参数为:冷却温度23℃,网络压力0.24MPa,一辊速度1550m/min,一辊温度80℃,二辊速度2800m/min,二辊温度144℃,卷绕速度2670m/min;松弛热处理的温度为90℃,时间为24min。
最终制得的并列型自卷曲弹性纤维由多根PA6/PET并列复合单丝组成;并列型自卷曲弹性纤维中单丝卷曲方向随机分布;并列型自卷曲弹性纤维的卷曲收缩率为51.5%,卷曲稳定度为77.3%,紧缩伸长率为87.9%,卷缩弹性回复率为92.8%;并列型自卷曲弹性纤维的断裂强度≥2.5cN/dtex,断裂伸长率为57%,总纤度为95dtex。
将上述制得的并列型自卷曲弹性纤维制成针织织物进行条阴状不匀情况测试,测试得到的结果为:并列型自卷曲弹性纤维制成的针织物的D值为0.24%;这说明本发明制得的并列型自卷曲弹性纤维不存在“条阴状不匀”的问题。
实施例3
一种并列自卷曲弹性纤维的制备方法,按POY-DT工艺,将质量之比为50:50的PET熔体(特性粘度为0.55dL/g)和PBT熔体(特性粘度为1.1dL/g)分配后,从同一喷丝板上的喷丝孔m(圆形)与喷丝孔n(椭圆形)挤出制成POY-DT丝后进行松弛热处理,即得并列自卷曲弹性纤维;
所述分配是指将PBT熔体经分配孔A,同时将PET熔体经分配孔B分配至喷丝孔m中;将PBT熔体经分配孔C,同时将PET熔体经分配孔D分配至喷丝孔n中;在分配孔A、分配孔B、分配孔C和分配孔D的入口处,PET熔体和PBT熔体的表观粘度相差4.9%;
分配孔A和分配孔B为等高圆柱孔,分配孔A与分配孔B的直径之比为1.15:1,分配孔C和分配孔D为等高圆柱孔,分配孔C与分配孔D的直径之比为1:1.15;
所有的喷丝孔呈同心圆分布,同一圆上的喷丝孔都为m或者都为n;
喷丝孔m由顺序连接的导孔E、过渡孔和毛细微孔构成,喷丝孔n由顺序连接的导孔F、过渡孔和毛细微孔构成,导孔E同时与分配孔A和分配孔B连接,导孔F同时与分配孔C和分配孔D连接;分配孔A、分配孔B、分配孔C和分配孔D位于纺丝箱体III中的分配板上,PET熔体经纺丝箱体I输送至分配孔B和分配孔D,PBT熔体经纺丝箱体II输送至分配孔A和分配孔C;
纺丝箱体I的温度为280℃,纺丝箱体II的温度为260℃,纺丝箱体III的温度为276℃;
POY-DT工艺的参数为:冷却温度23℃,卷绕速度2800m/min,定型温度133℃,拉伸温度95℃,拉伸倍数1.8;
松弛热处理的温度为90℃,时间为30min。
最终制得的并列自卷曲弹性纤维由多根PBT/PET并列复合单丝组成;并列自卷曲弹性纤维中单丝卷曲方向随机分布;并列自卷曲弹性纤维的卷曲收缩率为66%,卷曲稳定度为92.3%,紧缩伸长率为114%,卷缩弹性回复率为80%,断裂强度为3.07cN/dtex,断裂伸长率为47%,总纤度为80dtex。
实施例4
一种并列型自卷曲弹性纤维的制备方法,其过程如下:
按POY工艺,将质量之比为50:50的PTT熔体(特性粘度为0.9dL/g)和PBT熔体(特性粘度为1.21dL/g)分配后,从同一喷丝板上的喷丝孔m(圆形)与喷丝孔n(圆形)挤出制得并列型自卷曲弹性纤维;
其中,所述分配是指将PBT熔体经分配孔A,同时将PTT熔体经分配孔B分配至喷丝孔m中,将PBT熔体经分配孔C,同时将PTT熔体经分配孔D分配至喷丝孔n中;在分配孔A、分配孔B、分配孔C和分配孔D的入口处,PTT熔体和PBT熔体的表观粘度相差5%;
分配孔A和分配孔B为等高圆柱孔,分配孔A与分配孔B的直径之比为1.1:1,分配孔C和分配孔D为等高圆柱孔,分配孔C与分配孔D的直径之比为1:1.1;
喷丝孔m由顺序连接的导孔E、过渡孔和毛细微孔构成,喷丝孔n由顺序连接的导孔F、过渡孔和毛细微孔构成,导孔E同时与分配孔A和分配孔B连接,导孔F同时与分配孔C和分配孔D连接;分配孔A、分配孔B、分配孔C和分配孔D位于纺丝箱体III中的分配板上,PTT熔体经纺丝箱体I输送至分配孔B和分配孔D,PBT熔体经纺丝箱体II输送至分配孔A和分配孔C;纺丝箱体I的温度为255℃,纺丝箱体II的温度为266℃,纺丝箱体III的温度为265℃;
所有的喷丝孔呈同心圆分布,同一圆上的喷丝孔都为m或者都为n;
POY工艺的参数为:冷却温度24℃,卷绕速度2660m/min;
制得的并列型自卷曲弹性纤维由多根PBT/PTT并列复合单丝组成;由并列型自卷曲弹性纤维制得的DT丝的单丝卷曲方向随机分布,卷曲收缩率为70%,卷曲稳定度为93.3%,紧缩伸长率为113%,卷缩弹性回复率为85%;并列型自卷曲弹性纤维的断裂强度为2.29cN/dtex,断裂伸长率为125%,单丝纤度为0.5dtex,总纤度为110dtex。
实施例5
一种并列型自卷曲弹性纤维的制备方法,按POY-DT工艺,将质量之比为50:50的PET熔体(特性粘度为0.52dL/g)和PBT熔体(特性粘度为1.14dL/g)分配后,从同一喷丝板上的喷丝孔m(圆形)与喷丝孔n(圆形)挤出制成POY-DT丝后进行松弛热处理,即得并列型自卷曲弹性纤维;
所述分配是指将PBT熔体经分配孔A,同时将PET熔体经分配孔B分配至喷丝孔m中;将PBT熔体经分配孔C,同时将PET熔体经分配孔D分配至喷丝孔n中;在分配孔A、分配孔B、分配孔C和分配孔D的入口处,PET熔体和PBT熔体的表观粘度相差5%;
分配孔A和分配孔B为等高圆柱孔,分配孔A与分配孔B的直径之比为1.17:1,分配孔C和分配孔D为等高圆柱孔,分配孔C与分配孔D的直径之比为1:1.17;
所有的喷丝孔呈同心圆分布,同一圆上的喷丝孔都为m或者都为n;
喷丝孔m由顺序连接的导孔E、过渡孔和毛细微孔构成,喷丝孔n由顺序连接的导孔F、过渡孔和毛细微孔构成,导孔E同时与分配孔A和分配孔B连接,导孔F同时与分配孔C和分配孔D连接;分配孔A、分配孔B、分配孔C和分配孔D位于纺丝箱体III中的分配板上,PET熔体经纺丝箱体I输送至分配孔B和分配孔D,PBT熔体经纺丝箱体II输送至分配孔A和分配孔C;
纺丝箱体I的温度为279℃,纺丝箱体II的温度为261℃,纺丝箱体III的温度为277℃;
POY-DT工艺的参数为:冷却温度25℃,卷绕速度3100m/min,定型温度134℃,拉伸温度89℃,拉伸倍数1.7;
松弛热处理的温度为98℃,时间为27min。
最终制得的并列型自卷曲弹性纤维由多根PBT/PET并列复合单丝组成;并列型自卷曲弹性纤维中 单丝卷曲方向随机分布;并列型自卷曲弹性纤维的卷曲收缩率为67%,卷曲稳定度为92.6%,紧缩伸长率为114%,卷缩弹性回复率为80%,断裂强度为3.02cN/dtex,断裂伸长率为51%,总纤度为140dtex。
实施例6
一种并列型自卷曲弹性纤维的制备方法,按POY-DT工艺,将质量之比为50:50的PET熔体(特性粘度为0.51dL/g)和PBT熔体(特性粘度为1.14dL/g)分配后,从同一喷丝板上的喷丝孔m(圆形)与喷丝孔n(圆形)挤出制成POY-DT丝后进行松弛热处理,即得并列型自卷曲弹性纤维;
所述分配是指将PBT熔体经分配孔A,同时将PET熔体经分配孔B分配至喷丝孔m中;将PBT熔体经分配孔C,同时将PET熔体经分配孔D分配至喷丝孔n中;在分配孔A、分配孔B、分配孔C和分配孔D的入口处,PET熔体和PBT熔体的表观粘度相差4.4%;
分配孔A和分配孔B为等高圆柱孔,分配孔A与分配孔B的直径之比为1.18:1,分配孔C和分配孔D为等高圆柱孔,分配孔C与分配孔D的直径之比为1:1.18;
所有的喷丝孔呈同心圆分布,同一圆上的喷丝孔都为m或者都为n;
喷丝孔m由顺序连接的导孔E、过渡孔和毛细微孔构成,喷丝孔n由顺序连接的导孔F、过渡孔和毛细微孔构成,导孔E同时与分配孔A和分配孔B连接,导孔F同时与分配孔C和分配孔D连接;分配孔A、分配孔B、分配孔C和分配孔D位于纺丝箱体III中的分配板上,PET熔体经纺丝箱体I输送至分配孔B和分配孔D,PBT熔体经纺丝箱体II输送至分配孔A和分配孔C;
纺丝箱体I的温度为279℃,纺丝箱体II的温度为260℃,纺丝箱体III的温度为274℃;
POY-DT工艺的参数为:冷却温度25℃,卷绕速度2840m/min,定型温度135℃,拉伸温度95℃,拉伸倍数1.7;
松弛热处理的温度为101℃,时间为26min。
最终制得的并列型自卷曲弹性纤维由多根PBT/PET并列复合单丝组成;并列型自卷曲弹性纤维中单丝卷曲方向随机分布;并列型自卷曲弹性纤维的卷曲收缩率为68%,卷曲稳定度为92.9%,紧缩伸长率为115%,卷缩弹性回复率为82%,断裂强度为3.04cN/dtex,断裂伸长率为49%,总纤度为90dtex。

Claims (8)

  1. 一种并列型自卷曲弹性纤维的制备方法,其特征是:按特定的纺丝工艺,将第一成纤聚合物熔体和第二成纤聚合物熔体分配后,从同一喷丝板上的喷丝孔m与喷丝孔n挤出制得并列型自卷曲弹性纤维;
    所述分配是指将第一成纤聚合物熔体经分配孔A,同时将第二成纤聚合物熔体经分配孔B分配至喷丝孔m中,将第一成纤聚合物熔体经分配孔C,同时将第二成纤聚合物熔体经分配孔D分配至喷丝孔n中;
    第一成纤聚合物和第二成纤聚合物具有相容性或部分相容性;
    在分配孔A、分配孔B、分配孔C和分配孔D的入口处,第二成纤聚合物熔体和第一成纤聚合物熔体的表观粘度相差不超过5%;
    分配孔A和分配孔B为等高圆柱孔,分配孔A与分配孔B的直径之比为1.10~1.20:1,分配孔C和分配孔D为等高圆柱孔,分配孔C与分配孔D的直径之比为1:1.10~1.20;
    特定的纺丝工艺为POY工艺、FDY工艺、POY-DTY工艺或POY-DT工艺,其中,POY工艺、FDY工艺和POY-DT工艺结束后,还对纤维进行松弛热处理。
  2. 根据权利要求1所述的一种并列型自卷曲弹性纤维的制备方法,其特征在于,第二成纤聚合物熔体与第一成纤聚合物熔体的质量之比为50:50。
  3. 根据权利要求1所述的一种并列型自卷曲弹性纤维的制备方法,其特征在于,喷丝孔m或喷丝孔n为圆形、椭圆形或“8”字形喷丝孔。
  4. 根据权利要求1所述的一种并列型自卷曲弹性纤维的制备方法,其特征在于,所有的喷丝孔呈同心圆分布,同一圆上的喷丝孔都为m或者都为n。
  5. 根据权利要求1所述的一种并列型自卷曲弹性纤维的制备方法,其特征在于,第一成纤聚合物和第二成纤聚合物的材质相同,粘度不同,或者第一成纤聚合物和第二成纤聚合物的材质不同;第一成纤聚合物和第二成纤聚合物的材质选自于聚酯均聚物、聚酯共聚物、聚酯改性产物、聚酰胺均聚物、聚酰胺共聚物和聚酰胺改性产物。
  6. 根据权利要求1所述的一种并列型自卷曲弹性纤维的制备方法,其特征在于,喷丝孔m由顺序连接的导孔E、过渡孔和毛细微孔构成,喷丝孔n由顺序连接的导孔F、过渡孔和毛细微孔构成,导孔E同时与分配孔A和分配孔B连接,导孔F同时与分配孔C和分配孔D连接;分配孔A、分配孔B、分配孔C和分配孔D位于纺丝箱体III中的分配板上,第二成纤聚合物熔体经纺丝箱体I输送至分配孔B和分配孔D,第一成纤聚合物熔体经纺丝箱体II输送至分配孔A和分配孔C。
  7. 根据权利要求1所述的一种并列型自卷曲弹性纤维的制备方法,其特征在于,松弛热处理 的温度为90~120℃,时间为20~30min。
  8. 采用如权利要求1~7任一项所述的一种并列型自卷曲弹性纤维的制备方法制得的并列型自卷曲弹性纤维,其特征是:由多根第二成纤聚合物/第一成纤聚合物并列复合单丝组成,同一束纤维中,一部分第二成纤聚合物/第一成纤聚合物并列复合单丝中第一成纤聚合物与第二成纤聚合物的质量比为3:2~2:1,另一部分第二成纤聚合物/第一成纤聚合物并列复合单丝中第一成纤聚合物与第二成纤聚合物的质量比为2:3~1:2。
PCT/CN2020/095554 2019-12-24 2020-06-11 并列型自卷曲弹性纤维及其制备方法 WO2021128754A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/788,309 US20230026569A1 (en) 2019-12-24 2020-06-11 Side-by-side self-crimping elastic fiber and preparation method therefor
JP2022538787A JP7370471B2 (ja) 2019-12-24 2020-06-11 サイドバイサイド型自己捲縮弾性繊維及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911351604.X 2019-12-24
CN201911351604.XA CN111101238B (zh) 2019-12-24 2019-12-24 一种并列型自卷曲弹性纤维及其制备方法

Publications (1)

Publication Number Publication Date
WO2021128754A1 true WO2021128754A1 (zh) 2021-07-01

Family

ID=70424437

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/095554 WO2021128754A1 (zh) 2019-12-24 2020-06-11 并列型自卷曲弹性纤维及其制备方法

Country Status (4)

Country Link
US (1) US20230026569A1 (zh)
JP (1) JP7370471B2 (zh)
CN (1) CN111101238B (zh)
WO (1) WO2021128754A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111101238B (zh) * 2019-12-24 2023-02-28 江苏恒力化纤股份有限公司 一种并列型自卷曲弹性纤维及其制备方法
CN113862827B (zh) * 2021-09-06 2024-03-15 新疆蓝山屯河高端新材料工程技术研究中心有限公司 一种并列型复合弹性纤维及其制备方法和应用、复合喷丝组件

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3458390A (en) * 1964-09-26 1969-07-29 Kanebo Ltd Specific conjugate composite filament
CN1276444A (zh) * 1999-06-08 2000-12-13 东丽株式会社 柔软弹力丝及其制造方法
CN1737224A (zh) * 2004-08-17 2006-02-22 株式会社化纤喷丝板制作所 用于制造并列型复合纤维的纺丝喷丝头及方法
CN107794581A (zh) * 2017-12-14 2018-03-13 江苏恒力化纤股份有限公司 复合喷丝板
CN209652480U (zh) * 2018-12-11 2019-11-19 厦门翔鹭化纤股份有限公司 一种并列复合纤维用异形喷丝板
CN111101238A (zh) * 2019-12-24 2020-05-05 江苏恒力化纤股份有限公司 一种并列型自卷曲弹性纤维及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5336048B1 (zh) * 1966-12-02 1978-09-30
JP2545577B2 (ja) * 1988-04-14 1996-10-23 三菱レイヨン株式会社 ポリエステル異繊度・異捲縮性複合繊維糸条
JPH02221414A (ja) * 1989-02-23 1990-09-04 Mitsubishi Rayon Co Ltd 複合繊維糸条
JP2003247139A (ja) * 2001-12-20 2003-09-05 Asahi Kasei Corp 複合糸および編織物
JP2006144165A (ja) * 2004-11-19 2006-06-08 Shinkong Synthetic Fibers Corp 自己捲縮性複合繊維及びその製造方法
WO2014077359A1 (ja) * 2012-11-19 2014-05-22 東レ株式会社 複合口金および複合繊維、複合繊維の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3458390A (en) * 1964-09-26 1969-07-29 Kanebo Ltd Specific conjugate composite filament
CN1276444A (zh) * 1999-06-08 2000-12-13 东丽株式会社 柔软弹力丝及其制造方法
CN1737224A (zh) * 2004-08-17 2006-02-22 株式会社化纤喷丝板制作所 用于制造并列型复合纤维的纺丝喷丝头及方法
CN107794581A (zh) * 2017-12-14 2018-03-13 江苏恒力化纤股份有限公司 复合喷丝板
CN209652480U (zh) * 2018-12-11 2019-11-19 厦门翔鹭化纤股份有限公司 一种并列复合纤维用异形喷丝板
CN111101238A (zh) * 2019-12-24 2020-05-05 江苏恒力化纤股份有限公司 一种并列型自卷曲弹性纤维及其制备方法

Also Published As

Publication number Publication date
JP7370471B2 (ja) 2023-10-27
JP2022552434A (ja) 2022-12-15
CN111101238A (zh) 2020-05-05
US20230026569A1 (en) 2023-01-26
CN111101238B (zh) 2023-02-28

Similar Documents

Publication Publication Date Title
CN110552096B (zh) 一种高强高收缩混纤丝一步法生产工艺
WO2021128754A1 (zh) 并列型自卷曲弹性纤维及其制备方法
KR102458368B1 (ko) 편성용 자발 권축 탄성 혼섬사의 제조 방법
CN109487352A (zh) 石墨烯聚乳酸双组分复合纤维及其制备方法和设备
US8182915B2 (en) Spinning method
CN111118617B (zh) 全消光弹性丝及其制备方法
WO2021128753A1 (zh) 粘度不同的pet双组份弹性丝及其制备方法
WO2021135080A1 (zh) 一种针织用复合卷曲纤维及其制备方法
WO2021128750A1 (zh) 一步法cdp/pet双组份复合丝及其制备方法
CN111118665B (zh) 一种涤锦复合丝及其制备方法
CN111101237B (zh) 一种高低粘pet并列复合自卷曲性纤维及其制备方法
CN111118664B (zh) 一种并列自卷曲仿毛弹性纤维及其制备方法
CN111118630B (zh) 一种柔软型聚酯纤维及其制备方法
CN111041577B (zh) Pet/改性pet双组份弹性丝及其制备方法
CN111005083A (zh) 一种并列自卷曲poy-dt丝弹性纤维及其制备方法
CN111020724A (zh) 一种特斯林布的制备方法
KR20000019601A (ko) 자발권축섬유

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20907274

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022538787

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20907274

Country of ref document: EP

Kind code of ref document: A1